* basic-block.h (last_basic_block): Defined as synonym for
[official-gcc.git] / gcc / combine.c
blobf0e4431486960a3876a2573250c8088f6ebf48f2
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras;
110 /* Number of instructions combined in this function. */
112 static int combine_successes;
114 /* Totals over entire compilation. */
116 static int total_attempts, total_merges, total_extras, total_successes;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid;
127 static int max_uid_cuid;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
140 /* Maximum register number, which is the size of the tables below. */
142 static unsigned int combine_max_regno;
144 /* Record last point of death of (hard or pseudo) register n. */
146 static rtx *reg_last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
150 static rtx *reg_last_set;
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
155 static int mem_last_set;
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
160 static int last_call_cuid;
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
168 static rtx subst_insn;
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
173 static rtx subst_prev_insn;
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
182 static int subst_low_cuid;
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
187 static HARD_REG_SET newpat_used_regs;
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
193 static rtx added_links_insn;
195 /* Basic block in which we are performing combines. */
196 static basic_block this_basic_block;
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx *reg_last_set_value;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick;
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
265 static char *reg_last_set_invalid;
267 /* Incremented for each label. */
269 static int label_tick;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static unsigned char *reg_sign_bit_copies;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
313 struct undo
315 struct undo *next;
316 int is_int;
317 union {rtx r; unsigned int i;} old_contents;
318 union {rtx *r; unsigned int *i;} where;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
327 struct undobuf
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
334 static struct undobuf undobuf;
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
339 static int n_occurrences;
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((unsigned int *,
343 unsigned int));
344 static void init_reg_last_arrays PARAMS ((void));
345 static void setup_incoming_promotions PARAMS ((void));
346 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
347 static int cant_combine_insn_p PARAMS ((rtx));
348 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
349 static int sets_function_arg_p PARAMS ((rtx));
350 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
351 static int contains_muldiv PARAMS ((rtx));
352 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
353 static void undo_all PARAMS ((void));
354 static void undo_commit PARAMS ((void));
355 static rtx *find_split_point PARAMS ((rtx *, rtx));
356 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
357 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
358 static rtx simplify_if_then_else PARAMS ((rtx));
359 static rtx simplify_set PARAMS ((rtx));
360 static rtx simplify_logical PARAMS ((rtx, int));
361 static rtx expand_compound_operation PARAMS ((rtx));
362 static rtx expand_field_assignment PARAMS ((rtx));
363 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
364 rtx, unsigned HOST_WIDE_INT, int,
365 int, int));
366 static rtx extract_left_shift PARAMS ((rtx, int));
367 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
368 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
369 unsigned HOST_WIDE_INT *));
370 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
371 unsigned HOST_WIDE_INT, rtx, int));
372 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
373 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
374 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
375 static rtx make_field_assignment PARAMS ((rtx));
376 static rtx apply_distributive_law PARAMS ((rtx));
377 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
378 unsigned HOST_WIDE_INT));
379 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
380 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
381 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
382 enum rtx_code, HOST_WIDE_INT,
383 enum machine_mode, int *));
384 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
385 rtx, int));
386 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
387 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
388 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
389 rtx, rtx));
390 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
391 static void update_table_tick PARAMS ((rtx));
392 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
393 static void check_promoted_subreg PARAMS ((rtx, rtx));
394 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
395 static void record_dead_and_set_regs PARAMS ((rtx));
396 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
397 static rtx get_last_value PARAMS ((rtx));
398 static int use_crosses_set_p PARAMS ((rtx, int));
399 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
400 static int reg_dead_at_p PARAMS ((rtx, rtx));
401 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
402 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
403 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
404 static void distribute_links PARAMS ((rtx));
405 static void mark_used_regs_combine PARAMS ((rtx));
406 static int insn_cuid PARAMS ((rtx));
407 static void record_promoted_value PARAMS ((rtx, rtx));
408 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
409 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
415 the undo table. */
417 static void
418 do_SUBST (into, newval)
419 rtx *into, newval;
421 struct undo *buf;
422 rtx oldval = *into;
424 if (oldval == newval)
425 return;
427 /* We'd like to catch as many invalid transformations here as
428 possible. Unfortunately, there are way too many mode changes
429 that are perfectly valid, so we'd waste too much effort for
430 little gain doing the checks here. Focus on catching invalid
431 transformations involving integer constants. */
432 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
433 && GET_CODE (newval) == CONST_INT)
435 /* Sanity check that we're replacing oldval with a CONST_INT
436 that is a valid sign-extension for the original mode. */
437 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
438 GET_MODE (oldval)))
439 abort ();
441 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
442 CONST_INT is not valid, because after the replacement, the
443 original mode would be gone. Unfortunately, we can't tell
444 when do_SUBST is called to replace the operand thereof, so we
445 perform this test on oldval instead, checking whether an
446 invalid replacement took place before we got here. */
447 if ((GET_CODE (oldval) == SUBREG
448 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
449 || (GET_CODE (oldval) == ZERO_EXTEND
450 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
451 abort ();
454 if (undobuf.frees)
455 buf = undobuf.frees, undobuf.frees = buf->next;
456 else
457 buf = (struct undo *) xmalloc (sizeof (struct undo));
459 buf->is_int = 0;
460 buf->where.r = into;
461 buf->old_contents.r = oldval;
462 *into = newval;
464 buf->next = undobuf.undos, undobuf.undos = buf;
467 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
469 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
470 for the value of a HOST_WIDE_INT value (including CONST_INT) is
471 not safe. */
473 static void
474 do_SUBST_INT (into, newval)
475 unsigned int *into, newval;
477 struct undo *buf;
478 unsigned int oldval = *into;
480 if (oldval == newval)
481 return;
483 if (undobuf.frees)
484 buf = undobuf.frees, undobuf.frees = buf->next;
485 else
486 buf = (struct undo *) xmalloc (sizeof (struct undo));
488 buf->is_int = 1;
489 buf->where.i = into;
490 buf->old_contents.i = oldval;
491 *into = newval;
493 buf->next = undobuf.undos, undobuf.undos = buf;
496 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
498 /* Main entry point for combiner. F is the first insn of the function.
499 NREGS is the first unused pseudo-reg number.
501 Return non-zero if the combiner has turned an indirect jump
502 instruction into a direct jump. */
504 combine_instructions (f, nregs)
505 rtx f;
506 unsigned int nregs;
508 rtx insn, next;
509 #ifdef HAVE_cc0
510 rtx prev;
511 #endif
512 int i;
513 rtx links, nextlinks;
515 int new_direct_jump_p = 0;
517 combine_attempts = 0;
518 combine_merges = 0;
519 combine_extras = 0;
520 combine_successes = 0;
522 combine_max_regno = nregs;
524 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
525 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
526 reg_sign_bit_copies
527 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
529 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
530 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
531 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
532 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
533 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
534 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
535 reg_last_set_mode
536 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
537 reg_last_set_nonzero_bits
538 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
539 reg_last_set_sign_bit_copies
540 = (char *) xmalloc (nregs * sizeof (char));
542 init_reg_last_arrays ();
544 init_recog_no_volatile ();
546 /* Compute maximum uid value so uid_cuid can be allocated. */
548 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
549 if (INSN_UID (insn) > i)
550 i = INSN_UID (insn);
552 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
553 max_uid_cuid = i;
555 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
557 /* Don't use reg_nonzero_bits when computing it. This can cause problems
558 when, for example, we have j <<= 1 in a loop. */
560 nonzero_sign_valid = 0;
562 /* Compute the mapping from uids to cuids.
563 Cuids are numbers assigned to insns, like uids,
564 except that cuids increase monotonically through the code.
566 Scan all SETs and see if we can deduce anything about what
567 bits are known to be zero for some registers and how many copies
568 of the sign bit are known to exist for those registers.
570 Also set any known values so that we can use it while searching
571 for what bits are known to be set. */
573 label_tick = 1;
575 /* We need to initialize it here, because record_dead_and_set_regs may call
576 get_last_value. */
577 subst_prev_insn = NULL_RTX;
579 setup_incoming_promotions ();
581 refresh_blocks = sbitmap_alloc (last_basic_block);
582 sbitmap_zero (refresh_blocks);
583 need_refresh = 0;
585 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
587 uid_cuid[INSN_UID (insn)] = ++i;
588 subst_low_cuid = i;
589 subst_insn = insn;
591 if (INSN_P (insn))
593 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
594 NULL);
595 record_dead_and_set_regs (insn);
597 #ifdef AUTO_INC_DEC
598 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
599 if (REG_NOTE_KIND (links) == REG_INC)
600 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
601 NULL);
602 #endif
605 if (GET_CODE (insn) == CODE_LABEL)
606 label_tick++;
609 nonzero_sign_valid = 1;
611 /* Now scan all the insns in forward order. */
613 label_tick = 1;
614 last_call_cuid = 0;
615 mem_last_set = 0;
616 init_reg_last_arrays ();
617 setup_incoming_promotions ();
619 FOR_EACH_BB (this_basic_block)
621 for (insn = this_basic_block->head;
622 insn != NEXT_INSN (this_basic_block->end);
623 insn = next ? next : NEXT_INSN (insn))
625 next = 0;
627 if (GET_CODE (insn) == CODE_LABEL)
628 label_tick++;
630 else if (INSN_P (insn))
632 /* See if we know about function return values before this
633 insn based upon SUBREG flags. */
634 check_promoted_subreg (insn, PATTERN (insn));
636 /* Try this insn with each insn it links back to. */
638 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
639 if ((next = try_combine (insn, XEXP (links, 0),
640 NULL_RTX, &new_direct_jump_p)) != 0)
641 goto retry;
643 /* Try each sequence of three linked insns ending with this one. */
645 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
647 rtx link = XEXP (links, 0);
649 /* If the linked insn has been replaced by a note, then there
650 is no point in pursuing this chain any further. */
651 if (GET_CODE (link) == NOTE)
652 continue;
654 for (nextlinks = LOG_LINKS (link);
655 nextlinks;
656 nextlinks = XEXP (nextlinks, 1))
657 if ((next = try_combine (insn, link,
658 XEXP (nextlinks, 0),
659 &new_direct_jump_p)) != 0)
660 goto retry;
663 #ifdef HAVE_cc0
664 /* Try to combine a jump insn that uses CC0
665 with a preceding insn that sets CC0, and maybe with its
666 logical predecessor as well.
667 This is how we make decrement-and-branch insns.
668 We need this special code because data flow connections
669 via CC0 do not get entered in LOG_LINKS. */
671 if (GET_CODE (insn) == JUMP_INSN
672 && (prev = prev_nonnote_insn (insn)) != 0
673 && GET_CODE (prev) == INSN
674 && sets_cc0_p (PATTERN (prev)))
676 if ((next = try_combine (insn, prev,
677 NULL_RTX, &new_direct_jump_p)) != 0)
678 goto retry;
680 for (nextlinks = LOG_LINKS (prev); nextlinks;
681 nextlinks = XEXP (nextlinks, 1))
682 if ((next = try_combine (insn, prev,
683 XEXP (nextlinks, 0),
684 &new_direct_jump_p)) != 0)
685 goto retry;
688 /* Do the same for an insn that explicitly references CC0. */
689 if (GET_CODE (insn) == INSN
690 && (prev = prev_nonnote_insn (insn)) != 0
691 && GET_CODE (prev) == INSN
692 && sets_cc0_p (PATTERN (prev))
693 && GET_CODE (PATTERN (insn)) == SET
694 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
696 if ((next = try_combine (insn, prev,
697 NULL_RTX, &new_direct_jump_p)) != 0)
698 goto retry;
700 for (nextlinks = LOG_LINKS (prev); nextlinks;
701 nextlinks = XEXP (nextlinks, 1))
702 if ((next = try_combine (insn, prev,
703 XEXP (nextlinks, 0),
704 &new_direct_jump_p)) != 0)
705 goto retry;
708 /* Finally, see if any of the insns that this insn links to
709 explicitly references CC0. If so, try this insn, that insn,
710 and its predecessor if it sets CC0. */
711 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
712 if (GET_CODE (XEXP (links, 0)) == INSN
713 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
714 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
715 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
716 && GET_CODE (prev) == INSN
717 && sets_cc0_p (PATTERN (prev))
718 && (next = try_combine (insn, XEXP (links, 0),
719 prev, &new_direct_jump_p)) != 0)
720 goto retry;
721 #endif
723 /* Try combining an insn with two different insns whose results it
724 uses. */
725 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
726 for (nextlinks = XEXP (links, 1); nextlinks;
727 nextlinks = XEXP (nextlinks, 1))
728 if ((next = try_combine (insn, XEXP (links, 0),
729 XEXP (nextlinks, 0),
730 &new_direct_jump_p)) != 0)
731 goto retry;
733 if (GET_CODE (insn) != NOTE)
734 record_dead_and_set_regs (insn);
736 retry:
741 clear_bb_flags ();
743 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
744 BASIC_BLOCK (i)->flags |= BB_DIRTY);
745 new_direct_jump_p |= purge_all_dead_edges (0);
746 delete_noop_moves (f);
748 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
749 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
750 | PROP_KILL_DEAD_CODE);
752 /* Clean up. */
753 sbitmap_free (refresh_blocks);
754 free (reg_nonzero_bits);
755 free (reg_sign_bit_copies);
756 free (reg_last_death);
757 free (reg_last_set);
758 free (reg_last_set_value);
759 free (reg_last_set_table_tick);
760 free (reg_last_set_label);
761 free (reg_last_set_invalid);
762 free (reg_last_set_mode);
763 free (reg_last_set_nonzero_bits);
764 free (reg_last_set_sign_bit_copies);
765 free (uid_cuid);
768 struct undo *undo, *next;
769 for (undo = undobuf.frees; undo; undo = next)
771 next = undo->next;
772 free (undo);
774 undobuf.frees = 0;
777 total_attempts += combine_attempts;
778 total_merges += combine_merges;
779 total_extras += combine_extras;
780 total_successes += combine_successes;
782 nonzero_sign_valid = 0;
784 /* Make recognizer allow volatile MEMs again. */
785 init_recog ();
787 return new_direct_jump_p;
790 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
792 static void
793 init_reg_last_arrays ()
795 unsigned int nregs = combine_max_regno;
797 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
798 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
799 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
800 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
801 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
802 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
803 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
804 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
805 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
808 /* Set up any promoted values for incoming argument registers. */
810 static void
811 setup_incoming_promotions ()
813 #ifdef PROMOTE_FUNCTION_ARGS
814 unsigned int regno;
815 rtx reg;
816 enum machine_mode mode;
817 int unsignedp;
818 rtx first = get_insns ();
820 #ifndef OUTGOING_REGNO
821 #define OUTGOING_REGNO(N) N
822 #endif
823 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
824 /* Check whether this register can hold an incoming pointer
825 argument. FUNCTION_ARG_REGNO_P tests outgoing register
826 numbers, so translate if necessary due to register windows. */
827 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
828 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
830 record_value_for_reg
831 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
832 : SIGN_EXTEND),
833 GET_MODE (reg),
834 gen_rtx_CLOBBER (mode, const0_rtx)));
836 #endif
839 /* Called via note_stores. If X is a pseudo that is narrower than
840 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
842 If we are setting only a portion of X and we can't figure out what
843 portion, assume all bits will be used since we don't know what will
844 be happening.
846 Similarly, set how many bits of X are known to be copies of the sign bit
847 at all locations in the function. This is the smallest number implied
848 by any set of X. */
850 static void
851 set_nonzero_bits_and_sign_copies (x, set, data)
852 rtx x;
853 rtx set;
854 void *data ATTRIBUTE_UNUSED;
856 unsigned int num;
858 if (GET_CODE (x) == REG
859 && REGNO (x) >= FIRST_PSEUDO_REGISTER
860 /* If this register is undefined at the start of the file, we can't
861 say what its contents were. */
862 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
863 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
865 if (set == 0 || GET_CODE (set) == CLOBBER)
867 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
868 reg_sign_bit_copies[REGNO (x)] = 1;
869 return;
872 /* If this is a complex assignment, see if we can convert it into a
873 simple assignment. */
874 set = expand_field_assignment (set);
876 /* If this is a simple assignment, or we have a paradoxical SUBREG,
877 set what we know about X. */
879 if (SET_DEST (set) == x
880 || (GET_CODE (SET_DEST (set)) == SUBREG
881 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
882 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
883 && SUBREG_REG (SET_DEST (set)) == x))
885 rtx src = SET_SRC (set);
887 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
888 /* If X is narrower than a word and SRC is a non-negative
889 constant that would appear negative in the mode of X,
890 sign-extend it for use in reg_nonzero_bits because some
891 machines (maybe most) will actually do the sign-extension
892 and this is the conservative approach.
894 ??? For 2.5, try to tighten up the MD files in this regard
895 instead of this kludge. */
897 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
898 && GET_CODE (src) == CONST_INT
899 && INTVAL (src) > 0
900 && 0 != (INTVAL (src)
901 & ((HOST_WIDE_INT) 1
902 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
903 src = GEN_INT (INTVAL (src)
904 | ((HOST_WIDE_INT) (-1)
905 << GET_MODE_BITSIZE (GET_MODE (x))));
906 #endif
908 /* Don't call nonzero_bits if it cannot change anything. */
909 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
910 reg_nonzero_bits[REGNO (x)]
911 |= nonzero_bits (src, nonzero_bits_mode);
912 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
913 if (reg_sign_bit_copies[REGNO (x)] == 0
914 || reg_sign_bit_copies[REGNO (x)] > num)
915 reg_sign_bit_copies[REGNO (x)] = num;
917 else
919 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
920 reg_sign_bit_copies[REGNO (x)] = 1;
925 /* See if INSN can be combined into I3. PRED and SUCC are optionally
926 insns that were previously combined into I3 or that will be combined
927 into the merger of INSN and I3.
929 Return 0 if the combination is not allowed for any reason.
931 If the combination is allowed, *PDEST will be set to the single
932 destination of INSN and *PSRC to the single source, and this function
933 will return 1. */
935 static int
936 can_combine_p (insn, i3, pred, succ, pdest, psrc)
937 rtx insn;
938 rtx i3;
939 rtx pred ATTRIBUTE_UNUSED;
940 rtx succ;
941 rtx *pdest, *psrc;
943 int i;
944 rtx set = 0, src, dest;
945 rtx p;
946 #ifdef AUTO_INC_DEC
947 rtx link;
948 #endif
949 int all_adjacent = (succ ? (next_active_insn (insn) == succ
950 && next_active_insn (succ) == i3)
951 : next_active_insn (insn) == i3);
953 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
954 or a PARALLEL consisting of such a SET and CLOBBERs.
956 If INSN has CLOBBER parallel parts, ignore them for our processing.
957 By definition, these happen during the execution of the insn. When it
958 is merged with another insn, all bets are off. If they are, in fact,
959 needed and aren't also supplied in I3, they may be added by
960 recog_for_combine. Otherwise, it won't match.
962 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
963 note.
965 Get the source and destination of INSN. If more than one, can't
966 combine. */
968 if (GET_CODE (PATTERN (insn)) == SET)
969 set = PATTERN (insn);
970 else if (GET_CODE (PATTERN (insn)) == PARALLEL
971 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
973 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
975 rtx elt = XVECEXP (PATTERN (insn), 0, i);
977 switch (GET_CODE (elt))
979 /* This is important to combine floating point insns
980 for the SH4 port. */
981 case USE:
982 /* Combining an isolated USE doesn't make sense.
983 We depend here on combinable_i3pat to reject them. */
984 /* The code below this loop only verifies that the inputs of
985 the SET in INSN do not change. We call reg_set_between_p
986 to verify that the REG in the USE does not change between
987 I3 and INSN.
988 If the USE in INSN was for a pseudo register, the matching
989 insn pattern will likely match any register; combining this
990 with any other USE would only be safe if we knew that the
991 used registers have identical values, or if there was
992 something to tell them apart, e.g. different modes. For
993 now, we forgo such complicated tests and simply disallow
994 combining of USES of pseudo registers with any other USE. */
995 if (GET_CODE (XEXP (elt, 0)) == REG
996 && GET_CODE (PATTERN (i3)) == PARALLEL)
998 rtx i3pat = PATTERN (i3);
999 int i = XVECLEN (i3pat, 0) - 1;
1000 unsigned int regno = REGNO (XEXP (elt, 0));
1004 rtx i3elt = XVECEXP (i3pat, 0, i);
1006 if (GET_CODE (i3elt) == USE
1007 && GET_CODE (XEXP (i3elt, 0)) == REG
1008 && (REGNO (XEXP (i3elt, 0)) == regno
1009 ? reg_set_between_p (XEXP (elt, 0),
1010 PREV_INSN (insn), i3)
1011 : regno >= FIRST_PSEUDO_REGISTER))
1012 return 0;
1014 while (--i >= 0);
1016 break;
1018 /* We can ignore CLOBBERs. */
1019 case CLOBBER:
1020 break;
1022 case SET:
1023 /* Ignore SETs whose result isn't used but not those that
1024 have side-effects. */
1025 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1026 && ! side_effects_p (elt))
1027 break;
1029 /* If we have already found a SET, this is a second one and
1030 so we cannot combine with this insn. */
1031 if (set)
1032 return 0;
1034 set = elt;
1035 break;
1037 default:
1038 /* Anything else means we can't combine. */
1039 return 0;
1043 if (set == 0
1044 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1045 so don't do anything with it. */
1046 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1047 return 0;
1049 else
1050 return 0;
1052 if (set == 0)
1053 return 0;
1055 set = expand_field_assignment (set);
1056 src = SET_SRC (set), dest = SET_DEST (set);
1058 /* Don't eliminate a store in the stack pointer. */
1059 if (dest == stack_pointer_rtx
1060 /* If we couldn't eliminate a field assignment, we can't combine. */
1061 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1062 /* Don't combine with an insn that sets a register to itself if it has
1063 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1064 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1065 /* Can't merge an ASM_OPERANDS. */
1066 || GET_CODE (src) == ASM_OPERANDS
1067 /* Can't merge a function call. */
1068 || GET_CODE (src) == CALL
1069 /* Don't eliminate a function call argument. */
1070 || (GET_CODE (i3) == CALL_INSN
1071 && (find_reg_fusage (i3, USE, dest)
1072 || (GET_CODE (dest) == REG
1073 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1074 && global_regs[REGNO (dest)])))
1075 /* Don't substitute into an incremented register. */
1076 || FIND_REG_INC_NOTE (i3, dest)
1077 || (succ && FIND_REG_INC_NOTE (succ, dest))
1078 #if 0
1079 /* Don't combine the end of a libcall into anything. */
1080 /* ??? This gives worse code, and appears to be unnecessary, since no
1081 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1082 use REG_RETVAL notes for noconflict blocks, but other code here
1083 makes sure that those insns don't disappear. */
1084 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1085 #endif
1086 /* Make sure that DEST is not used after SUCC but before I3. */
1087 || (succ && ! all_adjacent
1088 && reg_used_between_p (dest, succ, i3))
1089 /* Make sure that the value that is to be substituted for the register
1090 does not use any registers whose values alter in between. However,
1091 If the insns are adjacent, a use can't cross a set even though we
1092 think it might (this can happen for a sequence of insns each setting
1093 the same destination; reg_last_set of that register might point to
1094 a NOTE). If INSN has a REG_EQUIV note, the register is always
1095 equivalent to the memory so the substitution is valid even if there
1096 are intervening stores. Also, don't move a volatile asm or
1097 UNSPEC_VOLATILE across any other insns. */
1098 || (! all_adjacent
1099 && (((GET_CODE (src) != MEM
1100 || ! find_reg_note (insn, REG_EQUIV, src))
1101 && use_crosses_set_p (src, INSN_CUID (insn)))
1102 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1103 || GET_CODE (src) == UNSPEC_VOLATILE))
1104 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1105 better register allocation by not doing the combine. */
1106 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1107 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1108 /* Don't combine across a CALL_INSN, because that would possibly
1109 change whether the life span of some REGs crosses calls or not,
1110 and it is a pain to update that information.
1111 Exception: if source is a constant, moving it later can't hurt.
1112 Accept that special case, because it helps -fforce-addr a lot. */
1113 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1114 return 0;
1116 /* DEST must either be a REG or CC0. */
1117 if (GET_CODE (dest) == REG)
1119 /* If register alignment is being enforced for multi-word items in all
1120 cases except for parameters, it is possible to have a register copy
1121 insn referencing a hard register that is not allowed to contain the
1122 mode being copied and which would not be valid as an operand of most
1123 insns. Eliminate this problem by not combining with such an insn.
1125 Also, on some machines we don't want to extend the life of a hard
1126 register. */
1128 if (GET_CODE (src) == REG
1129 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1130 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1131 /* Don't extend the life of a hard register unless it is
1132 user variable (if we have few registers) or it can't
1133 fit into the desired register (meaning something special
1134 is going on).
1135 Also avoid substituting a return register into I3, because
1136 reload can't handle a conflict with constraints of other
1137 inputs. */
1138 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1139 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1140 return 0;
1142 else if (GET_CODE (dest) != CC0)
1143 return 0;
1145 /* Don't substitute for a register intended as a clobberable operand.
1146 Similarly, don't substitute an expression containing a register that
1147 will be clobbered in I3. */
1148 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1149 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1150 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1151 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1152 src)
1153 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1154 return 0;
1156 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1157 or not), reject, unless nothing volatile comes between it and I3 */
1159 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1161 /* Make sure succ doesn't contain a volatile reference. */
1162 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1163 return 0;
1165 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1166 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1167 return 0;
1170 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1171 to be an explicit register variable, and was chosen for a reason. */
1173 if (GET_CODE (src) == ASM_OPERANDS
1174 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1175 return 0;
1177 /* If there are any volatile insns between INSN and I3, reject, because
1178 they might affect machine state. */
1180 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1181 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1182 return 0;
1184 /* If INSN or I2 contains an autoincrement or autodecrement,
1185 make sure that register is not used between there and I3,
1186 and not already used in I3 either.
1187 Also insist that I3 not be a jump; if it were one
1188 and the incremented register were spilled, we would lose. */
1190 #ifdef AUTO_INC_DEC
1191 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1192 if (REG_NOTE_KIND (link) == REG_INC
1193 && (GET_CODE (i3) == JUMP_INSN
1194 || reg_used_between_p (XEXP (link, 0), insn, i3)
1195 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1196 return 0;
1197 #endif
1199 #ifdef HAVE_cc0
1200 /* Don't combine an insn that follows a CC0-setting insn.
1201 An insn that uses CC0 must not be separated from the one that sets it.
1202 We do, however, allow I2 to follow a CC0-setting insn if that insn
1203 is passed as I1; in that case it will be deleted also.
1204 We also allow combining in this case if all the insns are adjacent
1205 because that would leave the two CC0 insns adjacent as well.
1206 It would be more logical to test whether CC0 occurs inside I1 or I2,
1207 but that would be much slower, and this ought to be equivalent. */
1209 p = prev_nonnote_insn (insn);
1210 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1211 && ! all_adjacent)
1212 return 0;
1213 #endif
1215 /* If we get here, we have passed all the tests and the combination is
1216 to be allowed. */
1218 *pdest = dest;
1219 *psrc = src;
1221 return 1;
1224 /* Check if PAT is an insn - or a part of it - used to set up an
1225 argument for a function in a hard register. */
1227 static int
1228 sets_function_arg_p (pat)
1229 rtx pat;
1231 int i;
1232 rtx inner_dest;
1234 switch (GET_CODE (pat))
1236 case INSN:
1237 return sets_function_arg_p (PATTERN (pat));
1239 case PARALLEL:
1240 for (i = XVECLEN (pat, 0); --i >= 0;)
1241 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1242 return 1;
1244 break;
1246 case SET:
1247 inner_dest = SET_DEST (pat);
1248 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1249 || GET_CODE (inner_dest) == SUBREG
1250 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1251 inner_dest = XEXP (inner_dest, 0);
1253 return (GET_CODE (inner_dest) == REG
1254 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1255 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1257 default:
1258 break;
1261 return 0;
1264 /* LOC is the location within I3 that contains its pattern or the component
1265 of a PARALLEL of the pattern. We validate that it is valid for combining.
1267 One problem is if I3 modifies its output, as opposed to replacing it
1268 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1269 so would produce an insn that is not equivalent to the original insns.
1271 Consider:
1273 (set (reg:DI 101) (reg:DI 100))
1274 (set (subreg:SI (reg:DI 101) 0) <foo>)
1276 This is NOT equivalent to:
1278 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1279 (set (reg:DI 101) (reg:DI 100))])
1281 Not only does this modify 100 (in which case it might still be valid
1282 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1284 We can also run into a problem if I2 sets a register that I1
1285 uses and I1 gets directly substituted into I3 (not via I2). In that
1286 case, we would be getting the wrong value of I2DEST into I3, so we
1287 must reject the combination. This case occurs when I2 and I1 both
1288 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1289 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1290 of a SET must prevent combination from occurring.
1292 Before doing the above check, we first try to expand a field assignment
1293 into a set of logical operations.
1295 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1296 we place a register that is both set and used within I3. If more than one
1297 such register is detected, we fail.
1299 Return 1 if the combination is valid, zero otherwise. */
1301 static int
1302 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1303 rtx i3;
1304 rtx *loc;
1305 rtx i2dest;
1306 rtx i1dest;
1307 int i1_not_in_src;
1308 rtx *pi3dest_killed;
1310 rtx x = *loc;
1312 if (GET_CODE (x) == SET)
1314 rtx set = expand_field_assignment (x);
1315 rtx dest = SET_DEST (set);
1316 rtx src = SET_SRC (set);
1317 rtx inner_dest = dest;
1319 #if 0
1320 rtx inner_src = src;
1321 #endif
1323 SUBST (*loc, set);
1325 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1326 || GET_CODE (inner_dest) == SUBREG
1327 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1328 inner_dest = XEXP (inner_dest, 0);
1330 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1331 was added. */
1332 #if 0
1333 while (GET_CODE (inner_src) == STRICT_LOW_PART
1334 || GET_CODE (inner_src) == SUBREG
1335 || GET_CODE (inner_src) == ZERO_EXTRACT)
1336 inner_src = XEXP (inner_src, 0);
1338 /* If it is better that two different modes keep two different pseudos,
1339 avoid combining them. This avoids producing the following pattern
1340 on a 386:
1341 (set (subreg:SI (reg/v:QI 21) 0)
1342 (lshiftrt:SI (reg/v:SI 20)
1343 (const_int 24)))
1344 If that were made, reload could not handle the pair of
1345 reg 20/21, since it would try to get any GENERAL_REGS
1346 but some of them don't handle QImode. */
1348 if (rtx_equal_p (inner_src, i2dest)
1349 && GET_CODE (inner_dest) == REG
1350 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1351 return 0;
1352 #endif
1354 /* Check for the case where I3 modifies its output, as
1355 discussed above. */
1356 if ((inner_dest != dest
1357 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1358 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1360 /* This is the same test done in can_combine_p except we can't test
1361 all_adjacent; we don't have to, since this instruction will stay
1362 in place, thus we are not considering increasing the lifetime of
1363 INNER_DEST.
1365 Also, if this insn sets a function argument, combining it with
1366 something that might need a spill could clobber a previous
1367 function argument; the all_adjacent test in can_combine_p also
1368 checks this; here, we do a more specific test for this case. */
1370 || (GET_CODE (inner_dest) == REG
1371 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1372 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1373 GET_MODE (inner_dest))))
1374 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1375 return 0;
1377 /* If DEST is used in I3, it is being killed in this insn,
1378 so record that for later.
1379 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1380 STACK_POINTER_REGNUM, since these are always considered to be
1381 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1382 if (pi3dest_killed && GET_CODE (dest) == REG
1383 && reg_referenced_p (dest, PATTERN (i3))
1384 && REGNO (dest) != FRAME_POINTER_REGNUM
1385 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1386 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1387 #endif
1388 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1389 && (REGNO (dest) != ARG_POINTER_REGNUM
1390 || ! fixed_regs [REGNO (dest)])
1391 #endif
1392 && REGNO (dest) != STACK_POINTER_REGNUM)
1394 if (*pi3dest_killed)
1395 return 0;
1397 *pi3dest_killed = dest;
1401 else if (GET_CODE (x) == PARALLEL)
1403 int i;
1405 for (i = 0; i < XVECLEN (x, 0); i++)
1406 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1407 i1_not_in_src, pi3dest_killed))
1408 return 0;
1411 return 1;
1414 /* Return 1 if X is an arithmetic expression that contains a multiplication
1415 and division. We don't count multiplications by powers of two here. */
1417 static int
1418 contains_muldiv (x)
1419 rtx x;
1421 switch (GET_CODE (x))
1423 case MOD: case DIV: case UMOD: case UDIV:
1424 return 1;
1426 case MULT:
1427 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1428 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1429 default:
1430 switch (GET_RTX_CLASS (GET_CODE (x)))
1432 case 'c': case '<': case '2':
1433 return contains_muldiv (XEXP (x, 0))
1434 || contains_muldiv (XEXP (x, 1));
1436 case '1':
1437 return contains_muldiv (XEXP (x, 0));
1439 default:
1440 return 0;
1445 /* Determine whether INSN can be used in a combination. Return nonzero if
1446 not. This is used in try_combine to detect early some cases where we
1447 can't perform combinations. */
1449 static int
1450 cant_combine_insn_p (insn)
1451 rtx insn;
1453 rtx set;
1454 rtx src, dest;
1456 /* If this isn't really an insn, we can't do anything.
1457 This can occur when flow deletes an insn that it has merged into an
1458 auto-increment address. */
1459 if (! INSN_P (insn))
1460 return 1;
1462 /* Never combine loads and stores involving hard regs. The register
1463 allocator can usually handle such reg-reg moves by tying. If we allow
1464 the combiner to make substitutions of hard regs, we risk aborting in
1465 reload on machines that have SMALL_REGISTER_CLASSES.
1466 As an exception, we allow combinations involving fixed regs; these are
1467 not available to the register allocator so there's no risk involved. */
1469 set = single_set (insn);
1470 if (! set)
1471 return 0;
1472 src = SET_SRC (set);
1473 dest = SET_DEST (set);
1474 if (GET_CODE (src) == SUBREG)
1475 src = SUBREG_REG (src);
1476 if (GET_CODE (dest) == SUBREG)
1477 dest = SUBREG_REG (dest);
1478 if (REG_P (src) && REG_P (dest)
1479 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1480 && ! fixed_regs[REGNO (src)])
1481 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1482 && ! fixed_regs[REGNO (dest)])))
1483 return 1;
1485 return 0;
1488 /* Try to combine the insns I1 and I2 into I3.
1489 Here I1 and I2 appear earlier than I3.
1490 I1 can be zero; then we combine just I2 into I3.
1492 If we are combining three insns and the resulting insn is not recognized,
1493 try splitting it into two insns. If that happens, I2 and I3 are retained
1494 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1495 are pseudo-deleted.
1497 Return 0 if the combination does not work. Then nothing is changed.
1498 If we did the combination, return the insn at which combine should
1499 resume scanning.
1501 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1502 new direct jump instruction. */
1504 static rtx
1505 try_combine (i3, i2, i1, new_direct_jump_p)
1506 rtx i3, i2, i1;
1507 int *new_direct_jump_p;
1509 /* New patterns for I3 and I2, respectively. */
1510 rtx newpat, newi2pat = 0;
1511 int substed_i2 = 0, substed_i1 = 0;
1512 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1513 int added_sets_1, added_sets_2;
1514 /* Total number of SETs to put into I3. */
1515 int total_sets;
1516 /* Nonzero is I2's body now appears in I3. */
1517 int i2_is_used;
1518 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1519 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1520 /* Contains I3 if the destination of I3 is used in its source, which means
1521 that the old life of I3 is being killed. If that usage is placed into
1522 I2 and not in I3, a REG_DEAD note must be made. */
1523 rtx i3dest_killed = 0;
1524 /* SET_DEST and SET_SRC of I2 and I1. */
1525 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1526 /* PATTERN (I2), or a copy of it in certain cases. */
1527 rtx i2pat;
1528 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1529 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1530 int i1_feeds_i3 = 0;
1531 /* Notes that must be added to REG_NOTES in I3 and I2. */
1532 rtx new_i3_notes, new_i2_notes;
1533 /* Notes that we substituted I3 into I2 instead of the normal case. */
1534 int i3_subst_into_i2 = 0;
1535 /* Notes that I1, I2 or I3 is a MULT operation. */
1536 int have_mult = 0;
1538 int maxreg;
1539 rtx temp;
1540 rtx link;
1541 int i;
1543 /* Exit early if one of the insns involved can't be used for
1544 combinations. */
1545 if (cant_combine_insn_p (i3)
1546 || cant_combine_insn_p (i2)
1547 || (i1 && cant_combine_insn_p (i1))
1548 /* We also can't do anything if I3 has a
1549 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1550 libcall. */
1551 #if 0
1552 /* ??? This gives worse code, and appears to be unnecessary, since no
1553 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1554 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1555 #endif
1557 return 0;
1559 combine_attempts++;
1560 undobuf.other_insn = 0;
1562 /* Reset the hard register usage information. */
1563 CLEAR_HARD_REG_SET (newpat_used_regs);
1565 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1566 code below, set I1 to be the earlier of the two insns. */
1567 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1568 temp = i1, i1 = i2, i2 = temp;
1570 added_links_insn = 0;
1572 /* First check for one important special-case that the code below will
1573 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1574 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1575 we may be able to replace that destination with the destination of I3.
1576 This occurs in the common code where we compute both a quotient and
1577 remainder into a structure, in which case we want to do the computation
1578 directly into the structure to avoid register-register copies.
1580 Note that this case handles both multiple sets in I2 and also
1581 cases where I2 has a number of CLOBBER or PARALLELs.
1583 We make very conservative checks below and only try to handle the
1584 most common cases of this. For example, we only handle the case
1585 where I2 and I3 are adjacent to avoid making difficult register
1586 usage tests. */
1588 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1589 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1590 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1591 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1592 && GET_CODE (PATTERN (i2)) == PARALLEL
1593 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1594 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1595 below would need to check what is inside (and reg_overlap_mentioned_p
1596 doesn't support those codes anyway). Don't allow those destinations;
1597 the resulting insn isn't likely to be recognized anyway. */
1598 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1599 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1600 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1601 SET_DEST (PATTERN (i3)))
1602 && next_real_insn (i2) == i3)
1604 rtx p2 = PATTERN (i2);
1606 /* Make sure that the destination of I3,
1607 which we are going to substitute into one output of I2,
1608 is not used within another output of I2. We must avoid making this:
1609 (parallel [(set (mem (reg 69)) ...)
1610 (set (reg 69) ...)])
1611 which is not well-defined as to order of actions.
1612 (Besides, reload can't handle output reloads for this.)
1614 The problem can also happen if the dest of I3 is a memory ref,
1615 if another dest in I2 is an indirect memory ref. */
1616 for (i = 0; i < XVECLEN (p2, 0); i++)
1617 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1618 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1619 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1620 SET_DEST (XVECEXP (p2, 0, i))))
1621 break;
1623 if (i == XVECLEN (p2, 0))
1624 for (i = 0; i < XVECLEN (p2, 0); i++)
1625 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1626 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1627 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1629 combine_merges++;
1631 subst_insn = i3;
1632 subst_low_cuid = INSN_CUID (i2);
1634 added_sets_2 = added_sets_1 = 0;
1635 i2dest = SET_SRC (PATTERN (i3));
1637 /* Replace the dest in I2 with our dest and make the resulting
1638 insn the new pattern for I3. Then skip to where we
1639 validate the pattern. Everything was set up above. */
1640 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1641 SET_DEST (PATTERN (i3)));
1643 newpat = p2;
1644 i3_subst_into_i2 = 1;
1645 goto validate_replacement;
1649 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1650 one of those words to another constant, merge them by making a new
1651 constant. */
1652 if (i1 == 0
1653 && (temp = single_set (i2)) != 0
1654 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1655 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1656 && GET_CODE (SET_DEST (temp)) == REG
1657 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1658 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1659 && GET_CODE (PATTERN (i3)) == SET
1660 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1661 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1662 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1663 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1664 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1666 HOST_WIDE_INT lo, hi;
1668 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1669 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1670 else
1672 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1673 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1676 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1678 /* We don't handle the case of the target word being wider
1679 than a host wide int. */
1680 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1681 abort ();
1683 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1684 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1685 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1687 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1688 hi = INTVAL (SET_SRC (PATTERN (i3)));
1689 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1691 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1692 >> (HOST_BITS_PER_WIDE_INT - 1));
1694 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1695 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1696 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1697 (INTVAL (SET_SRC (PATTERN (i3)))));
1698 if (hi == sign)
1699 hi = lo < 0 ? -1 : 0;
1701 else
1702 /* We don't handle the case of the higher word not fitting
1703 entirely in either hi or lo. */
1704 abort ();
1706 combine_merges++;
1707 subst_insn = i3;
1708 subst_low_cuid = INSN_CUID (i2);
1709 added_sets_2 = added_sets_1 = 0;
1710 i2dest = SET_DEST (temp);
1712 SUBST (SET_SRC (temp),
1713 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1715 newpat = PATTERN (i2);
1716 goto validate_replacement;
1719 #ifndef HAVE_cc0
1720 /* If we have no I1 and I2 looks like:
1721 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1722 (set Y OP)])
1723 make up a dummy I1 that is
1724 (set Y OP)
1725 and change I2 to be
1726 (set (reg:CC X) (compare:CC Y (const_int 0)))
1728 (We can ignore any trailing CLOBBERs.)
1730 This undoes a previous combination and allows us to match a branch-and-
1731 decrement insn. */
1733 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1734 && XVECLEN (PATTERN (i2), 0) >= 2
1735 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1736 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1737 == MODE_CC)
1738 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1739 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1740 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1741 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1742 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1743 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1745 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1746 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1747 break;
1749 if (i == 1)
1751 /* We make I1 with the same INSN_UID as I2. This gives it
1752 the same INSN_CUID for value tracking. Our fake I1 will
1753 never appear in the insn stream so giving it the same INSN_UID
1754 as I2 will not cause a problem. */
1756 subst_prev_insn = i1
1757 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1758 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1759 NULL_RTX);
1761 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1762 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1763 SET_DEST (PATTERN (i1)));
1766 #endif
1768 /* Verify that I2 and I1 are valid for combining. */
1769 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1770 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1772 undo_all ();
1773 return 0;
1776 /* Record whether I2DEST is used in I2SRC and similarly for the other
1777 cases. Knowing this will help in register status updating below. */
1778 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1779 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1780 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1782 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1783 in I2SRC. */
1784 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1786 /* Ensure that I3's pattern can be the destination of combines. */
1787 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1788 i1 && i2dest_in_i1src && i1_feeds_i3,
1789 &i3dest_killed))
1791 undo_all ();
1792 return 0;
1795 /* See if any of the insns is a MULT operation. Unless one is, we will
1796 reject a combination that is, since it must be slower. Be conservative
1797 here. */
1798 if (GET_CODE (i2src) == MULT
1799 || (i1 != 0 && GET_CODE (i1src) == MULT)
1800 || (GET_CODE (PATTERN (i3)) == SET
1801 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1802 have_mult = 1;
1804 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1805 We used to do this EXCEPT in one case: I3 has a post-inc in an
1806 output operand. However, that exception can give rise to insns like
1807 mov r3,(r3)+
1808 which is a famous insn on the PDP-11 where the value of r3 used as the
1809 source was model-dependent. Avoid this sort of thing. */
1811 #if 0
1812 if (!(GET_CODE (PATTERN (i3)) == SET
1813 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1814 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1815 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1816 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1817 /* It's not the exception. */
1818 #endif
1819 #ifdef AUTO_INC_DEC
1820 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1821 if (REG_NOTE_KIND (link) == REG_INC
1822 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1823 || (i1 != 0
1824 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1826 undo_all ();
1827 return 0;
1829 #endif
1831 /* See if the SETs in I1 or I2 need to be kept around in the merged
1832 instruction: whenever the value set there is still needed past I3.
1833 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1835 For the SET in I1, we have two cases: If I1 and I2 independently
1836 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1837 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1838 in I1 needs to be kept around unless I1DEST dies or is set in either
1839 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1840 I1DEST. If so, we know I1 feeds into I2. */
1842 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1844 added_sets_1
1845 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1846 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1848 /* If the set in I2 needs to be kept around, we must make a copy of
1849 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1850 PATTERN (I2), we are only substituting for the original I1DEST, not into
1851 an already-substituted copy. This also prevents making self-referential
1852 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1853 I2DEST. */
1855 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1856 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1857 : PATTERN (i2));
1859 if (added_sets_2)
1860 i2pat = copy_rtx (i2pat);
1862 combine_merges++;
1864 /* Substitute in the latest insn for the regs set by the earlier ones. */
1866 maxreg = max_reg_num ();
1868 subst_insn = i3;
1870 /* It is possible that the source of I2 or I1 may be performing an
1871 unneeded operation, such as a ZERO_EXTEND of something that is known
1872 to have the high part zero. Handle that case by letting subst look at
1873 the innermost one of them.
1875 Another way to do this would be to have a function that tries to
1876 simplify a single insn instead of merging two or more insns. We don't
1877 do this because of the potential of infinite loops and because
1878 of the potential extra memory required. However, doing it the way
1879 we are is a bit of a kludge and doesn't catch all cases.
1881 But only do this if -fexpensive-optimizations since it slows things down
1882 and doesn't usually win. */
1884 if (flag_expensive_optimizations)
1886 /* Pass pc_rtx so no substitutions are done, just simplifications.
1887 The cases that we are interested in here do not involve the few
1888 cases were is_replaced is checked. */
1889 if (i1)
1891 subst_low_cuid = INSN_CUID (i1);
1892 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1894 else
1896 subst_low_cuid = INSN_CUID (i2);
1897 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1901 #ifndef HAVE_cc0
1902 /* Many machines that don't use CC0 have insns that can both perform an
1903 arithmetic operation and set the condition code. These operations will
1904 be represented as a PARALLEL with the first element of the vector
1905 being a COMPARE of an arithmetic operation with the constant zero.
1906 The second element of the vector will set some pseudo to the result
1907 of the same arithmetic operation. If we simplify the COMPARE, we won't
1908 match such a pattern and so will generate an extra insn. Here we test
1909 for this case, where both the comparison and the operation result are
1910 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1911 I2SRC. Later we will make the PARALLEL that contains I2. */
1913 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1914 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1915 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1916 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1918 #ifdef EXTRA_CC_MODES
1919 rtx *cc_use;
1920 enum machine_mode compare_mode;
1921 #endif
1923 newpat = PATTERN (i3);
1924 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1926 i2_is_used = 1;
1928 #ifdef EXTRA_CC_MODES
1929 /* See if a COMPARE with the operand we substituted in should be done
1930 with the mode that is currently being used. If not, do the same
1931 processing we do in `subst' for a SET; namely, if the destination
1932 is used only once, try to replace it with a register of the proper
1933 mode and also replace the COMPARE. */
1934 if (undobuf.other_insn == 0
1935 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1936 &undobuf.other_insn))
1937 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1938 i2src, const0_rtx))
1939 != GET_MODE (SET_DEST (newpat))))
1941 unsigned int regno = REGNO (SET_DEST (newpat));
1942 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1944 if (regno < FIRST_PSEUDO_REGISTER
1945 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1946 && ! REG_USERVAR_P (SET_DEST (newpat))))
1948 if (regno >= FIRST_PSEUDO_REGISTER)
1949 SUBST (regno_reg_rtx[regno], new_dest);
1951 SUBST (SET_DEST (newpat), new_dest);
1952 SUBST (XEXP (*cc_use, 0), new_dest);
1953 SUBST (SET_SRC (newpat),
1954 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1956 else
1957 undobuf.other_insn = 0;
1959 #endif
1961 else
1962 #endif
1964 n_occurrences = 0; /* `subst' counts here */
1966 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1967 need to make a unique copy of I2SRC each time we substitute it
1968 to avoid self-referential rtl. */
1970 subst_low_cuid = INSN_CUID (i2);
1971 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1972 ! i1_feeds_i3 && i1dest_in_i1src);
1973 substed_i2 = 1;
1975 /* Record whether i2's body now appears within i3's body. */
1976 i2_is_used = n_occurrences;
1979 /* If we already got a failure, don't try to do more. Otherwise,
1980 try to substitute in I1 if we have it. */
1982 if (i1 && GET_CODE (newpat) != CLOBBER)
1984 /* Before we can do this substitution, we must redo the test done
1985 above (see detailed comments there) that ensures that I1DEST
1986 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1988 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1989 0, (rtx*) 0))
1991 undo_all ();
1992 return 0;
1995 n_occurrences = 0;
1996 subst_low_cuid = INSN_CUID (i1);
1997 newpat = subst (newpat, i1dest, i1src, 0, 0);
1998 substed_i1 = 1;
2001 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2002 to count all the ways that I2SRC and I1SRC can be used. */
2003 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2004 && i2_is_used + added_sets_2 > 1)
2005 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2006 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2007 > 1))
2008 /* Fail if we tried to make a new register (we used to abort, but there's
2009 really no reason to). */
2010 || max_reg_num () != maxreg
2011 /* Fail if we couldn't do something and have a CLOBBER. */
2012 || GET_CODE (newpat) == CLOBBER
2013 /* Fail if this new pattern is a MULT and we didn't have one before
2014 at the outer level. */
2015 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2016 && ! have_mult))
2018 undo_all ();
2019 return 0;
2022 /* If the actions of the earlier insns must be kept
2023 in addition to substituting them into the latest one,
2024 we must make a new PARALLEL for the latest insn
2025 to hold additional the SETs. */
2027 if (added_sets_1 || added_sets_2)
2029 combine_extras++;
2031 if (GET_CODE (newpat) == PARALLEL)
2033 rtvec old = XVEC (newpat, 0);
2034 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2035 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2036 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2037 sizeof (old->elem[0]) * old->num_elem);
2039 else
2041 rtx old = newpat;
2042 total_sets = 1 + added_sets_1 + added_sets_2;
2043 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2044 XVECEXP (newpat, 0, 0) = old;
2047 if (added_sets_1)
2048 XVECEXP (newpat, 0, --total_sets)
2049 = (GET_CODE (PATTERN (i1)) == PARALLEL
2050 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2052 if (added_sets_2)
2054 /* If there is no I1, use I2's body as is. We used to also not do
2055 the subst call below if I2 was substituted into I3,
2056 but that could lose a simplification. */
2057 if (i1 == 0)
2058 XVECEXP (newpat, 0, --total_sets) = i2pat;
2059 else
2060 /* See comment where i2pat is assigned. */
2061 XVECEXP (newpat, 0, --total_sets)
2062 = subst (i2pat, i1dest, i1src, 0, 0);
2066 /* We come here when we are replacing a destination in I2 with the
2067 destination of I3. */
2068 validate_replacement:
2070 /* Note which hard regs this insn has as inputs. */
2071 mark_used_regs_combine (newpat);
2073 /* Is the result of combination a valid instruction? */
2074 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2076 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2077 the second SET's destination is a register that is unused. In that case,
2078 we just need the first SET. This can occur when simplifying a divmod
2079 insn. We *must* test for this case here because the code below that
2080 splits two independent SETs doesn't handle this case correctly when it
2081 updates the register status. Also check the case where the first
2082 SET's destination is unused. That would not cause incorrect code, but
2083 does cause an unneeded insn to remain. */
2085 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2086 && XVECLEN (newpat, 0) == 2
2087 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2088 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2089 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2090 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2091 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2092 && asm_noperands (newpat) < 0)
2094 newpat = XVECEXP (newpat, 0, 0);
2095 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2098 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2099 && XVECLEN (newpat, 0) == 2
2100 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2101 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2102 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2103 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2104 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2105 && asm_noperands (newpat) < 0)
2107 newpat = XVECEXP (newpat, 0, 1);
2108 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2111 /* If we were combining three insns and the result is a simple SET
2112 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2113 insns. There are two ways to do this. It can be split using a
2114 machine-specific method (like when you have an addition of a large
2115 constant) or by combine in the function find_split_point. */
2117 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2118 && asm_noperands (newpat) < 0)
2120 rtx m_split, *split;
2121 rtx ni2dest = i2dest;
2123 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2124 use I2DEST as a scratch register will help. In the latter case,
2125 convert I2DEST to the mode of the source of NEWPAT if we can. */
2127 m_split = split_insns (newpat, i3);
2129 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2130 inputs of NEWPAT. */
2132 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2133 possible to try that as a scratch reg. This would require adding
2134 more code to make it work though. */
2136 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2138 /* If I2DEST is a hard register or the only use of a pseudo,
2139 we can change its mode. */
2140 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2141 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2142 && GET_CODE (i2dest) == REG
2143 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2144 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2145 && ! REG_USERVAR_P (i2dest))))
2146 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2147 REGNO (i2dest));
2149 m_split = split_insns (gen_rtx_PARALLEL
2150 (VOIDmode,
2151 gen_rtvec (2, newpat,
2152 gen_rtx_CLOBBER (VOIDmode,
2153 ni2dest))),
2154 i3);
2155 /* If the split with the mode-changed register didn't work, try
2156 the original register. */
2157 if (! m_split && ni2dest != i2dest)
2159 ni2dest = i2dest;
2160 m_split = split_insns (gen_rtx_PARALLEL
2161 (VOIDmode,
2162 gen_rtvec (2, newpat,
2163 gen_rtx_CLOBBER (VOIDmode,
2164 i2dest))),
2165 i3);
2169 /* If we've split a jump pattern, we'll wind up with a sequence even
2170 with one instruction. We can handle that below, so extract it. */
2171 if (m_split && GET_CODE (m_split) == SEQUENCE
2172 && XVECLEN (m_split, 0) == 1)
2173 m_split = PATTERN (XVECEXP (m_split, 0, 0));
2175 if (m_split && GET_CODE (m_split) != SEQUENCE)
2177 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2178 if (insn_code_number >= 0)
2179 newpat = m_split;
2181 else if (m_split && GET_CODE (m_split) == SEQUENCE
2182 && XVECLEN (m_split, 0) == 2
2183 && (next_real_insn (i2) == i3
2184 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2185 INSN_CUID (i2))))
2187 rtx i2set, i3set;
2188 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2189 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2191 i3set = single_set (XVECEXP (m_split, 0, 1));
2192 i2set = single_set (XVECEXP (m_split, 0, 0));
2194 /* In case we changed the mode of I2DEST, replace it in the
2195 pseudo-register table here. We can't do it above in case this
2196 code doesn't get executed and we do a split the other way. */
2198 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2199 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2201 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2203 /* If I2 or I3 has multiple SETs, we won't know how to track
2204 register status, so don't use these insns. If I2's destination
2205 is used between I2 and I3, we also can't use these insns. */
2207 if (i2_code_number >= 0 && i2set && i3set
2208 && (next_real_insn (i2) == i3
2209 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2210 insn_code_number = recog_for_combine (&newi3pat, i3,
2211 &new_i3_notes);
2212 if (insn_code_number >= 0)
2213 newpat = newi3pat;
2215 /* It is possible that both insns now set the destination of I3.
2216 If so, we must show an extra use of it. */
2218 if (insn_code_number >= 0)
2220 rtx new_i3_dest = SET_DEST (i3set);
2221 rtx new_i2_dest = SET_DEST (i2set);
2223 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2224 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2225 || GET_CODE (new_i3_dest) == SUBREG)
2226 new_i3_dest = XEXP (new_i3_dest, 0);
2228 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2229 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2230 || GET_CODE (new_i2_dest) == SUBREG)
2231 new_i2_dest = XEXP (new_i2_dest, 0);
2233 if (GET_CODE (new_i3_dest) == REG
2234 && GET_CODE (new_i2_dest) == REG
2235 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2236 REG_N_SETS (REGNO (new_i2_dest))++;
2240 /* If we can split it and use I2DEST, go ahead and see if that
2241 helps things be recognized. Verify that none of the registers
2242 are set between I2 and I3. */
2243 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2244 #ifdef HAVE_cc0
2245 && GET_CODE (i2dest) == REG
2246 #endif
2247 /* We need I2DEST in the proper mode. If it is a hard register
2248 or the only use of a pseudo, we can change its mode. */
2249 && (GET_MODE (*split) == GET_MODE (i2dest)
2250 || GET_MODE (*split) == VOIDmode
2251 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2252 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2253 && ! REG_USERVAR_P (i2dest)))
2254 && (next_real_insn (i2) == i3
2255 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2256 /* We can't overwrite I2DEST if its value is still used by
2257 NEWPAT. */
2258 && ! reg_referenced_p (i2dest, newpat))
2260 rtx newdest = i2dest;
2261 enum rtx_code split_code = GET_CODE (*split);
2262 enum machine_mode split_mode = GET_MODE (*split);
2264 /* Get NEWDEST as a register in the proper mode. We have already
2265 validated that we can do this. */
2266 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2268 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2270 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2271 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2274 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2275 an ASHIFT. This can occur if it was inside a PLUS and hence
2276 appeared to be a memory address. This is a kludge. */
2277 if (split_code == MULT
2278 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2279 && INTVAL (XEXP (*split, 1)) > 0
2280 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2282 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2283 XEXP (*split, 0), GEN_INT (i)));
2284 /* Update split_code because we may not have a multiply
2285 anymore. */
2286 split_code = GET_CODE (*split);
2289 #ifdef INSN_SCHEDULING
2290 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2291 be written as a ZERO_EXTEND. */
2292 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2293 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2294 SUBREG_REG (*split)));
2295 #endif
2297 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2298 SUBST (*split, newdest);
2299 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2301 /* If the split point was a MULT and we didn't have one before,
2302 don't use one now. */
2303 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2304 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2308 /* Check for a case where we loaded from memory in a narrow mode and
2309 then sign extended it, but we need both registers. In that case,
2310 we have a PARALLEL with both loads from the same memory location.
2311 We can split this into a load from memory followed by a register-register
2312 copy. This saves at least one insn, more if register allocation can
2313 eliminate the copy.
2315 We cannot do this if the destination of the second assignment is
2316 a register that we have already assumed is zero-extended. Similarly
2317 for a SUBREG of such a register. */
2319 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2320 && GET_CODE (newpat) == PARALLEL
2321 && XVECLEN (newpat, 0) == 2
2322 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2323 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2324 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2325 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2326 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2327 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2328 INSN_CUID (i2))
2329 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2330 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2331 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2332 (GET_CODE (temp) == REG
2333 && reg_nonzero_bits[REGNO (temp)] != 0
2334 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2335 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2336 && (reg_nonzero_bits[REGNO (temp)]
2337 != GET_MODE_MASK (word_mode))))
2338 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2339 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2340 (GET_CODE (temp) == REG
2341 && reg_nonzero_bits[REGNO (temp)] != 0
2342 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2343 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2344 && (reg_nonzero_bits[REGNO (temp)]
2345 != GET_MODE_MASK (word_mode)))))
2346 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2347 SET_SRC (XVECEXP (newpat, 0, 1)))
2348 && ! find_reg_note (i3, REG_UNUSED,
2349 SET_DEST (XVECEXP (newpat, 0, 0))))
2351 rtx ni2dest;
2353 newi2pat = XVECEXP (newpat, 0, 0);
2354 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2355 newpat = XVECEXP (newpat, 0, 1);
2356 SUBST (SET_SRC (newpat),
2357 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2358 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2360 if (i2_code_number >= 0)
2361 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2363 if (insn_code_number >= 0)
2365 rtx insn;
2366 rtx link;
2368 /* If we will be able to accept this, we have made a change to the
2369 destination of I3. This can invalidate a LOG_LINKS pointing
2370 to I3. No other part of combine.c makes such a transformation.
2372 The new I3 will have a destination that was previously the
2373 destination of I1 or I2 and which was used in i2 or I3. Call
2374 distribute_links to make a LOG_LINK from the next use of
2375 that destination. */
2377 PATTERN (i3) = newpat;
2378 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2380 /* I3 now uses what used to be its destination and which is
2381 now I2's destination. That means we need a LOG_LINK from
2382 I3 to I2. But we used to have one, so we still will.
2384 However, some later insn might be using I2's dest and have
2385 a LOG_LINK pointing at I3. We must remove this link.
2386 The simplest way to remove the link is to point it at I1,
2387 which we know will be a NOTE. */
2389 for (insn = NEXT_INSN (i3);
2390 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2391 || insn != this_basic_block->next_bb->head);
2392 insn = NEXT_INSN (insn))
2394 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2396 for (link = LOG_LINKS (insn); link;
2397 link = XEXP (link, 1))
2398 if (XEXP (link, 0) == i3)
2399 XEXP (link, 0) = i1;
2401 break;
2407 /* Similarly, check for a case where we have a PARALLEL of two independent
2408 SETs but we started with three insns. In this case, we can do the sets
2409 as two separate insns. This case occurs when some SET allows two
2410 other insns to combine, but the destination of that SET is still live. */
2412 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2413 && GET_CODE (newpat) == PARALLEL
2414 && XVECLEN (newpat, 0) == 2
2415 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2416 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2417 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2418 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2419 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2420 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2421 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2422 INSN_CUID (i2))
2423 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2424 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2425 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2426 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2427 XVECEXP (newpat, 0, 0))
2428 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2429 XVECEXP (newpat, 0, 1))
2430 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2431 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2433 /* Normally, it doesn't matter which of the two is done first,
2434 but it does if one references cc0. In that case, it has to
2435 be first. */
2436 #ifdef HAVE_cc0
2437 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2439 newi2pat = XVECEXP (newpat, 0, 0);
2440 newpat = XVECEXP (newpat, 0, 1);
2442 else
2443 #endif
2445 newi2pat = XVECEXP (newpat, 0, 1);
2446 newpat = XVECEXP (newpat, 0, 0);
2449 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2451 if (i2_code_number >= 0)
2452 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2455 /* If it still isn't recognized, fail and change things back the way they
2456 were. */
2457 if ((insn_code_number < 0
2458 /* Is the result a reasonable ASM_OPERANDS? */
2459 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2461 undo_all ();
2462 return 0;
2465 /* If we had to change another insn, make sure it is valid also. */
2466 if (undobuf.other_insn)
2468 rtx other_pat = PATTERN (undobuf.other_insn);
2469 rtx new_other_notes;
2470 rtx note, next;
2472 CLEAR_HARD_REG_SET (newpat_used_regs);
2474 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2475 &new_other_notes);
2477 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2479 undo_all ();
2480 return 0;
2483 PATTERN (undobuf.other_insn) = other_pat;
2485 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2486 are still valid. Then add any non-duplicate notes added by
2487 recog_for_combine. */
2488 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2490 next = XEXP (note, 1);
2492 if (REG_NOTE_KIND (note) == REG_UNUSED
2493 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2495 if (GET_CODE (XEXP (note, 0)) == REG)
2496 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2498 remove_note (undobuf.other_insn, note);
2502 for (note = new_other_notes; note; note = XEXP (note, 1))
2503 if (GET_CODE (XEXP (note, 0)) == REG)
2504 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2506 distribute_notes (new_other_notes, undobuf.other_insn,
2507 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2509 #ifdef HAVE_cc0
2510 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2511 they are adjacent to each other or not. */
2513 rtx p = prev_nonnote_insn (i3);
2514 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2515 && sets_cc0_p (newi2pat))
2517 undo_all ();
2518 return 0;
2521 #endif
2523 /* We now know that we can do this combination. Merge the insns and
2524 update the status of registers and LOG_LINKS. */
2527 rtx i3notes, i2notes, i1notes = 0;
2528 rtx i3links, i2links, i1links = 0;
2529 rtx midnotes = 0;
2530 unsigned int regno;
2531 /* Compute which registers we expect to eliminate. newi2pat may be setting
2532 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2533 same as i3dest, in which case newi2pat may be setting i1dest. */
2534 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2535 || i2dest_in_i2src || i2dest_in_i1src
2536 ? 0 : i2dest);
2537 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2538 || (newi2pat && reg_set_p (i1dest, newi2pat))
2539 ? 0 : i1dest);
2541 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2542 clear them. */
2543 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2544 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2545 if (i1)
2546 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2548 /* Ensure that we do not have something that should not be shared but
2549 occurs multiple times in the new insns. Check this by first
2550 resetting all the `used' flags and then copying anything is shared. */
2552 reset_used_flags (i3notes);
2553 reset_used_flags (i2notes);
2554 reset_used_flags (i1notes);
2555 reset_used_flags (newpat);
2556 reset_used_flags (newi2pat);
2557 if (undobuf.other_insn)
2558 reset_used_flags (PATTERN (undobuf.other_insn));
2560 i3notes = copy_rtx_if_shared (i3notes);
2561 i2notes = copy_rtx_if_shared (i2notes);
2562 i1notes = copy_rtx_if_shared (i1notes);
2563 newpat = copy_rtx_if_shared (newpat);
2564 newi2pat = copy_rtx_if_shared (newi2pat);
2565 if (undobuf.other_insn)
2566 reset_used_flags (PATTERN (undobuf.other_insn));
2568 INSN_CODE (i3) = insn_code_number;
2569 PATTERN (i3) = newpat;
2571 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2573 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2575 reset_used_flags (call_usage);
2576 call_usage = copy_rtx (call_usage);
2578 if (substed_i2)
2579 replace_rtx (call_usage, i2dest, i2src);
2581 if (substed_i1)
2582 replace_rtx (call_usage, i1dest, i1src);
2584 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2587 if (undobuf.other_insn)
2588 INSN_CODE (undobuf.other_insn) = other_code_number;
2590 /* We had one special case above where I2 had more than one set and
2591 we replaced a destination of one of those sets with the destination
2592 of I3. In that case, we have to update LOG_LINKS of insns later
2593 in this basic block. Note that this (expensive) case is rare.
2595 Also, in this case, we must pretend that all REG_NOTEs for I2
2596 actually came from I3, so that REG_UNUSED notes from I2 will be
2597 properly handled. */
2599 if (i3_subst_into_i2)
2601 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2602 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2603 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2604 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2605 && ! find_reg_note (i2, REG_UNUSED,
2606 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2607 for (temp = NEXT_INSN (i2);
2608 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2609 || this_basic_block->head != temp);
2610 temp = NEXT_INSN (temp))
2611 if (temp != i3 && INSN_P (temp))
2612 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2613 if (XEXP (link, 0) == i2)
2614 XEXP (link, 0) = i3;
2616 if (i3notes)
2618 rtx link = i3notes;
2619 while (XEXP (link, 1))
2620 link = XEXP (link, 1);
2621 XEXP (link, 1) = i2notes;
2623 else
2624 i3notes = i2notes;
2625 i2notes = 0;
2628 LOG_LINKS (i3) = 0;
2629 REG_NOTES (i3) = 0;
2630 LOG_LINKS (i2) = 0;
2631 REG_NOTES (i2) = 0;
2633 if (newi2pat)
2635 INSN_CODE (i2) = i2_code_number;
2636 PATTERN (i2) = newi2pat;
2638 else
2640 PUT_CODE (i2, NOTE);
2641 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2642 NOTE_SOURCE_FILE (i2) = 0;
2645 if (i1)
2647 LOG_LINKS (i1) = 0;
2648 REG_NOTES (i1) = 0;
2649 PUT_CODE (i1, NOTE);
2650 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2651 NOTE_SOURCE_FILE (i1) = 0;
2654 /* Get death notes for everything that is now used in either I3 or
2655 I2 and used to die in a previous insn. If we built two new
2656 patterns, move from I1 to I2 then I2 to I3 so that we get the
2657 proper movement on registers that I2 modifies. */
2659 if (newi2pat)
2661 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2662 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2664 else
2665 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2666 i3, &midnotes);
2668 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2669 if (i3notes)
2670 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2671 elim_i2, elim_i1);
2672 if (i2notes)
2673 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2674 elim_i2, elim_i1);
2675 if (i1notes)
2676 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2677 elim_i2, elim_i1);
2678 if (midnotes)
2679 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2680 elim_i2, elim_i1);
2682 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2683 know these are REG_UNUSED and want them to go to the desired insn,
2684 so we always pass it as i3. We have not counted the notes in
2685 reg_n_deaths yet, so we need to do so now. */
2687 if (newi2pat && new_i2_notes)
2689 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2690 if (GET_CODE (XEXP (temp, 0)) == REG)
2691 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2693 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2696 if (new_i3_notes)
2698 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2699 if (GET_CODE (XEXP (temp, 0)) == REG)
2700 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2702 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2705 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2706 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2707 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2708 in that case, it might delete I2. Similarly for I2 and I1.
2709 Show an additional death due to the REG_DEAD note we make here. If
2710 we discard it in distribute_notes, we will decrement it again. */
2712 if (i3dest_killed)
2714 if (GET_CODE (i3dest_killed) == REG)
2715 REG_N_DEATHS (REGNO (i3dest_killed))++;
2717 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2718 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2719 NULL_RTX),
2720 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2721 else
2722 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2723 NULL_RTX),
2724 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2725 elim_i2, elim_i1);
2728 if (i2dest_in_i2src)
2730 if (GET_CODE (i2dest) == REG)
2731 REG_N_DEATHS (REGNO (i2dest))++;
2733 if (newi2pat && reg_set_p (i2dest, newi2pat))
2734 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2735 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2736 else
2737 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2738 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2739 NULL_RTX, NULL_RTX);
2742 if (i1dest_in_i1src)
2744 if (GET_CODE (i1dest) == REG)
2745 REG_N_DEATHS (REGNO (i1dest))++;
2747 if (newi2pat && reg_set_p (i1dest, newi2pat))
2748 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2749 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2750 else
2751 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2752 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2753 NULL_RTX, NULL_RTX);
2756 distribute_links (i3links);
2757 distribute_links (i2links);
2758 distribute_links (i1links);
2760 if (GET_CODE (i2dest) == REG)
2762 rtx link;
2763 rtx i2_insn = 0, i2_val = 0, set;
2765 /* The insn that used to set this register doesn't exist, and
2766 this life of the register may not exist either. See if one of
2767 I3's links points to an insn that sets I2DEST. If it does,
2768 that is now the last known value for I2DEST. If we don't update
2769 this and I2 set the register to a value that depended on its old
2770 contents, we will get confused. If this insn is used, thing
2771 will be set correctly in combine_instructions. */
2773 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2774 if ((set = single_set (XEXP (link, 0))) != 0
2775 && rtx_equal_p (i2dest, SET_DEST (set)))
2776 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2778 record_value_for_reg (i2dest, i2_insn, i2_val);
2780 /* If the reg formerly set in I2 died only once and that was in I3,
2781 zero its use count so it won't make `reload' do any work. */
2782 if (! added_sets_2
2783 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2784 && ! i2dest_in_i2src)
2786 regno = REGNO (i2dest);
2787 REG_N_SETS (regno)--;
2791 if (i1 && GET_CODE (i1dest) == REG)
2793 rtx link;
2794 rtx i1_insn = 0, i1_val = 0, set;
2796 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2797 if ((set = single_set (XEXP (link, 0))) != 0
2798 && rtx_equal_p (i1dest, SET_DEST (set)))
2799 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2801 record_value_for_reg (i1dest, i1_insn, i1_val);
2803 regno = REGNO (i1dest);
2804 if (! added_sets_1 && ! i1dest_in_i1src)
2805 REG_N_SETS (regno)--;
2808 /* Update reg_nonzero_bits et al for any changes that may have been made
2809 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2810 important. Because newi2pat can affect nonzero_bits of newpat */
2811 if (newi2pat)
2812 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2813 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2815 /* Set new_direct_jump_p if a new return or simple jump instruction
2816 has been created.
2818 If I3 is now an unconditional jump, ensure that it has a
2819 BARRIER following it since it may have initially been a
2820 conditional jump. It may also be the last nonnote insn. */
2822 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2824 *new_direct_jump_p = 1;
2826 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2827 || GET_CODE (temp) != BARRIER)
2828 emit_barrier_after (i3);
2830 /* An NOOP jump does not need barrier, but it does need cleaning up
2831 of CFG. */
2832 if (GET_CODE (newpat) == SET
2833 && SET_SRC (newpat) == pc_rtx
2834 && SET_DEST (newpat) == pc_rtx)
2835 *new_direct_jump_p = 1;
2838 combine_successes++;
2839 undo_commit ();
2841 /* Clear this here, so that subsequent get_last_value calls are not
2842 affected. */
2843 subst_prev_insn = NULL_RTX;
2845 if (added_links_insn
2846 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2847 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2848 return added_links_insn;
2849 else
2850 return newi2pat ? i2 : i3;
2853 /* Undo all the modifications recorded in undobuf. */
2855 static void
2856 undo_all ()
2858 struct undo *undo, *next;
2860 for (undo = undobuf.undos; undo; undo = next)
2862 next = undo->next;
2863 if (undo->is_int)
2864 *undo->where.i = undo->old_contents.i;
2865 else
2866 *undo->where.r = undo->old_contents.r;
2868 undo->next = undobuf.frees;
2869 undobuf.frees = undo;
2872 undobuf.undos = 0;
2874 /* Clear this here, so that subsequent get_last_value calls are not
2875 affected. */
2876 subst_prev_insn = NULL_RTX;
2879 /* We've committed to accepting the changes we made. Move all
2880 of the undos to the free list. */
2882 static void
2883 undo_commit ()
2885 struct undo *undo, *next;
2887 for (undo = undobuf.undos; undo; undo = next)
2889 next = undo->next;
2890 undo->next = undobuf.frees;
2891 undobuf.frees = undo;
2893 undobuf.undos = 0;
2897 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2898 where we have an arithmetic expression and return that point. LOC will
2899 be inside INSN.
2901 try_combine will call this function to see if an insn can be split into
2902 two insns. */
2904 static rtx *
2905 find_split_point (loc, insn)
2906 rtx *loc;
2907 rtx insn;
2909 rtx x = *loc;
2910 enum rtx_code code = GET_CODE (x);
2911 rtx *split;
2912 unsigned HOST_WIDE_INT len = 0;
2913 HOST_WIDE_INT pos = 0;
2914 int unsignedp = 0;
2915 rtx inner = NULL_RTX;
2917 /* First special-case some codes. */
2918 switch (code)
2920 case SUBREG:
2921 #ifdef INSN_SCHEDULING
2922 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2923 point. */
2924 if (GET_CODE (SUBREG_REG (x)) == MEM)
2925 return loc;
2926 #endif
2927 return find_split_point (&SUBREG_REG (x), insn);
2929 case MEM:
2930 #ifdef HAVE_lo_sum
2931 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2932 using LO_SUM and HIGH. */
2933 if (GET_CODE (XEXP (x, 0)) == CONST
2934 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2936 SUBST (XEXP (x, 0),
2937 gen_rtx_LO_SUM (Pmode,
2938 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2939 XEXP (x, 0)));
2940 return &XEXP (XEXP (x, 0), 0);
2942 #endif
2944 /* If we have a PLUS whose second operand is a constant and the
2945 address is not valid, perhaps will can split it up using
2946 the machine-specific way to split large constants. We use
2947 the first pseudo-reg (one of the virtual regs) as a placeholder;
2948 it will not remain in the result. */
2949 if (GET_CODE (XEXP (x, 0)) == PLUS
2950 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2951 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2953 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2954 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2955 subst_insn);
2957 /* This should have produced two insns, each of which sets our
2958 placeholder. If the source of the second is a valid address,
2959 we can make put both sources together and make a split point
2960 in the middle. */
2962 if (seq && XVECLEN (seq, 0) == 2
2963 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2964 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2965 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2966 && ! reg_mentioned_p (reg,
2967 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2968 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2969 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2970 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2971 && memory_address_p (GET_MODE (x),
2972 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2974 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2975 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2977 /* Replace the placeholder in SRC2 with SRC1. If we can
2978 find where in SRC2 it was placed, that can become our
2979 split point and we can replace this address with SRC2.
2980 Just try two obvious places. */
2982 src2 = replace_rtx (src2, reg, src1);
2983 split = 0;
2984 if (XEXP (src2, 0) == src1)
2985 split = &XEXP (src2, 0);
2986 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2987 && XEXP (XEXP (src2, 0), 0) == src1)
2988 split = &XEXP (XEXP (src2, 0), 0);
2990 if (split)
2992 SUBST (XEXP (x, 0), src2);
2993 return split;
2997 /* If that didn't work, perhaps the first operand is complex and
2998 needs to be computed separately, so make a split point there.
2999 This will occur on machines that just support REG + CONST
3000 and have a constant moved through some previous computation. */
3002 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3003 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3004 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3005 == 'o')))
3006 return &XEXP (XEXP (x, 0), 0);
3008 break;
3010 case SET:
3011 #ifdef HAVE_cc0
3012 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3013 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3014 we need to put the operand into a register. So split at that
3015 point. */
3017 if (SET_DEST (x) == cc0_rtx
3018 && GET_CODE (SET_SRC (x)) != COMPARE
3019 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3020 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3021 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3022 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3023 return &SET_SRC (x);
3024 #endif
3026 /* See if we can split SET_SRC as it stands. */
3027 split = find_split_point (&SET_SRC (x), insn);
3028 if (split && split != &SET_SRC (x))
3029 return split;
3031 /* See if we can split SET_DEST as it stands. */
3032 split = find_split_point (&SET_DEST (x), insn);
3033 if (split && split != &SET_DEST (x))
3034 return split;
3036 /* See if this is a bitfield assignment with everything constant. If
3037 so, this is an IOR of an AND, so split it into that. */
3038 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3039 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3040 <= HOST_BITS_PER_WIDE_INT)
3041 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3042 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3043 && GET_CODE (SET_SRC (x)) == CONST_INT
3044 && ((INTVAL (XEXP (SET_DEST (x), 1))
3045 + INTVAL (XEXP (SET_DEST (x), 2)))
3046 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3047 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3049 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3050 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3051 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3052 rtx dest = XEXP (SET_DEST (x), 0);
3053 enum machine_mode mode = GET_MODE (dest);
3054 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3056 if (BITS_BIG_ENDIAN)
3057 pos = GET_MODE_BITSIZE (mode) - len - pos;
3059 if (src == mask)
3060 SUBST (SET_SRC (x),
3061 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3062 else
3063 SUBST (SET_SRC (x),
3064 gen_binary (IOR, mode,
3065 gen_binary (AND, mode, dest,
3066 gen_int_mode (~(mask << pos),
3067 mode)),
3068 GEN_INT (src << pos)));
3070 SUBST (SET_DEST (x), dest);
3072 split = find_split_point (&SET_SRC (x), insn);
3073 if (split && split != &SET_SRC (x))
3074 return split;
3077 /* Otherwise, see if this is an operation that we can split into two.
3078 If so, try to split that. */
3079 code = GET_CODE (SET_SRC (x));
3081 switch (code)
3083 case AND:
3084 /* If we are AND'ing with a large constant that is only a single
3085 bit and the result is only being used in a context where we
3086 need to know if it is zero or non-zero, replace it with a bit
3087 extraction. This will avoid the large constant, which might
3088 have taken more than one insn to make. If the constant were
3089 not a valid argument to the AND but took only one insn to make,
3090 this is no worse, but if it took more than one insn, it will
3091 be better. */
3093 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3094 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3095 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3096 && GET_CODE (SET_DEST (x)) == REG
3097 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3098 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3099 && XEXP (*split, 0) == SET_DEST (x)
3100 && XEXP (*split, 1) == const0_rtx)
3102 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3103 XEXP (SET_SRC (x), 0),
3104 pos, NULL_RTX, 1, 1, 0, 0);
3105 if (extraction != 0)
3107 SUBST (SET_SRC (x), extraction);
3108 return find_split_point (loc, insn);
3111 break;
3113 case NE:
3114 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3115 is known to be on, this can be converted into a NEG of a shift. */
3116 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3117 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3118 && 1 <= (pos = exact_log2
3119 (nonzero_bits (XEXP (SET_SRC (x), 0),
3120 GET_MODE (XEXP (SET_SRC (x), 0))))))
3122 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3124 SUBST (SET_SRC (x),
3125 gen_rtx_NEG (mode,
3126 gen_rtx_LSHIFTRT (mode,
3127 XEXP (SET_SRC (x), 0),
3128 GEN_INT (pos))));
3130 split = find_split_point (&SET_SRC (x), insn);
3131 if (split && split != &SET_SRC (x))
3132 return split;
3134 break;
3136 case SIGN_EXTEND:
3137 inner = XEXP (SET_SRC (x), 0);
3139 /* We can't optimize if either mode is a partial integer
3140 mode as we don't know how many bits are significant
3141 in those modes. */
3142 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3143 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3144 break;
3146 pos = 0;
3147 len = GET_MODE_BITSIZE (GET_MODE (inner));
3148 unsignedp = 0;
3149 break;
3151 case SIGN_EXTRACT:
3152 case ZERO_EXTRACT:
3153 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3154 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3156 inner = XEXP (SET_SRC (x), 0);
3157 len = INTVAL (XEXP (SET_SRC (x), 1));
3158 pos = INTVAL (XEXP (SET_SRC (x), 2));
3160 if (BITS_BIG_ENDIAN)
3161 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3162 unsignedp = (code == ZERO_EXTRACT);
3164 break;
3166 default:
3167 break;
3170 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3172 enum machine_mode mode = GET_MODE (SET_SRC (x));
3174 /* For unsigned, we have a choice of a shift followed by an
3175 AND or two shifts. Use two shifts for field sizes where the
3176 constant might be too large. We assume here that we can
3177 always at least get 8-bit constants in an AND insn, which is
3178 true for every current RISC. */
3180 if (unsignedp && len <= 8)
3182 SUBST (SET_SRC (x),
3183 gen_rtx_AND (mode,
3184 gen_rtx_LSHIFTRT
3185 (mode, gen_lowpart_for_combine (mode, inner),
3186 GEN_INT (pos)),
3187 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3189 split = find_split_point (&SET_SRC (x), insn);
3190 if (split && split != &SET_SRC (x))
3191 return split;
3193 else
3195 SUBST (SET_SRC (x),
3196 gen_rtx_fmt_ee
3197 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3198 gen_rtx_ASHIFT (mode,
3199 gen_lowpart_for_combine (mode, inner),
3200 GEN_INT (GET_MODE_BITSIZE (mode)
3201 - len - pos)),
3202 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3204 split = find_split_point (&SET_SRC (x), insn);
3205 if (split && split != &SET_SRC (x))
3206 return split;
3210 /* See if this is a simple operation with a constant as the second
3211 operand. It might be that this constant is out of range and hence
3212 could be used as a split point. */
3213 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3214 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3215 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3216 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3217 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3218 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3219 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3220 == 'o'))))
3221 return &XEXP (SET_SRC (x), 1);
3223 /* Finally, see if this is a simple operation with its first operand
3224 not in a register. The operation might require this operand in a
3225 register, so return it as a split point. We can always do this
3226 because if the first operand were another operation, we would have
3227 already found it as a split point. */
3228 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3229 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3230 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3231 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3232 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3233 return &XEXP (SET_SRC (x), 0);
3235 return 0;
3237 case AND:
3238 case IOR:
3239 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3240 it is better to write this as (not (ior A B)) so we can split it.
3241 Similarly for IOR. */
3242 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3244 SUBST (*loc,
3245 gen_rtx_NOT (GET_MODE (x),
3246 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3247 GET_MODE (x),
3248 XEXP (XEXP (x, 0), 0),
3249 XEXP (XEXP (x, 1), 0))));
3250 return find_split_point (loc, insn);
3253 /* Many RISC machines have a large set of logical insns. If the
3254 second operand is a NOT, put it first so we will try to split the
3255 other operand first. */
3256 if (GET_CODE (XEXP (x, 1)) == NOT)
3258 rtx tem = XEXP (x, 0);
3259 SUBST (XEXP (x, 0), XEXP (x, 1));
3260 SUBST (XEXP (x, 1), tem);
3262 break;
3264 default:
3265 break;
3268 /* Otherwise, select our actions depending on our rtx class. */
3269 switch (GET_RTX_CLASS (code))
3271 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3272 case '3':
3273 split = find_split_point (&XEXP (x, 2), insn);
3274 if (split)
3275 return split;
3276 /* ... fall through ... */
3277 case '2':
3278 case 'c':
3279 case '<':
3280 split = find_split_point (&XEXP (x, 1), insn);
3281 if (split)
3282 return split;
3283 /* ... fall through ... */
3284 case '1':
3285 /* Some machines have (and (shift ...) ...) insns. If X is not
3286 an AND, but XEXP (X, 0) is, use it as our split point. */
3287 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3288 return &XEXP (x, 0);
3290 split = find_split_point (&XEXP (x, 0), insn);
3291 if (split)
3292 return split;
3293 return loc;
3296 /* Otherwise, we don't have a split point. */
3297 return 0;
3300 /* Throughout X, replace FROM with TO, and return the result.
3301 The result is TO if X is FROM;
3302 otherwise the result is X, but its contents may have been modified.
3303 If they were modified, a record was made in undobuf so that
3304 undo_all will (among other things) return X to its original state.
3306 If the number of changes necessary is too much to record to undo,
3307 the excess changes are not made, so the result is invalid.
3308 The changes already made can still be undone.
3309 undobuf.num_undo is incremented for such changes, so by testing that
3310 the caller can tell whether the result is valid.
3312 `n_occurrences' is incremented each time FROM is replaced.
3314 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3316 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3317 by copying if `n_occurrences' is non-zero. */
3319 static rtx
3320 subst (x, from, to, in_dest, unique_copy)
3321 rtx x, from, to;
3322 int in_dest;
3323 int unique_copy;
3325 enum rtx_code code = GET_CODE (x);
3326 enum machine_mode op0_mode = VOIDmode;
3327 const char *fmt;
3328 int len, i;
3329 rtx new;
3331 /* Two expressions are equal if they are identical copies of a shared
3332 RTX or if they are both registers with the same register number
3333 and mode. */
3335 #define COMBINE_RTX_EQUAL_P(X,Y) \
3336 ((X) == (Y) \
3337 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3338 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3340 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3342 n_occurrences++;
3343 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3346 /* If X and FROM are the same register but different modes, they will
3347 not have been seen as equal above. However, flow.c will make a
3348 LOG_LINKS entry for that case. If we do nothing, we will try to
3349 rerecognize our original insn and, when it succeeds, we will
3350 delete the feeding insn, which is incorrect.
3352 So force this insn not to match in this (rare) case. */
3353 if (! in_dest && code == REG && GET_CODE (from) == REG
3354 && REGNO (x) == REGNO (from))
3355 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3357 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3358 of which may contain things that can be combined. */
3359 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3360 return x;
3362 /* It is possible to have a subexpression appear twice in the insn.
3363 Suppose that FROM is a register that appears within TO.
3364 Then, after that subexpression has been scanned once by `subst',
3365 the second time it is scanned, TO may be found. If we were
3366 to scan TO here, we would find FROM within it and create a
3367 self-referent rtl structure which is completely wrong. */
3368 if (COMBINE_RTX_EQUAL_P (x, to))
3369 return to;
3371 /* Parallel asm_operands need special attention because all of the
3372 inputs are shared across the arms. Furthermore, unsharing the
3373 rtl results in recognition failures. Failure to handle this case
3374 specially can result in circular rtl.
3376 Solve this by doing a normal pass across the first entry of the
3377 parallel, and only processing the SET_DESTs of the subsequent
3378 entries. Ug. */
3380 if (code == PARALLEL
3381 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3382 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3384 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3386 /* If this substitution failed, this whole thing fails. */
3387 if (GET_CODE (new) == CLOBBER
3388 && XEXP (new, 0) == const0_rtx)
3389 return new;
3391 SUBST (XVECEXP (x, 0, 0), new);
3393 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3395 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3397 if (GET_CODE (dest) != REG
3398 && GET_CODE (dest) != CC0
3399 && GET_CODE (dest) != PC)
3401 new = subst (dest, from, to, 0, unique_copy);
3403 /* If this substitution failed, this whole thing fails. */
3404 if (GET_CODE (new) == CLOBBER
3405 && XEXP (new, 0) == const0_rtx)
3406 return new;
3408 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3412 else
3414 len = GET_RTX_LENGTH (code);
3415 fmt = GET_RTX_FORMAT (code);
3417 /* We don't need to process a SET_DEST that is a register, CC0,
3418 or PC, so set up to skip this common case. All other cases
3419 where we want to suppress replacing something inside a
3420 SET_SRC are handled via the IN_DEST operand. */
3421 if (code == SET
3422 && (GET_CODE (SET_DEST (x)) == REG
3423 || GET_CODE (SET_DEST (x)) == CC0
3424 || GET_CODE (SET_DEST (x)) == PC))
3425 fmt = "ie";
3427 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3428 constant. */
3429 if (fmt[0] == 'e')
3430 op0_mode = GET_MODE (XEXP (x, 0));
3432 for (i = 0; i < len; i++)
3434 if (fmt[i] == 'E')
3436 int j;
3437 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3439 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3441 new = (unique_copy && n_occurrences
3442 ? copy_rtx (to) : to);
3443 n_occurrences++;
3445 else
3447 new = subst (XVECEXP (x, i, j), from, to, 0,
3448 unique_copy);
3450 /* If this substitution failed, this whole thing
3451 fails. */
3452 if (GET_CODE (new) == CLOBBER
3453 && XEXP (new, 0) == const0_rtx)
3454 return new;
3457 SUBST (XVECEXP (x, i, j), new);
3460 else if (fmt[i] == 'e')
3462 /* If this is a register being set, ignore it. */
3463 new = XEXP (x, i);
3464 if (in_dest
3465 && (code == SUBREG || code == STRICT_LOW_PART
3466 || code == ZERO_EXTRACT)
3467 && i == 0
3468 && GET_CODE (new) == REG)
3471 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3473 /* In general, don't install a subreg involving two
3474 modes not tieable. It can worsen register
3475 allocation, and can even make invalid reload
3476 insns, since the reg inside may need to be copied
3477 from in the outside mode, and that may be invalid
3478 if it is an fp reg copied in integer mode.
3480 We allow two exceptions to this: It is valid if
3481 it is inside another SUBREG and the mode of that
3482 SUBREG and the mode of the inside of TO is
3483 tieable and it is valid if X is a SET that copies
3484 FROM to CC0. */
3486 if (GET_CODE (to) == SUBREG
3487 && ! MODES_TIEABLE_P (GET_MODE (to),
3488 GET_MODE (SUBREG_REG (to)))
3489 && ! (code == SUBREG
3490 && MODES_TIEABLE_P (GET_MODE (x),
3491 GET_MODE (SUBREG_REG (to))))
3492 #ifdef HAVE_cc0
3493 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3494 #endif
3496 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3498 #ifdef CLASS_CANNOT_CHANGE_MODE
3499 if (code == SUBREG
3500 && GET_CODE (to) == REG
3501 && REGNO (to) < FIRST_PSEUDO_REGISTER
3502 && (TEST_HARD_REG_BIT
3503 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3504 REGNO (to)))
3505 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3506 GET_MODE (x)))
3507 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3508 #endif
3510 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3511 n_occurrences++;
3513 else
3514 /* If we are in a SET_DEST, suppress most cases unless we
3515 have gone inside a MEM, in which case we want to
3516 simplify the address. We assume here that things that
3517 are actually part of the destination have their inner
3518 parts in the first expression. This is true for SUBREG,
3519 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3520 things aside from REG and MEM that should appear in a
3521 SET_DEST. */
3522 new = subst (XEXP (x, i), from, to,
3523 (((in_dest
3524 && (code == SUBREG || code == STRICT_LOW_PART
3525 || code == ZERO_EXTRACT))
3526 || code == SET)
3527 && i == 0), unique_copy);
3529 /* If we found that we will have to reject this combination,
3530 indicate that by returning the CLOBBER ourselves, rather than
3531 an expression containing it. This will speed things up as
3532 well as prevent accidents where two CLOBBERs are considered
3533 to be equal, thus producing an incorrect simplification. */
3535 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3536 return new;
3538 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3540 if (VECTOR_MODE_P (GET_MODE (x)))
3541 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3543 x = simplify_subreg (GET_MODE (x), new,
3544 GET_MODE (SUBREG_REG (x)),
3545 SUBREG_BYTE (x));
3546 if (! x)
3547 abort ();
3549 else if (GET_CODE (new) == CONST_INT
3550 && GET_CODE (x) == ZERO_EXTEND)
3552 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3553 new, GET_MODE (XEXP (x, 0)));
3554 if (! x)
3555 abort ();
3557 else
3558 SUBST (XEXP (x, i), new);
3563 /* Try to simplify X. If the simplification changed the code, it is likely
3564 that further simplification will help, so loop, but limit the number
3565 of repetitions that will be performed. */
3567 for (i = 0; i < 4; i++)
3569 /* If X is sufficiently simple, don't bother trying to do anything
3570 with it. */
3571 if (code != CONST_INT && code != REG && code != CLOBBER)
3572 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3574 if (GET_CODE (x) == code)
3575 break;
3577 code = GET_CODE (x);
3579 /* We no longer know the original mode of operand 0 since we
3580 have changed the form of X) */
3581 op0_mode = VOIDmode;
3584 return x;
3587 /* Simplify X, a piece of RTL. We just operate on the expression at the
3588 outer level; call `subst' to simplify recursively. Return the new
3589 expression.
3591 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3592 will be the iteration even if an expression with a code different from
3593 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3595 static rtx
3596 combine_simplify_rtx (x, op0_mode, last, in_dest)
3597 rtx x;
3598 enum machine_mode op0_mode;
3599 int last;
3600 int in_dest;
3602 enum rtx_code code = GET_CODE (x);
3603 enum machine_mode mode = GET_MODE (x);
3604 rtx temp;
3605 rtx reversed;
3606 int i;
3608 /* If this is a commutative operation, put a constant last and a complex
3609 expression first. We don't need to do this for comparisons here. */
3610 if (GET_RTX_CLASS (code) == 'c'
3611 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3613 temp = XEXP (x, 0);
3614 SUBST (XEXP (x, 0), XEXP (x, 1));
3615 SUBST (XEXP (x, 1), temp);
3618 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3619 sign extension of a PLUS with a constant, reverse the order of the sign
3620 extension and the addition. Note that this not the same as the original
3621 code, but overflow is undefined for signed values. Also note that the
3622 PLUS will have been partially moved "inside" the sign-extension, so that
3623 the first operand of X will really look like:
3624 (ashiftrt (plus (ashift A C4) C5) C4).
3625 We convert this to
3626 (plus (ashiftrt (ashift A C4) C2) C4)
3627 and replace the first operand of X with that expression. Later parts
3628 of this function may simplify the expression further.
3630 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3631 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3632 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3634 We do this to simplify address expressions. */
3636 if ((code == PLUS || code == MINUS || code == MULT)
3637 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3638 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3639 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3640 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3641 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3642 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3643 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3644 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3645 XEXP (XEXP (XEXP (x, 0), 0), 1),
3646 XEXP (XEXP (x, 0), 1))) != 0)
3648 rtx new
3649 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3650 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3651 INTVAL (XEXP (XEXP (x, 0), 1)));
3653 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3654 INTVAL (XEXP (XEXP (x, 0), 1)));
3656 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3659 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3660 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3661 things. Check for cases where both arms are testing the same
3662 condition.
3664 Don't do anything if all operands are very simple. */
3666 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3667 || GET_RTX_CLASS (code) == '<')
3668 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3669 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3670 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3671 == 'o')))
3672 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3673 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3674 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3675 == 'o')))))
3676 || (GET_RTX_CLASS (code) == '1'
3677 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3678 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3679 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3680 == 'o'))))))
3682 rtx cond, true_rtx, false_rtx;
3684 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3685 if (cond != 0
3686 /* If everything is a comparison, what we have is highly unlikely
3687 to be simpler, so don't use it. */
3688 && ! (GET_RTX_CLASS (code) == '<'
3689 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3690 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3692 rtx cop1 = const0_rtx;
3693 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3695 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3696 return x;
3698 /* Simplify the alternative arms; this may collapse the true and
3699 false arms to store-flag values. */
3700 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3701 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3703 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3704 is unlikely to be simpler. */
3705 if (general_operand (true_rtx, VOIDmode)
3706 && general_operand (false_rtx, VOIDmode))
3708 /* Restarting if we generate a store-flag expression will cause
3709 us to loop. Just drop through in this case. */
3711 /* If the result values are STORE_FLAG_VALUE and zero, we can
3712 just make the comparison operation. */
3713 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3714 x = gen_binary (cond_code, mode, cond, cop1);
3715 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3716 && reverse_condition (cond_code) != UNKNOWN)
3717 x = gen_binary (reverse_condition (cond_code),
3718 mode, cond, cop1);
3720 /* Likewise, we can make the negate of a comparison operation
3721 if the result values are - STORE_FLAG_VALUE and zero. */
3722 else if (GET_CODE (true_rtx) == CONST_INT
3723 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3724 && false_rtx == const0_rtx)
3725 x = simplify_gen_unary (NEG, mode,
3726 gen_binary (cond_code, mode, cond,
3727 cop1),
3728 mode);
3729 else if (GET_CODE (false_rtx) == CONST_INT
3730 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3731 && true_rtx == const0_rtx)
3732 x = simplify_gen_unary (NEG, mode,
3733 gen_binary (reverse_condition
3734 (cond_code),
3735 mode, cond, cop1),
3736 mode);
3737 else
3738 return gen_rtx_IF_THEN_ELSE (mode,
3739 gen_binary (cond_code, VOIDmode,
3740 cond, cop1),
3741 true_rtx, false_rtx);
3743 code = GET_CODE (x);
3744 op0_mode = VOIDmode;
3749 /* Try to fold this expression in case we have constants that weren't
3750 present before. */
3751 temp = 0;
3752 switch (GET_RTX_CLASS (code))
3754 case '1':
3755 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3756 break;
3757 case '<':
3759 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3760 if (cmp_mode == VOIDmode)
3762 cmp_mode = GET_MODE (XEXP (x, 1));
3763 if (cmp_mode == VOIDmode)
3764 cmp_mode = op0_mode;
3766 temp = simplify_relational_operation (code, cmp_mode,
3767 XEXP (x, 0), XEXP (x, 1));
3769 #ifdef FLOAT_STORE_FLAG_VALUE
3770 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3772 if (temp == const0_rtx)
3773 temp = CONST0_RTX (mode);
3774 else
3775 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3776 mode);
3778 #endif
3779 break;
3780 case 'c':
3781 case '2':
3782 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3783 break;
3784 case 'b':
3785 case '3':
3786 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3787 XEXP (x, 1), XEXP (x, 2));
3788 break;
3791 if (temp)
3793 x = temp;
3794 code = GET_CODE (temp);
3795 op0_mode = VOIDmode;
3796 mode = GET_MODE (temp);
3799 /* First see if we can apply the inverse distributive law. */
3800 if (code == PLUS || code == MINUS
3801 || code == AND || code == IOR || code == XOR)
3803 x = apply_distributive_law (x);
3804 code = GET_CODE (x);
3805 op0_mode = VOIDmode;
3808 /* If CODE is an associative operation not otherwise handled, see if we
3809 can associate some operands. This can win if they are constants or
3810 if they are logically related (i.e. (a & b) & a). */
3811 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3812 || code == AND || code == IOR || code == XOR
3813 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3814 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3815 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3817 if (GET_CODE (XEXP (x, 0)) == code)
3819 rtx other = XEXP (XEXP (x, 0), 0);
3820 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3821 rtx inner_op1 = XEXP (x, 1);
3822 rtx inner;
3824 /* Make sure we pass the constant operand if any as the second
3825 one if this is a commutative operation. */
3826 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3828 rtx tem = inner_op0;
3829 inner_op0 = inner_op1;
3830 inner_op1 = tem;
3832 inner = simplify_binary_operation (code == MINUS ? PLUS
3833 : code == DIV ? MULT
3834 : code,
3835 mode, inner_op0, inner_op1);
3837 /* For commutative operations, try the other pair if that one
3838 didn't simplify. */
3839 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3841 other = XEXP (XEXP (x, 0), 1);
3842 inner = simplify_binary_operation (code, mode,
3843 XEXP (XEXP (x, 0), 0),
3844 XEXP (x, 1));
3847 if (inner)
3848 return gen_binary (code, mode, other, inner);
3852 /* A little bit of algebraic simplification here. */
3853 switch (code)
3855 case MEM:
3856 /* Ensure that our address has any ASHIFTs converted to MULT in case
3857 address-recognizing predicates are called later. */
3858 temp = make_compound_operation (XEXP (x, 0), MEM);
3859 SUBST (XEXP (x, 0), temp);
3860 break;
3862 case SUBREG:
3863 if (op0_mode == VOIDmode)
3864 op0_mode = GET_MODE (SUBREG_REG (x));
3866 /* simplify_subreg can't use gen_lowpart_for_combine. */
3867 if (CONSTANT_P (SUBREG_REG (x))
3868 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x))
3869 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3871 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3872 break;
3874 rtx temp;
3875 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3876 SUBREG_BYTE (x));
3877 if (temp)
3878 return temp;
3881 /* Don't change the mode of the MEM if that would change the meaning
3882 of the address. */
3883 if (GET_CODE (SUBREG_REG (x)) == MEM
3884 && (MEM_VOLATILE_P (SUBREG_REG (x))
3885 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3886 return gen_rtx_CLOBBER (mode, const0_rtx);
3888 /* Note that we cannot do any narrowing for non-constants since
3889 we might have been counting on using the fact that some bits were
3890 zero. We now do this in the SET. */
3892 break;
3894 case NOT:
3895 /* (not (plus X -1)) can become (neg X). */
3896 if (GET_CODE (XEXP (x, 0)) == PLUS
3897 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3898 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3900 /* Similarly, (not (neg X)) is (plus X -1). */
3901 if (GET_CODE (XEXP (x, 0)) == NEG)
3902 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3904 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3905 if (GET_CODE (XEXP (x, 0)) == XOR
3906 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3907 && (temp = simplify_unary_operation (NOT, mode,
3908 XEXP (XEXP (x, 0), 1),
3909 mode)) != 0)
3910 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3912 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3913 other than 1, but that is not valid. We could do a similar
3914 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3915 but this doesn't seem common enough to bother with. */
3916 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3917 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3918 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3919 const1_rtx, mode),
3920 XEXP (XEXP (x, 0), 1));
3922 if (GET_CODE (XEXP (x, 0)) == SUBREG
3923 && subreg_lowpart_p (XEXP (x, 0))
3924 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3925 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3926 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3927 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3929 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3931 x = gen_rtx_ROTATE (inner_mode,
3932 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3933 inner_mode),
3934 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3935 return gen_lowpart_for_combine (mode, x);
3938 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3939 reversing the comparison code if valid. */
3940 if (STORE_FLAG_VALUE == -1
3941 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3942 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3943 XEXP (XEXP (x, 0), 1))))
3944 return reversed;
3946 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3947 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3948 perform the above simplification. */
3950 if (STORE_FLAG_VALUE == -1
3951 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3952 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3953 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3954 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3956 /* Apply De Morgan's laws to reduce number of patterns for machines
3957 with negating logical insns (and-not, nand, etc.). If result has
3958 only one NOT, put it first, since that is how the patterns are
3959 coded. */
3961 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3963 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3964 enum machine_mode op_mode;
3966 op_mode = GET_MODE (in1);
3967 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3969 op_mode = GET_MODE (in2);
3970 if (op_mode == VOIDmode)
3971 op_mode = mode;
3972 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3974 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3976 rtx tem = in2;
3977 in2 = in1; in1 = tem;
3980 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3981 mode, in1, in2);
3983 break;
3985 case NEG:
3986 /* (neg (plus X 1)) can become (not X). */
3987 if (GET_CODE (XEXP (x, 0)) == PLUS
3988 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3989 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3991 /* Similarly, (neg (not X)) is (plus X 1). */
3992 if (GET_CODE (XEXP (x, 0)) == NOT)
3993 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3995 /* (neg (minus X Y)) can become (minus Y X). This transformation
3996 isn't safe for modes with signed zeros, since if X and Y are
3997 both +0, (minus Y X) is the same as (minus X Y). If the rounding
3998 mode is towards +infinity (or -infinity) then the two expressions
3999 will be rounded differently. */
4000 if (GET_CODE (XEXP (x, 0)) == MINUS
4001 && !HONOR_SIGNED_ZEROS (mode)
4002 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4003 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4004 XEXP (XEXP (x, 0), 0));
4006 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4007 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4008 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4009 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4011 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4012 if we can then eliminate the NEG (e.g.,
4013 if the operand is a constant). */
4015 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4017 temp = simplify_unary_operation (NEG, mode,
4018 XEXP (XEXP (x, 0), 0), mode);
4019 if (temp)
4020 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4023 temp = expand_compound_operation (XEXP (x, 0));
4025 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4026 replaced by (lshiftrt X C). This will convert
4027 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4029 if (GET_CODE (temp) == ASHIFTRT
4030 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4031 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4032 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4033 INTVAL (XEXP (temp, 1)));
4035 /* If X has only a single bit that might be nonzero, say, bit I, convert
4036 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4037 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4038 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4039 or a SUBREG of one since we'd be making the expression more
4040 complex if it was just a register. */
4042 if (GET_CODE (temp) != REG
4043 && ! (GET_CODE (temp) == SUBREG
4044 && GET_CODE (SUBREG_REG (temp)) == REG)
4045 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4047 rtx temp1 = simplify_shift_const
4048 (NULL_RTX, ASHIFTRT, mode,
4049 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4050 GET_MODE_BITSIZE (mode) - 1 - i),
4051 GET_MODE_BITSIZE (mode) - 1 - i);
4053 /* If all we did was surround TEMP with the two shifts, we
4054 haven't improved anything, so don't use it. Otherwise,
4055 we are better off with TEMP1. */
4056 if (GET_CODE (temp1) != ASHIFTRT
4057 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4058 || XEXP (XEXP (temp1, 0), 0) != temp)
4059 return temp1;
4061 break;
4063 case TRUNCATE:
4064 /* We can't handle truncation to a partial integer mode here
4065 because we don't know the real bitsize of the partial
4066 integer mode. */
4067 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4068 break;
4070 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4071 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4072 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4073 SUBST (XEXP (x, 0),
4074 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4075 GET_MODE_MASK (mode), NULL_RTX, 0));
4077 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4078 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4079 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4080 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4081 return XEXP (XEXP (x, 0), 0);
4083 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4084 (OP:SI foo:SI) if OP is NEG or ABS. */
4085 if ((GET_CODE (XEXP (x, 0)) == ABS
4086 || GET_CODE (XEXP (x, 0)) == NEG)
4087 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4088 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4089 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4090 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4091 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4093 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4094 (truncate:SI x). */
4095 if (GET_CODE (XEXP (x, 0)) == SUBREG
4096 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4097 && subreg_lowpart_p (XEXP (x, 0)))
4098 return SUBREG_REG (XEXP (x, 0));
4100 /* If we know that the value is already truncated, we can
4101 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4102 is nonzero for the corresponding modes. But don't do this
4103 for an (LSHIFTRT (MULT ...)) since this will cause problems
4104 with the umulXi3_highpart patterns. */
4105 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4106 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4107 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4108 >= GET_MODE_BITSIZE (mode) + 1
4109 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4110 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4111 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4113 /* A truncate of a comparison can be replaced with a subreg if
4114 STORE_FLAG_VALUE permits. This is like the previous test,
4115 but it works even if the comparison is done in a mode larger
4116 than HOST_BITS_PER_WIDE_INT. */
4117 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4118 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4119 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4120 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4122 /* Similarly, a truncate of a register whose value is a
4123 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4124 permits. */
4125 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4126 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4127 && (temp = get_last_value (XEXP (x, 0)))
4128 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4129 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4131 break;
4133 case FLOAT_TRUNCATE:
4134 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4135 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4136 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4137 return XEXP (XEXP (x, 0), 0);
4139 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4140 (OP:SF foo:SF) if OP is NEG or ABS. */
4141 if ((GET_CODE (XEXP (x, 0)) == ABS
4142 || GET_CODE (XEXP (x, 0)) == NEG)
4143 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4144 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4145 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4146 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4148 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4149 is (float_truncate:SF x). */
4150 if (GET_CODE (XEXP (x, 0)) == SUBREG
4151 && subreg_lowpart_p (XEXP (x, 0))
4152 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4153 return SUBREG_REG (XEXP (x, 0));
4154 break;
4156 #ifdef HAVE_cc0
4157 case COMPARE:
4158 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4159 using cc0, in which case we want to leave it as a COMPARE
4160 so we can distinguish it from a register-register-copy. */
4161 if (XEXP (x, 1) == const0_rtx)
4162 return XEXP (x, 0);
4164 /* x - 0 is the same as x unless x's mode has signed zeros and
4165 allows rounding towards -infinity. Under those conditions,
4166 0 - 0 is -0. */
4167 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4168 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4169 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4170 return XEXP (x, 0);
4171 break;
4172 #endif
4174 case CONST:
4175 /* (const (const X)) can become (const X). Do it this way rather than
4176 returning the inner CONST since CONST can be shared with a
4177 REG_EQUAL note. */
4178 if (GET_CODE (XEXP (x, 0)) == CONST)
4179 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4180 break;
4182 #ifdef HAVE_lo_sum
4183 case LO_SUM:
4184 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4185 can add in an offset. find_split_point will split this address up
4186 again if it doesn't match. */
4187 if (GET_CODE (XEXP (x, 0)) == HIGH
4188 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4189 return XEXP (x, 1);
4190 break;
4191 #endif
4193 case PLUS:
4194 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4195 outermost. That's because that's the way indexed addresses are
4196 supposed to appear. This code used to check many more cases, but
4197 they are now checked elsewhere. */
4198 if (GET_CODE (XEXP (x, 0)) == PLUS
4199 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4200 return gen_binary (PLUS, mode,
4201 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4202 XEXP (x, 1)),
4203 XEXP (XEXP (x, 0), 1));
4205 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4206 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4207 bit-field and can be replaced by either a sign_extend or a
4208 sign_extract. The `and' may be a zero_extend and the two
4209 <c>, -<c> constants may be reversed. */
4210 if (GET_CODE (XEXP (x, 0)) == XOR
4211 && GET_CODE (XEXP (x, 1)) == CONST_INT
4212 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4213 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4214 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4215 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4216 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4217 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4218 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4219 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4220 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4221 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4222 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4223 == (unsigned int) i + 1))))
4224 return simplify_shift_const
4225 (NULL_RTX, ASHIFTRT, mode,
4226 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4227 XEXP (XEXP (XEXP (x, 0), 0), 0),
4228 GET_MODE_BITSIZE (mode) - (i + 1)),
4229 GET_MODE_BITSIZE (mode) - (i + 1));
4231 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4232 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4233 is 1. This produces better code than the alternative immediately
4234 below. */
4235 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4236 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4237 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4238 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4239 XEXP (XEXP (x, 0), 0),
4240 XEXP (XEXP (x, 0), 1))))
4241 return
4242 simplify_gen_unary (NEG, mode, reversed, mode);
4244 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4245 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4246 the bitsize of the mode - 1. This allows simplification of
4247 "a = (b & 8) == 0;" */
4248 if (XEXP (x, 1) == constm1_rtx
4249 && GET_CODE (XEXP (x, 0)) != REG
4250 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4251 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4252 && nonzero_bits (XEXP (x, 0), mode) == 1)
4253 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4254 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4255 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4256 GET_MODE_BITSIZE (mode) - 1),
4257 GET_MODE_BITSIZE (mode) - 1);
4259 /* If we are adding two things that have no bits in common, convert
4260 the addition into an IOR. This will often be further simplified,
4261 for example in cases like ((a & 1) + (a & 2)), which can
4262 become a & 3. */
4264 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4265 && (nonzero_bits (XEXP (x, 0), mode)
4266 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4268 /* Try to simplify the expression further. */
4269 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4270 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4272 /* If we could, great. If not, do not go ahead with the IOR
4273 replacement, since PLUS appears in many special purpose
4274 address arithmetic instructions. */
4275 if (GET_CODE (temp) != CLOBBER && temp != tor)
4276 return temp;
4278 break;
4280 case MINUS:
4281 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4282 by reversing the comparison code if valid. */
4283 if (STORE_FLAG_VALUE == 1
4284 && XEXP (x, 0) == const1_rtx
4285 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4286 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4287 XEXP (XEXP (x, 1), 0),
4288 XEXP (XEXP (x, 1), 1))))
4289 return reversed;
4291 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4292 (and <foo> (const_int pow2-1)) */
4293 if (GET_CODE (XEXP (x, 1)) == AND
4294 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4295 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4296 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4297 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4298 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4300 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4301 integers. */
4302 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4303 return gen_binary (MINUS, mode,
4304 gen_binary (MINUS, mode, XEXP (x, 0),
4305 XEXP (XEXP (x, 1), 0)),
4306 XEXP (XEXP (x, 1), 1));
4307 break;
4309 case MULT:
4310 /* If we have (mult (plus A B) C), apply the distributive law and then
4311 the inverse distributive law to see if things simplify. This
4312 occurs mostly in addresses, often when unrolling loops. */
4314 if (GET_CODE (XEXP (x, 0)) == PLUS)
4316 x = apply_distributive_law
4317 (gen_binary (PLUS, mode,
4318 gen_binary (MULT, mode,
4319 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4320 gen_binary (MULT, mode,
4321 XEXP (XEXP (x, 0), 1),
4322 copy_rtx (XEXP (x, 1)))));
4324 if (GET_CODE (x) != MULT)
4325 return x;
4327 /* Try simplify a*(b/c) as (a*b)/c. */
4328 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4329 && GET_CODE (XEXP (x, 0)) == DIV)
4331 rtx tem = simplify_binary_operation (MULT, mode,
4332 XEXP (XEXP (x, 0), 0),
4333 XEXP (x, 1));
4334 if (tem)
4335 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4337 break;
4339 case UDIV:
4340 /* If this is a divide by a power of two, treat it as a shift if
4341 its first operand is a shift. */
4342 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4343 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4344 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4345 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4346 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4347 || GET_CODE (XEXP (x, 0)) == ROTATE
4348 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4349 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4350 break;
4352 case EQ: case NE:
4353 case GT: case GTU: case GE: case GEU:
4354 case LT: case LTU: case LE: case LEU:
4355 case UNEQ: case LTGT:
4356 case UNGT: case UNGE:
4357 case UNLT: case UNLE:
4358 case UNORDERED: case ORDERED:
4359 /* If the first operand is a condition code, we can't do anything
4360 with it. */
4361 if (GET_CODE (XEXP (x, 0)) == COMPARE
4362 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4363 #ifdef HAVE_cc0
4364 && XEXP (x, 0) != cc0_rtx
4365 #endif
4368 rtx op0 = XEXP (x, 0);
4369 rtx op1 = XEXP (x, 1);
4370 enum rtx_code new_code;
4372 if (GET_CODE (op0) == COMPARE)
4373 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4375 /* Simplify our comparison, if possible. */
4376 new_code = simplify_comparison (code, &op0, &op1);
4378 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4379 if only the low-order bit is possibly nonzero in X (such as when
4380 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4381 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4382 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4383 (plus X 1).
4385 Remove any ZERO_EXTRACT we made when thinking this was a
4386 comparison. It may now be simpler to use, e.g., an AND. If a
4387 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4388 the call to make_compound_operation in the SET case. */
4390 if (STORE_FLAG_VALUE == 1
4391 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4392 && op1 == const0_rtx
4393 && mode == GET_MODE (op0)
4394 && nonzero_bits (op0, mode) == 1)
4395 return gen_lowpart_for_combine (mode,
4396 expand_compound_operation (op0));
4398 else if (STORE_FLAG_VALUE == 1
4399 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4400 && op1 == const0_rtx
4401 && mode == GET_MODE (op0)
4402 && (num_sign_bit_copies (op0, mode)
4403 == GET_MODE_BITSIZE (mode)))
4405 op0 = expand_compound_operation (op0);
4406 return simplify_gen_unary (NEG, mode,
4407 gen_lowpart_for_combine (mode, op0),
4408 mode);
4411 else if (STORE_FLAG_VALUE == 1
4412 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4413 && op1 == const0_rtx
4414 && mode == GET_MODE (op0)
4415 && nonzero_bits (op0, mode) == 1)
4417 op0 = expand_compound_operation (op0);
4418 return gen_binary (XOR, mode,
4419 gen_lowpart_for_combine (mode, op0),
4420 const1_rtx);
4423 else if (STORE_FLAG_VALUE == 1
4424 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4425 && op1 == const0_rtx
4426 && mode == GET_MODE (op0)
4427 && (num_sign_bit_copies (op0, mode)
4428 == GET_MODE_BITSIZE (mode)))
4430 op0 = expand_compound_operation (op0);
4431 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4434 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4435 those above. */
4436 if (STORE_FLAG_VALUE == -1
4437 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4438 && op1 == const0_rtx
4439 && (num_sign_bit_copies (op0, mode)
4440 == GET_MODE_BITSIZE (mode)))
4441 return gen_lowpart_for_combine (mode,
4442 expand_compound_operation (op0));
4444 else if (STORE_FLAG_VALUE == -1
4445 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4446 && op1 == const0_rtx
4447 && mode == GET_MODE (op0)
4448 && nonzero_bits (op0, mode) == 1)
4450 op0 = expand_compound_operation (op0);
4451 return simplify_gen_unary (NEG, mode,
4452 gen_lowpart_for_combine (mode, op0),
4453 mode);
4456 else if (STORE_FLAG_VALUE == -1
4457 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4458 && op1 == const0_rtx
4459 && mode == GET_MODE (op0)
4460 && (num_sign_bit_copies (op0, mode)
4461 == GET_MODE_BITSIZE (mode)))
4463 op0 = expand_compound_operation (op0);
4464 return simplify_gen_unary (NOT, mode,
4465 gen_lowpart_for_combine (mode, op0),
4466 mode);
4469 /* If X is 0/1, (eq X 0) is X-1. */
4470 else if (STORE_FLAG_VALUE == -1
4471 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4472 && op1 == const0_rtx
4473 && mode == GET_MODE (op0)
4474 && nonzero_bits (op0, mode) == 1)
4476 op0 = expand_compound_operation (op0);
4477 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4480 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4481 one bit that might be nonzero, we can convert (ne x 0) to
4482 (ashift x c) where C puts the bit in the sign bit. Remove any
4483 AND with STORE_FLAG_VALUE when we are done, since we are only
4484 going to test the sign bit. */
4485 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4486 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4487 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4488 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4489 && op1 == const0_rtx
4490 && mode == GET_MODE (op0)
4491 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4493 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4494 expand_compound_operation (op0),
4495 GET_MODE_BITSIZE (mode) - 1 - i);
4496 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4497 return XEXP (x, 0);
4498 else
4499 return x;
4502 /* If the code changed, return a whole new comparison. */
4503 if (new_code != code)
4504 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4506 /* Otherwise, keep this operation, but maybe change its operands.
4507 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4508 SUBST (XEXP (x, 0), op0);
4509 SUBST (XEXP (x, 1), op1);
4511 break;
4513 case IF_THEN_ELSE:
4514 return simplify_if_then_else (x);
4516 case ZERO_EXTRACT:
4517 case SIGN_EXTRACT:
4518 case ZERO_EXTEND:
4519 case SIGN_EXTEND:
4520 /* If we are processing SET_DEST, we are done. */
4521 if (in_dest)
4522 return x;
4524 return expand_compound_operation (x);
4526 case SET:
4527 return simplify_set (x);
4529 case AND:
4530 case IOR:
4531 case XOR:
4532 return simplify_logical (x, last);
4534 case ABS:
4535 /* (abs (neg <foo>)) -> (abs <foo>) */
4536 if (GET_CODE (XEXP (x, 0)) == NEG)
4537 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4539 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4540 do nothing. */
4541 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4542 break;
4544 /* If operand is something known to be positive, ignore the ABS. */
4545 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4546 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4547 <= HOST_BITS_PER_WIDE_INT)
4548 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4549 & ((HOST_WIDE_INT) 1
4550 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4551 == 0)))
4552 return XEXP (x, 0);
4554 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4555 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4556 return gen_rtx_NEG (mode, XEXP (x, 0));
4558 break;
4560 case FFS:
4561 /* (ffs (*_extend <X>)) = (ffs <X>) */
4562 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4563 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4564 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4565 break;
4567 case FLOAT:
4568 /* (float (sign_extend <X>)) = (float <X>). */
4569 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4570 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4571 break;
4573 case ASHIFT:
4574 case LSHIFTRT:
4575 case ASHIFTRT:
4576 case ROTATE:
4577 case ROTATERT:
4578 /* If this is a shift by a constant amount, simplify it. */
4579 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4580 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4581 INTVAL (XEXP (x, 1)));
4583 #ifdef SHIFT_COUNT_TRUNCATED
4584 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4585 SUBST (XEXP (x, 1),
4586 force_to_mode (XEXP (x, 1), GET_MODE (x),
4587 ((HOST_WIDE_INT) 1
4588 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4589 - 1,
4590 NULL_RTX, 0));
4591 #endif
4593 break;
4595 case VEC_SELECT:
4597 rtx op0 = XEXP (x, 0);
4598 rtx op1 = XEXP (x, 1);
4599 int len;
4601 if (GET_CODE (op1) != PARALLEL)
4602 abort ();
4603 len = XVECLEN (op1, 0);
4604 if (len == 1
4605 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4606 && GET_CODE (op0) == VEC_CONCAT)
4608 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4610 /* Try to find the element in the VEC_CONCAT. */
4611 for (;;)
4613 if (GET_MODE (op0) == GET_MODE (x))
4614 return op0;
4615 if (GET_CODE (op0) == VEC_CONCAT)
4617 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4618 if (op0_size < offset)
4619 op0 = XEXP (op0, 0);
4620 else
4622 offset -= op0_size;
4623 op0 = XEXP (op0, 1);
4626 else
4627 break;
4632 break;
4634 default:
4635 break;
4638 return x;
4641 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4643 static rtx
4644 simplify_if_then_else (x)
4645 rtx x;
4647 enum machine_mode mode = GET_MODE (x);
4648 rtx cond = XEXP (x, 0);
4649 rtx true_rtx = XEXP (x, 1);
4650 rtx false_rtx = XEXP (x, 2);
4651 enum rtx_code true_code = GET_CODE (cond);
4652 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4653 rtx temp;
4654 int i;
4655 enum rtx_code false_code;
4656 rtx reversed;
4658 /* Simplify storing of the truth value. */
4659 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4660 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4662 /* Also when the truth value has to be reversed. */
4663 if (comparison_p
4664 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4665 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4666 XEXP (cond, 1))))
4667 return reversed;
4669 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4670 in it is being compared against certain values. Get the true and false
4671 comparisons and see if that says anything about the value of each arm. */
4673 if (comparison_p
4674 && ((false_code = combine_reversed_comparison_code (cond))
4675 != UNKNOWN)
4676 && GET_CODE (XEXP (cond, 0)) == REG)
4678 HOST_WIDE_INT nzb;
4679 rtx from = XEXP (cond, 0);
4680 rtx true_val = XEXP (cond, 1);
4681 rtx false_val = true_val;
4682 int swapped = 0;
4684 /* If FALSE_CODE is EQ, swap the codes and arms. */
4686 if (false_code == EQ)
4688 swapped = 1, true_code = EQ, false_code = NE;
4689 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4692 /* If we are comparing against zero and the expression being tested has
4693 only a single bit that might be nonzero, that is its value when it is
4694 not equal to zero. Similarly if it is known to be -1 or 0. */
4696 if (true_code == EQ && true_val == const0_rtx
4697 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4698 false_code = EQ, false_val = GEN_INT (nzb);
4699 else if (true_code == EQ && true_val == const0_rtx
4700 && (num_sign_bit_copies (from, GET_MODE (from))
4701 == GET_MODE_BITSIZE (GET_MODE (from))))
4702 false_code = EQ, false_val = constm1_rtx;
4704 /* Now simplify an arm if we know the value of the register in the
4705 branch and it is used in the arm. Be careful due to the potential
4706 of locally-shared RTL. */
4708 if (reg_mentioned_p (from, true_rtx))
4709 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4710 from, true_val),
4711 pc_rtx, pc_rtx, 0, 0);
4712 if (reg_mentioned_p (from, false_rtx))
4713 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4714 from, false_val),
4715 pc_rtx, pc_rtx, 0, 0);
4717 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4718 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4720 true_rtx = XEXP (x, 1);
4721 false_rtx = XEXP (x, 2);
4722 true_code = GET_CODE (cond);
4725 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4726 reversed, do so to avoid needing two sets of patterns for
4727 subtract-and-branch insns. Similarly if we have a constant in the true
4728 arm, the false arm is the same as the first operand of the comparison, or
4729 the false arm is more complicated than the true arm. */
4731 if (comparison_p
4732 && combine_reversed_comparison_code (cond) != UNKNOWN
4733 && (true_rtx == pc_rtx
4734 || (CONSTANT_P (true_rtx)
4735 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4736 || true_rtx == const0_rtx
4737 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4738 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4739 || (GET_CODE (true_rtx) == SUBREG
4740 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4741 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4742 || reg_mentioned_p (true_rtx, false_rtx)
4743 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4745 true_code = reversed_comparison_code (cond, NULL);
4746 SUBST (XEXP (x, 0),
4747 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4748 XEXP (cond, 1)));
4750 SUBST (XEXP (x, 1), false_rtx);
4751 SUBST (XEXP (x, 2), true_rtx);
4753 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4754 cond = XEXP (x, 0);
4756 /* It is possible that the conditional has been simplified out. */
4757 true_code = GET_CODE (cond);
4758 comparison_p = GET_RTX_CLASS (true_code) == '<';
4761 /* If the two arms are identical, we don't need the comparison. */
4763 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4764 return true_rtx;
4766 /* Convert a == b ? b : a to "a". */
4767 if (true_code == EQ && ! side_effects_p (cond)
4768 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4769 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4770 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4771 return false_rtx;
4772 else if (true_code == NE && ! side_effects_p (cond)
4773 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4774 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4775 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4776 return true_rtx;
4778 /* Look for cases where we have (abs x) or (neg (abs X)). */
4780 if (GET_MODE_CLASS (mode) == MODE_INT
4781 && GET_CODE (false_rtx) == NEG
4782 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4783 && comparison_p
4784 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4785 && ! side_effects_p (true_rtx))
4786 switch (true_code)
4788 case GT:
4789 case GE:
4790 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4791 case LT:
4792 case LE:
4793 return
4794 simplify_gen_unary (NEG, mode,
4795 simplify_gen_unary (ABS, mode, true_rtx, mode),
4796 mode);
4797 default:
4798 break;
4801 /* Look for MIN or MAX. */
4803 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4804 && comparison_p
4805 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4806 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4807 && ! side_effects_p (cond))
4808 switch (true_code)
4810 case GE:
4811 case GT:
4812 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4813 case LE:
4814 case LT:
4815 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4816 case GEU:
4817 case GTU:
4818 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4819 case LEU:
4820 case LTU:
4821 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4822 default:
4823 break;
4826 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4827 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4828 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4829 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4830 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4831 neither 1 or -1, but it isn't worth checking for. */
4833 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4834 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4836 rtx t = make_compound_operation (true_rtx, SET);
4837 rtx f = make_compound_operation (false_rtx, SET);
4838 rtx cond_op0 = XEXP (cond, 0);
4839 rtx cond_op1 = XEXP (cond, 1);
4840 enum rtx_code op = NIL, extend_op = NIL;
4841 enum machine_mode m = mode;
4842 rtx z = 0, c1 = NULL_RTX;
4844 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4845 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4846 || GET_CODE (t) == ASHIFT
4847 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4848 && rtx_equal_p (XEXP (t, 0), f))
4849 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4851 /* If an identity-zero op is commutative, check whether there
4852 would be a match if we swapped the operands. */
4853 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4854 || GET_CODE (t) == XOR)
4855 && rtx_equal_p (XEXP (t, 1), f))
4856 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4857 else if (GET_CODE (t) == SIGN_EXTEND
4858 && (GET_CODE (XEXP (t, 0)) == PLUS
4859 || GET_CODE (XEXP (t, 0)) == MINUS
4860 || GET_CODE (XEXP (t, 0)) == IOR
4861 || GET_CODE (XEXP (t, 0)) == XOR
4862 || GET_CODE (XEXP (t, 0)) == ASHIFT
4863 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4864 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4865 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4866 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4867 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4868 && (num_sign_bit_copies (f, GET_MODE (f))
4869 > (GET_MODE_BITSIZE (mode)
4870 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4872 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4873 extend_op = SIGN_EXTEND;
4874 m = GET_MODE (XEXP (t, 0));
4876 else if (GET_CODE (t) == SIGN_EXTEND
4877 && (GET_CODE (XEXP (t, 0)) == PLUS
4878 || GET_CODE (XEXP (t, 0)) == IOR
4879 || GET_CODE (XEXP (t, 0)) == XOR)
4880 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4881 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4882 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4883 && (num_sign_bit_copies (f, GET_MODE (f))
4884 > (GET_MODE_BITSIZE (mode)
4885 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4887 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4888 extend_op = SIGN_EXTEND;
4889 m = GET_MODE (XEXP (t, 0));
4891 else if (GET_CODE (t) == ZERO_EXTEND
4892 && (GET_CODE (XEXP (t, 0)) == PLUS
4893 || GET_CODE (XEXP (t, 0)) == MINUS
4894 || GET_CODE (XEXP (t, 0)) == IOR
4895 || GET_CODE (XEXP (t, 0)) == XOR
4896 || GET_CODE (XEXP (t, 0)) == ASHIFT
4897 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4898 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4899 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4900 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4901 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4902 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4903 && ((nonzero_bits (f, GET_MODE (f))
4904 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4905 == 0))
4907 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4908 extend_op = ZERO_EXTEND;
4909 m = GET_MODE (XEXP (t, 0));
4911 else if (GET_CODE (t) == ZERO_EXTEND
4912 && (GET_CODE (XEXP (t, 0)) == PLUS
4913 || GET_CODE (XEXP (t, 0)) == IOR
4914 || GET_CODE (XEXP (t, 0)) == XOR)
4915 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4916 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4917 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4918 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4919 && ((nonzero_bits (f, GET_MODE (f))
4920 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4921 == 0))
4923 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4924 extend_op = ZERO_EXTEND;
4925 m = GET_MODE (XEXP (t, 0));
4928 if (z)
4930 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4931 pc_rtx, pc_rtx, 0, 0);
4932 temp = gen_binary (MULT, m, temp,
4933 gen_binary (MULT, m, c1, const_true_rtx));
4934 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4935 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4937 if (extend_op != NIL)
4938 temp = simplify_gen_unary (extend_op, mode, temp, m);
4940 return temp;
4944 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4945 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4946 negation of a single bit, we can convert this operation to a shift. We
4947 can actually do this more generally, but it doesn't seem worth it. */
4949 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4950 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4951 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4952 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4953 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4954 == GET_MODE_BITSIZE (mode))
4955 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4956 return
4957 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4958 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4960 return x;
4963 /* Simplify X, a SET expression. Return the new expression. */
4965 static rtx
4966 simplify_set (x)
4967 rtx x;
4969 rtx src = SET_SRC (x);
4970 rtx dest = SET_DEST (x);
4971 enum machine_mode mode
4972 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4973 rtx other_insn;
4974 rtx *cc_use;
4976 /* (set (pc) (return)) gets written as (return). */
4977 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4978 return src;
4980 /* Now that we know for sure which bits of SRC we are using, see if we can
4981 simplify the expression for the object knowing that we only need the
4982 low-order bits. */
4984 if (GET_MODE_CLASS (mode) == MODE_INT)
4986 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4987 SUBST (SET_SRC (x), src);
4990 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4991 the comparison result and try to simplify it unless we already have used
4992 undobuf.other_insn. */
4993 if ((GET_CODE (src) == COMPARE
4994 #ifdef HAVE_cc0
4995 || dest == cc0_rtx
4996 #endif
4998 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4999 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5000 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5001 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5003 enum rtx_code old_code = GET_CODE (*cc_use);
5004 enum rtx_code new_code;
5005 rtx op0, op1;
5006 int other_changed = 0;
5007 enum machine_mode compare_mode = GET_MODE (dest);
5009 if (GET_CODE (src) == COMPARE)
5010 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5011 else
5012 op0 = src, op1 = const0_rtx;
5014 /* Simplify our comparison, if possible. */
5015 new_code = simplify_comparison (old_code, &op0, &op1);
5017 #ifdef EXTRA_CC_MODES
5018 /* If this machine has CC modes other than CCmode, check to see if we
5019 need to use a different CC mode here. */
5020 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5021 #endif /* EXTRA_CC_MODES */
5023 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5024 /* If the mode changed, we have to change SET_DEST, the mode in the
5025 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5026 a hard register, just build new versions with the proper mode. If it
5027 is a pseudo, we lose unless it is only time we set the pseudo, in
5028 which case we can safely change its mode. */
5029 if (compare_mode != GET_MODE (dest))
5031 unsigned int regno = REGNO (dest);
5032 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5034 if (regno < FIRST_PSEUDO_REGISTER
5035 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5037 if (regno >= FIRST_PSEUDO_REGISTER)
5038 SUBST (regno_reg_rtx[regno], new_dest);
5040 SUBST (SET_DEST (x), new_dest);
5041 SUBST (XEXP (*cc_use, 0), new_dest);
5042 other_changed = 1;
5044 dest = new_dest;
5047 #endif
5049 /* If the code changed, we have to build a new comparison in
5050 undobuf.other_insn. */
5051 if (new_code != old_code)
5053 unsigned HOST_WIDE_INT mask;
5055 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5056 dest, const0_rtx));
5058 /* If the only change we made was to change an EQ into an NE or
5059 vice versa, OP0 has only one bit that might be nonzero, and OP1
5060 is zero, check if changing the user of the condition code will
5061 produce a valid insn. If it won't, we can keep the original code
5062 in that insn by surrounding our operation with an XOR. */
5064 if (((old_code == NE && new_code == EQ)
5065 || (old_code == EQ && new_code == NE))
5066 && ! other_changed && op1 == const0_rtx
5067 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5068 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5070 rtx pat = PATTERN (other_insn), note = 0;
5072 if ((recog_for_combine (&pat, other_insn, &note) < 0
5073 && ! check_asm_operands (pat)))
5075 PUT_CODE (*cc_use, old_code);
5076 other_insn = 0;
5078 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5082 other_changed = 1;
5085 if (other_changed)
5086 undobuf.other_insn = other_insn;
5088 #ifdef HAVE_cc0
5089 /* If we are now comparing against zero, change our source if
5090 needed. If we do not use cc0, we always have a COMPARE. */
5091 if (op1 == const0_rtx && dest == cc0_rtx)
5093 SUBST (SET_SRC (x), op0);
5094 src = op0;
5096 else
5097 #endif
5099 /* Otherwise, if we didn't previously have a COMPARE in the
5100 correct mode, we need one. */
5101 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5103 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5104 src = SET_SRC (x);
5106 else
5108 /* Otherwise, update the COMPARE if needed. */
5109 SUBST (XEXP (src, 0), op0);
5110 SUBST (XEXP (src, 1), op1);
5113 else
5115 /* Get SET_SRC in a form where we have placed back any
5116 compound expressions. Then do the checks below. */
5117 src = make_compound_operation (src, SET);
5118 SUBST (SET_SRC (x), src);
5121 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5122 and X being a REG or (subreg (reg)), we may be able to convert this to
5123 (set (subreg:m2 x) (op)).
5125 We can always do this if M1 is narrower than M2 because that means that
5126 we only care about the low bits of the result.
5128 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5129 perform a narrower operation than requested since the high-order bits will
5130 be undefined. On machine where it is defined, this transformation is safe
5131 as long as M1 and M2 have the same number of words. */
5133 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5134 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5135 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5136 / UNITS_PER_WORD)
5137 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5138 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5139 #ifndef WORD_REGISTER_OPERATIONS
5140 && (GET_MODE_SIZE (GET_MODE (src))
5141 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5142 #endif
5143 #ifdef CLASS_CANNOT_CHANGE_MODE
5144 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5145 && (TEST_HARD_REG_BIT
5146 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5147 REGNO (dest)))
5148 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5149 GET_MODE (SUBREG_REG (src))))
5150 #endif
5151 && (GET_CODE (dest) == REG
5152 || (GET_CODE (dest) == SUBREG
5153 && GET_CODE (SUBREG_REG (dest)) == REG)))
5155 SUBST (SET_DEST (x),
5156 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5157 dest));
5158 SUBST (SET_SRC (x), SUBREG_REG (src));
5160 src = SET_SRC (x), dest = SET_DEST (x);
5163 #ifdef HAVE_cc0
5164 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5165 in SRC. */
5166 if (dest == cc0_rtx
5167 && GET_CODE (src) == SUBREG
5168 && subreg_lowpart_p (src)
5169 && (GET_MODE_BITSIZE (GET_MODE (src))
5170 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5172 rtx inner = SUBREG_REG (src);
5173 enum machine_mode inner_mode = GET_MODE (inner);
5175 /* Here we make sure that we don't have a sign bit on. */
5176 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5177 && (nonzero_bits (inner, inner_mode)
5178 < ((unsigned HOST_WIDE_INT) 1
5179 << (GET_MODE_BITSIZE (inner_mode) - 1))))
5181 SUBST (SET_SRC (x), inner);
5182 src = SET_SRC (x);
5185 #endif
5187 #ifdef LOAD_EXTEND_OP
5188 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5189 would require a paradoxical subreg. Replace the subreg with a
5190 zero_extend to avoid the reload that would otherwise be required. */
5192 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5193 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5194 && SUBREG_BYTE (src) == 0
5195 && (GET_MODE_SIZE (GET_MODE (src))
5196 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5197 && GET_CODE (SUBREG_REG (src)) == MEM)
5199 SUBST (SET_SRC (x),
5200 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5201 GET_MODE (src), SUBREG_REG (src)));
5203 src = SET_SRC (x);
5205 #endif
5207 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5208 are comparing an item known to be 0 or -1 against 0, use a logical
5209 operation instead. Check for one of the arms being an IOR of the other
5210 arm with some value. We compute three terms to be IOR'ed together. In
5211 practice, at most two will be nonzero. Then we do the IOR's. */
5213 if (GET_CODE (dest) != PC
5214 && GET_CODE (src) == IF_THEN_ELSE
5215 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5216 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5217 && XEXP (XEXP (src, 0), 1) == const0_rtx
5218 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5219 #ifdef HAVE_conditional_move
5220 && ! can_conditionally_move_p (GET_MODE (src))
5221 #endif
5222 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5223 GET_MODE (XEXP (XEXP (src, 0), 0)))
5224 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5225 && ! side_effects_p (src))
5227 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5228 ? XEXP (src, 1) : XEXP (src, 2));
5229 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5230 ? XEXP (src, 2) : XEXP (src, 1));
5231 rtx term1 = const0_rtx, term2, term3;
5233 if (GET_CODE (true_rtx) == IOR
5234 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5235 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5236 else if (GET_CODE (true_rtx) == IOR
5237 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5238 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5239 else if (GET_CODE (false_rtx) == IOR
5240 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5241 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5242 else if (GET_CODE (false_rtx) == IOR
5243 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5244 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5246 term2 = gen_binary (AND, GET_MODE (src),
5247 XEXP (XEXP (src, 0), 0), true_rtx);
5248 term3 = gen_binary (AND, GET_MODE (src),
5249 simplify_gen_unary (NOT, GET_MODE (src),
5250 XEXP (XEXP (src, 0), 0),
5251 GET_MODE (src)),
5252 false_rtx);
5254 SUBST (SET_SRC (x),
5255 gen_binary (IOR, GET_MODE (src),
5256 gen_binary (IOR, GET_MODE (src), term1, term2),
5257 term3));
5259 src = SET_SRC (x);
5262 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5263 whole thing fail. */
5264 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5265 return src;
5266 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5267 return dest;
5268 else
5269 /* Convert this into a field assignment operation, if possible. */
5270 return make_field_assignment (x);
5273 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5274 result. LAST is nonzero if this is the last retry. */
5276 static rtx
5277 simplify_logical (x, last)
5278 rtx x;
5279 int last;
5281 enum machine_mode mode = GET_MODE (x);
5282 rtx op0 = XEXP (x, 0);
5283 rtx op1 = XEXP (x, 1);
5284 rtx reversed;
5286 switch (GET_CODE (x))
5288 case AND:
5289 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5290 insn (and may simplify more). */
5291 if (GET_CODE (op0) == XOR
5292 && rtx_equal_p (XEXP (op0, 0), op1)
5293 && ! side_effects_p (op1))
5294 x = gen_binary (AND, mode,
5295 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5296 op1);
5298 if (GET_CODE (op0) == XOR
5299 && rtx_equal_p (XEXP (op0, 1), op1)
5300 && ! side_effects_p (op1))
5301 x = gen_binary (AND, mode,
5302 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5303 op1);
5305 /* Similarly for (~(A ^ B)) & A. */
5306 if (GET_CODE (op0) == NOT
5307 && GET_CODE (XEXP (op0, 0)) == XOR
5308 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5309 && ! side_effects_p (op1))
5310 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5312 if (GET_CODE (op0) == NOT
5313 && GET_CODE (XEXP (op0, 0)) == XOR
5314 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5315 && ! side_effects_p (op1))
5316 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5318 /* We can call simplify_and_const_int only if we don't lose
5319 any (sign) bits when converting INTVAL (op1) to
5320 "unsigned HOST_WIDE_INT". */
5321 if (GET_CODE (op1) == CONST_INT
5322 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5323 || INTVAL (op1) > 0))
5325 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5327 /* If we have (ior (and (X C1) C2)) and the next restart would be
5328 the last, simplify this by making C1 as small as possible
5329 and then exit. */
5330 if (last
5331 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5332 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5333 && GET_CODE (op1) == CONST_INT)
5334 return gen_binary (IOR, mode,
5335 gen_binary (AND, mode, XEXP (op0, 0),
5336 GEN_INT (INTVAL (XEXP (op0, 1))
5337 & ~INTVAL (op1))), op1);
5339 if (GET_CODE (x) != AND)
5340 return x;
5342 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5343 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5344 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5347 /* Convert (A | B) & A to A. */
5348 if (GET_CODE (op0) == IOR
5349 && (rtx_equal_p (XEXP (op0, 0), op1)
5350 || rtx_equal_p (XEXP (op0, 1), op1))
5351 && ! side_effects_p (XEXP (op0, 0))
5352 && ! side_effects_p (XEXP (op0, 1)))
5353 return op1;
5355 /* In the following group of tests (and those in case IOR below),
5356 we start with some combination of logical operations and apply
5357 the distributive law followed by the inverse distributive law.
5358 Most of the time, this results in no change. However, if some of
5359 the operands are the same or inverses of each other, simplifications
5360 will result.
5362 For example, (and (ior A B) (not B)) can occur as the result of
5363 expanding a bit field assignment. When we apply the distributive
5364 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5365 which then simplifies to (and (A (not B))).
5367 If we have (and (ior A B) C), apply the distributive law and then
5368 the inverse distributive law to see if things simplify. */
5370 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5372 x = apply_distributive_law
5373 (gen_binary (GET_CODE (op0), mode,
5374 gen_binary (AND, mode, XEXP (op0, 0), op1),
5375 gen_binary (AND, mode, XEXP (op0, 1),
5376 copy_rtx (op1))));
5377 if (GET_CODE (x) != AND)
5378 return x;
5381 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5382 return apply_distributive_law
5383 (gen_binary (GET_CODE (op1), mode,
5384 gen_binary (AND, mode, XEXP (op1, 0), op0),
5385 gen_binary (AND, mode, XEXP (op1, 1),
5386 copy_rtx (op0))));
5388 /* Similarly, taking advantage of the fact that
5389 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5391 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5392 return apply_distributive_law
5393 (gen_binary (XOR, mode,
5394 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5395 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5396 XEXP (op1, 1))));
5398 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5399 return apply_distributive_law
5400 (gen_binary (XOR, mode,
5401 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5402 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5403 break;
5405 case IOR:
5406 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5407 if (GET_CODE (op1) == CONST_INT
5408 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5409 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5410 return op1;
5412 /* Convert (A & B) | A to A. */
5413 if (GET_CODE (op0) == AND
5414 && (rtx_equal_p (XEXP (op0, 0), op1)
5415 || rtx_equal_p (XEXP (op0, 1), op1))
5416 && ! side_effects_p (XEXP (op0, 0))
5417 && ! side_effects_p (XEXP (op0, 1)))
5418 return op1;
5420 /* If we have (ior (and A B) C), apply the distributive law and then
5421 the inverse distributive law to see if things simplify. */
5423 if (GET_CODE (op0) == AND)
5425 x = apply_distributive_law
5426 (gen_binary (AND, mode,
5427 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5428 gen_binary (IOR, mode, XEXP (op0, 1),
5429 copy_rtx (op1))));
5431 if (GET_CODE (x) != IOR)
5432 return x;
5435 if (GET_CODE (op1) == AND)
5437 x = apply_distributive_law
5438 (gen_binary (AND, mode,
5439 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5440 gen_binary (IOR, mode, XEXP (op1, 1),
5441 copy_rtx (op0))));
5443 if (GET_CODE (x) != IOR)
5444 return x;
5447 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5448 mode size to (rotate A CX). */
5450 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5451 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5452 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5453 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5454 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5455 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5456 == GET_MODE_BITSIZE (mode)))
5457 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5458 (GET_CODE (op0) == ASHIFT
5459 ? XEXP (op0, 1) : XEXP (op1, 1)));
5461 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5462 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5463 does not affect any of the bits in OP1, it can really be done
5464 as a PLUS and we can associate. We do this by seeing if OP1
5465 can be safely shifted left C bits. */
5466 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5467 && GET_CODE (XEXP (op0, 0)) == PLUS
5468 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5469 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5470 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5472 int count = INTVAL (XEXP (op0, 1));
5473 HOST_WIDE_INT mask = INTVAL (op1) << count;
5475 if (mask >> count == INTVAL (op1)
5476 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5478 SUBST (XEXP (XEXP (op0, 0), 1),
5479 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5480 return op0;
5483 break;
5485 case XOR:
5486 /* If we are XORing two things that have no bits in common,
5487 convert them into an IOR. This helps to detect rotation encoded
5488 using those methods and possibly other simplifications. */
5490 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5491 && (nonzero_bits (op0, mode)
5492 & nonzero_bits (op1, mode)) == 0)
5493 return (gen_binary (IOR, mode, op0, op1));
5495 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5496 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5497 (NOT y). */
5499 int num_negated = 0;
5501 if (GET_CODE (op0) == NOT)
5502 num_negated++, op0 = XEXP (op0, 0);
5503 if (GET_CODE (op1) == NOT)
5504 num_negated++, op1 = XEXP (op1, 0);
5506 if (num_negated == 2)
5508 SUBST (XEXP (x, 0), op0);
5509 SUBST (XEXP (x, 1), op1);
5511 else if (num_negated == 1)
5512 return
5513 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5514 mode);
5517 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5518 correspond to a machine insn or result in further simplifications
5519 if B is a constant. */
5521 if (GET_CODE (op0) == AND
5522 && rtx_equal_p (XEXP (op0, 1), op1)
5523 && ! side_effects_p (op1))
5524 return gen_binary (AND, mode,
5525 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5526 op1);
5528 else if (GET_CODE (op0) == AND
5529 && rtx_equal_p (XEXP (op0, 0), op1)
5530 && ! side_effects_p (op1))
5531 return gen_binary (AND, mode,
5532 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5533 op1);
5535 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5536 comparison if STORE_FLAG_VALUE is 1. */
5537 if (STORE_FLAG_VALUE == 1
5538 && op1 == const1_rtx
5539 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5540 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5541 XEXP (op0, 1))))
5542 return reversed;
5544 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5545 is (lt foo (const_int 0)), so we can perform the above
5546 simplification if STORE_FLAG_VALUE is 1. */
5548 if (STORE_FLAG_VALUE == 1
5549 && op1 == const1_rtx
5550 && GET_CODE (op0) == LSHIFTRT
5551 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5552 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5553 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5555 /* (xor (comparison foo bar) (const_int sign-bit))
5556 when STORE_FLAG_VALUE is the sign bit. */
5557 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5558 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5559 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5560 && op1 == const_true_rtx
5561 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5562 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5563 XEXP (op0, 1))))
5564 return reversed;
5566 break;
5568 default:
5569 abort ();
5572 return x;
5575 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5576 operations" because they can be replaced with two more basic operations.
5577 ZERO_EXTEND is also considered "compound" because it can be replaced with
5578 an AND operation, which is simpler, though only one operation.
5580 The function expand_compound_operation is called with an rtx expression
5581 and will convert it to the appropriate shifts and AND operations,
5582 simplifying at each stage.
5584 The function make_compound_operation is called to convert an expression
5585 consisting of shifts and ANDs into the equivalent compound expression.
5586 It is the inverse of this function, loosely speaking. */
5588 static rtx
5589 expand_compound_operation (x)
5590 rtx x;
5592 unsigned HOST_WIDE_INT pos = 0, len;
5593 int unsignedp = 0;
5594 unsigned int modewidth;
5595 rtx tem;
5597 switch (GET_CODE (x))
5599 case ZERO_EXTEND:
5600 unsignedp = 1;
5601 case SIGN_EXTEND:
5602 /* We can't necessarily use a const_int for a multiword mode;
5603 it depends on implicitly extending the value.
5604 Since we don't know the right way to extend it,
5605 we can't tell whether the implicit way is right.
5607 Even for a mode that is no wider than a const_int,
5608 we can't win, because we need to sign extend one of its bits through
5609 the rest of it, and we don't know which bit. */
5610 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5611 return x;
5613 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5614 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5615 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5616 reloaded. If not for that, MEM's would very rarely be safe.
5618 Reject MODEs bigger than a word, because we might not be able
5619 to reference a two-register group starting with an arbitrary register
5620 (and currently gen_lowpart might crash for a SUBREG). */
5622 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5623 return x;
5625 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5626 /* If the inner object has VOIDmode (the only way this can happen
5627 is if it is an ASM_OPERANDS), we can't do anything since we don't
5628 know how much masking to do. */
5629 if (len == 0)
5630 return x;
5632 break;
5634 case ZERO_EXTRACT:
5635 unsignedp = 1;
5636 case SIGN_EXTRACT:
5637 /* If the operand is a CLOBBER, just return it. */
5638 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5639 return XEXP (x, 0);
5641 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5642 || GET_CODE (XEXP (x, 2)) != CONST_INT
5643 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5644 return x;
5646 len = INTVAL (XEXP (x, 1));
5647 pos = INTVAL (XEXP (x, 2));
5649 /* If this goes outside the object being extracted, replace the object
5650 with a (use (mem ...)) construct that only combine understands
5651 and is used only for this purpose. */
5652 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5653 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5655 if (BITS_BIG_ENDIAN)
5656 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5658 break;
5660 default:
5661 return x;
5663 /* Convert sign extension to zero extension, if we know that the high
5664 bit is not set, as this is easier to optimize. It will be converted
5665 back to cheaper alternative in make_extraction. */
5666 if (GET_CODE (x) == SIGN_EXTEND
5667 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5668 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5669 & ~(((unsigned HOST_WIDE_INT)
5670 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5671 >> 1))
5672 == 0)))
5674 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5675 return expand_compound_operation (temp);
5678 /* We can optimize some special cases of ZERO_EXTEND. */
5679 if (GET_CODE (x) == ZERO_EXTEND)
5681 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5682 know that the last value didn't have any inappropriate bits
5683 set. */
5684 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5685 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5686 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5687 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5688 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5689 return XEXP (XEXP (x, 0), 0);
5691 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5692 if (GET_CODE (XEXP (x, 0)) == SUBREG
5693 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5694 && subreg_lowpart_p (XEXP (x, 0))
5695 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5696 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5697 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5698 return SUBREG_REG (XEXP (x, 0));
5700 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5701 is a comparison and STORE_FLAG_VALUE permits. This is like
5702 the first case, but it works even when GET_MODE (x) is larger
5703 than HOST_WIDE_INT. */
5704 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5705 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5706 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5707 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5708 <= HOST_BITS_PER_WIDE_INT)
5709 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5710 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5711 return XEXP (XEXP (x, 0), 0);
5713 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5714 if (GET_CODE (XEXP (x, 0)) == SUBREG
5715 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5716 && subreg_lowpart_p (XEXP (x, 0))
5717 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5718 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5719 <= HOST_BITS_PER_WIDE_INT)
5720 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5721 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5722 return SUBREG_REG (XEXP (x, 0));
5726 /* If we reach here, we want to return a pair of shifts. The inner
5727 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5728 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5729 logical depending on the value of UNSIGNEDP.
5731 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5732 converted into an AND of a shift.
5734 We must check for the case where the left shift would have a negative
5735 count. This can happen in a case like (x >> 31) & 255 on machines
5736 that can't shift by a constant. On those machines, we would first
5737 combine the shift with the AND to produce a variable-position
5738 extraction. Then the constant of 31 would be substituted in to produce
5739 a such a position. */
5741 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5742 if (modewidth + len >= pos)
5743 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5744 GET_MODE (x),
5745 simplify_shift_const (NULL_RTX, ASHIFT,
5746 GET_MODE (x),
5747 XEXP (x, 0),
5748 modewidth - pos - len),
5749 modewidth - len);
5751 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5752 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5753 simplify_shift_const (NULL_RTX, LSHIFTRT,
5754 GET_MODE (x),
5755 XEXP (x, 0), pos),
5756 ((HOST_WIDE_INT) 1 << len) - 1);
5757 else
5758 /* Any other cases we can't handle. */
5759 return x;
5761 /* If we couldn't do this for some reason, return the original
5762 expression. */
5763 if (GET_CODE (tem) == CLOBBER)
5764 return x;
5766 return tem;
5769 /* X is a SET which contains an assignment of one object into
5770 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5771 or certain SUBREGS). If possible, convert it into a series of
5772 logical operations.
5774 We half-heartedly support variable positions, but do not at all
5775 support variable lengths. */
5777 static rtx
5778 expand_field_assignment (x)
5779 rtx x;
5781 rtx inner;
5782 rtx pos; /* Always counts from low bit. */
5783 int len;
5784 rtx mask;
5785 enum machine_mode compute_mode;
5787 /* Loop until we find something we can't simplify. */
5788 while (1)
5790 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5791 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5793 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5794 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5795 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5797 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5798 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5800 inner = XEXP (SET_DEST (x), 0);
5801 len = INTVAL (XEXP (SET_DEST (x), 1));
5802 pos = XEXP (SET_DEST (x), 2);
5804 /* If the position is constant and spans the width of INNER,
5805 surround INNER with a USE to indicate this. */
5806 if (GET_CODE (pos) == CONST_INT
5807 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5808 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5810 if (BITS_BIG_ENDIAN)
5812 if (GET_CODE (pos) == CONST_INT)
5813 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5814 - INTVAL (pos));
5815 else if (GET_CODE (pos) == MINUS
5816 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5817 && (INTVAL (XEXP (pos, 1))
5818 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5819 /* If position is ADJUST - X, new position is X. */
5820 pos = XEXP (pos, 0);
5821 else
5822 pos = gen_binary (MINUS, GET_MODE (pos),
5823 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5824 - len),
5825 pos);
5829 /* A SUBREG between two modes that occupy the same numbers of words
5830 can be done by moving the SUBREG to the source. */
5831 else if (GET_CODE (SET_DEST (x)) == SUBREG
5832 /* We need SUBREGs to compute nonzero_bits properly. */
5833 && nonzero_sign_valid
5834 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5835 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5836 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5837 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5839 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5840 gen_lowpart_for_combine
5841 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5842 SET_SRC (x)));
5843 continue;
5845 else
5846 break;
5848 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5849 inner = SUBREG_REG (inner);
5851 compute_mode = GET_MODE (inner);
5853 /* Don't attempt bitwise arithmetic on non-integral modes. */
5854 if (! INTEGRAL_MODE_P (compute_mode))
5856 enum machine_mode imode;
5858 /* Something is probably seriously wrong if this matches. */
5859 if (! FLOAT_MODE_P (compute_mode))
5860 break;
5862 /* Try to find an integral mode to pun with. */
5863 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5864 if (imode == BLKmode)
5865 break;
5867 compute_mode = imode;
5868 inner = gen_lowpart_for_combine (imode, inner);
5871 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5872 if (len < HOST_BITS_PER_WIDE_INT)
5873 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5874 else
5875 break;
5877 /* Now compute the equivalent expression. Make a copy of INNER
5878 for the SET_DEST in case it is a MEM into which we will substitute;
5879 we don't want shared RTL in that case. */
5880 x = gen_rtx_SET
5881 (VOIDmode, copy_rtx (inner),
5882 gen_binary (IOR, compute_mode,
5883 gen_binary (AND, compute_mode,
5884 simplify_gen_unary (NOT, compute_mode,
5885 gen_binary (ASHIFT,
5886 compute_mode,
5887 mask, pos),
5888 compute_mode),
5889 inner),
5890 gen_binary (ASHIFT, compute_mode,
5891 gen_binary (AND, compute_mode,
5892 gen_lowpart_for_combine
5893 (compute_mode, SET_SRC (x)),
5894 mask),
5895 pos)));
5898 return x;
5901 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5902 it is an RTX that represents a variable starting position; otherwise,
5903 POS is the (constant) starting bit position (counted from the LSB).
5905 INNER may be a USE. This will occur when we started with a bitfield
5906 that went outside the boundary of the object in memory, which is
5907 allowed on most machines. To isolate this case, we produce a USE
5908 whose mode is wide enough and surround the MEM with it. The only
5909 code that understands the USE is this routine. If it is not removed,
5910 it will cause the resulting insn not to match.
5912 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5913 signed reference.
5915 IN_DEST is non-zero if this is a reference in the destination of a
5916 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5917 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5918 be used.
5920 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5921 ZERO_EXTRACT should be built even for bits starting at bit 0.
5923 MODE is the desired mode of the result (if IN_DEST == 0).
5925 The result is an RTX for the extraction or NULL_RTX if the target
5926 can't handle it. */
5928 static rtx
5929 make_extraction (mode, inner, pos, pos_rtx, len,
5930 unsignedp, in_dest, in_compare)
5931 enum machine_mode mode;
5932 rtx inner;
5933 HOST_WIDE_INT pos;
5934 rtx pos_rtx;
5935 unsigned HOST_WIDE_INT len;
5936 int unsignedp;
5937 int in_dest, in_compare;
5939 /* This mode describes the size of the storage area
5940 to fetch the overall value from. Within that, we
5941 ignore the POS lowest bits, etc. */
5942 enum machine_mode is_mode = GET_MODE (inner);
5943 enum machine_mode inner_mode;
5944 enum machine_mode wanted_inner_mode = byte_mode;
5945 enum machine_mode wanted_inner_reg_mode = word_mode;
5946 enum machine_mode pos_mode = word_mode;
5947 enum machine_mode extraction_mode = word_mode;
5948 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5949 int spans_byte = 0;
5950 rtx new = 0;
5951 rtx orig_pos_rtx = pos_rtx;
5952 HOST_WIDE_INT orig_pos;
5954 /* Get some information about INNER and get the innermost object. */
5955 if (GET_CODE (inner) == USE)
5956 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5957 /* We don't need to adjust the position because we set up the USE
5958 to pretend that it was a full-word object. */
5959 spans_byte = 1, inner = XEXP (inner, 0);
5960 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5962 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5963 consider just the QI as the memory to extract from.
5964 The subreg adds or removes high bits; its mode is
5965 irrelevant to the meaning of this extraction,
5966 since POS and LEN count from the lsb. */
5967 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5968 is_mode = GET_MODE (SUBREG_REG (inner));
5969 inner = SUBREG_REG (inner);
5972 inner_mode = GET_MODE (inner);
5974 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5975 pos = INTVAL (pos_rtx), pos_rtx = 0;
5977 /* See if this can be done without an extraction. We never can if the
5978 width of the field is not the same as that of some integer mode. For
5979 registers, we can only avoid the extraction if the position is at the
5980 low-order bit and this is either not in the destination or we have the
5981 appropriate STRICT_LOW_PART operation available.
5983 For MEM, we can avoid an extract if the field starts on an appropriate
5984 boundary and we can change the mode of the memory reference. However,
5985 we cannot directly access the MEM if we have a USE and the underlying
5986 MEM is not TMODE. This combination means that MEM was being used in a
5987 context where bits outside its mode were being referenced; that is only
5988 valid in bit-field insns. */
5990 if (tmode != BLKmode
5991 && ! (spans_byte && inner_mode != tmode)
5992 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5993 && GET_CODE (inner) != MEM
5994 && (! in_dest
5995 || (GET_CODE (inner) == REG
5996 && have_insn_for (STRICT_LOW_PART, tmode))))
5997 || (GET_CODE (inner) == MEM && pos_rtx == 0
5998 && (pos
5999 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6000 : BITS_PER_UNIT)) == 0
6001 /* We can't do this if we are widening INNER_MODE (it
6002 may not be aligned, for one thing). */
6003 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6004 && (inner_mode == tmode
6005 || (! mode_dependent_address_p (XEXP (inner, 0))
6006 && ! MEM_VOLATILE_P (inner))))))
6008 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6009 field. If the original and current mode are the same, we need not
6010 adjust the offset. Otherwise, we do if bytes big endian.
6012 If INNER is not a MEM, get a piece consisting of just the field
6013 of interest (in this case POS % BITS_PER_WORD must be 0). */
6015 if (GET_CODE (inner) == MEM)
6017 HOST_WIDE_INT offset;
6019 /* POS counts from lsb, but make OFFSET count in memory order. */
6020 if (BYTES_BIG_ENDIAN)
6021 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6022 else
6023 offset = pos / BITS_PER_UNIT;
6025 new = adjust_address_nv (inner, tmode, offset);
6027 else if (GET_CODE (inner) == REG)
6029 /* We can't call gen_lowpart_for_combine here since we always want
6030 a SUBREG and it would sometimes return a new hard register. */
6031 if (tmode != inner_mode)
6033 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6035 if (WORDS_BIG_ENDIAN
6036 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6037 final_word = ((GET_MODE_SIZE (inner_mode)
6038 - GET_MODE_SIZE (tmode))
6039 / UNITS_PER_WORD) - final_word;
6041 final_word *= UNITS_PER_WORD;
6042 if (BYTES_BIG_ENDIAN &&
6043 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6044 final_word += (GET_MODE_SIZE (inner_mode)
6045 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6047 new = gen_rtx_SUBREG (tmode, inner, final_word);
6049 else
6050 new = inner;
6052 else
6053 new = force_to_mode (inner, tmode,
6054 len >= HOST_BITS_PER_WIDE_INT
6055 ? ~(unsigned HOST_WIDE_INT) 0
6056 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6057 NULL_RTX, 0);
6059 /* If this extraction is going into the destination of a SET,
6060 make a STRICT_LOW_PART unless we made a MEM. */
6062 if (in_dest)
6063 return (GET_CODE (new) == MEM ? new
6064 : (GET_CODE (new) != SUBREG
6065 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6066 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6068 if (mode == tmode)
6069 return new;
6071 if (GET_CODE (new) == CONST_INT)
6072 return gen_int_mode (INTVAL (new), mode);
6074 /* If we know that no extraneous bits are set, and that the high
6075 bit is not set, convert the extraction to the cheaper of
6076 sign and zero extension, that are equivalent in these cases. */
6077 if (flag_expensive_optimizations
6078 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6079 && ((nonzero_bits (new, tmode)
6080 & ~(((unsigned HOST_WIDE_INT)
6081 GET_MODE_MASK (tmode))
6082 >> 1))
6083 == 0)))
6085 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6086 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6088 /* Prefer ZERO_EXTENSION, since it gives more information to
6089 backends. */
6090 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6091 return temp;
6092 return temp1;
6095 /* Otherwise, sign- or zero-extend unless we already are in the
6096 proper mode. */
6098 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6099 mode, new));
6102 /* Unless this is a COMPARE or we have a funny memory reference,
6103 don't do anything with zero-extending field extracts starting at
6104 the low-order bit since they are simple AND operations. */
6105 if (pos_rtx == 0 && pos == 0 && ! in_dest
6106 && ! in_compare && ! spans_byte && unsignedp)
6107 return 0;
6109 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6110 we would be spanning bytes or if the position is not a constant and the
6111 length is not 1. In all other cases, we would only be going outside
6112 our object in cases when an original shift would have been
6113 undefined. */
6114 if (! spans_byte && GET_CODE (inner) == MEM
6115 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6116 || (pos_rtx != 0 && len != 1)))
6117 return 0;
6119 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6120 and the mode for the result. */
6121 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6123 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6124 pos_mode = mode_for_extraction (EP_insv, 2);
6125 extraction_mode = mode_for_extraction (EP_insv, 3);
6128 if (! in_dest && unsignedp
6129 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6131 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6132 pos_mode = mode_for_extraction (EP_extzv, 3);
6133 extraction_mode = mode_for_extraction (EP_extzv, 0);
6136 if (! in_dest && ! unsignedp
6137 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6139 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6140 pos_mode = mode_for_extraction (EP_extv, 3);
6141 extraction_mode = mode_for_extraction (EP_extv, 0);
6144 /* Never narrow an object, since that might not be safe. */
6146 if (mode != VOIDmode
6147 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6148 extraction_mode = mode;
6150 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6151 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6152 pos_mode = GET_MODE (pos_rtx);
6154 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6155 if we have to change the mode of memory and cannot, the desired mode is
6156 EXTRACTION_MODE. */
6157 if (GET_CODE (inner) != MEM)
6158 wanted_inner_mode = wanted_inner_reg_mode;
6159 else if (inner_mode != wanted_inner_mode
6160 && (mode_dependent_address_p (XEXP (inner, 0))
6161 || MEM_VOLATILE_P (inner)))
6162 wanted_inner_mode = extraction_mode;
6164 orig_pos = pos;
6166 if (BITS_BIG_ENDIAN)
6168 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6169 BITS_BIG_ENDIAN style. If position is constant, compute new
6170 position. Otherwise, build subtraction.
6171 Note that POS is relative to the mode of the original argument.
6172 If it's a MEM we need to recompute POS relative to that.
6173 However, if we're extracting from (or inserting into) a register,
6174 we want to recompute POS relative to wanted_inner_mode. */
6175 int width = (GET_CODE (inner) == MEM
6176 ? GET_MODE_BITSIZE (is_mode)
6177 : GET_MODE_BITSIZE (wanted_inner_mode));
6179 if (pos_rtx == 0)
6180 pos = width - len - pos;
6181 else
6182 pos_rtx
6183 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6184 /* POS may be less than 0 now, but we check for that below.
6185 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6188 /* If INNER has a wider mode, make it smaller. If this is a constant
6189 extract, try to adjust the byte to point to the byte containing
6190 the value. */
6191 if (wanted_inner_mode != VOIDmode
6192 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6193 && ((GET_CODE (inner) == MEM
6194 && (inner_mode == wanted_inner_mode
6195 || (! mode_dependent_address_p (XEXP (inner, 0))
6196 && ! MEM_VOLATILE_P (inner))))))
6198 int offset = 0;
6200 /* The computations below will be correct if the machine is big
6201 endian in both bits and bytes or little endian in bits and bytes.
6202 If it is mixed, we must adjust. */
6204 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6205 adjust OFFSET to compensate. */
6206 if (BYTES_BIG_ENDIAN
6207 && ! spans_byte
6208 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6209 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6211 /* If this is a constant position, we can move to the desired byte. */
6212 if (pos_rtx == 0)
6214 offset += pos / BITS_PER_UNIT;
6215 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6218 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6219 && ! spans_byte
6220 && is_mode != wanted_inner_mode)
6221 offset = (GET_MODE_SIZE (is_mode)
6222 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6224 if (offset != 0 || inner_mode != wanted_inner_mode)
6225 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6228 /* If INNER is not memory, we can always get it into the proper mode. If we
6229 are changing its mode, POS must be a constant and smaller than the size
6230 of the new mode. */
6231 else if (GET_CODE (inner) != MEM)
6233 if (GET_MODE (inner) != wanted_inner_mode
6234 && (pos_rtx != 0
6235 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6236 return 0;
6238 inner = force_to_mode (inner, wanted_inner_mode,
6239 pos_rtx
6240 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6241 ? ~(unsigned HOST_WIDE_INT) 0
6242 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6243 << orig_pos),
6244 NULL_RTX, 0);
6247 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6248 have to zero extend. Otherwise, we can just use a SUBREG. */
6249 if (pos_rtx != 0
6250 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6252 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6254 /* If we know that no extraneous bits are set, and that the high
6255 bit is not set, convert extraction to cheaper one - either
6256 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6257 cases. */
6258 if (flag_expensive_optimizations
6259 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6260 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6261 & ~(((unsigned HOST_WIDE_INT)
6262 GET_MODE_MASK (GET_MODE (pos_rtx)))
6263 >> 1))
6264 == 0)))
6266 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6268 /* Prefer ZERO_EXTENSION, since it gives more information to
6269 backends. */
6270 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6271 temp = temp1;
6273 pos_rtx = temp;
6275 else if (pos_rtx != 0
6276 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6277 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6279 /* Make POS_RTX unless we already have it and it is correct. If we don't
6280 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6281 be a CONST_INT. */
6282 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6283 pos_rtx = orig_pos_rtx;
6285 else if (pos_rtx == 0)
6286 pos_rtx = GEN_INT (pos);
6288 /* Make the required operation. See if we can use existing rtx. */
6289 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6290 extraction_mode, inner, GEN_INT (len), pos_rtx);
6291 if (! in_dest)
6292 new = gen_lowpart_for_combine (mode, new);
6294 return new;
6297 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6298 with any other operations in X. Return X without that shift if so. */
6300 static rtx
6301 extract_left_shift (x, count)
6302 rtx x;
6303 int count;
6305 enum rtx_code code = GET_CODE (x);
6306 enum machine_mode mode = GET_MODE (x);
6307 rtx tem;
6309 switch (code)
6311 case ASHIFT:
6312 /* This is the shift itself. If it is wide enough, we will return
6313 either the value being shifted if the shift count is equal to
6314 COUNT or a shift for the difference. */
6315 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6316 && INTVAL (XEXP (x, 1)) >= count)
6317 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6318 INTVAL (XEXP (x, 1)) - count);
6319 break;
6321 case NEG: case NOT:
6322 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6323 return simplify_gen_unary (code, mode, tem, mode);
6325 break;
6327 case PLUS: case IOR: case XOR: case AND:
6328 /* If we can safely shift this constant and we find the inner shift,
6329 make a new operation. */
6330 if (GET_CODE (XEXP (x,1)) == CONST_INT
6331 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6332 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6333 return gen_binary (code, mode, tem,
6334 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6336 break;
6338 default:
6339 break;
6342 return 0;
6345 /* Look at the expression rooted at X. Look for expressions
6346 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6347 Form these expressions.
6349 Return the new rtx, usually just X.
6351 Also, for machines like the VAX that don't have logical shift insns,
6352 try to convert logical to arithmetic shift operations in cases where
6353 they are equivalent. This undoes the canonicalizations to logical
6354 shifts done elsewhere.
6356 We try, as much as possible, to re-use rtl expressions to save memory.
6358 IN_CODE says what kind of expression we are processing. Normally, it is
6359 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6360 being kludges), it is MEM. When processing the arguments of a comparison
6361 or a COMPARE against zero, it is COMPARE. */
6363 static rtx
6364 make_compound_operation (x, in_code)
6365 rtx x;
6366 enum rtx_code in_code;
6368 enum rtx_code code = GET_CODE (x);
6369 enum machine_mode mode = GET_MODE (x);
6370 int mode_width = GET_MODE_BITSIZE (mode);
6371 rtx rhs, lhs;
6372 enum rtx_code next_code;
6373 int i;
6374 rtx new = 0;
6375 rtx tem;
6376 const char *fmt;
6378 /* Select the code to be used in recursive calls. Once we are inside an
6379 address, we stay there. If we have a comparison, set to COMPARE,
6380 but once inside, go back to our default of SET. */
6382 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6383 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6384 && XEXP (x, 1) == const0_rtx) ? COMPARE
6385 : in_code == COMPARE ? SET : in_code);
6387 /* Process depending on the code of this operation. If NEW is set
6388 non-zero, it will be returned. */
6390 switch (code)
6392 case ASHIFT:
6393 /* Convert shifts by constants into multiplications if inside
6394 an address. */
6395 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6396 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6397 && INTVAL (XEXP (x, 1)) >= 0)
6399 new = make_compound_operation (XEXP (x, 0), next_code);
6400 new = gen_rtx_MULT (mode, new,
6401 GEN_INT ((HOST_WIDE_INT) 1
6402 << INTVAL (XEXP (x, 1))));
6404 break;
6406 case AND:
6407 /* If the second operand is not a constant, we can't do anything
6408 with it. */
6409 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6410 break;
6412 /* If the constant is a power of two minus one and the first operand
6413 is a logical right shift, make an extraction. */
6414 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6415 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6417 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6418 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6419 0, in_code == COMPARE);
6422 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6423 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6424 && subreg_lowpart_p (XEXP (x, 0))
6425 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6426 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6428 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6429 next_code);
6430 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6431 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6432 0, in_code == COMPARE);
6434 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6435 else if ((GET_CODE (XEXP (x, 0)) == XOR
6436 || GET_CODE (XEXP (x, 0)) == IOR)
6437 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6438 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6439 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6441 /* Apply the distributive law, and then try to make extractions. */
6442 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6443 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6444 XEXP (x, 1)),
6445 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6446 XEXP (x, 1)));
6447 new = make_compound_operation (new, in_code);
6450 /* If we are have (and (rotate X C) M) and C is larger than the number
6451 of bits in M, this is an extraction. */
6453 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6454 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6455 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6456 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6458 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6459 new = make_extraction (mode, new,
6460 (GET_MODE_BITSIZE (mode)
6461 - INTVAL (XEXP (XEXP (x, 0), 1))),
6462 NULL_RTX, i, 1, 0, in_code == COMPARE);
6465 /* On machines without logical shifts, if the operand of the AND is
6466 a logical shift and our mask turns off all the propagated sign
6467 bits, we can replace the logical shift with an arithmetic shift. */
6468 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6469 && !have_insn_for (LSHIFTRT, mode)
6470 && have_insn_for (ASHIFTRT, mode)
6471 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6472 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6473 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6474 && mode_width <= HOST_BITS_PER_WIDE_INT)
6476 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6478 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6479 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6480 SUBST (XEXP (x, 0),
6481 gen_rtx_ASHIFTRT (mode,
6482 make_compound_operation
6483 (XEXP (XEXP (x, 0), 0), next_code),
6484 XEXP (XEXP (x, 0), 1)));
6487 /* If the constant is one less than a power of two, this might be
6488 representable by an extraction even if no shift is present.
6489 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6490 we are in a COMPARE. */
6491 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6492 new = make_extraction (mode,
6493 make_compound_operation (XEXP (x, 0),
6494 next_code),
6495 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6497 /* If we are in a comparison and this is an AND with a power of two,
6498 convert this into the appropriate bit extract. */
6499 else if (in_code == COMPARE
6500 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6501 new = make_extraction (mode,
6502 make_compound_operation (XEXP (x, 0),
6503 next_code),
6504 i, NULL_RTX, 1, 1, 0, 1);
6506 break;
6508 case LSHIFTRT:
6509 /* If the sign bit is known to be zero, replace this with an
6510 arithmetic shift. */
6511 if (have_insn_for (ASHIFTRT, mode)
6512 && ! have_insn_for (LSHIFTRT, mode)
6513 && mode_width <= HOST_BITS_PER_WIDE_INT
6514 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6516 new = gen_rtx_ASHIFTRT (mode,
6517 make_compound_operation (XEXP (x, 0),
6518 next_code),
6519 XEXP (x, 1));
6520 break;
6523 /* ... fall through ... */
6525 case ASHIFTRT:
6526 lhs = XEXP (x, 0);
6527 rhs = XEXP (x, 1);
6529 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6530 this is a SIGN_EXTRACT. */
6531 if (GET_CODE (rhs) == CONST_INT
6532 && GET_CODE (lhs) == ASHIFT
6533 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6534 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6536 new = make_compound_operation (XEXP (lhs, 0), next_code);
6537 new = make_extraction (mode, new,
6538 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6539 NULL_RTX, mode_width - INTVAL (rhs),
6540 code == LSHIFTRT, 0, in_code == COMPARE);
6541 break;
6544 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6545 If so, try to merge the shifts into a SIGN_EXTEND. We could
6546 also do this for some cases of SIGN_EXTRACT, but it doesn't
6547 seem worth the effort; the case checked for occurs on Alpha. */
6549 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6550 && ! (GET_CODE (lhs) == SUBREG
6551 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6552 && GET_CODE (rhs) == CONST_INT
6553 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6554 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6555 new = make_extraction (mode, make_compound_operation (new, next_code),
6556 0, NULL_RTX, mode_width - INTVAL (rhs),
6557 code == LSHIFTRT, 0, in_code == COMPARE);
6559 break;
6561 case SUBREG:
6562 /* Call ourselves recursively on the inner expression. If we are
6563 narrowing the object and it has a different RTL code from
6564 what it originally did, do this SUBREG as a force_to_mode. */
6566 tem = make_compound_operation (SUBREG_REG (x), in_code);
6567 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6568 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6569 && subreg_lowpart_p (x))
6571 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6572 NULL_RTX, 0);
6574 /* If we have something other than a SUBREG, we might have
6575 done an expansion, so rerun ourselves. */
6576 if (GET_CODE (newer) != SUBREG)
6577 newer = make_compound_operation (newer, in_code);
6579 return newer;
6582 /* If this is a paradoxical subreg, and the new code is a sign or
6583 zero extension, omit the subreg and widen the extension. If it
6584 is a regular subreg, we can still get rid of the subreg by not
6585 widening so much, or in fact removing the extension entirely. */
6586 if ((GET_CODE (tem) == SIGN_EXTEND
6587 || GET_CODE (tem) == ZERO_EXTEND)
6588 && subreg_lowpart_p (x))
6590 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6591 || (GET_MODE_SIZE (mode) >
6592 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6593 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6594 else
6595 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6596 return tem;
6598 break;
6600 default:
6601 break;
6604 if (new)
6606 x = gen_lowpart_for_combine (mode, new);
6607 code = GET_CODE (x);
6610 /* Now recursively process each operand of this operation. */
6611 fmt = GET_RTX_FORMAT (code);
6612 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6613 if (fmt[i] == 'e')
6615 new = make_compound_operation (XEXP (x, i), next_code);
6616 SUBST (XEXP (x, i), new);
6619 return x;
6622 /* Given M see if it is a value that would select a field of bits
6623 within an item, but not the entire word. Return -1 if not.
6624 Otherwise, return the starting position of the field, where 0 is the
6625 low-order bit.
6627 *PLEN is set to the length of the field. */
6629 static int
6630 get_pos_from_mask (m, plen)
6631 unsigned HOST_WIDE_INT m;
6632 unsigned HOST_WIDE_INT *plen;
6634 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6635 int pos = exact_log2 (m & -m);
6636 int len;
6638 if (pos < 0)
6639 return -1;
6641 /* Now shift off the low-order zero bits and see if we have a power of
6642 two minus 1. */
6643 len = exact_log2 ((m >> pos) + 1);
6645 if (len <= 0)
6646 return -1;
6648 *plen = len;
6649 return pos;
6652 /* See if X can be simplified knowing that we will only refer to it in
6653 MODE and will only refer to those bits that are nonzero in MASK.
6654 If other bits are being computed or if masking operations are done
6655 that select a superset of the bits in MASK, they can sometimes be
6656 ignored.
6658 Return a possibly simplified expression, but always convert X to
6659 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6661 Also, if REG is non-zero and X is a register equal in value to REG,
6662 replace X with REG.
6664 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6665 are all off in X. This is used when X will be complemented, by either
6666 NOT, NEG, or XOR. */
6668 static rtx
6669 force_to_mode (x, mode, mask, reg, just_select)
6670 rtx x;
6671 enum machine_mode mode;
6672 unsigned HOST_WIDE_INT mask;
6673 rtx reg;
6674 int just_select;
6676 enum rtx_code code = GET_CODE (x);
6677 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6678 enum machine_mode op_mode;
6679 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6680 rtx op0, op1, temp;
6682 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6683 code below will do the wrong thing since the mode of such an
6684 expression is VOIDmode.
6686 Also do nothing if X is a CLOBBER; this can happen if X was
6687 the return value from a call to gen_lowpart_for_combine. */
6688 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6689 return x;
6691 /* We want to perform the operation is its present mode unless we know
6692 that the operation is valid in MODE, in which case we do the operation
6693 in MODE. */
6694 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6695 && have_insn_for (code, mode))
6696 ? mode : GET_MODE (x));
6698 /* It is not valid to do a right-shift in a narrower mode
6699 than the one it came in with. */
6700 if ((code == LSHIFTRT || code == ASHIFTRT)
6701 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6702 op_mode = GET_MODE (x);
6704 /* Truncate MASK to fit OP_MODE. */
6705 if (op_mode)
6706 mask &= GET_MODE_MASK (op_mode);
6708 /* When we have an arithmetic operation, or a shift whose count we
6709 do not know, we need to assume that all bit the up to the highest-order
6710 bit in MASK will be needed. This is how we form such a mask. */
6711 if (op_mode)
6712 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6713 ? GET_MODE_MASK (op_mode)
6714 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6715 - 1));
6716 else
6717 fuller_mask = ~(HOST_WIDE_INT) 0;
6719 /* Determine what bits of X are guaranteed to be (non)zero. */
6720 nonzero = nonzero_bits (x, mode);
6722 /* If none of the bits in X are needed, return a zero. */
6723 if (! just_select && (nonzero & mask) == 0)
6724 return const0_rtx;
6726 /* If X is a CONST_INT, return a new one. Do this here since the
6727 test below will fail. */
6728 if (GET_CODE (x) == CONST_INT)
6729 return gen_int_mode (INTVAL (x) & mask, mode);
6731 /* If X is narrower than MODE and we want all the bits in X's mode, just
6732 get X in the proper mode. */
6733 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6734 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6735 return gen_lowpart_for_combine (mode, x);
6737 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6738 MASK are already known to be zero in X, we need not do anything. */
6739 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6740 return x;
6742 switch (code)
6744 case CLOBBER:
6745 /* If X is a (clobber (const_int)), return it since we know we are
6746 generating something that won't match. */
6747 return x;
6749 case USE:
6750 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6751 spanned the boundary of the MEM. If we are now masking so it is
6752 within that boundary, we don't need the USE any more. */
6753 if (! BITS_BIG_ENDIAN
6754 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6755 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6756 break;
6758 case SIGN_EXTEND:
6759 case ZERO_EXTEND:
6760 case ZERO_EXTRACT:
6761 case SIGN_EXTRACT:
6762 x = expand_compound_operation (x);
6763 if (GET_CODE (x) != code)
6764 return force_to_mode (x, mode, mask, reg, next_select);
6765 break;
6767 case REG:
6768 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6769 || rtx_equal_p (reg, get_last_value (x))))
6770 x = reg;
6771 break;
6773 case SUBREG:
6774 if (subreg_lowpart_p (x)
6775 /* We can ignore the effect of this SUBREG if it narrows the mode or
6776 if the constant masks to zero all the bits the mode doesn't
6777 have. */
6778 && ((GET_MODE_SIZE (GET_MODE (x))
6779 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6780 || (0 == (mask
6781 & GET_MODE_MASK (GET_MODE (x))
6782 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6783 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6784 break;
6786 case AND:
6787 /* If this is an AND with a constant, convert it into an AND
6788 whose constant is the AND of that constant with MASK. If it
6789 remains an AND of MASK, delete it since it is redundant. */
6791 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6793 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6794 mask & INTVAL (XEXP (x, 1)));
6796 /* If X is still an AND, see if it is an AND with a mask that
6797 is just some low-order bits. If so, and it is MASK, we don't
6798 need it. */
6800 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6801 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6802 == (HOST_WIDE_INT) mask))
6803 x = XEXP (x, 0);
6805 /* If it remains an AND, try making another AND with the bits
6806 in the mode mask that aren't in MASK turned on. If the
6807 constant in the AND is wide enough, this might make a
6808 cheaper constant. */
6810 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6811 && GET_MODE_MASK (GET_MODE (x)) != mask
6812 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6814 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6815 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6816 int width = GET_MODE_BITSIZE (GET_MODE (x));
6817 rtx y;
6819 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6820 number, sign extend it. */
6821 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6822 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6823 cval |= (HOST_WIDE_INT) -1 << width;
6825 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6826 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6827 x = y;
6830 break;
6833 goto binop;
6835 case PLUS:
6836 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6837 low-order bits (as in an alignment operation) and FOO is already
6838 aligned to that boundary, mask C1 to that boundary as well.
6839 This may eliminate that PLUS and, later, the AND. */
6842 unsigned int width = GET_MODE_BITSIZE (mode);
6843 unsigned HOST_WIDE_INT smask = mask;
6845 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6846 number, sign extend it. */
6848 if (width < HOST_BITS_PER_WIDE_INT
6849 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6850 smask |= (HOST_WIDE_INT) -1 << width;
6852 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6853 && exact_log2 (- smask) >= 0
6854 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6855 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6856 return force_to_mode (plus_constant (XEXP (x, 0),
6857 (INTVAL (XEXP (x, 1)) & smask)),
6858 mode, smask, reg, next_select);
6861 /* ... fall through ... */
6863 case MULT:
6864 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6865 most significant bit in MASK since carries from those bits will
6866 affect the bits we are interested in. */
6867 mask = fuller_mask;
6868 goto binop;
6870 case MINUS:
6871 /* If X is (minus C Y) where C's least set bit is larger than any bit
6872 in the mask, then we may replace with (neg Y). */
6873 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6874 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6875 & -INTVAL (XEXP (x, 0))))
6876 > mask))
6878 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6879 GET_MODE (x));
6880 return force_to_mode (x, mode, mask, reg, next_select);
6883 /* Similarly, if C contains every bit in the mask, then we may
6884 replace with (not Y). */
6885 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6886 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6887 == INTVAL (XEXP (x, 0))))
6889 x = simplify_gen_unary (NOT, GET_MODE (x),
6890 XEXP (x, 1), GET_MODE (x));
6891 return force_to_mode (x, mode, mask, reg, next_select);
6894 mask = fuller_mask;
6895 goto binop;
6897 case IOR:
6898 case XOR:
6899 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6900 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6901 operation which may be a bitfield extraction. Ensure that the
6902 constant we form is not wider than the mode of X. */
6904 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6905 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6906 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6907 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6908 && GET_CODE (XEXP (x, 1)) == CONST_INT
6909 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6910 + floor_log2 (INTVAL (XEXP (x, 1))))
6911 < GET_MODE_BITSIZE (GET_MODE (x)))
6912 && (INTVAL (XEXP (x, 1))
6913 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6915 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6916 << INTVAL (XEXP (XEXP (x, 0), 1)));
6917 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6918 XEXP (XEXP (x, 0), 0), temp);
6919 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6920 XEXP (XEXP (x, 0), 1));
6921 return force_to_mode (x, mode, mask, reg, next_select);
6924 binop:
6925 /* For most binary operations, just propagate into the operation and
6926 change the mode if we have an operation of that mode. */
6928 op0 = gen_lowpart_for_combine (op_mode,
6929 force_to_mode (XEXP (x, 0), mode, mask,
6930 reg, next_select));
6931 op1 = gen_lowpart_for_combine (op_mode,
6932 force_to_mode (XEXP (x, 1), mode, mask,
6933 reg, next_select));
6935 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6936 x = gen_binary (code, op_mode, op0, op1);
6937 break;
6939 case ASHIFT:
6940 /* For left shifts, do the same, but just for the first operand.
6941 However, we cannot do anything with shifts where we cannot
6942 guarantee that the counts are smaller than the size of the mode
6943 because such a count will have a different meaning in a
6944 wider mode. */
6946 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6947 && INTVAL (XEXP (x, 1)) >= 0
6948 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6949 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6950 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6951 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6952 break;
6954 /* If the shift count is a constant and we can do arithmetic in
6955 the mode of the shift, refine which bits we need. Otherwise, use the
6956 conservative form of the mask. */
6957 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6958 && INTVAL (XEXP (x, 1)) >= 0
6959 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6960 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6961 mask >>= INTVAL (XEXP (x, 1));
6962 else
6963 mask = fuller_mask;
6965 op0 = gen_lowpart_for_combine (op_mode,
6966 force_to_mode (XEXP (x, 0), op_mode,
6967 mask, reg, next_select));
6969 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6970 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6971 break;
6973 case LSHIFTRT:
6974 /* Here we can only do something if the shift count is a constant,
6975 this shift constant is valid for the host, and we can do arithmetic
6976 in OP_MODE. */
6978 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6979 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6980 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6982 rtx inner = XEXP (x, 0);
6983 unsigned HOST_WIDE_INT inner_mask;
6985 /* Select the mask of the bits we need for the shift operand. */
6986 inner_mask = mask << INTVAL (XEXP (x, 1));
6988 /* We can only change the mode of the shift if we can do arithmetic
6989 in the mode of the shift and INNER_MASK is no wider than the
6990 width of OP_MODE. */
6991 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6992 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
6993 op_mode = GET_MODE (x);
6995 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6997 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6998 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7001 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7002 shift and AND produces only copies of the sign bit (C2 is one less
7003 than a power of two), we can do this with just a shift. */
7005 if (GET_CODE (x) == LSHIFTRT
7006 && GET_CODE (XEXP (x, 1)) == CONST_INT
7007 /* The shift puts one of the sign bit copies in the least significant
7008 bit. */
7009 && ((INTVAL (XEXP (x, 1))
7010 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7011 >= GET_MODE_BITSIZE (GET_MODE (x)))
7012 && exact_log2 (mask + 1) >= 0
7013 /* Number of bits left after the shift must be more than the mask
7014 needs. */
7015 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7016 <= GET_MODE_BITSIZE (GET_MODE (x)))
7017 /* Must be more sign bit copies than the mask needs. */
7018 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7019 >= exact_log2 (mask + 1)))
7020 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7021 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7022 - exact_log2 (mask + 1)));
7024 goto shiftrt;
7026 case ASHIFTRT:
7027 /* If we are just looking for the sign bit, we don't need this shift at
7028 all, even if it has a variable count. */
7029 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7030 && (mask == ((unsigned HOST_WIDE_INT) 1
7031 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7032 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7034 /* If this is a shift by a constant, get a mask that contains those bits
7035 that are not copies of the sign bit. We then have two cases: If
7036 MASK only includes those bits, this can be a logical shift, which may
7037 allow simplifications. If MASK is a single-bit field not within
7038 those bits, we are requesting a copy of the sign bit and hence can
7039 shift the sign bit to the appropriate location. */
7041 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7042 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7044 int i = -1;
7046 /* If the considered data is wider than HOST_WIDE_INT, we can't
7047 represent a mask for all its bits in a single scalar.
7048 But we only care about the lower bits, so calculate these. */
7050 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7052 nonzero = ~(HOST_WIDE_INT) 0;
7054 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7055 is the number of bits a full-width mask would have set.
7056 We need only shift if these are fewer than nonzero can
7057 hold. If not, we must keep all bits set in nonzero. */
7059 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7060 < HOST_BITS_PER_WIDE_INT)
7061 nonzero >>= INTVAL (XEXP (x, 1))
7062 + HOST_BITS_PER_WIDE_INT
7063 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7065 else
7067 nonzero = GET_MODE_MASK (GET_MODE (x));
7068 nonzero >>= INTVAL (XEXP (x, 1));
7071 if ((mask & ~nonzero) == 0
7072 || (i = exact_log2 (mask)) >= 0)
7074 x = simplify_shift_const
7075 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7076 i < 0 ? INTVAL (XEXP (x, 1))
7077 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7079 if (GET_CODE (x) != ASHIFTRT)
7080 return force_to_mode (x, mode, mask, reg, next_select);
7084 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7085 even if the shift count isn't a constant. */
7086 if (mask == 1)
7087 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7089 shiftrt:
7091 /* If this is a zero- or sign-extension operation that just affects bits
7092 we don't care about, remove it. Be sure the call above returned
7093 something that is still a shift. */
7095 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7096 && GET_CODE (XEXP (x, 1)) == CONST_INT
7097 && INTVAL (XEXP (x, 1)) >= 0
7098 && (INTVAL (XEXP (x, 1))
7099 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7100 && GET_CODE (XEXP (x, 0)) == ASHIFT
7101 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7102 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7103 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7104 reg, next_select);
7106 break;
7108 case ROTATE:
7109 case ROTATERT:
7110 /* If the shift count is constant and we can do computations
7111 in the mode of X, compute where the bits we care about are.
7112 Otherwise, we can't do anything. Don't change the mode of
7113 the shift or propagate MODE into the shift, though. */
7114 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7115 && INTVAL (XEXP (x, 1)) >= 0)
7117 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7118 GET_MODE (x), GEN_INT (mask),
7119 XEXP (x, 1));
7120 if (temp && GET_CODE(temp) == CONST_INT)
7121 SUBST (XEXP (x, 0),
7122 force_to_mode (XEXP (x, 0), GET_MODE (x),
7123 INTVAL (temp), reg, next_select));
7125 break;
7127 case NEG:
7128 /* If we just want the low-order bit, the NEG isn't needed since it
7129 won't change the low-order bit. */
7130 if (mask == 1)
7131 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7133 /* We need any bits less significant than the most significant bit in
7134 MASK since carries from those bits will affect the bits we are
7135 interested in. */
7136 mask = fuller_mask;
7137 goto unop;
7139 case NOT:
7140 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7141 same as the XOR case above. Ensure that the constant we form is not
7142 wider than the mode of X. */
7144 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7145 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7146 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7147 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7148 < GET_MODE_BITSIZE (GET_MODE (x)))
7149 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7151 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7152 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7153 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7155 return force_to_mode (x, mode, mask, reg, next_select);
7158 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7159 use the full mask inside the NOT. */
7160 mask = fuller_mask;
7162 unop:
7163 op0 = gen_lowpart_for_combine (op_mode,
7164 force_to_mode (XEXP (x, 0), mode, mask,
7165 reg, next_select));
7166 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7167 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7168 break;
7170 case NE:
7171 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7172 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7173 which is equal to STORE_FLAG_VALUE. */
7174 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7175 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7176 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7177 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7179 break;
7181 case IF_THEN_ELSE:
7182 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7183 written in a narrower mode. We play it safe and do not do so. */
7185 SUBST (XEXP (x, 1),
7186 gen_lowpart_for_combine (GET_MODE (x),
7187 force_to_mode (XEXP (x, 1), mode,
7188 mask, reg, next_select)));
7189 SUBST (XEXP (x, 2),
7190 gen_lowpart_for_combine (GET_MODE (x),
7191 force_to_mode (XEXP (x, 2), mode,
7192 mask, reg,next_select)));
7193 break;
7195 default:
7196 break;
7199 /* Ensure we return a value of the proper mode. */
7200 return gen_lowpart_for_combine (mode, x);
7203 /* Return nonzero if X is an expression that has one of two values depending on
7204 whether some other value is zero or nonzero. In that case, we return the
7205 value that is being tested, *PTRUE is set to the value if the rtx being
7206 returned has a nonzero value, and *PFALSE is set to the other alternative.
7208 If we return zero, we set *PTRUE and *PFALSE to X. */
7210 static rtx
7211 if_then_else_cond (x, ptrue, pfalse)
7212 rtx x;
7213 rtx *ptrue, *pfalse;
7215 enum machine_mode mode = GET_MODE (x);
7216 enum rtx_code code = GET_CODE (x);
7217 rtx cond0, cond1, true0, true1, false0, false1;
7218 unsigned HOST_WIDE_INT nz;
7220 /* If we are comparing a value against zero, we are done. */
7221 if ((code == NE || code == EQ)
7222 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7224 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7225 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7226 return XEXP (x, 0);
7229 /* If this is a unary operation whose operand has one of two values, apply
7230 our opcode to compute those values. */
7231 else if (GET_RTX_CLASS (code) == '1'
7232 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7234 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7235 *pfalse = simplify_gen_unary (code, mode, false0,
7236 GET_MODE (XEXP (x, 0)));
7237 return cond0;
7240 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7241 make can't possibly match and would suppress other optimizations. */
7242 else if (code == COMPARE)
7245 /* If this is a binary operation, see if either side has only one of two
7246 values. If either one does or if both do and they are conditional on
7247 the same value, compute the new true and false values. */
7248 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7249 || GET_RTX_CLASS (code) == '<')
7251 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7252 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7254 if ((cond0 != 0 || cond1 != 0)
7255 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7257 /* If if_then_else_cond returned zero, then true/false are the
7258 same rtl. We must copy one of them to prevent invalid rtl
7259 sharing. */
7260 if (cond0 == 0)
7261 true0 = copy_rtx (true0);
7262 else if (cond1 == 0)
7263 true1 = copy_rtx (true1);
7265 *ptrue = gen_binary (code, mode, true0, true1);
7266 *pfalse = gen_binary (code, mode, false0, false1);
7267 return cond0 ? cond0 : cond1;
7270 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7271 operands is zero when the other is non-zero, and vice-versa,
7272 and STORE_FLAG_VALUE is 1 or -1. */
7274 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7275 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7276 || code == UMAX)
7277 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7279 rtx op0 = XEXP (XEXP (x, 0), 1);
7280 rtx op1 = XEXP (XEXP (x, 1), 1);
7282 cond0 = XEXP (XEXP (x, 0), 0);
7283 cond1 = XEXP (XEXP (x, 1), 0);
7285 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7286 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7287 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7288 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7289 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7290 || ((swap_condition (GET_CODE (cond0))
7291 == combine_reversed_comparison_code (cond1))
7292 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7293 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7294 && ! side_effects_p (x))
7296 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7297 *pfalse = gen_binary (MULT, mode,
7298 (code == MINUS
7299 ? simplify_gen_unary (NEG, mode, op1,
7300 mode)
7301 : op1),
7302 const_true_rtx);
7303 return cond0;
7307 /* Similarly for MULT, AND and UMIN, except that for these the result
7308 is always zero. */
7309 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7310 && (code == MULT || code == AND || code == UMIN)
7311 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7313 cond0 = XEXP (XEXP (x, 0), 0);
7314 cond1 = XEXP (XEXP (x, 1), 0);
7316 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7317 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7318 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7319 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7320 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7321 || ((swap_condition (GET_CODE (cond0))
7322 == combine_reversed_comparison_code (cond1))
7323 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7324 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7325 && ! side_effects_p (x))
7327 *ptrue = *pfalse = const0_rtx;
7328 return cond0;
7333 else if (code == IF_THEN_ELSE)
7335 /* If we have IF_THEN_ELSE already, extract the condition and
7336 canonicalize it if it is NE or EQ. */
7337 cond0 = XEXP (x, 0);
7338 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7339 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7340 return XEXP (cond0, 0);
7341 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7343 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7344 return XEXP (cond0, 0);
7346 else
7347 return cond0;
7350 /* If X is a SUBREG, we can narrow both the true and false values
7351 if the inner expression, if there is a condition. */
7352 else if (code == SUBREG
7353 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7354 &true0, &false0)))
7356 *ptrue = simplify_gen_subreg (mode, true0,
7357 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7358 *pfalse = simplify_gen_subreg (mode, false0,
7359 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7361 return cond0;
7364 /* If X is a constant, this isn't special and will cause confusions
7365 if we treat it as such. Likewise if it is equivalent to a constant. */
7366 else if (CONSTANT_P (x)
7367 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7370 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7371 will be least confusing to the rest of the compiler. */
7372 else if (mode == BImode)
7374 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7375 return x;
7378 /* If X is known to be either 0 or -1, those are the true and
7379 false values when testing X. */
7380 else if (x == constm1_rtx || x == const0_rtx
7381 || (mode != VOIDmode
7382 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7384 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7385 return x;
7388 /* Likewise for 0 or a single bit. */
7389 else if (mode != VOIDmode
7390 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7391 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7393 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7394 return x;
7397 /* Otherwise fail; show no condition with true and false values the same. */
7398 *ptrue = *pfalse = x;
7399 return 0;
7402 /* Return the value of expression X given the fact that condition COND
7403 is known to be true when applied to REG as its first operand and VAL
7404 as its second. X is known to not be shared and so can be modified in
7405 place.
7407 We only handle the simplest cases, and specifically those cases that
7408 arise with IF_THEN_ELSE expressions. */
7410 static rtx
7411 known_cond (x, cond, reg, val)
7412 rtx x;
7413 enum rtx_code cond;
7414 rtx reg, val;
7416 enum rtx_code code = GET_CODE (x);
7417 rtx temp;
7418 const char *fmt;
7419 int i, j;
7421 if (side_effects_p (x))
7422 return x;
7424 /* If either operand of the condition is a floating point value,
7425 then we have to avoid collapsing an EQ comparison. */
7426 if (cond == EQ
7427 && rtx_equal_p (x, reg)
7428 && ! FLOAT_MODE_P (GET_MODE (x))
7429 && ! FLOAT_MODE_P (GET_MODE (val)))
7430 return val;
7432 if (cond == UNEQ && rtx_equal_p (x, reg))
7433 return val;
7435 /* If X is (abs REG) and we know something about REG's relationship
7436 with zero, we may be able to simplify this. */
7438 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7439 switch (cond)
7441 case GE: case GT: case EQ:
7442 return XEXP (x, 0);
7443 case LT: case LE:
7444 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7445 XEXP (x, 0),
7446 GET_MODE (XEXP (x, 0)));
7447 default:
7448 break;
7451 /* The only other cases we handle are MIN, MAX, and comparisons if the
7452 operands are the same as REG and VAL. */
7454 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7456 if (rtx_equal_p (XEXP (x, 0), val))
7457 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7459 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7461 if (GET_RTX_CLASS (code) == '<')
7463 if (comparison_dominates_p (cond, code))
7464 return const_true_rtx;
7466 code = combine_reversed_comparison_code (x);
7467 if (code != UNKNOWN
7468 && comparison_dominates_p (cond, code))
7469 return const0_rtx;
7470 else
7471 return x;
7473 else if (code == SMAX || code == SMIN
7474 || code == UMIN || code == UMAX)
7476 int unsignedp = (code == UMIN || code == UMAX);
7478 /* Do not reverse the condition when it is NE or EQ.
7479 This is because we cannot conclude anything about
7480 the value of 'SMAX (x, y)' when x is not equal to y,
7481 but we can when x equals y. */
7482 if ((code == SMAX || code == UMAX)
7483 && ! (cond == EQ || cond == NE))
7484 cond = reverse_condition (cond);
7486 switch (cond)
7488 case GE: case GT:
7489 return unsignedp ? x : XEXP (x, 1);
7490 case LE: case LT:
7491 return unsignedp ? x : XEXP (x, 0);
7492 case GEU: case GTU:
7493 return unsignedp ? XEXP (x, 1) : x;
7494 case LEU: case LTU:
7495 return unsignedp ? XEXP (x, 0) : x;
7496 default:
7497 break;
7502 else if (code == SUBREG)
7504 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7505 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7507 if (SUBREG_REG (x) != r)
7509 /* We must simplify subreg here, before we lose track of the
7510 original inner_mode. */
7511 new = simplify_subreg (GET_MODE (x), r,
7512 inner_mode, SUBREG_BYTE (x));
7513 if (new)
7514 return new;
7515 else
7516 SUBST (SUBREG_REG (x), r);
7519 return x;
7521 /* We don't have to handle SIGN_EXTEND here, because even in the
7522 case of replacing something with a modeless CONST_INT, a
7523 CONST_INT is already (supposed to be) a valid sign extension for
7524 its narrower mode, which implies it's already properly
7525 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7526 story is different. */
7527 else if (code == ZERO_EXTEND)
7529 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7530 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7532 if (XEXP (x, 0) != r)
7534 /* We must simplify the zero_extend here, before we lose
7535 track of the original inner_mode. */
7536 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7537 r, inner_mode);
7538 if (new)
7539 return new;
7540 else
7541 SUBST (XEXP (x, 0), r);
7544 return x;
7547 fmt = GET_RTX_FORMAT (code);
7548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7550 if (fmt[i] == 'e')
7551 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7552 else if (fmt[i] == 'E')
7553 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7554 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7555 cond, reg, val));
7558 return x;
7561 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7562 assignment as a field assignment. */
7564 static int
7565 rtx_equal_for_field_assignment_p (x, y)
7566 rtx x;
7567 rtx y;
7569 if (x == y || rtx_equal_p (x, y))
7570 return 1;
7572 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7573 return 0;
7575 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7576 Note that all SUBREGs of MEM are paradoxical; otherwise they
7577 would have been rewritten. */
7578 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7579 && GET_CODE (SUBREG_REG (y)) == MEM
7580 && rtx_equal_p (SUBREG_REG (y),
7581 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7582 return 1;
7584 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7585 && GET_CODE (SUBREG_REG (x)) == MEM
7586 && rtx_equal_p (SUBREG_REG (x),
7587 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7588 return 1;
7590 /* We used to see if get_last_value of X and Y were the same but that's
7591 not correct. In one direction, we'll cause the assignment to have
7592 the wrong destination and in the case, we'll import a register into this
7593 insn that might have already have been dead. So fail if none of the
7594 above cases are true. */
7595 return 0;
7598 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7599 Return that assignment if so.
7601 We only handle the most common cases. */
7603 static rtx
7604 make_field_assignment (x)
7605 rtx x;
7607 rtx dest = SET_DEST (x);
7608 rtx src = SET_SRC (x);
7609 rtx assign;
7610 rtx rhs, lhs;
7611 HOST_WIDE_INT c1;
7612 HOST_WIDE_INT pos;
7613 unsigned HOST_WIDE_INT len;
7614 rtx other;
7615 enum machine_mode mode;
7617 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7618 a clear of a one-bit field. We will have changed it to
7619 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7620 for a SUBREG. */
7622 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7623 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7624 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7625 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7627 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7628 1, 1, 1, 0);
7629 if (assign != 0)
7630 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7631 return x;
7634 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7635 && subreg_lowpart_p (XEXP (src, 0))
7636 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7637 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7638 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7639 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7640 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7642 assign = make_extraction (VOIDmode, dest, 0,
7643 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7644 1, 1, 1, 0);
7645 if (assign != 0)
7646 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7647 return x;
7650 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7651 one-bit field. */
7652 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7653 && XEXP (XEXP (src, 0), 0) == const1_rtx
7654 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7656 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7657 1, 1, 1, 0);
7658 if (assign != 0)
7659 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7660 return x;
7663 /* The other case we handle is assignments into a constant-position
7664 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7665 a mask that has all one bits except for a group of zero bits and
7666 OTHER is known to have zeros where C1 has ones, this is such an
7667 assignment. Compute the position and length from C1. Shift OTHER
7668 to the appropriate position, force it to the required mode, and
7669 make the extraction. Check for the AND in both operands. */
7671 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7672 return x;
7674 rhs = expand_compound_operation (XEXP (src, 0));
7675 lhs = expand_compound_operation (XEXP (src, 1));
7677 if (GET_CODE (rhs) == AND
7678 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7679 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7680 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7681 else if (GET_CODE (lhs) == AND
7682 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7683 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7684 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7685 else
7686 return x;
7688 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7689 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7690 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7691 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7692 return x;
7694 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7695 if (assign == 0)
7696 return x;
7698 /* The mode to use for the source is the mode of the assignment, or of
7699 what is inside a possible STRICT_LOW_PART. */
7700 mode = (GET_CODE (assign) == STRICT_LOW_PART
7701 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7703 /* Shift OTHER right POS places and make it the source, restricting it
7704 to the proper length and mode. */
7706 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7707 GET_MODE (src), other, pos),
7708 mode,
7709 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7710 ? ~(unsigned HOST_WIDE_INT) 0
7711 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7712 dest, 0);
7714 return gen_rtx_SET (VOIDmode, assign, src);
7717 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7718 if so. */
7720 static rtx
7721 apply_distributive_law (x)
7722 rtx x;
7724 enum rtx_code code = GET_CODE (x);
7725 rtx lhs, rhs, other;
7726 rtx tem;
7727 enum rtx_code inner_code;
7729 /* Distributivity is not true for floating point.
7730 It can change the value. So don't do it.
7731 -- rms and moshier@world.std.com. */
7732 if (FLOAT_MODE_P (GET_MODE (x)))
7733 return x;
7735 /* The outer operation can only be one of the following: */
7736 if (code != IOR && code != AND && code != XOR
7737 && code != PLUS && code != MINUS)
7738 return x;
7740 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7742 /* If either operand is a primitive we can't do anything, so get out
7743 fast. */
7744 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7745 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7746 return x;
7748 lhs = expand_compound_operation (lhs);
7749 rhs = expand_compound_operation (rhs);
7750 inner_code = GET_CODE (lhs);
7751 if (inner_code != GET_CODE (rhs))
7752 return x;
7754 /* See if the inner and outer operations distribute. */
7755 switch (inner_code)
7757 case LSHIFTRT:
7758 case ASHIFTRT:
7759 case AND:
7760 case IOR:
7761 /* These all distribute except over PLUS. */
7762 if (code == PLUS || code == MINUS)
7763 return x;
7764 break;
7766 case MULT:
7767 if (code != PLUS && code != MINUS)
7768 return x;
7769 break;
7771 case ASHIFT:
7772 /* This is also a multiply, so it distributes over everything. */
7773 break;
7775 case SUBREG:
7776 /* Non-paradoxical SUBREGs distributes over all operations, provided
7777 the inner modes and byte offsets are the same, this is an extraction
7778 of a low-order part, we don't convert an fp operation to int or
7779 vice versa, and we would not be converting a single-word
7780 operation into a multi-word operation. The latter test is not
7781 required, but it prevents generating unneeded multi-word operations.
7782 Some of the previous tests are redundant given the latter test, but
7783 are retained because they are required for correctness.
7785 We produce the result slightly differently in this case. */
7787 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7788 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7789 || ! subreg_lowpart_p (lhs)
7790 || (GET_MODE_CLASS (GET_MODE (lhs))
7791 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7792 || (GET_MODE_SIZE (GET_MODE (lhs))
7793 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7794 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7795 return x;
7797 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7798 SUBREG_REG (lhs), SUBREG_REG (rhs));
7799 return gen_lowpart_for_combine (GET_MODE (x), tem);
7801 default:
7802 return x;
7805 /* Set LHS and RHS to the inner operands (A and B in the example
7806 above) and set OTHER to the common operand (C in the example).
7807 These is only one way to do this unless the inner operation is
7808 commutative. */
7809 if (GET_RTX_CLASS (inner_code) == 'c'
7810 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7811 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7812 else if (GET_RTX_CLASS (inner_code) == 'c'
7813 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7814 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7815 else if (GET_RTX_CLASS (inner_code) == 'c'
7816 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7817 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7818 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7819 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7820 else
7821 return x;
7823 /* Form the new inner operation, seeing if it simplifies first. */
7824 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7826 /* There is one exception to the general way of distributing:
7827 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7828 if (code == XOR && inner_code == IOR)
7830 inner_code = AND;
7831 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7834 /* We may be able to continuing distributing the result, so call
7835 ourselves recursively on the inner operation before forming the
7836 outer operation, which we return. */
7837 return gen_binary (inner_code, GET_MODE (x),
7838 apply_distributive_law (tem), other);
7841 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7842 in MODE.
7844 Return an equivalent form, if different from X. Otherwise, return X. If
7845 X is zero, we are to always construct the equivalent form. */
7847 static rtx
7848 simplify_and_const_int (x, mode, varop, constop)
7849 rtx x;
7850 enum machine_mode mode;
7851 rtx varop;
7852 unsigned HOST_WIDE_INT constop;
7854 unsigned HOST_WIDE_INT nonzero;
7855 int i;
7857 /* Simplify VAROP knowing that we will be only looking at some of the
7858 bits in it.
7860 Note by passing in CONSTOP, we guarantee that the bits not set in
7861 CONSTOP are not significant and will never be examined. We must
7862 ensure that is the case by explicitly masking out those bits
7863 before returning. */
7864 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7866 /* If VAROP is a CLOBBER, we will fail so return it. */
7867 if (GET_CODE (varop) == CLOBBER)
7868 return varop;
7870 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7871 to VAROP and return the new constant. */
7872 if (GET_CODE (varop) == CONST_INT)
7873 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7875 /* See what bits may be nonzero in VAROP. Unlike the general case of
7876 a call to nonzero_bits, here we don't care about bits outside
7877 MODE. */
7879 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7881 /* Turn off all bits in the constant that are known to already be zero.
7882 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7883 which is tested below. */
7885 constop &= nonzero;
7887 /* If we don't have any bits left, return zero. */
7888 if (constop == 0)
7889 return const0_rtx;
7891 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7892 a power of two, we can replace this with an ASHIFT. */
7893 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7894 && (i = exact_log2 (constop)) >= 0)
7895 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7897 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7898 or XOR, then try to apply the distributive law. This may eliminate
7899 operations if either branch can be simplified because of the AND.
7900 It may also make some cases more complex, but those cases probably
7901 won't match a pattern either with or without this. */
7903 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7904 return
7905 gen_lowpart_for_combine
7906 (mode,
7907 apply_distributive_law
7908 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7909 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7910 XEXP (varop, 0), constop),
7911 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7912 XEXP (varop, 1), constop))));
7914 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7915 the AND and see if one of the operands simplifies to zero. If so, we
7916 may eliminate it. */
7918 if (GET_CODE (varop) == PLUS
7919 && exact_log2 (constop + 1) >= 0)
7921 rtx o0, o1;
7923 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7924 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7925 if (o0 == const0_rtx)
7926 return o1;
7927 if (o1 == const0_rtx)
7928 return o0;
7931 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7932 if we already had one (just check for the simplest cases). */
7933 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7934 && GET_MODE (XEXP (x, 0)) == mode
7935 && SUBREG_REG (XEXP (x, 0)) == varop)
7936 varop = XEXP (x, 0);
7937 else
7938 varop = gen_lowpart_for_combine (mode, varop);
7940 /* If we can't make the SUBREG, try to return what we were given. */
7941 if (GET_CODE (varop) == CLOBBER)
7942 return x ? x : varop;
7944 /* If we are only masking insignificant bits, return VAROP. */
7945 if (constop == nonzero)
7946 x = varop;
7947 else
7949 /* Otherwise, return an AND. */
7950 constop = trunc_int_for_mode (constop, mode);
7951 /* See how much, if any, of X we can use. */
7952 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7953 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7955 else
7957 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7958 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7959 SUBST (XEXP (x, 1), GEN_INT (constop));
7961 SUBST (XEXP (x, 0), varop);
7965 return x;
7968 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7969 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7970 is less useful. We can't allow both, because that results in exponential
7971 run time recursion. There is a nullstone testcase that triggered
7972 this. This macro avoids accidental uses of num_sign_bit_copies. */
7973 #define num_sign_bit_copies()
7975 /* Given an expression, X, compute which bits in X can be non-zero.
7976 We don't care about bits outside of those defined in MODE.
7978 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7979 a shift, AND, or zero_extract, we can do better. */
7981 static unsigned HOST_WIDE_INT
7982 nonzero_bits (x, mode)
7983 rtx x;
7984 enum machine_mode mode;
7986 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7987 unsigned HOST_WIDE_INT inner_nz;
7988 enum rtx_code code;
7989 unsigned int mode_width = GET_MODE_BITSIZE (mode);
7990 rtx tem;
7992 /* For floating-point values, assume all bits are needed. */
7993 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7994 return nonzero;
7996 /* If X is wider than MODE, use its mode instead. */
7997 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7999 mode = GET_MODE (x);
8000 nonzero = GET_MODE_MASK (mode);
8001 mode_width = GET_MODE_BITSIZE (mode);
8004 if (mode_width > HOST_BITS_PER_WIDE_INT)
8005 /* Our only callers in this case look for single bit values. So
8006 just return the mode mask. Those tests will then be false. */
8007 return nonzero;
8009 #ifndef WORD_REGISTER_OPERATIONS
8010 /* If MODE is wider than X, but both are a single word for both the host
8011 and target machines, we can compute this from which bits of the
8012 object might be nonzero in its own mode, taking into account the fact
8013 that on many CISC machines, accessing an object in a wider mode
8014 causes the high-order bits to become undefined. So they are
8015 not known to be zero. */
8017 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8018 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8019 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8020 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8022 nonzero &= nonzero_bits (x, GET_MODE (x));
8023 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8024 return nonzero;
8026 #endif
8028 code = GET_CODE (x);
8029 switch (code)
8031 case REG:
8032 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8033 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8034 all the bits above ptr_mode are known to be zero. */
8035 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8036 && REG_POINTER (x))
8037 nonzero &= GET_MODE_MASK (ptr_mode);
8038 #endif
8040 /* Include declared information about alignment of pointers. */
8041 /* ??? We don't properly preserve REG_POINTER changes across
8042 pointer-to-integer casts, so we can't trust it except for
8043 things that we know must be pointers. See execute/960116-1.c. */
8044 if ((x == stack_pointer_rtx
8045 || x == frame_pointer_rtx
8046 || x == arg_pointer_rtx)
8047 && REGNO_POINTER_ALIGN (REGNO (x)))
8049 unsigned HOST_WIDE_INT alignment
8050 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8052 #ifdef PUSH_ROUNDING
8053 /* If PUSH_ROUNDING is defined, it is possible for the
8054 stack to be momentarily aligned only to that amount,
8055 so we pick the least alignment. */
8056 if (x == stack_pointer_rtx && PUSH_ARGS)
8057 alignment = MIN (PUSH_ROUNDING (1), alignment);
8058 #endif
8060 nonzero &= ~(alignment - 1);
8063 /* If X is a register whose nonzero bits value is current, use it.
8064 Otherwise, if X is a register whose value we can find, use that
8065 value. Otherwise, use the previously-computed global nonzero bits
8066 for this register. */
8068 if (reg_last_set_value[REGNO (x)] != 0
8069 && (reg_last_set_mode[REGNO (x)] == mode
8070 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8071 && GET_MODE_CLASS (mode) == MODE_INT))
8072 && (reg_last_set_label[REGNO (x)] == label_tick
8073 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8074 && REG_N_SETS (REGNO (x)) == 1
8075 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8076 REGNO (x))))
8077 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8078 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8080 tem = get_last_value (x);
8082 if (tem)
8084 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8085 /* If X is narrower than MODE and TEM is a non-negative
8086 constant that would appear negative in the mode of X,
8087 sign-extend it for use in reg_nonzero_bits because some
8088 machines (maybe most) will actually do the sign-extension
8089 and this is the conservative approach.
8091 ??? For 2.5, try to tighten up the MD files in this regard
8092 instead of this kludge. */
8094 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8095 && GET_CODE (tem) == CONST_INT
8096 && INTVAL (tem) > 0
8097 && 0 != (INTVAL (tem)
8098 & ((HOST_WIDE_INT) 1
8099 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8100 tem = GEN_INT (INTVAL (tem)
8101 | ((HOST_WIDE_INT) (-1)
8102 << GET_MODE_BITSIZE (GET_MODE (x))));
8103 #endif
8104 return nonzero_bits (tem, mode) & nonzero;
8106 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8108 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8110 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8111 /* We don't know anything about the upper bits. */
8112 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8113 return nonzero & mask;
8115 else
8116 return nonzero;
8118 case CONST_INT:
8119 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8120 /* If X is negative in MODE, sign-extend the value. */
8121 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8122 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8123 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8124 #endif
8126 return INTVAL (x);
8128 case MEM:
8129 #ifdef LOAD_EXTEND_OP
8130 /* In many, if not most, RISC machines, reading a byte from memory
8131 zeros the rest of the register. Noticing that fact saves a lot
8132 of extra zero-extends. */
8133 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8134 nonzero &= GET_MODE_MASK (GET_MODE (x));
8135 #endif
8136 break;
8138 case EQ: case NE:
8139 case UNEQ: case LTGT:
8140 case GT: case GTU: case UNGT:
8141 case LT: case LTU: case UNLT:
8142 case GE: case GEU: case UNGE:
8143 case LE: case LEU: case UNLE:
8144 case UNORDERED: case ORDERED:
8146 /* If this produces an integer result, we know which bits are set.
8147 Code here used to clear bits outside the mode of X, but that is
8148 now done above. */
8150 if (GET_MODE_CLASS (mode) == MODE_INT
8151 && mode_width <= HOST_BITS_PER_WIDE_INT)
8152 nonzero = STORE_FLAG_VALUE;
8153 break;
8155 case NEG:
8156 #if 0
8157 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8158 and num_sign_bit_copies. */
8159 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8160 == GET_MODE_BITSIZE (GET_MODE (x)))
8161 nonzero = 1;
8162 #endif
8164 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8165 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8166 break;
8168 case ABS:
8169 #if 0
8170 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8171 and num_sign_bit_copies. */
8172 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8173 == GET_MODE_BITSIZE (GET_MODE (x)))
8174 nonzero = 1;
8175 #endif
8176 break;
8178 case TRUNCATE:
8179 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8180 break;
8182 case ZERO_EXTEND:
8183 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8184 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8185 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8186 break;
8188 case SIGN_EXTEND:
8189 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8190 Otherwise, show all the bits in the outer mode but not the inner
8191 may be non-zero. */
8192 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8193 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8195 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8196 if (inner_nz
8197 & (((HOST_WIDE_INT) 1
8198 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8199 inner_nz |= (GET_MODE_MASK (mode)
8200 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8203 nonzero &= inner_nz;
8204 break;
8206 case AND:
8207 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8208 & nonzero_bits (XEXP (x, 1), mode));
8209 break;
8211 case XOR: case IOR:
8212 case UMIN: case UMAX: case SMIN: case SMAX:
8214 unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8216 /* Don't call nonzero_bits for the second time if it cannot change
8217 anything. */
8218 if ((nonzero & nonzero0) != nonzero)
8219 nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8221 break;
8223 case PLUS: case MINUS:
8224 case MULT:
8225 case DIV: case UDIV:
8226 case MOD: case UMOD:
8227 /* We can apply the rules of arithmetic to compute the number of
8228 high- and low-order zero bits of these operations. We start by
8229 computing the width (position of the highest-order non-zero bit)
8230 and the number of low-order zero bits for each value. */
8232 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8233 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8234 int width0 = floor_log2 (nz0) + 1;
8235 int width1 = floor_log2 (nz1) + 1;
8236 int low0 = floor_log2 (nz0 & -nz0);
8237 int low1 = floor_log2 (nz1 & -nz1);
8238 HOST_WIDE_INT op0_maybe_minusp
8239 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8240 HOST_WIDE_INT op1_maybe_minusp
8241 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8242 unsigned int result_width = mode_width;
8243 int result_low = 0;
8245 switch (code)
8247 case PLUS:
8248 result_width = MAX (width0, width1) + 1;
8249 result_low = MIN (low0, low1);
8250 break;
8251 case MINUS:
8252 result_low = MIN (low0, low1);
8253 break;
8254 case MULT:
8255 result_width = width0 + width1;
8256 result_low = low0 + low1;
8257 break;
8258 case DIV:
8259 if (width1 == 0)
8260 break;
8261 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8262 result_width = width0;
8263 break;
8264 case UDIV:
8265 if (width1 == 0)
8266 break;
8267 result_width = width0;
8268 break;
8269 case MOD:
8270 if (width1 == 0)
8271 break;
8272 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8273 result_width = MIN (width0, width1);
8274 result_low = MIN (low0, low1);
8275 break;
8276 case UMOD:
8277 if (width1 == 0)
8278 break;
8279 result_width = MIN (width0, width1);
8280 result_low = MIN (low0, low1);
8281 break;
8282 default:
8283 abort ();
8286 if (result_width < mode_width)
8287 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8289 if (result_low > 0)
8290 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8292 #ifdef POINTERS_EXTEND_UNSIGNED
8293 /* If pointers extend unsigned and this is an addition or subtraction
8294 to a pointer in Pmode, all the bits above ptr_mode are known to be
8295 zero. */
8296 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8297 && (code == PLUS || code == MINUS)
8298 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8299 nonzero &= GET_MODE_MASK (ptr_mode);
8300 #endif
8302 break;
8304 case ZERO_EXTRACT:
8305 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8306 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8307 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8308 break;
8310 case SUBREG:
8311 /* If this is a SUBREG formed for a promoted variable that has
8312 been zero-extended, we know that at least the high-order bits
8313 are zero, though others might be too. */
8315 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8316 nonzero = (GET_MODE_MASK (GET_MODE (x))
8317 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8319 /* If the inner mode is a single word for both the host and target
8320 machines, we can compute this from which bits of the inner
8321 object might be nonzero. */
8322 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8323 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8324 <= HOST_BITS_PER_WIDE_INT))
8326 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8328 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8329 /* If this is a typical RISC machine, we only have to worry
8330 about the way loads are extended. */
8331 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8332 ? (((nonzero
8333 & (((unsigned HOST_WIDE_INT) 1
8334 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8335 != 0))
8336 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8337 #endif
8339 /* On many CISC machines, accessing an object in a wider mode
8340 causes the high-order bits to become undefined. So they are
8341 not known to be zero. */
8342 if (GET_MODE_SIZE (GET_MODE (x))
8343 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8344 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8345 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8348 break;
8350 case ASHIFTRT:
8351 case LSHIFTRT:
8352 case ASHIFT:
8353 case ROTATE:
8354 /* The nonzero bits are in two classes: any bits within MODE
8355 that aren't in GET_MODE (x) are always significant. The rest of the
8356 nonzero bits are those that are significant in the operand of
8357 the shift when shifted the appropriate number of bits. This
8358 shows that high-order bits are cleared by the right shift and
8359 low-order bits by left shifts. */
8360 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8361 && INTVAL (XEXP (x, 1)) >= 0
8362 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8364 enum machine_mode inner_mode = GET_MODE (x);
8365 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8366 int count = INTVAL (XEXP (x, 1));
8367 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8368 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8369 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8370 unsigned HOST_WIDE_INT outer = 0;
8372 if (mode_width > width)
8373 outer = (op_nonzero & nonzero & ~mode_mask);
8375 if (code == LSHIFTRT)
8376 inner >>= count;
8377 else if (code == ASHIFTRT)
8379 inner >>= count;
8381 /* If the sign bit may have been nonzero before the shift, we
8382 need to mark all the places it could have been copied to
8383 by the shift as possibly nonzero. */
8384 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8385 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8387 else if (code == ASHIFT)
8388 inner <<= count;
8389 else
8390 inner = ((inner << (count % width)
8391 | (inner >> (width - (count % width)))) & mode_mask);
8393 nonzero &= (outer | inner);
8395 break;
8397 case FFS:
8398 /* This is at most the number of bits in the mode. */
8399 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8400 break;
8402 case IF_THEN_ELSE:
8403 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8404 | nonzero_bits (XEXP (x, 2), mode));
8405 break;
8407 default:
8408 break;
8411 return nonzero;
8414 /* See the macro definition above. */
8415 #undef num_sign_bit_copies
8417 /* Return the number of bits at the high-order end of X that are known to
8418 be equal to the sign bit. X will be used in mode MODE; if MODE is
8419 VOIDmode, X will be used in its own mode. The returned value will always
8420 be between 1 and the number of bits in MODE. */
8422 static unsigned int
8423 num_sign_bit_copies (x, mode)
8424 rtx x;
8425 enum machine_mode mode;
8427 enum rtx_code code = GET_CODE (x);
8428 unsigned int bitwidth;
8429 int num0, num1, result;
8430 unsigned HOST_WIDE_INT nonzero;
8431 rtx tem;
8433 /* If we weren't given a mode, use the mode of X. If the mode is still
8434 VOIDmode, we don't know anything. Likewise if one of the modes is
8435 floating-point. */
8437 if (mode == VOIDmode)
8438 mode = GET_MODE (x);
8440 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8441 return 1;
8443 bitwidth = GET_MODE_BITSIZE (mode);
8445 /* For a smaller object, just ignore the high bits. */
8446 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8448 num0 = num_sign_bit_copies (x, GET_MODE (x));
8449 return MAX (1,
8450 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8453 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8455 #ifndef WORD_REGISTER_OPERATIONS
8456 /* If this machine does not do all register operations on the entire
8457 register and MODE is wider than the mode of X, we can say nothing
8458 at all about the high-order bits. */
8459 return 1;
8460 #else
8461 /* Likewise on machines that do, if the mode of the object is smaller
8462 than a word and loads of that size don't sign extend, we can say
8463 nothing about the high order bits. */
8464 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8465 #ifdef LOAD_EXTEND_OP
8466 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8467 #endif
8469 return 1;
8470 #endif
8473 switch (code)
8475 case REG:
8477 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8478 /* If pointers extend signed and this is a pointer in Pmode, say that
8479 all the bits above ptr_mode are known to be sign bit copies. */
8480 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8481 && REG_POINTER (x))
8482 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8483 #endif
8485 if (reg_last_set_value[REGNO (x)] != 0
8486 && reg_last_set_mode[REGNO (x)] == mode
8487 && (reg_last_set_label[REGNO (x)] == label_tick
8488 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8489 && REG_N_SETS (REGNO (x)) == 1
8490 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8491 REGNO (x))))
8492 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8493 return reg_last_set_sign_bit_copies[REGNO (x)];
8495 tem = get_last_value (x);
8496 if (tem != 0)
8497 return num_sign_bit_copies (tem, mode);
8499 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8500 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8501 return reg_sign_bit_copies[REGNO (x)];
8502 break;
8504 case MEM:
8505 #ifdef LOAD_EXTEND_OP
8506 /* Some RISC machines sign-extend all loads of smaller than a word. */
8507 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8508 return MAX (1, ((int) bitwidth
8509 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8510 #endif
8511 break;
8513 case CONST_INT:
8514 /* If the constant is negative, take its 1's complement and remask.
8515 Then see how many zero bits we have. */
8516 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8517 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8518 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8519 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8521 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8523 case SUBREG:
8524 /* If this is a SUBREG for a promoted object that is sign-extended
8525 and we are looking at it in a wider mode, we know that at least the
8526 high-order bits are known to be sign bit copies. */
8528 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8530 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8531 return MAX ((int) bitwidth
8532 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8533 num0);
8536 /* For a smaller object, just ignore the high bits. */
8537 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8539 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8540 return MAX (1, (num0
8541 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8542 - bitwidth)));
8545 #ifdef WORD_REGISTER_OPERATIONS
8546 #ifdef LOAD_EXTEND_OP
8547 /* For paradoxical SUBREGs on machines where all register operations
8548 affect the entire register, just look inside. Note that we are
8549 passing MODE to the recursive call, so the number of sign bit copies
8550 will remain relative to that mode, not the inner mode. */
8552 /* This works only if loads sign extend. Otherwise, if we get a
8553 reload for the inner part, it may be loaded from the stack, and
8554 then we lose all sign bit copies that existed before the store
8555 to the stack. */
8557 if ((GET_MODE_SIZE (GET_MODE (x))
8558 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8559 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8560 return num_sign_bit_copies (SUBREG_REG (x), mode);
8561 #endif
8562 #endif
8563 break;
8565 case SIGN_EXTRACT:
8566 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8567 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8568 break;
8570 case SIGN_EXTEND:
8571 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8572 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8574 case TRUNCATE:
8575 /* For a smaller object, just ignore the high bits. */
8576 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8577 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8578 - bitwidth)));
8580 case NOT:
8581 return num_sign_bit_copies (XEXP (x, 0), mode);
8583 case ROTATE: case ROTATERT:
8584 /* If we are rotating left by a number of bits less than the number
8585 of sign bit copies, we can just subtract that amount from the
8586 number. */
8587 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8588 && INTVAL (XEXP (x, 1)) >= 0
8589 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8591 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8592 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8593 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8595 break;
8597 case NEG:
8598 /* In general, this subtracts one sign bit copy. But if the value
8599 is known to be positive, the number of sign bit copies is the
8600 same as that of the input. Finally, if the input has just one bit
8601 that might be nonzero, all the bits are copies of the sign bit. */
8602 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8603 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8604 return num0 > 1 ? num0 - 1 : 1;
8606 nonzero = nonzero_bits (XEXP (x, 0), mode);
8607 if (nonzero == 1)
8608 return bitwidth;
8610 if (num0 > 1
8611 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8612 num0--;
8614 return num0;
8616 case IOR: case AND: case XOR:
8617 case SMIN: case SMAX: case UMIN: case UMAX:
8618 /* Logical operations will preserve the number of sign-bit copies.
8619 MIN and MAX operations always return one of the operands. */
8620 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8621 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8622 return MIN (num0, num1);
8624 case PLUS: case MINUS:
8625 /* For addition and subtraction, we can have a 1-bit carry. However,
8626 if we are subtracting 1 from a positive number, there will not
8627 be such a carry. Furthermore, if the positive number is known to
8628 be 0 or 1, we know the result is either -1 or 0. */
8630 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8631 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8633 nonzero = nonzero_bits (XEXP (x, 0), mode);
8634 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8635 return (nonzero == 1 || nonzero == 0 ? bitwidth
8636 : bitwidth - floor_log2 (nonzero) - 1);
8639 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8640 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8641 result = MAX (1, MIN (num0, num1) - 1);
8643 #ifdef POINTERS_EXTEND_UNSIGNED
8644 /* If pointers extend signed and this is an addition or subtraction
8645 to a pointer in Pmode, all the bits above ptr_mode are known to be
8646 sign bit copies. */
8647 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8648 && (code == PLUS || code == MINUS)
8649 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8650 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8651 - GET_MODE_BITSIZE (ptr_mode) + 1),
8652 result);
8653 #endif
8654 return result;
8656 case MULT:
8657 /* The number of bits of the product is the sum of the number of
8658 bits of both terms. However, unless one of the terms if known
8659 to be positive, we must allow for an additional bit since negating
8660 a negative number can remove one sign bit copy. */
8662 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8663 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8665 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8666 if (result > 0
8667 && (bitwidth > HOST_BITS_PER_WIDE_INT
8668 || (((nonzero_bits (XEXP (x, 0), mode)
8669 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8670 && ((nonzero_bits (XEXP (x, 1), mode)
8671 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8672 result--;
8674 return MAX (1, result);
8676 case UDIV:
8677 /* The result must be <= the first operand. If the first operand
8678 has the high bit set, we know nothing about the number of sign
8679 bit copies. */
8680 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8681 return 1;
8682 else if ((nonzero_bits (XEXP (x, 0), mode)
8683 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8684 return 1;
8685 else
8686 return num_sign_bit_copies (XEXP (x, 0), mode);
8688 case UMOD:
8689 /* The result must be <= the second operand. */
8690 return num_sign_bit_copies (XEXP (x, 1), mode);
8692 case DIV:
8693 /* Similar to unsigned division, except that we have to worry about
8694 the case where the divisor is negative, in which case we have
8695 to add 1. */
8696 result = num_sign_bit_copies (XEXP (x, 0), mode);
8697 if (result > 1
8698 && (bitwidth > HOST_BITS_PER_WIDE_INT
8699 || (nonzero_bits (XEXP (x, 1), mode)
8700 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8701 result--;
8703 return result;
8705 case MOD:
8706 result = num_sign_bit_copies (XEXP (x, 1), mode);
8707 if (result > 1
8708 && (bitwidth > HOST_BITS_PER_WIDE_INT
8709 || (nonzero_bits (XEXP (x, 1), mode)
8710 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8711 result--;
8713 return result;
8715 case ASHIFTRT:
8716 /* Shifts by a constant add to the number of bits equal to the
8717 sign bit. */
8718 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8719 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8720 && INTVAL (XEXP (x, 1)) > 0)
8721 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8723 return num0;
8725 case ASHIFT:
8726 /* Left shifts destroy copies. */
8727 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8728 || INTVAL (XEXP (x, 1)) < 0
8729 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8730 return 1;
8732 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8733 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8735 case IF_THEN_ELSE:
8736 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8737 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8738 return MIN (num0, num1);
8740 case EQ: case NE: case GE: case GT: case LE: case LT:
8741 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8742 case GEU: case GTU: case LEU: case LTU:
8743 case UNORDERED: case ORDERED:
8744 /* If the constant is negative, take its 1's complement and remask.
8745 Then see how many zero bits we have. */
8746 nonzero = STORE_FLAG_VALUE;
8747 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8748 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8749 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8751 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8752 break;
8754 default:
8755 break;
8758 /* If we haven't been able to figure it out by one of the above rules,
8759 see if some of the high-order bits are known to be zero. If so,
8760 count those bits and return one less than that amount. If we can't
8761 safely compute the mask for this mode, always return BITWIDTH. */
8763 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8764 return 1;
8766 nonzero = nonzero_bits (x, mode);
8767 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8768 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8771 /* Return the number of "extended" bits there are in X, when interpreted
8772 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8773 unsigned quantities, this is the number of high-order zero bits.
8774 For signed quantities, this is the number of copies of the sign bit
8775 minus 1. In both case, this function returns the number of "spare"
8776 bits. For example, if two quantities for which this function returns
8777 at least 1 are added, the addition is known not to overflow.
8779 This function will always return 0 unless called during combine, which
8780 implies that it must be called from a define_split. */
8782 unsigned int
8783 extended_count (x, mode, unsignedp)
8784 rtx x;
8785 enum machine_mode mode;
8786 int unsignedp;
8788 if (nonzero_sign_valid == 0)
8789 return 0;
8791 return (unsignedp
8792 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8793 ? (GET_MODE_BITSIZE (mode) - 1
8794 - floor_log2 (nonzero_bits (x, mode)))
8795 : 0)
8796 : num_sign_bit_copies (x, mode) - 1);
8799 /* This function is called from `simplify_shift_const' to merge two
8800 outer operations. Specifically, we have already found that we need
8801 to perform operation *POP0 with constant *PCONST0 at the outermost
8802 position. We would now like to also perform OP1 with constant CONST1
8803 (with *POP0 being done last).
8805 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8806 the resulting operation. *PCOMP_P is set to 1 if we would need to
8807 complement the innermost operand, otherwise it is unchanged.
8809 MODE is the mode in which the operation will be done. No bits outside
8810 the width of this mode matter. It is assumed that the width of this mode
8811 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8813 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8814 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8815 result is simply *PCONST0.
8817 If the resulting operation cannot be expressed as one operation, we
8818 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8820 static int
8821 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8822 enum rtx_code *pop0;
8823 HOST_WIDE_INT *pconst0;
8824 enum rtx_code op1;
8825 HOST_WIDE_INT const1;
8826 enum machine_mode mode;
8827 int *pcomp_p;
8829 enum rtx_code op0 = *pop0;
8830 HOST_WIDE_INT const0 = *pconst0;
8832 const0 &= GET_MODE_MASK (mode);
8833 const1 &= GET_MODE_MASK (mode);
8835 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8836 if (op0 == AND)
8837 const1 &= const0;
8839 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8840 if OP0 is SET. */
8842 if (op1 == NIL || op0 == SET)
8843 return 1;
8845 else if (op0 == NIL)
8846 op0 = op1, const0 = const1;
8848 else if (op0 == op1)
8850 switch (op0)
8852 case AND:
8853 const0 &= const1;
8854 break;
8855 case IOR:
8856 const0 |= const1;
8857 break;
8858 case XOR:
8859 const0 ^= const1;
8860 break;
8861 case PLUS:
8862 const0 += const1;
8863 break;
8864 case NEG:
8865 op0 = NIL;
8866 break;
8867 default:
8868 break;
8872 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8873 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8874 return 0;
8876 /* If the two constants aren't the same, we can't do anything. The
8877 remaining six cases can all be done. */
8878 else if (const0 != const1)
8879 return 0;
8881 else
8882 switch (op0)
8884 case IOR:
8885 if (op1 == AND)
8886 /* (a & b) | b == b */
8887 op0 = SET;
8888 else /* op1 == XOR */
8889 /* (a ^ b) | b == a | b */
8891 break;
8893 case XOR:
8894 if (op1 == AND)
8895 /* (a & b) ^ b == (~a) & b */
8896 op0 = AND, *pcomp_p = 1;
8897 else /* op1 == IOR */
8898 /* (a | b) ^ b == a & ~b */
8899 op0 = AND, *pconst0 = ~const0;
8900 break;
8902 case AND:
8903 if (op1 == IOR)
8904 /* (a | b) & b == b */
8905 op0 = SET;
8906 else /* op1 == XOR */
8907 /* (a ^ b) & b) == (~a) & b */
8908 *pcomp_p = 1;
8909 break;
8910 default:
8911 break;
8914 /* Check for NO-OP cases. */
8915 const0 &= GET_MODE_MASK (mode);
8916 if (const0 == 0
8917 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8918 op0 = NIL;
8919 else if (const0 == 0 && op0 == AND)
8920 op0 = SET;
8921 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8922 && op0 == AND)
8923 op0 = NIL;
8925 /* ??? Slightly redundant with the above mask, but not entirely.
8926 Moving this above means we'd have to sign-extend the mode mask
8927 for the final test. */
8928 const0 = trunc_int_for_mode (const0, mode);
8930 *pop0 = op0;
8931 *pconst0 = const0;
8933 return 1;
8936 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8937 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8938 that we started with.
8940 The shift is normally computed in the widest mode we find in VAROP, as
8941 long as it isn't a different number of words than RESULT_MODE. Exceptions
8942 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8944 static rtx
8945 simplify_shift_const (x, code, result_mode, varop, orig_count)
8946 rtx x;
8947 enum rtx_code code;
8948 enum machine_mode result_mode;
8949 rtx varop;
8950 int orig_count;
8952 enum rtx_code orig_code = code;
8953 unsigned int count;
8954 int signed_count;
8955 enum machine_mode mode = result_mode;
8956 enum machine_mode shift_mode, tmode;
8957 unsigned int mode_words
8958 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8959 /* We form (outer_op (code varop count) (outer_const)). */
8960 enum rtx_code outer_op = NIL;
8961 HOST_WIDE_INT outer_const = 0;
8962 rtx const_rtx;
8963 int complement_p = 0;
8964 rtx new;
8966 /* Make sure and truncate the "natural" shift on the way in. We don't
8967 want to do this inside the loop as it makes it more difficult to
8968 combine shifts. */
8969 #ifdef SHIFT_COUNT_TRUNCATED
8970 if (SHIFT_COUNT_TRUNCATED)
8971 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8972 #endif
8974 /* If we were given an invalid count, don't do anything except exactly
8975 what was requested. */
8977 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8979 if (x)
8980 return x;
8982 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8985 count = orig_count;
8987 /* Unless one of the branches of the `if' in this loop does a `continue',
8988 we will `break' the loop after the `if'. */
8990 while (count != 0)
8992 /* If we have an operand of (clobber (const_int 0)), just return that
8993 value. */
8994 if (GET_CODE (varop) == CLOBBER)
8995 return varop;
8997 /* If we discovered we had to complement VAROP, leave. Making a NOT
8998 here would cause an infinite loop. */
8999 if (complement_p)
9000 break;
9002 /* Convert ROTATERT to ROTATE. */
9003 if (code == ROTATERT)
9004 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
9006 /* We need to determine what mode we will do the shift in. If the
9007 shift is a right shift or a ROTATE, we must always do it in the mode
9008 it was originally done in. Otherwise, we can do it in MODE, the
9009 widest mode encountered. */
9010 shift_mode
9011 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9012 ? result_mode : mode);
9014 /* Handle cases where the count is greater than the size of the mode
9015 minus 1. For ASHIFT, use the size minus one as the count (this can
9016 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9017 take the count modulo the size. For other shifts, the result is
9018 zero.
9020 Since these shifts are being produced by the compiler by combining
9021 multiple operations, each of which are defined, we know what the
9022 result is supposed to be. */
9024 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
9026 if (code == ASHIFTRT)
9027 count = GET_MODE_BITSIZE (shift_mode) - 1;
9028 else if (code == ROTATE || code == ROTATERT)
9029 count %= GET_MODE_BITSIZE (shift_mode);
9030 else
9032 /* We can't simply return zero because there may be an
9033 outer op. */
9034 varop = const0_rtx;
9035 count = 0;
9036 break;
9040 /* An arithmetic right shift of a quantity known to be -1 or 0
9041 is a no-op. */
9042 if (code == ASHIFTRT
9043 && (num_sign_bit_copies (varop, shift_mode)
9044 == GET_MODE_BITSIZE (shift_mode)))
9046 count = 0;
9047 break;
9050 /* If we are doing an arithmetic right shift and discarding all but
9051 the sign bit copies, this is equivalent to doing a shift by the
9052 bitsize minus one. Convert it into that shift because it will often
9053 allow other simplifications. */
9055 if (code == ASHIFTRT
9056 && (count + num_sign_bit_copies (varop, shift_mode)
9057 >= GET_MODE_BITSIZE (shift_mode)))
9058 count = GET_MODE_BITSIZE (shift_mode) - 1;
9060 /* We simplify the tests below and elsewhere by converting
9061 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9062 `make_compound_operation' will convert it to an ASHIFTRT for
9063 those machines (such as VAX) that don't have an LSHIFTRT. */
9064 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9065 && code == ASHIFTRT
9066 && ((nonzero_bits (varop, shift_mode)
9067 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9068 == 0))
9069 code = LSHIFTRT;
9071 switch (GET_CODE (varop))
9073 case SIGN_EXTEND:
9074 case ZERO_EXTEND:
9075 case SIGN_EXTRACT:
9076 case ZERO_EXTRACT:
9077 new = expand_compound_operation (varop);
9078 if (new != varop)
9080 varop = new;
9081 continue;
9083 break;
9085 case MEM:
9086 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9087 minus the width of a smaller mode, we can do this with a
9088 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9089 if ((code == ASHIFTRT || code == LSHIFTRT)
9090 && ! mode_dependent_address_p (XEXP (varop, 0))
9091 && ! MEM_VOLATILE_P (varop)
9092 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9093 MODE_INT, 1)) != BLKmode)
9095 new = adjust_address_nv (varop, tmode,
9096 BYTES_BIG_ENDIAN ? 0
9097 : count / BITS_PER_UNIT);
9099 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9100 : ZERO_EXTEND, mode, new);
9101 count = 0;
9102 continue;
9104 break;
9106 case USE:
9107 /* Similar to the case above, except that we can only do this if
9108 the resulting mode is the same as that of the underlying
9109 MEM and adjust the address depending on the *bits* endianness
9110 because of the way that bit-field extract insns are defined. */
9111 if ((code == ASHIFTRT || code == LSHIFTRT)
9112 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9113 MODE_INT, 1)) != BLKmode
9114 && tmode == GET_MODE (XEXP (varop, 0)))
9116 if (BITS_BIG_ENDIAN)
9117 new = XEXP (varop, 0);
9118 else
9120 new = copy_rtx (XEXP (varop, 0));
9121 SUBST (XEXP (new, 0),
9122 plus_constant (XEXP (new, 0),
9123 count / BITS_PER_UNIT));
9126 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9127 : ZERO_EXTEND, mode, new);
9128 count = 0;
9129 continue;
9131 break;
9133 case SUBREG:
9134 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9135 the same number of words as what we've seen so far. Then store
9136 the widest mode in MODE. */
9137 if (subreg_lowpart_p (varop)
9138 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9139 > GET_MODE_SIZE (GET_MODE (varop)))
9140 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9141 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9142 == mode_words))
9144 varop = SUBREG_REG (varop);
9145 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9146 mode = GET_MODE (varop);
9147 continue;
9149 break;
9151 case MULT:
9152 /* Some machines use MULT instead of ASHIFT because MULT
9153 is cheaper. But it is still better on those machines to
9154 merge two shifts into one. */
9155 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9156 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9158 varop
9159 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9160 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9161 continue;
9163 break;
9165 case UDIV:
9166 /* Similar, for when divides are cheaper. */
9167 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9168 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9170 varop
9171 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9172 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9173 continue;
9175 break;
9177 case ASHIFTRT:
9178 /* If we are extracting just the sign bit of an arithmetic
9179 right shift, that shift is not needed. However, the sign
9180 bit of a wider mode may be different from what would be
9181 interpreted as the sign bit in a narrower mode, so, if
9182 the result is narrower, don't discard the shift. */
9183 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9184 && (GET_MODE_BITSIZE (result_mode)
9185 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9187 varop = XEXP (varop, 0);
9188 continue;
9191 /* ... fall through ... */
9193 case LSHIFTRT:
9194 case ASHIFT:
9195 case ROTATE:
9196 /* Here we have two nested shifts. The result is usually the
9197 AND of a new shift with a mask. We compute the result below. */
9198 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9199 && INTVAL (XEXP (varop, 1)) >= 0
9200 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9201 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9202 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9204 enum rtx_code first_code = GET_CODE (varop);
9205 unsigned int first_count = INTVAL (XEXP (varop, 1));
9206 unsigned HOST_WIDE_INT mask;
9207 rtx mask_rtx;
9209 /* We have one common special case. We can't do any merging if
9210 the inner code is an ASHIFTRT of a smaller mode. However, if
9211 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9212 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9213 we can convert it to
9214 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9215 This simplifies certain SIGN_EXTEND operations. */
9216 if (code == ASHIFT && first_code == ASHIFTRT
9217 && (GET_MODE_BITSIZE (result_mode)
9218 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9220 /* C3 has the low-order C1 bits zero. */
9222 mask = (GET_MODE_MASK (mode)
9223 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9225 varop = simplify_and_const_int (NULL_RTX, result_mode,
9226 XEXP (varop, 0), mask);
9227 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9228 varop, count);
9229 count = first_count;
9230 code = ASHIFTRT;
9231 continue;
9234 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9235 than C1 high-order bits equal to the sign bit, we can convert
9236 this to either an ASHIFT or an ASHIFTRT depending on the
9237 two counts.
9239 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9241 if (code == ASHIFTRT && first_code == ASHIFT
9242 && GET_MODE (varop) == shift_mode
9243 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9244 > first_count))
9246 varop = XEXP (varop, 0);
9248 signed_count = count - first_count;
9249 if (signed_count < 0)
9250 count = -signed_count, code = ASHIFT;
9251 else
9252 count = signed_count;
9254 continue;
9257 /* There are some cases we can't do. If CODE is ASHIFTRT,
9258 we can only do this if FIRST_CODE is also ASHIFTRT.
9260 We can't do the case when CODE is ROTATE and FIRST_CODE is
9261 ASHIFTRT.
9263 If the mode of this shift is not the mode of the outer shift,
9264 we can't do this if either shift is a right shift or ROTATE.
9266 Finally, we can't do any of these if the mode is too wide
9267 unless the codes are the same.
9269 Handle the case where the shift codes are the same
9270 first. */
9272 if (code == first_code)
9274 if (GET_MODE (varop) != result_mode
9275 && (code == ASHIFTRT || code == LSHIFTRT
9276 || code == ROTATE))
9277 break;
9279 count += first_count;
9280 varop = XEXP (varop, 0);
9281 continue;
9284 if (code == ASHIFTRT
9285 || (code == ROTATE && first_code == ASHIFTRT)
9286 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9287 || (GET_MODE (varop) != result_mode
9288 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9289 || first_code == ROTATE
9290 || code == ROTATE)))
9291 break;
9293 /* To compute the mask to apply after the shift, shift the
9294 nonzero bits of the inner shift the same way the
9295 outer shift will. */
9297 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9299 mask_rtx
9300 = simplify_binary_operation (code, result_mode, mask_rtx,
9301 GEN_INT (count));
9303 /* Give up if we can't compute an outer operation to use. */
9304 if (mask_rtx == 0
9305 || GET_CODE (mask_rtx) != CONST_INT
9306 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9307 INTVAL (mask_rtx),
9308 result_mode, &complement_p))
9309 break;
9311 /* If the shifts are in the same direction, we add the
9312 counts. Otherwise, we subtract them. */
9313 signed_count = count;
9314 if ((code == ASHIFTRT || code == LSHIFTRT)
9315 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9316 signed_count += first_count;
9317 else
9318 signed_count -= first_count;
9320 /* If COUNT is positive, the new shift is usually CODE,
9321 except for the two exceptions below, in which case it is
9322 FIRST_CODE. If the count is negative, FIRST_CODE should
9323 always be used */
9324 if (signed_count > 0
9325 && ((first_code == ROTATE && code == ASHIFT)
9326 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9327 code = first_code, count = signed_count;
9328 else if (signed_count < 0)
9329 code = first_code, count = -signed_count;
9330 else
9331 count = signed_count;
9333 varop = XEXP (varop, 0);
9334 continue;
9337 /* If we have (A << B << C) for any shift, we can convert this to
9338 (A << C << B). This wins if A is a constant. Only try this if
9339 B is not a constant. */
9341 else if (GET_CODE (varop) == code
9342 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9343 && 0 != (new
9344 = simplify_binary_operation (code, mode,
9345 XEXP (varop, 0),
9346 GEN_INT (count))))
9348 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9349 count = 0;
9350 continue;
9352 break;
9354 case NOT:
9355 /* Make this fit the case below. */
9356 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9357 GEN_INT (GET_MODE_MASK (mode)));
9358 continue;
9360 case IOR:
9361 case AND:
9362 case XOR:
9363 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9364 with C the size of VAROP - 1 and the shift is logical if
9365 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9366 we have an (le X 0) operation. If we have an arithmetic shift
9367 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9368 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9370 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9371 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9372 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9373 && (code == LSHIFTRT || code == ASHIFTRT)
9374 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9375 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9377 count = 0;
9378 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9379 const0_rtx);
9381 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9382 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9384 continue;
9387 /* If we have (shift (logical)), move the logical to the outside
9388 to allow it to possibly combine with another logical and the
9389 shift to combine with another shift. This also canonicalizes to
9390 what a ZERO_EXTRACT looks like. Also, some machines have
9391 (and (shift)) insns. */
9393 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9394 && (new = simplify_binary_operation (code, result_mode,
9395 XEXP (varop, 1),
9396 GEN_INT (count))) != 0
9397 && GET_CODE (new) == CONST_INT
9398 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9399 INTVAL (new), result_mode, &complement_p))
9401 varop = XEXP (varop, 0);
9402 continue;
9405 /* If we can't do that, try to simplify the shift in each arm of the
9406 logical expression, make a new logical expression, and apply
9407 the inverse distributive law. */
9409 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9410 XEXP (varop, 0), count);
9411 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9412 XEXP (varop, 1), count);
9414 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9415 varop = apply_distributive_law (varop);
9417 count = 0;
9419 break;
9421 case EQ:
9422 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9423 says that the sign bit can be tested, FOO has mode MODE, C is
9424 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9425 that may be nonzero. */
9426 if (code == LSHIFTRT
9427 && XEXP (varop, 1) == const0_rtx
9428 && GET_MODE (XEXP (varop, 0)) == result_mode
9429 && count == GET_MODE_BITSIZE (result_mode) - 1
9430 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9431 && ((STORE_FLAG_VALUE
9432 & ((HOST_WIDE_INT) 1
9433 < (GET_MODE_BITSIZE (result_mode) - 1))))
9434 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9435 && merge_outer_ops (&outer_op, &outer_const, XOR,
9436 (HOST_WIDE_INT) 1, result_mode,
9437 &complement_p))
9439 varop = XEXP (varop, 0);
9440 count = 0;
9441 continue;
9443 break;
9445 case NEG:
9446 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9447 than the number of bits in the mode is equivalent to A. */
9448 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9449 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9451 varop = XEXP (varop, 0);
9452 count = 0;
9453 continue;
9456 /* NEG commutes with ASHIFT since it is multiplication. Move the
9457 NEG outside to allow shifts to combine. */
9458 if (code == ASHIFT
9459 && merge_outer_ops (&outer_op, &outer_const, NEG,
9460 (HOST_WIDE_INT) 0, result_mode,
9461 &complement_p))
9463 varop = XEXP (varop, 0);
9464 continue;
9466 break;
9468 case PLUS:
9469 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9470 is one less than the number of bits in the mode is
9471 equivalent to (xor A 1). */
9472 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9473 && XEXP (varop, 1) == constm1_rtx
9474 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9475 && merge_outer_ops (&outer_op, &outer_const, XOR,
9476 (HOST_WIDE_INT) 1, result_mode,
9477 &complement_p))
9479 count = 0;
9480 varop = XEXP (varop, 0);
9481 continue;
9484 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9485 that might be nonzero in BAR are those being shifted out and those
9486 bits are known zero in FOO, we can replace the PLUS with FOO.
9487 Similarly in the other operand order. This code occurs when
9488 we are computing the size of a variable-size array. */
9490 if ((code == ASHIFTRT || code == LSHIFTRT)
9491 && count < HOST_BITS_PER_WIDE_INT
9492 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9493 && (nonzero_bits (XEXP (varop, 1), result_mode)
9494 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9496 varop = XEXP (varop, 0);
9497 continue;
9499 else if ((code == ASHIFTRT || code == LSHIFTRT)
9500 && count < HOST_BITS_PER_WIDE_INT
9501 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9502 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9503 >> count)
9504 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9505 & nonzero_bits (XEXP (varop, 1),
9506 result_mode)))
9508 varop = XEXP (varop, 1);
9509 continue;
9512 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9513 if (code == ASHIFT
9514 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9515 && (new = simplify_binary_operation (ASHIFT, result_mode,
9516 XEXP (varop, 1),
9517 GEN_INT (count))) != 0
9518 && GET_CODE (new) == CONST_INT
9519 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9520 INTVAL (new), result_mode, &complement_p))
9522 varop = XEXP (varop, 0);
9523 continue;
9525 break;
9527 case MINUS:
9528 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9529 with C the size of VAROP - 1 and the shift is logical if
9530 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9531 we have a (gt X 0) operation. If the shift is arithmetic with
9532 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9533 we have a (neg (gt X 0)) operation. */
9535 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9536 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9537 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9538 && (code == LSHIFTRT || code == ASHIFTRT)
9539 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9540 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9541 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9543 count = 0;
9544 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9545 const0_rtx);
9547 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9548 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9550 continue;
9552 break;
9554 case TRUNCATE:
9555 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9556 if the truncate does not affect the value. */
9557 if (code == LSHIFTRT
9558 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9559 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9560 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9561 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9562 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9564 rtx varop_inner = XEXP (varop, 0);
9566 varop_inner
9567 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9568 XEXP (varop_inner, 0),
9569 GEN_INT
9570 (count + INTVAL (XEXP (varop_inner, 1))));
9571 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9572 count = 0;
9573 continue;
9575 break;
9577 default:
9578 break;
9581 break;
9584 /* We need to determine what mode to do the shift in. If the shift is
9585 a right shift or ROTATE, we must always do it in the mode it was
9586 originally done in. Otherwise, we can do it in MODE, the widest mode
9587 encountered. The code we care about is that of the shift that will
9588 actually be done, not the shift that was originally requested. */
9589 shift_mode
9590 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9591 ? result_mode : mode);
9593 /* We have now finished analyzing the shift. The result should be
9594 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9595 OUTER_OP is non-NIL, it is an operation that needs to be applied
9596 to the result of the shift. OUTER_CONST is the relevant constant,
9597 but we must turn off all bits turned off in the shift.
9599 If we were passed a value for X, see if we can use any pieces of
9600 it. If not, make new rtx. */
9602 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9603 && GET_CODE (XEXP (x, 1)) == CONST_INT
9604 && INTVAL (XEXP (x, 1)) == count)
9605 const_rtx = XEXP (x, 1);
9606 else
9607 const_rtx = GEN_INT (count);
9609 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9610 && GET_MODE (XEXP (x, 0)) == shift_mode
9611 && SUBREG_REG (XEXP (x, 0)) == varop)
9612 varop = XEXP (x, 0);
9613 else if (GET_MODE (varop) != shift_mode)
9614 varop = gen_lowpart_for_combine (shift_mode, varop);
9616 /* If we can't make the SUBREG, try to return what we were given. */
9617 if (GET_CODE (varop) == CLOBBER)
9618 return x ? x : varop;
9620 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9621 if (new != 0)
9622 x = new;
9623 else
9624 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9626 /* If we have an outer operation and we just made a shift, it is
9627 possible that we could have simplified the shift were it not
9628 for the outer operation. So try to do the simplification
9629 recursively. */
9631 if (outer_op != NIL && GET_CODE (x) == code
9632 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9633 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9634 INTVAL (XEXP (x, 1)));
9636 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9637 turn off all the bits that the shift would have turned off. */
9638 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9639 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9640 GET_MODE_MASK (result_mode) >> orig_count);
9642 /* Do the remainder of the processing in RESULT_MODE. */
9643 x = gen_lowpart_for_combine (result_mode, x);
9645 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9646 operation. */
9647 if (complement_p)
9648 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9650 if (outer_op != NIL)
9652 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9653 outer_const = trunc_int_for_mode (outer_const, result_mode);
9655 if (outer_op == AND)
9656 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9657 else if (outer_op == SET)
9658 /* This means that we have determined that the result is
9659 equivalent to a constant. This should be rare. */
9660 x = GEN_INT (outer_const);
9661 else if (GET_RTX_CLASS (outer_op) == '1')
9662 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9663 else
9664 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9667 return x;
9670 /* Like recog, but we receive the address of a pointer to a new pattern.
9671 We try to match the rtx that the pointer points to.
9672 If that fails, we may try to modify or replace the pattern,
9673 storing the replacement into the same pointer object.
9675 Modifications include deletion or addition of CLOBBERs.
9677 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9678 the CLOBBERs are placed.
9680 The value is the final insn code from the pattern ultimately matched,
9681 or -1. */
9683 static int
9684 recog_for_combine (pnewpat, insn, pnotes)
9685 rtx *pnewpat;
9686 rtx insn;
9687 rtx *pnotes;
9689 rtx pat = *pnewpat;
9690 int insn_code_number;
9691 int num_clobbers_to_add = 0;
9692 int i;
9693 rtx notes = 0;
9694 rtx dummy_insn;
9696 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9697 we use to indicate that something didn't match. If we find such a
9698 thing, force rejection. */
9699 if (GET_CODE (pat) == PARALLEL)
9700 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9701 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9702 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9703 return -1;
9705 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9706 instruction for pattern recognition. */
9707 dummy_insn = shallow_copy_rtx (insn);
9708 PATTERN (dummy_insn) = pat;
9709 REG_NOTES (dummy_insn) = 0;
9711 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9713 /* If it isn't, there is the possibility that we previously had an insn
9714 that clobbered some register as a side effect, but the combined
9715 insn doesn't need to do that. So try once more without the clobbers
9716 unless this represents an ASM insn. */
9718 if (insn_code_number < 0 && ! check_asm_operands (pat)
9719 && GET_CODE (pat) == PARALLEL)
9721 int pos;
9723 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9724 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9726 if (i != pos)
9727 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9728 pos++;
9731 SUBST_INT (XVECLEN (pat, 0), pos);
9733 if (pos == 1)
9734 pat = XVECEXP (pat, 0, 0);
9736 PATTERN (dummy_insn) = pat;
9737 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9740 /* Recognize all noop sets, these will be killed by followup pass. */
9741 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9742 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9744 /* If we had any clobbers to add, make a new pattern than contains
9745 them. Then check to make sure that all of them are dead. */
9746 if (num_clobbers_to_add)
9748 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9749 rtvec_alloc (GET_CODE (pat) == PARALLEL
9750 ? (XVECLEN (pat, 0)
9751 + num_clobbers_to_add)
9752 : num_clobbers_to_add + 1));
9754 if (GET_CODE (pat) == PARALLEL)
9755 for (i = 0; i < XVECLEN (pat, 0); i++)
9756 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9757 else
9758 XVECEXP (newpat, 0, 0) = pat;
9760 add_clobbers (newpat, insn_code_number);
9762 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9763 i < XVECLEN (newpat, 0); i++)
9765 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9766 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9767 return -1;
9768 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9769 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9771 pat = newpat;
9774 *pnewpat = pat;
9775 *pnotes = notes;
9777 return insn_code_number;
9780 /* Like gen_lowpart but for use by combine. In combine it is not possible
9781 to create any new pseudoregs. However, it is safe to create
9782 invalid memory addresses, because combine will try to recognize
9783 them and all they will do is make the combine attempt fail.
9785 If for some reason this cannot do its job, an rtx
9786 (clobber (const_int 0)) is returned.
9787 An insn containing that will not be recognized. */
9789 #undef gen_lowpart
9791 static rtx
9792 gen_lowpart_for_combine (mode, x)
9793 enum machine_mode mode;
9794 rtx x;
9796 rtx result;
9798 if (GET_MODE (x) == mode)
9799 return x;
9801 /* We can only support MODE being wider than a word if X is a
9802 constant integer or has a mode the same size. */
9804 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9805 && ! ((GET_MODE (x) == VOIDmode
9806 && (GET_CODE (x) == CONST_INT
9807 || GET_CODE (x) == CONST_DOUBLE))
9808 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9809 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9811 /* simplify_gen_subreg does not know how to handle the case where we try
9812 to convert an integer constant to a vector.
9813 ??? We could try to teach it to generate CONST_VECTORs. */
9814 if (GET_MODE (x) == VOIDmode && VECTOR_MODE_P (mode))
9815 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9817 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9818 won't know what to do. So we will strip off the SUBREG here and
9819 process normally. */
9820 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9822 x = SUBREG_REG (x);
9823 if (GET_MODE (x) == mode)
9824 return x;
9827 result = gen_lowpart_common (mode, x);
9828 #ifdef CLASS_CANNOT_CHANGE_MODE
9829 if (result != 0
9830 && GET_CODE (result) == SUBREG
9831 && GET_CODE (SUBREG_REG (result)) == REG
9832 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9833 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9834 GET_MODE (SUBREG_REG (result))))
9835 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9836 #endif
9838 if (result)
9839 return result;
9841 if (GET_CODE (x) == MEM)
9843 int offset = 0;
9845 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9846 address. */
9847 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9848 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9850 /* If we want to refer to something bigger than the original memref,
9851 generate a perverse subreg instead. That will force a reload
9852 of the original memref X. */
9853 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9854 return gen_rtx_SUBREG (mode, x, 0);
9856 if (WORDS_BIG_ENDIAN)
9857 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9858 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9860 if (BYTES_BIG_ENDIAN)
9862 /* Adjust the address so that the address-after-the-data is
9863 unchanged. */
9864 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9865 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9868 return adjust_address_nv (x, mode, offset);
9871 /* If X is a comparison operator, rewrite it in a new mode. This
9872 probably won't match, but may allow further simplifications. */
9873 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9874 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9876 /* If we couldn't simplify X any other way, just enclose it in a
9877 SUBREG. Normally, this SUBREG won't match, but some patterns may
9878 include an explicit SUBREG or we may simplify it further in combine. */
9879 else
9881 int offset = 0;
9882 rtx res;
9884 offset = subreg_lowpart_offset (mode, GET_MODE (x));
9885 res = simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9886 if (res)
9887 return res;
9888 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9892 /* These routines make binary and unary operations by first seeing if they
9893 fold; if not, a new expression is allocated. */
9895 static rtx
9896 gen_binary (code, mode, op0, op1)
9897 enum rtx_code code;
9898 enum machine_mode mode;
9899 rtx op0, op1;
9901 rtx result;
9902 rtx tem;
9904 if (GET_RTX_CLASS (code) == 'c'
9905 && swap_commutative_operands_p (op0, op1))
9906 tem = op0, op0 = op1, op1 = tem;
9908 if (GET_RTX_CLASS (code) == '<')
9910 enum machine_mode op_mode = GET_MODE (op0);
9912 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9913 just (REL_OP X Y). */
9914 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9916 op1 = XEXP (op0, 1);
9917 op0 = XEXP (op0, 0);
9918 op_mode = GET_MODE (op0);
9921 if (op_mode == VOIDmode)
9922 op_mode = GET_MODE (op1);
9923 result = simplify_relational_operation (code, op_mode, op0, op1);
9925 else
9926 result = simplify_binary_operation (code, mode, op0, op1);
9928 if (result)
9929 return result;
9931 /* Put complex operands first and constants second. */
9932 if (GET_RTX_CLASS (code) == 'c'
9933 && swap_commutative_operands_p (op0, op1))
9934 return gen_rtx_fmt_ee (code, mode, op1, op0);
9936 /* If we are turning off bits already known off in OP0, we need not do
9937 an AND. */
9938 else if (code == AND && GET_CODE (op1) == CONST_INT
9939 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9940 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9941 return op0;
9943 return gen_rtx_fmt_ee (code, mode, op0, op1);
9946 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9947 comparison code that will be tested.
9949 The result is a possibly different comparison code to use. *POP0 and
9950 *POP1 may be updated.
9952 It is possible that we might detect that a comparison is either always
9953 true or always false. However, we do not perform general constant
9954 folding in combine, so this knowledge isn't useful. Such tautologies
9955 should have been detected earlier. Hence we ignore all such cases. */
9957 static enum rtx_code
9958 simplify_comparison (code, pop0, pop1)
9959 enum rtx_code code;
9960 rtx *pop0;
9961 rtx *pop1;
9963 rtx op0 = *pop0;
9964 rtx op1 = *pop1;
9965 rtx tem, tem1;
9966 int i;
9967 enum machine_mode mode, tmode;
9969 /* Try a few ways of applying the same transformation to both operands. */
9970 while (1)
9972 #ifndef WORD_REGISTER_OPERATIONS
9973 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9974 so check specially. */
9975 if (code != GTU && code != GEU && code != LTU && code != LEU
9976 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9977 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9978 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9979 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9980 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9981 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9982 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9983 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9984 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9985 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9986 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9987 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9988 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9989 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9990 && (INTVAL (XEXP (op0, 1))
9991 == (GET_MODE_BITSIZE (GET_MODE (op0))
9992 - (GET_MODE_BITSIZE
9993 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9995 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9996 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9998 #endif
10000 /* If both operands are the same constant shift, see if we can ignore the
10001 shift. We can if the shift is a rotate or if the bits shifted out of
10002 this shift are known to be zero for both inputs and if the type of
10003 comparison is compatible with the shift. */
10004 if (GET_CODE (op0) == GET_CODE (op1)
10005 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10006 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10007 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10008 && (code != GT && code != LT && code != GE && code != LE))
10009 || (GET_CODE (op0) == ASHIFTRT
10010 && (code != GTU && code != LTU
10011 && code != GEU && code != LEU)))
10012 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10013 && INTVAL (XEXP (op0, 1)) >= 0
10014 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10015 && XEXP (op0, 1) == XEXP (op1, 1))
10017 enum machine_mode mode = GET_MODE (op0);
10018 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10019 int shift_count = INTVAL (XEXP (op0, 1));
10021 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10022 mask &= (mask >> shift_count) << shift_count;
10023 else if (GET_CODE (op0) == ASHIFT)
10024 mask = (mask & (mask << shift_count)) >> shift_count;
10026 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10027 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10028 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10029 else
10030 break;
10033 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10034 SUBREGs are of the same mode, and, in both cases, the AND would
10035 be redundant if the comparison was done in the narrower mode,
10036 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10037 and the operand's possibly nonzero bits are 0xffffff01; in that case
10038 if we only care about QImode, we don't need the AND). This case
10039 occurs if the output mode of an scc insn is not SImode and
10040 STORE_FLAG_VALUE == 1 (e.g., the 386).
10042 Similarly, check for a case where the AND's are ZERO_EXTEND
10043 operations from some narrower mode even though a SUBREG is not
10044 present. */
10046 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10047 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10048 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10050 rtx inner_op0 = XEXP (op0, 0);
10051 rtx inner_op1 = XEXP (op1, 0);
10052 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10053 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10054 int changed = 0;
10056 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10057 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10058 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10059 && (GET_MODE (SUBREG_REG (inner_op0))
10060 == GET_MODE (SUBREG_REG (inner_op1)))
10061 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10062 <= HOST_BITS_PER_WIDE_INT)
10063 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10064 GET_MODE (SUBREG_REG (inner_op0)))))
10065 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10066 GET_MODE (SUBREG_REG (inner_op1))))))
10068 op0 = SUBREG_REG (inner_op0);
10069 op1 = SUBREG_REG (inner_op1);
10071 /* The resulting comparison is always unsigned since we masked
10072 off the original sign bit. */
10073 code = unsigned_condition (code);
10075 changed = 1;
10078 else if (c0 == c1)
10079 for (tmode = GET_CLASS_NARROWEST_MODE
10080 (GET_MODE_CLASS (GET_MODE (op0)));
10081 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10082 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10084 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10085 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10086 code = unsigned_condition (code);
10087 changed = 1;
10088 break;
10091 if (! changed)
10092 break;
10095 /* If both operands are NOT, we can strip off the outer operation
10096 and adjust the comparison code for swapped operands; similarly for
10097 NEG, except that this must be an equality comparison. */
10098 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10099 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10100 && (code == EQ || code == NE)))
10101 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10103 else
10104 break;
10107 /* If the first operand is a constant, swap the operands and adjust the
10108 comparison code appropriately, but don't do this if the second operand
10109 is already a constant integer. */
10110 if (swap_commutative_operands_p (op0, op1))
10112 tem = op0, op0 = op1, op1 = tem;
10113 code = swap_condition (code);
10116 /* We now enter a loop during which we will try to simplify the comparison.
10117 For the most part, we only are concerned with comparisons with zero,
10118 but some things may really be comparisons with zero but not start
10119 out looking that way. */
10121 while (GET_CODE (op1) == CONST_INT)
10123 enum machine_mode mode = GET_MODE (op0);
10124 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10125 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10126 int equality_comparison_p;
10127 int sign_bit_comparison_p;
10128 int unsigned_comparison_p;
10129 HOST_WIDE_INT const_op;
10131 /* We only want to handle integral modes. This catches VOIDmode,
10132 CCmode, and the floating-point modes. An exception is that we
10133 can handle VOIDmode if OP0 is a COMPARE or a comparison
10134 operation. */
10136 if (GET_MODE_CLASS (mode) != MODE_INT
10137 && ! (mode == VOIDmode
10138 && (GET_CODE (op0) == COMPARE
10139 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10140 break;
10142 /* Get the constant we are comparing against and turn off all bits
10143 not on in our mode. */
10144 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10145 op1 = GEN_INT (const_op);
10147 /* If we are comparing against a constant power of two and the value
10148 being compared can only have that single bit nonzero (e.g., it was
10149 `and'ed with that bit), we can replace this with a comparison
10150 with zero. */
10151 if (const_op
10152 && (code == EQ || code == NE || code == GE || code == GEU
10153 || code == LT || code == LTU)
10154 && mode_width <= HOST_BITS_PER_WIDE_INT
10155 && exact_log2 (const_op) >= 0
10156 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10158 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10159 op1 = const0_rtx, const_op = 0;
10162 /* Similarly, if we are comparing a value known to be either -1 or
10163 0 with -1, change it to the opposite comparison against zero. */
10165 if (const_op == -1
10166 && (code == EQ || code == NE || code == GT || code == LE
10167 || code == GEU || code == LTU)
10168 && num_sign_bit_copies (op0, mode) == mode_width)
10170 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10171 op1 = const0_rtx, const_op = 0;
10174 /* Do some canonicalizations based on the comparison code. We prefer
10175 comparisons against zero and then prefer equality comparisons.
10176 If we can reduce the size of a constant, we will do that too. */
10178 switch (code)
10180 case LT:
10181 /* < C is equivalent to <= (C - 1) */
10182 if (const_op > 0)
10184 const_op -= 1;
10185 op1 = GEN_INT (const_op);
10186 code = LE;
10187 /* ... fall through to LE case below. */
10189 else
10190 break;
10192 case LE:
10193 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10194 if (const_op < 0)
10196 const_op += 1;
10197 op1 = GEN_INT (const_op);
10198 code = LT;
10201 /* If we are doing a <= 0 comparison on a value known to have
10202 a zero sign bit, we can replace this with == 0. */
10203 else if (const_op == 0
10204 && mode_width <= HOST_BITS_PER_WIDE_INT
10205 && (nonzero_bits (op0, mode)
10206 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10207 code = EQ;
10208 break;
10210 case GE:
10211 /* >= C is equivalent to > (C - 1). */
10212 if (const_op > 0)
10214 const_op -= 1;
10215 op1 = GEN_INT (const_op);
10216 code = GT;
10217 /* ... fall through to GT below. */
10219 else
10220 break;
10222 case GT:
10223 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10224 if (const_op < 0)
10226 const_op += 1;
10227 op1 = GEN_INT (const_op);
10228 code = GE;
10231 /* If we are doing a > 0 comparison on a value known to have
10232 a zero sign bit, we can replace this with != 0. */
10233 else if (const_op == 0
10234 && mode_width <= HOST_BITS_PER_WIDE_INT
10235 && (nonzero_bits (op0, mode)
10236 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10237 code = NE;
10238 break;
10240 case LTU:
10241 /* < C is equivalent to <= (C - 1). */
10242 if (const_op > 0)
10244 const_op -= 1;
10245 op1 = GEN_INT (const_op);
10246 code = LEU;
10247 /* ... fall through ... */
10250 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10251 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10252 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10254 const_op = 0, op1 = const0_rtx;
10255 code = GE;
10256 break;
10258 else
10259 break;
10261 case LEU:
10262 /* unsigned <= 0 is equivalent to == 0 */
10263 if (const_op == 0)
10264 code = EQ;
10266 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10267 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10268 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10270 const_op = 0, op1 = const0_rtx;
10271 code = GE;
10273 break;
10275 case GEU:
10276 /* >= C is equivalent to < (C - 1). */
10277 if (const_op > 1)
10279 const_op -= 1;
10280 op1 = GEN_INT (const_op);
10281 code = GTU;
10282 /* ... fall through ... */
10285 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10286 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10287 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10289 const_op = 0, op1 = const0_rtx;
10290 code = LT;
10291 break;
10293 else
10294 break;
10296 case GTU:
10297 /* unsigned > 0 is equivalent to != 0 */
10298 if (const_op == 0)
10299 code = NE;
10301 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10302 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10303 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10305 const_op = 0, op1 = const0_rtx;
10306 code = LT;
10308 break;
10310 default:
10311 break;
10314 /* Compute some predicates to simplify code below. */
10316 equality_comparison_p = (code == EQ || code == NE);
10317 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10318 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10319 || code == GEU);
10321 /* If this is a sign bit comparison and we can do arithmetic in
10322 MODE, say that we will only be needing the sign bit of OP0. */
10323 if (sign_bit_comparison_p
10324 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10325 op0 = force_to_mode (op0, mode,
10326 ((HOST_WIDE_INT) 1
10327 << (GET_MODE_BITSIZE (mode) - 1)),
10328 NULL_RTX, 0);
10330 /* Now try cases based on the opcode of OP0. If none of the cases
10331 does a "continue", we exit this loop immediately after the
10332 switch. */
10334 switch (GET_CODE (op0))
10336 case ZERO_EXTRACT:
10337 /* If we are extracting a single bit from a variable position in
10338 a constant that has only a single bit set and are comparing it
10339 with zero, we can convert this into an equality comparison
10340 between the position and the location of the single bit. */
10342 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10343 && XEXP (op0, 1) == const1_rtx
10344 && equality_comparison_p && const_op == 0
10345 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10347 if (BITS_BIG_ENDIAN)
10349 enum machine_mode new_mode
10350 = mode_for_extraction (EP_extzv, 1);
10351 if (new_mode == MAX_MACHINE_MODE)
10352 i = BITS_PER_WORD - 1 - i;
10353 else
10355 mode = new_mode;
10356 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10360 op0 = XEXP (op0, 2);
10361 op1 = GEN_INT (i);
10362 const_op = i;
10364 /* Result is nonzero iff shift count is equal to I. */
10365 code = reverse_condition (code);
10366 continue;
10369 /* ... fall through ... */
10371 case SIGN_EXTRACT:
10372 tem = expand_compound_operation (op0);
10373 if (tem != op0)
10375 op0 = tem;
10376 continue;
10378 break;
10380 case NOT:
10381 /* If testing for equality, we can take the NOT of the constant. */
10382 if (equality_comparison_p
10383 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10385 op0 = XEXP (op0, 0);
10386 op1 = tem;
10387 continue;
10390 /* If just looking at the sign bit, reverse the sense of the
10391 comparison. */
10392 if (sign_bit_comparison_p)
10394 op0 = XEXP (op0, 0);
10395 code = (code == GE ? LT : GE);
10396 continue;
10398 break;
10400 case NEG:
10401 /* If testing for equality, we can take the NEG of the constant. */
10402 if (equality_comparison_p
10403 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10405 op0 = XEXP (op0, 0);
10406 op1 = tem;
10407 continue;
10410 /* The remaining cases only apply to comparisons with zero. */
10411 if (const_op != 0)
10412 break;
10414 /* When X is ABS or is known positive,
10415 (neg X) is < 0 if and only if X != 0. */
10417 if (sign_bit_comparison_p
10418 && (GET_CODE (XEXP (op0, 0)) == ABS
10419 || (mode_width <= HOST_BITS_PER_WIDE_INT
10420 && (nonzero_bits (XEXP (op0, 0), mode)
10421 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10423 op0 = XEXP (op0, 0);
10424 code = (code == LT ? NE : EQ);
10425 continue;
10428 /* If we have NEG of something whose two high-order bits are the
10429 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10430 if (num_sign_bit_copies (op0, mode) >= 2)
10432 op0 = XEXP (op0, 0);
10433 code = swap_condition (code);
10434 continue;
10436 break;
10438 case ROTATE:
10439 /* If we are testing equality and our count is a constant, we
10440 can perform the inverse operation on our RHS. */
10441 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10442 && (tem = simplify_binary_operation (ROTATERT, mode,
10443 op1, XEXP (op0, 1))) != 0)
10445 op0 = XEXP (op0, 0);
10446 op1 = tem;
10447 continue;
10450 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10451 a particular bit. Convert it to an AND of a constant of that
10452 bit. This will be converted into a ZERO_EXTRACT. */
10453 if (const_op == 0 && sign_bit_comparison_p
10454 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10455 && mode_width <= HOST_BITS_PER_WIDE_INT)
10457 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10458 ((HOST_WIDE_INT) 1
10459 << (mode_width - 1
10460 - INTVAL (XEXP (op0, 1)))));
10461 code = (code == LT ? NE : EQ);
10462 continue;
10465 /* Fall through. */
10467 case ABS:
10468 /* ABS is ignorable inside an equality comparison with zero. */
10469 if (const_op == 0 && equality_comparison_p)
10471 op0 = XEXP (op0, 0);
10472 continue;
10474 break;
10476 case SIGN_EXTEND:
10477 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10478 to (compare FOO CONST) if CONST fits in FOO's mode and we
10479 are either testing inequality or have an unsigned comparison
10480 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10481 if (! unsigned_comparison_p
10482 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10483 <= HOST_BITS_PER_WIDE_INT)
10484 && ((unsigned HOST_WIDE_INT) const_op
10485 < (((unsigned HOST_WIDE_INT) 1
10486 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10488 op0 = XEXP (op0, 0);
10489 continue;
10491 break;
10493 case SUBREG:
10494 /* Check for the case where we are comparing A - C1 with C2,
10495 both constants are smaller than 1/2 the maximum positive
10496 value in MODE, and the comparison is equality or unsigned.
10497 In that case, if A is either zero-extended to MODE or has
10498 sufficient sign bits so that the high-order bit in MODE
10499 is a copy of the sign in the inner mode, we can prove that it is
10500 safe to do the operation in the wider mode. This simplifies
10501 many range checks. */
10503 if (mode_width <= HOST_BITS_PER_WIDE_INT
10504 && subreg_lowpart_p (op0)
10505 && GET_CODE (SUBREG_REG (op0)) == PLUS
10506 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10507 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10508 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10509 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10510 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10511 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10512 GET_MODE (SUBREG_REG (op0)))
10513 & ~GET_MODE_MASK (mode))
10514 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10515 GET_MODE (SUBREG_REG (op0)))
10516 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10517 - GET_MODE_BITSIZE (mode)))))
10519 op0 = SUBREG_REG (op0);
10520 continue;
10523 /* If the inner mode is narrower and we are extracting the low part,
10524 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10525 if (subreg_lowpart_p (op0)
10526 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10527 /* Fall through */ ;
10528 else
10529 break;
10531 /* ... fall through ... */
10533 case ZERO_EXTEND:
10534 if ((unsigned_comparison_p || equality_comparison_p)
10535 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10536 <= HOST_BITS_PER_WIDE_INT)
10537 && ((unsigned HOST_WIDE_INT) const_op
10538 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10540 op0 = XEXP (op0, 0);
10541 continue;
10543 break;
10545 case PLUS:
10546 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10547 this for equality comparisons due to pathological cases involving
10548 overflows. */
10549 if (equality_comparison_p
10550 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10551 op1, XEXP (op0, 1))))
10553 op0 = XEXP (op0, 0);
10554 op1 = tem;
10555 continue;
10558 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10559 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10560 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10562 op0 = XEXP (XEXP (op0, 0), 0);
10563 code = (code == LT ? EQ : NE);
10564 continue;
10566 break;
10568 case MINUS:
10569 /* We used to optimize signed comparisons against zero, but that
10570 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10571 arrive here as equality comparisons, or (GEU, LTU) are
10572 optimized away. No need to special-case them. */
10574 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10575 (eq B (minus A C)), whichever simplifies. We can only do
10576 this for equality comparisons due to pathological cases involving
10577 overflows. */
10578 if (equality_comparison_p
10579 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10580 XEXP (op0, 1), op1)))
10582 op0 = XEXP (op0, 0);
10583 op1 = tem;
10584 continue;
10587 if (equality_comparison_p
10588 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10589 XEXP (op0, 0), op1)))
10591 op0 = XEXP (op0, 1);
10592 op1 = tem;
10593 continue;
10596 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10597 of bits in X minus 1, is one iff X > 0. */
10598 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10599 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10600 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10601 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10603 op0 = XEXP (op0, 1);
10604 code = (code == GE ? LE : GT);
10605 continue;
10607 break;
10609 case XOR:
10610 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10611 if C is zero or B is a constant. */
10612 if (equality_comparison_p
10613 && 0 != (tem = simplify_binary_operation (XOR, mode,
10614 XEXP (op0, 1), op1)))
10616 op0 = XEXP (op0, 0);
10617 op1 = tem;
10618 continue;
10620 break;
10622 case EQ: case NE:
10623 case UNEQ: case LTGT:
10624 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10625 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10626 case UNORDERED: case ORDERED:
10627 /* We can't do anything if OP0 is a condition code value, rather
10628 than an actual data value. */
10629 if (const_op != 0
10630 #ifdef HAVE_cc0
10631 || XEXP (op0, 0) == cc0_rtx
10632 #endif
10633 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10634 break;
10636 /* Get the two operands being compared. */
10637 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10638 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10639 else
10640 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10642 /* Check for the cases where we simply want the result of the
10643 earlier test or the opposite of that result. */
10644 if (code == NE || code == EQ
10645 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10646 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10647 && (STORE_FLAG_VALUE
10648 & (((HOST_WIDE_INT) 1
10649 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10650 && (code == LT || code == GE)))
10652 enum rtx_code new_code;
10653 if (code == LT || code == NE)
10654 new_code = GET_CODE (op0);
10655 else
10656 new_code = combine_reversed_comparison_code (op0);
10658 if (new_code != UNKNOWN)
10660 code = new_code;
10661 op0 = tem;
10662 op1 = tem1;
10663 continue;
10666 break;
10668 case IOR:
10669 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10670 iff X <= 0. */
10671 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10672 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10673 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10675 op0 = XEXP (op0, 1);
10676 code = (code == GE ? GT : LE);
10677 continue;
10679 break;
10681 case AND:
10682 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10683 will be converted to a ZERO_EXTRACT later. */
10684 if (const_op == 0 && equality_comparison_p
10685 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10686 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10688 op0 = simplify_and_const_int
10689 (op0, mode, gen_rtx_LSHIFTRT (mode,
10690 XEXP (op0, 1),
10691 XEXP (XEXP (op0, 0), 1)),
10692 (HOST_WIDE_INT) 1);
10693 continue;
10696 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10697 zero and X is a comparison and C1 and C2 describe only bits set
10698 in STORE_FLAG_VALUE, we can compare with X. */
10699 if (const_op == 0 && equality_comparison_p
10700 && mode_width <= HOST_BITS_PER_WIDE_INT
10701 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10702 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10703 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10704 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10705 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10707 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10708 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10709 if ((~STORE_FLAG_VALUE & mask) == 0
10710 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10711 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10712 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10714 op0 = XEXP (XEXP (op0, 0), 0);
10715 continue;
10719 /* If we are doing an equality comparison of an AND of a bit equal
10720 to the sign bit, replace this with a LT or GE comparison of
10721 the underlying value. */
10722 if (equality_comparison_p
10723 && const_op == 0
10724 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10725 && mode_width <= HOST_BITS_PER_WIDE_INT
10726 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10727 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10729 op0 = XEXP (op0, 0);
10730 code = (code == EQ ? GE : LT);
10731 continue;
10734 /* If this AND operation is really a ZERO_EXTEND from a narrower
10735 mode, the constant fits within that mode, and this is either an
10736 equality or unsigned comparison, try to do this comparison in
10737 the narrower mode. */
10738 if ((equality_comparison_p || unsigned_comparison_p)
10739 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10740 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10741 & GET_MODE_MASK (mode))
10742 + 1)) >= 0
10743 && const_op >> i == 0
10744 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10746 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10747 continue;
10750 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10751 in both M1 and M2 and the SUBREG is either paradoxical or
10752 represents the low part, permute the SUBREG and the AND and
10753 try again. */
10754 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10755 && (0
10756 #ifdef WORD_REGISTER_OPERATIONS
10757 || ((mode_width
10758 > (GET_MODE_BITSIZE
10759 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10760 && mode_width <= BITS_PER_WORD)
10761 #endif
10762 || ((mode_width
10763 <= (GET_MODE_BITSIZE
10764 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10765 && subreg_lowpart_p (XEXP (op0, 0))))
10766 #ifndef WORD_REGISTER_OPERATIONS
10767 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10768 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10769 As originally written the upper bits have a defined value
10770 due to the AND operation. However, if we commute the AND
10771 inside the SUBREG then they no longer have defined values
10772 and the meaning of the code has been changed. */
10773 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10774 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10775 #endif
10776 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10777 && mode_width <= HOST_BITS_PER_WIDE_INT
10778 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10779 <= HOST_BITS_PER_WIDE_INT)
10780 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10781 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10782 & INTVAL (XEXP (op0, 1)))
10783 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10784 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10785 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10789 = gen_lowpart_for_combine
10790 (mode,
10791 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10792 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10793 continue;
10796 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10797 (eq (and (lshiftrt X) 1) 0). */
10798 if (const_op == 0 && equality_comparison_p
10799 && XEXP (op0, 1) == const1_rtx
10800 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10801 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10803 op0 = simplify_and_const_int
10804 (op0, mode,
10805 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10806 XEXP (XEXP (op0, 0), 1)),
10807 (HOST_WIDE_INT) 1);
10808 code = (code == NE ? EQ : NE);
10809 continue;
10811 break;
10813 case ASHIFT:
10814 /* If we have (compare (ashift FOO N) (const_int C)) and
10815 the high order N bits of FOO (N+1 if an inequality comparison)
10816 are known to be zero, we can do this by comparing FOO with C
10817 shifted right N bits so long as the low-order N bits of C are
10818 zero. */
10819 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10820 && INTVAL (XEXP (op0, 1)) >= 0
10821 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10822 < HOST_BITS_PER_WIDE_INT)
10823 && ((const_op
10824 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10825 && mode_width <= HOST_BITS_PER_WIDE_INT
10826 && (nonzero_bits (XEXP (op0, 0), mode)
10827 & ~(mask >> (INTVAL (XEXP (op0, 1))
10828 + ! equality_comparison_p))) == 0)
10830 /* We must perform a logical shift, not an arithmetic one,
10831 as we want the top N bits of C to be zero. */
10832 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10834 temp >>= INTVAL (XEXP (op0, 1));
10835 op1 = gen_int_mode (temp, mode);
10836 op0 = XEXP (op0, 0);
10837 continue;
10840 /* If we are doing a sign bit comparison, it means we are testing
10841 a particular bit. Convert it to the appropriate AND. */
10842 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10843 && mode_width <= HOST_BITS_PER_WIDE_INT)
10845 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10846 ((HOST_WIDE_INT) 1
10847 << (mode_width - 1
10848 - INTVAL (XEXP (op0, 1)))));
10849 code = (code == LT ? NE : EQ);
10850 continue;
10853 /* If this an equality comparison with zero and we are shifting
10854 the low bit to the sign bit, we can convert this to an AND of the
10855 low-order bit. */
10856 if (const_op == 0 && equality_comparison_p
10857 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10858 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10860 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10861 (HOST_WIDE_INT) 1);
10862 continue;
10864 break;
10866 case ASHIFTRT:
10867 /* If this is an equality comparison with zero, we can do this
10868 as a logical shift, which might be much simpler. */
10869 if (equality_comparison_p && const_op == 0
10870 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10872 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10873 XEXP (op0, 0),
10874 INTVAL (XEXP (op0, 1)));
10875 continue;
10878 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10879 do the comparison in a narrower mode. */
10880 if (! unsigned_comparison_p
10881 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10882 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10883 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10884 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10885 MODE_INT, 1)) != BLKmode
10886 && (((unsigned HOST_WIDE_INT) const_op
10887 + (GET_MODE_MASK (tmode) >> 1) + 1)
10888 <= GET_MODE_MASK (tmode)))
10890 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10891 continue;
10894 /* Likewise if OP0 is a PLUS of a sign extension with a
10895 constant, which is usually represented with the PLUS
10896 between the shifts. */
10897 if (! unsigned_comparison_p
10898 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10899 && GET_CODE (XEXP (op0, 0)) == PLUS
10900 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10901 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10902 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10903 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10904 MODE_INT, 1)) != BLKmode
10905 && (((unsigned HOST_WIDE_INT) const_op
10906 + (GET_MODE_MASK (tmode) >> 1) + 1)
10907 <= GET_MODE_MASK (tmode)))
10909 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10910 rtx add_const = XEXP (XEXP (op0, 0), 1);
10911 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10912 XEXP (op0, 1));
10914 op0 = gen_binary (PLUS, tmode,
10915 gen_lowpart_for_combine (tmode, inner),
10916 new_const);
10917 continue;
10920 /* ... fall through ... */
10921 case LSHIFTRT:
10922 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10923 the low order N bits of FOO are known to be zero, we can do this
10924 by comparing FOO with C shifted left N bits so long as no
10925 overflow occurs. */
10926 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10927 && INTVAL (XEXP (op0, 1)) >= 0
10928 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10929 && mode_width <= HOST_BITS_PER_WIDE_INT
10930 && (nonzero_bits (XEXP (op0, 0), mode)
10931 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10932 && (((unsigned HOST_WIDE_INT) const_op
10933 + (GET_CODE (op0) != LSHIFTRT
10934 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10935 + 1)
10936 : 0))
10937 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10939 /* If the shift was logical, then we must make the condition
10940 unsigned. */
10941 if (GET_CODE (op0) == LSHIFTRT)
10942 code = unsigned_condition (code);
10944 const_op <<= INTVAL (XEXP (op0, 1));
10945 op1 = GEN_INT (const_op);
10946 op0 = XEXP (op0, 0);
10947 continue;
10950 /* If we are using this shift to extract just the sign bit, we
10951 can replace this with an LT or GE comparison. */
10952 if (const_op == 0
10953 && (equality_comparison_p || sign_bit_comparison_p)
10954 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10955 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10957 op0 = XEXP (op0, 0);
10958 code = (code == NE || code == GT ? LT : GE);
10959 continue;
10961 break;
10963 default:
10964 break;
10967 break;
10970 /* Now make any compound operations involved in this comparison. Then,
10971 check for an outmost SUBREG on OP0 that is not doing anything or is
10972 paradoxical. The latter transformation must only be performed when
10973 it is known that the "extra" bits will be the same in op0 and op1 or
10974 that they don't matter. There are three cases to consider:
10976 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10977 care bits and we can assume they have any convenient value. So
10978 making the transformation is safe.
10980 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10981 In this case the upper bits of op0 are undefined. We should not make
10982 the simplification in that case as we do not know the contents of
10983 those bits.
10985 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10986 NIL. In that case we know those bits are zeros or ones. We must
10987 also be sure that they are the same as the upper bits of op1.
10989 We can never remove a SUBREG for a non-equality comparison because
10990 the sign bit is in a different place in the underlying object. */
10992 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10993 op1 = make_compound_operation (op1, SET);
10995 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10996 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
10997 implemented. */
10998 && GET_CODE (SUBREG_REG (op0)) == REG
10999 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11000 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11001 && (code == NE || code == EQ))
11003 if (GET_MODE_SIZE (GET_MODE (op0))
11004 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11006 op0 = SUBREG_REG (op0);
11007 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11009 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11010 <= HOST_BITS_PER_WIDE_INT)
11011 && (nonzero_bits (SUBREG_REG (op0),
11012 GET_MODE (SUBREG_REG (op0)))
11013 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11015 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11017 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11018 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11019 op0 = SUBREG_REG (op0), op1 = tem;
11023 /* We now do the opposite procedure: Some machines don't have compare
11024 insns in all modes. If OP0's mode is an integer mode smaller than a
11025 word and we can't do a compare in that mode, see if there is a larger
11026 mode for which we can do the compare. There are a number of cases in
11027 which we can use the wider mode. */
11029 mode = GET_MODE (op0);
11030 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11031 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11032 && ! have_insn_for (COMPARE, mode))
11033 for (tmode = GET_MODE_WIDER_MODE (mode);
11034 (tmode != VOIDmode
11035 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11036 tmode = GET_MODE_WIDER_MODE (tmode))
11037 if (have_insn_for (COMPARE, tmode))
11039 int zero_extended;
11041 /* If the only nonzero bits in OP0 and OP1 are those in the
11042 narrower mode and this is an equality or unsigned comparison,
11043 we can use the wider mode. Similarly for sign-extended
11044 values, in which case it is true for all comparisons. */
11045 zero_extended = ((code == EQ || code == NE
11046 || code == GEU || code == GTU
11047 || code == LEU || code == LTU)
11048 && (nonzero_bits (op0, tmode)
11049 & ~GET_MODE_MASK (mode)) == 0
11050 && ((GET_CODE (op1) == CONST_INT
11051 || (nonzero_bits (op1, tmode)
11052 & ~GET_MODE_MASK (mode)) == 0)));
11054 if (zero_extended
11055 || ((num_sign_bit_copies (op0, tmode)
11056 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
11057 && (num_sign_bit_copies (op1, tmode)
11058 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
11060 /* If OP0 is an AND and we don't have an AND in MODE either,
11061 make a new AND in the proper mode. */
11062 if (GET_CODE (op0) == AND
11063 && !have_insn_for (AND, mode))
11064 op0 = gen_binary (AND, tmode,
11065 gen_lowpart_for_combine (tmode,
11066 XEXP (op0, 0)),
11067 gen_lowpart_for_combine (tmode,
11068 XEXP (op0, 1)));
11070 op0 = gen_lowpart_for_combine (tmode, op0);
11071 if (zero_extended && GET_CODE (op1) == CONST_INT)
11072 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11073 op1 = gen_lowpart_for_combine (tmode, op1);
11074 break;
11077 /* If this is a test for negative, we can make an explicit
11078 test of the sign bit. */
11080 if (op1 == const0_rtx && (code == LT || code == GE)
11081 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11083 op0 = gen_binary (AND, tmode,
11084 gen_lowpart_for_combine (tmode, op0),
11085 GEN_INT ((HOST_WIDE_INT) 1
11086 << (GET_MODE_BITSIZE (mode) - 1)));
11087 code = (code == LT) ? NE : EQ;
11088 break;
11092 #ifdef CANONICALIZE_COMPARISON
11093 /* If this machine only supports a subset of valid comparisons, see if we
11094 can convert an unsupported one into a supported one. */
11095 CANONICALIZE_COMPARISON (code, op0, op1);
11096 #endif
11098 *pop0 = op0;
11099 *pop1 = op1;
11101 return code;
11104 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11105 searching backward. */
11106 static enum rtx_code
11107 combine_reversed_comparison_code (exp)
11108 rtx exp;
11110 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11111 rtx x;
11113 if (code1 != UNKNOWN
11114 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11115 return code1;
11116 /* Otherwise try and find where the condition codes were last set and
11117 use that. */
11118 x = get_last_value (XEXP (exp, 0));
11119 if (!x || GET_CODE (x) != COMPARE)
11120 return UNKNOWN;
11121 return reversed_comparison_code_parts (GET_CODE (exp),
11122 XEXP (x, 0), XEXP (x, 1), NULL);
11124 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11125 Return NULL_RTX in case we fail to do the reversal. */
11126 static rtx
11127 reversed_comparison (exp, mode, op0, op1)
11128 rtx exp, op0, op1;
11129 enum machine_mode mode;
11131 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11132 if (reversed_code == UNKNOWN)
11133 return NULL_RTX;
11134 else
11135 return gen_binary (reversed_code, mode, op0, op1);
11138 /* Utility function for following routine. Called when X is part of a value
11139 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11140 for each register mentioned. Similar to mention_regs in cse.c */
11142 static void
11143 update_table_tick (x)
11144 rtx x;
11146 enum rtx_code code = GET_CODE (x);
11147 const char *fmt = GET_RTX_FORMAT (code);
11148 int i;
11150 if (code == REG)
11152 unsigned int regno = REGNO (x);
11153 unsigned int endregno
11154 = regno + (regno < FIRST_PSEUDO_REGISTER
11155 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11156 unsigned int r;
11158 for (r = regno; r < endregno; r++)
11159 reg_last_set_table_tick[r] = label_tick;
11161 return;
11164 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11165 /* Note that we can't have an "E" in values stored; see
11166 get_last_value_validate. */
11167 if (fmt[i] == 'e')
11168 update_table_tick (XEXP (x, i));
11171 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11172 are saying that the register is clobbered and we no longer know its
11173 value. If INSN is zero, don't update reg_last_set; this is only permitted
11174 with VALUE also zero and is used to invalidate the register. */
11176 static void
11177 record_value_for_reg (reg, insn, value)
11178 rtx reg;
11179 rtx insn;
11180 rtx value;
11182 unsigned int regno = REGNO (reg);
11183 unsigned int endregno
11184 = regno + (regno < FIRST_PSEUDO_REGISTER
11185 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11186 unsigned int i;
11188 /* If VALUE contains REG and we have a previous value for REG, substitute
11189 the previous value. */
11190 if (value && insn && reg_overlap_mentioned_p (reg, value))
11192 rtx tem;
11194 /* Set things up so get_last_value is allowed to see anything set up to
11195 our insn. */
11196 subst_low_cuid = INSN_CUID (insn);
11197 tem = get_last_value (reg);
11199 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11200 it isn't going to be useful and will take a lot of time to process,
11201 so just use the CLOBBER. */
11203 if (tem)
11205 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11206 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11207 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11208 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11209 tem = XEXP (tem, 0);
11211 value = replace_rtx (copy_rtx (value), reg, tem);
11215 /* For each register modified, show we don't know its value, that
11216 we don't know about its bitwise content, that its value has been
11217 updated, and that we don't know the location of the death of the
11218 register. */
11219 for (i = regno; i < endregno; i++)
11221 if (insn)
11222 reg_last_set[i] = insn;
11224 reg_last_set_value[i] = 0;
11225 reg_last_set_mode[i] = 0;
11226 reg_last_set_nonzero_bits[i] = 0;
11227 reg_last_set_sign_bit_copies[i] = 0;
11228 reg_last_death[i] = 0;
11231 /* Mark registers that are being referenced in this value. */
11232 if (value)
11233 update_table_tick (value);
11235 /* Now update the status of each register being set.
11236 If someone is using this register in this block, set this register
11237 to invalid since we will get confused between the two lives in this
11238 basic block. This makes using this register always invalid. In cse, we
11239 scan the table to invalidate all entries using this register, but this
11240 is too much work for us. */
11242 for (i = regno; i < endregno; i++)
11244 reg_last_set_label[i] = label_tick;
11245 if (value && reg_last_set_table_tick[i] == label_tick)
11246 reg_last_set_invalid[i] = 1;
11247 else
11248 reg_last_set_invalid[i] = 0;
11251 /* The value being assigned might refer to X (like in "x++;"). In that
11252 case, we must replace it with (clobber (const_int 0)) to prevent
11253 infinite loops. */
11254 if (value && ! get_last_value_validate (&value, insn,
11255 reg_last_set_label[regno], 0))
11257 value = copy_rtx (value);
11258 if (! get_last_value_validate (&value, insn,
11259 reg_last_set_label[regno], 1))
11260 value = 0;
11263 /* For the main register being modified, update the value, the mode, the
11264 nonzero bits, and the number of sign bit copies. */
11266 reg_last_set_value[regno] = value;
11268 if (value)
11270 enum machine_mode mode = GET_MODE (reg);
11271 subst_low_cuid = INSN_CUID (insn);
11272 reg_last_set_mode[regno] = mode;
11273 if (GET_MODE_CLASS (mode) == MODE_INT
11274 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11275 mode = nonzero_bits_mode;
11276 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11277 reg_last_set_sign_bit_copies[regno]
11278 = num_sign_bit_copies (value, GET_MODE (reg));
11282 /* Called via note_stores from record_dead_and_set_regs to handle one
11283 SET or CLOBBER in an insn. DATA is the instruction in which the
11284 set is occurring. */
11286 static void
11287 record_dead_and_set_regs_1 (dest, setter, data)
11288 rtx dest, setter;
11289 void *data;
11291 rtx record_dead_insn = (rtx) data;
11293 if (GET_CODE (dest) == SUBREG)
11294 dest = SUBREG_REG (dest);
11296 if (GET_CODE (dest) == REG)
11298 /* If we are setting the whole register, we know its value. Otherwise
11299 show that we don't know the value. We can handle SUBREG in
11300 some cases. */
11301 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11302 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11303 else if (GET_CODE (setter) == SET
11304 && GET_CODE (SET_DEST (setter)) == SUBREG
11305 && SUBREG_REG (SET_DEST (setter)) == dest
11306 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11307 && subreg_lowpart_p (SET_DEST (setter)))
11308 record_value_for_reg (dest, record_dead_insn,
11309 gen_lowpart_for_combine (GET_MODE (dest),
11310 SET_SRC (setter)));
11311 else
11312 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11314 else if (GET_CODE (dest) == MEM
11315 /* Ignore pushes, they clobber nothing. */
11316 && ! push_operand (dest, GET_MODE (dest)))
11317 mem_last_set = INSN_CUID (record_dead_insn);
11320 /* Update the records of when each REG was most recently set or killed
11321 for the things done by INSN. This is the last thing done in processing
11322 INSN in the combiner loop.
11324 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11325 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11326 and also the similar information mem_last_set (which insn most recently
11327 modified memory) and last_call_cuid (which insn was the most recent
11328 subroutine call). */
11330 static void
11331 record_dead_and_set_regs (insn)
11332 rtx insn;
11334 rtx link;
11335 unsigned int i;
11337 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11339 if (REG_NOTE_KIND (link) == REG_DEAD
11340 && GET_CODE (XEXP (link, 0)) == REG)
11342 unsigned int regno = REGNO (XEXP (link, 0));
11343 unsigned int endregno
11344 = regno + (regno < FIRST_PSEUDO_REGISTER
11345 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11346 : 1);
11348 for (i = regno; i < endregno; i++)
11349 reg_last_death[i] = insn;
11351 else if (REG_NOTE_KIND (link) == REG_INC)
11352 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11355 if (GET_CODE (insn) == CALL_INSN)
11357 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11358 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11360 reg_last_set_value[i] = 0;
11361 reg_last_set_mode[i] = 0;
11362 reg_last_set_nonzero_bits[i] = 0;
11363 reg_last_set_sign_bit_copies[i] = 0;
11364 reg_last_death[i] = 0;
11367 last_call_cuid = mem_last_set = INSN_CUID (insn);
11369 /* Don't bother recording what this insn does. It might set the
11370 return value register, but we can't combine into a call
11371 pattern anyway, so there's no point trying (and it may cause
11372 a crash, if e.g. we wind up asking for last_set_value of a
11373 SUBREG of the return value register). */
11374 return;
11377 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11380 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11381 register present in the SUBREG, so for each such SUBREG go back and
11382 adjust nonzero and sign bit information of the registers that are
11383 known to have some zero/sign bits set.
11385 This is needed because when combine blows the SUBREGs away, the
11386 information on zero/sign bits is lost and further combines can be
11387 missed because of that. */
11389 static void
11390 record_promoted_value (insn, subreg)
11391 rtx insn;
11392 rtx subreg;
11394 rtx links, set;
11395 unsigned int regno = REGNO (SUBREG_REG (subreg));
11396 enum machine_mode mode = GET_MODE (subreg);
11398 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11399 return;
11401 for (links = LOG_LINKS (insn); links;)
11403 insn = XEXP (links, 0);
11404 set = single_set (insn);
11406 if (! set || GET_CODE (SET_DEST (set)) != REG
11407 || REGNO (SET_DEST (set)) != regno
11408 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11410 links = XEXP (links, 1);
11411 continue;
11414 if (reg_last_set[regno] == insn)
11416 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11417 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11420 if (GET_CODE (SET_SRC (set)) == REG)
11422 regno = REGNO (SET_SRC (set));
11423 links = LOG_LINKS (insn);
11425 else
11426 break;
11430 /* Scan X for promoted SUBREGs. For each one found,
11431 note what it implies to the registers used in it. */
11433 static void
11434 check_promoted_subreg (insn, x)
11435 rtx insn;
11436 rtx x;
11438 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11439 && GET_CODE (SUBREG_REG (x)) == REG)
11440 record_promoted_value (insn, x);
11441 else
11443 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11444 int i, j;
11446 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11447 switch (format[i])
11449 case 'e':
11450 check_promoted_subreg (insn, XEXP (x, i));
11451 break;
11452 case 'V':
11453 case 'E':
11454 if (XVEC (x, i) != 0)
11455 for (j = 0; j < XVECLEN (x, i); j++)
11456 check_promoted_subreg (insn, XVECEXP (x, i, j));
11457 break;
11462 /* Utility routine for the following function. Verify that all the registers
11463 mentioned in *LOC are valid when *LOC was part of a value set when
11464 label_tick == TICK. Return 0 if some are not.
11466 If REPLACE is non-zero, replace the invalid reference with
11467 (clobber (const_int 0)) and return 1. This replacement is useful because
11468 we often can get useful information about the form of a value (e.g., if
11469 it was produced by a shift that always produces -1 or 0) even though
11470 we don't know exactly what registers it was produced from. */
11472 static int
11473 get_last_value_validate (loc, insn, tick, replace)
11474 rtx *loc;
11475 rtx insn;
11476 int tick;
11477 int replace;
11479 rtx x = *loc;
11480 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11481 int len = GET_RTX_LENGTH (GET_CODE (x));
11482 int i;
11484 if (GET_CODE (x) == REG)
11486 unsigned int regno = REGNO (x);
11487 unsigned int endregno
11488 = regno + (regno < FIRST_PSEUDO_REGISTER
11489 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11490 unsigned int j;
11492 for (j = regno; j < endregno; j++)
11493 if (reg_last_set_invalid[j]
11494 /* If this is a pseudo-register that was only set once and not
11495 live at the beginning of the function, it is always valid. */
11496 || (! (regno >= FIRST_PSEUDO_REGISTER
11497 && REG_N_SETS (regno) == 1
11498 && (! REGNO_REG_SET_P
11499 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11500 && reg_last_set_label[j] > tick))
11502 if (replace)
11503 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11504 return replace;
11507 return 1;
11509 /* If this is a memory reference, make sure that there were
11510 no stores after it that might have clobbered the value. We don't
11511 have alias info, so we assume any store invalidates it. */
11512 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11513 && INSN_CUID (insn) <= mem_last_set)
11515 if (replace)
11516 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11517 return replace;
11520 for (i = 0; i < len; i++)
11521 if ((fmt[i] == 'e'
11522 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11523 /* Don't bother with these. They shouldn't occur anyway. */
11524 || fmt[i] == 'E')
11525 return 0;
11527 /* If we haven't found a reason for it to be invalid, it is valid. */
11528 return 1;
11531 /* Get the last value assigned to X, if known. Some registers
11532 in the value may be replaced with (clobber (const_int 0)) if their value
11533 is known longer known reliably. */
11535 static rtx
11536 get_last_value (x)
11537 rtx x;
11539 unsigned int regno;
11540 rtx value;
11542 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11543 then convert it to the desired mode. If this is a paradoxical SUBREG,
11544 we cannot predict what values the "extra" bits might have. */
11545 if (GET_CODE (x) == SUBREG
11546 && subreg_lowpart_p (x)
11547 && (GET_MODE_SIZE (GET_MODE (x))
11548 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11549 && (value = get_last_value (SUBREG_REG (x))) != 0)
11550 return gen_lowpart_for_combine (GET_MODE (x), value);
11552 if (GET_CODE (x) != REG)
11553 return 0;
11555 regno = REGNO (x);
11556 value = reg_last_set_value[regno];
11558 /* If we don't have a value, or if it isn't for this basic block and
11559 it's either a hard register, set more than once, or it's a live
11560 at the beginning of the function, return 0.
11562 Because if it's not live at the beginning of the function then the reg
11563 is always set before being used (is never used without being set).
11564 And, if it's set only once, and it's always set before use, then all
11565 uses must have the same last value, even if it's not from this basic
11566 block. */
11568 if (value == 0
11569 || (reg_last_set_label[regno] != label_tick
11570 && (regno < FIRST_PSEUDO_REGISTER
11571 || REG_N_SETS (regno) != 1
11572 || (REGNO_REG_SET_P
11573 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11574 return 0;
11576 /* If the value was set in a later insn than the ones we are processing,
11577 we can't use it even if the register was only set once. */
11578 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11579 return 0;
11581 /* If the value has all its registers valid, return it. */
11582 if (get_last_value_validate (&value, reg_last_set[regno],
11583 reg_last_set_label[regno], 0))
11584 return value;
11586 /* Otherwise, make a copy and replace any invalid register with
11587 (clobber (const_int 0)). If that fails for some reason, return 0. */
11589 value = copy_rtx (value);
11590 if (get_last_value_validate (&value, reg_last_set[regno],
11591 reg_last_set_label[regno], 1))
11592 return value;
11594 return 0;
11597 /* Return nonzero if expression X refers to a REG or to memory
11598 that is set in an instruction more recent than FROM_CUID. */
11600 static int
11601 use_crosses_set_p (x, from_cuid)
11602 rtx x;
11603 int from_cuid;
11605 const char *fmt;
11606 int i;
11607 enum rtx_code code = GET_CODE (x);
11609 if (code == REG)
11611 unsigned int regno = REGNO (x);
11612 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11613 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11615 #ifdef PUSH_ROUNDING
11616 /* Don't allow uses of the stack pointer to be moved,
11617 because we don't know whether the move crosses a push insn. */
11618 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11619 return 1;
11620 #endif
11621 for (; regno < endreg; regno++)
11622 if (reg_last_set[regno]
11623 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11624 return 1;
11625 return 0;
11628 if (code == MEM && mem_last_set > from_cuid)
11629 return 1;
11631 fmt = GET_RTX_FORMAT (code);
11633 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11635 if (fmt[i] == 'E')
11637 int j;
11638 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11639 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11640 return 1;
11642 else if (fmt[i] == 'e'
11643 && use_crosses_set_p (XEXP (x, i), from_cuid))
11644 return 1;
11646 return 0;
11649 /* Define three variables used for communication between the following
11650 routines. */
11652 static unsigned int reg_dead_regno, reg_dead_endregno;
11653 static int reg_dead_flag;
11655 /* Function called via note_stores from reg_dead_at_p.
11657 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11658 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11660 static void
11661 reg_dead_at_p_1 (dest, x, data)
11662 rtx dest;
11663 rtx x;
11664 void *data ATTRIBUTE_UNUSED;
11666 unsigned int regno, endregno;
11668 if (GET_CODE (dest) != REG)
11669 return;
11671 regno = REGNO (dest);
11672 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11673 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11675 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11676 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11679 /* Return non-zero if REG is known to be dead at INSN.
11681 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11682 referencing REG, it is dead. If we hit a SET referencing REG, it is
11683 live. Otherwise, see if it is live or dead at the start of the basic
11684 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11685 must be assumed to be always live. */
11687 static int
11688 reg_dead_at_p (reg, insn)
11689 rtx reg;
11690 rtx insn;
11692 basic_block block;
11693 unsigned int i;
11695 /* Set variables for reg_dead_at_p_1. */
11696 reg_dead_regno = REGNO (reg);
11697 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11698 ? HARD_REGNO_NREGS (reg_dead_regno,
11699 GET_MODE (reg))
11700 : 1);
11702 reg_dead_flag = 0;
11704 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11705 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11707 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11708 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11709 return 0;
11712 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11713 beginning of function. */
11714 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11715 insn = prev_nonnote_insn (insn))
11717 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11718 if (reg_dead_flag)
11719 return reg_dead_flag == 1 ? 1 : 0;
11721 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11722 return 1;
11725 /* Get the basic block that we were in. */
11726 if (insn == 0)
11727 block = ENTRY_BLOCK_PTR->next_bb;
11728 else
11730 FOR_EACH_BB (block)
11731 if (insn == block->head)
11732 break;
11734 if (block == EXIT_BLOCK_PTR)
11735 return 0;
11738 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11739 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11740 return 0;
11742 return 1;
11745 /* Note hard registers in X that are used. This code is similar to
11746 that in flow.c, but much simpler since we don't care about pseudos. */
11748 static void
11749 mark_used_regs_combine (x)
11750 rtx x;
11752 RTX_CODE code = GET_CODE (x);
11753 unsigned int regno;
11754 int i;
11756 switch (code)
11758 case LABEL_REF:
11759 case SYMBOL_REF:
11760 case CONST_INT:
11761 case CONST:
11762 case CONST_DOUBLE:
11763 case CONST_VECTOR:
11764 case PC:
11765 case ADDR_VEC:
11766 case ADDR_DIFF_VEC:
11767 case ASM_INPUT:
11768 #ifdef HAVE_cc0
11769 /* CC0 must die in the insn after it is set, so we don't need to take
11770 special note of it here. */
11771 case CC0:
11772 #endif
11773 return;
11775 case CLOBBER:
11776 /* If we are clobbering a MEM, mark any hard registers inside the
11777 address as used. */
11778 if (GET_CODE (XEXP (x, 0)) == MEM)
11779 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11780 return;
11782 case REG:
11783 regno = REGNO (x);
11784 /* A hard reg in a wide mode may really be multiple registers.
11785 If so, mark all of them just like the first. */
11786 if (regno < FIRST_PSEUDO_REGISTER)
11788 unsigned int endregno, r;
11790 /* None of this applies to the stack, frame or arg pointers */
11791 if (regno == STACK_POINTER_REGNUM
11792 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11793 || regno == HARD_FRAME_POINTER_REGNUM
11794 #endif
11795 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11796 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11797 #endif
11798 || regno == FRAME_POINTER_REGNUM)
11799 return;
11801 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11802 for (r = regno; r < endregno; r++)
11803 SET_HARD_REG_BIT (newpat_used_regs, r);
11805 return;
11807 case SET:
11809 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11810 the address. */
11811 rtx testreg = SET_DEST (x);
11813 while (GET_CODE (testreg) == SUBREG
11814 || GET_CODE (testreg) == ZERO_EXTRACT
11815 || GET_CODE (testreg) == SIGN_EXTRACT
11816 || GET_CODE (testreg) == STRICT_LOW_PART)
11817 testreg = XEXP (testreg, 0);
11819 if (GET_CODE (testreg) == MEM)
11820 mark_used_regs_combine (XEXP (testreg, 0));
11822 mark_used_regs_combine (SET_SRC (x));
11824 return;
11826 default:
11827 break;
11830 /* Recursively scan the operands of this expression. */
11833 const char *fmt = GET_RTX_FORMAT (code);
11835 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11837 if (fmt[i] == 'e')
11838 mark_used_regs_combine (XEXP (x, i));
11839 else if (fmt[i] == 'E')
11841 int j;
11843 for (j = 0; j < XVECLEN (x, i); j++)
11844 mark_used_regs_combine (XVECEXP (x, i, j));
11850 /* Remove register number REGNO from the dead registers list of INSN.
11852 Return the note used to record the death, if there was one. */
11855 remove_death (regno, insn)
11856 unsigned int regno;
11857 rtx insn;
11859 rtx note = find_regno_note (insn, REG_DEAD, regno);
11861 if (note)
11863 REG_N_DEATHS (regno)--;
11864 remove_note (insn, note);
11867 return note;
11870 /* For each register (hardware or pseudo) used within expression X, if its
11871 death is in an instruction with cuid between FROM_CUID (inclusive) and
11872 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11873 list headed by PNOTES.
11875 That said, don't move registers killed by maybe_kill_insn.
11877 This is done when X is being merged by combination into TO_INSN. These
11878 notes will then be distributed as needed. */
11880 static void
11881 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11882 rtx x;
11883 rtx maybe_kill_insn;
11884 int from_cuid;
11885 rtx to_insn;
11886 rtx *pnotes;
11888 const char *fmt;
11889 int len, i;
11890 enum rtx_code code = GET_CODE (x);
11892 if (code == REG)
11894 unsigned int regno = REGNO (x);
11895 rtx where_dead = reg_last_death[regno];
11896 rtx before_dead, after_dead;
11898 /* Don't move the register if it gets killed in between from and to */
11899 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11900 && ! reg_referenced_p (x, maybe_kill_insn))
11901 return;
11903 /* WHERE_DEAD could be a USE insn made by combine, so first we
11904 make sure that we have insns with valid INSN_CUID values. */
11905 before_dead = where_dead;
11906 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11907 before_dead = PREV_INSN (before_dead);
11909 after_dead = where_dead;
11910 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11911 after_dead = NEXT_INSN (after_dead);
11913 if (before_dead && after_dead
11914 && INSN_CUID (before_dead) >= from_cuid
11915 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11916 || (where_dead != after_dead
11917 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11919 rtx note = remove_death (regno, where_dead);
11921 /* It is possible for the call above to return 0. This can occur
11922 when reg_last_death points to I2 or I1 that we combined with.
11923 In that case make a new note.
11925 We must also check for the case where X is a hard register
11926 and NOTE is a death note for a range of hard registers
11927 including X. In that case, we must put REG_DEAD notes for
11928 the remaining registers in place of NOTE. */
11930 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11931 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11932 > GET_MODE_SIZE (GET_MODE (x))))
11934 unsigned int deadregno = REGNO (XEXP (note, 0));
11935 unsigned int deadend
11936 = (deadregno + HARD_REGNO_NREGS (deadregno,
11937 GET_MODE (XEXP (note, 0))));
11938 unsigned int ourend
11939 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11940 unsigned int i;
11942 for (i = deadregno; i < deadend; i++)
11943 if (i < regno || i >= ourend)
11944 REG_NOTES (where_dead)
11945 = gen_rtx_EXPR_LIST (REG_DEAD,
11946 gen_rtx_REG (reg_raw_mode[i], i),
11947 REG_NOTES (where_dead));
11950 /* If we didn't find any note, or if we found a REG_DEAD note that
11951 covers only part of the given reg, and we have a multi-reg hard
11952 register, then to be safe we must check for REG_DEAD notes
11953 for each register other than the first. They could have
11954 their own REG_DEAD notes lying around. */
11955 else if ((note == 0
11956 || (note != 0
11957 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11958 < GET_MODE_SIZE (GET_MODE (x)))))
11959 && regno < FIRST_PSEUDO_REGISTER
11960 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11962 unsigned int ourend
11963 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11964 unsigned int i, offset;
11965 rtx oldnotes = 0;
11967 if (note)
11968 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11969 else
11970 offset = 1;
11972 for (i = regno + offset; i < ourend; i++)
11973 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11974 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11977 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11979 XEXP (note, 1) = *pnotes;
11980 *pnotes = note;
11982 else
11983 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11985 REG_N_DEATHS (regno)++;
11988 return;
11991 else if (GET_CODE (x) == SET)
11993 rtx dest = SET_DEST (x);
11995 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11997 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11998 that accesses one word of a multi-word item, some
11999 piece of everything register in the expression is used by
12000 this insn, so remove any old death. */
12001 /* ??? So why do we test for equality of the sizes? */
12003 if (GET_CODE (dest) == ZERO_EXTRACT
12004 || GET_CODE (dest) == STRICT_LOW_PART
12005 || (GET_CODE (dest) == SUBREG
12006 && (((GET_MODE_SIZE (GET_MODE (dest))
12007 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12008 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12009 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12011 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12012 return;
12015 /* If this is some other SUBREG, we know it replaces the entire
12016 value, so use that as the destination. */
12017 if (GET_CODE (dest) == SUBREG)
12018 dest = SUBREG_REG (dest);
12020 /* If this is a MEM, adjust deaths of anything used in the address.
12021 For a REG (the only other possibility), the entire value is
12022 being replaced so the old value is not used in this insn. */
12024 if (GET_CODE (dest) == MEM)
12025 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12026 to_insn, pnotes);
12027 return;
12030 else if (GET_CODE (x) == CLOBBER)
12031 return;
12033 len = GET_RTX_LENGTH (code);
12034 fmt = GET_RTX_FORMAT (code);
12036 for (i = 0; i < len; i++)
12038 if (fmt[i] == 'E')
12040 int j;
12041 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12042 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12043 to_insn, pnotes);
12045 else if (fmt[i] == 'e')
12046 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12050 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12051 pattern of an insn. X must be a REG. */
12053 static int
12054 reg_bitfield_target_p (x, body)
12055 rtx x;
12056 rtx body;
12058 int i;
12060 if (GET_CODE (body) == SET)
12062 rtx dest = SET_DEST (body);
12063 rtx target;
12064 unsigned int regno, tregno, endregno, endtregno;
12066 if (GET_CODE (dest) == ZERO_EXTRACT)
12067 target = XEXP (dest, 0);
12068 else if (GET_CODE (dest) == STRICT_LOW_PART)
12069 target = SUBREG_REG (XEXP (dest, 0));
12070 else
12071 return 0;
12073 if (GET_CODE (target) == SUBREG)
12074 target = SUBREG_REG (target);
12076 if (GET_CODE (target) != REG)
12077 return 0;
12079 tregno = REGNO (target), regno = REGNO (x);
12080 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12081 return target == x;
12083 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12084 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12086 return endregno > tregno && regno < endtregno;
12089 else if (GET_CODE (body) == PARALLEL)
12090 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12091 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12092 return 1;
12094 return 0;
12097 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12098 as appropriate. I3 and I2 are the insns resulting from the combination
12099 insns including FROM (I2 may be zero).
12101 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12102 not need REG_DEAD notes because they are being substituted for. This
12103 saves searching in the most common cases.
12105 Each note in the list is either ignored or placed on some insns, depending
12106 on the type of note. */
12108 static void
12109 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12110 rtx notes;
12111 rtx from_insn;
12112 rtx i3, i2;
12113 rtx elim_i2, elim_i1;
12115 rtx note, next_note;
12116 rtx tem;
12118 for (note = notes; note; note = next_note)
12120 rtx place = 0, place2 = 0;
12122 /* If this NOTE references a pseudo register, ensure it references
12123 the latest copy of that register. */
12124 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12125 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12126 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12128 next_note = XEXP (note, 1);
12129 switch (REG_NOTE_KIND (note))
12131 case REG_BR_PROB:
12132 case REG_BR_PRED:
12133 case REG_EXEC_COUNT:
12134 /* Doesn't matter much where we put this, as long as it's somewhere.
12135 It is preferable to keep these notes on branches, which is most
12136 likely to be i3. */
12137 place = i3;
12138 break;
12140 case REG_VTABLE_REF:
12141 /* ??? Should remain with *a particular* memory load. Given the
12142 nature of vtable data, the last insn seems relatively safe. */
12143 place = i3;
12144 break;
12146 case REG_NON_LOCAL_GOTO:
12147 if (GET_CODE (i3) == JUMP_INSN)
12148 place = i3;
12149 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12150 place = i2;
12151 else
12152 abort ();
12153 break;
12155 case REG_EH_REGION:
12156 /* These notes must remain with the call or trapping instruction. */
12157 if (GET_CODE (i3) == CALL_INSN)
12158 place = i3;
12159 else if (i2 && GET_CODE (i2) == CALL_INSN)
12160 place = i2;
12161 else if (flag_non_call_exceptions)
12163 if (may_trap_p (i3))
12164 place = i3;
12165 else if (i2 && may_trap_p (i2))
12166 place = i2;
12167 /* ??? Otherwise assume we've combined things such that we
12168 can now prove that the instructions can't trap. Drop the
12169 note in this case. */
12171 else
12172 abort ();
12173 break;
12175 case REG_NORETURN:
12176 case REG_SETJMP:
12177 /* These notes must remain with the call. It should not be
12178 possible for both I2 and I3 to be a call. */
12179 if (GET_CODE (i3) == CALL_INSN)
12180 place = i3;
12181 else if (i2 && GET_CODE (i2) == CALL_INSN)
12182 place = i2;
12183 else
12184 abort ();
12185 break;
12187 case REG_UNUSED:
12188 /* Any clobbers for i3 may still exist, and so we must process
12189 REG_UNUSED notes from that insn.
12191 Any clobbers from i2 or i1 can only exist if they were added by
12192 recog_for_combine. In that case, recog_for_combine created the
12193 necessary REG_UNUSED notes. Trying to keep any original
12194 REG_UNUSED notes from these insns can cause incorrect output
12195 if it is for the same register as the original i3 dest.
12196 In that case, we will notice that the register is set in i3,
12197 and then add a REG_UNUSED note for the destination of i3, which
12198 is wrong. However, it is possible to have REG_UNUSED notes from
12199 i2 or i1 for register which were both used and clobbered, so
12200 we keep notes from i2 or i1 if they will turn into REG_DEAD
12201 notes. */
12203 /* If this register is set or clobbered in I3, put the note there
12204 unless there is one already. */
12205 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12207 if (from_insn != i3)
12208 break;
12210 if (! (GET_CODE (XEXP (note, 0)) == REG
12211 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12212 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12213 place = i3;
12215 /* Otherwise, if this register is used by I3, then this register
12216 now dies here, so we must put a REG_DEAD note here unless there
12217 is one already. */
12218 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12219 && ! (GET_CODE (XEXP (note, 0)) == REG
12220 ? find_regno_note (i3, REG_DEAD,
12221 REGNO (XEXP (note, 0)))
12222 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12224 PUT_REG_NOTE_KIND (note, REG_DEAD);
12225 place = i3;
12227 break;
12229 case REG_EQUAL:
12230 case REG_EQUIV:
12231 case REG_NOALIAS:
12232 /* These notes say something about results of an insn. We can
12233 only support them if they used to be on I3 in which case they
12234 remain on I3. Otherwise they are ignored.
12236 If the note refers to an expression that is not a constant, we
12237 must also ignore the note since we cannot tell whether the
12238 equivalence is still true. It might be possible to do
12239 slightly better than this (we only have a problem if I2DEST
12240 or I1DEST is present in the expression), but it doesn't
12241 seem worth the trouble. */
12243 if (from_insn == i3
12244 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12245 place = i3;
12246 break;
12248 case REG_INC:
12249 case REG_NO_CONFLICT:
12250 /* These notes say something about how a register is used. They must
12251 be present on any use of the register in I2 or I3. */
12252 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12253 place = i3;
12255 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12257 if (place)
12258 place2 = i2;
12259 else
12260 place = i2;
12262 break;
12264 case REG_LABEL:
12265 /* This can show up in several ways -- either directly in the
12266 pattern, or hidden off in the constant pool with (or without?)
12267 a REG_EQUAL note. */
12268 /* ??? Ignore the without-reg_equal-note problem for now. */
12269 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12270 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12271 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12272 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12273 place = i3;
12275 if (i2
12276 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12277 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12278 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12279 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12281 if (place)
12282 place2 = i2;
12283 else
12284 place = i2;
12287 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12288 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12289 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12291 if (JUMP_LABEL (place) != XEXP (note, 0))
12292 abort ();
12293 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12294 LABEL_NUSES (JUMP_LABEL (place))--;
12295 place = 0;
12297 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12299 if (JUMP_LABEL (place2) != XEXP (note, 0))
12300 abort ();
12301 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12302 LABEL_NUSES (JUMP_LABEL (place2))--;
12303 place2 = 0;
12305 break;
12307 case REG_NONNEG:
12308 case REG_WAS_0:
12309 /* These notes say something about the value of a register prior
12310 to the execution of an insn. It is too much trouble to see
12311 if the note is still correct in all situations. It is better
12312 to simply delete it. */
12313 break;
12315 case REG_RETVAL:
12316 /* If the insn previously containing this note still exists,
12317 put it back where it was. Otherwise move it to the previous
12318 insn. Adjust the corresponding REG_LIBCALL note. */
12319 if (GET_CODE (from_insn) != NOTE)
12320 place = from_insn;
12321 else
12323 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12324 place = prev_real_insn (from_insn);
12325 if (tem && place)
12326 XEXP (tem, 0) = place;
12327 /* If we're deleting the last remaining instruction of a
12328 libcall sequence, don't add the notes. */
12329 else if (XEXP (note, 0) == from_insn)
12330 tem = place = 0;
12332 break;
12334 case REG_LIBCALL:
12335 /* This is handled similarly to REG_RETVAL. */
12336 if (GET_CODE (from_insn) != NOTE)
12337 place = from_insn;
12338 else
12340 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12341 place = next_real_insn (from_insn);
12342 if (tem && place)
12343 XEXP (tem, 0) = place;
12344 /* If we're deleting the last remaining instruction of a
12345 libcall sequence, don't add the notes. */
12346 else if (XEXP (note, 0) == from_insn)
12347 tem = place = 0;
12349 break;
12351 case REG_DEAD:
12352 /* If the register is used as an input in I3, it dies there.
12353 Similarly for I2, if it is non-zero and adjacent to I3.
12355 If the register is not used as an input in either I3 or I2
12356 and it is not one of the registers we were supposed to eliminate,
12357 there are two possibilities. We might have a non-adjacent I2
12358 or we might have somehow eliminated an additional register
12359 from a computation. For example, we might have had A & B where
12360 we discover that B will always be zero. In this case we will
12361 eliminate the reference to A.
12363 In both cases, we must search to see if we can find a previous
12364 use of A and put the death note there. */
12366 if (from_insn
12367 && GET_CODE (from_insn) == CALL_INSN
12368 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12369 place = from_insn;
12370 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12371 place = i3;
12372 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12373 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12374 place = i2;
12376 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12377 || rtx_equal_p (XEXP (note, 0), elim_i1))
12378 break;
12380 if (place == 0)
12382 basic_block bb = this_basic_block;
12384 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12386 if (! INSN_P (tem))
12388 if (tem == bb->head)
12389 break;
12390 continue;
12393 /* If the register is being set at TEM, see if that is all
12394 TEM is doing. If so, delete TEM. Otherwise, make this
12395 into a REG_UNUSED note instead. */
12396 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12398 rtx set = single_set (tem);
12399 rtx inner_dest = 0;
12400 #ifdef HAVE_cc0
12401 rtx cc0_setter = NULL_RTX;
12402 #endif
12404 if (set != 0)
12405 for (inner_dest = SET_DEST (set);
12406 (GET_CODE (inner_dest) == STRICT_LOW_PART
12407 || GET_CODE (inner_dest) == SUBREG
12408 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12409 inner_dest = XEXP (inner_dest, 0))
12412 /* Verify that it was the set, and not a clobber that
12413 modified the register.
12415 CC0 targets must be careful to maintain setter/user
12416 pairs. If we cannot delete the setter due to side
12417 effects, mark the user with an UNUSED note instead
12418 of deleting it. */
12420 if (set != 0 && ! side_effects_p (SET_SRC (set))
12421 && rtx_equal_p (XEXP (note, 0), inner_dest)
12422 #ifdef HAVE_cc0
12423 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12424 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12425 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12426 #endif
12429 /* Move the notes and links of TEM elsewhere.
12430 This might delete other dead insns recursively.
12431 First set the pattern to something that won't use
12432 any register. */
12434 PATTERN (tem) = pc_rtx;
12436 distribute_notes (REG_NOTES (tem), tem, tem,
12437 NULL_RTX, NULL_RTX, NULL_RTX);
12438 distribute_links (LOG_LINKS (tem));
12440 PUT_CODE (tem, NOTE);
12441 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12442 NOTE_SOURCE_FILE (tem) = 0;
12444 #ifdef HAVE_cc0
12445 /* Delete the setter too. */
12446 if (cc0_setter)
12448 PATTERN (cc0_setter) = pc_rtx;
12450 distribute_notes (REG_NOTES (cc0_setter),
12451 cc0_setter, cc0_setter,
12452 NULL_RTX, NULL_RTX, NULL_RTX);
12453 distribute_links (LOG_LINKS (cc0_setter));
12455 PUT_CODE (cc0_setter, NOTE);
12456 NOTE_LINE_NUMBER (cc0_setter)
12457 = NOTE_INSN_DELETED;
12458 NOTE_SOURCE_FILE (cc0_setter) = 0;
12460 #endif
12462 /* If the register is both set and used here, put the
12463 REG_DEAD note here, but place a REG_UNUSED note
12464 here too unless there already is one. */
12465 else if (reg_referenced_p (XEXP (note, 0),
12466 PATTERN (tem)))
12468 place = tem;
12470 if (! find_regno_note (tem, REG_UNUSED,
12471 REGNO (XEXP (note, 0))))
12472 REG_NOTES (tem)
12473 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12474 REG_NOTES (tem));
12476 else
12478 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12480 /* If there isn't already a REG_UNUSED note, put one
12481 here. */
12482 if (! find_regno_note (tem, REG_UNUSED,
12483 REGNO (XEXP (note, 0))))
12484 place = tem;
12485 break;
12488 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12489 || (GET_CODE (tem) == CALL_INSN
12490 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12492 place = tem;
12494 /* If we are doing a 3->2 combination, and we have a
12495 register which formerly died in i3 and was not used
12496 by i2, which now no longer dies in i3 and is used in
12497 i2 but does not die in i2, and place is between i2
12498 and i3, then we may need to move a link from place to
12499 i2. */
12500 if (i2 && INSN_UID (place) <= max_uid_cuid
12501 && INSN_CUID (place) > INSN_CUID (i2)
12502 && from_insn
12503 && INSN_CUID (from_insn) > INSN_CUID (i2)
12504 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12506 rtx links = LOG_LINKS (place);
12507 LOG_LINKS (place) = 0;
12508 distribute_links (links);
12510 break;
12513 if (tem == bb->head)
12514 break;
12517 /* We haven't found an insn for the death note and it
12518 is still a REG_DEAD note, but we have hit the beginning
12519 of the block. If the existing life info says the reg
12520 was dead, there's nothing left to do. Otherwise, we'll
12521 need to do a global life update after combine. */
12522 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12523 && REGNO_REG_SET_P (bb->global_live_at_start,
12524 REGNO (XEXP (note, 0))))
12526 SET_BIT (refresh_blocks, this_basic_block->index);
12527 need_refresh = 1;
12531 /* If the register is set or already dead at PLACE, we needn't do
12532 anything with this note if it is still a REG_DEAD note.
12533 We can here if it is set at all, not if is it totally replace,
12534 which is what `dead_or_set_p' checks, so also check for it being
12535 set partially. */
12537 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12539 unsigned int regno = REGNO (XEXP (note, 0));
12541 /* Similarly, if the instruction on which we want to place
12542 the note is a noop, we'll need do a global live update
12543 after we remove them in delete_noop_moves. */
12544 if (noop_move_p (place))
12546 SET_BIT (refresh_blocks, this_basic_block->index);
12547 need_refresh = 1;
12550 if (dead_or_set_p (place, XEXP (note, 0))
12551 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12553 /* Unless the register previously died in PLACE, clear
12554 reg_last_death. [I no longer understand why this is
12555 being done.] */
12556 if (reg_last_death[regno] != place)
12557 reg_last_death[regno] = 0;
12558 place = 0;
12560 else
12561 reg_last_death[regno] = place;
12563 /* If this is a death note for a hard reg that is occupying
12564 multiple registers, ensure that we are still using all
12565 parts of the object. If we find a piece of the object
12566 that is unused, we must arrange for an appropriate REG_DEAD
12567 note to be added for it. However, we can't just emit a USE
12568 and tag the note to it, since the register might actually
12569 be dead; so we recourse, and the recursive call then finds
12570 the previous insn that used this register. */
12572 if (place && regno < FIRST_PSEUDO_REGISTER
12573 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12575 unsigned int endregno
12576 = regno + HARD_REGNO_NREGS (regno,
12577 GET_MODE (XEXP (note, 0)));
12578 int all_used = 1;
12579 unsigned int i;
12581 for (i = regno; i < endregno; i++)
12582 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12583 && ! find_regno_fusage (place, USE, i))
12584 || dead_or_set_regno_p (place, i))
12585 all_used = 0;
12587 if (! all_used)
12589 /* Put only REG_DEAD notes for pieces that are
12590 not already dead or set. */
12592 for (i = regno; i < endregno;
12593 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12595 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12596 basic_block bb = this_basic_block;
12598 if (! dead_or_set_p (place, piece)
12599 && ! reg_bitfield_target_p (piece,
12600 PATTERN (place)))
12602 rtx new_note
12603 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12605 distribute_notes (new_note, place, place,
12606 NULL_RTX, NULL_RTX, NULL_RTX);
12608 else if (! refers_to_regno_p (i, i + 1,
12609 PATTERN (place), 0)
12610 && ! find_regno_fusage (place, USE, i))
12611 for (tem = PREV_INSN (place); ;
12612 tem = PREV_INSN (tem))
12614 if (! INSN_P (tem))
12616 if (tem == bb->head)
12618 SET_BIT (refresh_blocks,
12619 this_basic_block->index);
12620 need_refresh = 1;
12621 break;
12623 continue;
12625 if (dead_or_set_p (tem, piece)
12626 || reg_bitfield_target_p (piece,
12627 PATTERN (tem)))
12629 REG_NOTES (tem)
12630 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12631 REG_NOTES (tem));
12632 break;
12638 place = 0;
12642 break;
12644 default:
12645 /* Any other notes should not be present at this point in the
12646 compilation. */
12647 abort ();
12650 if (place)
12652 XEXP (note, 1) = REG_NOTES (place);
12653 REG_NOTES (place) = note;
12655 else if ((REG_NOTE_KIND (note) == REG_DEAD
12656 || REG_NOTE_KIND (note) == REG_UNUSED)
12657 && GET_CODE (XEXP (note, 0)) == REG)
12658 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12660 if (place2)
12662 if ((REG_NOTE_KIND (note) == REG_DEAD
12663 || REG_NOTE_KIND (note) == REG_UNUSED)
12664 && GET_CODE (XEXP (note, 0)) == REG)
12665 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12667 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12668 REG_NOTE_KIND (note),
12669 XEXP (note, 0),
12670 REG_NOTES (place2));
12675 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12676 I3, I2, and I1 to new locations. This is also called in one case to
12677 add a link pointing at I3 when I3's destination is changed. */
12679 static void
12680 distribute_links (links)
12681 rtx links;
12683 rtx link, next_link;
12685 for (link = links; link; link = next_link)
12687 rtx place = 0;
12688 rtx insn;
12689 rtx set, reg;
12691 next_link = XEXP (link, 1);
12693 /* If the insn that this link points to is a NOTE or isn't a single
12694 set, ignore it. In the latter case, it isn't clear what we
12695 can do other than ignore the link, since we can't tell which
12696 register it was for. Such links wouldn't be used by combine
12697 anyway.
12699 It is not possible for the destination of the target of the link to
12700 have been changed by combine. The only potential of this is if we
12701 replace I3, I2, and I1 by I3 and I2. But in that case the
12702 destination of I2 also remains unchanged. */
12704 if (GET_CODE (XEXP (link, 0)) == NOTE
12705 || (set = single_set (XEXP (link, 0))) == 0)
12706 continue;
12708 reg = SET_DEST (set);
12709 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12710 || GET_CODE (reg) == SIGN_EXTRACT
12711 || GET_CODE (reg) == STRICT_LOW_PART)
12712 reg = XEXP (reg, 0);
12714 /* A LOG_LINK is defined as being placed on the first insn that uses
12715 a register and points to the insn that sets the register. Start
12716 searching at the next insn after the target of the link and stop
12717 when we reach a set of the register or the end of the basic block.
12719 Note that this correctly handles the link that used to point from
12720 I3 to I2. Also note that not much searching is typically done here
12721 since most links don't point very far away. */
12723 for (insn = NEXT_INSN (XEXP (link, 0));
12724 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12725 || this_basic_block->next_bb->head != insn));
12726 insn = NEXT_INSN (insn))
12727 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12729 if (reg_referenced_p (reg, PATTERN (insn)))
12730 place = insn;
12731 break;
12733 else if (GET_CODE (insn) == CALL_INSN
12734 && find_reg_fusage (insn, USE, reg))
12736 place = insn;
12737 break;
12740 /* If we found a place to put the link, place it there unless there
12741 is already a link to the same insn as LINK at that point. */
12743 if (place)
12745 rtx link2;
12747 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12748 if (XEXP (link2, 0) == XEXP (link, 0))
12749 break;
12751 if (link2 == 0)
12753 XEXP (link, 1) = LOG_LINKS (place);
12754 LOG_LINKS (place) = link;
12756 /* Set added_links_insn to the earliest insn we added a
12757 link to. */
12758 if (added_links_insn == 0
12759 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12760 added_links_insn = place;
12766 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12768 static int
12769 insn_cuid (insn)
12770 rtx insn;
12772 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12773 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12774 insn = NEXT_INSN (insn);
12776 if (INSN_UID (insn) > max_uid_cuid)
12777 abort ();
12779 return INSN_CUID (insn);
12782 void
12783 dump_combine_stats (file)
12784 FILE *file;
12786 fnotice
12787 (file,
12788 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12789 combine_attempts, combine_merges, combine_extras, combine_successes);
12792 void
12793 dump_combine_total_stats (file)
12794 FILE *file;
12796 fnotice
12797 (file,
12798 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12799 total_attempts, total_merges, total_extras, total_successes);