Merged r158907 through r159238 into branch.
[official-gcc.git] / gcc / tree-into-ssa.c
blob839dc3c21fc8cb7e6a422f6de26d9d208fd092d1
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "bitmap.h"
38 #include "tree-flow.h"
39 #include "gimple.h"
40 #include "tree-inline.h"
41 #include "timevar.h"
42 #include "hashtab.h"
43 #include "tree-dump.h"
44 #include "tree-pass.h"
45 #include "cfgloop.h"
46 #include "domwalk.h"
47 #include "ggc.h"
48 #include "params.h"
49 #include "vecprim.h"
52 /* This file builds the SSA form for a function as described in:
53 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
54 Computing Static Single Assignment Form and the Control Dependence
55 Graph. ACM Transactions on Programming Languages and Systems,
56 13(4):451-490, October 1991. */
58 /* Structure to map a variable VAR to the set of blocks that contain
59 definitions for VAR. */
60 struct def_blocks_d
62 /* The variable. */
63 tree var;
65 /* Blocks that contain definitions of VAR. Bit I will be set if the
66 Ith block contains a definition of VAR. */
67 bitmap def_blocks;
69 /* Blocks that contain a PHI node for VAR. */
70 bitmap phi_blocks;
72 /* Blocks where VAR is live-on-entry. Similar semantics as
73 DEF_BLOCKS. */
74 bitmap livein_blocks;
78 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
79 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
80 basic blocks where VAR is defined (assigned a new value). It also
81 contains a bitmap of all the blocks where VAR is live-on-entry
82 (i.e., there is a use of VAR in block B without a preceding
83 definition in B). The live-on-entry information is used when
84 computing PHI pruning heuristics. */
85 static htab_t def_blocks;
87 /* Stack of trees used to restore the global currdefs to its original
88 state after completing rewriting of a block and its dominator
89 children. Its elements have the following properties:
91 - An SSA_NAME (N) indicates that the current definition of the
92 underlying variable should be set to the given SSA_NAME. If the
93 symbol associated with the SSA_NAME is not a GIMPLE register, the
94 next slot in the stack must be a _DECL node (SYM). In this case,
95 the name N in the previous slot is the current reaching
96 definition for SYM.
98 - A _DECL node indicates that the underlying variable has no
99 current definition.
101 - A NULL node at the top entry is used to mark the last slot
102 associated with the current block. */
103 static VEC(tree,heap) *block_defs_stack;
106 /* Set of existing SSA names being replaced by update_ssa. */
107 static sbitmap old_ssa_names;
109 /* Set of new SSA names being added by update_ssa. Note that both
110 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
111 the operations done on them are presence tests. */
112 static sbitmap new_ssa_names;
114 sbitmap interesting_blocks;
116 /* Set of SSA names that have been marked to be released after they
117 were registered in the replacement table. They will be finally
118 released after we finish updating the SSA web. */
119 static bitmap names_to_release;
121 static VEC(gimple_vec, heap) *phis_to_rewrite;
123 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
124 static bitmap blocks_with_phis_to_rewrite;
126 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
127 to grow as the callers to register_new_name_mapping will typically
128 create new names on the fly. FIXME. Currently set to 1/3 to avoid
129 frequent reallocations but still need to find a reasonable growth
130 strategy. */
131 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
133 /* Tuple used to represent replacement mappings. */
134 struct repl_map_d
136 tree name;
137 bitmap set;
141 /* NEW -> OLD_SET replacement table. If we are replacing several
142 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
143 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
144 static htab_t repl_tbl;
146 /* The function the SSA updating data structures have been initialized for.
147 NULL if they need to be initialized by register_new_name_mapping. */
148 static struct function *update_ssa_initialized_fn = NULL;
150 /* Statistics kept by update_ssa to use in the virtual mapping
151 heuristic. If the number of virtual mappings is beyond certain
152 threshold, the updater will switch from using the mappings into
153 renaming the virtual symbols from scratch. In some cases, the
154 large number of name mappings for virtual names causes significant
155 slowdowns in the PHI insertion code. */
156 struct update_ssa_stats_d
158 unsigned num_virtual_mappings;
159 unsigned num_total_mappings;
160 bitmap virtual_symbols;
161 unsigned num_virtual_symbols;
163 static struct update_ssa_stats_d update_ssa_stats;
165 /* Global data to attach to the main dominator walk structure. */
166 struct mark_def_sites_global_data
168 /* This bitmap contains the variables which are set before they
169 are used in a basic block. */
170 bitmap kills;
174 /* Information stored for SSA names. */
175 struct ssa_name_info
177 /* The current reaching definition replacing this SSA name. */
178 tree current_def;
180 /* This field indicates whether or not the variable may need PHI nodes.
181 See the enum's definition for more detailed information about the
182 states. */
183 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
185 /* Age of this record (so that info_for_ssa_name table can be cleared
186 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
187 are assumed to be null. */
188 unsigned age;
191 /* The information associated with names. */
192 typedef struct ssa_name_info *ssa_name_info_p;
193 DEF_VEC_P (ssa_name_info_p);
194 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
196 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
197 static unsigned current_info_for_ssa_name_age;
199 /* The set of blocks affected by update_ssa. */
200 static bitmap blocks_to_update;
202 /* The main entry point to the SSA renamer (rewrite_blocks) may be
203 called several times to do different, but related, tasks.
204 Initially, we need it to rename the whole program into SSA form.
205 At other times, we may need it to only rename into SSA newly
206 exposed symbols. Finally, we can also call it to incrementally fix
207 an already built SSA web. */
208 enum rewrite_mode {
209 /* Convert the whole function into SSA form. */
210 REWRITE_ALL,
212 /* Incrementally update the SSA web by replacing existing SSA
213 names with new ones. See update_ssa for details. */
214 REWRITE_UPDATE
220 /* Prototypes for debugging functions. */
221 extern void dump_tree_ssa (FILE *);
222 extern void debug_tree_ssa (void);
223 extern void debug_def_blocks (void);
224 extern void dump_tree_ssa_stats (FILE *);
225 extern void debug_tree_ssa_stats (void);
226 extern void dump_update_ssa (FILE *);
227 extern void debug_update_ssa (void);
228 extern void dump_names_replaced_by (FILE *, tree);
229 extern void debug_names_replaced_by (tree);
230 extern void dump_def_blocks (FILE *);
231 extern void debug_def_blocks (void);
232 extern void dump_defs_stack (FILE *, int);
233 extern void debug_defs_stack (int);
234 extern void dump_currdefs (FILE *);
235 extern void debug_currdefs (void);
237 /* Return true if STMT needs to be rewritten. When renaming a subset
238 of the variables, not all statements will be processed. This is
239 decided in mark_def_sites. */
241 static inline bool
242 rewrite_uses_p (gimple stmt)
244 return gimple_visited_p (stmt);
248 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
250 static inline void
251 set_rewrite_uses (gimple stmt, bool rewrite_p)
253 gimple_set_visited (stmt, rewrite_p);
257 /* Return true if the DEFs created by statement STMT should be
258 registered when marking new definition sites. This is slightly
259 different than rewrite_uses_p: it's used by update_ssa to
260 distinguish statements that need to have both uses and defs
261 processed from those that only need to have their defs processed.
262 Statements that define new SSA names only need to have their defs
263 registered, but they don't need to have their uses renamed. */
265 static inline bool
266 register_defs_p (gimple stmt)
268 return gimple_plf (stmt, GF_PLF_1) != 0;
272 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
274 static inline void
275 set_register_defs (gimple stmt, bool register_defs_p)
277 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
281 /* Get the information associated with NAME. */
283 static inline ssa_name_info_p
284 get_ssa_name_ann (tree name)
286 unsigned ver = SSA_NAME_VERSION (name);
287 unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
288 struct ssa_name_info *info;
290 if (ver >= len)
292 unsigned new_len = num_ssa_names;
294 VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
295 while (len++ < new_len)
297 struct ssa_name_info *info = XCNEW (struct ssa_name_info);
298 info->age = current_info_for_ssa_name_age;
299 VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
303 info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
304 if (info->age < current_info_for_ssa_name_age)
306 info->need_phi_state = NEED_PHI_STATE_UNKNOWN;
307 info->current_def = NULL_TREE;
308 info->age = current_info_for_ssa_name_age;
311 return info;
315 /* Clears info for SSA names. */
317 static void
318 clear_ssa_name_info (void)
320 current_info_for_ssa_name_age++;
324 /* Get phi_state field for VAR. */
326 static inline enum need_phi_state
327 get_phi_state (tree var)
329 if (TREE_CODE (var) == SSA_NAME)
330 return get_ssa_name_ann (var)->need_phi_state;
331 else
332 return var_ann (var)->need_phi_state;
336 /* Sets phi_state field for VAR to STATE. */
338 static inline void
339 set_phi_state (tree var, enum need_phi_state state)
341 if (TREE_CODE (var) == SSA_NAME)
342 get_ssa_name_ann (var)->need_phi_state = state;
343 else
344 var_ann (var)->need_phi_state = state;
348 /* Return the current definition for VAR. */
350 tree
351 get_current_def (tree var)
353 if (TREE_CODE (var) == SSA_NAME)
354 return get_ssa_name_ann (var)->current_def;
355 else
356 return var_ann (var)->current_def;
360 /* Sets current definition of VAR to DEF. */
362 void
363 set_current_def (tree var, tree def)
365 if (TREE_CODE (var) == SSA_NAME)
366 get_ssa_name_ann (var)->current_def = def;
367 else
368 var_ann (var)->current_def = def;
372 /* Compute global livein information given the set of blocks where
373 an object is locally live at the start of the block (LIVEIN)
374 and the set of blocks where the object is defined (DEF_BLOCKS).
376 Note: This routine augments the existing local livein information
377 to include global livein (i.e., it modifies the underlying bitmap
378 for LIVEIN). */
380 void
381 compute_global_livein (bitmap livein ATTRIBUTE_UNUSED, bitmap def_blocks ATTRIBUTE_UNUSED)
383 basic_block bb, *worklist, *tos;
384 unsigned i;
385 bitmap_iterator bi;
387 tos = worklist
388 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
390 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
391 *tos++ = BASIC_BLOCK (i);
393 /* Iterate until the worklist is empty. */
394 while (tos != worklist)
396 edge e;
397 edge_iterator ei;
399 /* Pull a block off the worklist. */
400 bb = *--tos;
402 /* For each predecessor block. */
403 FOR_EACH_EDGE (e, ei, bb->preds)
405 basic_block pred = e->src;
406 int pred_index = pred->index;
408 /* None of this is necessary for the entry block. */
409 if (pred != ENTRY_BLOCK_PTR
410 && ! bitmap_bit_p (livein, pred_index)
411 && ! bitmap_bit_p (def_blocks, pred_index))
413 *tos++ = pred;
414 bitmap_set_bit (livein, pred_index);
419 free (worklist);
423 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
424 all statements in basic block BB. */
426 static void
427 initialize_flags_in_bb (basic_block bb)
429 gimple stmt;
430 gimple_stmt_iterator gsi;
432 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
434 gimple phi = gsi_stmt (gsi);
435 set_rewrite_uses (phi, false);
436 set_register_defs (phi, false);
439 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
441 stmt = gsi_stmt (gsi);
443 /* We are going to use the operand cache API, such as
444 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
445 cache for each statement should be up-to-date. */
446 gcc_assert (!gimple_modified_p (stmt));
447 set_rewrite_uses (stmt, false);
448 set_register_defs (stmt, false);
452 /* Mark block BB as interesting for update_ssa. */
454 static void
455 mark_block_for_update (basic_block bb)
457 gcc_assert (blocks_to_update != NULL);
458 if (bitmap_bit_p (blocks_to_update, bb->index))
459 return;
460 bitmap_set_bit (blocks_to_update, bb->index);
461 initialize_flags_in_bb (bb);
464 /* Return the set of blocks where variable VAR is defined and the blocks
465 where VAR is live on entry (livein). If no entry is found in
466 DEF_BLOCKS, a new one is created and returned. */
468 static inline struct def_blocks_d *
469 get_def_blocks_for (tree var)
471 struct def_blocks_d db, *db_p;
472 void **slot;
474 db.var = var;
475 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
476 if (*slot == NULL)
478 db_p = XNEW (struct def_blocks_d);
479 db_p->var = var;
480 db_p->def_blocks = BITMAP_ALLOC (NULL);
481 db_p->phi_blocks = BITMAP_ALLOC (NULL);
482 db_p->livein_blocks = BITMAP_ALLOC (NULL);
483 *slot = (void *) db_p;
485 else
486 db_p = (struct def_blocks_d *) *slot;
488 return db_p;
492 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
493 VAR is defined by a PHI node. */
495 static void
496 set_def_block (tree var, basic_block bb, bool phi_p)
498 struct def_blocks_d *db_p;
499 enum need_phi_state state;
501 state = get_phi_state (var);
502 db_p = get_def_blocks_for (var);
504 /* Set the bit corresponding to the block where VAR is defined. */
505 bitmap_set_bit (db_p->def_blocks, bb->index);
506 if (phi_p)
507 bitmap_set_bit (db_p->phi_blocks, bb->index);
509 /* Keep track of whether or not we may need to insert PHI nodes.
511 If we are in the UNKNOWN state, then this is the first definition
512 of VAR. Additionally, we have not seen any uses of VAR yet, so
513 we do not need a PHI node for this variable at this time (i.e.,
514 transition to NEED_PHI_STATE_NO).
516 If we are in any other state, then we either have multiple definitions
517 of this variable occurring in different blocks or we saw a use of the
518 variable which was not dominated by the block containing the
519 definition(s). In this case we may need a PHI node, so enter
520 state NEED_PHI_STATE_MAYBE. */
521 if (state == NEED_PHI_STATE_UNKNOWN)
522 set_phi_state (var, NEED_PHI_STATE_NO);
523 else
524 set_phi_state (var, NEED_PHI_STATE_MAYBE);
528 /* Mark block BB as having VAR live at the entry to BB. */
530 static void
531 set_livein_block (tree var, basic_block bb)
533 struct def_blocks_d *db_p;
534 enum need_phi_state state = get_phi_state (var);
536 db_p = get_def_blocks_for (var);
538 /* Set the bit corresponding to the block where VAR is live in. */
539 bitmap_set_bit (db_p->livein_blocks, bb->index);
541 /* Keep track of whether or not we may need to insert PHI nodes.
543 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
544 by the single block containing the definition(s) of this variable. If
545 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
546 NEED_PHI_STATE_MAYBE. */
547 if (state == NEED_PHI_STATE_NO)
549 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
551 if (def_block_index == -1
552 || ! dominated_by_p (CDI_DOMINATORS, bb,
553 BASIC_BLOCK (def_block_index)))
554 set_phi_state (var, NEED_PHI_STATE_MAYBE);
556 else
557 set_phi_state (var, NEED_PHI_STATE_MAYBE);
561 /* Return true if symbol SYM is marked for renaming. */
563 static inline bool
564 symbol_marked_for_renaming (tree sym)
566 return bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (sym));
570 /* Return true if NAME is in OLD_SSA_NAMES. */
572 static inline bool
573 is_old_name (tree name)
575 unsigned ver = SSA_NAME_VERSION (name);
576 if (!new_ssa_names)
577 return false;
578 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
582 /* Return true if NAME is in NEW_SSA_NAMES. */
584 static inline bool
585 is_new_name (tree name)
587 unsigned ver = SSA_NAME_VERSION (name);
588 if (!new_ssa_names)
589 return false;
590 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
594 /* Hashing and equality functions for REPL_TBL. */
596 static hashval_t
597 repl_map_hash (const void *p)
599 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
602 static int
603 repl_map_eq (const void *p1, const void *p2)
605 return ((const struct repl_map_d *)p1)->name
606 == ((const struct repl_map_d *)p2)->name;
609 static void
610 repl_map_free (void *p)
612 BITMAP_FREE (((struct repl_map_d *)p)->set);
613 free (p);
617 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
619 static inline bitmap
620 names_replaced_by (tree new_tree)
622 struct repl_map_d m;
623 void **slot;
625 m.name = new_tree;
626 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
628 /* If N was not registered in the replacement table, return NULL. */
629 if (slot == NULL || *slot == NULL)
630 return NULL;
632 return ((struct repl_map_d *) *slot)->set;
636 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
638 static inline void
639 add_to_repl_tbl (tree new_tree, tree old)
641 struct repl_map_d m, *mp;
642 void **slot;
644 m.name = new_tree;
645 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
646 if (*slot == NULL)
648 mp = XNEW (struct repl_map_d);
649 mp->name = new_tree;
650 mp->set = BITMAP_ALLOC (NULL);
651 *slot = (void *) mp;
653 else
654 mp = (struct repl_map_d *) *slot;
656 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
660 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
661 represents the set of names O_1 ... O_j replaced by N_i. This is
662 used by update_ssa and its helpers to introduce new SSA names in an
663 already formed SSA web. */
665 static void
666 add_new_name_mapping (tree new_tree, tree old)
668 timevar_push (TV_TREE_SSA_INCREMENTAL);
670 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
671 gcc_assert (new_tree != old && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
673 /* If this mapping is for virtual names, we will need to update
674 virtual operands. If this is a mapping for .MEM, then we gather
675 the symbols associated with each name. */
676 if (!is_gimple_reg (new_tree))
678 tree sym;
680 update_ssa_stats.num_virtual_mappings++;
681 update_ssa_stats.num_virtual_symbols++;
683 /* Keep counts of virtual mappings and symbols to use in the
684 virtual mapping heuristic. If we have large numbers of
685 virtual mappings for a relatively low number of symbols, it
686 will make more sense to rename the symbols from scratch.
687 Otherwise, the insertion of PHI nodes for each of the old
688 names in these mappings will be very slow. */
689 sym = SSA_NAME_VAR (new_tree);
690 bitmap_set_bit (update_ssa_stats.virtual_symbols, DECL_UID (sym));
693 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
694 caller may have created new names since the set was created. */
695 if (new_ssa_names->n_bits <= num_ssa_names - 1)
697 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
698 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
699 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
702 /* Update the REPL_TBL table. */
703 add_to_repl_tbl (new_tree, old);
705 /* If OLD had already been registered as a new name, then all the
706 names that OLD replaces should also be replaced by NEW_TREE. */
707 if (is_new_name (old))
708 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
710 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
711 respectively. */
712 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
713 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
715 /* Update mapping counter to use in the virtual mapping heuristic. */
716 update_ssa_stats.num_total_mappings++;
718 timevar_pop (TV_TREE_SSA_INCREMENTAL);
722 /* Call back for walk_dominator_tree used to collect definition sites
723 for every variable in the function. For every statement S in block
726 1- Variables defined by S in the DEFS of S are marked in the bitmap
727 KILLS.
729 2- If S uses a variable VAR and there is no preceding kill of VAR,
730 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
732 This information is used to determine which variables are live
733 across block boundaries to reduce the number of PHI nodes
734 we create. */
736 static void
737 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
739 tree def;
740 use_operand_p use_p;
741 ssa_op_iter iter;
743 /* Since this is the first time that we rewrite the program into SSA
744 form, force an operand scan on every statement. */
745 update_stmt (stmt);
747 gcc_assert (blocks_to_update == NULL);
748 set_register_defs (stmt, false);
749 set_rewrite_uses (stmt, false);
751 if (is_gimple_debug (stmt))
752 return;
754 /* If a variable is used before being set, then the variable is live
755 across a block boundary, so mark it live-on-entry to BB. */
756 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
758 tree sym = USE_FROM_PTR (use_p);
759 gcc_assert (DECL_P (sym));
760 if (!bitmap_bit_p (kills, DECL_UID (sym)))
761 set_livein_block (sym, bb);
762 set_rewrite_uses (stmt, true);
765 /* Now process the defs. Mark BB as the definition block and add
766 each def to the set of killed symbols. */
767 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
769 gcc_assert (DECL_P (def));
770 set_def_block (def, bb, false);
771 bitmap_set_bit (kills, DECL_UID (def));
772 set_register_defs (stmt, true);
775 /* If we found the statement interesting then also mark the block BB
776 as interesting. */
777 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
778 SET_BIT (interesting_blocks, bb->index);
781 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
782 in the dfs numbering of the dominance tree. */
784 struct dom_dfsnum
786 /* Basic block whose index this entry corresponds to. */
787 unsigned bb_index;
789 /* The dfs number of this node. */
790 unsigned dfs_num;
793 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
794 for qsort. */
796 static int
797 cmp_dfsnum (const void *a, const void *b)
799 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
800 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
802 return (int) da->dfs_num - (int) db->dfs_num;
805 /* Among the intervals starting at the N points specified in DEFS, find
806 the one that contains S, and return its bb_index. */
808 static unsigned
809 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
811 unsigned f = 0, t = n, m;
813 while (t > f + 1)
815 m = (f + t) / 2;
816 if (defs[m].dfs_num <= s)
817 f = m;
818 else
819 t = m;
822 return defs[f].bb_index;
825 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
826 KILLS is a bitmap of blocks where the value is defined before any use. */
828 static void
829 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
831 VEC(int, heap) *worklist;
832 bitmap_iterator bi;
833 unsigned i, b, p, u, top;
834 bitmap live_phis;
835 basic_block def_bb, use_bb;
836 edge e;
837 edge_iterator ei;
838 bitmap to_remove;
839 struct dom_dfsnum *defs;
840 unsigned n_defs, adef;
842 if (bitmap_empty_p (uses))
844 bitmap_clear (phis);
845 return;
848 /* The phi must dominate a use, or an argument of a live phi. Also, we
849 do not create any phi nodes in def blocks, unless they are also livein. */
850 to_remove = BITMAP_ALLOC (NULL);
851 bitmap_and_compl (to_remove, kills, uses);
852 bitmap_and_compl_into (phis, to_remove);
853 if (bitmap_empty_p (phis))
855 BITMAP_FREE (to_remove);
856 return;
859 /* We want to remove the unnecessary phi nodes, but we do not want to compute
860 liveness information, as that may be linear in the size of CFG, and if
861 there are lot of different variables to rewrite, this may lead to quadratic
862 behavior.
864 Instead, we basically emulate standard dce. We put all uses to worklist,
865 then for each of them find the nearest def that dominates them. If this
866 def is a phi node, we mark it live, and if it was not live before, we
867 add the predecessors of its basic block to the worklist.
869 To quickly locate the nearest def that dominates use, we use dfs numbering
870 of the dominance tree (that is already available in order to speed up
871 queries). For each def, we have the interval given by the dfs number on
872 entry to and on exit from the corresponding subtree in the dominance tree.
873 The nearest dominator for a given use is the smallest of these intervals
874 that contains entry and exit dfs numbers for the basic block with the use.
875 If we store the bounds for all the uses to an array and sort it, we can
876 locate the nearest dominating def in logarithmic time by binary search.*/
877 bitmap_ior (to_remove, kills, phis);
878 n_defs = bitmap_count_bits (to_remove);
879 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
880 defs[0].bb_index = 1;
881 defs[0].dfs_num = 0;
882 adef = 1;
883 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
885 def_bb = BASIC_BLOCK (i);
886 defs[adef].bb_index = i;
887 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
888 defs[adef + 1].bb_index = i;
889 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
890 adef += 2;
892 BITMAP_FREE (to_remove);
893 gcc_assert (adef == 2 * n_defs + 1);
894 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
895 gcc_assert (defs[0].bb_index == 1);
897 /* Now each DEFS entry contains the number of the basic block to that the
898 dfs number corresponds. Change them to the number of basic block that
899 corresponds to the interval following the dfs number. Also, for the
900 dfs_out numbers, increase the dfs number by one (so that it corresponds
901 to the start of the following interval, not to the end of the current
902 one). We use WORKLIST as a stack. */
903 worklist = VEC_alloc (int, heap, n_defs + 1);
904 VEC_quick_push (int, worklist, 1);
905 top = 1;
906 n_defs = 1;
907 for (i = 1; i < adef; i++)
909 b = defs[i].bb_index;
910 if (b == top)
912 /* This is a closing element. Interval corresponding to the top
913 of the stack after removing it follows. */
914 VEC_pop (int, worklist);
915 top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
916 defs[n_defs].bb_index = top;
917 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
919 else
921 /* Opening element. Nothing to do, just push it to the stack and move
922 it to the correct position. */
923 defs[n_defs].bb_index = defs[i].bb_index;
924 defs[n_defs].dfs_num = defs[i].dfs_num;
925 VEC_quick_push (int, worklist, b);
926 top = b;
929 /* If this interval starts at the same point as the previous one, cancel
930 the previous one. */
931 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
932 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
933 else
934 n_defs++;
936 VEC_pop (int, worklist);
937 gcc_assert (VEC_empty (int, worklist));
939 /* Now process the uses. */
940 live_phis = BITMAP_ALLOC (NULL);
941 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
943 VEC_safe_push (int, heap, worklist, i);
946 while (!VEC_empty (int, worklist))
948 b = VEC_pop (int, worklist);
949 if (b == ENTRY_BLOCK)
950 continue;
952 /* If there is a phi node in USE_BB, it is made live. Otherwise,
953 find the def that dominates the immediate dominator of USE_BB
954 (the kill in USE_BB does not dominate the use). */
955 if (bitmap_bit_p (phis, b))
956 p = b;
957 else
959 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
960 p = find_dfsnum_interval (defs, n_defs,
961 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
962 if (!bitmap_bit_p (phis, p))
963 continue;
966 /* If the phi node is already live, there is nothing to do. */
967 if (bitmap_bit_p (live_phis, p))
968 continue;
970 /* Mark the phi as live, and add the new uses to the worklist. */
971 bitmap_set_bit (live_phis, p);
972 def_bb = BASIC_BLOCK (p);
973 FOR_EACH_EDGE (e, ei, def_bb->preds)
975 u = e->src->index;
976 if (bitmap_bit_p (uses, u))
977 continue;
979 /* In case there is a kill directly in the use block, do not record
980 the use (this is also necessary for correctness, as we assume that
981 uses dominated by a def directly in their block have been filtered
982 out before). */
983 if (bitmap_bit_p (kills, u))
984 continue;
986 bitmap_set_bit (uses, u);
987 VEC_safe_push (int, heap, worklist, u);
991 VEC_free (int, heap, worklist);
992 bitmap_copy (phis, live_phis);
993 BITMAP_FREE (live_phis);
994 free (defs);
997 /* Return the set of blocks where variable VAR is defined and the blocks
998 where VAR is live on entry (livein). Return NULL, if no entry is
999 found in DEF_BLOCKS. */
1001 static inline struct def_blocks_d *
1002 find_def_blocks_for (tree var)
1004 struct def_blocks_d dm;
1005 dm.var = var;
1006 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
1010 /* Retrieve or create a default definition for symbol SYM. */
1012 static inline tree
1013 get_default_def_for (tree sym)
1015 tree ddef = gimple_default_def (cfun, sym);
1017 if (ddef == NULL_TREE)
1019 ddef = make_ssa_name (sym, gimple_build_nop ());
1020 set_default_def (sym, ddef);
1023 return ddef;
1027 /* Marks phi node PHI in basic block BB for rewrite. */
1029 static void
1030 mark_phi_for_rewrite (basic_block bb, gimple phi)
1032 gimple_vec phis;
1033 unsigned i, idx = bb->index;
1035 if (rewrite_uses_p (phi))
1036 return;
1038 set_rewrite_uses (phi, true);
1040 if (!blocks_with_phis_to_rewrite)
1041 return;
1043 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
1044 VEC_reserve (gimple_vec, heap, phis_to_rewrite, last_basic_block + 1);
1045 for (i = VEC_length (gimple_vec, phis_to_rewrite); i <= idx; i++)
1046 VEC_quick_push (gimple_vec, phis_to_rewrite, NULL);
1048 phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
1049 if (!phis)
1050 phis = VEC_alloc (gimple, heap, 10);
1052 VEC_safe_push (gimple, heap, phis, phi);
1053 VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
1056 /* Insert PHI nodes for variable VAR using the iterated dominance
1057 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
1058 function assumes that the caller is incrementally updating the
1059 existing SSA form, in which case VAR may be an SSA name instead of
1060 a symbol.
1062 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1063 PHI node for VAR. On exit, only the nodes that received a PHI node
1064 for VAR will be present in PHI_INSERTION_POINTS. */
1066 static void
1067 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1069 unsigned bb_index;
1070 edge e;
1071 gimple phi;
1072 basic_block bb;
1073 bitmap_iterator bi;
1074 struct def_blocks_d *def_map;
1076 def_map = find_def_blocks_for (var);
1077 gcc_assert (def_map);
1079 /* Remove the blocks where we already have PHI nodes for VAR. */
1080 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1082 /* Remove obviously useless phi nodes. */
1083 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1084 def_map->livein_blocks);
1086 /* And insert the PHI nodes. */
1087 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1089 bb = BASIC_BLOCK (bb_index);
1090 if (update_p)
1091 mark_block_for_update (bb);
1093 phi = NULL;
1095 if (TREE_CODE (var) == SSA_NAME)
1097 /* If we are rewriting SSA names, create the LHS of the PHI
1098 node by duplicating VAR. This is useful in the case of
1099 pointers, to also duplicate pointer attributes (alias
1100 information, in particular). */
1101 edge_iterator ei;
1102 tree new_lhs;
1104 gcc_assert (update_p);
1105 phi = create_phi_node (var, bb);
1107 new_lhs = duplicate_ssa_name (var, phi);
1108 gimple_phi_set_result (phi, new_lhs);
1109 add_new_name_mapping (new_lhs, var);
1111 /* Add VAR to every argument slot of PHI. We need VAR in
1112 every argument so that rewrite_update_phi_arguments knows
1113 which name is this PHI node replacing. If VAR is a
1114 symbol marked for renaming, this is not necessary, the
1115 renamer will use the symbol on the LHS to get its
1116 reaching definition. */
1117 FOR_EACH_EDGE (e, ei, bb->preds)
1118 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1120 else
1122 tree tracked_var;
1124 gcc_assert (DECL_P (var));
1125 phi = create_phi_node (var, bb);
1127 tracked_var = target_for_debug_bind (var);
1128 if (tracked_var)
1130 gimple note = gimple_build_debug_bind (tracked_var,
1131 PHI_RESULT (phi),
1132 phi);
1133 gimple_stmt_iterator si = gsi_after_labels (bb);
1134 gsi_insert_before (&si, note, GSI_SAME_STMT);
1138 /* Mark this PHI node as interesting for update_ssa. */
1139 set_register_defs (phi, true);
1140 mark_phi_for_rewrite (bb, phi);
1145 /* Insert PHI nodes at the dominance frontier of blocks with variable
1146 definitions. DFS contains the dominance frontier information for
1147 the flowgraph. */
1149 static void
1150 insert_phi_nodes (bitmap *dfs)
1152 referenced_var_iterator rvi;
1153 bitmap_iterator bi;
1154 tree var;
1155 bitmap vars;
1156 unsigned uid;
1158 timevar_push (TV_TREE_INSERT_PHI_NODES);
1160 /* Do two stages to avoid code generation differences for UID
1161 differences but no UID ordering differences. */
1163 vars = BITMAP_ALLOC (NULL);
1164 FOR_EACH_REFERENCED_VAR (var, rvi)
1166 struct def_blocks_d *def_map;
1168 def_map = find_def_blocks_for (var);
1169 if (def_map == NULL)
1170 continue;
1172 if (get_phi_state (var) != NEED_PHI_STATE_NO)
1173 bitmap_set_bit (vars, DECL_UID (var));
1176 EXECUTE_IF_SET_IN_BITMAP (vars, 0, uid, bi)
1178 tree var = referenced_var (uid);
1179 struct def_blocks_d *def_map;
1180 bitmap idf;
1182 def_map = find_def_blocks_for (var);
1183 idf = compute_idf (def_map->def_blocks, dfs);
1184 insert_phi_nodes_for (var, idf, false);
1185 BITMAP_FREE (idf);
1188 BITMAP_FREE (vars);
1190 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1194 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1195 register DEF (an SSA_NAME) to be a new definition for SYM. */
1197 static void
1198 register_new_def (tree def, tree sym)
1200 tree currdef;
1202 /* If this variable is set in a single basic block and all uses are
1203 dominated by the set(s) in that single basic block, then there is
1204 no reason to record anything for this variable in the block local
1205 definition stacks. Doing so just wastes time and memory.
1207 This is the same test to prune the set of variables which may
1208 need PHI nodes. So we just use that information since it's already
1209 computed and available for us to use. */
1210 if (get_phi_state (sym) == NEED_PHI_STATE_NO)
1212 set_current_def (sym, def);
1213 return;
1216 currdef = get_current_def (sym);
1218 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1219 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1220 in the stack so that we know which symbol is being defined by
1221 this SSA name when we unwind the stack. */
1222 if (currdef && !is_gimple_reg (sym))
1223 VEC_safe_push (tree, heap, block_defs_stack, sym);
1225 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1226 stack is later used by the dominator tree callbacks to restore
1227 the reaching definitions for all the variables defined in the
1228 block after a recursive visit to all its immediately dominated
1229 blocks. If there is no current reaching definition, then just
1230 record the underlying _DECL node. */
1231 VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1233 /* Set the current reaching definition for SYM to be DEF. */
1234 set_current_def (sym, def);
1238 /* Perform a depth-first traversal of the dominator tree looking for
1239 variables to rename. BB is the block where to start searching.
1240 Renaming is a five step process:
1242 1- Every definition made by PHI nodes at the start of the blocks is
1243 registered as the current definition for the corresponding variable.
1245 2- Every statement in BB is rewritten. USE and VUSE operands are
1246 rewritten with their corresponding reaching definition. DEF and
1247 VDEF targets are registered as new definitions.
1249 3- All the PHI nodes in successor blocks of BB are visited. The
1250 argument corresponding to BB is replaced with its current reaching
1251 definition.
1253 4- Recursively rewrite every dominator child block of BB.
1255 5- Restore (in reverse order) the current reaching definition for every
1256 new definition introduced in this block. This is done so that when
1257 we return from the recursive call, all the current reaching
1258 definitions are restored to the names that were valid in the
1259 dominator parent of BB. */
1261 /* Return the current definition for variable VAR. If none is found,
1262 create a new SSA name to act as the zeroth definition for VAR. */
1264 static tree
1265 get_reaching_def (tree var)
1267 tree currdef;
1269 /* Lookup the current reaching definition for VAR. */
1270 currdef = get_current_def (var);
1272 /* If there is no reaching definition for VAR, create and register a
1273 default definition for it (if needed). */
1274 if (currdef == NULL_TREE)
1276 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1277 currdef = get_default_def_for (sym);
1278 set_current_def (var, currdef);
1281 /* Return the current reaching definition for VAR, or the default
1282 definition, if we had to create one. */
1283 return currdef;
1287 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1288 the block with its immediate reaching definitions. Update the current
1289 definition of a variable when a new real or virtual definition is found. */
1291 static void
1292 rewrite_stmt (gimple_stmt_iterator si)
1294 use_operand_p use_p;
1295 def_operand_p def_p;
1296 ssa_op_iter iter;
1297 gimple stmt = gsi_stmt (si);
1299 /* If mark_def_sites decided that we don't need to rewrite this
1300 statement, ignore it. */
1301 gcc_assert (blocks_to_update == NULL);
1302 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1303 return;
1305 if (dump_file && (dump_flags & TDF_DETAILS))
1307 fprintf (dump_file, "Renaming statement ");
1308 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1309 fprintf (dump_file, "\n");
1312 /* Step 1. Rewrite USES in the statement. */
1313 if (rewrite_uses_p (stmt))
1314 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1316 tree var = USE_FROM_PTR (use_p);
1317 gcc_assert (DECL_P (var));
1318 SET_USE (use_p, get_reaching_def (var));
1321 /* Step 2. Register the statement's DEF operands. */
1322 if (register_defs_p (stmt))
1323 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1325 tree var = DEF_FROM_PTR (def_p);
1326 tree name = make_ssa_name (var, stmt);
1327 tree tracked_var;
1328 gcc_assert (DECL_P (var));
1329 SET_DEF (def_p, name);
1330 register_new_def (DEF_FROM_PTR (def_p), var);
1332 tracked_var = target_for_debug_bind (var);
1333 if (tracked_var)
1335 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1336 gsi_insert_after (&si, note, GSI_SAME_STMT);
1342 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1343 PHI nodes. For every PHI node found, add a new argument containing the
1344 current reaching definition for the variable and the edge through which
1345 that definition is reaching the PHI node. */
1347 static void
1348 rewrite_add_phi_arguments (basic_block bb)
1350 edge e;
1351 edge_iterator ei;
1353 FOR_EACH_EDGE (e, ei, bb->succs)
1355 gimple phi;
1356 gimple_stmt_iterator gsi;
1358 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1359 gsi_next (&gsi))
1361 tree currdef;
1362 gimple stmt;
1364 phi = gsi_stmt (gsi);
1365 currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1366 stmt = SSA_NAME_DEF_STMT (currdef);
1367 add_phi_arg (phi, currdef, e, gimple_location (stmt));
1372 /* SSA Rewriting Step 1. Initialization, create a block local stack
1373 of reaching definitions for new SSA names produced in this block
1374 (BLOCK_DEFS). Register new definitions for every PHI node in the
1375 block. */
1377 static void
1378 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1379 basic_block bb)
1381 gimple phi;
1382 gimple_stmt_iterator gsi;
1384 if (dump_file && (dump_flags & TDF_DETAILS))
1385 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1387 /* Mark the unwind point for this block. */
1388 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1390 /* Step 1. Register new definitions for every PHI node in the block.
1391 Conceptually, all the PHI nodes are executed in parallel and each PHI
1392 node introduces a new version for the associated variable. */
1393 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1395 tree result;
1397 phi = gsi_stmt (gsi);
1398 result = gimple_phi_result (phi);
1399 gcc_assert (is_gimple_reg (result));
1400 register_new_def (result, SSA_NAME_VAR (result));
1403 /* Step 2. Rewrite every variable used in each statement in the block
1404 with its immediate reaching definitions. Update the current definition
1405 of a variable when a new real or virtual definition is found. */
1406 if (TEST_BIT (interesting_blocks, bb->index))
1407 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1408 rewrite_stmt (gsi);
1410 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1411 For every PHI node found, add a new argument containing the current
1412 reaching definition for the variable and the edge through which that
1413 definition is reaching the PHI node. */
1414 rewrite_add_phi_arguments (bb);
1419 /* Called after visiting all the statements in basic block BB and all
1420 of its dominator children. Restore CURRDEFS to its original value. */
1422 static void
1423 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1424 basic_block bb ATTRIBUTE_UNUSED)
1426 /* Restore CURRDEFS to its original state. */
1427 while (VEC_length (tree, block_defs_stack) > 0)
1429 tree tmp = VEC_pop (tree, block_defs_stack);
1430 tree saved_def, var;
1432 if (tmp == NULL_TREE)
1433 break;
1435 if (TREE_CODE (tmp) == SSA_NAME)
1437 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1438 current definition of its underlying variable. Note that
1439 if the SSA_NAME is not for a GIMPLE register, the symbol
1440 being defined is stored in the next slot in the stack.
1441 This mechanism is needed because an SSA name for a
1442 non-register symbol may be the definition for more than
1443 one symbol (e.g., SFTs, aliased variables, etc). */
1444 saved_def = tmp;
1445 var = SSA_NAME_VAR (saved_def);
1446 if (!is_gimple_reg (var))
1447 var = VEC_pop (tree, block_defs_stack);
1449 else
1451 /* If we recorded anything else, it must have been a _DECL
1452 node and its current reaching definition must have been
1453 NULL. */
1454 saved_def = NULL;
1455 var = tmp;
1458 set_current_def (var, saved_def);
1463 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1465 void
1466 dump_decl_set (FILE *file, bitmap set)
1468 if (set)
1470 bitmap_iterator bi;
1471 unsigned i;
1473 fprintf (file, "{ ");
1475 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1477 struct tree_decl_minimal in;
1478 tree var;
1479 in.uid = i;
1480 var = (tree) htab_find_with_hash (gimple_referenced_vars (cfun),
1481 &in, i);
1482 if (var)
1483 print_generic_expr (file, var, 0);
1484 else
1485 fprintf (file, "D.%u", i);
1486 fprintf (file, " ");
1489 fprintf (file, "}");
1491 else
1492 fprintf (file, "NIL");
1496 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1498 void
1499 debug_decl_set (bitmap set)
1501 dump_decl_set (stderr, set);
1502 fprintf (stderr, "\n");
1506 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1507 stack up to a maximum of N levels. If N is -1, the whole stack is
1508 dumped. New levels are created when the dominator tree traversal
1509 used for renaming enters a new sub-tree. */
1511 void
1512 dump_defs_stack (FILE *file, int n)
1514 int i, j;
1516 fprintf (file, "\n\nRenaming stack");
1517 if (n > 0)
1518 fprintf (file, " (up to %d levels)", n);
1519 fprintf (file, "\n\n");
1521 i = 1;
1522 fprintf (file, "Level %d (current level)\n", i);
1523 for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1525 tree name, var;
1527 name = VEC_index (tree, block_defs_stack, j);
1528 if (name == NULL_TREE)
1530 i++;
1531 if (n > 0 && i > n)
1532 break;
1533 fprintf (file, "\nLevel %d\n", i);
1534 continue;
1537 if (DECL_P (name))
1539 var = name;
1540 name = NULL_TREE;
1542 else
1544 var = SSA_NAME_VAR (name);
1545 if (!is_gimple_reg (var))
1547 j--;
1548 var = VEC_index (tree, block_defs_stack, j);
1552 fprintf (file, " Previous CURRDEF (");
1553 print_generic_expr (file, var, 0);
1554 fprintf (file, ") = ");
1555 if (name)
1556 print_generic_expr (file, name, 0);
1557 else
1558 fprintf (file, "<NIL>");
1559 fprintf (file, "\n");
1564 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1565 stack up to a maximum of N levels. If N is -1, the whole stack is
1566 dumped. New levels are created when the dominator tree traversal
1567 used for renaming enters a new sub-tree. */
1569 void
1570 debug_defs_stack (int n)
1572 dump_defs_stack (stderr, n);
1576 /* Dump the current reaching definition of every symbol to FILE. */
1578 void
1579 dump_currdefs (FILE *file)
1581 referenced_var_iterator i;
1582 tree var;
1584 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1585 FOR_EACH_REFERENCED_VAR (var, i)
1586 if (SYMS_TO_RENAME (cfun) == NULL
1587 || bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (var)))
1589 fprintf (file, "CURRDEF (");
1590 print_generic_expr (file, var, 0);
1591 fprintf (file, ") = ");
1592 if (get_current_def (var))
1593 print_generic_expr (file, get_current_def (var), 0);
1594 else
1595 fprintf (file, "<NIL>");
1596 fprintf (file, "\n");
1601 /* Dump the current reaching definition of every symbol to stderr. */
1603 void
1604 debug_currdefs (void)
1606 dump_currdefs (stderr);
1610 /* Dump SSA information to FILE. */
1612 void
1613 dump_tree_ssa (FILE *file)
1615 const char *funcname
1616 = lang_hooks.decl_printable_name (current_function_decl, 2);
1618 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1620 dump_def_blocks (file);
1621 dump_defs_stack (file, -1);
1622 dump_currdefs (file);
1623 dump_tree_ssa_stats (file);
1627 /* Dump SSA information to stderr. */
1629 void
1630 debug_tree_ssa (void)
1632 dump_tree_ssa (stderr);
1636 /* Dump statistics for the hash table HTAB. */
1638 static void
1639 htab_statistics (FILE *file, htab_t htab)
1641 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1642 (long) htab_size (htab),
1643 (long) htab_elements (htab),
1644 htab_collisions (htab));
1648 /* Dump SSA statistics on FILE. */
1650 void
1651 dump_tree_ssa_stats (FILE *file)
1653 if (def_blocks || repl_tbl)
1654 fprintf (file, "\nHash table statistics:\n");
1656 if (def_blocks)
1658 fprintf (file, " def_blocks: ");
1659 htab_statistics (file, def_blocks);
1662 if (repl_tbl)
1664 fprintf (file, " repl_tbl: ");
1665 htab_statistics (file, repl_tbl);
1668 if (def_blocks || repl_tbl)
1669 fprintf (file, "\n");
1673 /* Dump SSA statistics on stderr. */
1675 void
1676 debug_tree_ssa_stats (void)
1678 dump_tree_ssa_stats (stderr);
1682 /* Hashing and equality functions for DEF_BLOCKS. */
1684 static hashval_t
1685 def_blocks_hash (const void *p)
1687 return htab_hash_pointer
1688 ((const void *)((const struct def_blocks_d *)p)->var);
1691 static int
1692 def_blocks_eq (const void *p1, const void *p2)
1694 return ((const struct def_blocks_d *)p1)->var
1695 == ((const struct def_blocks_d *)p2)->var;
1699 /* Free memory allocated by one entry in DEF_BLOCKS. */
1701 static void
1702 def_blocks_free (void *p)
1704 struct def_blocks_d *entry = (struct def_blocks_d *) p;
1705 BITMAP_FREE (entry->def_blocks);
1706 BITMAP_FREE (entry->phi_blocks);
1707 BITMAP_FREE (entry->livein_blocks);
1708 free (entry);
1712 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1714 static int
1715 debug_def_blocks_r (void **slot, void *data)
1717 FILE *file = (FILE *) data;
1718 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1720 fprintf (file, "VAR: ");
1721 print_generic_expr (file, db_p->var, dump_flags);
1722 bitmap_print (file, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1723 bitmap_print (file, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}");
1724 bitmap_print (file, db_p->phi_blocks, ", PHI_BLOCKS: { ", "}\n");
1726 return 1;
1730 /* Dump the DEF_BLOCKS hash table on FILE. */
1732 void
1733 dump_def_blocks (FILE *file)
1735 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1736 if (def_blocks)
1737 htab_traverse (def_blocks, debug_def_blocks_r, file);
1741 /* Dump the DEF_BLOCKS hash table on stderr. */
1743 void
1744 debug_def_blocks (void)
1746 dump_def_blocks (stderr);
1750 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1752 static inline void
1753 register_new_update_single (tree new_name, tree old_name)
1755 tree currdef = get_current_def (old_name);
1757 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1758 This stack is later used by the dominator tree callbacks to
1759 restore the reaching definitions for all the variables
1760 defined in the block after a recursive visit to all its
1761 immediately dominated blocks. */
1762 VEC_reserve (tree, heap, block_defs_stack, 2);
1763 VEC_quick_push (tree, block_defs_stack, currdef);
1764 VEC_quick_push (tree, block_defs_stack, old_name);
1766 /* Set the current reaching definition for OLD_NAME to be
1767 NEW_NAME. */
1768 set_current_def (old_name, new_name);
1772 /* Register NEW_NAME to be the new reaching definition for all the
1773 names in OLD_NAMES. Used by the incremental SSA update routines to
1774 replace old SSA names with new ones. */
1776 static inline void
1777 register_new_update_set (tree new_name, bitmap old_names)
1779 bitmap_iterator bi;
1780 unsigned i;
1782 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1783 register_new_update_single (new_name, ssa_name (i));
1788 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1789 it is a symbol marked for renaming, replace it with USE_P's current
1790 reaching definition. */
1792 static inline void
1793 maybe_replace_use (use_operand_p use_p)
1795 tree rdef = NULL_TREE;
1796 tree use = USE_FROM_PTR (use_p);
1797 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1799 if (symbol_marked_for_renaming (sym))
1800 rdef = get_reaching_def (sym);
1801 else if (is_old_name (use))
1802 rdef = get_reaching_def (use);
1804 if (rdef && rdef != use)
1805 SET_USE (use_p, rdef);
1809 /* Same as maybe_replace_use, but without introducing default stmts,
1810 returning false to indicate a need to do so. */
1812 static inline bool
1813 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1815 tree rdef = NULL_TREE;
1816 tree use = USE_FROM_PTR (use_p);
1817 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1819 if (symbol_marked_for_renaming (sym))
1820 rdef = get_current_def (sym);
1821 else if (is_old_name (use))
1823 rdef = get_current_def (use);
1824 /* We can't assume that, if there's no current definition, the
1825 default one should be used. It could be the case that we've
1826 rearranged blocks so that the earlier definition no longer
1827 dominates the use. */
1828 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1829 rdef = use;
1831 else
1832 rdef = use;
1834 if (rdef && rdef != use)
1835 SET_USE (use_p, rdef);
1837 return rdef != NULL_TREE;
1841 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1842 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1843 register it as the current definition for the names replaced by
1844 DEF_P. */
1846 static inline void
1847 maybe_register_def (def_operand_p def_p, gimple stmt,
1848 gimple_stmt_iterator gsi)
1850 tree def = DEF_FROM_PTR (def_p);
1851 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1853 /* If DEF is a naked symbol that needs renaming, create a new
1854 name for it. */
1855 if (symbol_marked_for_renaming (sym))
1857 if (DECL_P (def))
1859 tree tracked_var;
1861 def = make_ssa_name (def, stmt);
1862 SET_DEF (def_p, def);
1864 tracked_var = target_for_debug_bind (sym);
1865 if (tracked_var)
1867 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1868 /* If stmt ends the bb, insert the debug stmt on the single
1869 non-EH edge from the stmt. */
1870 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1872 basic_block bb = gsi_bb (gsi);
1873 edge_iterator ei;
1874 edge e, ef = NULL;
1875 FOR_EACH_EDGE (e, ei, bb->succs)
1876 if (!(e->flags & EDGE_EH))
1878 gcc_assert (!ef);
1879 ef = e;
1881 gcc_assert (ef
1882 && single_pred_p (ef->dest)
1883 && !phi_nodes (ef->dest)
1884 && ef->dest != EXIT_BLOCK_PTR);
1885 gsi_insert_on_edge_immediate (ef, note);
1887 else
1888 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1892 register_new_update_single (def, sym);
1894 else
1896 /* If DEF is a new name, register it as a new definition
1897 for all the names replaced by DEF. */
1898 if (is_new_name (def))
1899 register_new_update_set (def, names_replaced_by (def));
1901 /* If DEF is an old name, register DEF as a new
1902 definition for itself. */
1903 if (is_old_name (def))
1904 register_new_update_single (def, def);
1909 /* Update every variable used in the statement pointed-to by SI. The
1910 statement is assumed to be in SSA form already. Names in
1911 OLD_SSA_NAMES used by SI will be updated to their current reaching
1912 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1913 will be registered as a new definition for their corresponding name
1914 in OLD_SSA_NAMES. */
1916 static void
1917 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1919 use_operand_p use_p;
1920 def_operand_p def_p;
1921 ssa_op_iter iter;
1923 /* Only update marked statements. */
1924 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1925 return;
1927 if (dump_file && (dump_flags & TDF_DETAILS))
1929 fprintf (dump_file, "Updating SSA information for statement ");
1930 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1931 fprintf (dump_file, "\n");
1934 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1935 symbol is marked for renaming. */
1936 if (rewrite_uses_p (stmt))
1938 if (is_gimple_debug (stmt))
1940 bool failed = false;
1942 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1943 if (!maybe_replace_use_in_debug_stmt (use_p))
1945 failed = true;
1946 break;
1949 if (failed)
1951 /* DOM sometimes threads jumps in such a way that a
1952 debug stmt ends up referencing a SSA variable that no
1953 longer dominates the debug stmt, but such that all
1954 incoming definitions refer to the same definition in
1955 an earlier dominator. We could try to recover that
1956 definition somehow, but this will have to do for now.
1958 Introducing a default definition, which is what
1959 maybe_replace_use() would do in such cases, may
1960 modify code generation, for the otherwise-unused
1961 default definition would never go away, modifying SSA
1962 version numbers all over. */
1963 gimple_debug_bind_reset_value (stmt);
1964 update_stmt (stmt);
1967 else
1969 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1970 maybe_replace_use (use_p);
1974 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1975 Also register definitions for names whose underlying symbol is
1976 marked for renaming. */
1977 if (register_defs_p (stmt))
1978 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1979 maybe_register_def (def_p, stmt, gsi);
1983 /* Visit all the successor blocks of BB looking for PHI nodes. For
1984 every PHI node found, check if any of its arguments is in
1985 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1986 definition, replace it. */
1988 static void
1989 rewrite_update_phi_arguments (basic_block bb)
1991 edge e;
1992 edge_iterator ei;
1993 unsigned i;
1995 FOR_EACH_EDGE (e, ei, bb->succs)
1997 gimple phi;
1998 gimple_vec phis;
2000 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
2001 continue;
2003 phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
2004 for (i = 0; VEC_iterate (gimple, phis, i, phi); i++)
2006 tree arg, lhs_sym, reaching_def = NULL;
2007 use_operand_p arg_p;
2009 gcc_assert (rewrite_uses_p (phi));
2011 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2012 arg = USE_FROM_PTR (arg_p);
2014 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2015 continue;
2017 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2019 if (arg == NULL_TREE)
2021 /* When updating a PHI node for a recently introduced
2022 symbol we may find NULL arguments. That's why we
2023 take the symbol from the LHS of the PHI node. */
2024 reaching_def = get_reaching_def (lhs_sym);
2027 else
2029 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2031 if (symbol_marked_for_renaming (sym))
2032 reaching_def = get_reaching_def (sym);
2033 else if (is_old_name (arg))
2034 reaching_def = get_reaching_def (arg);
2037 /* Update the argument if there is a reaching def. */
2038 if (reaching_def)
2040 gimple stmt;
2041 source_location locus;
2042 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2044 SET_USE (arg_p, reaching_def);
2045 stmt = SSA_NAME_DEF_STMT (reaching_def);
2047 /* Single element PHI nodes behave like copies, so get the
2048 location from the phi argument. */
2049 if (gimple_code (stmt) == GIMPLE_PHI &&
2050 gimple_phi_num_args (stmt) == 1)
2051 locus = gimple_phi_arg_location (stmt, 0);
2052 else
2053 locus = gimple_location (stmt);
2055 gimple_phi_arg_set_location (phi, arg_i, locus);
2059 if (e->flags & EDGE_ABNORMAL)
2060 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2066 /* Initialization of block data structures for the incremental SSA
2067 update pass. Create a block local stack of reaching definitions
2068 for new SSA names produced in this block (BLOCK_DEFS). Register
2069 new definitions for every PHI node in the block. */
2071 static void
2072 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2073 basic_block bb)
2075 edge e;
2076 edge_iterator ei;
2077 bool is_abnormal_phi;
2078 gimple_stmt_iterator gsi;
2080 if (dump_file && (dump_flags & TDF_DETAILS))
2081 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
2082 bb->index);
2084 /* Mark the unwind point for this block. */
2085 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
2087 if (!bitmap_bit_p (blocks_to_update, bb->index))
2088 return;
2090 /* Mark the LHS if any of the arguments flows through an abnormal
2091 edge. */
2092 is_abnormal_phi = false;
2093 FOR_EACH_EDGE (e, ei, bb->preds)
2094 if (e->flags & EDGE_ABNORMAL)
2096 is_abnormal_phi = true;
2097 break;
2100 /* If any of the PHI nodes is a replacement for a name in
2101 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2102 register it as a new definition for its corresponding name. Also
2103 register definitions for names whose underlying symbols are
2104 marked for renaming. */
2105 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2107 tree lhs, lhs_sym;
2108 gimple phi = gsi_stmt (gsi);
2110 if (!register_defs_p (phi))
2111 continue;
2113 lhs = gimple_phi_result (phi);
2114 lhs_sym = SSA_NAME_VAR (lhs);
2116 if (symbol_marked_for_renaming (lhs_sym))
2117 register_new_update_single (lhs, lhs_sym);
2118 else
2121 /* If LHS is a new name, register a new definition for all
2122 the names replaced by LHS. */
2123 if (is_new_name (lhs))
2124 register_new_update_set (lhs, names_replaced_by (lhs));
2126 /* If LHS is an OLD name, register it as a new definition
2127 for itself. */
2128 if (is_old_name (lhs))
2129 register_new_update_single (lhs, lhs);
2132 if (is_abnormal_phi)
2133 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2136 /* Step 2. Rewrite every variable used in each statement in the block. */
2137 if (TEST_BIT (interesting_blocks, bb->index))
2139 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2140 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2141 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2144 /* Step 3. Update PHI nodes. */
2145 rewrite_update_phi_arguments (bb);
2148 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2149 the current reaching definition of every name re-written in BB to
2150 the original reaching definition before visiting BB. This
2151 unwinding must be done in the opposite order to what is done in
2152 register_new_update_set. */
2154 static void
2155 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2156 basic_block bb ATTRIBUTE_UNUSED)
2158 while (VEC_length (tree, block_defs_stack) > 0)
2160 tree var = VEC_pop (tree, block_defs_stack);
2161 tree saved_def;
2163 /* NULL indicates the unwind stop point for this block (see
2164 rewrite_update_enter_block). */
2165 if (var == NULL)
2166 return;
2168 saved_def = VEC_pop (tree, block_defs_stack);
2169 set_current_def (var, saved_def);
2174 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2175 form.
2177 ENTRY indicates the block where to start. Every block dominated by
2178 ENTRY will be rewritten.
2180 WHAT indicates what actions will be taken by the renamer (see enum
2181 rewrite_mode).
2183 BLOCKS are the set of interesting blocks for the dominator walker
2184 to process. If this set is NULL, then all the nodes dominated
2185 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2186 are not present in BLOCKS are ignored. */
2188 static void
2189 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2191 struct dom_walk_data walk_data;
2193 /* Rewrite all the basic blocks in the program. */
2194 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2196 /* Setup callbacks for the generic dominator tree walker. */
2197 memset (&walk_data, 0, sizeof (walk_data));
2199 walk_data.dom_direction = CDI_DOMINATORS;
2201 if (what == REWRITE_ALL)
2203 walk_data.before_dom_children = rewrite_enter_block;
2204 walk_data.after_dom_children = rewrite_leave_block;
2206 else if (what == REWRITE_UPDATE)
2208 walk_data.before_dom_children = rewrite_update_enter_block;
2209 walk_data.after_dom_children = rewrite_update_leave_block;
2211 else
2212 gcc_unreachable ();
2214 block_defs_stack = VEC_alloc (tree, heap, 10);
2216 /* Initialize the dominator walker. */
2217 init_walk_dominator_tree (&walk_data);
2219 /* Recursively walk the dominator tree rewriting each statement in
2220 each basic block. */
2221 walk_dominator_tree (&walk_data, entry);
2223 /* Finalize the dominator walker. */
2224 fini_walk_dominator_tree (&walk_data);
2226 /* Debugging dumps. */
2227 if (dump_file && (dump_flags & TDF_STATS))
2229 dump_dfa_stats (dump_file);
2230 if (def_blocks)
2231 dump_tree_ssa_stats (dump_file);
2234 VEC_free (tree, heap, block_defs_stack);
2236 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2240 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2241 at the start of each block, and call mark_def_sites for each statement. */
2243 static void
2244 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2246 struct mark_def_sites_global_data *gd;
2247 bitmap kills;
2248 gimple_stmt_iterator gsi;
2250 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2251 kills = gd->kills;
2253 bitmap_clear (kills);
2254 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2255 mark_def_sites (bb, gsi_stmt (gsi), kills);
2259 /* Mark the definition site blocks for each variable, so that we know
2260 where the variable is actually live.
2262 The INTERESTING_BLOCKS global will be filled in with all the blocks
2263 that should be processed by the renamer. It is assumed that the
2264 caller has already initialized and zeroed it. */
2266 static void
2267 mark_def_site_blocks (void)
2269 struct dom_walk_data walk_data;
2270 struct mark_def_sites_global_data mark_def_sites_global_data;
2272 /* Setup callbacks for the generic dominator tree walker to find and
2273 mark definition sites. */
2274 walk_data.dom_direction = CDI_DOMINATORS;
2275 walk_data.initialize_block_local_data = NULL;
2276 walk_data.before_dom_children = mark_def_sites_block;
2277 walk_data.after_dom_children = NULL;
2279 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2280 large enough to accommodate all the variables referenced in the
2281 function, not just the ones we are renaming. */
2282 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2283 walk_data.global_data = &mark_def_sites_global_data;
2285 /* We do not have any local data. */
2286 walk_data.block_local_data_size = 0;
2288 /* Initialize the dominator walker. */
2289 init_walk_dominator_tree (&walk_data);
2291 /* Recursively walk the dominator tree. */
2292 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2294 /* Finalize the dominator walker. */
2295 fini_walk_dominator_tree (&walk_data);
2297 /* We no longer need this bitmap, clear and free it. */
2298 BITMAP_FREE (mark_def_sites_global_data.kills);
2302 /* Initialize internal data needed during renaming. */
2304 static void
2305 init_ssa_renamer (void)
2307 tree var;
2308 referenced_var_iterator rvi;
2310 cfun->gimple_df->in_ssa_p = false;
2312 /* Allocate memory for the DEF_BLOCKS hash table. */
2313 gcc_assert (def_blocks == NULL);
2314 def_blocks = htab_create (num_referenced_vars, def_blocks_hash,
2315 def_blocks_eq, def_blocks_free);
2317 FOR_EACH_REFERENCED_VAR(var, rvi)
2318 set_current_def (var, NULL_TREE);
2322 /* Deallocate internal data structures used by the renamer. */
2324 static void
2325 fini_ssa_renamer (void)
2327 if (def_blocks)
2329 htab_delete (def_blocks);
2330 def_blocks = NULL;
2333 cfun->gimple_df->in_ssa_p = true;
2336 /* Main entry point into the SSA builder. The renaming process
2337 proceeds in four main phases:
2339 1- Compute dominance frontier and immediate dominators, needed to
2340 insert PHI nodes and rename the function in dominator tree
2341 order.
2343 2- Find and mark all the blocks that define variables
2344 (mark_def_site_blocks).
2346 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2348 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2350 Steps 3 and 4 are done using the dominator tree walker
2351 (walk_dominator_tree). */
2353 static unsigned int
2354 rewrite_into_ssa (void)
2356 bitmap *dfs;
2357 basic_block bb;
2359 timevar_push (TV_TREE_SSA_OTHER);
2361 /* Initialize operand data structures. */
2362 init_ssa_operands ();
2364 /* Initialize internal data needed by the renamer. */
2365 init_ssa_renamer ();
2367 /* Initialize the set of interesting blocks. The callback
2368 mark_def_sites will add to this set those blocks that the renamer
2369 should process. */
2370 interesting_blocks = sbitmap_alloc (last_basic_block);
2371 sbitmap_zero (interesting_blocks);
2373 /* Initialize dominance frontier. */
2374 dfs = XNEWVEC (bitmap, last_basic_block);
2375 FOR_EACH_BB (bb)
2376 dfs[bb->index] = BITMAP_ALLOC (NULL);
2378 /* 1- Compute dominance frontiers. */
2379 calculate_dominance_info (CDI_DOMINATORS);
2380 compute_dominance_frontiers (dfs);
2382 /* 2- Find and mark definition sites. */
2383 mark_def_site_blocks ();
2385 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2386 insert_phi_nodes (dfs);
2388 /* 4- Rename all the blocks. */
2389 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2391 /* Free allocated memory. */
2392 FOR_EACH_BB (bb)
2393 BITMAP_FREE (dfs[bb->index]);
2394 free (dfs);
2396 sbitmap_free (interesting_blocks);
2398 fini_ssa_renamer ();
2400 timevar_pop (TV_TREE_SSA_OTHER);
2401 return 0;
2405 struct gimple_opt_pass pass_build_ssa =
2408 GIMPLE_PASS,
2409 "ssa", /* name */
2410 NULL, /* gate */
2411 rewrite_into_ssa, /* execute */
2412 NULL, /* sub */
2413 NULL, /* next */
2414 0, /* static_pass_number */
2415 TV_NONE, /* tv_id */
2416 PROP_cfg | PROP_referenced_vars, /* properties_required */
2417 PROP_ssa, /* properties_provided */
2418 0, /* properties_destroyed */
2419 0, /* todo_flags_start */
2420 TODO_dump_func
2421 | TODO_update_ssa_only_virtuals
2422 | TODO_verify_ssa
2423 | TODO_remove_unused_locals /* todo_flags_finish */
2428 /* Mark the definition of VAR at STMT and BB as interesting for the
2429 renamer. BLOCKS is the set of blocks that need updating. */
2431 static void
2432 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2434 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2435 set_register_defs (stmt, true);
2437 if (insert_phi_p)
2439 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2441 set_def_block (var, bb, is_phi_p);
2443 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2444 site for both itself and all the old names replaced by it. */
2445 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2447 bitmap_iterator bi;
2448 unsigned i;
2449 bitmap set = names_replaced_by (var);
2450 if (set)
2451 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2452 set_def_block (ssa_name (i), bb, is_phi_p);
2458 /* Mark the use of VAR at STMT and BB as interesting for the
2459 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2460 nodes. */
2462 static inline void
2463 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2465 basic_block def_bb = gimple_bb (stmt);
2467 mark_block_for_update (def_bb);
2468 mark_block_for_update (bb);
2470 if (gimple_code (stmt) == GIMPLE_PHI)
2471 mark_phi_for_rewrite (def_bb, stmt);
2472 else
2474 set_rewrite_uses (stmt, true);
2476 if (is_gimple_debug (stmt))
2477 return;
2480 /* If VAR has not been defined in BB, then it is live-on-entry
2481 to BB. Note that we cannot just use the block holding VAR's
2482 definition because if VAR is one of the names in OLD_SSA_NAMES,
2483 it will have several definitions (itself and all the names that
2484 replace it). */
2485 if (insert_phi_p)
2487 struct def_blocks_d *db_p = get_def_blocks_for (var);
2488 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2489 set_livein_block (var, bb);
2494 /* Do a dominator walk starting at BB processing statements that
2495 reference symbols in SYMS_TO_RENAME. This is very similar to
2496 mark_def_sites, but the scan handles statements whose operands may
2497 already be SSA names.
2499 If INSERT_PHI_P is true, mark those uses as live in the
2500 corresponding block. This is later used by the PHI placement
2501 algorithm to make PHI pruning decisions.
2503 FIXME. Most of this would be unnecessary if we could associate a
2504 symbol to all the SSA names that reference it. But that
2505 sounds like it would be expensive to maintain. Still, it
2506 would be interesting to see if it makes better sense to do
2507 that. */
2509 static void
2510 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2512 basic_block son;
2513 gimple_stmt_iterator si;
2514 edge e;
2515 edge_iterator ei;
2517 mark_block_for_update (bb);
2519 /* Process PHI nodes marking interesting those that define or use
2520 the symbols that we are interested in. */
2521 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2523 gimple phi = gsi_stmt (si);
2524 tree lhs_sym, lhs = gimple_phi_result (phi);
2526 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2528 if (!symbol_marked_for_renaming (lhs_sym))
2529 continue;
2531 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2533 /* Mark the uses in phi nodes as interesting. It would be more correct
2534 to process the arguments of the phi nodes of the successor edges of
2535 BB at the end of prepare_block_for_update, however, that turns out
2536 to be significantly more expensive. Doing it here is conservatively
2537 correct -- it may only cause us to believe a value to be live in a
2538 block that also contains its definition, and thus insert a few more
2539 phi nodes for it. */
2540 FOR_EACH_EDGE (e, ei, bb->preds)
2541 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2544 /* Process the statements. */
2545 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2547 gimple stmt;
2548 ssa_op_iter i;
2549 use_operand_p use_p;
2550 def_operand_p def_p;
2552 stmt = gsi_stmt (si);
2554 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
2556 tree use = USE_FROM_PTR (use_p);
2557 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2558 if (symbol_marked_for_renaming (sym))
2559 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2562 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_ALL_DEFS)
2564 tree def = DEF_FROM_PTR (def_p);
2565 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2566 if (symbol_marked_for_renaming (sym))
2567 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2571 /* Now visit all the blocks dominated by BB. */
2572 for (son = first_dom_son (CDI_DOMINATORS, bb);
2573 son;
2574 son = next_dom_son (CDI_DOMINATORS, son))
2575 prepare_block_for_update (son, insert_phi_p);
2579 /* Helper for prepare_names_to_update. Mark all the use sites for
2580 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2581 prepare_names_to_update. */
2583 static void
2584 prepare_use_sites_for (tree name, bool insert_phi_p)
2586 use_operand_p use_p;
2587 imm_use_iterator iter;
2589 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2591 gimple stmt = USE_STMT (use_p);
2592 basic_block bb = gimple_bb (stmt);
2594 if (gimple_code (stmt) == GIMPLE_PHI)
2596 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2597 edge e = gimple_phi_arg_edge (stmt, ix);
2598 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2600 else
2602 /* For regular statements, mark this as an interesting use
2603 for NAME. */
2604 mark_use_interesting (name, stmt, bb, insert_phi_p);
2610 /* Helper for prepare_names_to_update. Mark the definition site for
2611 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2612 prepare_names_to_update. */
2614 static void
2615 prepare_def_site_for (tree name, bool insert_phi_p)
2617 gimple stmt;
2618 basic_block bb;
2620 gcc_assert (names_to_release == NULL
2621 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2623 stmt = SSA_NAME_DEF_STMT (name);
2624 bb = gimple_bb (stmt);
2625 if (bb)
2627 gcc_assert (bb->index < last_basic_block);
2628 mark_block_for_update (bb);
2629 mark_def_interesting (name, stmt, bb, insert_phi_p);
2634 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2635 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2636 PHI nodes for newly created names. */
2638 static void
2639 prepare_names_to_update (bool insert_phi_p)
2641 unsigned i = 0;
2642 bitmap_iterator bi;
2643 sbitmap_iterator sbi;
2645 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2646 remove it from NEW_SSA_NAMES so that we don't try to visit its
2647 defining basic block (which most likely doesn't exist). Notice
2648 that we cannot do the same with names in OLD_SSA_NAMES because we
2649 want to replace existing instances. */
2650 if (names_to_release)
2651 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2652 RESET_BIT (new_ssa_names, i);
2654 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2655 names may be considered to be live-in on blocks that contain
2656 definitions for their replacements. */
2657 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2658 prepare_def_site_for (ssa_name (i), insert_phi_p);
2660 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2661 OLD_SSA_NAMES, but we have to ignore its definition site. */
2662 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2664 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2665 prepare_def_site_for (ssa_name (i), insert_phi_p);
2666 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2671 /* Dump all the names replaced by NAME to FILE. */
2673 void
2674 dump_names_replaced_by (FILE *file, tree name)
2676 unsigned i;
2677 bitmap old_set;
2678 bitmap_iterator bi;
2680 print_generic_expr (file, name, 0);
2681 fprintf (file, " -> { ");
2683 old_set = names_replaced_by (name);
2684 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2686 print_generic_expr (file, ssa_name (i), 0);
2687 fprintf (file, " ");
2690 fprintf (file, "}\n");
2694 /* Dump all the names replaced by NAME to stderr. */
2696 void
2697 debug_names_replaced_by (tree name)
2699 dump_names_replaced_by (stderr, name);
2703 /* Dump SSA update information to FILE. */
2705 void
2706 dump_update_ssa (FILE *file)
2708 unsigned i = 0;
2709 bitmap_iterator bi;
2711 if (!need_ssa_update_p (cfun))
2712 return;
2714 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2716 sbitmap_iterator sbi;
2718 fprintf (file, "\nSSA replacement table\n");
2719 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2720 "O_1, ..., O_j\n\n");
2722 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2723 dump_names_replaced_by (file, ssa_name (i));
2725 fprintf (file, "\n");
2726 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2727 update_ssa_stats.num_virtual_mappings);
2728 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2729 update_ssa_stats.num_total_mappings
2730 - update_ssa_stats.num_virtual_mappings);
2731 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2732 update_ssa_stats.num_total_mappings);
2734 fprintf (file, "\nNumber of virtual symbols: %u\n",
2735 update_ssa_stats.num_virtual_symbols);
2738 if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
2740 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2741 dump_decl_set (file, SYMS_TO_RENAME (cfun));
2742 fprintf (file, "\n");
2745 if (names_to_release && !bitmap_empty_p (names_to_release))
2747 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2748 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2750 print_generic_expr (file, ssa_name (i), 0);
2751 fprintf (file, " ");
2755 fprintf (file, "\n\n");
2759 /* Dump SSA update information to stderr. */
2761 void
2762 debug_update_ssa (void)
2764 dump_update_ssa (stderr);
2768 /* Initialize data structures used for incremental SSA updates. */
2770 static void
2771 init_update_ssa (struct function *fn)
2773 /* Reserve more space than the current number of names. The calls to
2774 add_new_name_mapping are typically done after creating new SSA
2775 names, so we'll need to reallocate these arrays. */
2776 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2777 sbitmap_zero (old_ssa_names);
2779 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2780 sbitmap_zero (new_ssa_names);
2782 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2783 names_to_release = NULL;
2784 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2785 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2786 update_ssa_initialized_fn = fn;
2790 /* Deallocate data structures used for incremental SSA updates. */
2792 void
2793 delete_update_ssa (void)
2795 unsigned i;
2796 bitmap_iterator bi;
2798 sbitmap_free (old_ssa_names);
2799 old_ssa_names = NULL;
2801 sbitmap_free (new_ssa_names);
2802 new_ssa_names = NULL;
2804 htab_delete (repl_tbl);
2805 repl_tbl = NULL;
2807 bitmap_clear (SYMS_TO_RENAME (update_ssa_initialized_fn));
2808 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2810 if (names_to_release)
2812 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2813 release_ssa_name (ssa_name (i));
2814 BITMAP_FREE (names_to_release);
2817 clear_ssa_name_info ();
2819 fini_ssa_renamer ();
2821 if (blocks_with_phis_to_rewrite)
2822 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2824 gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2826 VEC_free (gimple, heap, phis);
2827 VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2830 BITMAP_FREE (blocks_with_phis_to_rewrite);
2831 BITMAP_FREE (blocks_to_update);
2832 update_ssa_initialized_fn = NULL;
2836 /* Create a new name for OLD_NAME in statement STMT and replace the
2837 operand pointed to by DEF_P with the newly created name. Return
2838 the new name and register the replacement mapping <NEW, OLD> in
2839 update_ssa's tables. */
2841 tree
2842 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2844 tree new_name = duplicate_ssa_name (old_name, stmt);
2846 SET_DEF (def, new_name);
2848 if (gimple_code (stmt) == GIMPLE_PHI)
2850 edge e;
2851 edge_iterator ei;
2852 basic_block bb = gimple_bb (stmt);
2854 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2855 FOR_EACH_EDGE (e, ei, bb->preds)
2856 if (e->flags & EDGE_ABNORMAL)
2858 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2859 break;
2863 register_new_name_mapping (new_name, old_name);
2865 /* For the benefit of passes that will be updating the SSA form on
2866 their own, set the current reaching definition of OLD_NAME to be
2867 NEW_NAME. */
2868 set_current_def (old_name, new_name);
2870 return new_name;
2874 /* Register name NEW to be a replacement for name OLD. This function
2875 must be called for every replacement that should be performed by
2876 update_ssa. */
2878 void
2879 register_new_name_mapping (tree new_tree, tree old)
2881 if (!update_ssa_initialized_fn)
2882 init_update_ssa (cfun);
2884 gcc_assert (update_ssa_initialized_fn == cfun);
2886 add_new_name_mapping (new_tree, old);
2890 /* Register symbol SYM to be renamed by update_ssa. */
2892 void
2893 mark_sym_for_renaming (tree sym)
2895 bitmap_set_bit (SYMS_TO_RENAME (cfun), DECL_UID (sym));
2899 /* Register all the symbols in SET to be renamed by update_ssa. */
2901 void
2902 mark_set_for_renaming (bitmap set)
2904 bitmap_iterator bi;
2905 unsigned i;
2907 if (set == NULL || bitmap_empty_p (set))
2908 return;
2910 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2911 mark_sym_for_renaming (referenced_var (i));
2915 /* Return true if there is any work to be done by update_ssa
2916 for function FN. */
2918 bool
2919 need_ssa_update_p (struct function *fn)
2921 gcc_assert (fn != NULL);
2922 return (update_ssa_initialized_fn == fn
2923 || (fn->gimple_df
2924 && !bitmap_empty_p (SYMS_TO_RENAME (fn))));
2927 /* Return true if SSA name mappings have been registered for SSA updating. */
2929 bool
2930 name_mappings_registered_p (void)
2932 if (!update_ssa_initialized_fn)
2933 return false;
2935 gcc_assert (update_ssa_initialized_fn == cfun);
2937 return repl_tbl && htab_elements (repl_tbl) > 0;
2940 /* Return true if name N has been registered in the replacement table. */
2942 bool
2943 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2945 if (!update_ssa_initialized_fn)
2946 return false;
2948 gcc_assert (update_ssa_initialized_fn == cfun);
2950 return is_new_name (n) || is_old_name (n);
2954 /* Return the set of all the SSA names marked to be replaced. */
2956 bitmap
2957 ssa_names_to_replace (void)
2959 unsigned i = 0;
2960 bitmap ret;
2961 sbitmap_iterator sbi;
2963 gcc_assert (update_ssa_initialized_fn == NULL
2964 || update_ssa_initialized_fn == cfun);
2966 ret = BITMAP_ALLOC (NULL);
2967 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2968 bitmap_set_bit (ret, i);
2970 return ret;
2974 /* Mark NAME to be released after update_ssa has finished. */
2976 void
2977 release_ssa_name_after_update_ssa (tree name)
2979 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2981 if (names_to_release == NULL)
2982 names_to_release = BITMAP_ALLOC (NULL);
2984 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2988 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2989 frontier information. BLOCKS is the set of blocks to be updated.
2991 This is slightly different than the regular PHI insertion
2992 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2993 real names (i.e., GIMPLE registers) are inserted:
2995 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2996 nodes inside the region affected by the block that defines VAR
2997 and the blocks that define all its replacements. All these
2998 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
3000 First, we compute the entry point to the region (ENTRY). This is
3001 given by the nearest common dominator to all the definition
3002 blocks. When computing the iterated dominance frontier (IDF), any
3003 block not strictly dominated by ENTRY is ignored.
3005 We then call the standard PHI insertion algorithm with the pruned
3006 IDF.
3008 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3009 names is not pruned. PHI nodes are inserted at every IDF block. */
3011 static void
3012 insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
3013 unsigned update_flags)
3015 basic_block entry;
3016 struct def_blocks_d *db;
3017 bitmap idf, pruned_idf;
3018 bitmap_iterator bi;
3019 unsigned i;
3021 #if defined ENABLE_CHECKING
3022 if (TREE_CODE (var) == SSA_NAME)
3023 gcc_assert (is_old_name (var));
3024 else
3025 gcc_assert (symbol_marked_for_renaming (var));
3026 #endif
3028 /* Get all the definition sites for VAR. */
3029 db = find_def_blocks_for (var);
3031 /* No need to do anything if there were no definitions to VAR. */
3032 if (db == NULL || bitmap_empty_p (db->def_blocks))
3033 return;
3035 /* Compute the initial iterated dominance frontier. */
3036 idf = compute_idf (db->def_blocks, dfs);
3037 pruned_idf = BITMAP_ALLOC (NULL);
3039 if (TREE_CODE (var) == SSA_NAME)
3041 if (update_flags == TODO_update_ssa)
3043 /* If doing regular SSA updates for GIMPLE registers, we are
3044 only interested in IDF blocks dominated by the nearest
3045 common dominator of all the definition blocks. */
3046 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3047 db->def_blocks);
3048 if (entry != ENTRY_BLOCK_PTR)
3049 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3050 if (BASIC_BLOCK (i) != entry
3051 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3052 bitmap_set_bit (pruned_idf, i);
3054 else
3056 /* Otherwise, do not prune the IDF for VAR. */
3057 gcc_assert (update_flags == TODO_update_ssa_full_phi);
3058 bitmap_copy (pruned_idf, idf);
3061 else
3063 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3064 for the first time, so we need to compute the full IDF for
3065 it. */
3066 bitmap_copy (pruned_idf, idf);
3069 if (!bitmap_empty_p (pruned_idf))
3071 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3072 are included in the region to be updated. The feeding blocks
3073 are important to guarantee that the PHI arguments are renamed
3074 properly. */
3076 /* FIXME, this is not needed if we are updating symbols. We are
3077 already starting at the ENTRY block anyway. */
3078 bitmap_ior_into (blocks, pruned_idf);
3079 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3081 edge e;
3082 edge_iterator ei;
3083 basic_block bb = BASIC_BLOCK (i);
3085 FOR_EACH_EDGE (e, ei, bb->preds)
3086 if (e->src->index >= 0)
3087 bitmap_set_bit (blocks, e->src->index);
3090 insert_phi_nodes_for (var, pruned_idf, true);
3093 BITMAP_FREE (pruned_idf);
3094 BITMAP_FREE (idf);
3098 /* Heuristic to determine whether SSA name mappings for virtual names
3099 should be discarded and their symbols rewritten from scratch. When
3100 there is a large number of mappings for virtual names, the
3101 insertion of PHI nodes for the old names in the mappings takes
3102 considerable more time than if we inserted PHI nodes for the
3103 symbols instead.
3105 Currently the heuristic takes these stats into account:
3107 - Number of mappings for virtual SSA names.
3108 - Number of distinct virtual symbols involved in those mappings.
3110 If the number of virtual mappings is much larger than the number of
3111 virtual symbols, then it will be faster to compute PHI insertion
3112 spots for the symbols. Even if this involves traversing the whole
3113 CFG, which is what happens when symbols are renamed from scratch. */
3115 static bool
3116 switch_virtuals_to_full_rewrite_p (void)
3118 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
3119 return false;
3121 if (update_ssa_stats.num_virtual_mappings
3122 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
3123 * update_ssa_stats.num_virtual_symbols)
3124 return true;
3126 return false;
3130 /* Remove every virtual mapping and mark all the affected virtual
3131 symbols for renaming. */
3133 static void
3134 switch_virtuals_to_full_rewrite (void)
3136 unsigned i = 0;
3137 sbitmap_iterator sbi;
3139 if (dump_file)
3141 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
3142 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
3143 update_ssa_stats.num_virtual_mappings);
3144 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
3145 update_ssa_stats.num_virtual_symbols);
3146 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
3147 "faster than processing\nthe name mappings.\n\n");
3150 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
3151 Note that it is not really necessary to remove the mappings from
3152 REPL_TBL, that would only waste time. */
3153 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
3154 if (!is_gimple_reg (ssa_name (i)))
3155 RESET_BIT (new_ssa_names, i);
3157 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3158 if (!is_gimple_reg (ssa_name (i)))
3159 RESET_BIT (old_ssa_names, i);
3161 mark_set_for_renaming (update_ssa_stats.virtual_symbols);
3165 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3166 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3168 1- The names in OLD_SSA_NAMES dominated by the definitions of
3169 NEW_SSA_NAMES are all re-written to be reached by the
3170 appropriate definition from NEW_SSA_NAMES.
3172 2- If needed, new PHI nodes are added to the iterated dominance
3173 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3175 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3176 calling register_new_name_mapping for every pair of names that the
3177 caller wants to replace.
3179 The caller identifies the new names that have been inserted and the
3180 names that need to be replaced by calling register_new_name_mapping
3181 for every pair <NEW, OLD>. Note that the function assumes that the
3182 new names have already been inserted in the IL.
3184 For instance, given the following code:
3186 1 L0:
3187 2 x_1 = PHI (0, x_5)
3188 3 if (x_1 < 10)
3189 4 if (x_1 > 7)
3190 5 y_2 = 0
3191 6 else
3192 7 y_3 = x_1 + x_7
3193 8 endif
3194 9 x_5 = x_1 + 1
3195 10 goto L0;
3196 11 endif
3198 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3200 1 L0:
3201 2 x_1 = PHI (0, x_5)
3202 3 if (x_1 < 10)
3203 4 x_10 = ...
3204 5 if (x_1 > 7)
3205 6 y_2 = 0
3206 7 else
3207 8 x_11 = ...
3208 9 y_3 = x_1 + x_7
3209 10 endif
3210 11 x_5 = x_1 + 1
3211 12 goto L0;
3212 13 endif
3214 We want to replace all the uses of x_1 with the new definitions of
3215 x_10 and x_11. Note that the only uses that should be replaced are
3216 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3217 *not* be replaced (this is why we cannot just mark symbol 'x' for
3218 renaming).
3220 Additionally, we may need to insert a PHI node at line 11 because
3221 that is a merge point for x_10 and x_11. So the use of x_1 at line
3222 11 will be replaced with the new PHI node. The insertion of PHI
3223 nodes is optional. They are not strictly necessary to preserve the
3224 SSA form, and depending on what the caller inserted, they may not
3225 even be useful for the optimizers. UPDATE_FLAGS controls various
3226 aspects of how update_ssa operates, see the documentation for
3227 TODO_update_ssa*. */
3229 void
3230 update_ssa (unsigned update_flags)
3232 basic_block bb, start_bb;
3233 bitmap_iterator bi;
3234 unsigned i = 0;
3235 bool insert_phi_p;
3236 sbitmap_iterator sbi;
3238 if (!need_ssa_update_p (cfun))
3239 return;
3241 timevar_push (TV_TREE_SSA_INCREMENTAL);
3243 if (!update_ssa_initialized_fn)
3244 init_update_ssa (cfun);
3245 gcc_assert (update_ssa_initialized_fn == cfun);
3247 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3248 if (!phis_to_rewrite)
3249 phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block);
3250 blocks_to_update = BITMAP_ALLOC (NULL);
3252 /* Ensure that the dominance information is up-to-date. */
3253 calculate_dominance_info (CDI_DOMINATORS);
3255 /* Only one update flag should be set. */
3256 gcc_assert (update_flags == TODO_update_ssa
3257 || update_flags == TODO_update_ssa_no_phi
3258 || update_flags == TODO_update_ssa_full_phi
3259 || update_flags == TODO_update_ssa_only_virtuals);
3261 /* If we only need to update virtuals, remove all the mappings for
3262 real names before proceeding. The caller is responsible for
3263 having dealt with the name mappings before calling update_ssa. */
3264 if (update_flags == TODO_update_ssa_only_virtuals)
3266 sbitmap_zero (old_ssa_names);
3267 sbitmap_zero (new_ssa_names);
3268 htab_empty (repl_tbl);
3271 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3273 if (insert_phi_p)
3275 /* If the caller requested PHI nodes to be added, initialize
3276 live-in information data structures (DEF_BLOCKS). */
3278 /* For each SSA name N, the DEF_BLOCKS table describes where the
3279 name is defined, which blocks have PHI nodes for N, and which
3280 blocks have uses of N (i.e., N is live-on-entry in those
3281 blocks). */
3282 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
3283 def_blocks_eq, def_blocks_free);
3285 else
3287 def_blocks = NULL;
3290 /* Heuristic to avoid massive slow downs when the replacement
3291 mappings include lots of virtual names. */
3292 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
3293 switch_virtuals_to_full_rewrite ();
3295 /* If there are names defined in the replacement table, prepare
3296 definition and use sites for all the names in NEW_SSA_NAMES and
3297 OLD_SSA_NAMES. */
3298 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3300 prepare_names_to_update (insert_phi_p);
3302 /* If all the names in NEW_SSA_NAMES had been marked for
3303 removal, and there are no symbols to rename, then there's
3304 nothing else to do. */
3305 if (sbitmap_first_set_bit (new_ssa_names) < 0
3306 && bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3307 goto done;
3310 /* Next, determine the block at which to start the renaming process. */
3311 if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3313 /* If we have to rename some symbols from scratch, we need to
3314 start the process at the root of the CFG. FIXME, it should
3315 be possible to determine the nearest block that had a
3316 definition for each of the symbols that are marked for
3317 updating. For now this seems more work than it's worth. */
3318 start_bb = ENTRY_BLOCK_PTR;
3320 /* Traverse the CFG looking for existing definitions and uses of
3321 symbols in SYMS_TO_RENAME. Mark interesting blocks and
3322 statements and set local live-in information for the PHI
3323 placement heuristics. */
3324 prepare_block_for_update (start_bb, insert_phi_p);
3326 else
3328 /* Otherwise, the entry block to the region is the nearest
3329 common dominator for the blocks in BLOCKS. */
3330 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3331 blocks_to_update);
3334 /* If requested, insert PHI nodes at the iterated dominance frontier
3335 of every block, creating new definitions for names in OLD_SSA_NAMES
3336 and for symbols in SYMS_TO_RENAME. */
3337 if (insert_phi_p)
3339 bitmap *dfs;
3341 /* If the caller requested PHI nodes to be added, compute
3342 dominance frontiers. */
3343 dfs = XNEWVEC (bitmap, last_basic_block);
3344 FOR_EACH_BB (bb)
3345 dfs[bb->index] = BITMAP_ALLOC (NULL);
3346 compute_dominance_frontiers (dfs);
3348 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3350 sbitmap_iterator sbi;
3352 /* insert_update_phi_nodes_for will call add_new_name_mapping
3353 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3354 will grow while we are traversing it (but it will not
3355 gain any new members). Copy OLD_SSA_NAMES to a temporary
3356 for traversal. */
3357 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
3358 sbitmap_copy (tmp, old_ssa_names);
3359 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3360 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3361 update_flags);
3362 sbitmap_free (tmp);
3365 EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3366 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks_to_update,
3367 update_flags);
3369 FOR_EACH_BB (bb)
3370 BITMAP_FREE (dfs[bb->index]);
3371 free (dfs);
3373 /* Insertion of PHI nodes may have added blocks to the region.
3374 We need to re-compute START_BB to include the newly added
3375 blocks. */
3376 if (start_bb != ENTRY_BLOCK_PTR)
3377 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3378 blocks_to_update);
3381 /* Reset the current definition for name and symbol before renaming
3382 the sub-graph. */
3383 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3384 set_current_def (ssa_name (i), NULL_TREE);
3386 EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3387 set_current_def (referenced_var (i), NULL_TREE);
3389 /* Now start the renaming process at START_BB. */
3390 interesting_blocks = sbitmap_alloc (last_basic_block);
3391 sbitmap_zero (interesting_blocks);
3392 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3393 SET_BIT (interesting_blocks, i);
3395 rewrite_blocks (start_bb, REWRITE_UPDATE);
3397 sbitmap_free (interesting_blocks);
3399 /* Debugging dumps. */
3400 if (dump_file)
3402 int c;
3403 unsigned i;
3405 dump_update_ssa (dump_file);
3407 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
3408 start_bb->index);
3410 c = 0;
3411 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3412 c++;
3413 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3414 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
3415 c, PERCENT (c, last_basic_block));
3417 if (dump_flags & TDF_DETAILS)
3419 fprintf (dump_file, "Affected blocks: ");
3420 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3421 fprintf (dump_file, "%u ", i);
3422 fprintf (dump_file, "\n");
3425 fprintf (dump_file, "\n\n");
3428 /* Free allocated memory. */
3429 done:
3430 delete_update_ssa ();
3432 timevar_pop (TV_TREE_SSA_INCREMENTAL);