1 /* Tail merging for gimple.
2 Copyright (C) 2011-2015 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
33 const charD.1 * restrict outputFileName.0D.3914;
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
61 # SUCC: 7 [100.0%] (fallthru,exec)
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
83 # SUCC: 7 [100.0%] (fallthru,exec)
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
101 # VUSE <.MEMD.3923_11>
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
159 1. The pass first determines all groups of blocks with the same successor
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
190 #include "coretypes.h"
192 #include "hash-set.h"
193 #include "machmode.h"
195 #include "double-int.h"
199 #include "wide-int.h"
203 #include "fold-const.h"
204 #include "stor-layout.h"
205 #include "trans-mem.h"
209 #include "hard-reg-set.h"
211 #include "function.h"
212 #include "dominance.h"
215 #include "cfgcleanup.h"
216 #include "basic-block.h"
218 #include "hash-table.h"
219 #include "tree-ssa-alias.h"
220 #include "internal-fn.h"
222 #include "gimple-expr.h"
225 #include "gimple-iterator.h"
226 #include "gimple-ssa.h"
227 #include "tree-cfg.h"
228 #include "tree-phinodes.h"
229 #include "ssa-iterators.h"
230 #include "tree-into-ssa.h"
232 #include "gimple-pretty-print.h"
233 #include "tree-ssa-sccvn.h"
234 #include "tree-dump.h"
236 #include "tree-pass.h"
237 #include "trans-mem.h"
239 /* Describes a group of bbs with the same successors. The successor bbs are
240 cached in succs, and the successor edge flags are cached in succ_flags.
241 If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
242 it's marked in inverse.
243 Additionally, the hash value for the struct is cached in hashval, and
244 in_worklist indicates whether it's currently part of worklist. */
248 /* The bbs that have the same successor bbs. */
250 /* The successor bbs. */
252 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
255 /* The edge flags for each of the successor bbs. */
257 /* Indicates whether the struct is currently in the worklist. */
259 /* The hash value of the struct. */
262 /* hash_table support. */
263 typedef same_succ_def
*value_type
;
264 typedef same_succ_def
*compare_type
;
265 static inline hashval_t
hash (const same_succ_def
*);
266 static int equal (const same_succ_def
*, const same_succ_def
*);
267 static void remove (same_succ_def
*);
269 typedef struct same_succ_def
*same_succ
;
270 typedef const struct same_succ_def
*const_same_succ
;
272 /* hash routine for hash_table support, returns hashval of E. */
275 same_succ_def::hash (const same_succ_def
*e
)
280 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
282 struct bb_cluster_def
284 /* The bbs in the cluster. */
286 /* The preds of the bbs in the cluster. */
288 /* Index in all_clusters vector. */
290 /* The bb to replace the cluster with. */
293 typedef struct bb_cluster_def
*bb_cluster
;
294 typedef const struct bb_cluster_def
*const_bb_cluster
;
300 /* The number of non-debug statements in the bb. */
302 /* The same_succ that this bb is a member of. */
303 same_succ bb_same_succ
;
304 /* The cluster that this bb is a member of. */
306 /* The vop state at the exit of a bb. This is shortlived data, used to
307 communicate data between update_block_by and update_vuses. */
309 /* The bb that either contains or is dominated by the dependencies of the
314 /* Macros to access the fields of struct aux_bb_info. */
316 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
317 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
318 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
319 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
320 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
322 /* Returns true if the only effect a statement STMT has, is to define locally
326 stmt_local_def (gimple stmt
)
328 basic_block bb
, def_bb
;
329 imm_use_iterator iter
;
334 if (gimple_vdef (stmt
) != NULL_TREE
335 || gimple_has_side_effects (stmt
)
336 || gimple_could_trap_p_1 (stmt
, false, false)
337 || gimple_vuse (stmt
) != NULL_TREE
)
340 def_p
= SINGLE_SSA_DEF_OPERAND (stmt
, SSA_OP_DEF
);
344 val
= DEF_FROM_PTR (def_p
);
345 if (val
== NULL_TREE
|| TREE_CODE (val
) != SSA_NAME
)
348 def_bb
= gimple_bb (stmt
);
350 FOR_EACH_IMM_USE_FAST (use_p
, iter
, val
)
352 if (is_gimple_debug (USE_STMT (use_p
)))
354 bb
= gimple_bb (USE_STMT (use_p
));
358 if (gimple_code (USE_STMT (use_p
)) == GIMPLE_PHI
359 && EDGE_PRED (bb
, PHI_ARG_INDEX_FROM_USE (use_p
))->src
== def_bb
)
368 /* Let GSI skip forwards over local defs. */
371 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
)
377 if (gsi_end_p (*gsi
))
379 stmt
= gsi_stmt (*gsi
);
380 if (!stmt_local_def (stmt
))
382 gsi_next_nondebug (gsi
);
386 /* VAL1 and VAL2 are either:
387 - uses in BB1 and BB2, or
388 - phi alternatives for BB1 and BB2.
389 Return true if the uses have the same gvn value. */
392 gvn_uses_equal (tree val1
, tree val2
)
394 gcc_checking_assert (val1
!= NULL_TREE
&& val2
!= NULL_TREE
);
399 if (vn_valueize (val1
) != vn_valueize (val2
))
402 return ((TREE_CODE (val1
) == SSA_NAME
|| CONSTANT_CLASS_P (val1
))
403 && (TREE_CODE (val2
) == SSA_NAME
|| CONSTANT_CLASS_P (val2
)));
406 /* Prints E to FILE. */
409 same_succ_print (FILE *file
, const same_succ e
)
412 bitmap_print (file
, e
->bbs
, "bbs:", "\n");
413 bitmap_print (file
, e
->succs
, "succs:", "\n");
414 bitmap_print (file
, e
->inverse
, "inverse:", "\n");
415 fprintf (file
, "flags:");
416 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
417 fprintf (file
, " %x", e
->succ_flags
[i
]);
418 fprintf (file
, "\n");
421 /* Prints same_succ VE to VFILE. */
424 ssa_same_succ_print_traverse (same_succ
*pe
, FILE *file
)
426 const same_succ e
= *pe
;
427 same_succ_print (file
, e
);
431 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
434 update_dep_bb (basic_block use_bb
, tree val
)
439 if (TREE_CODE (val
) != SSA_NAME
)
442 /* Skip use of global def. */
443 if (SSA_NAME_IS_DEFAULT_DEF (val
))
446 /* Skip use of local def. */
447 dep_bb
= gimple_bb (SSA_NAME_DEF_STMT (val
));
448 if (dep_bb
== use_bb
)
451 if (BB_DEP_BB (use_bb
) == NULL
452 || dominated_by_p (CDI_DOMINATORS
, dep_bb
, BB_DEP_BB (use_bb
)))
453 BB_DEP_BB (use_bb
) = dep_bb
;
456 /* Update BB_DEP_BB, given the dependencies in STMT. */
459 stmt_update_dep_bb (gimple stmt
)
464 FOR_EACH_SSA_USE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
465 update_dep_bb (gimple_bb (stmt
), USE_FROM_PTR (use
));
468 /* Calculates hash value for same_succ VE. */
471 same_succ_hash (const_same_succ e
)
473 inchash::hash
hstate (bitmap_hash (e
->succs
));
476 unsigned int first
= bitmap_first_set_bit (e
->bbs
);
477 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, first
);
484 for (gimple_stmt_iterator gsi
= gsi_start_nondebug_bb (bb
);
485 !gsi_end_p (gsi
); gsi_next_nondebug (&gsi
))
487 stmt
= gsi_stmt (gsi
);
488 stmt_update_dep_bb (stmt
);
489 if (stmt_local_def (stmt
))
493 hstate
.add_int (gimple_code (stmt
));
494 if (is_gimple_assign (stmt
))
495 hstate
.add_int (gimple_assign_rhs_code (stmt
));
496 if (!is_gimple_call (stmt
))
498 if (gimple_call_internal_p (stmt
))
499 hstate
.add_int (gimple_call_internal_fn (stmt
));
502 inchash::add_expr (gimple_call_fn (stmt
), hstate
);
503 if (gimple_call_chain (stmt
))
504 inchash::add_expr (gimple_call_chain (stmt
), hstate
);
506 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
508 arg
= gimple_call_arg (stmt
, i
);
509 arg
= vn_valueize (arg
);
510 inchash::add_expr (arg
, hstate
);
514 hstate
.add_int (size
);
517 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
519 flags
= e
->succ_flags
[i
];
520 flags
= flags
& ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
521 hstate
.add_int (flags
);
524 EXECUTE_IF_SET_IN_BITMAP (e
->succs
, 0, s
, bs
)
526 int n
= find_edge (bb
, BASIC_BLOCK_FOR_FN (cfun
, s
))->dest_idx
;
527 for (gphi_iterator gsi
= gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun
, s
));
531 gphi
*phi
= gsi
.phi ();
532 tree lhs
= gimple_phi_result (phi
);
533 tree val
= gimple_phi_arg_def (phi
, n
);
535 if (virtual_operand_p (lhs
))
537 update_dep_bb (bb
, val
);
541 return hstate
.end ();
544 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
545 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
546 the other edge flags. */
549 inverse_flags (const_same_succ e1
, const_same_succ e2
)
551 int f1a
, f1b
, f2a
, f2b
;
552 int mask
= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
554 if (e1
->succ_flags
.length () != 2)
557 f1a
= e1
->succ_flags
[0];
558 f1b
= e1
->succ_flags
[1];
559 f2a
= e2
->succ_flags
[0];
560 f2b
= e2
->succ_flags
[1];
562 if (f1a
== f2a
&& f1b
== f2b
)
565 return (f1a
& mask
) == (f2a
& mask
) && (f1b
& mask
) == (f2b
& mask
);
568 /* Compares SAME_SUCCs E1 and E2. */
571 same_succ_def::equal (const same_succ_def
*e1
, const same_succ_def
*e2
)
573 unsigned int i
, first1
, first2
;
574 gimple_stmt_iterator gsi1
, gsi2
;
576 basic_block bb1
, bb2
;
578 if (e1
->hashval
!= e2
->hashval
)
581 if (e1
->succ_flags
.length () != e2
->succ_flags
.length ())
584 if (!bitmap_equal_p (e1
->succs
, e2
->succs
))
587 if (!inverse_flags (e1
, e2
))
589 for (i
= 0; i
< e1
->succ_flags
.length (); ++i
)
590 if (e1
->succ_flags
[i
] != e2
->succ_flags
[i
])
594 first1
= bitmap_first_set_bit (e1
->bbs
);
595 first2
= bitmap_first_set_bit (e2
->bbs
);
597 bb1
= BASIC_BLOCK_FOR_FN (cfun
, first1
);
598 bb2
= BASIC_BLOCK_FOR_FN (cfun
, first2
);
600 if (BB_SIZE (bb1
) != BB_SIZE (bb2
))
603 gsi1
= gsi_start_nondebug_bb (bb1
);
604 gsi2
= gsi_start_nondebug_bb (bb2
);
605 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
606 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
607 while (!(gsi_end_p (gsi1
) || gsi_end_p (gsi2
)))
609 s1
= gsi_stmt (gsi1
);
610 s2
= gsi_stmt (gsi2
);
611 if (gimple_code (s1
) != gimple_code (s2
))
613 if (is_gimple_call (s1
) && !gimple_call_same_target_p (s1
, s2
))
615 gsi_next_nondebug (&gsi1
);
616 gsi_next_nondebug (&gsi2
);
617 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
618 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
624 /* Alloc and init a new SAME_SUCC. */
627 same_succ_alloc (void)
629 same_succ same
= XNEW (struct same_succ_def
);
631 same
->bbs
= BITMAP_ALLOC (NULL
);
632 same
->succs
= BITMAP_ALLOC (NULL
);
633 same
->inverse
= BITMAP_ALLOC (NULL
);
634 same
->succ_flags
.create (10);
635 same
->in_worklist
= false;
640 /* Delete same_succ E. */
643 same_succ_def::remove (same_succ e
)
645 BITMAP_FREE (e
->bbs
);
646 BITMAP_FREE (e
->succs
);
647 BITMAP_FREE (e
->inverse
);
648 e
->succ_flags
.release ();
653 /* Reset same_succ SAME. */
656 same_succ_reset (same_succ same
)
658 bitmap_clear (same
->bbs
);
659 bitmap_clear (same
->succs
);
660 bitmap_clear (same
->inverse
);
661 same
->succ_flags
.truncate (0);
664 static hash_table
<same_succ_def
> *same_succ_htab
;
666 /* Array that is used to store the edge flags for a successor. */
668 static int *same_succ_edge_flags
;
670 /* Bitmap that is used to mark bbs that are recently deleted. */
672 static bitmap deleted_bbs
;
674 /* Bitmap that is used to mark predecessors of bbs that are
677 static bitmap deleted_bb_preds
;
679 /* Prints same_succ_htab to stderr. */
681 extern void debug_same_succ (void);
683 debug_same_succ ( void)
685 same_succ_htab
->traverse
<FILE *, ssa_same_succ_print_traverse
> (stderr
);
689 /* Vector of bbs to process. */
691 static vec
<same_succ
> worklist
;
693 /* Prints worklist to FILE. */
696 print_worklist (FILE *file
)
699 for (i
= 0; i
< worklist
.length (); ++i
)
700 same_succ_print (file
, worklist
[i
]);
703 /* Adds SAME to worklist. */
706 add_to_worklist (same_succ same
)
708 if (same
->in_worklist
)
711 if (bitmap_count_bits (same
->bbs
) < 2)
714 same
->in_worklist
= true;
715 worklist
.safe_push (same
);
718 /* Add BB to same_succ_htab. */
721 find_same_succ_bb (basic_block bb
, same_succ
*same_p
)
725 same_succ same
= *same_p
;
731 /* Be conservative with loop structure. It's not evident that this test
732 is sufficient. Before tail-merge, we've just called
733 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
734 set, so there's no guarantee that the loop->latch value is still valid.
735 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
736 start of pre, we've kept that property intact throughout pre, and are
737 keeping it throughout tail-merge using this test. */
738 || bb
->loop_father
->latch
== bb
)
740 bitmap_set_bit (same
->bbs
, bb
->index
);
741 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
743 int index
= e
->dest
->index
;
744 bitmap_set_bit (same
->succs
, index
);
745 same_succ_edge_flags
[index
] = e
->flags
;
747 EXECUTE_IF_SET_IN_BITMAP (same
->succs
, 0, j
, bj
)
748 same
->succ_flags
.safe_push (same_succ_edge_flags
[j
]);
750 same
->hashval
= same_succ_hash (same
);
752 slot
= same_succ_htab
->find_slot_with_hash (same
, same
->hashval
, INSERT
);
756 BB_SAME_SUCC (bb
) = same
;
757 add_to_worklist (same
);
762 bitmap_set_bit ((*slot
)->bbs
, bb
->index
);
763 BB_SAME_SUCC (bb
) = *slot
;
764 add_to_worklist (*slot
);
765 if (inverse_flags (same
, *slot
))
766 bitmap_set_bit ((*slot
)->inverse
, bb
->index
);
767 same_succ_reset (same
);
771 /* Find bbs with same successors. */
774 find_same_succ (void)
776 same_succ same
= same_succ_alloc ();
779 FOR_EACH_BB_FN (bb
, cfun
)
781 find_same_succ_bb (bb
, &same
);
783 same
= same_succ_alloc ();
786 same_succ_def::remove (same
);
789 /* Initializes worklist administration. */
794 alloc_aux_for_blocks (sizeof (struct aux_bb_info
));
795 same_succ_htab
= new hash_table
<same_succ_def
> (n_basic_blocks_for_fn (cfun
));
796 same_succ_edge_flags
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
797 deleted_bbs
= BITMAP_ALLOC (NULL
);
798 deleted_bb_preds
= BITMAP_ALLOC (NULL
);
799 worklist
.create (n_basic_blocks_for_fn (cfun
));
802 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
804 fprintf (dump_file
, "initial worklist:\n");
805 print_worklist (dump_file
);
809 /* Deletes worklist administration. */
812 delete_worklist (void)
814 free_aux_for_blocks ();
815 delete same_succ_htab
;
816 same_succ_htab
= NULL
;
817 XDELETEVEC (same_succ_edge_flags
);
818 same_succ_edge_flags
= NULL
;
819 BITMAP_FREE (deleted_bbs
);
820 BITMAP_FREE (deleted_bb_preds
);
824 /* Mark BB as deleted, and mark its predecessors. */
827 mark_basic_block_deleted (basic_block bb
)
832 bitmap_set_bit (deleted_bbs
, bb
->index
);
834 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
835 bitmap_set_bit (deleted_bb_preds
, e
->src
->index
);
838 /* Removes BB from its corresponding same_succ. */
841 same_succ_flush_bb (basic_block bb
)
843 same_succ same
= BB_SAME_SUCC (bb
);
844 BB_SAME_SUCC (bb
) = NULL
;
845 if (bitmap_single_bit_set_p (same
->bbs
))
846 same_succ_htab
->remove_elt_with_hash (same
, same
->hashval
);
848 bitmap_clear_bit (same
->bbs
, bb
->index
);
851 /* Removes all bbs in BBS from their corresponding same_succ. */
854 same_succ_flush_bbs (bitmap bbs
)
859 EXECUTE_IF_SET_IN_BITMAP (bbs
, 0, i
, bi
)
860 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun
, i
));
863 /* Release the last vdef in BB, either normal or phi result. */
866 release_last_vdef (basic_block bb
)
868 for (gimple_stmt_iterator i
= gsi_last_bb (bb
); !gsi_end_p (i
);
869 gsi_prev_nondebug (&i
))
871 gimple stmt
= gsi_stmt (i
);
872 if (gimple_vdef (stmt
) == NULL_TREE
)
875 mark_virtual_operand_for_renaming (gimple_vdef (stmt
));
879 for (gphi_iterator i
= gsi_start_phis (bb
); !gsi_end_p (i
);
882 gphi
*phi
= i
.phi ();
883 tree res
= gimple_phi_result (phi
);
885 if (!virtual_operand_p (res
))
888 mark_virtual_phi_result_for_renaming (phi
);
893 /* For deleted_bb_preds, find bbs with same successors. */
896 update_worklist (void)
903 bitmap_and_compl_into (deleted_bb_preds
, deleted_bbs
);
904 bitmap_clear (deleted_bbs
);
906 bitmap_clear_bit (deleted_bb_preds
, ENTRY_BLOCK
);
907 same_succ_flush_bbs (deleted_bb_preds
);
909 same
= same_succ_alloc ();
910 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds
, 0, i
, bi
)
912 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
913 gcc_assert (bb
!= NULL
);
914 find_same_succ_bb (bb
, &same
);
916 same
= same_succ_alloc ();
918 same_succ_def::remove (same
);
919 bitmap_clear (deleted_bb_preds
);
922 /* Prints cluster C to FILE. */
925 print_cluster (FILE *file
, bb_cluster c
)
929 bitmap_print (file
, c
->bbs
, "bbs:", "\n");
930 bitmap_print (file
, c
->preds
, "preds:", "\n");
933 /* Prints cluster C to stderr. */
935 extern void debug_cluster (bb_cluster
);
937 debug_cluster (bb_cluster c
)
939 print_cluster (stderr
, c
);
942 /* Update C->rep_bb, given that BB is added to the cluster. */
945 update_rep_bb (bb_cluster c
, basic_block bb
)
948 if (c
->rep_bb
== NULL
)
954 /* Current needs no deps, keep it. */
955 if (BB_DEP_BB (c
->rep_bb
) == NULL
)
958 /* Bb needs no deps, change rep_bb. */
959 if (BB_DEP_BB (bb
) == NULL
)
965 /* Bb needs last deps earlier than current, change rep_bb. A potential
966 problem with this, is that the first deps might also be earlier, which
967 would mean we prefer longer lifetimes for the deps. To be able to check
968 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
969 BB_DEP_BB, which is really BB_LAST_DEP_BB.
970 The benefit of choosing the bb with last deps earlier, is that it can
971 potentially be used as replacement for more bbs. */
972 if (dominated_by_p (CDI_DOMINATORS
, BB_DEP_BB (c
->rep_bb
), BB_DEP_BB (bb
)))
976 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
979 add_bb_to_cluster (bb_cluster c
, basic_block bb
)
984 bitmap_set_bit (c
->bbs
, bb
->index
);
986 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
987 bitmap_set_bit (c
->preds
, e
->src
->index
);
989 update_rep_bb (c
, bb
);
992 /* Allocate and init new cluster. */
998 c
= XCNEW (struct bb_cluster_def
);
999 c
->bbs
= BITMAP_ALLOC (NULL
);
1000 c
->preds
= BITMAP_ALLOC (NULL
);
1005 /* Delete clusters. */
1008 delete_cluster (bb_cluster c
)
1012 BITMAP_FREE (c
->bbs
);
1013 BITMAP_FREE (c
->preds
);
1018 /* Array that contains all clusters. */
1020 static vec
<bb_cluster
> all_clusters
;
1022 /* Allocate all cluster vectors. */
1025 alloc_cluster_vectors (void)
1027 all_clusters
.create (n_basic_blocks_for_fn (cfun
));
1030 /* Reset all cluster vectors. */
1033 reset_cluster_vectors (void)
1037 for (i
= 0; i
< all_clusters
.length (); ++i
)
1038 delete_cluster (all_clusters
[i
]);
1039 all_clusters
.truncate (0);
1040 FOR_EACH_BB_FN (bb
, cfun
)
1041 BB_CLUSTER (bb
) = NULL
;
1044 /* Delete all cluster vectors. */
1047 delete_cluster_vectors (void)
1050 for (i
= 0; i
< all_clusters
.length (); ++i
)
1051 delete_cluster (all_clusters
[i
]);
1052 all_clusters
.release ();
1055 /* Merge cluster C2 into C1. */
1058 merge_clusters (bb_cluster c1
, bb_cluster c2
)
1060 bitmap_ior_into (c1
->bbs
, c2
->bbs
);
1061 bitmap_ior_into (c1
->preds
, c2
->preds
);
1064 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1065 all_clusters, or merge c with existing cluster. */
1068 set_cluster (basic_block bb1
, basic_block bb2
)
1070 basic_block merge_bb
, other_bb
;
1071 bb_cluster merge
, old
, c
;
1073 if (BB_CLUSTER (bb1
) == NULL
&& BB_CLUSTER (bb2
) == NULL
)
1076 add_bb_to_cluster (c
, bb1
);
1077 add_bb_to_cluster (c
, bb2
);
1078 BB_CLUSTER (bb1
) = c
;
1079 BB_CLUSTER (bb2
) = c
;
1080 c
->index
= all_clusters
.length ();
1081 all_clusters
.safe_push (c
);
1083 else if (BB_CLUSTER (bb1
) == NULL
|| BB_CLUSTER (bb2
) == NULL
)
1085 merge_bb
= BB_CLUSTER (bb1
) == NULL
? bb2
: bb1
;
1086 other_bb
= BB_CLUSTER (bb1
) == NULL
? bb1
: bb2
;
1087 merge
= BB_CLUSTER (merge_bb
);
1088 add_bb_to_cluster (merge
, other_bb
);
1089 BB_CLUSTER (other_bb
) = merge
;
1091 else if (BB_CLUSTER (bb1
) != BB_CLUSTER (bb2
))
1096 old
= BB_CLUSTER (bb2
);
1097 merge
= BB_CLUSTER (bb1
);
1098 merge_clusters (merge
, old
);
1099 EXECUTE_IF_SET_IN_BITMAP (old
->bbs
, 0, i
, bi
)
1100 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun
, i
)) = merge
;
1101 all_clusters
[old
->index
] = NULL
;
1102 update_rep_bb (merge
, old
->rep_bb
);
1103 delete_cluster (old
);
1109 /* Return true if gimple operands T1 and T2 have the same value. */
1112 gimple_operand_equal_value_p (tree t1
, tree t2
)
1121 if (operand_equal_p (t1
, t2
, 0))
1124 return gvn_uses_equal (t1
, t2
);
1127 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1128 gimple_bb (s2) are members of SAME_SUCC. */
1131 gimple_equal_p (same_succ same_succ
, gimple s1
, gimple s2
)
1135 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
1138 enum tree_code code1
, code2
;
1140 if (gimple_code (s1
) != gimple_code (s2
))
1143 switch (gimple_code (s1
))
1146 if (!gimple_call_same_target_p (s1
, s2
))
1149 t1
= gimple_call_chain (s1
);
1150 t2
= gimple_call_chain (s2
);
1151 if (!gimple_operand_equal_value_p (t1
, t2
))
1154 if (gimple_call_num_args (s1
) != gimple_call_num_args (s2
))
1157 for (i
= 0; i
< gimple_call_num_args (s1
); ++i
)
1159 t1
= gimple_call_arg (s1
, i
);
1160 t2
= gimple_call_arg (s2
, i
);
1161 if (!gimple_operand_equal_value_p (t1
, t2
))
1165 lhs1
= gimple_get_lhs (s1
);
1166 lhs2
= gimple_get_lhs (s2
);
1167 if (lhs1
== NULL_TREE
&& lhs2
== NULL_TREE
)
1169 if (lhs1
== NULL_TREE
|| lhs2
== NULL_TREE
)
1171 if (TREE_CODE (lhs1
) == SSA_NAME
&& TREE_CODE (lhs2
) == SSA_NAME
)
1172 return vn_valueize (lhs1
) == vn_valueize (lhs2
);
1173 return operand_equal_p (lhs1
, lhs2
, 0);
1176 lhs1
= gimple_get_lhs (s1
);
1177 lhs2
= gimple_get_lhs (s2
);
1178 if (TREE_CODE (lhs1
) != SSA_NAME
1179 && TREE_CODE (lhs2
) != SSA_NAME
)
1180 return (operand_equal_p (lhs1
, lhs2
, 0)
1181 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1
),
1182 gimple_assign_rhs1 (s2
)));
1183 else if (TREE_CODE (lhs1
) == SSA_NAME
1184 && TREE_CODE (lhs2
) == SSA_NAME
)
1185 return operand_equal_p (gimple_assign_rhs1 (s1
),
1186 gimple_assign_rhs1 (s2
), 0);
1190 t1
= gimple_cond_lhs (s1
);
1191 t2
= gimple_cond_lhs (s2
);
1192 if (!gimple_operand_equal_value_p (t1
, t2
))
1195 t1
= gimple_cond_rhs (s1
);
1196 t2
= gimple_cond_rhs (s2
);
1197 if (!gimple_operand_equal_value_p (t1
, t2
))
1200 code1
= gimple_expr_code (s1
);
1201 code2
= gimple_expr_code (s2
);
1202 inv_cond
= (bitmap_bit_p (same_succ
->inverse
, bb1
->index
)
1203 != bitmap_bit_p (same_succ
->inverse
, bb2
->index
));
1206 bool honor_nans
= HONOR_NANS (t1
);
1207 code2
= invert_tree_comparison (code2
, honor_nans
);
1209 return code1
== code2
;
1216 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1217 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1218 processed statements. */
1221 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
, tree
*vuse
,
1229 if (gsi_end_p (*gsi
))
1231 stmt
= gsi_stmt (*gsi
);
1233 lvuse
= gimple_vuse (stmt
);
1234 if (lvuse
!= NULL_TREE
)
1237 if (!ZERO_SSA_OPERANDS (stmt
, SSA_OP_DEF
))
1238 *vuse_escaped
= true;
1241 if (!stmt_local_def (stmt
))
1243 gsi_prev_nondebug (gsi
);
1247 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1251 find_duplicate (same_succ same_succ
, basic_block bb1
, basic_block bb2
)
1253 gimple_stmt_iterator gsi1
= gsi_last_nondebug_bb (bb1
);
1254 gimple_stmt_iterator gsi2
= gsi_last_nondebug_bb (bb2
);
1255 tree vuse1
= NULL_TREE
, vuse2
= NULL_TREE
;
1256 bool vuse_escaped
= false;
1258 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1259 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1261 while (!gsi_end_p (gsi1
) && !gsi_end_p (gsi2
))
1263 gimple stmt1
= gsi_stmt (gsi1
);
1264 gimple stmt2
= gsi_stmt (gsi2
);
1266 /* What could be better than to this this here is to blacklist the bb
1267 containing the stmt, when encountering the stmt f.i. in
1269 if (is_tm_ending (stmt1
)
1270 || is_tm_ending (stmt2
))
1273 if (!gimple_equal_p (same_succ
, stmt1
, stmt2
))
1276 gsi_prev_nondebug (&gsi1
);
1277 gsi_prev_nondebug (&gsi2
);
1278 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1279 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1282 if (!(gsi_end_p (gsi1
) && gsi_end_p (gsi2
)))
1285 /* If the incoming vuses are not the same, and the vuse escaped into an
1286 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1287 which potentially means the semantics of one of the blocks will be changed.
1288 TODO: make this check more precise. */
1289 if (vuse_escaped
&& vuse1
!= vuse2
)
1293 fprintf (dump_file
, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1294 bb1
->index
, bb2
->index
);
1296 set_cluster (bb1
, bb2
);
1299 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1303 same_phi_alternatives_1 (basic_block dest
, edge e1
, edge e2
)
1305 int n1
= e1
->dest_idx
, n2
= e2
->dest_idx
;
1308 for (gsi
= gsi_start_phis (dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1310 gphi
*phi
= gsi
.phi ();
1311 tree lhs
= gimple_phi_result (phi
);
1312 tree val1
= gimple_phi_arg_def (phi
, n1
);
1313 tree val2
= gimple_phi_arg_def (phi
, n2
);
1315 if (virtual_operand_p (lhs
))
1318 if (operand_equal_for_phi_arg_p (val1
, val2
))
1320 if (gvn_uses_equal (val1
, val2
))
1329 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1330 phi alternatives for BB1 and BB2 are equal. */
1333 same_phi_alternatives (same_succ same_succ
, basic_block bb1
, basic_block bb2
)
1340 EXECUTE_IF_SET_IN_BITMAP (same_succ
->succs
, 0, s
, bs
)
1342 succ
= BASIC_BLOCK_FOR_FN (cfun
, s
);
1343 e1
= find_edge (bb1
, succ
);
1344 e2
= find_edge (bb2
, succ
);
1345 if (e1
->flags
& EDGE_COMPLEX
1346 || e2
->flags
& EDGE_COMPLEX
)
1349 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1351 if (!same_phi_alternatives_1 (succ
, e1
, e2
))
1358 /* Return true if BB has non-vop phis. */
1361 bb_has_non_vop_phi (basic_block bb
)
1363 gimple_seq phis
= phi_nodes (bb
);
1369 if (!gimple_seq_singleton_p (phis
))
1372 phi
= gimple_seq_first_stmt (phis
);
1373 return !virtual_operand_p (gimple_phi_result (phi
));
1376 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1377 invariant that uses in FROM are dominates by their defs. */
1380 deps_ok_for_redirect_from_bb_to_bb (basic_block from
, basic_block to
)
1382 basic_block cd
, dep_bb
= BB_DEP_BB (to
);
1385 bitmap from_preds
= BITMAP_ALLOC (NULL
);
1390 FOR_EACH_EDGE (e
, ei
, from
->preds
)
1391 bitmap_set_bit (from_preds
, e
->src
->index
);
1392 cd
= nearest_common_dominator_for_set (CDI_DOMINATORS
, from_preds
);
1393 BITMAP_FREE (from_preds
);
1395 return dominated_by_p (CDI_DOMINATORS
, dep_bb
, cd
);
1398 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1399 replacement bb) and vice versa maintains the invariant that uses in the
1400 replacement are dominates by their defs. */
1403 deps_ok_for_redirect (basic_block bb1
, basic_block bb2
)
1405 if (BB_CLUSTER (bb1
) != NULL
)
1406 bb1
= BB_CLUSTER (bb1
)->rep_bb
;
1408 if (BB_CLUSTER (bb2
) != NULL
)
1409 bb2
= BB_CLUSTER (bb2
)->rep_bb
;
1411 return (deps_ok_for_redirect_from_bb_to_bb (bb1
, bb2
)
1412 && deps_ok_for_redirect_from_bb_to_bb (bb2
, bb1
));
1415 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1418 find_clusters_1 (same_succ same_succ
)
1420 basic_block bb1
, bb2
;
1422 bitmap_iterator bi
, bj
;
1424 int max_comparisons
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS
);
1426 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, 0, i
, bi
)
1428 bb1
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1430 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1431 phi-nodes in bb1 and bb2, with the same alternatives for the same
1433 if (bb_has_non_vop_phi (bb1
))
1437 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, i
+ 1, j
, bj
)
1439 bb2
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1441 if (bb_has_non_vop_phi (bb2
))
1444 if (BB_CLUSTER (bb1
) != NULL
&& BB_CLUSTER (bb1
) == BB_CLUSTER (bb2
))
1447 /* Limit quadratic behaviour. */
1449 if (nr_comparisons
> max_comparisons
)
1452 /* This is a conservative dependency check. We could test more
1453 precise for allowed replacement direction. */
1454 if (!deps_ok_for_redirect (bb1
, bb2
))
1457 if (!(same_phi_alternatives (same_succ
, bb1
, bb2
)))
1460 find_duplicate (same_succ
, bb1
, bb2
);
1465 /* Find clusters of bbs which can be merged. */
1468 find_clusters (void)
1472 while (!worklist
.is_empty ())
1474 same
= worklist
.pop ();
1475 same
->in_worklist
= false;
1476 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1478 fprintf (dump_file
, "processing worklist entry\n");
1479 same_succ_print (dump_file
, same
);
1481 find_clusters_1 (same
);
1485 /* Returns the vop phi of BB, if any. */
1488 vop_phi (basic_block bb
)
1492 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1495 if (! virtual_operand_p (gimple_phi_result (stmt
)))
1502 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1505 replace_block_by (basic_block bb1
, basic_block bb2
)
1513 bb2_phi
= vop_phi (bb2
);
1515 /* Mark the basic block as deleted. */
1516 mark_basic_block_deleted (bb1
);
1518 /* Redirect the incoming edges of bb1 to bb2. */
1519 for (i
= EDGE_COUNT (bb1
->preds
); i
> 0 ; --i
)
1521 pred_edge
= EDGE_PRED (bb1
, i
- 1);
1522 pred_edge
= redirect_edge_and_branch (pred_edge
, bb2
);
1523 gcc_assert (pred_edge
!= NULL
);
1525 if (bb2_phi
== NULL
)
1528 /* The phi might have run out of capacity when the redirect added an
1529 argument, which means it could have been replaced. Refresh it. */
1530 bb2_phi
= vop_phi (bb2
);
1532 add_phi_arg (bb2_phi
, SSA_NAME_VAR (gimple_phi_result (bb2_phi
)),
1533 pred_edge
, UNKNOWN_LOCATION
);
1536 bb2
->frequency
+= bb1
->frequency
;
1537 if (bb2
->frequency
> BB_FREQ_MAX
)
1538 bb2
->frequency
= BB_FREQ_MAX
;
1540 bb2
->count
+= bb1
->count
;
1542 /* Merge the outgoing edge counts from bb1 onto bb2. */
1543 gcov_type out_sum
= 0;
1544 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1546 e2
= find_edge (bb2
, e1
->dest
);
1548 e2
->count
+= e1
->count
;
1549 out_sum
+= e2
->count
;
1551 /* Recompute the edge probabilities from the new merged edge count.
1552 Use the sum of the new merged edge counts computed above instead
1553 of bb2's merged count, in case there are profile count insanities
1554 making the bb count inconsistent with the edge weights. */
1555 FOR_EACH_EDGE (e2
, ei
, bb2
->succs
)
1557 e2
->probability
= GCOV_COMPUTE_SCALE (e2
->count
, out_sum
);
1560 /* Do updates that use bb1, before deleting bb1. */
1561 release_last_vdef (bb1
);
1562 same_succ_flush_bb (bb1
);
1564 delete_basic_block (bb1
);
1567 /* Bbs for which update_debug_stmt need to be called. */
1569 static bitmap update_bbs
;
1571 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1572 number of bbs removed. */
1575 apply_clusters (void)
1577 basic_block bb1
, bb2
;
1581 int nr_bbs_removed
= 0;
1583 for (i
= 0; i
< all_clusters
.length (); ++i
)
1585 c
= all_clusters
[i
];
1590 bitmap_set_bit (update_bbs
, bb2
->index
);
1592 bitmap_clear_bit (c
->bbs
, bb2
->index
);
1593 EXECUTE_IF_SET_IN_BITMAP (c
->bbs
, 0, j
, bj
)
1595 bb1
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1596 bitmap_clear_bit (update_bbs
, bb1
->index
);
1598 replace_block_by (bb1
, bb2
);
1603 return nr_bbs_removed
;
1606 /* Resets debug statement STMT if it has uses that are not dominated by their
1610 update_debug_stmt (gimple stmt
)
1612 use_operand_p use_p
;
1616 if (!gimple_debug_bind_p (stmt
))
1619 bbuse
= gimple_bb (stmt
);
1620 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, oi
, SSA_OP_USE
)
1622 tree name
= USE_FROM_PTR (use_p
);
1623 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
1624 basic_block bbdef
= gimple_bb (def_stmt
);
1625 if (bbdef
== NULL
|| bbuse
== bbdef
1626 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbdef
))
1629 gimple_debug_bind_reset_value (stmt
);
1635 /* Resets all debug statements that have uses that are not
1636 dominated by their defs. */
1639 update_debug_stmts (void)
1645 EXECUTE_IF_SET_IN_BITMAP (update_bbs
, 0, i
, bi
)
1648 gimple_stmt_iterator gsi
;
1650 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1651 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1653 stmt
= gsi_stmt (gsi
);
1654 if (!is_gimple_debug (stmt
))
1656 update_debug_stmt (stmt
);
1661 /* Runs tail merge optimization. */
1664 tail_merge_optimize (unsigned int todo
)
1666 int nr_bbs_removed_total
= 0;
1668 bool loop_entered
= false;
1669 int iteration_nr
= 0;
1670 int max_iterations
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS
);
1672 if (!flag_tree_tail_merge
1673 || max_iterations
== 0)
1676 timevar_push (TV_TREE_TAIL_MERGE
);
1678 if (!dom_info_available_p (CDI_DOMINATORS
))
1680 /* PRE can leave us with unreachable blocks, remove them now. */
1681 delete_unreachable_blocks ();
1682 calculate_dominance_info (CDI_DOMINATORS
);
1686 while (!worklist
.is_empty ())
1690 loop_entered
= true;
1691 alloc_cluster_vectors ();
1692 update_bbs
= BITMAP_ALLOC (NULL
);
1695 reset_cluster_vectors ();
1698 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1699 fprintf (dump_file
, "worklist iteration #%d\n", iteration_nr
);
1702 gcc_assert (worklist
.is_empty ());
1703 if (all_clusters
.is_empty ())
1706 nr_bbs_removed
= apply_clusters ();
1707 nr_bbs_removed_total
+= nr_bbs_removed
;
1708 if (nr_bbs_removed
== 0)
1711 free_dominance_info (CDI_DOMINATORS
);
1713 if (iteration_nr
== max_iterations
)
1716 calculate_dominance_info (CDI_DOMINATORS
);
1720 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1721 fprintf (dump_file
, "htab collision / search: %f\n",
1722 same_succ_htab
->collisions ());
1724 if (nr_bbs_removed_total
> 0)
1726 if (MAY_HAVE_DEBUG_STMTS
)
1728 calculate_dominance_info (CDI_DOMINATORS
);
1729 update_debug_stmts ();
1732 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1734 fprintf (dump_file
, "Before TODOs.\n");
1735 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
1738 mark_virtual_operands_for_renaming (cfun
);
1744 delete_cluster_vectors ();
1745 BITMAP_FREE (update_bbs
);
1748 timevar_pop (TV_TREE_TAIL_MERGE
);