2007-01-05 Manuel Lopez-Ibanez <manu@gcc.gnu.org>
[official-gcc.git] / gcc / vec.h
blob44ec8a48032ffc856d5a24cd6998942720030dcf
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
25 /* The macros here implement a set of templated vector types and
26 associated interfaces. These templates are implemented with
27 macros, as we're not in C++ land. The interface functions are
28 typesafe and use static inline functions, sometimes backed by
29 out-of-line generic functions. The vectors are designed to
30 interoperate with the GTY machinery.
32 Because of the different behavior of structure objects, scalar
33 objects and of pointers, there are three flavors, one for each of
34 these variants. Both the structure object and pointer variants
35 pass pointers to objects around -- in the former case the pointers
36 are stored into the vector and in the latter case the pointers are
37 dereferenced and the objects copied into the vector. The scalar
38 object variant is suitable for int-like objects, and the vector
39 elements are returned by value.
41 There are both 'index' and 'iterate' accessors. The iterator
42 returns a boolean iteration condition and updates the iteration
43 variable passed by reference. Because the iterator will be
44 inlined, the address-of can be optimized away.
46 The vectors are implemented using the trailing array idiom, thus
47 they are not resizeable without changing the address of the vector
48 object itself. This means you cannot have variables or fields of
49 vector type -- always use a pointer to a vector. The one exception
50 is the final field of a structure, which could be a vector type.
51 You will have to use the embedded_size & embedded_init calls to
52 create such objects, and they will probably not be resizeable (so
53 don't use the 'safe' allocation variants). The trailing array
54 idiom is used (rather than a pointer to an array of data), because,
55 if we allow NULL to also represent an empty vector, empty vectors
56 occupy minimal space in the structure containing them.
58 Each operation that increases the number of active elements is
59 available in 'quick' and 'safe' variants. The former presumes that
60 there is sufficient allocated space for the operation to succeed
61 (it dies if there is not). The latter will reallocate the
62 vector, if needed. Reallocation causes an exponential increase in
63 vector size. If you know you will be adding N elements, it would
64 be more efficient to use the reserve operation before adding the
65 elements with the 'quick' operation. This will ensure there are at
66 least as many elements as you ask for, it will exponentially
67 increase if there are too few spare slots. If you want reserve a
68 specific number of slots, but do not want the exponential increase
69 (for instance, you know this is the last allocation), use a
70 negative number for reservation. You can also create a vector of a
71 specific size from the get go.
73 You should prefer the push and pop operations, as they append and
74 remove from the end of the vector. If you need to remove several
75 items in one go, use the truncate operation. The insert and remove
76 operations allow you to change elements in the middle of the
77 vector. There are two remove operations, one which preserves the
78 element ordering 'ordered_remove', and one which does not
79 'unordered_remove'. The latter function copies the end element
80 into the removed slot, rather than invoke a memmove operation. The
81 'lower_bound' function will determine where to place an item in the
82 array using insert that will maintain sorted order.
84 When a vector type is defined, first a non-memory managed version
85 is created. You can then define either or both garbage collected
86 and heap allocated versions. The allocation mechanism is specified
87 when the type is defined, and is therefore part of the type. If
88 you need both gc'd and heap allocated versions, you still must have
89 *exactly* one definition of the common non-memory managed base vector.
91 If you need to directly manipulate a vector, then the 'address'
92 accessor will return the address of the start of the vector. Also
93 the 'space' predicate will tell you whether there is spare capacity
94 in the vector. You will not normally need to use these two functions.
96 Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
97 get the non-memory allocation version, and then a
98 DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
99 vectors. Variables of vector type are declared using a
100 VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the
101 allocation strategy, and can be either 'gc' or 'heap' for garbage
102 collected and heap allocated respectively. It can be 'none' to get
103 a vector that must be explicitly allocated (for instance as a
104 trailing array of another structure). The characters O, P and I
105 indicate whether TYPEDEF is a pointer (P), object (O) or integral
106 (I) type. Be careful to pick the correct one, as you'll get an
107 awkward and inefficient API if you use the wrong one. There is a
108 check, which results in a compile-time warning, for the P and I
109 versions, but there is no check for the O versions, as that is not
110 possible in plain C. Due to the way GTY works, you must annotate
111 any structures you wish to insert or reference from a vector with a
112 GTY(()) tag. You need to do this even if you never declare the GC
113 allocated variants.
115 An example of their use would be,
117 DEF_VEC_P(tree); // non-managed tree vector.
118 DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must
119 // appear at file scope.
121 struct my_struct {
122 VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers.
125 struct my_struct *s;
127 if (VEC_length(tree,s->v)) { we have some contents }
128 VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
129 for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
130 { do something with elt }
134 /* Macros to invoke API calls. A single macro works for both pointer
135 and object vectors, but the argument and return types might well be
136 different. In each macro, T is the typedef of the vector elements,
137 and A is the allocation strategy. The allocation strategy is only
138 present when it is required. Some of these macros pass the vector,
139 V, by reference (by taking its address), this is noted in the
140 descriptions. */
142 /* Length of vector
143 unsigned VEC_T_length(const VEC(T) *v);
145 Return the number of active elements in V. V can be NULL, in which
146 case zero is returned. */
148 #define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V)))
151 /* Check if vector is empty
152 int VEC_T_empty(const VEC(T) *v);
154 Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
156 #define VEC_empty(T,V) (VEC_length (T,V) == 0)
159 /* Get the final element of the vector.
160 T VEC_T_last(VEC(T) *v); // Integer
161 T VEC_T_last(VEC(T) *v); // Pointer
162 T *VEC_T_last(VEC(T) *v); // Object
164 Return the final element. V must not be empty. */
166 #define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
168 /* Index into vector
169 T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
170 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
171 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
173 Return the IX'th element. If IX must be in the domain of V. */
175 #define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
177 /* Iterate over vector
178 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
179 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
180 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
182 Return iteration condition and update PTR to point to the IX'th
183 element. At the end of iteration, sets PTR to NULL. Use this to
184 iterate over the elements of a vector as follows,
186 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
187 continue; */
189 #define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
191 /* Allocate new vector.
192 VEC(T,A) *VEC_T_A_alloc(int reserve);
194 Allocate a new vector with space for RESERVE objects. If RESERVE
195 is zero, NO vector is created. */
197 #define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
199 /* Free a vector.
200 void VEC_T_A_free(VEC(T,A) *&);
202 Free a vector and set it to NULL. */
204 #define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V))
206 /* Use these to determine the required size and initialization of a
207 vector embedded within another structure (as the final member).
209 size_t VEC_T_embedded_size(int reserve);
210 void VEC_T_embedded_init(VEC(T) *v, int reserve);
212 These allow the caller to perform the memory allocation. */
214 #define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N))
215 #define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
217 /* Copy a vector.
218 VEC(T,A) *VEC_T_A_copy(VEC(T) *);
220 Copy the live elements of a vector into a new vector. The new and
221 old vectors need not be allocated by the same mechanism. */
223 #define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))
225 /* Determine if a vector has additional capacity.
227 int VEC_T_space (VEC(T) *v,int reserve)
229 If V has space for RESERVE additional entries, return nonzero. You
230 usually only need to use this if you are doing your own vector
231 reallocation, for instance on an embedded vector. This returns
232 nonzero in exactly the same circumstances that VEC_T_reserve
233 will. */
235 #define VEC_space(T,V,R) \
236 (VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
238 /* Reserve space.
239 int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
241 Ensure that V has at least abs(RESERVE) slots available. The
242 signedness of RESERVE determines the reallocation behavior. A
243 negative value will not create additional headroom beyond that
244 requested. A positive value will create additional headroom. Note
245 this can cause V to be reallocated. Returns nonzero iff
246 reallocation actually occurred. */
248 #define VEC_reserve(T,A,V,R) \
249 (VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
251 /* Push object with no reallocation
252 T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
253 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
254 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
256 Push a new element onto the end, returns a pointer to the slot
257 filled in. For object vectors, the new value can be NULL, in which
258 case NO initialization is performed. There must
259 be sufficient space in the vector. */
261 #define VEC_quick_push(T,V,O) \
262 (VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
264 /* Push object with reallocation
265 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
266 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
267 T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
269 Push a new element onto the end, returns a pointer to the slot
270 filled in. For object vectors, the new value can be NULL, in which
271 case NO initialization is performed. Reallocates V, if needed. */
273 #define VEC_safe_push(T,A,V,O) \
274 (VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
276 /* Pop element off end
277 T VEC_T_pop (VEC(T) *v); // Integer
278 T VEC_T_pop (VEC(T) *v); // Pointer
279 void VEC_T_pop (VEC(T) *v); // Object
281 Pop the last element off the end. Returns the element popped, for
282 pointer vectors. */
284 #define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
286 /* Truncate to specific length
287 void VEC_T_truncate (VEC(T) *v, unsigned len);
289 Set the length as specified. The new length must be less than or
290 equal to the current length. This is an O(1) operation. */
292 #define VEC_truncate(T,V,I) \
293 (VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))
295 /* Grow to a specific length.
296 void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);
298 Grow the vector to a specific length. The LEN must be as
299 long or longer than the current length. The new elements are
300 uninitialized. */
302 #define VEC_safe_grow(T,A,V,I) \
303 (VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
305 /* Grow to a specific length.
306 void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len);
308 Grow the vector to a specific length. The LEN must be as
309 long or longer than the current length. The new elements are
310 initialized to zero. */
312 #define VEC_safe_grow_cleared(T,A,V,I) \
313 (VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
315 /* Replace element
316 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
317 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
318 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
320 Replace the IXth element of V with a new value, VAL. For pointer
321 vectors returns the original value. For object vectors returns a
322 pointer to the new value. For object vectors the new value can be
323 NULL, in which case no overwriting of the slot is actually
324 performed. */
326 #define VEC_replace(T,V,I,O) \
327 (VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
329 /* Insert object with no reallocation
330 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
331 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
332 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
334 Insert an element, VAL, at the IXth position of V. Return a pointer
335 to the slot created. For vectors of object, the new value can be
336 NULL, in which case no initialization of the inserted slot takes
337 place. There must be sufficient space. */
339 #define VEC_quick_insert(T,V,I,O) \
340 (VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
342 /* Insert object with reallocation
343 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
344 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
345 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
347 Insert an element, VAL, at the IXth position of V. Return a pointer
348 to the slot created. For vectors of object, the new value can be
349 NULL, in which case no initialization of the inserted slot takes
350 place. Reallocate V, if necessary. */
352 #define VEC_safe_insert(T,A,V,I,O) \
353 (VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
355 /* Remove element retaining order
356 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
357 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
358 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
360 Remove an element from the IXth position of V. Ordering of
361 remaining elements is preserved. For pointer vectors returns the
362 removed object. This is an O(N) operation due to a memmove. */
364 #define VEC_ordered_remove(T,V,I) \
365 (VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
367 /* Remove element destroying order
368 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
369 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
370 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
372 Remove an element from the IXth position of V. Ordering of
373 remaining elements is destroyed. For pointer vectors returns the
374 removed object. This is an O(1) operation. */
376 #define VEC_unordered_remove(T,V,I) \
377 (VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
379 /* Remove a block of elements
380 void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
382 Remove LEN elements starting at the IXth. Ordering is retained.
383 This is an O(1) operation. */
385 #define VEC_block_remove(T,V,I,L) \
386 (VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))
388 /* Get the address of the array of elements
389 T *VEC_T_address (VEC(T) v)
391 If you need to directly manipulate the array (for instance, you
392 want to feed it to qsort), use this accessor. */
394 #define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V)))
396 /* Find the first index in the vector not less than the object.
397 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
398 bool (*lessthan) (const T, const T)); // Integer
399 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
400 bool (*lessthan) (const T, const T)); // Pointer
401 unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
402 bool (*lessthan) (const T*, const T*)); // Object
404 Find the first position in which VAL could be inserted without
405 changing the ordering of V. LESSTHAN is a function that returns
406 true if the first argument is strictly less than the second. */
408 #define VEC_lower_bound(T,V,O,LT) \
409 (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
411 #if !IN_GENGTYPE
412 /* Reallocate an array of elements with prefix. */
413 extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
414 extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
415 extern void ggc_free (void *);
416 #define vec_gc_free(V) ggc_free (V)
417 extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
418 extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
419 #define vec_heap_free(V) free (V)
421 #if ENABLE_CHECKING
422 #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
423 #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
424 #define VEC_CHECK_PASS ,file_,line_,function_
426 #define VEC_ASSERT(EXPR,OP,T,A) \
427 (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
429 extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
430 ATTRIBUTE_NORETURN;
431 #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
432 #else
433 #define VEC_CHECK_INFO
434 #define VEC_CHECK_DECL
435 #define VEC_CHECK_PASS
436 #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
437 #endif
439 #define VEC(T,A) VEC_##T##_##A
440 #define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
441 #else /* IN_GENGTYPE */
442 #define VEC(T,A) VEC_ T _ A
443 #define VEC_STRINGIFY(X) VEC_STRINGIFY_(X)
444 #define VEC_STRINGIFY_(X) #X
445 #undef GTY
446 #endif /* IN_GENGTYPE */
448 /* Base of vector type, not user visible. */
449 #define VEC_T(T,B) \
450 typedef struct VEC(T,B) \
452 unsigned num; \
453 unsigned alloc; \
454 T vec[1]; \
455 } VEC(T,B)
457 #define VEC_T_GTY(T,B) \
458 typedef struct VEC(T,B) GTY(()) \
460 unsigned num; \
461 unsigned alloc; \
462 T GTY ((length ("%h.num"))) vec[1]; \
463 } VEC(T,B)
465 /* Derived vector type, user visible. */
466 #define VEC_TA_GTY(T,B,A,GTY) \
467 typedef struct VEC(T,A) GTY \
469 VEC(T,B) base; \
470 } VEC(T,A)
472 /* Convert to base type. */
473 #define VEC_BASE(P) ((P) ? &(P)->base : 0)
475 /* Vector of integer-like object. */
476 #if IN_GENGTYPE
477 {"DEF_VEC_I", VEC_STRINGIFY (VEC_T(#0,#1)) ";", "none"},
478 {"DEF_VEC_ALLOC_I", VEC_STRINGIFY (VEC_TA (#0,#1,#2,#3)) ";", NULL},
479 #else
480 #define DEF_VEC_I(T) \
481 static inline void VEC_OP (T,must_be,integral_type) (void) \
483 (void)~(T)0; \
486 VEC_T(T,base); \
487 VEC_TA_GTY(T,base,none,); \
488 DEF_VEC_FUNC_P(T) \
489 struct vec_swallow_trailing_semi
490 #define DEF_VEC_ALLOC_I(T,A) \
491 VEC_TA_GTY(T,base,A,); \
492 DEF_VEC_ALLOC_FUNC_I(T,A) \
493 struct vec_swallow_trailing_semi
494 #endif
496 /* Vector of pointer to object. */
497 #if IN_GENGTYPE
498 {"DEF_VEC_P", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
499 {"DEF_VEC_ALLOC_P", VEC_STRINGIFY (VEC_TA_GTY (#0,#1,#2,#3)) ";", NULL},
500 #else
501 #define DEF_VEC_P(T) \
502 static inline void VEC_OP (T,must_be,pointer_type) (void) \
504 (void)((T)1 == (void *)1); \
507 VEC_T_GTY(T,base); \
508 VEC_TA_GTY(T,base,none,); \
509 DEF_VEC_FUNC_P(T) \
510 struct vec_swallow_trailing_semi
511 #define DEF_VEC_ALLOC_P(T,A) \
512 VEC_TA_GTY(T,base,A,); \
513 DEF_VEC_ALLOC_FUNC_P(T,A) \
514 struct vec_swallow_trailing_semi
515 #endif
517 #define DEF_VEC_FUNC_P(T) \
518 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
520 return vec_ ? vec_->num : 0; \
523 static inline T VEC_OP (T,base,last) \
524 (const VEC(T,base) *vec_ VEC_CHECK_DECL) \
526 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
528 return vec_->vec[vec_->num - 1]; \
531 static inline T VEC_OP (T,base,index) \
532 (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
534 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
536 return vec_->vec[ix_]; \
539 static inline int VEC_OP (T,base,iterate) \
540 (const VEC(T,base) *vec_, unsigned ix_, T *ptr) \
542 if (vec_ && ix_ < vec_->num) \
544 *ptr = vec_->vec[ix_]; \
545 return 1; \
547 else \
549 *ptr = 0; \
550 return 0; \
554 static inline size_t VEC_OP (T,base,embedded_size) \
555 (int alloc_) \
557 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
560 static inline void VEC_OP (T,base,embedded_init) \
561 (VEC(T,base) *vec_, int alloc_) \
563 vec_->num = 0; \
564 vec_->alloc = alloc_; \
567 static inline int VEC_OP (T,base,space) \
568 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
570 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
571 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
574 static inline T *VEC_OP (T,base,quick_push) \
575 (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \
577 T *slot_; \
579 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
580 slot_ = &vec_->vec[vec_->num++]; \
581 *slot_ = obj_; \
583 return slot_; \
586 static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
588 T obj_; \
590 VEC_ASSERT (vec_->num, "pop", T, base); \
591 obj_ = vec_->vec[--vec_->num]; \
593 return obj_; \
596 static inline void VEC_OP (T,base,truncate) \
597 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
599 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
600 if (vec_) \
601 vec_->num = size_; \
604 static inline T VEC_OP (T,base,replace) \
605 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
607 T old_obj_; \
609 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
610 old_obj_ = vec_->vec[ix_]; \
611 vec_->vec[ix_] = obj_; \
613 return old_obj_; \
616 static inline T *VEC_OP (T,base,quick_insert) \
617 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
619 T *slot_; \
621 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
622 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
623 slot_ = &vec_->vec[ix_]; \
624 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
625 *slot_ = obj_; \
627 return slot_; \
630 static inline T VEC_OP (T,base,ordered_remove) \
631 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
633 T *slot_; \
634 T obj_; \
636 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
637 slot_ = &vec_->vec[ix_]; \
638 obj_ = *slot_; \
639 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
641 return obj_; \
644 static inline T VEC_OP (T,base,unordered_remove) \
645 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
647 T *slot_; \
648 T obj_; \
650 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
651 slot_ = &vec_->vec[ix_]; \
652 obj_ = *slot_; \
653 *slot_ = vec_->vec[--vec_->num]; \
655 return obj_; \
658 static inline void VEC_OP (T,base,block_remove) \
659 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
661 T *slot_; \
663 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
664 slot_ = &vec_->vec[ix_]; \
665 vec_->num -= len_; \
666 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
669 static inline T *VEC_OP (T,base,address) \
670 (VEC(T,base) *vec_) \
672 return vec_ ? vec_->vec : 0; \
675 static inline unsigned VEC_OP (T,base,lower_bound) \
676 (VEC(T,base) *vec_, const T obj_, \
677 bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \
679 unsigned int len_ = VEC_OP (T,base, length) (vec_); \
680 unsigned int half_, middle_; \
681 unsigned int first_ = 0; \
682 while (len_ > 0) \
684 T middle_elem_; \
685 half_ = len_ >> 1; \
686 middle_ = first_; \
687 middle_ += half_; \
688 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
689 if (lessthan_ (middle_elem_, obj_)) \
691 first_ = middle_; \
692 ++first_; \
693 len_ = len_ - half_ - 1; \
695 else \
696 len_ = half_; \
698 return first_; \
701 #define DEF_VEC_ALLOC_FUNC_P(T,A) \
702 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
703 (int alloc_ MEM_STAT_DECL) \
705 /* We must request exact size allocation, hence the negation. */ \
706 return (VEC(T,A) *) vec_##A##_p_reserve (NULL, -alloc_ PASS_MEM_STAT); \
709 static inline void VEC_OP (T,A,free) \
710 (VEC(T,A) **vec_) \
712 if (*vec_) \
713 vec_##A##_free (*vec_); \
714 *vec_ = NULL; \
717 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
719 size_t len_ = vec_ ? vec_->num : 0; \
720 VEC (T,A) *new_vec_ = NULL; \
722 if (len_) \
724 /* We must request exact size allocation, hence the negation. */ \
725 new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve \
726 (NULL, -len_ PASS_MEM_STAT)); \
728 new_vec_->base.num = len_; \
729 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
731 return new_vec_; \
734 static inline int VEC_OP (T,A,reserve) \
735 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
737 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), \
738 alloc_ < 0 ? -alloc_ : alloc_ \
739 VEC_CHECK_PASS); \
741 if (extend) \
742 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
744 return extend; \
747 static inline void VEC_OP (T,A,safe_grow) \
748 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
750 VEC_ASSERT (size_ >= 0 \
751 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
752 "grow", T, A); \
753 VEC_OP (T,A,reserve) (vec_, (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) - size_ \
754 VEC_CHECK_PASS PASS_MEM_STAT); \
755 VEC_BASE (*vec_)->num = size_; \
758 static inline void VEC_OP (T,A,safe_grow_cleared) \
759 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
761 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
762 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
763 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
764 sizeof (T) * (size_ - oldsize)); \
767 static inline T *VEC_OP (T,A,safe_push) \
768 (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
770 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
772 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
775 static inline T *VEC_OP (T,A,safe_insert) \
776 (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
778 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
780 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
781 VEC_CHECK_PASS); \
784 /* Vector of object. */
785 #if IN_GENGTYPE
786 {"DEF_VEC_O", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
787 {"DEF_VEC_ALLOC_O", VEC_STRINGIFY (VEC_TA_GTY(#0,#1,#2,#3)) ";", NULL},
788 #else
789 #define DEF_VEC_O(T) \
790 VEC_T_GTY(T,base); \
791 VEC_TA_GTY(T,base,none,); \
792 DEF_VEC_FUNC_O(T) \
793 struct vec_swallow_trailing_semi
794 #define DEF_VEC_ALLOC_O(T,A) \
795 VEC_TA_GTY(T,base,A,); \
796 DEF_VEC_ALLOC_FUNC_O(T,A) \
797 struct vec_swallow_trailing_semi
798 #endif
800 #define DEF_VEC_FUNC_O(T) \
801 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
803 return vec_ ? vec_->num : 0; \
806 static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
808 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
810 return &vec_->vec[vec_->num - 1]; \
813 static inline T *VEC_OP (T,base,index) \
814 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
816 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
818 return &vec_->vec[ix_]; \
821 static inline int VEC_OP (T,base,iterate) \
822 (VEC(T,base) *vec_, unsigned ix_, T **ptr) \
824 if (vec_ && ix_ < vec_->num) \
826 *ptr = &vec_->vec[ix_]; \
827 return 1; \
829 else \
831 *ptr = 0; \
832 return 0; \
836 static inline size_t VEC_OP (T,base,embedded_size) \
837 (int alloc_) \
839 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
842 static inline void VEC_OP (T,base,embedded_init) \
843 (VEC(T,base) *vec_, int alloc_) \
845 vec_->num = 0; \
846 vec_->alloc = alloc_; \
849 static inline int VEC_OP (T,base,space) \
850 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
852 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
853 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
856 static inline T *VEC_OP (T,base,quick_push) \
857 (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \
859 T *slot_; \
861 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
862 slot_ = &vec_->vec[vec_->num++]; \
863 if (obj_) \
864 *slot_ = *obj_; \
866 return slot_; \
869 static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
871 VEC_ASSERT (vec_->num, "pop", T, base); \
872 --vec_->num; \
875 static inline void VEC_OP (T,base,truncate) \
876 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
878 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
879 if (vec_) \
880 vec_->num = size_; \
883 static inline T *VEC_OP (T,base,replace) \
884 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
886 T *slot_; \
888 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
889 slot_ = &vec_->vec[ix_]; \
890 if (obj_) \
891 *slot_ = *obj_; \
893 return slot_; \
896 static inline T *VEC_OP (T,base,quick_insert) \
897 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
899 T *slot_; \
901 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
902 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
903 slot_ = &vec_->vec[ix_]; \
904 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
905 if (obj_) \
906 *slot_ = *obj_; \
908 return slot_; \
911 static inline void VEC_OP (T,base,ordered_remove) \
912 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
914 T *slot_; \
916 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
917 slot_ = &vec_->vec[ix_]; \
918 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
921 static inline void VEC_OP (T,base,unordered_remove) \
922 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
924 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
925 vec_->vec[ix_] = vec_->vec[--vec_->num]; \
928 static inline void VEC_OP (T,base,block_remove) \
929 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
931 T *slot_; \
933 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
934 slot_ = &vec_->vec[ix_]; \
935 vec_->num -= len_; \
936 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
939 static inline T *VEC_OP (T,base,address) \
940 (VEC(T,base) *vec_) \
942 return vec_ ? vec_->vec : 0; \
945 static inline unsigned VEC_OP (T,base,lower_bound) \
946 (VEC(T,base) *vec_, const T *obj_, \
947 bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \
949 unsigned int len_ = VEC_OP (T, base, length) (vec_); \
950 unsigned int half_, middle_; \
951 unsigned int first_ = 0; \
952 while (len_ > 0) \
954 T *middle_elem_; \
955 half_ = len_ >> 1; \
956 middle_ = first_; \
957 middle_ += half_; \
958 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
959 if (lessthan_ (middle_elem_, obj_)) \
961 first_ = middle_; \
962 ++first_; \
963 len_ = len_ - half_ - 1; \
965 else \
966 len_ = half_; \
968 return first_; \
971 #define DEF_VEC_ALLOC_FUNC_O(T,A) \
972 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
973 (int alloc_ MEM_STAT_DECL) \
975 /* We must request exact size allocation, hence the negation. */ \
976 return (VEC(T,A) *) vec_##A##_o_reserve (NULL, -alloc_, \
977 offsetof (VEC(T,A),base.vec), \
978 sizeof (T) \
979 PASS_MEM_STAT); \
982 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
984 size_t len_ = vec_ ? vec_->num : 0; \
985 VEC (T,A) *new_vec_ = NULL; \
987 if (len_) \
989 /* We must request exact size allocation, hence the negation. */ \
990 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve \
991 (NULL, -len_, \
992 offsetof (VEC(T,A),base.vec), sizeof (T) \
993 PASS_MEM_STAT)); \
995 new_vec_->base.num = len_; \
996 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
998 return new_vec_; \
1001 static inline void VEC_OP (T,A,free) \
1002 (VEC(T,A) **vec_) \
1004 if (*vec_) \
1005 vec_##A##_free (*vec_); \
1006 *vec_ = NULL; \
1009 static inline int VEC_OP (T,A,reserve) \
1010 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1012 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), \
1013 alloc_ < 0 ? -alloc_ : alloc_ \
1014 VEC_CHECK_PASS); \
1016 if (extend) \
1017 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
1018 offsetof (VEC(T,A),base.vec),\
1019 sizeof (T) \
1020 PASS_MEM_STAT); \
1022 return extend; \
1025 static inline void VEC_OP (T,A,safe_grow) \
1026 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1028 VEC_ASSERT (size_ >= 0 \
1029 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1030 "grow", T, A); \
1031 VEC_OP (T,A,reserve) (vec_, (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) - size_ \
1032 VEC_CHECK_PASS PASS_MEM_STAT); \
1033 VEC_BASE (*vec_)->num = size_; \
1036 static inline void VEC_OP (T,A,safe_grow_cleared) \
1037 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1039 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
1040 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
1041 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
1042 sizeof (T) * (size_ - oldsize)); \
1045 static inline T *VEC_OP (T,A,safe_push) \
1046 (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1048 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1050 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1053 static inline T *VEC_OP (T,A,safe_insert) \
1054 (VEC(T,A) **vec_, unsigned ix_, const T *obj_ \
1055 VEC_CHECK_DECL MEM_STAT_DECL) \
1057 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1059 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1060 VEC_CHECK_PASS); \
1063 #define DEF_VEC_ALLOC_FUNC_I(T,A) \
1064 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
1065 (int alloc_ MEM_STAT_DECL) \
1067 /* We must request exact size allocation, hence the negation. */ \
1068 return (VEC(T,A) *) vec_##A##_o_reserve (NULL, -alloc_, \
1069 offsetof (VEC(T,A),base.vec), \
1070 sizeof (T) \
1071 PASS_MEM_STAT); \
1074 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1076 size_t len_ = vec_ ? vec_->num : 0; \
1077 VEC (T,A) *new_vec_ = NULL; \
1079 if (len_) \
1081 /* We must request exact size allocation, hence the negation. */ \
1082 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve \
1083 (NULL, -len_, \
1084 offsetof (VEC(T,A),base.vec), sizeof (T) \
1085 PASS_MEM_STAT)); \
1087 new_vec_->base.num = len_; \
1088 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
1090 return new_vec_; \
1093 static inline void VEC_OP (T,A,free) \
1094 (VEC(T,A) **vec_) \
1096 if (*vec_) \
1097 vec_##A##_free (*vec_); \
1098 *vec_ = NULL; \
1101 static inline int VEC_OP (T,A,reserve) \
1102 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1104 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), \
1105 alloc_ < 0 ? -alloc_ : alloc_ \
1106 VEC_CHECK_PASS); \
1108 if (extend) \
1109 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
1110 offsetof (VEC(T,A),base.vec),\
1111 sizeof (T) \
1112 PASS_MEM_STAT); \
1114 return extend; \
1117 static inline void VEC_OP (T,A,safe_grow) \
1118 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1120 VEC_ASSERT (size_ >= 0 \
1121 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1122 "grow", T, A); \
1123 VEC_OP (T,A,reserve) (vec_, (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) - size_ \
1124 VEC_CHECK_PASS PASS_MEM_STAT); \
1125 VEC_BASE (*vec_)->num = size_; \
1128 static inline void VEC_OP (T,A,safe_grow_cleared) \
1129 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1131 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
1132 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
1133 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
1134 sizeof (T) * (size_ - oldsize)); \
1137 static inline T *VEC_OP (T,A,safe_push) \
1138 (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1140 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1142 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1145 static inline T *VEC_OP (T,A,safe_insert) \
1146 (VEC(T,A) **vec_, unsigned ix_, const T obj_ \
1147 VEC_CHECK_DECL MEM_STAT_DECL) \
1149 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1151 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1152 VEC_CHECK_PASS); \
1155 #endif /* GCC_VEC_H */