1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
90 #include "coretypes.h"
97 #include "stor-layout.h"
102 #include "insn-config.h"
104 #include "alloc-pool.h"
110 #include "emit-rtl.h"
113 #include "tree-pass.h"
114 #include "tree-dfa.h"
115 #include "tree-ssa.h"
119 #include "diagnostic.h"
120 #include "tree-pretty-print.h"
122 #include "rtl-iter.h"
123 #include "fibonacci_heap.h"
125 typedef fibonacci_heap
<long, basic_block_def
> bb_heap_t
;
126 typedef fibonacci_node
<long, basic_block_def
> bb_heap_node_t
;
128 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
129 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
130 Currently the value is the same as IDENTIFIER_NODE, which has such
131 a property. If this compile time assertion ever fails, make sure that
132 the new tree code that equals (int) VALUE has the same property. */
133 extern char check_value_val
[(int) VALUE
== (int) IDENTIFIER_NODE
? 1 : -1];
135 /* Type of micro operation. */
136 enum micro_operation_type
138 MO_USE
, /* Use location (REG or MEM). */
139 MO_USE_NO_VAR
,/* Use location which is not associated with a variable
140 or the variable is not trackable. */
141 MO_VAL_USE
, /* Use location which is associated with a value. */
142 MO_VAL_LOC
, /* Use location which appears in a debug insn. */
143 MO_VAL_SET
, /* Set location associated with a value. */
144 MO_SET
, /* Set location. */
145 MO_COPY
, /* Copy the same portion of a variable from one
146 location to another. */
147 MO_CLOBBER
, /* Clobber location. */
148 MO_CALL
, /* Call insn. */
149 MO_ADJUST
/* Adjust stack pointer. */
153 static const char * const ATTRIBUTE_UNUSED
154 micro_operation_type_name
[] = {
167 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
168 Notes emitted as AFTER_CALL are to take effect during the call,
169 rather than after the call. */
172 EMIT_NOTE_BEFORE_INSN
,
173 EMIT_NOTE_AFTER_INSN
,
174 EMIT_NOTE_AFTER_CALL_INSN
177 /* Structure holding information about micro operation. */
178 struct micro_operation
180 /* Type of micro operation. */
181 enum micro_operation_type type
;
183 /* The instruction which the micro operation is in, for MO_USE,
184 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
185 instruction or note in the original flow (before any var-tracking
186 notes are inserted, to simplify emission of notes), for MO_SET
191 /* Location. For MO_SET and MO_COPY, this is the SET that
192 performs the assignment, if known, otherwise it is the target
193 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
194 CONCAT of the VALUE and the LOC associated with it. For
195 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
196 associated with it. */
199 /* Stack adjustment. */
200 HOST_WIDE_INT adjust
;
205 /* A declaration of a variable, or an RTL value being handled like a
207 typedef void *decl_or_value
;
209 /* Return true if a decl_or_value DV is a DECL or NULL. */
211 dv_is_decl_p (decl_or_value dv
)
213 return !dv
|| (int) TREE_CODE ((tree
) dv
) != (int) VALUE
;
216 /* Return true if a decl_or_value is a VALUE rtl. */
218 dv_is_value_p (decl_or_value dv
)
220 return dv
&& !dv_is_decl_p (dv
);
223 /* Return the decl in the decl_or_value. */
225 dv_as_decl (decl_or_value dv
)
227 gcc_checking_assert (dv_is_decl_p (dv
));
231 /* Return the value in the decl_or_value. */
233 dv_as_value (decl_or_value dv
)
235 gcc_checking_assert (dv_is_value_p (dv
));
239 /* Return the opaque pointer in the decl_or_value. */
241 dv_as_opaque (decl_or_value dv
)
247 /* Description of location of a part of a variable. The content of a physical
248 register is described by a chain of these structures.
249 The chains are pretty short (usually 1 or 2 elements) and thus
250 chain is the best data structure. */
251 typedef struct attrs_def
253 /* Pointer to next member of the list. */
254 struct attrs_def
*next
;
256 /* The rtx of register. */
259 /* The declaration corresponding to LOC. */
262 /* Offset from start of DECL. */
263 HOST_WIDE_INT offset
;
266 /* Structure for chaining the locations. */
267 struct location_chain
269 /* Next element in the chain. */
270 location_chain
*next
;
272 /* The location (REG, MEM or VALUE). */
275 /* The "value" stored in this location. */
279 enum var_init_status init
;
282 /* A vector of loc_exp_dep holds the active dependencies of a one-part
283 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
284 location of DV. Each entry is also part of VALUE' s linked-list of
285 backlinks back to DV. */
288 /* The dependent DV. */
290 /* The dependency VALUE or DECL_DEBUG. */
292 /* The next entry in VALUE's backlinks list. */
293 struct loc_exp_dep
*next
;
294 /* A pointer to the pointer to this entry (head or prev's next) in
295 the doubly-linked list. */
296 struct loc_exp_dep
**pprev
;
300 /* This data structure holds information about the depth of a variable
304 /* This measures the complexity of the expanded expression. It
305 grows by one for each level of expansion that adds more than one
308 /* This counts the number of ENTRY_VALUE expressions in an
309 expansion. We want to minimize their use. */
313 /* This data structure is allocated for one-part variables at the time
314 of emitting notes. */
317 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
318 computation used the expansion of this variable, and that ought
319 to be notified should this variable change. If the DV's cur_loc
320 expanded to NULL, all components of the loc list are regarded as
321 active, so that any changes in them give us a chance to get a
322 location. Otherwise, only components of the loc that expanded to
323 non-NULL are regarded as active dependencies. */
324 loc_exp_dep
*backlinks
;
325 /* This holds the LOC that was expanded into cur_loc. We need only
326 mark a one-part variable as changed if the FROM loc is removed,
327 or if it has no known location and a loc is added, or if it gets
328 a change notification from any of its active dependencies. */
330 /* The depth of the cur_loc expression. */
332 /* Dependencies actively used when expand FROM into cur_loc. */
333 vec
<loc_exp_dep
, va_heap
, vl_embed
> deps
;
336 /* Structure describing one part of variable. */
339 /* Chain of locations of the part. */
340 location_chain
*loc_chain
;
342 /* Location which was last emitted to location list. */
347 /* The offset in the variable, if !var->onepart. */
348 HOST_WIDE_INT offset
;
350 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
351 struct onepart_aux
*onepaux
;
355 /* Maximum number of location parts. */
356 #define MAX_VAR_PARTS 16
358 /* Enumeration type used to discriminate various types of one-part
360 typedef enum onepart_enum
362 /* Not a one-part variable. */
364 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
366 /* A DEBUG_EXPR_DECL. */
372 /* Structure describing where the variable is located. */
373 typedef struct variable_def
375 /* The declaration of the variable, or an RTL value being handled
376 like a declaration. */
379 /* Reference count. */
382 /* Number of variable parts. */
385 /* What type of DV this is, according to enum onepart_enum. */
386 ENUM_BITFIELD (onepart_enum
) onepart
: CHAR_BIT
;
388 /* True if this variable_def struct is currently in the
389 changed_variables hash table. */
390 bool in_changed_variables
;
392 /* The variable parts. */
393 variable_part var_part
[1];
395 typedef const struct variable_def
*const_variable
;
397 /* Pointer to the BB's information specific to variable tracking pass. */
398 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
400 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
401 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
403 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
405 /* Access VAR's Ith part's offset, checking that it's not a one-part
407 #define VAR_PART_OFFSET(var, i) __extension__ \
408 (*({ variable const __v = (var); \
409 gcc_checking_assert (!__v->onepart); \
410 &__v->var_part[(i)].aux.offset; }))
412 /* Access VAR's one-part auxiliary data, checking that it is a
413 one-part variable. */
414 #define VAR_LOC_1PAUX(var) __extension__ \
415 (*({ variable const __v = (var); \
416 gcc_checking_assert (__v->onepart); \
417 &__v->var_part[0].aux.onepaux; }))
420 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
421 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
424 /* These are accessor macros for the one-part auxiliary data. When
425 convenient for users, they're guarded by tests that the data was
427 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
428 ? VAR_LOC_1PAUX (var)->backlinks \
430 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
431 ? &VAR_LOC_1PAUX (var)->backlinks \
433 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
434 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
435 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
436 ? &VAR_LOC_1PAUX (var)->deps \
441 typedef unsigned int dvuid
;
443 /* Return the uid of DV. */
446 dv_uid (decl_or_value dv
)
448 if (dv_is_value_p (dv
))
449 return CSELIB_VAL_PTR (dv_as_value (dv
))->uid
;
451 return DECL_UID (dv_as_decl (dv
));
454 /* Compute the hash from the uid. */
456 static inline hashval_t
457 dv_uid2hash (dvuid uid
)
462 /* The hash function for a mask table in a shared_htab chain. */
464 static inline hashval_t
465 dv_htab_hash (decl_or_value dv
)
467 return dv_uid2hash (dv_uid (dv
));
470 static void variable_htab_free (void *);
472 /* Variable hashtable helpers. */
474 struct variable_hasher
: pointer_hash
<variable_def
>
476 typedef void *compare_type
;
477 static inline hashval_t
hash (const variable_def
*);
478 static inline bool equal (const variable_def
*, const void *);
479 static inline void remove (variable_def
*);
482 /* The hash function for variable_htab, computes the hash value
483 from the declaration of variable X. */
486 variable_hasher::hash (const variable_def
*v
)
488 return dv_htab_hash (v
->dv
);
491 /* Compare the declaration of variable X with declaration Y. */
494 variable_hasher::equal (const variable_def
*v
, const void *y
)
496 decl_or_value dv
= CONST_CAST2 (decl_or_value
, const void *, y
);
498 return (dv_as_opaque (v
->dv
) == dv_as_opaque (dv
));
501 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
504 variable_hasher::remove (variable_def
*var
)
506 variable_htab_free (var
);
509 typedef hash_table
<variable_hasher
> variable_table_type
;
510 typedef variable_table_type::iterator variable_iterator_type
;
512 /* Structure for passing some other parameters to function
513 emit_note_insn_var_location. */
514 struct emit_note_data
516 /* The instruction which the note will be emitted before/after. */
519 /* Where the note will be emitted (before/after insn)? */
520 enum emit_note_where where
;
522 /* The variables and values active at this point. */
523 variable_table_type
*vars
;
526 /* Structure holding a refcounted hash table. If refcount > 1,
527 it must be first unshared before modified. */
530 /* Reference count. */
533 /* Actual hash table. */
534 variable_table_type
*htab
;
537 /* Structure holding the IN or OUT set for a basic block. */
540 /* Adjustment of stack offset. */
541 HOST_WIDE_INT stack_adjust
;
543 /* Attributes for registers (lists of attrs). */
544 attrs regs
[FIRST_PSEUDO_REGISTER
];
546 /* Variable locations. */
549 /* Vars that is being traversed. */
550 shared_hash
*traversed_vars
;
553 /* The structure (one for each basic block) containing the information
554 needed for variable tracking. */
555 typedef struct variable_tracking_info_def
557 /* The vector of micro operations. */
558 vec
<micro_operation
> mos
;
560 /* The IN and OUT set for dataflow analysis. */
564 /* The permanent-in dataflow set for this block. This is used to
565 hold values for which we had to compute entry values. ??? This
566 should probably be dynamically allocated, to avoid using more
567 memory in non-debug builds. */
570 /* Has the block been visited in DFS? */
573 /* Has the block been flooded in VTA? */
576 } *variable_tracking_info
;
578 /* Alloc pool for struct attrs_def. */
579 object_allocator
<attrs_def
> attrs_def_pool ("attrs_def pool");
581 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
583 static pool_allocator var_pool
584 ("variable_def pool", sizeof (variable_def
) +
585 (MAX_VAR_PARTS
- 1) * sizeof (((variable
)NULL
)->var_part
[0]));
587 /* Alloc pool for struct variable_def with a single var_part entry. */
588 static pool_allocator valvar_pool
589 ("small variable_def pool", sizeof (variable_def
));
591 /* Alloc pool for struct location_chain. */
592 static object_allocator
<location_chain
> location_chain_pool
593 ("location_chain pool");
595 /* Alloc pool for struct shared_hash. */
596 static object_allocator
<shared_hash
> shared_hash_pool ("shared_hash pool");
598 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
599 object_allocator
<loc_exp_dep
> loc_exp_dep_pool ("loc_exp_dep pool");
601 /* Changed variables, notes will be emitted for them. */
602 static variable_table_type
*changed_variables
;
604 /* Shall notes be emitted? */
605 static bool emit_notes
;
607 /* Values whose dynamic location lists have gone empty, but whose
608 cselib location lists are still usable. Use this to hold the
609 current location, the backlinks, etc, during emit_notes. */
610 static variable_table_type
*dropped_values
;
612 /* Empty shared hashtable. */
613 static shared_hash
*empty_shared_hash
;
615 /* Scratch register bitmap used by cselib_expand_value_rtx. */
616 static bitmap scratch_regs
= NULL
;
618 #ifdef HAVE_window_save
619 typedef struct GTY(()) parm_reg
{
625 /* Vector of windowed parameter registers, if any. */
626 static vec
<parm_reg_t
, va_gc
> *windowed_parm_regs
= NULL
;
629 /* Variable used to tell whether cselib_process_insn called our hook. */
630 static bool cselib_hook_called
;
632 /* Local function prototypes. */
633 static void stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
635 static void insn_stack_adjust_offset_pre_post (rtx_insn
*, HOST_WIDE_INT
*,
637 static bool vt_stack_adjustments (void);
639 static void init_attrs_list_set (attrs
*);
640 static void attrs_list_clear (attrs
*);
641 static attrs
attrs_list_member (attrs
, decl_or_value
, HOST_WIDE_INT
);
642 static void attrs_list_insert (attrs
*, decl_or_value
, HOST_WIDE_INT
, rtx
);
643 static void attrs_list_copy (attrs
*, attrs
);
644 static void attrs_list_union (attrs
*, attrs
);
646 static variable_def
**unshare_variable (dataflow_set
*set
, variable_def
**slot
,
647 variable var
, enum var_init_status
);
648 static void vars_copy (variable_table_type
*, variable_table_type
*);
649 static tree
var_debug_decl (tree
);
650 static void var_reg_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
651 static void var_reg_delete_and_set (dataflow_set
*, rtx
, bool,
652 enum var_init_status
, rtx
);
653 static void var_reg_delete (dataflow_set
*, rtx
, bool);
654 static void var_regno_delete (dataflow_set
*, int);
655 static void var_mem_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
656 static void var_mem_delete_and_set (dataflow_set
*, rtx
, bool,
657 enum var_init_status
, rtx
);
658 static void var_mem_delete (dataflow_set
*, rtx
, bool);
660 static void dataflow_set_init (dataflow_set
*);
661 static void dataflow_set_clear (dataflow_set
*);
662 static void dataflow_set_copy (dataflow_set
*, dataflow_set
*);
663 static int variable_union_info_cmp_pos (const void *, const void *);
664 static void dataflow_set_union (dataflow_set
*, dataflow_set
*);
665 static location_chain
*find_loc_in_1pdv (rtx
, variable
, variable_table_type
*);
666 static bool canon_value_cmp (rtx
, rtx
);
667 static int loc_cmp (rtx
, rtx
);
668 static bool variable_part_different_p (variable_part
*, variable_part
*);
669 static bool onepart_variable_different_p (variable
, variable
);
670 static bool variable_different_p (variable
, variable
);
671 static bool dataflow_set_different (dataflow_set
*, dataflow_set
*);
672 static void dataflow_set_destroy (dataflow_set
*);
674 static bool contains_symbol_ref (rtx
);
675 static bool track_expr_p (tree
, bool);
676 static bool same_variable_part_p (rtx
, tree
, HOST_WIDE_INT
);
677 static void add_uses_1 (rtx
*, void *);
678 static void add_stores (rtx
, const_rtx
, void *);
679 static bool compute_bb_dataflow (basic_block
);
680 static bool vt_find_locations (void);
682 static void dump_attrs_list (attrs
);
683 static void dump_var (variable
);
684 static void dump_vars (variable_table_type
*);
685 static void dump_dataflow_set (dataflow_set
*);
686 static void dump_dataflow_sets (void);
688 static void set_dv_changed (decl_or_value
, bool);
689 static void variable_was_changed (variable
, dataflow_set
*);
690 static variable_def
**set_slot_part (dataflow_set
*, rtx
, variable_def
**,
691 decl_or_value
, HOST_WIDE_INT
,
692 enum var_init_status
, rtx
);
693 static void set_variable_part (dataflow_set
*, rtx
,
694 decl_or_value
, HOST_WIDE_INT
,
695 enum var_init_status
, rtx
, enum insert_option
);
696 static variable_def
**clobber_slot_part (dataflow_set
*, rtx
,
697 variable_def
**, HOST_WIDE_INT
, rtx
);
698 static void clobber_variable_part (dataflow_set
*, rtx
,
699 decl_or_value
, HOST_WIDE_INT
, rtx
);
700 static variable_def
**delete_slot_part (dataflow_set
*, rtx
, variable_def
**,
702 static void delete_variable_part (dataflow_set
*, rtx
,
703 decl_or_value
, HOST_WIDE_INT
);
704 static void emit_notes_in_bb (basic_block
, dataflow_set
*);
705 static void vt_emit_notes (void);
707 static bool vt_get_decl_and_offset (rtx
, tree
*, HOST_WIDE_INT
*);
708 static void vt_add_function_parameters (void);
709 static bool vt_initialize (void);
710 static void vt_finalize (void);
712 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
715 stack_adjust_offset_pre_post_cb (rtx
, rtx op
, rtx dest
, rtx src
, rtx srcoff
,
718 if (dest
!= stack_pointer_rtx
)
721 switch (GET_CODE (op
))
725 ((HOST_WIDE_INT
*)arg
)[0] -= INTVAL (srcoff
);
729 ((HOST_WIDE_INT
*)arg
)[1] -= INTVAL (srcoff
);
733 /* We handle only adjustments by constant amount. */
734 gcc_assert (GET_CODE (src
) == PLUS
735 && CONST_INT_P (XEXP (src
, 1))
736 && XEXP (src
, 0) == stack_pointer_rtx
);
737 ((HOST_WIDE_INT
*)arg
)[GET_CODE (op
) == POST_MODIFY
]
738 -= INTVAL (XEXP (src
, 1));
745 /* Given a SET, calculate the amount of stack adjustment it contains
746 PRE- and POST-modifying stack pointer.
747 This function is similar to stack_adjust_offset. */
750 stack_adjust_offset_pre_post (rtx pattern
, HOST_WIDE_INT
*pre
,
753 rtx src
= SET_SRC (pattern
);
754 rtx dest
= SET_DEST (pattern
);
757 if (dest
== stack_pointer_rtx
)
759 /* (set (reg sp) (plus (reg sp) (const_int))) */
760 code
= GET_CODE (src
);
761 if (! (code
== PLUS
|| code
== MINUS
)
762 || XEXP (src
, 0) != stack_pointer_rtx
763 || !CONST_INT_P (XEXP (src
, 1)))
767 *post
+= INTVAL (XEXP (src
, 1));
769 *post
-= INTVAL (XEXP (src
, 1));
772 HOST_WIDE_INT res
[2] = { 0, 0 };
773 for_each_inc_dec (pattern
, stack_adjust_offset_pre_post_cb
, res
);
778 /* Given an INSN, calculate the amount of stack adjustment it contains
779 PRE- and POST-modifying stack pointer. */
782 insn_stack_adjust_offset_pre_post (rtx_insn
*insn
, HOST_WIDE_INT
*pre
,
790 pattern
= PATTERN (insn
);
791 if (RTX_FRAME_RELATED_P (insn
))
793 rtx expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
795 pattern
= XEXP (expr
, 0);
798 if (GET_CODE (pattern
) == SET
)
799 stack_adjust_offset_pre_post (pattern
, pre
, post
);
800 else if (GET_CODE (pattern
) == PARALLEL
801 || GET_CODE (pattern
) == SEQUENCE
)
805 /* There may be stack adjustments inside compound insns. Search
807 for ( i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
808 if (GET_CODE (XVECEXP (pattern
, 0, i
)) == SET
)
809 stack_adjust_offset_pre_post (XVECEXP (pattern
, 0, i
), pre
, post
);
813 /* Compute stack adjustments for all blocks by traversing DFS tree.
814 Return true when the adjustments on all incoming edges are consistent.
815 Heavily borrowed from pre_and_rev_post_order_compute. */
818 vt_stack_adjustments (void)
820 edge_iterator
*stack
;
823 /* Initialize entry block. */
824 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->visited
= true;
825 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->in
.stack_adjust
826 = INCOMING_FRAME_SP_OFFSET
;
827 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
.stack_adjust
828 = INCOMING_FRAME_SP_OFFSET
;
830 /* Allocate stack for back-tracking up CFG. */
831 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
834 /* Push the first edge on to the stack. */
835 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
843 /* Look at the edge on the top of the stack. */
845 src
= ei_edge (ei
)->src
;
846 dest
= ei_edge (ei
)->dest
;
848 /* Check if the edge destination has been visited yet. */
849 if (!VTI (dest
)->visited
)
852 HOST_WIDE_INT pre
, post
, offset
;
853 VTI (dest
)->visited
= true;
854 VTI (dest
)->in
.stack_adjust
= offset
= VTI (src
)->out
.stack_adjust
;
856 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
857 for (insn
= BB_HEAD (dest
);
858 insn
!= NEXT_INSN (BB_END (dest
));
859 insn
= NEXT_INSN (insn
))
862 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
863 offset
+= pre
+ post
;
866 VTI (dest
)->out
.stack_adjust
= offset
;
868 if (EDGE_COUNT (dest
->succs
) > 0)
869 /* Since the DEST node has been visited for the first
870 time, check its successors. */
871 stack
[sp
++] = ei_start (dest
->succs
);
875 /* We can end up with different stack adjustments for the exit block
876 of a shrink-wrapped function if stack_adjust_offset_pre_post
877 doesn't understand the rtx pattern used to restore the stack
878 pointer in the epilogue. For example, on s390(x), the stack
879 pointer is often restored via a load-multiple instruction
880 and so no stack_adjust offset is recorded for it. This means
881 that the stack offset at the end of the epilogue block is the
882 the same as the offset before the epilogue, whereas other paths
883 to the exit block will have the correct stack_adjust.
885 It is safe to ignore these differences because (a) we never
886 use the stack_adjust for the exit block in this pass and
887 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
888 function are correct.
890 We must check whether the adjustments on other edges are
892 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
893 && VTI (dest
)->in
.stack_adjust
!= VTI (src
)->out
.stack_adjust
)
899 if (! ei_one_before_end_p (ei
))
900 /* Go to the next edge. */
901 ei_next (&stack
[sp
- 1]);
903 /* Return to previous level if there are no more edges. */
912 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
913 hard_frame_pointer_rtx is being mapped to it and offset for it. */
914 static rtx cfa_base_rtx
;
915 static HOST_WIDE_INT cfa_base_offset
;
917 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
918 or hard_frame_pointer_rtx. */
921 compute_cfa_pointer (HOST_WIDE_INT adjustment
)
923 return plus_constant (Pmode
, cfa_base_rtx
, adjustment
+ cfa_base_offset
);
926 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
927 or -1 if the replacement shouldn't be done. */
928 static HOST_WIDE_INT hard_frame_pointer_adjustment
= -1;
930 /* Data for adjust_mems callback. */
932 struct adjust_mem_data
935 machine_mode mem_mode
;
936 HOST_WIDE_INT stack_adjust
;
937 rtx_expr_list
*side_effects
;
940 /* Helper for adjust_mems. Return true if X is suitable for
941 transformation of wider mode arithmetics to narrower mode. */
944 use_narrower_mode_test (rtx x
, const_rtx subreg
)
946 subrtx_var_iterator::array_type array
;
947 FOR_EACH_SUBRTX_VAR (iter
, array
, x
, NONCONST
)
951 iter
.skip_subrtxes ();
953 switch (GET_CODE (x
))
956 if (cselib_lookup (x
, GET_MODE (SUBREG_REG (subreg
)), 0, VOIDmode
))
958 if (!validate_subreg (GET_MODE (subreg
), GET_MODE (x
), x
,
959 subreg_lowpart_offset (GET_MODE (subreg
),
968 iter
.substitute (XEXP (x
, 0));
977 /* Transform X into narrower mode MODE from wider mode WMODE. */
980 use_narrower_mode (rtx x
, machine_mode mode
, machine_mode wmode
)
984 return lowpart_subreg (mode
, x
, wmode
);
985 switch (GET_CODE (x
))
988 return lowpart_subreg (mode
, x
, wmode
);
992 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
993 op1
= use_narrower_mode (XEXP (x
, 1), mode
, wmode
);
994 return simplify_gen_binary (GET_CODE (x
), mode
, op0
, op1
);
996 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
998 /* Ensure shift amount is not wider than mode. */
999 if (GET_MODE (op1
) == VOIDmode
)
1000 op1
= lowpart_subreg (mode
, op1
, wmode
);
1001 else if (GET_MODE_PRECISION (mode
) < GET_MODE_PRECISION (GET_MODE (op1
)))
1002 op1
= lowpart_subreg (mode
, op1
, GET_MODE (op1
));
1003 return simplify_gen_binary (ASHIFT
, mode
, op0
, op1
);
1009 /* Helper function for adjusting used MEMs. */
1012 adjust_mems (rtx loc
, const_rtx old_rtx
, void *data
)
1014 struct adjust_mem_data
*amd
= (struct adjust_mem_data
*) data
;
1015 rtx mem
, addr
= loc
, tem
;
1016 machine_mode mem_mode_save
;
1018 switch (GET_CODE (loc
))
1021 /* Don't do any sp or fp replacements outside of MEM addresses
1023 if (amd
->mem_mode
== VOIDmode
&& amd
->store
)
1025 if (loc
== stack_pointer_rtx
1026 && !frame_pointer_needed
1028 return compute_cfa_pointer (amd
->stack_adjust
);
1029 else if (loc
== hard_frame_pointer_rtx
1030 && frame_pointer_needed
1031 && hard_frame_pointer_adjustment
!= -1
1033 return compute_cfa_pointer (hard_frame_pointer_adjustment
);
1034 gcc_checking_assert (loc
!= virtual_incoming_args_rtx
);
1040 mem
= targetm
.delegitimize_address (mem
);
1041 if (mem
!= loc
&& !MEM_P (mem
))
1042 return simplify_replace_fn_rtx (mem
, old_rtx
, adjust_mems
, data
);
1045 addr
= XEXP (mem
, 0);
1046 mem_mode_save
= amd
->mem_mode
;
1047 amd
->mem_mode
= GET_MODE (mem
);
1048 store_save
= amd
->store
;
1050 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1051 amd
->store
= store_save
;
1052 amd
->mem_mode
= mem_mode_save
;
1054 addr
= targetm
.delegitimize_address (addr
);
1055 if (addr
!= XEXP (mem
, 0))
1056 mem
= replace_equiv_address_nv (mem
, addr
);
1058 mem
= avoid_constant_pool_reference (mem
);
1062 addr
= gen_rtx_PLUS (GET_MODE (loc
), XEXP (loc
, 0),
1063 gen_int_mode (GET_CODE (loc
) == PRE_INC
1064 ? GET_MODE_SIZE (amd
->mem_mode
)
1065 : -GET_MODE_SIZE (amd
->mem_mode
),
1070 addr
= XEXP (loc
, 0);
1071 gcc_assert (amd
->mem_mode
!= VOIDmode
&& amd
->mem_mode
!= BLKmode
);
1072 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1073 tem
= gen_rtx_PLUS (GET_MODE (loc
), XEXP (loc
, 0),
1074 gen_int_mode ((GET_CODE (loc
) == PRE_INC
1075 || GET_CODE (loc
) == POST_INC
)
1076 ? GET_MODE_SIZE (amd
->mem_mode
)
1077 : -GET_MODE_SIZE (amd
->mem_mode
),
1079 store_save
= amd
->store
;
1081 tem
= simplify_replace_fn_rtx (tem
, old_rtx
, adjust_mems
, data
);
1082 amd
->store
= store_save
;
1083 amd
->side_effects
= alloc_EXPR_LIST (0,
1084 gen_rtx_SET (XEXP (loc
, 0), tem
),
1088 addr
= XEXP (loc
, 1);
1091 addr
= XEXP (loc
, 0);
1092 gcc_assert (amd
->mem_mode
!= VOIDmode
);
1093 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1094 store_save
= amd
->store
;
1096 tem
= simplify_replace_fn_rtx (XEXP (loc
, 1), old_rtx
,
1098 amd
->store
= store_save
;
1099 amd
->side_effects
= alloc_EXPR_LIST (0,
1100 gen_rtx_SET (XEXP (loc
, 0), tem
),
1104 /* First try without delegitimization of whole MEMs and
1105 avoid_constant_pool_reference, which is more likely to succeed. */
1106 store_save
= amd
->store
;
1108 addr
= simplify_replace_fn_rtx (SUBREG_REG (loc
), old_rtx
, adjust_mems
,
1110 amd
->store
= store_save
;
1111 mem
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1112 if (mem
== SUBREG_REG (loc
))
1117 tem
= simplify_gen_subreg (GET_MODE (loc
), mem
,
1118 GET_MODE (SUBREG_REG (loc
)),
1122 tem
= simplify_gen_subreg (GET_MODE (loc
), addr
,
1123 GET_MODE (SUBREG_REG (loc
)),
1125 if (tem
== NULL_RTX
)
1126 tem
= gen_rtx_raw_SUBREG (GET_MODE (loc
), addr
, SUBREG_BYTE (loc
));
1128 if (MAY_HAVE_DEBUG_INSNS
1129 && GET_CODE (tem
) == SUBREG
1130 && (GET_CODE (SUBREG_REG (tem
)) == PLUS
1131 || GET_CODE (SUBREG_REG (tem
)) == MINUS
1132 || GET_CODE (SUBREG_REG (tem
)) == MULT
1133 || GET_CODE (SUBREG_REG (tem
)) == ASHIFT
)
1134 && (GET_MODE_CLASS (GET_MODE (tem
)) == MODE_INT
1135 || GET_MODE_CLASS (GET_MODE (tem
)) == MODE_PARTIAL_INT
)
1136 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem
))) == MODE_INT
1137 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem
))) == MODE_PARTIAL_INT
)
1138 && GET_MODE_PRECISION (GET_MODE (tem
))
1139 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem
)))
1140 && subreg_lowpart_p (tem
)
1141 && use_narrower_mode_test (SUBREG_REG (tem
), tem
))
1142 return use_narrower_mode (SUBREG_REG (tem
), GET_MODE (tem
),
1143 GET_MODE (SUBREG_REG (tem
)));
1146 /* Don't do any replacements in second and following
1147 ASM_OPERANDS of inline-asm with multiple sets.
1148 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1149 and ASM_OPERANDS_LABEL_VEC need to be equal between
1150 all the ASM_OPERANDs in the insn and adjust_insn will
1152 if (ASM_OPERANDS_OUTPUT_IDX (loc
) != 0)
1161 /* Helper function for replacement of uses. */
1164 adjust_mem_uses (rtx
*x
, void *data
)
1166 rtx new_x
= simplify_replace_fn_rtx (*x
, NULL_RTX
, adjust_mems
, data
);
1168 validate_change (NULL_RTX
, x
, new_x
, true);
1171 /* Helper function for replacement of stores. */
1174 adjust_mem_stores (rtx loc
, const_rtx expr
, void *data
)
1178 rtx new_dest
= simplify_replace_fn_rtx (SET_DEST (expr
), NULL_RTX
,
1180 if (new_dest
!= SET_DEST (expr
))
1182 rtx xexpr
= CONST_CAST_RTX (expr
);
1183 validate_change (NULL_RTX
, &SET_DEST (xexpr
), new_dest
, true);
1188 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1189 replace them with their value in the insn and add the side-effects
1190 as other sets to the insn. */
1193 adjust_insn (basic_block bb
, rtx_insn
*insn
)
1195 struct adjust_mem_data amd
;
1198 #ifdef HAVE_window_save
1199 /* If the target machine has an explicit window save instruction, the
1200 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1201 if (RTX_FRAME_RELATED_P (insn
)
1202 && find_reg_note (insn
, REG_CFA_WINDOW_SAVE
, NULL_RTX
))
1204 unsigned int i
, nregs
= vec_safe_length (windowed_parm_regs
);
1205 rtx rtl
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (nregs
* 2));
1208 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs
, i
, p
)
1210 XVECEXP (rtl
, 0, i
* 2)
1211 = gen_rtx_SET (p
->incoming
, p
->outgoing
);
1212 /* Do not clobber the attached DECL, but only the REG. */
1213 XVECEXP (rtl
, 0, i
* 2 + 1)
1214 = gen_rtx_CLOBBER (GET_MODE (p
->outgoing
),
1215 gen_raw_REG (GET_MODE (p
->outgoing
),
1216 REGNO (p
->outgoing
)));
1219 validate_change (NULL_RTX
, &PATTERN (insn
), rtl
, true);
1224 amd
.mem_mode
= VOIDmode
;
1225 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
1226 amd
.side_effects
= NULL
;
1229 note_stores (PATTERN (insn
), adjust_mem_stores
, &amd
);
1232 if (GET_CODE (PATTERN (insn
)) == PARALLEL
1233 && asm_noperands (PATTERN (insn
)) > 0
1234 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1239 /* inline-asm with multiple sets is tiny bit more complicated,
1240 because the 3 vectors in ASM_OPERANDS need to be shared between
1241 all ASM_OPERANDS in the instruction. adjust_mems will
1242 not touch ASM_OPERANDS other than the first one, asm_noperands
1243 test above needs to be called before that (otherwise it would fail)
1244 and afterwards this code fixes it up. */
1245 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1246 body
= PATTERN (insn
);
1247 set0
= XVECEXP (body
, 0, 0);
1248 gcc_checking_assert (GET_CODE (set0
) == SET
1249 && GET_CODE (SET_SRC (set0
)) == ASM_OPERANDS
1250 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0
)) == 0);
1251 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
1252 if (GET_CODE (XVECEXP (body
, 0, i
)) != SET
)
1256 set
= XVECEXP (body
, 0, i
);
1257 gcc_checking_assert (GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
1258 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set
))
1260 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set
))
1261 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
))
1262 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set
))
1263 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
))
1264 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set
))
1265 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
)))
1267 rtx newsrc
= shallow_copy_rtx (SET_SRC (set
));
1268 ASM_OPERANDS_INPUT_VEC (newsrc
)
1269 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
));
1270 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc
)
1271 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
));
1272 ASM_OPERANDS_LABEL_VEC (newsrc
)
1273 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
));
1274 validate_change (NULL_RTX
, &SET_SRC (set
), newsrc
, true);
1279 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1281 /* For read-only MEMs containing some constant, prefer those
1283 set
= single_set (insn
);
1284 if (set
&& MEM_P (SET_SRC (set
)) && MEM_READONLY_P (SET_SRC (set
)))
1286 rtx note
= find_reg_equal_equiv_note (insn
);
1288 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1289 validate_change (NULL_RTX
, &SET_SRC (set
), XEXP (note
, 0), true);
1292 if (amd
.side_effects
)
1294 rtx
*pat
, new_pat
, s
;
1297 pat
= &PATTERN (insn
);
1298 if (GET_CODE (*pat
) == COND_EXEC
)
1299 pat
= &COND_EXEC_CODE (*pat
);
1300 if (GET_CODE (*pat
) == PARALLEL
)
1301 oldn
= XVECLEN (*pat
, 0);
1304 for (s
= amd
.side_effects
, newn
= 0; s
; newn
++)
1306 new_pat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (oldn
+ newn
));
1307 if (GET_CODE (*pat
) == PARALLEL
)
1308 for (i
= 0; i
< oldn
; i
++)
1309 XVECEXP (new_pat
, 0, i
) = XVECEXP (*pat
, 0, i
);
1311 XVECEXP (new_pat
, 0, 0) = *pat
;
1312 for (s
= amd
.side_effects
, i
= oldn
; i
< oldn
+ newn
; i
++, s
= XEXP (s
, 1))
1313 XVECEXP (new_pat
, 0, i
) = XEXP (s
, 0);
1314 free_EXPR_LIST_list (&amd
.side_effects
);
1315 validate_change (NULL_RTX
, pat
, new_pat
, true);
1319 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1321 dv_as_rtx (decl_or_value dv
)
1325 if (dv_is_value_p (dv
))
1326 return dv_as_value (dv
);
1328 decl
= dv_as_decl (dv
);
1330 gcc_checking_assert (TREE_CODE (decl
) == DEBUG_EXPR_DECL
);
1331 return DECL_RTL_KNOWN_SET (decl
);
1334 /* Return nonzero if a decl_or_value must not have more than one
1335 variable part. The returned value discriminates among various
1336 kinds of one-part DVs ccording to enum onepart_enum. */
1337 static inline onepart_enum_t
1338 dv_onepart_p (decl_or_value dv
)
1342 if (!MAY_HAVE_DEBUG_INSNS
)
1345 if (dv_is_value_p (dv
))
1346 return ONEPART_VALUE
;
1348 decl
= dv_as_decl (dv
);
1350 if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
1351 return ONEPART_DEXPR
;
1353 if (target_for_debug_bind (decl
) != NULL_TREE
)
1354 return ONEPART_VDECL
;
1359 /* Return the variable pool to be used for a dv of type ONEPART. */
1360 static inline pool_allocator
&
1361 onepart_pool (onepart_enum_t onepart
)
1363 return onepart
? valvar_pool
: var_pool
;
1366 /* Allocate a variable_def from the corresponding variable pool. */
1367 static inline variable_def
*
1368 onepart_pool_allocate (onepart_enum_t onepart
)
1370 return (variable_def
*) onepart_pool (onepart
).allocate ();
1373 /* Build a decl_or_value out of a decl. */
1374 static inline decl_or_value
1375 dv_from_decl (tree decl
)
1379 gcc_checking_assert (dv_is_decl_p (dv
));
1383 /* Build a decl_or_value out of a value. */
1384 static inline decl_or_value
1385 dv_from_value (rtx value
)
1389 gcc_checking_assert (dv_is_value_p (dv
));
1393 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1394 static inline decl_or_value
1399 switch (GET_CODE (x
))
1402 dv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (x
));
1403 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x
)) == x
);
1407 dv
= dv_from_value (x
);
1417 extern void debug_dv (decl_or_value dv
);
1420 debug_dv (decl_or_value dv
)
1422 if (dv_is_value_p (dv
))
1423 debug_rtx (dv_as_value (dv
));
1425 debug_generic_stmt (dv_as_decl (dv
));
1428 static void loc_exp_dep_clear (variable var
);
1430 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1433 variable_htab_free (void *elem
)
1436 variable var
= (variable
) elem
;
1437 location_chain
*node
, *next
;
1439 gcc_checking_assert (var
->refcount
> 0);
1442 if (var
->refcount
> 0)
1445 for (i
= 0; i
< var
->n_var_parts
; i
++)
1447 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= next
)
1452 var
->var_part
[i
].loc_chain
= NULL
;
1454 if (var
->onepart
&& VAR_LOC_1PAUX (var
))
1456 loc_exp_dep_clear (var
);
1457 if (VAR_LOC_DEP_LST (var
))
1458 VAR_LOC_DEP_LST (var
)->pprev
= NULL
;
1459 XDELETE (VAR_LOC_1PAUX (var
));
1460 /* These may be reused across functions, so reset
1462 if (var
->onepart
== ONEPART_DEXPR
)
1463 set_dv_changed (var
->dv
, true);
1465 onepart_pool (var
->onepart
).remove (var
);
1468 /* Initialize the set (array) SET of attrs to empty lists. */
1471 init_attrs_list_set (attrs
*set
)
1475 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1479 /* Make the list *LISTP empty. */
1482 attrs_list_clear (attrs
*listp
)
1486 for (list
= *listp
; list
; list
= next
)
1494 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1497 attrs_list_member (attrs list
, decl_or_value dv
, HOST_WIDE_INT offset
)
1499 for (; list
; list
= list
->next
)
1500 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
) && list
->offset
== offset
)
1505 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1508 attrs_list_insert (attrs
*listp
, decl_or_value dv
,
1509 HOST_WIDE_INT offset
, rtx loc
)
1511 attrs list
= new attrs_def
;
1514 list
->offset
= offset
;
1515 list
->next
= *listp
;
1519 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1522 attrs_list_copy (attrs
*dstp
, attrs src
)
1524 attrs_list_clear (dstp
);
1525 for (; src
; src
= src
->next
)
1527 attrs n
= new attrs_def
;
1530 n
->offset
= src
->offset
;
1536 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1539 attrs_list_union (attrs
*dstp
, attrs src
)
1541 for (; src
; src
= src
->next
)
1543 if (!attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1544 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1548 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1552 attrs_list_mpdv_union (attrs
*dstp
, attrs src
, attrs src2
)
1554 gcc_assert (!*dstp
);
1555 for (; src
; src
= src
->next
)
1557 if (!dv_onepart_p (src
->dv
))
1558 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1560 for (src
= src2
; src
; src
= src
->next
)
1562 if (!dv_onepart_p (src
->dv
)
1563 && !attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1564 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1568 /* Shared hashtable support. */
1570 /* Return true if VARS is shared. */
1573 shared_hash_shared (shared_hash
*vars
)
1575 return vars
->refcount
> 1;
1578 /* Return the hash table for VARS. */
1580 static inline variable_table_type
*
1581 shared_hash_htab (shared_hash
*vars
)
1586 /* Return true if VAR is shared, or maybe because VARS is shared. */
1589 shared_var_p (variable var
, shared_hash
*vars
)
1591 /* Don't count an entry in the changed_variables table as a duplicate. */
1592 return ((var
->refcount
> 1 + (int) var
->in_changed_variables
)
1593 || shared_hash_shared (vars
));
1596 /* Copy variables into a new hash table. */
1598 static shared_hash
*
1599 shared_hash_unshare (shared_hash
*vars
)
1601 shared_hash
*new_vars
= new shared_hash
;
1602 gcc_assert (vars
->refcount
> 1);
1603 new_vars
->refcount
= 1;
1604 new_vars
->htab
= new variable_table_type (vars
->htab
->elements () + 3);
1605 vars_copy (new_vars
->htab
, vars
->htab
);
1610 /* Increment reference counter on VARS and return it. */
1612 static inline shared_hash
*
1613 shared_hash_copy (shared_hash
*vars
)
1619 /* Decrement reference counter and destroy hash table if not shared
1623 shared_hash_destroy (shared_hash
*vars
)
1625 gcc_checking_assert (vars
->refcount
> 0);
1626 if (--vars
->refcount
== 0)
1633 /* Unshare *PVARS if shared and return slot for DV. If INS is
1634 INSERT, insert it if not already present. */
1636 static inline variable_def
**
1637 shared_hash_find_slot_unshare_1 (shared_hash
**pvars
, decl_or_value dv
,
1638 hashval_t dvhash
, enum insert_option ins
)
1640 if (shared_hash_shared (*pvars
))
1641 *pvars
= shared_hash_unshare (*pvars
);
1642 return shared_hash_htab (*pvars
)->find_slot_with_hash (dv
, dvhash
, ins
);
1645 static inline variable_def
**
1646 shared_hash_find_slot_unshare (shared_hash
**pvars
, decl_or_value dv
,
1647 enum insert_option ins
)
1649 return shared_hash_find_slot_unshare_1 (pvars
, dv
, dv_htab_hash (dv
), ins
);
1652 /* Return slot for DV, if it is already present in the hash table.
1653 If it is not present, insert it only VARS is not shared, otherwise
1656 static inline variable_def
**
1657 shared_hash_find_slot_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1659 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
,
1660 shared_hash_shared (vars
)
1661 ? NO_INSERT
: INSERT
);
1664 static inline variable_def
**
1665 shared_hash_find_slot (shared_hash
*vars
, decl_or_value dv
)
1667 return shared_hash_find_slot_1 (vars
, dv
, dv_htab_hash (dv
));
1670 /* Return slot for DV only if it is already present in the hash table. */
1672 static inline variable_def
**
1673 shared_hash_find_slot_noinsert_1 (shared_hash
*vars
, decl_or_value dv
,
1676 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
, NO_INSERT
);
1679 static inline variable_def
**
1680 shared_hash_find_slot_noinsert (shared_hash
*vars
, decl_or_value dv
)
1682 return shared_hash_find_slot_noinsert_1 (vars
, dv
, dv_htab_hash (dv
));
1685 /* Return variable for DV or NULL if not already present in the hash
1688 static inline variable
1689 shared_hash_find_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1691 return shared_hash_htab (vars
)->find_with_hash (dv
, dvhash
);
1694 static inline variable
1695 shared_hash_find (shared_hash
*vars
, decl_or_value dv
)
1697 return shared_hash_find_1 (vars
, dv
, dv_htab_hash (dv
));
1700 /* Return true if TVAL is better than CVAL as a canonival value. We
1701 choose lowest-numbered VALUEs, using the RTX address as a
1702 tie-breaker. The idea is to arrange them into a star topology,
1703 such that all of them are at most one step away from the canonical
1704 value, and the canonical value has backlinks to all of them, in
1705 addition to all the actual locations. We don't enforce this
1706 topology throughout the entire dataflow analysis, though.
1710 canon_value_cmp (rtx tval
, rtx cval
)
1713 || CSELIB_VAL_PTR (tval
)->uid
< CSELIB_VAL_PTR (cval
)->uid
;
1716 static bool dst_can_be_shared
;
1718 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1720 static variable_def
**
1721 unshare_variable (dataflow_set
*set
, variable_def
**slot
, variable var
,
1722 enum var_init_status initialized
)
1727 new_var
= onepart_pool_allocate (var
->onepart
);
1728 new_var
->dv
= var
->dv
;
1729 new_var
->refcount
= 1;
1731 new_var
->n_var_parts
= var
->n_var_parts
;
1732 new_var
->onepart
= var
->onepart
;
1733 new_var
->in_changed_variables
= false;
1735 if (! flag_var_tracking_uninit
)
1736 initialized
= VAR_INIT_STATUS_INITIALIZED
;
1738 for (i
= 0; i
< var
->n_var_parts
; i
++)
1740 location_chain
*node
;
1741 location_chain
**nextp
;
1743 if (i
== 0 && var
->onepart
)
1745 /* One-part auxiliary data is only used while emitting
1746 notes, so propagate it to the new variable in the active
1747 dataflow set. If we're not emitting notes, this will be
1749 gcc_checking_assert (!VAR_LOC_1PAUX (var
) || emit_notes
);
1750 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (var
);
1751 VAR_LOC_1PAUX (var
) = NULL
;
1754 VAR_PART_OFFSET (new_var
, i
) = VAR_PART_OFFSET (var
, i
);
1755 nextp
= &new_var
->var_part
[i
].loc_chain
;
1756 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1758 location_chain
*new_lc
;
1760 new_lc
= new location_chain
;
1761 new_lc
->next
= NULL
;
1762 if (node
->init
> initialized
)
1763 new_lc
->init
= node
->init
;
1765 new_lc
->init
= initialized
;
1766 if (node
->set_src
&& !(MEM_P (node
->set_src
)))
1767 new_lc
->set_src
= node
->set_src
;
1769 new_lc
->set_src
= NULL
;
1770 new_lc
->loc
= node
->loc
;
1773 nextp
= &new_lc
->next
;
1776 new_var
->var_part
[i
].cur_loc
= var
->var_part
[i
].cur_loc
;
1779 dst_can_be_shared
= false;
1780 if (shared_hash_shared (set
->vars
))
1781 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
, NO_INSERT
);
1782 else if (set
->traversed_vars
&& set
->vars
!= set
->traversed_vars
)
1783 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
1785 if (var
->in_changed_variables
)
1787 variable_def
**cslot
1788 = changed_variables
->find_slot_with_hash (var
->dv
,
1789 dv_htab_hash (var
->dv
),
1791 gcc_assert (*cslot
== (void *) var
);
1792 var
->in_changed_variables
= false;
1793 variable_htab_free (var
);
1795 new_var
->in_changed_variables
= true;
1800 /* Copy all variables from hash table SRC to hash table DST. */
1803 vars_copy (variable_table_type
*dst
, variable_table_type
*src
)
1805 variable_iterator_type hi
;
1808 FOR_EACH_HASH_TABLE_ELEMENT (*src
, var
, variable
, hi
)
1810 variable_def
**dstp
;
1812 dstp
= dst
->find_slot_with_hash (var
->dv
, dv_htab_hash (var
->dv
),
1818 /* Map a decl to its main debug decl. */
1821 var_debug_decl (tree decl
)
1823 if (decl
&& TREE_CODE (decl
) == VAR_DECL
1824 && DECL_HAS_DEBUG_EXPR_P (decl
))
1826 tree debugdecl
= DECL_DEBUG_EXPR (decl
);
1827 if (DECL_P (debugdecl
))
1834 /* Set the register LOC to contain DV, OFFSET. */
1837 var_reg_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1838 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
1839 enum insert_option iopt
)
1842 bool decl_p
= dv_is_decl_p (dv
);
1845 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
1847 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
1848 if (dv_as_opaque (node
->dv
) == dv_as_opaque (dv
)
1849 && node
->offset
== offset
)
1852 attrs_list_insert (&set
->regs
[REGNO (loc
)], dv
, offset
, loc
);
1853 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
1856 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1859 var_reg_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1862 tree decl
= REG_EXPR (loc
);
1863 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1865 var_reg_decl_set (set
, loc
, initialized
,
1866 dv_from_decl (decl
), offset
, set_src
, INSERT
);
1869 static enum var_init_status
1870 get_init_value (dataflow_set
*set
, rtx loc
, decl_or_value dv
)
1874 enum var_init_status ret_val
= VAR_INIT_STATUS_UNKNOWN
;
1876 if (! flag_var_tracking_uninit
)
1877 return VAR_INIT_STATUS_INITIALIZED
;
1879 var
= shared_hash_find (set
->vars
, dv
);
1882 for (i
= 0; i
< var
->n_var_parts
&& ret_val
== VAR_INIT_STATUS_UNKNOWN
; i
++)
1884 location_chain
*nextp
;
1885 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
; nextp
= nextp
->next
)
1886 if (rtx_equal_p (nextp
->loc
, loc
))
1888 ret_val
= nextp
->init
;
1897 /* Delete current content of register LOC in dataflow set SET and set
1898 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1899 MODIFY is true, any other live copies of the same variable part are
1900 also deleted from the dataflow set, otherwise the variable part is
1901 assumed to be copied from another location holding the same
1905 var_reg_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
1906 enum var_init_status initialized
, rtx set_src
)
1908 tree decl
= REG_EXPR (loc
);
1909 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1913 decl
= var_debug_decl (decl
);
1915 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
1916 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
1918 nextp
= &set
->regs
[REGNO (loc
)];
1919 for (node
= *nextp
; node
; node
= next
)
1922 if (dv_as_opaque (node
->dv
) != decl
|| node
->offset
!= offset
)
1924 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1931 nextp
= &node
->next
;
1935 clobber_variable_part (set
, loc
, dv_from_decl (decl
), offset
, set_src
);
1936 var_reg_set (set
, loc
, initialized
, set_src
);
1939 /* Delete the association of register LOC in dataflow set SET with any
1940 variables that aren't onepart. If CLOBBER is true, also delete any
1941 other live copies of the same variable part, and delete the
1942 association with onepart dvs too. */
1945 var_reg_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
1947 attrs
*nextp
= &set
->regs
[REGNO (loc
)];
1952 tree decl
= REG_EXPR (loc
);
1953 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1955 decl
= var_debug_decl (decl
);
1957 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
1960 for (node
= *nextp
; node
; node
= next
)
1963 if (clobber
|| !dv_onepart_p (node
->dv
))
1965 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1970 nextp
= &node
->next
;
1974 /* Delete content of register with number REGNO in dataflow set SET. */
1977 var_regno_delete (dataflow_set
*set
, int regno
)
1979 attrs
*reg
= &set
->regs
[regno
];
1982 for (node
= *reg
; node
; node
= next
)
1985 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1991 /* Return true if I is the negated value of a power of two. */
1993 negative_power_of_two_p (HOST_WIDE_INT i
)
1995 unsigned HOST_WIDE_INT x
= -(unsigned HOST_WIDE_INT
)i
;
1996 return x
== (x
& -x
);
1999 /* Strip constant offsets and alignments off of LOC. Return the base
2003 vt_get_canonicalize_base (rtx loc
)
2005 while ((GET_CODE (loc
) == PLUS
2006 || GET_CODE (loc
) == AND
)
2007 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2008 && (GET_CODE (loc
) != AND
2009 || negative_power_of_two_p (INTVAL (XEXP (loc
, 1)))))
2010 loc
= XEXP (loc
, 0);
2015 /* This caches canonicalized addresses for VALUEs, computed using
2016 information in the global cselib table. */
2017 static hash_map
<rtx
, rtx
> *global_get_addr_cache
;
2019 /* This caches canonicalized addresses for VALUEs, computed using
2020 information from the global cache and information pertaining to a
2021 basic block being analyzed. */
2022 static hash_map
<rtx
, rtx
> *local_get_addr_cache
;
2024 static rtx
vt_canonicalize_addr (dataflow_set
*, rtx
);
2026 /* Return the canonical address for LOC, that must be a VALUE, using a
2027 cached global equivalence or computing it and storing it in the
2031 get_addr_from_global_cache (rtx
const loc
)
2035 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2038 rtx
*slot
= &global_get_addr_cache
->get_or_insert (loc
, &existed
);
2042 x
= canon_rtx (get_addr (loc
));
2044 /* Tentative, avoiding infinite recursion. */
2049 rtx nx
= vt_canonicalize_addr (NULL
, x
);
2052 /* The table may have moved during recursion, recompute
2054 *global_get_addr_cache
->get (loc
) = x
= nx
;
2061 /* Return the canonical address for LOC, that must be a VALUE, using a
2062 cached local equivalence or computing it and storing it in the
2066 get_addr_from_local_cache (dataflow_set
*set
, rtx
const loc
)
2073 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2076 rtx
*slot
= &local_get_addr_cache
->get_or_insert (loc
, &existed
);
2080 x
= get_addr_from_global_cache (loc
);
2082 /* Tentative, avoiding infinite recursion. */
2085 /* Recurse to cache local expansion of X, or if we need to search
2086 for a VALUE in the expansion. */
2089 rtx nx
= vt_canonicalize_addr (set
, x
);
2092 slot
= local_get_addr_cache
->get (loc
);
2098 dv
= dv_from_rtx (x
);
2099 var
= shared_hash_find (set
->vars
, dv
);
2103 /* Look for an improved equivalent expression. */
2104 for (l
= var
->var_part
[0].loc_chain
; l
; l
= l
->next
)
2106 rtx base
= vt_get_canonicalize_base (l
->loc
);
2107 if (GET_CODE (base
) == VALUE
2108 && canon_value_cmp (base
, loc
))
2110 rtx nx
= vt_canonicalize_addr (set
, l
->loc
);
2113 slot
= local_get_addr_cache
->get (loc
);
2123 /* Canonicalize LOC using equivalences from SET in addition to those
2124 in the cselib static table. It expects a VALUE-based expression,
2125 and it will only substitute VALUEs with other VALUEs or
2126 function-global equivalences, so that, if two addresses have base
2127 VALUEs that are locally or globally related in ways that
2128 memrefs_conflict_p cares about, they will both canonicalize to
2129 expressions that have the same base VALUE.
2131 The use of VALUEs as canonical base addresses enables the canonical
2132 RTXs to remain unchanged globally, if they resolve to a constant,
2133 or throughout a basic block otherwise, so that they can be cached
2134 and the cache needs not be invalidated when REGs, MEMs or such
2138 vt_canonicalize_addr (dataflow_set
*set
, rtx oloc
)
2140 HOST_WIDE_INT ofst
= 0;
2141 machine_mode mode
= GET_MODE (oloc
);
2148 while (GET_CODE (loc
) == PLUS
2149 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
)
2151 ofst
+= INTVAL (XEXP (loc
, 1));
2152 loc
= XEXP (loc
, 0);
2155 /* Alignment operations can't normally be combined, so just
2156 canonicalize the base and we're done. We'll normally have
2157 only one stack alignment anyway. */
2158 if (GET_CODE (loc
) == AND
2159 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2160 && negative_power_of_two_p (INTVAL (XEXP (loc
, 1))))
2162 x
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2163 if (x
!= XEXP (loc
, 0))
2164 loc
= gen_rtx_AND (mode
, x
, XEXP (loc
, 1));
2168 if (GET_CODE (loc
) == VALUE
)
2171 loc
= get_addr_from_local_cache (set
, loc
);
2173 loc
= get_addr_from_global_cache (loc
);
2175 /* Consolidate plus_constants. */
2176 while (ofst
&& GET_CODE (loc
) == PLUS
2177 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
)
2179 ofst
+= INTVAL (XEXP (loc
, 1));
2180 loc
= XEXP (loc
, 0);
2187 x
= canon_rtx (loc
);
2194 /* Add OFST back in. */
2197 /* Don't build new RTL if we can help it. */
2198 if (GET_CODE (oloc
) == PLUS
2199 && XEXP (oloc
, 0) == loc
2200 && INTVAL (XEXP (oloc
, 1)) == ofst
)
2203 loc
= plus_constant (mode
, loc
, ofst
);
2209 /* Return true iff there's a true dependence between MLOC and LOC.
2210 MADDR must be a canonicalized version of MLOC's address. */
2213 vt_canon_true_dep (dataflow_set
*set
, rtx mloc
, rtx maddr
, rtx loc
)
2215 if (GET_CODE (loc
) != MEM
)
2218 rtx addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2219 if (!canon_true_dependence (mloc
, GET_MODE (mloc
), maddr
, loc
, addr
))
2225 /* Hold parameters for the hashtab traversal function
2226 drop_overlapping_mem_locs, see below. */
2228 struct overlapping_mems
2234 /* Remove all MEMs that overlap with COMS->LOC from the location list
2235 of a hash table entry for a value. COMS->ADDR must be a
2236 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2237 canonicalized itself. */
2240 drop_overlapping_mem_locs (variable_def
**slot
, overlapping_mems
*coms
)
2242 dataflow_set
*set
= coms
->set
;
2243 rtx mloc
= coms
->loc
, addr
= coms
->addr
;
2244 variable var
= *slot
;
2246 if (var
->onepart
== ONEPART_VALUE
)
2248 location_chain
*loc
, **locp
;
2249 bool changed
= false;
2252 gcc_assert (var
->n_var_parts
== 1);
2254 if (shared_var_p (var
, set
->vars
))
2256 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
2257 if (vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2263 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
2265 gcc_assert (var
->n_var_parts
== 1);
2268 if (VAR_LOC_1PAUX (var
))
2269 cur_loc
= VAR_LOC_FROM (var
);
2271 cur_loc
= var
->var_part
[0].cur_loc
;
2273 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
2276 if (!vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2283 /* If we have deleted the location which was last emitted
2284 we have to emit new location so add the variable to set
2285 of changed variables. */
2286 if (cur_loc
== loc
->loc
)
2289 var
->var_part
[0].cur_loc
= NULL
;
2290 if (VAR_LOC_1PAUX (var
))
2291 VAR_LOC_FROM (var
) = NULL
;
2296 if (!var
->var_part
[0].loc_chain
)
2302 variable_was_changed (var
, set
);
2308 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2311 clobber_overlapping_mems (dataflow_set
*set
, rtx loc
)
2313 struct overlapping_mems coms
;
2315 gcc_checking_assert (GET_CODE (loc
) == MEM
);
2318 coms
.loc
= canon_rtx (loc
);
2319 coms
.addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2321 set
->traversed_vars
= set
->vars
;
2322 shared_hash_htab (set
->vars
)
2323 ->traverse
<overlapping_mems
*, drop_overlapping_mem_locs
> (&coms
);
2324 set
->traversed_vars
= NULL
;
2327 /* Set the location of DV, OFFSET as the MEM LOC. */
2330 var_mem_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2331 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
2332 enum insert_option iopt
)
2334 if (dv_is_decl_p (dv
))
2335 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
2337 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
2340 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2342 Adjust the address first if it is stack pointer based. */
2345 var_mem_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2348 tree decl
= MEM_EXPR (loc
);
2349 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
2351 var_mem_decl_set (set
, loc
, initialized
,
2352 dv_from_decl (decl
), offset
, set_src
, INSERT
);
2355 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2356 dataflow set SET to LOC. If MODIFY is true, any other live copies
2357 of the same variable part are also deleted from the dataflow set,
2358 otherwise the variable part is assumed to be copied from another
2359 location holding the same part.
2360 Adjust the address first if it is stack pointer based. */
2363 var_mem_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
2364 enum var_init_status initialized
, rtx set_src
)
2366 tree decl
= MEM_EXPR (loc
);
2367 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
2369 clobber_overlapping_mems (set
, loc
);
2370 decl
= var_debug_decl (decl
);
2372 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
2373 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
2376 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, set_src
);
2377 var_mem_set (set
, loc
, initialized
, set_src
);
2380 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2381 true, also delete any other live copies of the same variable part.
2382 Adjust the address first if it is stack pointer based. */
2385 var_mem_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
2387 tree decl
= MEM_EXPR (loc
);
2388 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
2390 clobber_overlapping_mems (set
, loc
);
2391 decl
= var_debug_decl (decl
);
2393 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
2394 delete_variable_part (set
, loc
, dv_from_decl (decl
), offset
);
2397 /* Return true if LOC should not be expanded for location expressions,
2401 unsuitable_loc (rtx loc
)
2403 switch (GET_CODE (loc
))
2417 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2421 val_bind (dataflow_set
*set
, rtx val
, rtx loc
, bool modified
)
2426 var_regno_delete (set
, REGNO (loc
));
2427 var_reg_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2428 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2430 else if (MEM_P (loc
))
2432 struct elt_loc_list
*l
= CSELIB_VAL_PTR (val
)->locs
;
2435 clobber_overlapping_mems (set
, loc
);
2437 if (l
&& GET_CODE (l
->loc
) == VALUE
)
2438 l
= canonical_cselib_val (CSELIB_VAL_PTR (l
->loc
))->locs
;
2440 /* If this MEM is a global constant, we don't need it in the
2441 dynamic tables. ??? We should test this before emitting the
2442 micro-op in the first place. */
2444 if (GET_CODE (l
->loc
) == MEM
&& XEXP (l
->loc
, 0) == XEXP (loc
, 0))
2450 var_mem_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2451 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2455 /* Other kinds of equivalences are necessarily static, at least
2456 so long as we do not perform substitutions while merging
2459 set_variable_part (set
, loc
, dv_from_value (val
), 0,
2460 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2464 /* Bind a value to a location it was just stored in. If MODIFIED
2465 holds, assume the location was modified, detaching it from any
2466 values bound to it. */
2469 val_store (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
,
2472 cselib_val
*v
= CSELIB_VAL_PTR (val
);
2474 gcc_assert (cselib_preserved_value_p (v
));
2478 fprintf (dump_file
, "%i: ", insn
? INSN_UID (insn
) : 0);
2479 print_inline_rtx (dump_file
, loc
, 0);
2480 fprintf (dump_file
, " evaluates to ");
2481 print_inline_rtx (dump_file
, val
, 0);
2484 struct elt_loc_list
*l
;
2485 for (l
= v
->locs
; l
; l
= l
->next
)
2487 fprintf (dump_file
, "\n%i: ", INSN_UID (l
->setting_insn
));
2488 print_inline_rtx (dump_file
, l
->loc
, 0);
2491 fprintf (dump_file
, "\n");
2494 gcc_checking_assert (!unsuitable_loc (loc
));
2496 val_bind (set
, val
, loc
, modified
);
2499 /* Clear (canonical address) slots that reference X. */
2502 local_get_addr_clear_given_value (rtx
const &, rtx
*slot
, rtx x
)
2504 if (vt_get_canonicalize_base (*slot
) == x
)
2509 /* Reset this node, detaching all its equivalences. Return the slot
2510 in the variable hash table that holds dv, if there is one. */
2513 val_reset (dataflow_set
*set
, decl_or_value dv
)
2515 variable var
= shared_hash_find (set
->vars
, dv
) ;
2516 location_chain
*node
;
2519 if (!var
|| !var
->n_var_parts
)
2522 gcc_assert (var
->n_var_parts
== 1);
2524 if (var
->onepart
== ONEPART_VALUE
)
2526 rtx x
= dv_as_value (dv
);
2528 /* Relationships in the global cache don't change, so reset the
2529 local cache entry only. */
2530 rtx
*slot
= local_get_addr_cache
->get (x
);
2533 /* If the value resolved back to itself, odds are that other
2534 values may have cached it too. These entries now refer
2535 to the old X, so detach them too. Entries that used the
2536 old X but resolved to something else remain ok as long as
2537 that something else isn't also reset. */
2539 local_get_addr_cache
2540 ->traverse
<rtx
, local_get_addr_clear_given_value
> (x
);
2546 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2547 if (GET_CODE (node
->loc
) == VALUE
2548 && canon_value_cmp (node
->loc
, cval
))
2551 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2552 if (GET_CODE (node
->loc
) == VALUE
&& cval
!= node
->loc
)
2554 /* Redirect the equivalence link to the new canonical
2555 value, or simply remove it if it would point at
2558 set_variable_part (set
, cval
, dv_from_value (node
->loc
),
2559 0, node
->init
, node
->set_src
, NO_INSERT
);
2560 delete_variable_part (set
, dv_as_value (dv
),
2561 dv_from_value (node
->loc
), 0);
2566 decl_or_value cdv
= dv_from_value (cval
);
2568 /* Keep the remaining values connected, accummulating links
2569 in the canonical value. */
2570 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2572 if (node
->loc
== cval
)
2574 else if (GET_CODE (node
->loc
) == REG
)
2575 var_reg_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2576 node
->set_src
, NO_INSERT
);
2577 else if (GET_CODE (node
->loc
) == MEM
)
2578 var_mem_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2579 node
->set_src
, NO_INSERT
);
2581 set_variable_part (set
, node
->loc
, cdv
, 0,
2582 node
->init
, node
->set_src
, NO_INSERT
);
2586 /* We remove this last, to make sure that the canonical value is not
2587 removed to the point of requiring reinsertion. */
2589 delete_variable_part (set
, dv_as_value (dv
), dv_from_value (cval
), 0);
2591 clobber_variable_part (set
, NULL
, dv
, 0, NULL
);
2594 /* Find the values in a given location and map the val to another
2595 value, if it is unique, or add the location as one holding the
2599 val_resolve (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
)
2601 decl_or_value dv
= dv_from_value (val
);
2603 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2606 fprintf (dump_file
, "%i: ", INSN_UID (insn
));
2608 fprintf (dump_file
, "head: ");
2609 print_inline_rtx (dump_file
, val
, 0);
2610 fputs (" is at ", dump_file
);
2611 print_inline_rtx (dump_file
, loc
, 0);
2612 fputc ('\n', dump_file
);
2615 val_reset (set
, dv
);
2617 gcc_checking_assert (!unsuitable_loc (loc
));
2621 attrs node
, found
= NULL
;
2623 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
2624 if (dv_is_value_p (node
->dv
)
2625 && GET_MODE (dv_as_value (node
->dv
)) == GET_MODE (loc
))
2629 /* Map incoming equivalences. ??? Wouldn't it be nice if
2630 we just started sharing the location lists? Maybe a
2631 circular list ending at the value itself or some
2633 set_variable_part (set
, dv_as_value (node
->dv
),
2634 dv_from_value (val
), node
->offset
,
2635 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2636 set_variable_part (set
, val
, node
->dv
, node
->offset
,
2637 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2640 /* If we didn't find any equivalence, we need to remember that
2641 this value is held in the named register. */
2645 /* ??? Attempt to find and merge equivalent MEMs or other
2648 val_bind (set
, val
, loc
, false);
2651 /* Initialize dataflow set SET to be empty.
2652 VARS_SIZE is the initial size of hash table VARS. */
2655 dataflow_set_init (dataflow_set
*set
)
2657 init_attrs_list_set (set
->regs
);
2658 set
->vars
= shared_hash_copy (empty_shared_hash
);
2659 set
->stack_adjust
= 0;
2660 set
->traversed_vars
= NULL
;
2663 /* Delete the contents of dataflow set SET. */
2666 dataflow_set_clear (dataflow_set
*set
)
2670 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2671 attrs_list_clear (&set
->regs
[i
]);
2673 shared_hash_destroy (set
->vars
);
2674 set
->vars
= shared_hash_copy (empty_shared_hash
);
2677 /* Copy the contents of dataflow set SRC to DST. */
2680 dataflow_set_copy (dataflow_set
*dst
, dataflow_set
*src
)
2684 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2685 attrs_list_copy (&dst
->regs
[i
], src
->regs
[i
]);
2687 shared_hash_destroy (dst
->vars
);
2688 dst
->vars
= shared_hash_copy (src
->vars
);
2689 dst
->stack_adjust
= src
->stack_adjust
;
2692 /* Information for merging lists of locations for a given offset of variable.
2694 struct variable_union_info
2696 /* Node of the location chain. */
2699 /* The sum of positions in the input chains. */
2702 /* The position in the chain of DST dataflow set. */
2706 /* Buffer for location list sorting and its allocated size. */
2707 static struct variable_union_info
*vui_vec
;
2708 static int vui_allocated
;
2710 /* Compare function for qsort, order the structures by POS element. */
2713 variable_union_info_cmp_pos (const void *n1
, const void *n2
)
2715 const struct variable_union_info
*const i1
=
2716 (const struct variable_union_info
*) n1
;
2717 const struct variable_union_info
*const i2
=
2718 ( const struct variable_union_info
*) n2
;
2720 if (i1
->pos
!= i2
->pos
)
2721 return i1
->pos
- i2
->pos
;
2723 return (i1
->pos_dst
- i2
->pos_dst
);
2726 /* Compute union of location parts of variable *SLOT and the same variable
2727 from hash table DATA. Compute "sorted" union of the location chains
2728 for common offsets, i.e. the locations of a variable part are sorted by
2729 a priority where the priority is the sum of the positions in the 2 chains
2730 (if a location is only in one list the position in the second list is
2731 defined to be larger than the length of the chains).
2732 When we are updating the location parts the newest location is in the
2733 beginning of the chain, so when we do the described "sorted" union
2734 we keep the newest locations in the beginning. */
2737 variable_union (variable src
, dataflow_set
*set
)
2740 variable_def
**dstp
;
2743 dstp
= shared_hash_find_slot (set
->vars
, src
->dv
);
2744 if (!dstp
|| !*dstp
)
2748 dst_can_be_shared
= false;
2750 dstp
= shared_hash_find_slot_unshare (&set
->vars
, src
->dv
, INSERT
);
2754 /* Continue traversing the hash table. */
2760 gcc_assert (src
->n_var_parts
);
2761 gcc_checking_assert (src
->onepart
== dst
->onepart
);
2763 /* We can combine one-part variables very efficiently, because their
2764 entries are in canonical order. */
2767 location_chain
**nodep
, *dnode
, *snode
;
2769 gcc_assert (src
->n_var_parts
== 1
2770 && dst
->n_var_parts
== 1);
2772 snode
= src
->var_part
[0].loc_chain
;
2775 restart_onepart_unshared
:
2776 nodep
= &dst
->var_part
[0].loc_chain
;
2782 int r
= dnode
? loc_cmp (dnode
->loc
, snode
->loc
) : 1;
2786 location_chain
*nnode
;
2788 if (shared_var_p (dst
, set
->vars
))
2790 dstp
= unshare_variable (set
, dstp
, dst
,
2791 VAR_INIT_STATUS_INITIALIZED
);
2793 goto restart_onepart_unshared
;
2796 *nodep
= nnode
= new location_chain
;
2797 nnode
->loc
= snode
->loc
;
2798 nnode
->init
= snode
->init
;
2799 if (!snode
->set_src
|| MEM_P (snode
->set_src
))
2800 nnode
->set_src
= NULL
;
2802 nnode
->set_src
= snode
->set_src
;
2803 nnode
->next
= dnode
;
2807 gcc_checking_assert (rtx_equal_p (dnode
->loc
, snode
->loc
));
2810 snode
= snode
->next
;
2812 nodep
= &dnode
->next
;
2819 gcc_checking_assert (!src
->onepart
);
2821 /* Count the number of location parts, result is K. */
2822 for (i
= 0, j
= 0, k
= 0;
2823 i
< src
->n_var_parts
&& j
< dst
->n_var_parts
; k
++)
2825 if (VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2830 else if (VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
2835 k
+= src
->n_var_parts
- i
;
2836 k
+= dst
->n_var_parts
- j
;
2838 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2839 thus there are at most MAX_VAR_PARTS different offsets. */
2840 gcc_checking_assert (dst
->onepart
? k
== 1 : k
<= MAX_VAR_PARTS
);
2842 if (dst
->n_var_parts
!= k
&& shared_var_p (dst
, set
->vars
))
2844 dstp
= unshare_variable (set
, dstp
, dst
, VAR_INIT_STATUS_UNKNOWN
);
2848 i
= src
->n_var_parts
- 1;
2849 j
= dst
->n_var_parts
- 1;
2850 dst
->n_var_parts
= k
;
2852 for (k
--; k
>= 0; k
--)
2854 location_chain
*node
, *node2
;
2856 if (i
>= 0 && j
>= 0
2857 && VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2859 /* Compute the "sorted" union of the chains, i.e. the locations which
2860 are in both chains go first, they are sorted by the sum of
2861 positions in the chains. */
2864 struct variable_union_info
*vui
;
2866 /* If DST is shared compare the location chains.
2867 If they are different we will modify the chain in DST with
2868 high probability so make a copy of DST. */
2869 if (shared_var_p (dst
, set
->vars
))
2871 for (node
= src
->var_part
[i
].loc_chain
,
2872 node2
= dst
->var_part
[j
].loc_chain
; node
&& node2
;
2873 node
= node
->next
, node2
= node2
->next
)
2875 if (!((REG_P (node2
->loc
)
2876 && REG_P (node
->loc
)
2877 && REGNO (node2
->loc
) == REGNO (node
->loc
))
2878 || rtx_equal_p (node2
->loc
, node
->loc
)))
2880 if (node2
->init
< node
->init
)
2881 node2
->init
= node
->init
;
2887 dstp
= unshare_variable (set
, dstp
, dst
,
2888 VAR_INIT_STATUS_UNKNOWN
);
2889 dst
= (variable
)*dstp
;
2894 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2897 for (node
= dst
->var_part
[j
].loc_chain
; node
; node
= node
->next
)
2902 /* The most common case, much simpler, no qsort is needed. */
2903 location_chain
*dstnode
= dst
->var_part
[j
].loc_chain
;
2904 dst
->var_part
[k
].loc_chain
= dstnode
;
2905 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
2907 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2908 if (!((REG_P (dstnode
->loc
)
2909 && REG_P (node
->loc
)
2910 && REGNO (dstnode
->loc
) == REGNO (node
->loc
))
2911 || rtx_equal_p (dstnode
->loc
, node
->loc
)))
2913 location_chain
*new_node
;
2915 /* Copy the location from SRC. */
2916 new_node
= new location_chain
;
2917 new_node
->loc
= node
->loc
;
2918 new_node
->init
= node
->init
;
2919 if (!node
->set_src
|| MEM_P (node
->set_src
))
2920 new_node
->set_src
= NULL
;
2922 new_node
->set_src
= node
->set_src
;
2923 node2
->next
= new_node
;
2930 if (src_l
+ dst_l
> vui_allocated
)
2932 vui_allocated
= MAX (vui_allocated
* 2, src_l
+ dst_l
);
2933 vui_vec
= XRESIZEVEC (struct variable_union_info
, vui_vec
,
2938 /* Fill in the locations from DST. */
2939 for (node
= dst
->var_part
[j
].loc_chain
, jj
= 0; node
;
2940 node
= node
->next
, jj
++)
2943 vui
[jj
].pos_dst
= jj
;
2945 /* Pos plus value larger than a sum of 2 valid positions. */
2946 vui
[jj
].pos
= jj
+ src_l
+ dst_l
;
2949 /* Fill in the locations from SRC. */
2951 for (node
= src
->var_part
[i
].loc_chain
, ii
= 0; node
;
2952 node
= node
->next
, ii
++)
2954 /* Find location from NODE. */
2955 for (jj
= 0; jj
< dst_l
; jj
++)
2957 if ((REG_P (vui
[jj
].lc
->loc
)
2958 && REG_P (node
->loc
)
2959 && REGNO (vui
[jj
].lc
->loc
) == REGNO (node
->loc
))
2960 || rtx_equal_p (vui
[jj
].lc
->loc
, node
->loc
))
2962 vui
[jj
].pos
= jj
+ ii
;
2966 if (jj
>= dst_l
) /* The location has not been found. */
2968 location_chain
*new_node
;
2970 /* Copy the location from SRC. */
2971 new_node
= new location_chain
;
2972 new_node
->loc
= node
->loc
;
2973 new_node
->init
= node
->init
;
2974 if (!node
->set_src
|| MEM_P (node
->set_src
))
2975 new_node
->set_src
= NULL
;
2977 new_node
->set_src
= node
->set_src
;
2978 vui
[n
].lc
= new_node
;
2979 vui
[n
].pos_dst
= src_l
+ dst_l
;
2980 vui
[n
].pos
= ii
+ src_l
+ dst_l
;
2987 /* Special case still very common case. For dst_l == 2
2988 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2989 vui[i].pos == i + src_l + dst_l. */
2990 if (vui
[0].pos
> vui
[1].pos
)
2992 /* Order should be 1, 0, 2... */
2993 dst
->var_part
[k
].loc_chain
= vui
[1].lc
;
2994 vui
[1].lc
->next
= vui
[0].lc
;
2997 vui
[0].lc
->next
= vui
[2].lc
;
2998 vui
[n
- 1].lc
->next
= NULL
;
3001 vui
[0].lc
->next
= NULL
;
3006 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3007 if (n
>= 3 && vui
[2].pos
< vui
[1].pos
)
3009 /* Order should be 0, 2, 1, 3... */
3010 vui
[0].lc
->next
= vui
[2].lc
;
3011 vui
[2].lc
->next
= vui
[1].lc
;
3014 vui
[1].lc
->next
= vui
[3].lc
;
3015 vui
[n
- 1].lc
->next
= NULL
;
3018 vui
[1].lc
->next
= NULL
;
3023 /* Order should be 0, 1, 2... */
3025 vui
[n
- 1].lc
->next
= NULL
;
3028 for (; ii
< n
; ii
++)
3029 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3033 qsort (vui
, n
, sizeof (struct variable_union_info
),
3034 variable_union_info_cmp_pos
);
3036 /* Reconnect the nodes in sorted order. */
3037 for (ii
= 1; ii
< n
; ii
++)
3038 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3039 vui
[n
- 1].lc
->next
= NULL
;
3040 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3043 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
3048 else if ((i
>= 0 && j
>= 0
3049 && VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
3052 dst
->var_part
[k
] = dst
->var_part
[j
];
3055 else if ((i
>= 0 && j
>= 0
3056 && VAR_PART_OFFSET (src
, i
) > VAR_PART_OFFSET (dst
, j
))
3059 location_chain
**nextp
;
3061 /* Copy the chain from SRC. */
3062 nextp
= &dst
->var_part
[k
].loc_chain
;
3063 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3065 location_chain
*new_lc
;
3067 new_lc
= new location_chain
;
3068 new_lc
->next
= NULL
;
3069 new_lc
->init
= node
->init
;
3070 if (!node
->set_src
|| MEM_P (node
->set_src
))
3071 new_lc
->set_src
= NULL
;
3073 new_lc
->set_src
= node
->set_src
;
3074 new_lc
->loc
= node
->loc
;
3077 nextp
= &new_lc
->next
;
3080 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (src
, i
);
3083 dst
->var_part
[k
].cur_loc
= NULL
;
3086 if (flag_var_tracking_uninit
)
3087 for (i
= 0; i
< src
->n_var_parts
&& i
< dst
->n_var_parts
; i
++)
3089 location_chain
*node
, *node2
;
3090 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3091 for (node2
= dst
->var_part
[i
].loc_chain
; node2
; node2
= node2
->next
)
3092 if (rtx_equal_p (node
->loc
, node2
->loc
))
3094 if (node
->init
> node2
->init
)
3095 node2
->init
= node
->init
;
3099 /* Continue traversing the hash table. */
3103 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3106 dataflow_set_union (dataflow_set
*dst
, dataflow_set
*src
)
3110 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3111 attrs_list_union (&dst
->regs
[i
], src
->regs
[i
]);
3113 if (dst
->vars
== empty_shared_hash
)
3115 shared_hash_destroy (dst
->vars
);
3116 dst
->vars
= shared_hash_copy (src
->vars
);
3120 variable_iterator_type hi
;
3123 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src
->vars
),
3125 variable_union (var
, dst
);
3129 /* Whether the value is currently being expanded. */
3130 #define VALUE_RECURSED_INTO(x) \
3131 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3133 /* Whether no expansion was found, saving useless lookups.
3134 It must only be set when VALUE_CHANGED is clear. */
3135 #define NO_LOC_P(x) \
3136 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3138 /* Whether cur_loc in the value needs to be (re)computed. */
3139 #define VALUE_CHANGED(x) \
3140 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3141 /* Whether cur_loc in the decl needs to be (re)computed. */
3142 #define DECL_CHANGED(x) TREE_VISITED (x)
3144 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3145 user DECLs, this means they're in changed_variables. Values and
3146 debug exprs may be left with this flag set if no user variable
3147 requires them to be evaluated. */
3150 set_dv_changed (decl_or_value dv
, bool newv
)
3152 switch (dv_onepart_p (dv
))
3156 NO_LOC_P (dv_as_value (dv
)) = false;
3157 VALUE_CHANGED (dv_as_value (dv
)) = newv
;
3162 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv
))) = false;
3163 /* Fall through... */
3166 DECL_CHANGED (dv_as_decl (dv
)) = newv
;
3171 /* Return true if DV needs to have its cur_loc recomputed. */
3174 dv_changed_p (decl_or_value dv
)
3176 return (dv_is_value_p (dv
)
3177 ? VALUE_CHANGED (dv_as_value (dv
))
3178 : DECL_CHANGED (dv_as_decl (dv
)));
3181 /* Return a location list node whose loc is rtx_equal to LOC, in the
3182 location list of a one-part variable or value VAR, or in that of
3183 any values recursively mentioned in the location lists. VARS must
3184 be in star-canonical form. */
3186 static location_chain
*
3187 find_loc_in_1pdv (rtx loc
, variable var
, variable_table_type
*vars
)
3189 location_chain
*node
;
3190 enum rtx_code loc_code
;
3195 gcc_checking_assert (var
->onepart
);
3197 if (!var
->n_var_parts
)
3200 gcc_checking_assert (loc
!= dv_as_opaque (var
->dv
));
3202 loc_code
= GET_CODE (loc
);
3203 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3208 if (GET_CODE (node
->loc
) != loc_code
)
3210 if (GET_CODE (node
->loc
) != VALUE
)
3213 else if (loc
== node
->loc
)
3215 else if (loc_code
!= VALUE
)
3217 if (rtx_equal_p (loc
, node
->loc
))
3222 /* Since we're in star-canonical form, we don't need to visit
3223 non-canonical nodes: one-part variables and non-canonical
3224 values would only point back to the canonical node. */
3225 if (dv_is_value_p (var
->dv
)
3226 && !canon_value_cmp (node
->loc
, dv_as_value (var
->dv
)))
3228 /* Skip all subsequent VALUEs. */
3229 while (node
->next
&& GET_CODE (node
->next
->loc
) == VALUE
)
3232 gcc_checking_assert (!canon_value_cmp (node
->loc
,
3233 dv_as_value (var
->dv
)));
3234 if (loc
== node
->loc
)
3240 gcc_checking_assert (node
== var
->var_part
[0].loc_chain
);
3241 gcc_checking_assert (!node
->next
);
3243 dv
= dv_from_value (node
->loc
);
3244 rvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
3245 return find_loc_in_1pdv (loc
, rvar
, vars
);
3248 /* ??? Gotta look in cselib_val locations too. */
3253 /* Hash table iteration argument passed to variable_merge. */
3256 /* The set in which the merge is to be inserted. */
3258 /* The set that we're iterating in. */
3260 /* The set that may contain the other dv we are to merge with. */
3262 /* Number of onepart dvs in src. */
3263 int src_onepart_cnt
;
3266 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3267 loc_cmp order, and it is maintained as such. */
3270 insert_into_intersection (location_chain
**nodep
, rtx loc
,
3271 enum var_init_status status
)
3273 location_chain
*node
;
3276 for (node
= *nodep
; node
; nodep
= &node
->next
, node
= *nodep
)
3277 if ((r
= loc_cmp (node
->loc
, loc
)) == 0)
3279 node
->init
= MIN (node
->init
, status
);
3285 node
= new location_chain
;
3288 node
->set_src
= NULL
;
3289 node
->init
= status
;
3290 node
->next
= *nodep
;
3294 /* Insert in DEST the intersection of the locations present in both
3295 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3296 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3300 intersect_loc_chains (rtx val
, location_chain
**dest
, struct dfset_merge
*dsm
,
3301 location_chain
*s1node
, variable s2var
)
3303 dataflow_set
*s1set
= dsm
->cur
;
3304 dataflow_set
*s2set
= dsm
->src
;
3305 location_chain
*found
;
3309 location_chain
*s2node
;
3311 gcc_checking_assert (s2var
->onepart
);
3313 if (s2var
->n_var_parts
)
3315 s2node
= s2var
->var_part
[0].loc_chain
;
3317 for (; s1node
&& s2node
;
3318 s1node
= s1node
->next
, s2node
= s2node
->next
)
3319 if (s1node
->loc
!= s2node
->loc
)
3321 else if (s1node
->loc
== val
)
3324 insert_into_intersection (dest
, s1node
->loc
,
3325 MIN (s1node
->init
, s2node
->init
));
3329 for (; s1node
; s1node
= s1node
->next
)
3331 if (s1node
->loc
== val
)
3334 if ((found
= find_loc_in_1pdv (s1node
->loc
, s2var
,
3335 shared_hash_htab (s2set
->vars
))))
3337 insert_into_intersection (dest
, s1node
->loc
,
3338 MIN (s1node
->init
, found
->init
));
3342 if (GET_CODE (s1node
->loc
) == VALUE
3343 && !VALUE_RECURSED_INTO (s1node
->loc
))
3345 decl_or_value dv
= dv_from_value (s1node
->loc
);
3346 variable svar
= shared_hash_find (s1set
->vars
, dv
);
3349 if (svar
->n_var_parts
== 1)
3351 VALUE_RECURSED_INTO (s1node
->loc
) = true;
3352 intersect_loc_chains (val
, dest
, dsm
,
3353 svar
->var_part
[0].loc_chain
,
3355 VALUE_RECURSED_INTO (s1node
->loc
) = false;
3360 /* ??? gotta look in cselib_val locations too. */
3362 /* ??? if the location is equivalent to any location in src,
3363 searched recursively
3365 add to dst the values needed to represent the equivalence
3367 telling whether locations S is equivalent to another dv's
3370 for each location D in the list
3372 if S and D satisfy rtx_equal_p, then it is present
3374 else if D is a value, recurse without cycles
3376 else if S and D have the same CODE and MODE
3378 for each operand oS and the corresponding oD
3380 if oS and oD are not equivalent, then S an D are not equivalent
3382 else if they are RTX vectors
3384 if any vector oS element is not equivalent to its respective oD,
3385 then S and D are not equivalent
3393 /* Return -1 if X should be before Y in a location list for a 1-part
3394 variable, 1 if Y should be before X, and 0 if they're equivalent
3395 and should not appear in the list. */
3398 loc_cmp (rtx x
, rtx y
)
3401 RTX_CODE code
= GET_CODE (x
);
3411 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3412 if (REGNO (x
) == REGNO (y
))
3414 else if (REGNO (x
) < REGNO (y
))
3427 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3428 return loc_cmp (XEXP (x
, 0), XEXP (y
, 0));
3434 if (GET_CODE (x
) == VALUE
)
3436 if (GET_CODE (y
) != VALUE
)
3438 /* Don't assert the modes are the same, that is true only
3439 when not recursing. (subreg:QI (value:SI 1:1) 0)
3440 and (subreg:QI (value:DI 2:2) 0) can be compared,
3441 even when the modes are different. */
3442 if (canon_value_cmp (x
, y
))
3448 if (GET_CODE (y
) == VALUE
)
3451 /* Entry value is the least preferable kind of expression. */
3452 if (GET_CODE (x
) == ENTRY_VALUE
)
3454 if (GET_CODE (y
) != ENTRY_VALUE
)
3456 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3457 return loc_cmp (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
3460 if (GET_CODE (y
) == ENTRY_VALUE
)
3463 if (GET_CODE (x
) == GET_CODE (y
))
3464 /* Compare operands below. */;
3465 else if (GET_CODE (x
) < GET_CODE (y
))
3470 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3472 if (GET_CODE (x
) == DEBUG_EXPR
)
3474 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3475 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)))
3477 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3478 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)));
3482 fmt
= GET_RTX_FORMAT (code
);
3483 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
3487 if (XWINT (x
, i
) == XWINT (y
, i
))
3489 else if (XWINT (x
, i
) < XWINT (y
, i
))
3496 if (XINT (x
, i
) == XINT (y
, i
))
3498 else if (XINT (x
, i
) < XINT (y
, i
))
3505 /* Compare the vector length first. */
3506 if (XVECLEN (x
, i
) == XVECLEN (y
, i
))
3507 /* Compare the vectors elements. */;
3508 else if (XVECLEN (x
, i
) < XVECLEN (y
, i
))
3513 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3514 if ((r
= loc_cmp (XVECEXP (x
, i
, j
),
3515 XVECEXP (y
, i
, j
))))
3520 if ((r
= loc_cmp (XEXP (x
, i
), XEXP (y
, i
))))
3526 if (XSTR (x
, i
) == XSTR (y
, i
))
3532 if ((r
= strcmp (XSTR (x
, i
), XSTR (y
, i
))) == 0)
3540 /* These are just backpointers, so they don't matter. */
3547 /* It is believed that rtx's at this level will never
3548 contain anything but integers and other rtx's,
3549 except for within LABEL_REFs and SYMBOL_REFs. */
3553 if (CONST_WIDE_INT_P (x
))
3555 /* Compare the vector length first. */
3556 if (CONST_WIDE_INT_NUNITS (x
) >= CONST_WIDE_INT_NUNITS (y
))
3558 else if (CONST_WIDE_INT_NUNITS (x
) < CONST_WIDE_INT_NUNITS (y
))
3561 /* Compare the vectors elements. */;
3562 for (j
= CONST_WIDE_INT_NUNITS (x
) - 1; j
>= 0 ; j
--)
3564 if (CONST_WIDE_INT_ELT (x
, j
) < CONST_WIDE_INT_ELT (y
, j
))
3566 if (CONST_WIDE_INT_ELT (x
, j
) > CONST_WIDE_INT_ELT (y
, j
))
3575 /* Check the order of entries in one-part variables. */
3578 canonicalize_loc_order_check (variable_def
**slot
,
3579 dataflow_set
*data ATTRIBUTE_UNUSED
)
3581 variable var
= *slot
;
3582 location_chain
*node
, *next
;
3584 #ifdef ENABLE_RTL_CHECKING
3586 for (i
= 0; i
< var
->n_var_parts
; i
++)
3587 gcc_assert (var
->var_part
[0].cur_loc
== NULL
);
3588 gcc_assert (!var
->in_changed_variables
);
3594 gcc_assert (var
->n_var_parts
== 1);
3595 node
= var
->var_part
[0].loc_chain
;
3598 while ((next
= node
->next
))
3600 gcc_assert (loc_cmp (node
->loc
, next
->loc
) < 0);
3608 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3609 more likely to be chosen as canonical for an equivalence set.
3610 Ensure less likely values can reach more likely neighbors, making
3611 the connections bidirectional. */
3614 canonicalize_values_mark (variable_def
**slot
, dataflow_set
*set
)
3616 variable var
= *slot
;
3617 decl_or_value dv
= var
->dv
;
3619 location_chain
*node
;
3621 if (!dv_is_value_p (dv
))
3624 gcc_checking_assert (var
->n_var_parts
== 1);
3626 val
= dv_as_value (dv
);
3628 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3629 if (GET_CODE (node
->loc
) == VALUE
)
3631 if (canon_value_cmp (node
->loc
, val
))
3632 VALUE_RECURSED_INTO (val
) = true;
3635 decl_or_value odv
= dv_from_value (node
->loc
);
3636 variable_def
**oslot
;
3637 oslot
= shared_hash_find_slot_noinsert (set
->vars
, odv
);
3639 set_slot_part (set
, val
, oslot
, odv
, 0,
3640 node
->init
, NULL_RTX
);
3642 VALUE_RECURSED_INTO (node
->loc
) = true;
3649 /* Remove redundant entries from equivalence lists in onepart
3650 variables, canonicalizing equivalence sets into star shapes. */
3653 canonicalize_values_star (variable_def
**slot
, dataflow_set
*set
)
3655 variable var
= *slot
;
3656 decl_or_value dv
= var
->dv
;
3657 location_chain
*node
;
3660 variable_def
**cslot
;
3667 gcc_checking_assert (var
->n_var_parts
== 1);
3669 if (dv_is_value_p (dv
))
3671 cval
= dv_as_value (dv
);
3672 if (!VALUE_RECURSED_INTO (cval
))
3674 VALUE_RECURSED_INTO (cval
) = false;
3684 gcc_assert (var
->n_var_parts
== 1);
3686 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3687 if (GET_CODE (node
->loc
) == VALUE
)
3690 if (VALUE_RECURSED_INTO (node
->loc
))
3692 if (canon_value_cmp (node
->loc
, cval
))
3701 if (!has_marks
|| dv_is_decl_p (dv
))
3704 /* Keep it marked so that we revisit it, either after visiting a
3705 child node, or after visiting a new parent that might be
3707 VALUE_RECURSED_INTO (val
) = true;
3709 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3710 if (GET_CODE (node
->loc
) == VALUE
3711 && VALUE_RECURSED_INTO (node
->loc
))
3715 VALUE_RECURSED_INTO (cval
) = false;
3716 dv
= dv_from_value (cval
);
3717 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
3720 gcc_assert (dv_is_decl_p (var
->dv
));
3721 /* The canonical value was reset and dropped.
3723 clobber_variable_part (set
, NULL
, var
->dv
, 0, NULL
);
3727 gcc_assert (dv_is_value_p (var
->dv
));
3728 if (var
->n_var_parts
== 0)
3730 gcc_assert (var
->n_var_parts
== 1);
3734 VALUE_RECURSED_INTO (val
) = false;
3739 /* Push values to the canonical one. */
3740 cdv
= dv_from_value (cval
);
3741 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3743 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3744 if (node
->loc
!= cval
)
3746 cslot
= set_slot_part (set
, node
->loc
, cslot
, cdv
, 0,
3747 node
->init
, NULL_RTX
);
3748 if (GET_CODE (node
->loc
) == VALUE
)
3750 decl_or_value ndv
= dv_from_value (node
->loc
);
3752 set_variable_part (set
, cval
, ndv
, 0, node
->init
, NULL_RTX
,
3755 if (canon_value_cmp (node
->loc
, val
))
3757 /* If it could have been a local minimum, it's not any more,
3758 since it's now neighbor to cval, so it may have to push
3759 to it. Conversely, if it wouldn't have prevailed over
3760 val, then whatever mark it has is fine: if it was to
3761 push, it will now push to a more canonical node, but if
3762 it wasn't, then it has already pushed any values it might
3764 VALUE_RECURSED_INTO (node
->loc
) = true;
3765 /* Make sure we visit node->loc by ensuring we cval is
3767 VALUE_RECURSED_INTO (cval
) = true;
3769 else if (!VALUE_RECURSED_INTO (node
->loc
))
3770 /* If we have no need to "recurse" into this node, it's
3771 already "canonicalized", so drop the link to the old
3773 clobber_variable_part (set
, cval
, ndv
, 0, NULL
);
3775 else if (GET_CODE (node
->loc
) == REG
)
3777 attrs list
= set
->regs
[REGNO (node
->loc
)], *listp
;
3779 /* Change an existing attribute referring to dv so that it
3780 refers to cdv, removing any duplicate this might
3781 introduce, and checking that no previous duplicates
3782 existed, all in a single pass. */
3786 if (list
->offset
== 0
3787 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3788 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3795 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3798 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3803 if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3805 *listp
= list
->next
;
3811 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (dv
));
3814 else if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3816 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3821 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3823 *listp
= list
->next
;
3829 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (cdv
));
3838 if (list
->offset
== 0
3839 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3840 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3850 set_slot_part (set
, val
, cslot
, cdv
, 0,
3851 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
);
3853 slot
= clobber_slot_part (set
, cval
, slot
, 0, NULL
);
3855 /* Variable may have been unshared. */
3857 gcc_checking_assert (var
->n_var_parts
&& var
->var_part
[0].loc_chain
->loc
== cval
3858 && var
->var_part
[0].loc_chain
->next
== NULL
);
3860 if (VALUE_RECURSED_INTO (cval
))
3861 goto restart_with_cval
;
3866 /* Bind one-part variables to the canonical value in an equivalence
3867 set. Not doing this causes dataflow convergence failure in rare
3868 circumstances, see PR42873. Unfortunately we can't do this
3869 efficiently as part of canonicalize_values_star, since we may not
3870 have determined or even seen the canonical value of a set when we
3871 get to a variable that references another member of the set. */
3874 canonicalize_vars_star (variable_def
**slot
, dataflow_set
*set
)
3876 variable var
= *slot
;
3877 decl_or_value dv
= var
->dv
;
3878 location_chain
*node
;
3881 variable_def
**cslot
;
3883 location_chain
*cnode
;
3885 if (!var
->onepart
|| var
->onepart
== ONEPART_VALUE
)
3888 gcc_assert (var
->n_var_parts
== 1);
3890 node
= var
->var_part
[0].loc_chain
;
3892 if (GET_CODE (node
->loc
) != VALUE
)
3895 gcc_assert (!node
->next
);
3898 /* Push values to the canonical one. */
3899 cdv
= dv_from_value (cval
);
3900 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3904 gcc_assert (cvar
->n_var_parts
== 1);
3906 cnode
= cvar
->var_part
[0].loc_chain
;
3908 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3909 that are not “more canonical” than it. */
3910 if (GET_CODE (cnode
->loc
) != VALUE
3911 || !canon_value_cmp (cnode
->loc
, cval
))
3914 /* CVAL was found to be non-canonical. Change the variable to point
3915 to the canonical VALUE. */
3916 gcc_assert (!cnode
->next
);
3919 slot
= set_slot_part (set
, cval
, slot
, dv
, 0,
3920 node
->init
, node
->set_src
);
3921 clobber_slot_part (set
, cval
, slot
, 0, node
->set_src
);
3926 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3927 corresponding entry in DSM->src. Multi-part variables are combined
3928 with variable_union, whereas onepart dvs are combined with
3932 variable_merge_over_cur (variable s1var
, struct dfset_merge
*dsm
)
3934 dataflow_set
*dst
= dsm
->dst
;
3935 variable_def
**dstslot
;
3936 variable s2var
, dvar
= NULL
;
3937 decl_or_value dv
= s1var
->dv
;
3938 onepart_enum_t onepart
= s1var
->onepart
;
3941 location_chain
*node
, **nodep
;
3943 /* If the incoming onepart variable has an empty location list, then
3944 the intersection will be just as empty. For other variables,
3945 it's always union. */
3946 gcc_checking_assert (s1var
->n_var_parts
3947 && s1var
->var_part
[0].loc_chain
);
3950 return variable_union (s1var
, dst
);
3952 gcc_checking_assert (s1var
->n_var_parts
== 1);
3954 dvhash
= dv_htab_hash (dv
);
3955 if (dv_is_value_p (dv
))
3956 val
= dv_as_value (dv
);
3960 s2var
= shared_hash_find_1 (dsm
->src
->vars
, dv
, dvhash
);
3963 dst_can_be_shared
= false;
3967 dsm
->src_onepart_cnt
--;
3968 gcc_assert (s2var
->var_part
[0].loc_chain
3969 && s2var
->onepart
== onepart
3970 && s2var
->n_var_parts
== 1);
3972 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
3976 gcc_assert (dvar
->refcount
== 1
3977 && dvar
->onepart
== onepart
3978 && dvar
->n_var_parts
== 1);
3979 nodep
= &dvar
->var_part
[0].loc_chain
;
3987 if (!dstslot
&& !onepart_variable_different_p (s1var
, s2var
))
3989 dstslot
= shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
,
3991 *dstslot
= dvar
= s2var
;
3996 dst_can_be_shared
= false;
3998 intersect_loc_chains (val
, nodep
, dsm
,
3999 s1var
->var_part
[0].loc_chain
, s2var
);
4005 dvar
= onepart_pool_allocate (onepart
);
4008 dvar
->n_var_parts
= 1;
4009 dvar
->onepart
= onepart
;
4010 dvar
->in_changed_variables
= false;
4011 dvar
->var_part
[0].loc_chain
= node
;
4012 dvar
->var_part
[0].cur_loc
= NULL
;
4014 VAR_LOC_1PAUX (dvar
) = NULL
;
4016 VAR_PART_OFFSET (dvar
, 0) = 0;
4019 = shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
, dvhash
,
4021 gcc_assert (!*dstslot
);
4029 nodep
= &dvar
->var_part
[0].loc_chain
;
4030 while ((node
= *nodep
))
4032 location_chain
**nextp
= &node
->next
;
4034 if (GET_CODE (node
->loc
) == REG
)
4038 for (list
= dst
->regs
[REGNO (node
->loc
)]; list
; list
= list
->next
)
4039 if (GET_MODE (node
->loc
) == GET_MODE (list
->loc
)
4040 && dv_is_value_p (list
->dv
))
4044 attrs_list_insert (&dst
->regs
[REGNO (node
->loc
)],
4046 /* If this value became canonical for another value that had
4047 this register, we want to leave it alone. */
4048 else if (dv_as_value (list
->dv
) != val
)
4050 dstslot
= set_slot_part (dst
, dv_as_value (list
->dv
),
4052 node
->init
, NULL_RTX
);
4053 dstslot
= delete_slot_part (dst
, node
->loc
, dstslot
, 0);
4055 /* Since nextp points into the removed node, we can't
4056 use it. The pointer to the next node moved to nodep.
4057 However, if the variable we're walking is unshared
4058 during our walk, we'll keep walking the location list
4059 of the previously-shared variable, in which case the
4060 node won't have been removed, and we'll want to skip
4061 it. That's why we test *nodep here. */
4067 /* Canonicalization puts registers first, so we don't have to
4073 if (dvar
!= *dstslot
)
4075 nodep
= &dvar
->var_part
[0].loc_chain
;
4079 /* Mark all referenced nodes for canonicalization, and make sure
4080 we have mutual equivalence links. */
4081 VALUE_RECURSED_INTO (val
) = true;
4082 for (node
= *nodep
; node
; node
= node
->next
)
4083 if (GET_CODE (node
->loc
) == VALUE
)
4085 VALUE_RECURSED_INTO (node
->loc
) = true;
4086 set_variable_part (dst
, val
, dv_from_value (node
->loc
), 0,
4087 node
->init
, NULL
, INSERT
);
4090 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4091 gcc_assert (*dstslot
== dvar
);
4092 canonicalize_values_star (dstslot
, dst
);
4093 gcc_checking_assert (dstslot
4094 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4100 bool has_value
= false, has_other
= false;
4102 /* If we have one value and anything else, we're going to
4103 canonicalize this, so make sure all values have an entry in
4104 the table and are marked for canonicalization. */
4105 for (node
= *nodep
; node
; node
= node
->next
)
4107 if (GET_CODE (node
->loc
) == VALUE
)
4109 /* If this was marked during register canonicalization,
4110 we know we have to canonicalize values. */
4125 if (has_value
&& has_other
)
4127 for (node
= *nodep
; node
; node
= node
->next
)
4129 if (GET_CODE (node
->loc
) == VALUE
)
4131 decl_or_value dv
= dv_from_value (node
->loc
);
4132 variable_def
**slot
= NULL
;
4134 if (shared_hash_shared (dst
->vars
))
4135 slot
= shared_hash_find_slot_noinsert (dst
->vars
, dv
);
4137 slot
= shared_hash_find_slot_unshare (&dst
->vars
, dv
,
4141 variable var
= onepart_pool_allocate (ONEPART_VALUE
);
4144 var
->n_var_parts
= 1;
4145 var
->onepart
= ONEPART_VALUE
;
4146 var
->in_changed_variables
= false;
4147 var
->var_part
[0].loc_chain
= NULL
;
4148 var
->var_part
[0].cur_loc
= NULL
;
4149 VAR_LOC_1PAUX (var
) = NULL
;
4153 VALUE_RECURSED_INTO (node
->loc
) = true;
4157 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4158 gcc_assert (*dstslot
== dvar
);
4159 canonicalize_values_star (dstslot
, dst
);
4160 gcc_checking_assert (dstslot
4161 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4167 if (!onepart_variable_different_p (dvar
, s2var
))
4169 variable_htab_free (dvar
);
4170 *dstslot
= dvar
= s2var
;
4173 else if (s2var
!= s1var
&& !onepart_variable_different_p (dvar
, s1var
))
4175 variable_htab_free (dvar
);
4176 *dstslot
= dvar
= s1var
;
4178 dst_can_be_shared
= false;
4181 dst_can_be_shared
= false;
4186 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4187 multi-part variable. Unions of multi-part variables and
4188 intersections of one-part ones will be handled in
4189 variable_merge_over_cur(). */
4192 variable_merge_over_src (variable s2var
, struct dfset_merge
*dsm
)
4194 dataflow_set
*dst
= dsm
->dst
;
4195 decl_or_value dv
= s2var
->dv
;
4197 if (!s2var
->onepart
)
4199 variable_def
**dstp
= shared_hash_find_slot (dst
->vars
, dv
);
4205 dsm
->src_onepart_cnt
++;
4209 /* Combine dataflow set information from SRC2 into DST, using PDST
4210 to carry over information across passes. */
4213 dataflow_set_merge (dataflow_set
*dst
, dataflow_set
*src2
)
4215 dataflow_set cur
= *dst
;
4216 dataflow_set
*src1
= &cur
;
4217 struct dfset_merge dsm
;
4219 size_t src1_elems
, src2_elems
;
4220 variable_iterator_type hi
;
4223 src1_elems
= shared_hash_htab (src1
->vars
)->elements ();
4224 src2_elems
= shared_hash_htab (src2
->vars
)->elements ();
4225 dataflow_set_init (dst
);
4226 dst
->stack_adjust
= cur
.stack_adjust
;
4227 shared_hash_destroy (dst
->vars
);
4228 dst
->vars
= new shared_hash
;
4229 dst
->vars
->refcount
= 1;
4230 dst
->vars
->htab
= new variable_table_type (MAX (src1_elems
, src2_elems
));
4232 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4233 attrs_list_mpdv_union (&dst
->regs
[i
], src1
->regs
[i
], src2
->regs
[i
]);
4238 dsm
.src_onepart_cnt
= 0;
4240 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.src
->vars
),
4242 variable_merge_over_src (var
, &dsm
);
4243 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.cur
->vars
),
4245 variable_merge_over_cur (var
, &dsm
);
4247 if (dsm
.src_onepart_cnt
)
4248 dst_can_be_shared
= false;
4250 dataflow_set_destroy (src1
);
4253 /* Mark register equivalences. */
4256 dataflow_set_equiv_regs (dataflow_set
*set
)
4261 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4263 rtx canon
[NUM_MACHINE_MODES
];
4265 /* If the list is empty or one entry, no need to canonicalize
4267 if (set
->regs
[i
] == NULL
|| set
->regs
[i
]->next
== NULL
)
4270 memset (canon
, 0, sizeof (canon
));
4272 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4273 if (list
->offset
== 0 && dv_is_value_p (list
->dv
))
4275 rtx val
= dv_as_value (list
->dv
);
4276 rtx
*cvalp
= &canon
[(int)GET_MODE (val
)];
4279 if (canon_value_cmp (val
, cval
))
4283 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4284 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4286 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4291 if (dv_is_value_p (list
->dv
))
4293 rtx val
= dv_as_value (list
->dv
);
4298 VALUE_RECURSED_INTO (val
) = true;
4299 set_variable_part (set
, val
, dv_from_value (cval
), 0,
4300 VAR_INIT_STATUS_INITIALIZED
,
4304 VALUE_RECURSED_INTO (cval
) = true;
4305 set_variable_part (set
, cval
, list
->dv
, 0,
4306 VAR_INIT_STATUS_INITIALIZED
, NULL
, NO_INSERT
);
4309 for (listp
= &set
->regs
[i
]; (list
= *listp
);
4310 listp
= list
? &list
->next
: listp
)
4311 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4313 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4314 variable_def
**slot
;
4319 if (dv_is_value_p (list
->dv
))
4321 rtx val
= dv_as_value (list
->dv
);
4322 if (!VALUE_RECURSED_INTO (val
))
4326 slot
= shared_hash_find_slot_noinsert (set
->vars
, list
->dv
);
4327 canonicalize_values_star (slot
, set
);
4334 /* Remove any redundant values in the location list of VAR, which must
4335 be unshared and 1-part. */
4338 remove_duplicate_values (variable var
)
4340 location_chain
*node
, **nodep
;
4342 gcc_assert (var
->onepart
);
4343 gcc_assert (var
->n_var_parts
== 1);
4344 gcc_assert (var
->refcount
== 1);
4346 for (nodep
= &var
->var_part
[0].loc_chain
; (node
= *nodep
); )
4348 if (GET_CODE (node
->loc
) == VALUE
)
4350 if (VALUE_RECURSED_INTO (node
->loc
))
4352 /* Remove duplicate value node. */
4353 *nodep
= node
->next
;
4358 VALUE_RECURSED_INTO (node
->loc
) = true;
4360 nodep
= &node
->next
;
4363 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4364 if (GET_CODE (node
->loc
) == VALUE
)
4366 gcc_assert (VALUE_RECURSED_INTO (node
->loc
));
4367 VALUE_RECURSED_INTO (node
->loc
) = false;
4372 /* Hash table iteration argument passed to variable_post_merge. */
4373 struct dfset_post_merge
4375 /* The new input set for the current block. */
4377 /* Pointer to the permanent input set for the current block, or
4379 dataflow_set
**permp
;
4382 /* Create values for incoming expressions associated with one-part
4383 variables that don't have value numbers for them. */
4386 variable_post_merge_new_vals (variable_def
**slot
, dfset_post_merge
*dfpm
)
4388 dataflow_set
*set
= dfpm
->set
;
4389 variable var
= *slot
;
4390 location_chain
*node
;
4392 if (!var
->onepart
|| !var
->n_var_parts
)
4395 gcc_assert (var
->n_var_parts
== 1);
4397 if (dv_is_decl_p (var
->dv
))
4399 bool check_dupes
= false;
4402 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4404 if (GET_CODE (node
->loc
) == VALUE
)
4405 gcc_assert (!VALUE_RECURSED_INTO (node
->loc
));
4406 else if (GET_CODE (node
->loc
) == REG
)
4408 attrs att
, *attp
, *curp
= NULL
;
4410 if (var
->refcount
!= 1)
4412 slot
= unshare_variable (set
, slot
, var
,
4413 VAR_INIT_STATUS_INITIALIZED
);
4418 for (attp
= &set
->regs
[REGNO (node
->loc
)]; (att
= *attp
);
4420 if (att
->offset
== 0
4421 && GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4423 if (dv_is_value_p (att
->dv
))
4425 rtx cval
= dv_as_value (att
->dv
);
4430 else if (dv_as_opaque (att
->dv
) == dv_as_opaque (var
->dv
))
4438 if ((*curp
)->offset
== 0
4439 && GET_MODE ((*curp
)->loc
) == GET_MODE (node
->loc
)
4440 && dv_as_opaque ((*curp
)->dv
) == dv_as_opaque (var
->dv
))
4443 curp
= &(*curp
)->next
;
4454 *dfpm
->permp
= XNEW (dataflow_set
);
4455 dataflow_set_init (*dfpm
->permp
);
4458 for (att
= (*dfpm
->permp
)->regs
[REGNO (node
->loc
)];
4459 att
; att
= att
->next
)
4460 if (GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4462 gcc_assert (att
->offset
== 0
4463 && dv_is_value_p (att
->dv
));
4464 val_reset (set
, att
->dv
);
4471 cval
= dv_as_value (cdv
);
4475 /* Create a unique value to hold this register,
4476 that ought to be found and reused in
4477 subsequent rounds. */
4479 gcc_assert (!cselib_lookup (node
->loc
,
4480 GET_MODE (node
->loc
), 0,
4482 v
= cselib_lookup (node
->loc
, GET_MODE (node
->loc
), 1,
4484 cselib_preserve_value (v
);
4485 cselib_invalidate_rtx (node
->loc
);
4487 cdv
= dv_from_value (cval
);
4490 "Created new value %u:%u for reg %i\n",
4491 v
->uid
, v
->hash
, REGNO (node
->loc
));
4494 var_reg_decl_set (*dfpm
->permp
, node
->loc
,
4495 VAR_INIT_STATUS_INITIALIZED
,
4496 cdv
, 0, NULL
, INSERT
);
4502 /* Remove attribute referring to the decl, which now
4503 uses the value for the register, already existing or
4504 to be added when we bring perm in. */
4512 remove_duplicate_values (var
);
4518 /* Reset values in the permanent set that are not associated with the
4519 chosen expression. */
4522 variable_post_merge_perm_vals (variable_def
**pslot
, dfset_post_merge
*dfpm
)
4524 dataflow_set
*set
= dfpm
->set
;
4525 variable pvar
= *pslot
, var
;
4526 location_chain
*pnode
;
4530 gcc_assert (dv_is_value_p (pvar
->dv
)
4531 && pvar
->n_var_parts
== 1);
4532 pnode
= pvar
->var_part
[0].loc_chain
;
4535 && REG_P (pnode
->loc
));
4539 var
= shared_hash_find (set
->vars
, dv
);
4542 /* Although variable_post_merge_new_vals may have made decls
4543 non-star-canonical, values that pre-existed in canonical form
4544 remain canonical, and newly-created values reference a single
4545 REG, so they are canonical as well. Since VAR has the
4546 location list for a VALUE, using find_loc_in_1pdv for it is
4547 fine, since VALUEs don't map back to DECLs. */
4548 if (find_loc_in_1pdv (pnode
->loc
, var
, shared_hash_htab (set
->vars
)))
4550 val_reset (set
, dv
);
4553 for (att
= set
->regs
[REGNO (pnode
->loc
)]; att
; att
= att
->next
)
4554 if (att
->offset
== 0
4555 && GET_MODE (att
->loc
) == GET_MODE (pnode
->loc
)
4556 && dv_is_value_p (att
->dv
))
4559 /* If there is a value associated with this register already, create
4561 if (att
&& dv_as_value (att
->dv
) != dv_as_value (dv
))
4563 rtx cval
= dv_as_value (att
->dv
);
4564 set_variable_part (set
, cval
, dv
, 0, pnode
->init
, NULL
, INSERT
);
4565 set_variable_part (set
, dv_as_value (dv
), att
->dv
, 0, pnode
->init
,
4570 attrs_list_insert (&set
->regs
[REGNO (pnode
->loc
)],
4572 variable_union (pvar
, set
);
4578 /* Just checking stuff and registering register attributes for
4582 dataflow_post_merge_adjust (dataflow_set
*set
, dataflow_set
**permp
)
4584 struct dfset_post_merge dfpm
;
4589 shared_hash_htab (set
->vars
)
4590 ->traverse
<dfset_post_merge
*, variable_post_merge_new_vals
> (&dfpm
);
4592 shared_hash_htab ((*permp
)->vars
)
4593 ->traverse
<dfset_post_merge
*, variable_post_merge_perm_vals
> (&dfpm
);
4594 shared_hash_htab (set
->vars
)
4595 ->traverse
<dataflow_set
*, canonicalize_values_star
> (set
);
4596 shared_hash_htab (set
->vars
)
4597 ->traverse
<dataflow_set
*, canonicalize_vars_star
> (set
);
4600 /* Return a node whose loc is a MEM that refers to EXPR in the
4601 location list of a one-part variable or value VAR, or in that of
4602 any values recursively mentioned in the location lists. */
4604 static location_chain
*
4605 find_mem_expr_in_1pdv (tree expr
, rtx val
, variable_table_type
*vars
)
4607 location_chain
*node
;
4610 location_chain
*where
= NULL
;
4615 gcc_assert (GET_CODE (val
) == VALUE
4616 && !VALUE_RECURSED_INTO (val
));
4618 dv
= dv_from_value (val
);
4619 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
4624 gcc_assert (var
->onepart
);
4626 if (!var
->n_var_parts
)
4629 VALUE_RECURSED_INTO (val
) = true;
4631 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4632 if (MEM_P (node
->loc
)
4633 && MEM_EXPR (node
->loc
) == expr
4634 && INT_MEM_OFFSET (node
->loc
) == 0)
4639 else if (GET_CODE (node
->loc
) == VALUE
4640 && !VALUE_RECURSED_INTO (node
->loc
)
4641 && (where
= find_mem_expr_in_1pdv (expr
, node
->loc
, vars
)))
4644 VALUE_RECURSED_INTO (val
) = false;
4649 /* Return TRUE if the value of MEM may vary across a call. */
4652 mem_dies_at_call (rtx mem
)
4654 tree expr
= MEM_EXPR (mem
);
4660 decl
= get_base_address (expr
);
4668 return (may_be_aliased (decl
)
4669 || (!TREE_READONLY (decl
) && is_global_var (decl
)));
4672 /* Remove all MEMs from the location list of a hash table entry for a
4673 one-part variable, except those whose MEM attributes map back to
4674 the variable itself, directly or within a VALUE. */
4677 dataflow_set_preserve_mem_locs (variable_def
**slot
, dataflow_set
*set
)
4679 variable var
= *slot
;
4681 if (var
->onepart
== ONEPART_VDECL
|| var
->onepart
== ONEPART_DEXPR
)
4683 tree decl
= dv_as_decl (var
->dv
);
4684 location_chain
*loc
, **locp
;
4685 bool changed
= false;
4687 if (!var
->n_var_parts
)
4690 gcc_assert (var
->n_var_parts
== 1);
4692 if (shared_var_p (var
, set
->vars
))
4694 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4696 /* We want to remove dying MEMs that doesn't refer to DECL. */
4697 if (GET_CODE (loc
->loc
) == MEM
4698 && (MEM_EXPR (loc
->loc
) != decl
4699 || INT_MEM_OFFSET (loc
->loc
) != 0)
4700 && !mem_dies_at_call (loc
->loc
))
4702 /* We want to move here MEMs that do refer to DECL. */
4703 else if (GET_CODE (loc
->loc
) == VALUE
4704 && find_mem_expr_in_1pdv (decl
, loc
->loc
,
4705 shared_hash_htab (set
->vars
)))
4712 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4714 gcc_assert (var
->n_var_parts
== 1);
4717 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4720 rtx old_loc
= loc
->loc
;
4721 if (GET_CODE (old_loc
) == VALUE
)
4723 location_chain
*mem_node
4724 = find_mem_expr_in_1pdv (decl
, loc
->loc
,
4725 shared_hash_htab (set
->vars
));
4727 /* ??? This picks up only one out of multiple MEMs that
4728 refer to the same variable. Do we ever need to be
4729 concerned about dealing with more than one, or, given
4730 that they should all map to the same variable
4731 location, their addresses will have been merged and
4732 they will be regarded as equivalent? */
4735 loc
->loc
= mem_node
->loc
;
4736 loc
->set_src
= mem_node
->set_src
;
4737 loc
->init
= MIN (loc
->init
, mem_node
->init
);
4741 if (GET_CODE (loc
->loc
) != MEM
4742 || (MEM_EXPR (loc
->loc
) == decl
4743 && INT_MEM_OFFSET (loc
->loc
) == 0)
4744 || !mem_dies_at_call (loc
->loc
))
4746 if (old_loc
!= loc
->loc
&& emit_notes
)
4748 if (old_loc
== var
->var_part
[0].cur_loc
)
4751 var
->var_part
[0].cur_loc
= NULL
;
4760 if (old_loc
== var
->var_part
[0].cur_loc
)
4763 var
->var_part
[0].cur_loc
= NULL
;
4770 if (!var
->var_part
[0].loc_chain
)
4776 variable_was_changed (var
, set
);
4782 /* Remove all MEMs from the location list of a hash table entry for a
4786 dataflow_set_remove_mem_locs (variable_def
**slot
, dataflow_set
*set
)
4788 variable var
= *slot
;
4790 if (var
->onepart
== ONEPART_VALUE
)
4792 location_chain
*loc
, **locp
;
4793 bool changed
= false;
4796 gcc_assert (var
->n_var_parts
== 1);
4798 if (shared_var_p (var
, set
->vars
))
4800 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4801 if (GET_CODE (loc
->loc
) == MEM
4802 && mem_dies_at_call (loc
->loc
))
4808 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4810 gcc_assert (var
->n_var_parts
== 1);
4813 if (VAR_LOC_1PAUX (var
))
4814 cur_loc
= VAR_LOC_FROM (var
);
4816 cur_loc
= var
->var_part
[0].cur_loc
;
4818 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4821 if (GET_CODE (loc
->loc
) != MEM
4822 || !mem_dies_at_call (loc
->loc
))
4829 /* If we have deleted the location which was last emitted
4830 we have to emit new location so add the variable to set
4831 of changed variables. */
4832 if (cur_loc
== loc
->loc
)
4835 var
->var_part
[0].cur_loc
= NULL
;
4836 if (VAR_LOC_1PAUX (var
))
4837 VAR_LOC_FROM (var
) = NULL
;
4842 if (!var
->var_part
[0].loc_chain
)
4848 variable_was_changed (var
, set
);
4854 /* Remove all variable-location information about call-clobbered
4855 registers, as well as associations between MEMs and VALUEs. */
4858 dataflow_set_clear_at_call (dataflow_set
*set
, rtx_insn
*call_insn
)
4861 hard_reg_set_iterator hrsi
;
4862 HARD_REG_SET invalidated_regs
;
4864 get_call_reg_set_usage (call_insn
, &invalidated_regs
,
4865 regs_invalidated_by_call
);
4867 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs
, 0, r
, hrsi
)
4868 var_regno_delete (set
, r
);
4870 if (MAY_HAVE_DEBUG_INSNS
)
4872 set
->traversed_vars
= set
->vars
;
4873 shared_hash_htab (set
->vars
)
4874 ->traverse
<dataflow_set
*, dataflow_set_preserve_mem_locs
> (set
);
4875 set
->traversed_vars
= set
->vars
;
4876 shared_hash_htab (set
->vars
)
4877 ->traverse
<dataflow_set
*, dataflow_set_remove_mem_locs
> (set
);
4878 set
->traversed_vars
= NULL
;
4883 variable_part_different_p (variable_part
*vp1
, variable_part
*vp2
)
4885 location_chain
*lc1
, *lc2
;
4887 for (lc1
= vp1
->loc_chain
; lc1
; lc1
= lc1
->next
)
4889 for (lc2
= vp2
->loc_chain
; lc2
; lc2
= lc2
->next
)
4891 if (REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
4893 if (REGNO (lc1
->loc
) == REGNO (lc2
->loc
))
4896 if (rtx_equal_p (lc1
->loc
, lc2
->loc
))
4905 /* Return true if one-part variables VAR1 and VAR2 are different.
4906 They must be in canonical order. */
4909 onepart_variable_different_p (variable var1
, variable var2
)
4911 location_chain
*lc1
, *lc2
;
4916 gcc_assert (var1
->n_var_parts
== 1
4917 && var2
->n_var_parts
== 1);
4919 lc1
= var1
->var_part
[0].loc_chain
;
4920 lc2
= var2
->var_part
[0].loc_chain
;
4922 gcc_assert (lc1
&& lc2
);
4926 if (loc_cmp (lc1
->loc
, lc2
->loc
))
4935 /* Return true if variables VAR1 and VAR2 are different. */
4938 variable_different_p (variable var1
, variable var2
)
4945 if (var1
->onepart
!= var2
->onepart
)
4948 if (var1
->n_var_parts
!= var2
->n_var_parts
)
4951 if (var1
->onepart
&& var1
->n_var_parts
)
4953 gcc_checking_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
)
4954 && var1
->n_var_parts
== 1);
4955 /* One-part values have locations in a canonical order. */
4956 return onepart_variable_different_p (var1
, var2
);
4959 for (i
= 0; i
< var1
->n_var_parts
; i
++)
4961 if (VAR_PART_OFFSET (var1
, i
) != VAR_PART_OFFSET (var2
, i
))
4963 if (variable_part_different_p (&var1
->var_part
[i
], &var2
->var_part
[i
]))
4965 if (variable_part_different_p (&var2
->var_part
[i
], &var1
->var_part
[i
]))
4971 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4974 dataflow_set_different (dataflow_set
*old_set
, dataflow_set
*new_set
)
4976 variable_iterator_type hi
;
4979 if (old_set
->vars
== new_set
->vars
)
4982 if (shared_hash_htab (old_set
->vars
)->elements ()
4983 != shared_hash_htab (new_set
->vars
)->elements ())
4986 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set
->vars
),
4989 variable_table_type
*htab
= shared_hash_htab (new_set
->vars
);
4990 variable var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
4993 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4995 fprintf (dump_file
, "dataflow difference found: removal of:\n");
5001 if (variable_different_p (var1
, var2
))
5003 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5005 fprintf (dump_file
, "dataflow difference found: "
5006 "old and new follow:\n");
5014 /* No need to traverse the second hashtab, if both have the same number
5015 of elements and the second one had all entries found in the first one,
5016 then it can't have any extra entries. */
5020 /* Free the contents of dataflow set SET. */
5023 dataflow_set_destroy (dataflow_set
*set
)
5027 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5028 attrs_list_clear (&set
->regs
[i
]);
5030 shared_hash_destroy (set
->vars
);
5034 /* Return true if RTL X contains a SYMBOL_REF. */
5037 contains_symbol_ref (rtx x
)
5046 code
= GET_CODE (x
);
5047 if (code
== SYMBOL_REF
)
5050 fmt
= GET_RTX_FORMAT (code
);
5051 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5055 if (contains_symbol_ref (XEXP (x
, i
)))
5058 else if (fmt
[i
] == 'E')
5061 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5062 if (contains_symbol_ref (XVECEXP (x
, i
, j
)))
5070 /* Shall EXPR be tracked? */
5073 track_expr_p (tree expr
, bool need_rtl
)
5078 if (TREE_CODE (expr
) == DEBUG_EXPR_DECL
)
5079 return DECL_RTL_SET_P (expr
);
5081 /* If EXPR is not a parameter or a variable do not track it. */
5082 if (TREE_CODE (expr
) != VAR_DECL
&& TREE_CODE (expr
) != PARM_DECL
)
5085 /* It also must have a name... */
5086 if (!DECL_NAME (expr
) && need_rtl
)
5089 /* ... and a RTL assigned to it. */
5090 decl_rtl
= DECL_RTL_IF_SET (expr
);
5091 if (!decl_rtl
&& need_rtl
)
5094 /* If this expression is really a debug alias of some other declaration, we
5095 don't need to track this expression if the ultimate declaration is
5098 if (TREE_CODE (realdecl
) == VAR_DECL
&& DECL_HAS_DEBUG_EXPR_P (realdecl
))
5100 realdecl
= DECL_DEBUG_EXPR (realdecl
);
5101 if (!DECL_P (realdecl
))
5103 if (handled_component_p (realdecl
)
5104 || (TREE_CODE (realdecl
) == MEM_REF
5105 && TREE_CODE (TREE_OPERAND (realdecl
, 0)) == ADDR_EXPR
))
5107 HOST_WIDE_INT bitsize
, bitpos
, maxsize
;
5109 = get_ref_base_and_extent (realdecl
, &bitpos
, &bitsize
,
5111 if (!DECL_P (innerdecl
)
5112 || DECL_IGNORED_P (innerdecl
)
5113 /* Do not track declarations for parts of tracked parameters
5114 since we want to track them as a whole instead. */
5115 || (TREE_CODE (innerdecl
) == PARM_DECL
5116 && DECL_MODE (innerdecl
) != BLKmode
5117 && TREE_CODE (TREE_TYPE (innerdecl
)) != UNION_TYPE
)
5118 || TREE_STATIC (innerdecl
)
5120 || bitpos
+ bitsize
> 256
5121 || bitsize
!= maxsize
)
5131 /* Do not track EXPR if REALDECL it should be ignored for debugging
5133 if (DECL_IGNORED_P (realdecl
))
5136 /* Do not track global variables until we are able to emit correct location
5138 if (TREE_STATIC (realdecl
))
5141 /* When the EXPR is a DECL for alias of some variable (see example)
5142 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5143 DECL_RTL contains SYMBOL_REF.
5146 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5149 if (decl_rtl
&& MEM_P (decl_rtl
)
5150 && contains_symbol_ref (XEXP (decl_rtl
, 0)))
5153 /* If RTX is a memory it should not be very large (because it would be
5154 an array or struct). */
5155 if (decl_rtl
&& MEM_P (decl_rtl
))
5157 /* Do not track structures and arrays. */
5158 if (GET_MODE (decl_rtl
) == BLKmode
5159 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl
)))
5161 if (MEM_SIZE_KNOWN_P (decl_rtl
)
5162 && MEM_SIZE (decl_rtl
) > MAX_VAR_PARTS
)
5166 DECL_CHANGED (expr
) = 0;
5167 DECL_CHANGED (realdecl
) = 0;
5171 /* Determine whether a given LOC refers to the same variable part as
5175 same_variable_part_p (rtx loc
, tree expr
, HOST_WIDE_INT offset
)
5178 HOST_WIDE_INT offset2
;
5180 if (! DECL_P (expr
))
5185 expr2
= REG_EXPR (loc
);
5186 offset2
= REG_OFFSET (loc
);
5188 else if (MEM_P (loc
))
5190 expr2
= MEM_EXPR (loc
);
5191 offset2
= INT_MEM_OFFSET (loc
);
5196 if (! expr2
|| ! DECL_P (expr2
))
5199 expr
= var_debug_decl (expr
);
5200 expr2
= var_debug_decl (expr2
);
5202 return (expr
== expr2
&& offset
== offset2
);
5205 /* LOC is a REG or MEM that we would like to track if possible.
5206 If EXPR is null, we don't know what expression LOC refers to,
5207 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5208 LOC is an lvalue register.
5210 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5211 is something we can track. When returning true, store the mode of
5212 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5213 from EXPR in *OFFSET_OUT (if nonnull). */
5216 track_loc_p (rtx loc
, tree expr
, HOST_WIDE_INT offset
, bool store_reg_p
,
5217 machine_mode
*mode_out
, HOST_WIDE_INT
*offset_out
)
5221 if (expr
== NULL
|| !track_expr_p (expr
, true))
5224 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5225 whole subreg, but only the old inner part is really relevant. */
5226 mode
= GET_MODE (loc
);
5227 if (REG_P (loc
) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc
)))
5229 machine_mode pseudo_mode
;
5231 pseudo_mode
= PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc
));
5232 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (pseudo_mode
))
5234 offset
+= byte_lowpart_offset (pseudo_mode
, mode
);
5239 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5240 Do the same if we are storing to a register and EXPR occupies
5241 the whole of register LOC; in that case, the whole of EXPR is
5242 being changed. We exclude complex modes from the second case
5243 because the real and imaginary parts are represented as separate
5244 pseudo registers, even if the whole complex value fits into one
5246 if ((GET_MODE_SIZE (mode
) > GET_MODE_SIZE (DECL_MODE (expr
))
5248 && !COMPLEX_MODE_P (DECL_MODE (expr
))
5249 && hard_regno_nregs
[REGNO (loc
)][DECL_MODE (expr
)] == 1))
5250 && offset
+ byte_lowpart_offset (DECL_MODE (expr
), mode
) == 0)
5252 mode
= DECL_MODE (expr
);
5256 if (offset
< 0 || offset
>= MAX_VAR_PARTS
)
5262 *offset_out
= offset
;
5266 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5267 want to track. When returning nonnull, make sure that the attributes
5268 on the returned value are updated. */
5271 var_lowpart (machine_mode mode
, rtx loc
)
5273 unsigned int offset
, reg_offset
, regno
;
5275 if (GET_MODE (loc
) == mode
)
5278 if (!REG_P (loc
) && !MEM_P (loc
))
5281 offset
= byte_lowpart_offset (mode
, GET_MODE (loc
));
5284 return adjust_address_nv (loc
, mode
, offset
);
5286 reg_offset
= subreg_lowpart_offset (mode
, GET_MODE (loc
));
5287 regno
= REGNO (loc
) + subreg_regno_offset (REGNO (loc
), GET_MODE (loc
),
5289 return gen_rtx_REG_offset (loc
, mode
, regno
, offset
);
5292 /* Carry information about uses and stores while walking rtx. */
5294 struct count_use_info
5296 /* The insn where the RTX is. */
5299 /* The basic block where insn is. */
5302 /* The array of n_sets sets in the insn, as determined by cselib. */
5303 struct cselib_set
*sets
;
5306 /* True if we're counting stores, false otherwise. */
5310 /* Find a VALUE corresponding to X. */
5312 static inline cselib_val
*
5313 find_use_val (rtx x
, machine_mode mode
, struct count_use_info
*cui
)
5319 /* This is called after uses are set up and before stores are
5320 processed by cselib, so it's safe to look up srcs, but not
5321 dsts. So we look up expressions that appear in srcs or in
5322 dest expressions, but we search the sets array for dests of
5326 /* Some targets represent memset and memcpy patterns
5327 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5328 (set (mem:BLK ...) (const_int ...)) or
5329 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5330 in that case, otherwise we end up with mode mismatches. */
5331 if (mode
== BLKmode
&& MEM_P (x
))
5333 for (i
= 0; i
< cui
->n_sets
; i
++)
5334 if (cui
->sets
[i
].dest
== x
)
5335 return cui
->sets
[i
].src_elt
;
5338 return cselib_lookup (x
, mode
, 0, VOIDmode
);
5344 /* Replace all registers and addresses in an expression with VALUE
5345 expressions that map back to them, unless the expression is a
5346 register. If no mapping is or can be performed, returns NULL. */
5349 replace_expr_with_values (rtx loc
)
5351 if (REG_P (loc
) || GET_CODE (loc
) == ENTRY_VALUE
)
5353 else if (MEM_P (loc
))
5355 cselib_val
*addr
= cselib_lookup (XEXP (loc
, 0),
5356 get_address_mode (loc
), 0,
5359 return replace_equiv_address_nv (loc
, addr
->val_rtx
);
5364 return cselib_subst_to_values (loc
, VOIDmode
);
5367 /* Return true if X contains a DEBUG_EXPR. */
5370 rtx_debug_expr_p (const_rtx x
)
5372 subrtx_iterator::array_type array
;
5373 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5374 if (GET_CODE (*iter
) == DEBUG_EXPR
)
5379 /* Determine what kind of micro operation to choose for a USE. Return
5380 MO_CLOBBER if no micro operation is to be generated. */
5382 static enum micro_operation_type
5383 use_type (rtx loc
, struct count_use_info
*cui
, machine_mode
*modep
)
5387 if (cui
&& cui
->sets
)
5389 if (GET_CODE (loc
) == VAR_LOCATION
)
5391 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc
), false))
5393 rtx ploc
= PAT_VAR_LOCATION_LOC (loc
);
5394 if (! VAR_LOC_UNKNOWN_P (ploc
))
5396 cselib_val
*val
= cselib_lookup (ploc
, GET_MODE (loc
), 1,
5399 /* ??? flag_float_store and volatile mems are never
5400 given values, but we could in theory use them for
5402 gcc_assert (val
|| 1);
5410 if (REG_P (loc
) || MEM_P (loc
))
5413 *modep
= GET_MODE (loc
);
5417 || (find_use_val (loc
, GET_MODE (loc
), cui
)
5418 && cselib_lookup (XEXP (loc
, 0),
5419 get_address_mode (loc
), 0,
5425 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5427 if (val
&& !cselib_preserved_value_p (val
))
5435 gcc_assert (REGNO (loc
) < FIRST_PSEUDO_REGISTER
);
5437 if (loc
== cfa_base_rtx
)
5439 expr
= REG_EXPR (loc
);
5442 return MO_USE_NO_VAR
;
5443 else if (target_for_debug_bind (var_debug_decl (expr
)))
5445 else if (track_loc_p (loc
, expr
, REG_OFFSET (loc
),
5446 false, modep
, NULL
))
5449 return MO_USE_NO_VAR
;
5451 else if (MEM_P (loc
))
5453 expr
= MEM_EXPR (loc
);
5457 else if (target_for_debug_bind (var_debug_decl (expr
)))
5459 else if (track_loc_p (loc
, expr
, INT_MEM_OFFSET (loc
),
5461 /* Multi-part variables shouldn't refer to one-part
5462 variable names such as VALUEs (never happens) or
5463 DEBUG_EXPRs (only happens in the presence of debug
5465 && (!MAY_HAVE_DEBUG_INSNS
5466 || !rtx_debug_expr_p (XEXP (loc
, 0))))
5475 /* Log to OUT information about micro-operation MOPT involving X in
5479 log_op_type (rtx x
, basic_block bb
, rtx_insn
*insn
,
5480 enum micro_operation_type mopt
, FILE *out
)
5482 fprintf (out
, "bb %i op %i insn %i %s ",
5483 bb
->index
, VTI (bb
)->mos
.length (),
5484 INSN_UID (insn
), micro_operation_type_name
[mopt
]);
5485 print_inline_rtx (out
, x
, 2);
5489 /* Tell whether the CONCAT used to holds a VALUE and its location
5490 needs value resolution, i.e., an attempt of mapping the location
5491 back to other incoming values. */
5492 #define VAL_NEEDS_RESOLUTION(x) \
5493 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5494 /* Whether the location in the CONCAT is a tracked expression, that
5495 should also be handled like a MO_USE. */
5496 #define VAL_HOLDS_TRACK_EXPR(x) \
5497 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5498 /* Whether the location in the CONCAT should be handled like a MO_COPY
5500 #define VAL_EXPR_IS_COPIED(x) \
5501 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5502 /* Whether the location in the CONCAT should be handled like a
5503 MO_CLOBBER as well. */
5504 #define VAL_EXPR_IS_CLOBBERED(x) \
5505 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5507 /* All preserved VALUEs. */
5508 static vec
<rtx
> preserved_values
;
5510 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5513 preserve_value (cselib_val
*val
)
5515 cselib_preserve_value (val
);
5516 preserved_values
.safe_push (val
->val_rtx
);
5519 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5520 any rtxes not suitable for CONST use not replaced by VALUEs
5524 non_suitable_const (const_rtx x
)
5526 subrtx_iterator::array_type array
;
5527 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5529 const_rtx x
= *iter
;
5530 switch (GET_CODE (x
))
5541 if (!MEM_READONLY_P (x
))
5551 /* Add uses (register and memory references) LOC which will be tracked
5552 to VTI (bb)->mos. */
5555 add_uses (rtx loc
, struct count_use_info
*cui
)
5557 machine_mode mode
= VOIDmode
;
5558 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5560 if (type
!= MO_CLOBBER
)
5562 basic_block bb
= cui
->bb
;
5566 mo
.u
.loc
= type
== MO_USE
? var_lowpart (mode
, loc
) : loc
;
5567 mo
.insn
= cui
->insn
;
5569 if (type
== MO_VAL_LOC
)
5572 rtx vloc
= PAT_VAR_LOCATION_LOC (oloc
);
5575 gcc_assert (cui
->sets
);
5578 && !REG_P (XEXP (vloc
, 0))
5579 && !MEM_P (XEXP (vloc
, 0)))
5582 machine_mode address_mode
= get_address_mode (mloc
);
5584 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5587 if (val
&& !cselib_preserved_value_p (val
))
5588 preserve_value (val
);
5591 if (CONSTANT_P (vloc
)
5592 && (GET_CODE (vloc
) != CONST
|| non_suitable_const (vloc
)))
5593 /* For constants don't look up any value. */;
5594 else if (!VAR_LOC_UNKNOWN_P (vloc
) && !unsuitable_loc (vloc
)
5595 && (val
= find_use_val (vloc
, GET_MODE (oloc
), cui
)))
5598 enum micro_operation_type type2
;
5600 bool resolvable
= REG_P (vloc
) || MEM_P (vloc
);
5603 nloc
= replace_expr_with_values (vloc
);
5607 oloc
= shallow_copy_rtx (oloc
);
5608 PAT_VAR_LOCATION_LOC (oloc
) = nloc
;
5611 oloc
= gen_rtx_CONCAT (mode
, val
->val_rtx
, oloc
);
5613 type2
= use_type (vloc
, 0, &mode2
);
5615 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5616 || type2
== MO_CLOBBER
);
5618 if (type2
== MO_CLOBBER
5619 && !cselib_preserved_value_p (val
))
5621 VAL_NEEDS_RESOLUTION (oloc
) = resolvable
;
5622 preserve_value (val
);
5625 else if (!VAR_LOC_UNKNOWN_P (vloc
))
5627 oloc
= shallow_copy_rtx (oloc
);
5628 PAT_VAR_LOCATION_LOC (oloc
) = gen_rtx_UNKNOWN_VAR_LOC ();
5633 else if (type
== MO_VAL_USE
)
5635 machine_mode mode2
= VOIDmode
;
5636 enum micro_operation_type type2
;
5637 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5638 rtx vloc
, oloc
= loc
, nloc
;
5640 gcc_assert (cui
->sets
);
5643 && !REG_P (XEXP (oloc
, 0))
5644 && !MEM_P (XEXP (oloc
, 0)))
5647 machine_mode address_mode
= get_address_mode (mloc
);
5649 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5652 if (val
&& !cselib_preserved_value_p (val
))
5653 preserve_value (val
);
5656 type2
= use_type (loc
, 0, &mode2
);
5658 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5659 || type2
== MO_CLOBBER
);
5661 if (type2
== MO_USE
)
5662 vloc
= var_lowpart (mode2
, loc
);
5666 /* The loc of a MO_VAL_USE may have two forms:
5668 (concat val src): val is at src, a value-based
5671 (concat (concat val use) src): same as above, with use as
5672 the MO_USE tracked value, if it differs from src.
5676 gcc_checking_assert (REG_P (loc
) || MEM_P (loc
));
5677 nloc
= replace_expr_with_values (loc
);
5682 oloc
= gen_rtx_CONCAT (mode2
, val
->val_rtx
, vloc
);
5684 oloc
= val
->val_rtx
;
5686 mo
.u
.loc
= gen_rtx_CONCAT (mode
, oloc
, nloc
);
5688 if (type2
== MO_USE
)
5689 VAL_HOLDS_TRACK_EXPR (mo
.u
.loc
) = 1;
5690 if (!cselib_preserved_value_p (val
))
5692 VAL_NEEDS_RESOLUTION (mo
.u
.loc
) = 1;
5693 preserve_value (val
);
5697 gcc_assert (type
== MO_USE
|| type
== MO_USE_NO_VAR
);
5699 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5700 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
5701 VTI (bb
)->mos
.safe_push (mo
);
5705 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5708 add_uses_1 (rtx
*x
, void *cui
)
5710 subrtx_var_iterator::array_type array
;
5711 FOR_EACH_SUBRTX_VAR (iter
, array
, *x
, NONCONST
)
5712 add_uses (*iter
, (struct count_use_info
*) cui
);
5715 /* This is the value used during expansion of locations. We want it
5716 to be unbounded, so that variables expanded deep in a recursion
5717 nest are fully evaluated, so that their values are cached
5718 correctly. We avoid recursion cycles through other means, and we
5719 don't unshare RTL, so excess complexity is not a problem. */
5720 #define EXPR_DEPTH (INT_MAX)
5721 /* We use this to keep too-complex expressions from being emitted as
5722 location notes, and then to debug information. Users can trade
5723 compile time for ridiculously complex expressions, although they're
5724 seldom useful, and they may often have to be discarded as not
5725 representable anyway. */
5726 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5728 /* Attempt to reverse the EXPR operation in the debug info and record
5729 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5730 no longer live we can express its value as VAL - 6. */
5733 reverse_op (rtx val
, const_rtx expr
, rtx_insn
*insn
)
5737 struct elt_loc_list
*l
;
5741 if (GET_CODE (expr
) != SET
)
5744 if (!REG_P (SET_DEST (expr
)) || GET_MODE (val
) != GET_MODE (SET_DEST (expr
)))
5747 src
= SET_SRC (expr
);
5748 switch (GET_CODE (src
))
5755 if (!REG_P (XEXP (src
, 0)))
5760 if (!REG_P (XEXP (src
, 0)) && !MEM_P (XEXP (src
, 0)))
5767 if (!SCALAR_INT_MODE_P (GET_MODE (src
)) || XEXP (src
, 0) == cfa_base_rtx
)
5770 v
= cselib_lookup (XEXP (src
, 0), GET_MODE (XEXP (src
, 0)), 0, VOIDmode
);
5771 if (!v
|| !cselib_preserved_value_p (v
))
5774 /* Use canonical V to avoid creating multiple redundant expressions
5775 for different VALUES equivalent to V. */
5776 v
= canonical_cselib_val (v
);
5778 /* Adding a reverse op isn't useful if V already has an always valid
5779 location. Ignore ENTRY_VALUE, while it is always constant, we should
5780 prefer non-ENTRY_VALUE locations whenever possible. */
5781 for (l
= v
->locs
, count
= 0; l
; l
= l
->next
, count
++)
5782 if (CONSTANT_P (l
->loc
)
5783 && (GET_CODE (l
->loc
) != CONST
|| !references_value_p (l
->loc
, 0)))
5785 /* Avoid creating too large locs lists. */
5786 else if (count
== PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE
))
5789 switch (GET_CODE (src
))
5793 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5795 ret
= gen_rtx_fmt_e (GET_CODE (src
), GET_MODE (val
), val
);
5799 ret
= gen_lowpart_SUBREG (GET_MODE (v
->val_rtx
), val
);
5811 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5813 arg
= XEXP (src
, 1);
5814 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5816 arg
= cselib_expand_value_rtx (arg
, scratch_regs
, 5);
5817 if (arg
== NULL_RTX
)
5819 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5822 ret
= simplify_gen_binary (code
, GET_MODE (val
), val
, arg
);
5824 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5825 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5826 breaks a lot of routines during var-tracking. */
5827 ret
= gen_rtx_fmt_ee (PLUS
, GET_MODE (val
), val
, const0_rtx
);
5833 cselib_add_permanent_equiv (v
, ret
, insn
);
5836 /* Add stores (register and memory references) LOC which will be tracked
5837 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5838 CUIP->insn is instruction which the LOC is part of. */
5841 add_stores (rtx loc
, const_rtx expr
, void *cuip
)
5843 machine_mode mode
= VOIDmode
, mode2
;
5844 struct count_use_info
*cui
= (struct count_use_info
*)cuip
;
5845 basic_block bb
= cui
->bb
;
5847 rtx oloc
= loc
, nloc
, src
= NULL
;
5848 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5849 bool track_p
= false;
5851 bool resolve
, preserve
;
5853 if (type
== MO_CLOBBER
)
5860 gcc_assert (loc
!= cfa_base_rtx
);
5861 if ((GET_CODE (expr
) == CLOBBER
&& type
!= MO_VAL_SET
)
5862 || !(track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5863 || GET_CODE (expr
) == CLOBBER
)
5865 mo
.type
= MO_CLOBBER
;
5867 if (GET_CODE (expr
) == SET
5868 && SET_DEST (expr
) == loc
5869 && !unsuitable_loc (SET_SRC (expr
))
5870 && find_use_val (loc
, mode
, cui
))
5872 gcc_checking_assert (type
== MO_VAL_SET
);
5873 mo
.u
.loc
= gen_rtx_SET (loc
, SET_SRC (expr
));
5878 if (GET_CODE (expr
) == SET
5879 && SET_DEST (expr
) == loc
5880 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
5881 src
= var_lowpart (mode2
, SET_SRC (expr
));
5882 loc
= var_lowpart (mode2
, loc
);
5891 rtx xexpr
= gen_rtx_SET (loc
, src
);
5892 if (same_variable_part_p (src
, REG_EXPR (loc
), REG_OFFSET (loc
)))
5894 /* If this is an instruction copying (part of) a parameter
5895 passed by invisible reference to its register location,
5896 pretend it's a SET so that the initial memory location
5897 is discarded, as the parameter register can be reused
5898 for other purposes and we do not track locations based
5899 on generic registers. */
5902 && TREE_CODE (REG_EXPR (loc
)) == PARM_DECL
5903 && DECL_MODE (REG_EXPR (loc
)) != BLKmode
5904 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc
)))
5905 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0)
5916 mo
.insn
= cui
->insn
;
5918 else if (MEM_P (loc
)
5919 && ((track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5922 if (MEM_P (loc
) && type
== MO_VAL_SET
5923 && !REG_P (XEXP (loc
, 0))
5924 && !MEM_P (XEXP (loc
, 0)))
5927 machine_mode address_mode
= get_address_mode (mloc
);
5928 cselib_val
*val
= cselib_lookup (XEXP (mloc
, 0),
5932 if (val
&& !cselib_preserved_value_p (val
))
5933 preserve_value (val
);
5936 if (GET_CODE (expr
) == CLOBBER
|| !track_p
)
5938 mo
.type
= MO_CLOBBER
;
5939 mo
.u
.loc
= track_p
? var_lowpart (mode2
, loc
) : loc
;
5943 if (GET_CODE (expr
) == SET
5944 && SET_DEST (expr
) == loc
5945 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
5946 src
= var_lowpart (mode2
, SET_SRC (expr
));
5947 loc
= var_lowpart (mode2
, loc
);
5956 rtx xexpr
= gen_rtx_SET (loc
, src
);
5957 if (same_variable_part_p (SET_SRC (xexpr
),
5959 INT_MEM_OFFSET (loc
)))
5966 mo
.insn
= cui
->insn
;
5971 if (type
!= MO_VAL_SET
)
5972 goto log_and_return
;
5974 v
= find_use_val (oloc
, mode
, cui
);
5977 goto log_and_return
;
5979 resolve
= preserve
= !cselib_preserved_value_p (v
);
5981 /* We cannot track values for multiple-part variables, so we track only
5982 locations for tracked parameters passed either by invisible reference
5983 or directly in multiple locations. */
5987 && TREE_CODE (REG_EXPR (loc
)) == PARM_DECL
5988 && DECL_MODE (REG_EXPR (loc
)) != BLKmode
5989 && TREE_CODE (TREE_TYPE (REG_EXPR (loc
))) != UNION_TYPE
5990 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc
)))
5991 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0) != arg_pointer_rtx
)
5992 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc
))) == PARALLEL
5993 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0) > 1)))
5995 /* Although we don't use the value here, it could be used later by the
5996 mere virtue of its existence as the operand of the reverse operation
5997 that gave rise to it (typically extension/truncation). Make sure it
5998 is preserved as required by vt_expand_var_loc_chain. */
6001 goto log_and_return
;
6004 if (loc
== stack_pointer_rtx
6005 && hard_frame_pointer_adjustment
!= -1
6007 cselib_set_value_sp_based (v
);
6009 nloc
= replace_expr_with_values (oloc
);
6013 if (GET_CODE (PATTERN (cui
->insn
)) == COND_EXEC
)
6015 cselib_val
*oval
= cselib_lookup (oloc
, GET_MODE (oloc
), 0, VOIDmode
);
6019 gcc_assert (REG_P (oloc
) || MEM_P (oloc
));
6021 if (oval
&& !cselib_preserved_value_p (oval
))
6023 micro_operation moa
;
6025 preserve_value (oval
);
6027 moa
.type
= MO_VAL_USE
;
6028 moa
.u
.loc
= gen_rtx_CONCAT (mode
, oval
->val_rtx
, oloc
);
6029 VAL_NEEDS_RESOLUTION (moa
.u
.loc
) = 1;
6030 moa
.insn
= cui
->insn
;
6032 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6033 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
6034 moa
.type
, dump_file
);
6035 VTI (bb
)->mos
.safe_push (moa
);
6040 else if (resolve
&& GET_CODE (mo
.u
.loc
) == SET
)
6042 if (REG_P (SET_SRC (expr
)) || MEM_P (SET_SRC (expr
)))
6043 nloc
= replace_expr_with_values (SET_SRC (expr
));
6047 /* Avoid the mode mismatch between oexpr and expr. */
6048 if (!nloc
&& mode
!= mode2
)
6050 nloc
= SET_SRC (expr
);
6051 gcc_assert (oloc
== SET_DEST (expr
));
6054 if (nloc
&& nloc
!= SET_SRC (mo
.u
.loc
))
6055 oloc
= gen_rtx_SET (oloc
, nloc
);
6058 if (oloc
== SET_DEST (mo
.u
.loc
))
6059 /* No point in duplicating. */
6061 if (!REG_P (SET_SRC (mo
.u
.loc
)))
6067 if (GET_CODE (mo
.u
.loc
) == SET
6068 && oloc
== SET_DEST (mo
.u
.loc
))
6069 /* No point in duplicating. */
6075 loc
= gen_rtx_CONCAT (mode
, v
->val_rtx
, oloc
);
6077 if (mo
.u
.loc
!= oloc
)
6078 loc
= gen_rtx_CONCAT (GET_MODE (mo
.u
.loc
), loc
, mo
.u
.loc
);
6080 /* The loc of a MO_VAL_SET may have various forms:
6082 (concat val dst): dst now holds val
6084 (concat val (set dst src)): dst now holds val, copied from src
6086 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6087 after replacing mems and non-top-level regs with values.
6089 (concat (concat val dstv) (set dst src)): dst now holds val,
6090 copied from src. dstv is a value-based representation of dst, if
6091 it differs from dst. If resolution is needed, src is a REG, and
6092 its mode is the same as that of val.
6094 (concat (concat val (set dstv srcv)) (set dst src)): src
6095 copied to dst, holding val. dstv and srcv are value-based
6096 representations of dst and src, respectively.
6100 if (GET_CODE (PATTERN (cui
->insn
)) != COND_EXEC
)
6101 reverse_op (v
->val_rtx
, expr
, cui
->insn
);
6106 VAL_HOLDS_TRACK_EXPR (loc
) = 1;
6109 VAL_NEEDS_RESOLUTION (loc
) = resolve
;
6112 if (mo
.type
== MO_CLOBBER
)
6113 VAL_EXPR_IS_CLOBBERED (loc
) = 1;
6114 if (mo
.type
== MO_COPY
)
6115 VAL_EXPR_IS_COPIED (loc
) = 1;
6117 mo
.type
= MO_VAL_SET
;
6120 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6121 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
6122 VTI (bb
)->mos
.safe_push (mo
);
6125 /* Arguments to the call. */
6126 static rtx call_arguments
;
6128 /* Compute call_arguments. */
6131 prepare_call_arguments (basic_block bb
, rtx_insn
*insn
)
6134 rtx prev
, cur
, next
;
6135 rtx this_arg
= NULL_RTX
;
6136 tree type
= NULL_TREE
, t
, fndecl
= NULL_TREE
;
6137 tree obj_type_ref
= NULL_TREE
;
6138 CUMULATIVE_ARGS args_so_far_v
;
6139 cumulative_args_t args_so_far
;
6141 memset (&args_so_far_v
, 0, sizeof (args_so_far_v
));
6142 args_so_far
= pack_cumulative_args (&args_so_far_v
);
6143 call
= get_call_rtx_from (insn
);
6146 if (GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
6148 rtx symbol
= XEXP (XEXP (call
, 0), 0);
6149 if (SYMBOL_REF_DECL (symbol
))
6150 fndecl
= SYMBOL_REF_DECL (symbol
);
6152 if (fndecl
== NULL_TREE
)
6153 fndecl
= MEM_EXPR (XEXP (call
, 0));
6155 && TREE_CODE (TREE_TYPE (fndecl
)) != FUNCTION_TYPE
6156 && TREE_CODE (TREE_TYPE (fndecl
)) != METHOD_TYPE
)
6158 if (fndecl
&& TYPE_ARG_TYPES (TREE_TYPE (fndecl
)))
6159 type
= TREE_TYPE (fndecl
);
6160 if (fndecl
&& TREE_CODE (fndecl
) != FUNCTION_DECL
)
6162 if (TREE_CODE (fndecl
) == INDIRECT_REF
6163 && TREE_CODE (TREE_OPERAND (fndecl
, 0)) == OBJ_TYPE_REF
)
6164 obj_type_ref
= TREE_OPERAND (fndecl
, 0);
6169 for (t
= TYPE_ARG_TYPES (type
); t
&& t
!= void_list_node
;
6171 if (TREE_CODE (TREE_VALUE (t
)) == REFERENCE_TYPE
6172 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t
))))
6174 if ((t
== NULL
|| t
== void_list_node
) && obj_type_ref
== NULL_TREE
)
6178 int nargs ATTRIBUTE_UNUSED
= list_length (TYPE_ARG_TYPES (type
));
6179 link
= CALL_INSN_FUNCTION_USAGE (insn
);
6180 #ifndef PCC_STATIC_STRUCT_RETURN
6181 if (aggregate_value_p (TREE_TYPE (type
), type
)
6182 && targetm
.calls
.struct_value_rtx (type
, 0) == 0)
6184 tree struct_addr
= build_pointer_type (TREE_TYPE (type
));
6185 machine_mode mode
= TYPE_MODE (struct_addr
);
6187 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6189 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6191 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6193 if (reg
== NULL_RTX
)
6195 for (; link
; link
= XEXP (link
, 1))
6196 if (GET_CODE (XEXP (link
, 0)) == USE
6197 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6199 link
= XEXP (link
, 1);
6206 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6208 if (obj_type_ref
&& TYPE_ARG_TYPES (type
) != void_list_node
)
6211 t
= TYPE_ARG_TYPES (type
);
6212 mode
= TYPE_MODE (TREE_VALUE (t
));
6213 this_arg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6214 TREE_VALUE (t
), true);
6215 if (this_arg
&& !REG_P (this_arg
))
6216 this_arg
= NULL_RTX
;
6217 else if (this_arg
== NULL_RTX
)
6219 for (; link
; link
= XEXP (link
, 1))
6220 if (GET_CODE (XEXP (link
, 0)) == USE
6221 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6223 this_arg
= XEXP (XEXP (link
, 0), 0);
6231 t
= type
? TYPE_ARG_TYPES (type
) : NULL_TREE
;
6233 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
6234 if (GET_CODE (XEXP (link
, 0)) == USE
)
6236 rtx item
= NULL_RTX
;
6237 x
= XEXP (XEXP (link
, 0), 0);
6238 if (GET_MODE (link
) == VOIDmode
6239 || GET_MODE (link
) == BLKmode
6240 || (GET_MODE (link
) != GET_MODE (x
)
6241 && ((GET_MODE_CLASS (GET_MODE (link
)) != MODE_INT
6242 && GET_MODE_CLASS (GET_MODE (link
)) != MODE_PARTIAL_INT
)
6243 || (GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
6244 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_PARTIAL_INT
))))
6245 /* Can't do anything for these, if the original type mode
6246 isn't known or can't be converted. */;
6249 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6250 if (val
&& cselib_preserved_value_p (val
))
6251 item
= val
->val_rtx
;
6252 else if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
6253 || GET_MODE_CLASS (GET_MODE (x
)) == MODE_PARTIAL_INT
)
6255 machine_mode mode
= GET_MODE (x
);
6257 while ((mode
= GET_MODE_WIDER_MODE (mode
)) != VOIDmode
6258 && GET_MODE_BITSIZE (mode
) <= BITS_PER_WORD
)
6260 rtx reg
= simplify_subreg (mode
, x
, GET_MODE (x
), 0);
6262 if (reg
== NULL_RTX
|| !REG_P (reg
))
6264 val
= cselib_lookup (reg
, mode
, 0, VOIDmode
);
6265 if (val
&& cselib_preserved_value_p (val
))
6267 item
= val
->val_rtx
;
6278 if (!frame_pointer_needed
)
6280 struct adjust_mem_data amd
;
6281 amd
.mem_mode
= VOIDmode
;
6282 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
6283 amd
.side_effects
= NULL
;
6285 mem
= simplify_replace_fn_rtx (mem
, NULL_RTX
, adjust_mems
,
6287 gcc_assert (amd
.side_effects
== NULL_RTX
);
6289 val
= cselib_lookup (mem
, GET_MODE (mem
), 0, VOIDmode
);
6290 if (val
&& cselib_preserved_value_p (val
))
6291 item
= val
->val_rtx
;
6292 else if (GET_MODE_CLASS (GET_MODE (mem
)) != MODE_INT
6293 && GET_MODE_CLASS (GET_MODE (mem
)) != MODE_PARTIAL_INT
)
6295 /* For non-integer stack argument see also if they weren't
6296 initialized by integers. */
6297 machine_mode imode
= int_mode_for_mode (GET_MODE (mem
));
6298 if (imode
!= GET_MODE (mem
) && imode
!= BLKmode
)
6300 val
= cselib_lookup (adjust_address_nv (mem
, imode
, 0),
6301 imode
, 0, VOIDmode
);
6302 if (val
&& cselib_preserved_value_p (val
))
6303 item
= lowpart_subreg (GET_MODE (x
), val
->val_rtx
,
6311 if (GET_MODE (item
) != GET_MODE (link
))
6312 item
= lowpart_subreg (GET_MODE (link
), item
, GET_MODE (item
));
6313 if (GET_MODE (x2
) != GET_MODE (link
))
6314 x2
= lowpart_subreg (GET_MODE (link
), x2
, GET_MODE (x2
));
6315 item
= gen_rtx_CONCAT (GET_MODE (link
), x2
, item
);
6317 = gen_rtx_EXPR_LIST (VOIDmode
, item
, call_arguments
);
6319 if (t
&& t
!= void_list_node
)
6321 tree argtype
= TREE_VALUE (t
);
6322 machine_mode mode
= TYPE_MODE (argtype
);
6324 if (pass_by_reference (&args_so_far_v
, mode
, argtype
, true))
6326 argtype
= build_pointer_type (argtype
);
6327 mode
= TYPE_MODE (argtype
);
6329 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6331 if (TREE_CODE (argtype
) == REFERENCE_TYPE
6332 && INTEGRAL_TYPE_P (TREE_TYPE (argtype
))
6335 && GET_MODE (reg
) == mode
6336 && (GET_MODE_CLASS (mode
) == MODE_INT
6337 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
6339 && REGNO (x
) == REGNO (reg
)
6340 && GET_MODE (x
) == mode
6343 machine_mode indmode
6344 = TYPE_MODE (TREE_TYPE (argtype
));
6345 rtx mem
= gen_rtx_MEM (indmode
, x
);
6346 cselib_val
*val
= cselib_lookup (mem
, indmode
, 0, VOIDmode
);
6347 if (val
&& cselib_preserved_value_p (val
))
6349 item
= gen_rtx_CONCAT (indmode
, mem
, val
->val_rtx
);
6350 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6355 struct elt_loc_list
*l
;
6358 /* Try harder, when passing address of a constant
6359 pool integer it can be easily read back. */
6360 item
= XEXP (item
, 1);
6361 if (GET_CODE (item
) == SUBREG
)
6362 item
= SUBREG_REG (item
);
6363 gcc_assert (GET_CODE (item
) == VALUE
);
6364 val
= CSELIB_VAL_PTR (item
);
6365 for (l
= val
->locs
; l
; l
= l
->next
)
6366 if (GET_CODE (l
->loc
) == SYMBOL_REF
6367 && TREE_CONSTANT_POOL_ADDRESS_P (l
->loc
)
6368 && SYMBOL_REF_DECL (l
->loc
)
6369 && DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
)))
6371 initial
= DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
));
6372 if (tree_fits_shwi_p (initial
))
6374 item
= GEN_INT (tree_to_shwi (initial
));
6375 item
= gen_rtx_CONCAT (indmode
, mem
, item
);
6377 = gen_rtx_EXPR_LIST (VOIDmode
, item
,
6384 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6390 /* Add debug arguments. */
6392 && TREE_CODE (fndecl
) == FUNCTION_DECL
6393 && DECL_HAS_DEBUG_ARGS_P (fndecl
))
6395 vec
<tree
, va_gc
> **debug_args
= decl_debug_args_lookup (fndecl
);
6400 for (ix
= 0; vec_safe_iterate (*debug_args
, ix
, ¶m
); ix
+= 2)
6403 tree dtemp
= (**debug_args
)[ix
+ 1];
6404 machine_mode mode
= DECL_MODE (dtemp
);
6405 item
= gen_rtx_DEBUG_PARAMETER_REF (mode
, param
);
6406 item
= gen_rtx_CONCAT (mode
, item
, DECL_RTL_KNOWN_SET (dtemp
));
6407 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6413 /* Reverse call_arguments chain. */
6415 for (cur
= call_arguments
; cur
; cur
= next
)
6417 next
= XEXP (cur
, 1);
6418 XEXP (cur
, 1) = prev
;
6421 call_arguments
= prev
;
6423 x
= get_call_rtx_from (insn
);
6426 x
= XEXP (XEXP (x
, 0), 0);
6427 if (GET_CODE (x
) == SYMBOL_REF
)
6428 /* Don't record anything. */;
6429 else if (CONSTANT_P (x
))
6431 x
= gen_rtx_CONCAT (GET_MODE (x
) == VOIDmode
? Pmode
: GET_MODE (x
),
6434 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6438 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6439 if (val
&& cselib_preserved_value_p (val
))
6441 x
= gen_rtx_CONCAT (GET_MODE (x
), pc_rtx
, val
->val_rtx
);
6443 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6450 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref
)));
6451 rtx clobbered
= gen_rtx_MEM (mode
, this_arg
);
6453 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref
));
6455 clobbered
= plus_constant (mode
, clobbered
,
6456 token
* GET_MODE_SIZE (mode
));
6457 clobbered
= gen_rtx_MEM (mode
, clobbered
);
6458 x
= gen_rtx_CONCAT (mode
, gen_rtx_CLOBBER (VOIDmode
, pc_rtx
), clobbered
);
6460 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6464 /* Callback for cselib_record_sets_hook, that records as micro
6465 operations uses and stores in an insn after cselib_record_sets has
6466 analyzed the sets in an insn, but before it modifies the stored
6467 values in the internal tables, unless cselib_record_sets doesn't
6468 call it directly (perhaps because we're not doing cselib in the
6469 first place, in which case sets and n_sets will be 0). */
6472 add_with_sets (rtx_insn
*insn
, struct cselib_set
*sets
, int n_sets
)
6474 basic_block bb
= BLOCK_FOR_INSN (insn
);
6476 struct count_use_info cui
;
6477 micro_operation
*mos
;
6479 cselib_hook_called
= true;
6484 cui
.n_sets
= n_sets
;
6486 n1
= VTI (bb
)->mos
.length ();
6487 cui
.store_p
= false;
6488 note_uses (&PATTERN (insn
), add_uses_1
, &cui
);
6489 n2
= VTI (bb
)->mos
.length () - 1;
6490 mos
= VTI (bb
)->mos
.address ();
6492 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6496 while (n1
< n2
&& mos
[n1
].type
== MO_USE
)
6498 while (n1
< n2
&& mos
[n2
].type
!= MO_USE
)
6501 std::swap (mos
[n1
], mos
[n2
]);
6504 n2
= VTI (bb
)->mos
.length () - 1;
6507 while (n1
< n2
&& mos
[n1
].type
!= MO_VAL_LOC
)
6509 while (n1
< n2
&& mos
[n2
].type
== MO_VAL_LOC
)
6512 std::swap (mos
[n1
], mos
[n2
]);
6521 mo
.u
.loc
= call_arguments
;
6522 call_arguments
= NULL_RTX
;
6524 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6525 log_op_type (PATTERN (insn
), bb
, insn
, mo
.type
, dump_file
);
6526 VTI (bb
)->mos
.safe_push (mo
);
6529 n1
= VTI (bb
)->mos
.length ();
6530 /* This will record NEXT_INSN (insn), such that we can
6531 insert notes before it without worrying about any
6532 notes that MO_USEs might emit after the insn. */
6534 note_stores (PATTERN (insn
), add_stores
, &cui
);
6535 n2
= VTI (bb
)->mos
.length () - 1;
6536 mos
= VTI (bb
)->mos
.address ();
6538 /* Order the MO_VAL_USEs first (note_stores does nothing
6539 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6540 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6543 while (n1
< n2
&& mos
[n1
].type
== MO_VAL_USE
)
6545 while (n1
< n2
&& mos
[n2
].type
!= MO_VAL_USE
)
6548 std::swap (mos
[n1
], mos
[n2
]);
6551 n2
= VTI (bb
)->mos
.length () - 1;
6554 while (n1
< n2
&& mos
[n1
].type
== MO_CLOBBER
)
6556 while (n1
< n2
&& mos
[n2
].type
!= MO_CLOBBER
)
6559 std::swap (mos
[n1
], mos
[n2
]);
6563 static enum var_init_status
6564 find_src_status (dataflow_set
*in
, rtx src
)
6566 tree decl
= NULL_TREE
;
6567 enum var_init_status status
= VAR_INIT_STATUS_UNINITIALIZED
;
6569 if (! flag_var_tracking_uninit
)
6570 status
= VAR_INIT_STATUS_INITIALIZED
;
6572 if (src
&& REG_P (src
))
6573 decl
= var_debug_decl (REG_EXPR (src
));
6574 else if (src
&& MEM_P (src
))
6575 decl
= var_debug_decl (MEM_EXPR (src
));
6578 status
= get_init_value (in
, src
, dv_from_decl (decl
));
6583 /* SRC is the source of an assignment. Use SET to try to find what
6584 was ultimately assigned to SRC. Return that value if known,
6585 otherwise return SRC itself. */
6588 find_src_set_src (dataflow_set
*set
, rtx src
)
6590 tree decl
= NULL_TREE
; /* The variable being copied around. */
6591 rtx set_src
= NULL_RTX
; /* The value for "decl" stored in "src". */
6593 location_chain
*nextp
;
6597 if (src
&& REG_P (src
))
6598 decl
= var_debug_decl (REG_EXPR (src
));
6599 else if (src
&& MEM_P (src
))
6600 decl
= var_debug_decl (MEM_EXPR (src
));
6604 decl_or_value dv
= dv_from_decl (decl
);
6606 var
= shared_hash_find (set
->vars
, dv
);
6610 for (i
= 0; i
< var
->n_var_parts
&& !found
; i
++)
6611 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
&& !found
;
6612 nextp
= nextp
->next
)
6613 if (rtx_equal_p (nextp
->loc
, src
))
6615 set_src
= nextp
->set_src
;
6625 /* Compute the changes of variable locations in the basic block BB. */
6628 compute_bb_dataflow (basic_block bb
)
6631 micro_operation
*mo
;
6633 dataflow_set old_out
;
6634 dataflow_set
*in
= &VTI (bb
)->in
;
6635 dataflow_set
*out
= &VTI (bb
)->out
;
6637 dataflow_set_init (&old_out
);
6638 dataflow_set_copy (&old_out
, out
);
6639 dataflow_set_copy (out
, in
);
6641 if (MAY_HAVE_DEBUG_INSNS
)
6642 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
6644 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
6646 rtx_insn
*insn
= mo
->insn
;
6651 dataflow_set_clear_at_call (out
, insn
);
6656 rtx loc
= mo
->u
.loc
;
6659 var_reg_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6660 else if (MEM_P (loc
))
6661 var_mem_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6667 rtx loc
= mo
->u
.loc
;
6671 if (GET_CODE (loc
) == CONCAT
)
6673 val
= XEXP (loc
, 0);
6674 vloc
= XEXP (loc
, 1);
6682 var
= PAT_VAR_LOCATION_DECL (vloc
);
6684 clobber_variable_part (out
, NULL_RTX
,
6685 dv_from_decl (var
), 0, NULL_RTX
);
6688 if (VAL_NEEDS_RESOLUTION (loc
))
6689 val_resolve (out
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
6690 set_variable_part (out
, val
, dv_from_decl (var
), 0,
6691 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6694 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
6695 set_variable_part (out
, PAT_VAR_LOCATION_LOC (vloc
),
6696 dv_from_decl (var
), 0,
6697 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6704 rtx loc
= mo
->u
.loc
;
6705 rtx val
, vloc
, uloc
;
6707 vloc
= uloc
= XEXP (loc
, 1);
6708 val
= XEXP (loc
, 0);
6710 if (GET_CODE (val
) == CONCAT
)
6712 uloc
= XEXP (val
, 1);
6713 val
= XEXP (val
, 0);
6716 if (VAL_NEEDS_RESOLUTION (loc
))
6717 val_resolve (out
, val
, vloc
, insn
);
6719 val_store (out
, val
, uloc
, insn
, false);
6721 if (VAL_HOLDS_TRACK_EXPR (loc
))
6723 if (GET_CODE (uloc
) == REG
)
6724 var_reg_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6726 else if (GET_CODE (uloc
) == MEM
)
6727 var_mem_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6735 rtx loc
= mo
->u
.loc
;
6736 rtx val
, vloc
, uloc
;
6740 uloc
= XEXP (vloc
, 1);
6741 val
= XEXP (vloc
, 0);
6744 if (GET_CODE (uloc
) == SET
)
6746 dstv
= SET_DEST (uloc
);
6747 srcv
= SET_SRC (uloc
);
6755 if (GET_CODE (val
) == CONCAT
)
6757 dstv
= vloc
= XEXP (val
, 1);
6758 val
= XEXP (val
, 0);
6761 if (GET_CODE (vloc
) == SET
)
6763 srcv
= SET_SRC (vloc
);
6765 gcc_assert (val
!= srcv
);
6766 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
6768 dstv
= vloc
= SET_DEST (vloc
);
6770 if (VAL_NEEDS_RESOLUTION (loc
))
6771 val_resolve (out
, val
, srcv
, insn
);
6773 else if (VAL_NEEDS_RESOLUTION (loc
))
6775 gcc_assert (GET_CODE (uloc
) == SET
6776 && GET_CODE (SET_SRC (uloc
)) == REG
);
6777 val_resolve (out
, val
, SET_SRC (uloc
), insn
);
6780 if (VAL_HOLDS_TRACK_EXPR (loc
))
6782 if (VAL_EXPR_IS_CLOBBERED (loc
))
6785 var_reg_delete (out
, uloc
, true);
6786 else if (MEM_P (uloc
))
6788 gcc_assert (MEM_P (dstv
));
6789 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
6790 var_mem_delete (out
, dstv
, true);
6795 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
6796 rtx src
= NULL
, dst
= uloc
;
6797 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
6799 if (GET_CODE (uloc
) == SET
)
6801 src
= SET_SRC (uloc
);
6802 dst
= SET_DEST (uloc
);
6807 if (flag_var_tracking_uninit
)
6809 status
= find_src_status (in
, src
);
6811 if (status
== VAR_INIT_STATUS_UNKNOWN
)
6812 status
= find_src_status (out
, src
);
6815 src
= find_src_set_src (in
, src
);
6819 var_reg_delete_and_set (out
, dst
, !copied_p
,
6821 else if (MEM_P (dst
))
6823 gcc_assert (MEM_P (dstv
));
6824 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
6825 var_mem_delete_and_set (out
, dstv
, !copied_p
,
6830 else if (REG_P (uloc
))
6831 var_regno_delete (out
, REGNO (uloc
));
6832 else if (MEM_P (uloc
))
6834 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
6835 gcc_checking_assert (dstv
== vloc
);
6837 clobber_overlapping_mems (out
, vloc
);
6840 val_store (out
, val
, dstv
, insn
, true);
6846 rtx loc
= mo
->u
.loc
;
6849 if (GET_CODE (loc
) == SET
)
6851 set_src
= SET_SRC (loc
);
6852 loc
= SET_DEST (loc
);
6856 var_reg_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6858 else if (MEM_P (loc
))
6859 var_mem_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6866 rtx loc
= mo
->u
.loc
;
6867 enum var_init_status src_status
;
6870 if (GET_CODE (loc
) == SET
)
6872 set_src
= SET_SRC (loc
);
6873 loc
= SET_DEST (loc
);
6876 if (! flag_var_tracking_uninit
)
6877 src_status
= VAR_INIT_STATUS_INITIALIZED
;
6880 src_status
= find_src_status (in
, set_src
);
6882 if (src_status
== VAR_INIT_STATUS_UNKNOWN
)
6883 src_status
= find_src_status (out
, set_src
);
6886 set_src
= find_src_set_src (in
, set_src
);
6889 var_reg_delete_and_set (out
, loc
, false, src_status
, set_src
);
6890 else if (MEM_P (loc
))
6891 var_mem_delete_and_set (out
, loc
, false, src_status
, set_src
);
6897 rtx loc
= mo
->u
.loc
;
6900 var_reg_delete (out
, loc
, false);
6901 else if (MEM_P (loc
))
6902 var_mem_delete (out
, loc
, false);
6908 rtx loc
= mo
->u
.loc
;
6911 var_reg_delete (out
, loc
, true);
6912 else if (MEM_P (loc
))
6913 var_mem_delete (out
, loc
, true);
6918 out
->stack_adjust
+= mo
->u
.adjust
;
6923 if (MAY_HAVE_DEBUG_INSNS
)
6925 delete local_get_addr_cache
;
6926 local_get_addr_cache
= NULL
;
6928 dataflow_set_equiv_regs (out
);
6929 shared_hash_htab (out
->vars
)
6930 ->traverse
<dataflow_set
*, canonicalize_values_mark
> (out
);
6931 shared_hash_htab (out
->vars
)
6932 ->traverse
<dataflow_set
*, canonicalize_values_star
> (out
);
6934 shared_hash_htab (out
->vars
)
6935 ->traverse
<dataflow_set
*, canonicalize_loc_order_check
> (out
);
6938 changed
= dataflow_set_different (&old_out
, out
);
6939 dataflow_set_destroy (&old_out
);
6943 /* Find the locations of variables in the whole function. */
6946 vt_find_locations (void)
6948 bb_heap_t
*worklist
= new bb_heap_t (LONG_MIN
);
6949 bb_heap_t
*pending
= new bb_heap_t (LONG_MIN
);
6950 sbitmap visited
, in_worklist
, in_pending
;
6957 int htabmax
= PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE
);
6958 bool success
= true;
6960 timevar_push (TV_VAR_TRACKING_DATAFLOW
);
6961 /* Compute reverse completion order of depth first search of the CFG
6962 so that the data-flow runs faster. */
6963 rc_order
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
6964 bb_order
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
6965 pre_and_rev_post_order_compute (NULL
, rc_order
, false);
6966 for (i
= 0; i
< n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
; i
++)
6967 bb_order
[rc_order
[i
]] = i
;
6970 visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
6971 in_worklist
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
6972 in_pending
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
6973 bitmap_clear (in_worklist
);
6975 FOR_EACH_BB_FN (bb
, cfun
)
6976 pending
->insert (bb_order
[bb
->index
], bb
);
6977 bitmap_ones (in_pending
);
6979 while (success
&& !pending
->empty ())
6981 std::swap (worklist
, pending
);
6982 std::swap (in_worklist
, in_pending
);
6984 bitmap_clear (visited
);
6986 while (!worklist
->empty ())
6988 bb
= worklist
->extract_min ();
6989 bitmap_clear_bit (in_worklist
, bb
->index
);
6990 gcc_assert (!bitmap_bit_p (visited
, bb
->index
));
6991 if (!bitmap_bit_p (visited
, bb
->index
))
6995 int oldinsz
, oldoutsz
;
6997 bitmap_set_bit (visited
, bb
->index
);
6999 if (VTI (bb
)->in
.vars
)
7002 -= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7003 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7004 oldinsz
= shared_hash_htab (VTI (bb
)->in
.vars
)->elements ();
7006 = shared_hash_htab (VTI (bb
)->out
.vars
)->elements ();
7009 oldinsz
= oldoutsz
= 0;
7011 if (MAY_HAVE_DEBUG_INSNS
)
7013 dataflow_set
*in
= &VTI (bb
)->in
, *first_out
= NULL
;
7014 bool first
= true, adjust
= false;
7016 /* Calculate the IN set as the intersection of
7017 predecessor OUT sets. */
7019 dataflow_set_clear (in
);
7020 dst_can_be_shared
= true;
7022 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7023 if (!VTI (e
->src
)->flooded
)
7024 gcc_assert (bb_order
[bb
->index
]
7025 <= bb_order
[e
->src
->index
]);
7028 dataflow_set_copy (in
, &VTI (e
->src
)->out
);
7029 first_out
= &VTI (e
->src
)->out
;
7034 dataflow_set_merge (in
, &VTI (e
->src
)->out
);
7040 dataflow_post_merge_adjust (in
, &VTI (bb
)->permp
);
7042 /* Merge and merge_adjust should keep entries in
7044 shared_hash_htab (in
->vars
)
7045 ->traverse
<dataflow_set
*,
7046 canonicalize_loc_order_check
> (in
);
7048 if (dst_can_be_shared
)
7050 shared_hash_destroy (in
->vars
);
7051 in
->vars
= shared_hash_copy (first_out
->vars
);
7055 VTI (bb
)->flooded
= true;
7059 /* Calculate the IN set as union of predecessor OUT sets. */
7060 dataflow_set_clear (&VTI (bb
)->in
);
7061 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7062 dataflow_set_union (&VTI (bb
)->in
, &VTI (e
->src
)->out
);
7065 changed
= compute_bb_dataflow (bb
);
7066 htabsz
+= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7067 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7069 if (htabmax
&& htabsz
> htabmax
)
7071 if (MAY_HAVE_DEBUG_INSNS
)
7072 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7073 "variable tracking size limit exceeded with "
7074 "-fvar-tracking-assignments, retrying without");
7076 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7077 "variable tracking size limit exceeded");
7084 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7086 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
7089 if (bitmap_bit_p (visited
, e
->dest
->index
))
7091 if (!bitmap_bit_p (in_pending
, e
->dest
->index
))
7093 /* Send E->DEST to next round. */
7094 bitmap_set_bit (in_pending
, e
->dest
->index
);
7095 pending
->insert (bb_order
[e
->dest
->index
],
7099 else if (!bitmap_bit_p (in_worklist
, e
->dest
->index
))
7101 /* Add E->DEST to current round. */
7102 bitmap_set_bit (in_worklist
, e
->dest
->index
);
7103 worklist
->insert (bb_order
[e
->dest
->index
],
7111 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7113 (int)shared_hash_htab (VTI (bb
)->in
.vars
)->size (),
7115 (int)shared_hash_htab (VTI (bb
)->out
.vars
)->size (),
7117 (int)worklist
->nodes (), (int)pending
->nodes (),
7120 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7122 fprintf (dump_file
, "BB %i IN:\n", bb
->index
);
7123 dump_dataflow_set (&VTI (bb
)->in
);
7124 fprintf (dump_file
, "BB %i OUT:\n", bb
->index
);
7125 dump_dataflow_set (&VTI (bb
)->out
);
7131 if (success
&& MAY_HAVE_DEBUG_INSNS
)
7132 FOR_EACH_BB_FN (bb
, cfun
)
7133 gcc_assert (VTI (bb
)->flooded
);
7138 sbitmap_free (visited
);
7139 sbitmap_free (in_worklist
);
7140 sbitmap_free (in_pending
);
7142 timevar_pop (TV_VAR_TRACKING_DATAFLOW
);
7146 /* Print the content of the LIST to dump file. */
7149 dump_attrs_list (attrs list
)
7151 for (; list
; list
= list
->next
)
7153 if (dv_is_decl_p (list
->dv
))
7154 print_mem_expr (dump_file
, dv_as_decl (list
->dv
));
7156 print_rtl_single (dump_file
, dv_as_value (list
->dv
));
7157 fprintf (dump_file
, "+" HOST_WIDE_INT_PRINT_DEC
, list
->offset
);
7159 fprintf (dump_file
, "\n");
7162 /* Print the information about variable *SLOT to dump file. */
7165 dump_var_tracking_slot (variable_def
**slot
, void *data ATTRIBUTE_UNUSED
)
7167 variable var
= *slot
;
7171 /* Continue traversing the hash table. */
7175 /* Print the information about variable VAR to dump file. */
7178 dump_var (variable var
)
7181 location_chain
*node
;
7183 if (dv_is_decl_p (var
->dv
))
7185 const_tree decl
= dv_as_decl (var
->dv
);
7187 if (DECL_NAME (decl
))
7189 fprintf (dump_file
, " name: %s",
7190 IDENTIFIER_POINTER (DECL_NAME (decl
)));
7191 if (dump_flags
& TDF_UID
)
7192 fprintf (dump_file
, "D.%u", DECL_UID (decl
));
7194 else if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
7195 fprintf (dump_file
, " name: D#%u", DEBUG_TEMP_UID (decl
));
7197 fprintf (dump_file
, " name: D.%u", DECL_UID (decl
));
7198 fprintf (dump_file
, "\n");
7202 fputc (' ', dump_file
);
7203 print_rtl_single (dump_file
, dv_as_value (var
->dv
));
7206 for (i
= 0; i
< var
->n_var_parts
; i
++)
7208 fprintf (dump_file
, " offset %ld\n",
7209 (long)(var
->onepart
? 0 : VAR_PART_OFFSET (var
, i
)));
7210 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
7212 fprintf (dump_file
, " ");
7213 if (node
->init
== VAR_INIT_STATUS_UNINITIALIZED
)
7214 fprintf (dump_file
, "[uninit]");
7215 print_rtl_single (dump_file
, node
->loc
);
7220 /* Print the information about variables from hash table VARS to dump file. */
7223 dump_vars (variable_table_type
*vars
)
7225 if (vars
->elements () > 0)
7227 fprintf (dump_file
, "Variables:\n");
7228 vars
->traverse
<void *, dump_var_tracking_slot
> (NULL
);
7232 /* Print the dataflow set SET to dump file. */
7235 dump_dataflow_set (dataflow_set
*set
)
7239 fprintf (dump_file
, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC
"\n",
7241 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7245 fprintf (dump_file
, "Reg %d:", i
);
7246 dump_attrs_list (set
->regs
[i
]);
7249 dump_vars (shared_hash_htab (set
->vars
));
7250 fprintf (dump_file
, "\n");
7253 /* Print the IN and OUT sets for each basic block to dump file. */
7256 dump_dataflow_sets (void)
7260 FOR_EACH_BB_FN (bb
, cfun
)
7262 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
7263 fprintf (dump_file
, "IN:\n");
7264 dump_dataflow_set (&VTI (bb
)->in
);
7265 fprintf (dump_file
, "OUT:\n");
7266 dump_dataflow_set (&VTI (bb
)->out
);
7270 /* Return the variable for DV in dropped_values, inserting one if
7271 requested with INSERT. */
7273 static inline variable
7274 variable_from_dropped (decl_or_value dv
, enum insert_option insert
)
7276 variable_def
**slot
;
7278 onepart_enum_t onepart
;
7280 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
), insert
);
7288 gcc_checking_assert (insert
== INSERT
);
7290 onepart
= dv_onepart_p (dv
);
7292 gcc_checking_assert (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
);
7294 empty_var
= onepart_pool_allocate (onepart
);
7296 empty_var
->refcount
= 1;
7297 empty_var
->n_var_parts
= 0;
7298 empty_var
->onepart
= onepart
;
7299 empty_var
->in_changed_variables
= false;
7300 empty_var
->var_part
[0].loc_chain
= NULL
;
7301 empty_var
->var_part
[0].cur_loc
= NULL
;
7302 VAR_LOC_1PAUX (empty_var
) = NULL
;
7303 set_dv_changed (dv
, true);
7310 /* Recover the one-part aux from dropped_values. */
7312 static struct onepart_aux
*
7313 recover_dropped_1paux (variable var
)
7317 gcc_checking_assert (var
->onepart
);
7319 if (VAR_LOC_1PAUX (var
))
7320 return VAR_LOC_1PAUX (var
);
7322 if (var
->onepart
== ONEPART_VDECL
)
7325 dvar
= variable_from_dropped (var
->dv
, NO_INSERT
);
7330 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (dvar
);
7331 VAR_LOC_1PAUX (dvar
) = NULL
;
7333 return VAR_LOC_1PAUX (var
);
7336 /* Add variable VAR to the hash table of changed variables and
7337 if it has no locations delete it from SET's hash table. */
7340 variable_was_changed (variable var
, dataflow_set
*set
)
7342 hashval_t hash
= dv_htab_hash (var
->dv
);
7346 variable_def
**slot
;
7348 /* Remember this decl or VALUE has been added to changed_variables. */
7349 set_dv_changed (var
->dv
, true);
7351 slot
= changed_variables
->find_slot_with_hash (var
->dv
, hash
, INSERT
);
7355 variable old_var
= *slot
;
7356 gcc_assert (old_var
->in_changed_variables
);
7357 old_var
->in_changed_variables
= false;
7358 if (var
!= old_var
&& var
->onepart
)
7360 /* Restore the auxiliary info from an empty variable
7361 previously created for changed_variables, so it is
7363 gcc_checking_assert (!VAR_LOC_1PAUX (var
));
7364 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (old_var
);
7365 VAR_LOC_1PAUX (old_var
) = NULL
;
7367 variable_htab_free (*slot
);
7370 if (set
&& var
->n_var_parts
== 0)
7372 onepart_enum_t onepart
= var
->onepart
;
7373 variable empty_var
= NULL
;
7374 variable_def
**dslot
= NULL
;
7376 if (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
)
7378 dslot
= dropped_values
->find_slot_with_hash (var
->dv
,
7379 dv_htab_hash (var
->dv
),
7385 gcc_checking_assert (!empty_var
->in_changed_variables
);
7386 if (!VAR_LOC_1PAUX (var
))
7388 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (empty_var
);
7389 VAR_LOC_1PAUX (empty_var
) = NULL
;
7392 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
7398 empty_var
= onepart_pool_allocate (onepart
);
7399 empty_var
->dv
= var
->dv
;
7400 empty_var
->refcount
= 1;
7401 empty_var
->n_var_parts
= 0;
7402 empty_var
->onepart
= onepart
;
7405 empty_var
->refcount
++;
7410 empty_var
->refcount
++;
7411 empty_var
->in_changed_variables
= true;
7415 empty_var
->var_part
[0].loc_chain
= NULL
;
7416 empty_var
->var_part
[0].cur_loc
= NULL
;
7417 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (var
);
7418 VAR_LOC_1PAUX (var
) = NULL
;
7424 if (var
->onepart
&& !VAR_LOC_1PAUX (var
))
7425 recover_dropped_1paux (var
);
7427 var
->in_changed_variables
= true;
7434 if (var
->n_var_parts
== 0)
7436 variable_def
**slot
;
7439 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
7442 if (shared_hash_shared (set
->vars
))
7443 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
,
7445 shared_hash_htab (set
->vars
)->clear_slot (slot
);
7451 /* Look for the index in VAR->var_part corresponding to OFFSET.
7452 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7453 referenced int will be set to the index that the part has or should
7454 have, if it should be inserted. */
7457 find_variable_location_part (variable var
, HOST_WIDE_INT offset
,
7458 int *insertion_point
)
7467 if (insertion_point
)
7468 *insertion_point
= 0;
7470 return var
->n_var_parts
- 1;
7473 /* Find the location part. */
7475 high
= var
->n_var_parts
;
7478 pos
= (low
+ high
) / 2;
7479 if (VAR_PART_OFFSET (var
, pos
) < offset
)
7486 if (insertion_point
)
7487 *insertion_point
= pos
;
7489 if (pos
< var
->n_var_parts
&& VAR_PART_OFFSET (var
, pos
) == offset
)
7495 static variable_def
**
7496 set_slot_part (dataflow_set
*set
, rtx loc
, variable_def
**slot
,
7497 decl_or_value dv
, HOST_WIDE_INT offset
,
7498 enum var_init_status initialized
, rtx set_src
)
7501 location_chain
*node
, *next
;
7502 location_chain
**nextp
;
7504 onepart_enum_t onepart
;
7509 onepart
= var
->onepart
;
7511 onepart
= dv_onepart_p (dv
);
7513 gcc_checking_assert (offset
== 0 || !onepart
);
7514 gcc_checking_assert (loc
!= dv_as_opaque (dv
));
7516 if (! flag_var_tracking_uninit
)
7517 initialized
= VAR_INIT_STATUS_INITIALIZED
;
7521 /* Create new variable information. */
7522 var
= onepart_pool_allocate (onepart
);
7525 var
->n_var_parts
= 1;
7526 var
->onepart
= onepart
;
7527 var
->in_changed_variables
= false;
7529 VAR_LOC_1PAUX (var
) = NULL
;
7531 VAR_PART_OFFSET (var
, 0) = offset
;
7532 var
->var_part
[0].loc_chain
= NULL
;
7533 var
->var_part
[0].cur_loc
= NULL
;
7536 nextp
= &var
->var_part
[0].loc_chain
;
7542 gcc_assert (dv_as_opaque (var
->dv
) == dv_as_opaque (dv
));
7546 if (GET_CODE (loc
) == VALUE
)
7548 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7549 nextp
= &node
->next
)
7550 if (GET_CODE (node
->loc
) == VALUE
)
7552 if (node
->loc
== loc
)
7557 if (canon_value_cmp (node
->loc
, loc
))
7565 else if (REG_P (node
->loc
) || MEM_P (node
->loc
))
7573 else if (REG_P (loc
))
7575 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7576 nextp
= &node
->next
)
7577 if (REG_P (node
->loc
))
7579 if (REGNO (node
->loc
) < REGNO (loc
))
7583 if (REGNO (node
->loc
) == REGNO (loc
))
7596 else if (MEM_P (loc
))
7598 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7599 nextp
= &node
->next
)
7600 if (REG_P (node
->loc
))
7602 else if (MEM_P (node
->loc
))
7604 if ((r
= loc_cmp (XEXP (node
->loc
, 0), XEXP (loc
, 0))) >= 0)
7616 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7617 nextp
= &node
->next
)
7618 if ((r
= loc_cmp (node
->loc
, loc
)) >= 0)
7626 if (shared_var_p (var
, set
->vars
))
7628 slot
= unshare_variable (set
, slot
, var
, initialized
);
7630 for (nextp
= &var
->var_part
[0].loc_chain
; c
;
7631 nextp
= &(*nextp
)->next
)
7633 gcc_assert ((!node
&& !*nextp
) || node
->loc
== (*nextp
)->loc
);
7640 gcc_assert (dv_as_decl (var
->dv
) == dv_as_decl (dv
));
7642 pos
= find_variable_location_part (var
, offset
, &inspos
);
7646 node
= var
->var_part
[pos
].loc_chain
;
7649 && ((REG_P (node
->loc
) && REG_P (loc
)
7650 && REGNO (node
->loc
) == REGNO (loc
))
7651 || rtx_equal_p (node
->loc
, loc
)))
7653 /* LOC is in the beginning of the chain so we have nothing
7655 if (node
->init
< initialized
)
7656 node
->init
= initialized
;
7657 if (set_src
!= NULL
)
7658 node
->set_src
= set_src
;
7664 /* We have to make a copy of a shared variable. */
7665 if (shared_var_p (var
, set
->vars
))
7667 slot
= unshare_variable (set
, slot
, var
, initialized
);
7674 /* We have not found the location part, new one will be created. */
7676 /* We have to make a copy of the shared variable. */
7677 if (shared_var_p (var
, set
->vars
))
7679 slot
= unshare_variable (set
, slot
, var
, initialized
);
7683 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7684 thus there are at most MAX_VAR_PARTS different offsets. */
7685 gcc_assert (var
->n_var_parts
< MAX_VAR_PARTS
7686 && (!var
->n_var_parts
|| !onepart
));
7688 /* We have to move the elements of array starting at index
7689 inspos to the next position. */
7690 for (pos
= var
->n_var_parts
; pos
> inspos
; pos
--)
7691 var
->var_part
[pos
] = var
->var_part
[pos
- 1];
7694 gcc_checking_assert (!onepart
);
7695 VAR_PART_OFFSET (var
, pos
) = offset
;
7696 var
->var_part
[pos
].loc_chain
= NULL
;
7697 var
->var_part
[pos
].cur_loc
= NULL
;
7700 /* Delete the location from the list. */
7701 nextp
= &var
->var_part
[pos
].loc_chain
;
7702 for (node
= var
->var_part
[pos
].loc_chain
; node
; node
= next
)
7705 if ((REG_P (node
->loc
) && REG_P (loc
)
7706 && REGNO (node
->loc
) == REGNO (loc
))
7707 || rtx_equal_p (node
->loc
, loc
))
7709 /* Save these values, to assign to the new node, before
7710 deleting this one. */
7711 if (node
->init
> initialized
)
7712 initialized
= node
->init
;
7713 if (node
->set_src
!= NULL
&& set_src
== NULL
)
7714 set_src
= node
->set_src
;
7715 if (var
->var_part
[pos
].cur_loc
== node
->loc
)
7716 var
->var_part
[pos
].cur_loc
= NULL
;
7722 nextp
= &node
->next
;
7725 nextp
= &var
->var_part
[pos
].loc_chain
;
7728 /* Add the location to the beginning. */
7729 node
= new location_chain
;
7731 node
->init
= initialized
;
7732 node
->set_src
= set_src
;
7733 node
->next
= *nextp
;
7736 /* If no location was emitted do so. */
7737 if (var
->var_part
[pos
].cur_loc
== NULL
)
7738 variable_was_changed (var
, set
);
7743 /* Set the part of variable's location in the dataflow set SET. The
7744 variable part is specified by variable's declaration in DV and
7745 offset OFFSET and the part's location by LOC. IOPT should be
7746 NO_INSERT if the variable is known to be in SET already and the
7747 variable hash table must not be resized, and INSERT otherwise. */
7750 set_variable_part (dataflow_set
*set
, rtx loc
,
7751 decl_or_value dv
, HOST_WIDE_INT offset
,
7752 enum var_init_status initialized
, rtx set_src
,
7753 enum insert_option iopt
)
7755 variable_def
**slot
;
7757 if (iopt
== NO_INSERT
)
7758 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7761 slot
= shared_hash_find_slot (set
->vars
, dv
);
7763 slot
= shared_hash_find_slot_unshare (&set
->vars
, dv
, iopt
);
7765 set_slot_part (set
, loc
, slot
, dv
, offset
, initialized
, set_src
);
7768 /* Remove all recorded register locations for the given variable part
7769 from dataflow set SET, except for those that are identical to loc.
7770 The variable part is specified by variable's declaration or value
7771 DV and offset OFFSET. */
7773 static variable_def
**
7774 clobber_slot_part (dataflow_set
*set
, rtx loc
, variable_def
**slot
,
7775 HOST_WIDE_INT offset
, rtx set_src
)
7777 variable var
= *slot
;
7778 int pos
= find_variable_location_part (var
, offset
, NULL
);
7782 location_chain
*node
, *next
;
7784 /* Remove the register locations from the dataflow set. */
7785 next
= var
->var_part
[pos
].loc_chain
;
7786 for (node
= next
; node
; node
= next
)
7789 if (node
->loc
!= loc
7790 && (!flag_var_tracking_uninit
7793 || !rtx_equal_p (set_src
, node
->set_src
)))
7795 if (REG_P (node
->loc
))
7800 /* Remove the variable part from the register's
7801 list, but preserve any other variable parts
7802 that might be regarded as live in that same
7804 anextp
= &set
->regs
[REGNO (node
->loc
)];
7805 for (anode
= *anextp
; anode
; anode
= anext
)
7807 anext
= anode
->next
;
7808 if (dv_as_opaque (anode
->dv
) == dv_as_opaque (var
->dv
)
7809 && anode
->offset
== offset
)
7815 anextp
= &anode
->next
;
7819 slot
= delete_slot_part (set
, node
->loc
, slot
, offset
);
7827 /* Remove all recorded register locations for the given variable part
7828 from dataflow set SET, except for those that are identical to loc.
7829 The variable part is specified by variable's declaration or value
7830 DV and offset OFFSET. */
7833 clobber_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
7834 HOST_WIDE_INT offset
, rtx set_src
)
7836 variable_def
**slot
;
7838 if (!dv_as_opaque (dv
)
7839 || (!dv_is_value_p (dv
) && ! DECL_P (dv_as_decl (dv
))))
7842 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7846 clobber_slot_part (set
, loc
, slot
, offset
, set_src
);
7849 /* Delete the part of variable's location from dataflow set SET. The
7850 variable part is specified by its SET->vars slot SLOT and offset
7851 OFFSET and the part's location by LOC. */
7853 static variable_def
**
7854 delete_slot_part (dataflow_set
*set
, rtx loc
, variable_def
**slot
,
7855 HOST_WIDE_INT offset
)
7857 variable var
= *slot
;
7858 int pos
= find_variable_location_part (var
, offset
, NULL
);
7862 location_chain
*node
, *next
;
7863 location_chain
**nextp
;
7867 if (shared_var_p (var
, set
->vars
))
7869 /* If the variable contains the location part we have to
7870 make a copy of the variable. */
7871 for (node
= var
->var_part
[pos
].loc_chain
; node
;
7874 if ((REG_P (node
->loc
) && REG_P (loc
)
7875 && REGNO (node
->loc
) == REGNO (loc
))
7876 || rtx_equal_p (node
->loc
, loc
))
7878 slot
= unshare_variable (set
, slot
, var
,
7879 VAR_INIT_STATUS_UNKNOWN
);
7886 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
7887 cur_loc
= VAR_LOC_FROM (var
);
7889 cur_loc
= var
->var_part
[pos
].cur_loc
;
7891 /* Delete the location part. */
7893 nextp
= &var
->var_part
[pos
].loc_chain
;
7894 for (node
= *nextp
; node
; node
= next
)
7897 if ((REG_P (node
->loc
) && REG_P (loc
)
7898 && REGNO (node
->loc
) == REGNO (loc
))
7899 || rtx_equal_p (node
->loc
, loc
))
7901 /* If we have deleted the location which was last emitted
7902 we have to emit new location so add the variable to set
7903 of changed variables. */
7904 if (cur_loc
== node
->loc
)
7907 var
->var_part
[pos
].cur_loc
= NULL
;
7908 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
7909 VAR_LOC_FROM (var
) = NULL
;
7916 nextp
= &node
->next
;
7919 if (var
->var_part
[pos
].loc_chain
== NULL
)
7923 while (pos
< var
->n_var_parts
)
7925 var
->var_part
[pos
] = var
->var_part
[pos
+ 1];
7930 variable_was_changed (var
, set
);
7936 /* Delete the part of variable's location from dataflow set SET. The
7937 variable part is specified by variable's declaration or value DV
7938 and offset OFFSET and the part's location by LOC. */
7941 delete_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
7942 HOST_WIDE_INT offset
)
7944 variable_def
**slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7948 delete_slot_part (set
, loc
, slot
, offset
);
7952 /* Structure for passing some other parameters to function
7953 vt_expand_loc_callback. */
7954 struct expand_loc_callback_data
7956 /* The variables and values active at this point. */
7957 variable_table_type
*vars
;
7959 /* Stack of values and debug_exprs under expansion, and their
7961 auto_vec
<rtx
, 4> expanding
;
7963 /* Stack of values and debug_exprs whose expansion hit recursion
7964 cycles. They will have VALUE_RECURSED_INTO marked when added to
7965 this list. This flag will be cleared if any of its dependencies
7966 resolves to a valid location. So, if the flag remains set at the
7967 end of the search, we know no valid location for this one can
7969 auto_vec
<rtx
, 4> pending
;
7971 /* The maximum depth among the sub-expressions under expansion.
7972 Zero indicates no expansion so far. */
7976 /* Allocate the one-part auxiliary data structure for VAR, with enough
7977 room for COUNT dependencies. */
7980 loc_exp_dep_alloc (variable var
, int count
)
7984 gcc_checking_assert (var
->onepart
);
7986 /* We can be called with COUNT == 0 to allocate the data structure
7987 without any dependencies, e.g. for the backlinks only. However,
7988 if we are specifying a COUNT, then the dependency list must have
7989 been emptied before. It would be possible to adjust pointers or
7990 force it empty here, but this is better done at an earlier point
7991 in the algorithm, so we instead leave an assertion to catch
7993 gcc_checking_assert (!count
7994 || VAR_LOC_DEP_VEC (var
) == NULL
7995 || VAR_LOC_DEP_VEC (var
)->is_empty ());
7997 if (VAR_LOC_1PAUX (var
) && VAR_LOC_DEP_VEC (var
)->space (count
))
8000 allocsize
= offsetof (struct onepart_aux
, deps
)
8001 + vec
<loc_exp_dep
, va_heap
, vl_embed
>::embedded_size (count
);
8003 if (VAR_LOC_1PAUX (var
))
8005 VAR_LOC_1PAUX (var
) = XRESIZEVAR (struct onepart_aux
,
8006 VAR_LOC_1PAUX (var
), allocsize
);
8007 /* If the reallocation moves the onepaux structure, the
8008 back-pointer to BACKLINKS in the first list member will still
8009 point to its old location. Adjust it. */
8010 if (VAR_LOC_DEP_LST (var
))
8011 VAR_LOC_DEP_LST (var
)->pprev
= VAR_LOC_DEP_LSTP (var
);
8015 VAR_LOC_1PAUX (var
) = XNEWVAR (struct onepart_aux
, allocsize
);
8016 *VAR_LOC_DEP_LSTP (var
) = NULL
;
8017 VAR_LOC_FROM (var
) = NULL
;
8018 VAR_LOC_DEPTH (var
).complexity
= 0;
8019 VAR_LOC_DEPTH (var
).entryvals
= 0;
8021 VAR_LOC_DEP_VEC (var
)->embedded_init (count
);
8024 /* Remove all entries from the vector of active dependencies of VAR,
8025 removing them from the back-links lists too. */
8028 loc_exp_dep_clear (variable var
)
8030 while (VAR_LOC_DEP_VEC (var
) && !VAR_LOC_DEP_VEC (var
)->is_empty ())
8032 loc_exp_dep
*led
= &VAR_LOC_DEP_VEC (var
)->last ();
8034 led
->next
->pprev
= led
->pprev
;
8036 *led
->pprev
= led
->next
;
8037 VAR_LOC_DEP_VEC (var
)->pop ();
8041 /* Insert an active dependency from VAR on X to the vector of
8042 dependencies, and add the corresponding back-link to X's list of
8043 back-links in VARS. */
8046 loc_exp_insert_dep (variable var
, rtx x
, variable_table_type
*vars
)
8052 dv
= dv_from_rtx (x
);
8054 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8055 an additional look up? */
8056 xvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8060 xvar
= variable_from_dropped (dv
, NO_INSERT
);
8061 gcc_checking_assert (xvar
);
8064 /* No point in adding the same backlink more than once. This may
8065 arise if say the same value appears in two complex expressions in
8066 the same loc_list, or even more than once in a single
8068 if (VAR_LOC_DEP_LST (xvar
) && VAR_LOC_DEP_LST (xvar
)->dv
== var
->dv
)
8071 if (var
->onepart
== NOT_ONEPART
)
8072 led
= new loc_exp_dep
;
8076 memset (&empty
, 0, sizeof (empty
));
8077 VAR_LOC_DEP_VEC (var
)->quick_push (empty
);
8078 led
= &VAR_LOC_DEP_VEC (var
)->last ();
8083 loc_exp_dep_alloc (xvar
, 0);
8084 led
->pprev
= VAR_LOC_DEP_LSTP (xvar
);
8085 led
->next
= *led
->pprev
;
8087 led
->next
->pprev
= &led
->next
;
8091 /* Create active dependencies of VAR on COUNT values starting at
8092 VALUE, and corresponding back-links to the entries in VARS. Return
8093 true if we found any pending-recursion results. */
8096 loc_exp_dep_set (variable var
, rtx result
, rtx
*value
, int count
,
8097 variable_table_type
*vars
)
8099 bool pending_recursion
= false;
8101 gcc_checking_assert (VAR_LOC_DEP_VEC (var
) == NULL
8102 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8104 /* Set up all dependencies from last_child (as set up at the end of
8105 the loop above) to the end. */
8106 loc_exp_dep_alloc (var
, count
);
8112 if (!pending_recursion
)
8113 pending_recursion
= !result
&& VALUE_RECURSED_INTO (x
);
8115 loc_exp_insert_dep (var
, x
, vars
);
8118 return pending_recursion
;
8121 /* Notify the back-links of IVAR that are pending recursion that we
8122 have found a non-NIL value for it, so they are cleared for another
8123 attempt to compute a current location. */
8126 notify_dependents_of_resolved_value (variable ivar
, variable_table_type
*vars
)
8128 loc_exp_dep
*led
, *next
;
8130 for (led
= VAR_LOC_DEP_LST (ivar
); led
; led
= next
)
8132 decl_or_value dv
= led
->dv
;
8137 if (dv_is_value_p (dv
))
8139 rtx value
= dv_as_value (dv
);
8141 /* If we have already resolved it, leave it alone. */
8142 if (!VALUE_RECURSED_INTO (value
))
8145 /* Check that VALUE_RECURSED_INTO, true from the test above,
8146 implies NO_LOC_P. */
8147 gcc_checking_assert (NO_LOC_P (value
));
8149 /* We won't notify variables that are being expanded,
8150 because their dependency list is cleared before
8152 NO_LOC_P (value
) = false;
8153 VALUE_RECURSED_INTO (value
) = false;
8155 gcc_checking_assert (dv_changed_p (dv
));
8159 gcc_checking_assert (dv_onepart_p (dv
) != NOT_ONEPART
);
8160 if (!dv_changed_p (dv
))
8164 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8167 var
= variable_from_dropped (dv
, NO_INSERT
);
8170 notify_dependents_of_resolved_value (var
, vars
);
8173 next
->pprev
= led
->pprev
;
8181 static rtx
vt_expand_loc_callback (rtx x
, bitmap regs
,
8182 int max_depth
, void *data
);
8184 /* Return the combined depth, when one sub-expression evaluated to
8185 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8187 static inline expand_depth
8188 update_depth (expand_depth saved_depth
, expand_depth best_depth
)
8190 /* If we didn't find anything, stick with what we had. */
8191 if (!best_depth
.complexity
)
8194 /* If we found hadn't found anything, use the depth of the current
8195 expression. Do NOT add one extra level, we want to compute the
8196 maximum depth among sub-expressions. We'll increment it later,
8198 if (!saved_depth
.complexity
)
8201 /* Combine the entryval count so that regardless of which one we
8202 return, the entryval count is accurate. */
8203 best_depth
.entryvals
= saved_depth
.entryvals
8204 = best_depth
.entryvals
+ saved_depth
.entryvals
;
8206 if (saved_depth
.complexity
< best_depth
.complexity
)
8212 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8213 DATA for cselib expand callback. If PENDRECP is given, indicate in
8214 it whether any sub-expression couldn't be fully evaluated because
8215 it is pending recursion resolution. */
8218 vt_expand_var_loc_chain (variable var
, bitmap regs
, void *data
, bool *pendrecp
)
8220 struct expand_loc_callback_data
*elcd
8221 = (struct expand_loc_callback_data
*) data
;
8222 location_chain
*loc
, *next
;
8224 int first_child
, result_first_child
, last_child
;
8225 bool pending_recursion
;
8226 rtx loc_from
= NULL
;
8227 struct elt_loc_list
*cloc
= NULL
;
8228 expand_depth depth
= { 0, 0 }, saved_depth
= elcd
->depth
;
8229 int wanted_entryvals
, found_entryvals
= 0;
8231 /* Clear all backlinks pointing at this, so that we're not notified
8232 while we're active. */
8233 loc_exp_dep_clear (var
);
8236 if (var
->onepart
== ONEPART_VALUE
)
8238 cselib_val
*val
= CSELIB_VAL_PTR (dv_as_value (var
->dv
));
8240 gcc_checking_assert (cselib_preserved_value_p (val
));
8245 first_child
= result_first_child
= last_child
8246 = elcd
->expanding
.length ();
8248 wanted_entryvals
= found_entryvals
;
8250 /* Attempt to expand each available location in turn. */
8251 for (next
= loc
= var
->n_var_parts
? var
->var_part
[0].loc_chain
: NULL
;
8252 loc
|| cloc
; loc
= next
)
8254 result_first_child
= last_child
;
8258 loc_from
= cloc
->loc
;
8261 if (unsuitable_loc (loc_from
))
8266 loc_from
= loc
->loc
;
8270 gcc_checking_assert (!unsuitable_loc (loc_from
));
8272 elcd
->depth
.complexity
= elcd
->depth
.entryvals
= 0;
8273 result
= cselib_expand_value_rtx_cb (loc_from
, regs
, EXPR_DEPTH
,
8274 vt_expand_loc_callback
, data
);
8275 last_child
= elcd
->expanding
.length ();
8279 depth
= elcd
->depth
;
8281 gcc_checking_assert (depth
.complexity
8282 || result_first_child
== last_child
);
8284 if (last_child
- result_first_child
!= 1)
8286 if (!depth
.complexity
&& GET_CODE (result
) == ENTRY_VALUE
)
8291 if (depth
.complexity
<= EXPR_USE_DEPTH
)
8293 if (depth
.entryvals
<= wanted_entryvals
)
8295 else if (!found_entryvals
|| depth
.entryvals
< found_entryvals
)
8296 found_entryvals
= depth
.entryvals
;
8302 /* Set it up in case we leave the loop. */
8303 depth
.complexity
= depth
.entryvals
= 0;
8305 result_first_child
= first_child
;
8308 if (!loc_from
&& wanted_entryvals
< found_entryvals
)
8310 /* We found entries with ENTRY_VALUEs and skipped them. Since
8311 we could not find any expansions without ENTRY_VALUEs, but we
8312 found at least one with them, go back and get an entry with
8313 the minimum number ENTRY_VALUE count that we found. We could
8314 avoid looping, but since each sub-loc is already resolved,
8315 the re-expansion should be trivial. ??? Should we record all
8316 attempted locs as dependencies, so that we retry the
8317 expansion should any of them change, in the hope it can give
8318 us a new entry without an ENTRY_VALUE? */
8319 elcd
->expanding
.truncate (first_child
);
8323 /* Register all encountered dependencies as active. */
8324 pending_recursion
= loc_exp_dep_set
8325 (var
, result
, elcd
->expanding
.address () + result_first_child
,
8326 last_child
- result_first_child
, elcd
->vars
);
8328 elcd
->expanding
.truncate (first_child
);
8330 /* Record where the expansion came from. */
8331 gcc_checking_assert (!result
|| !pending_recursion
);
8332 VAR_LOC_FROM (var
) = loc_from
;
8333 VAR_LOC_DEPTH (var
) = depth
;
8335 gcc_checking_assert (!depth
.complexity
== !result
);
8337 elcd
->depth
= update_depth (saved_depth
, depth
);
8339 /* Indicate whether any of the dependencies are pending recursion
8342 *pendrecp
= pending_recursion
;
8344 if (!pendrecp
|| !pending_recursion
)
8345 var
->var_part
[0].cur_loc
= result
;
8350 /* Callback for cselib_expand_value, that looks for expressions
8351 holding the value in the var-tracking hash tables. Return X for
8352 standard processing, anything else is to be used as-is. */
8355 vt_expand_loc_callback (rtx x
, bitmap regs
,
8356 int max_depth ATTRIBUTE_UNUSED
,
8359 struct expand_loc_callback_data
*elcd
8360 = (struct expand_loc_callback_data
*) data
;
8364 bool pending_recursion
= false;
8365 bool from_empty
= false;
8367 switch (GET_CODE (x
))
8370 subreg
= cselib_expand_value_rtx_cb (SUBREG_REG (x
), regs
,
8372 vt_expand_loc_callback
, data
);
8377 result
= simplify_gen_subreg (GET_MODE (x
), subreg
,
8378 GET_MODE (SUBREG_REG (x
)),
8381 /* Invalid SUBREGs are ok in debug info. ??? We could try
8382 alternate expansions for the VALUE as well. */
8384 result
= gen_rtx_raw_SUBREG (GET_MODE (x
), subreg
, SUBREG_BYTE (x
));
8390 dv
= dv_from_rtx (x
);
8397 elcd
->expanding
.safe_push (x
);
8399 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8400 gcc_checking_assert (!VALUE_RECURSED_INTO (x
) || NO_LOC_P (x
));
8404 gcc_checking_assert (VALUE_RECURSED_INTO (x
) || !dv_changed_p (dv
));
8408 var
= elcd
->vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8413 var
= variable_from_dropped (dv
, INSERT
);
8416 gcc_checking_assert (var
);
8418 if (!dv_changed_p (dv
))
8420 gcc_checking_assert (!NO_LOC_P (x
));
8421 gcc_checking_assert (var
->var_part
[0].cur_loc
);
8422 gcc_checking_assert (VAR_LOC_1PAUX (var
));
8423 gcc_checking_assert (VAR_LOC_1PAUX (var
)->depth
.complexity
);
8425 elcd
->depth
= update_depth (elcd
->depth
, VAR_LOC_1PAUX (var
)->depth
);
8427 return var
->var_part
[0].cur_loc
;
8430 VALUE_RECURSED_INTO (x
) = true;
8431 /* This is tentative, but it makes some tests simpler. */
8432 NO_LOC_P (x
) = true;
8434 gcc_checking_assert (var
->n_var_parts
== 1 || from_empty
);
8436 result
= vt_expand_var_loc_chain (var
, regs
, data
, &pending_recursion
);
8438 if (pending_recursion
)
8440 gcc_checking_assert (!result
);
8441 elcd
->pending
.safe_push (x
);
8445 NO_LOC_P (x
) = !result
;
8446 VALUE_RECURSED_INTO (x
) = false;
8447 set_dv_changed (dv
, false);
8450 notify_dependents_of_resolved_value (var
, elcd
->vars
);
8456 /* While expanding variables, we may encounter recursion cycles
8457 because of mutual (possibly indirect) dependencies between two
8458 particular variables (or values), say A and B. If we're trying to
8459 expand A when we get to B, which in turn attempts to expand A, if
8460 we can't find any other expansion for B, we'll add B to this
8461 pending-recursion stack, and tentatively return NULL for its
8462 location. This tentative value will be used for any other
8463 occurrences of B, unless A gets some other location, in which case
8464 it will notify B that it is worth another try at computing a
8465 location for it, and it will use the location computed for A then.
8466 At the end of the expansion, the tentative NULL locations become
8467 final for all members of PENDING that didn't get a notification.
8468 This function performs this finalization of NULL locations. */
8471 resolve_expansions_pending_recursion (vec
<rtx
, va_heap
> *pending
)
8473 while (!pending
->is_empty ())
8475 rtx x
= pending
->pop ();
8478 if (!VALUE_RECURSED_INTO (x
))
8481 gcc_checking_assert (NO_LOC_P (x
));
8482 VALUE_RECURSED_INTO (x
) = false;
8483 dv
= dv_from_rtx (x
);
8484 gcc_checking_assert (dv_changed_p (dv
));
8485 set_dv_changed (dv
, false);
8489 /* Initialize expand_loc_callback_data D with variable hash table V.
8490 It must be a macro because of alloca (vec stack). */
8491 #define INIT_ELCD(d, v) \
8495 (d).depth.complexity = (d).depth.entryvals = 0; \
8498 /* Finalize expand_loc_callback_data D, resolved to location L. */
8499 #define FINI_ELCD(d, l) \
8502 resolve_expansions_pending_recursion (&(d).pending); \
8503 (d).pending.release (); \
8504 (d).expanding.release (); \
8506 if ((l) && MEM_P (l)) \
8507 (l) = targetm.delegitimize_address (l); \
8511 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8512 equivalences in VARS, updating their CUR_LOCs in the process. */
8515 vt_expand_loc (rtx loc
, variable_table_type
*vars
)
8517 struct expand_loc_callback_data data
;
8520 if (!MAY_HAVE_DEBUG_INSNS
)
8523 INIT_ELCD (data
, vars
);
8525 result
= cselib_expand_value_rtx_cb (loc
, scratch_regs
, EXPR_DEPTH
,
8526 vt_expand_loc_callback
, &data
);
8528 FINI_ELCD (data
, result
);
8533 /* Expand the one-part VARiable to a location, using the equivalences
8534 in VARS, updating their CUR_LOCs in the process. */
8537 vt_expand_1pvar (variable var
, variable_table_type
*vars
)
8539 struct expand_loc_callback_data data
;
8542 gcc_checking_assert (var
->onepart
&& var
->n_var_parts
== 1);
8544 if (!dv_changed_p (var
->dv
))
8545 return var
->var_part
[0].cur_loc
;
8547 INIT_ELCD (data
, vars
);
8549 loc
= vt_expand_var_loc_chain (var
, scratch_regs
, &data
, NULL
);
8551 gcc_checking_assert (data
.expanding
.is_empty ());
8553 FINI_ELCD (data
, loc
);
8558 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8559 additional parameters: WHERE specifies whether the note shall be emitted
8560 before or after instruction INSN. */
8563 emit_note_insn_var_location (variable_def
**varp
, emit_note_data
*data
)
8565 variable var
= *varp
;
8566 rtx_insn
*insn
= data
->insn
;
8567 enum emit_note_where where
= data
->where
;
8568 variable_table_type
*vars
= data
->vars
;
8571 int i
, j
, n_var_parts
;
8573 enum var_init_status initialized
= VAR_INIT_STATUS_UNINITIALIZED
;
8574 HOST_WIDE_INT last_limit
;
8575 tree type_size_unit
;
8576 HOST_WIDE_INT offsets
[MAX_VAR_PARTS
];
8577 rtx loc
[MAX_VAR_PARTS
];
8581 gcc_checking_assert (var
->onepart
== NOT_ONEPART
8582 || var
->onepart
== ONEPART_VDECL
);
8584 decl
= dv_as_decl (var
->dv
);
8590 for (i
= 0; i
< var
->n_var_parts
; i
++)
8591 if (var
->var_part
[i
].cur_loc
== NULL
&& var
->var_part
[i
].loc_chain
)
8592 var
->var_part
[i
].cur_loc
= var
->var_part
[i
].loc_chain
->loc
;
8593 for (i
= 0; i
< var
->n_var_parts
; i
++)
8595 machine_mode mode
, wider_mode
;
8597 HOST_WIDE_INT offset
;
8599 if (i
== 0 && var
->onepart
)
8601 gcc_checking_assert (var
->n_var_parts
== 1);
8603 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8604 loc2
= vt_expand_1pvar (var
, vars
);
8608 if (last_limit
< VAR_PART_OFFSET (var
, i
))
8613 else if (last_limit
> VAR_PART_OFFSET (var
, i
))
8615 offset
= VAR_PART_OFFSET (var
, i
);
8616 loc2
= var
->var_part
[i
].cur_loc
;
8617 if (loc2
&& GET_CODE (loc2
) == MEM
8618 && GET_CODE (XEXP (loc2
, 0)) == VALUE
)
8620 rtx depval
= XEXP (loc2
, 0);
8622 loc2
= vt_expand_loc (loc2
, vars
);
8625 loc_exp_insert_dep (var
, depval
, vars
);
8632 gcc_checking_assert (GET_CODE (loc2
) != VALUE
);
8633 for (lc
= var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
8634 if (var
->var_part
[i
].cur_loc
== lc
->loc
)
8636 initialized
= lc
->init
;
8642 offsets
[n_var_parts
] = offset
;
8648 loc
[n_var_parts
] = loc2
;
8649 mode
= GET_MODE (var
->var_part
[i
].cur_loc
);
8650 if (mode
== VOIDmode
&& var
->onepart
)
8651 mode
= DECL_MODE (decl
);
8652 last_limit
= offsets
[n_var_parts
] + GET_MODE_SIZE (mode
);
8654 /* Attempt to merge adjacent registers or memory. */
8655 wider_mode
= GET_MODE_WIDER_MODE (mode
);
8656 for (j
= i
+ 1; j
< var
->n_var_parts
; j
++)
8657 if (last_limit
<= VAR_PART_OFFSET (var
, j
))
8659 if (j
< var
->n_var_parts
8660 && wider_mode
!= VOIDmode
8661 && var
->var_part
[j
].cur_loc
8662 && mode
== GET_MODE (var
->var_part
[j
].cur_loc
)
8663 && (REG_P (loc
[n_var_parts
]) || MEM_P (loc
[n_var_parts
]))
8664 && last_limit
== (var
->onepart
? 0 : VAR_PART_OFFSET (var
, j
))
8665 && (loc2
= vt_expand_loc (var
->var_part
[j
].cur_loc
, vars
))
8666 && GET_CODE (loc
[n_var_parts
]) == GET_CODE (loc2
))
8670 if (REG_P (loc
[n_var_parts
])
8671 && hard_regno_nregs
[REGNO (loc
[n_var_parts
])][mode
] * 2
8672 == hard_regno_nregs
[REGNO (loc
[n_var_parts
])][wider_mode
]
8673 && end_hard_regno (mode
, REGNO (loc
[n_var_parts
]))
8676 if (! WORDS_BIG_ENDIAN
&& ! BYTES_BIG_ENDIAN
)
8677 new_loc
= simplify_subreg (wider_mode
, loc
[n_var_parts
],
8679 else if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
8680 new_loc
= simplify_subreg (wider_mode
, loc2
, mode
, 0);
8683 if (!REG_P (new_loc
)
8684 || REGNO (new_loc
) != REGNO (loc
[n_var_parts
]))
8687 REG_ATTRS (new_loc
) = REG_ATTRS (loc
[n_var_parts
]);
8690 else if (MEM_P (loc
[n_var_parts
])
8691 && GET_CODE (XEXP (loc2
, 0)) == PLUS
8692 && REG_P (XEXP (XEXP (loc2
, 0), 0))
8693 && CONST_INT_P (XEXP (XEXP (loc2
, 0), 1)))
8695 if ((REG_P (XEXP (loc
[n_var_parts
], 0))
8696 && rtx_equal_p (XEXP (loc
[n_var_parts
], 0),
8697 XEXP (XEXP (loc2
, 0), 0))
8698 && INTVAL (XEXP (XEXP (loc2
, 0), 1))
8699 == GET_MODE_SIZE (mode
))
8700 || (GET_CODE (XEXP (loc
[n_var_parts
], 0)) == PLUS
8701 && CONST_INT_P (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
8702 && rtx_equal_p (XEXP (XEXP (loc
[n_var_parts
], 0), 0),
8703 XEXP (XEXP (loc2
, 0), 0))
8704 && INTVAL (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
8705 + GET_MODE_SIZE (mode
)
8706 == INTVAL (XEXP (XEXP (loc2
, 0), 1))))
8707 new_loc
= adjust_address_nv (loc
[n_var_parts
],
8713 loc
[n_var_parts
] = new_loc
;
8715 last_limit
= offsets
[n_var_parts
] + GET_MODE_SIZE (mode
);
8721 type_size_unit
= TYPE_SIZE_UNIT (TREE_TYPE (decl
));
8722 if ((unsigned HOST_WIDE_INT
) last_limit
< TREE_INT_CST_LOW (type_size_unit
))
8725 if (! flag_var_tracking_uninit
)
8726 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8730 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, NULL_RTX
, initialized
);
8731 else if (n_var_parts
== 1)
8735 if (offsets
[0] || GET_CODE (loc
[0]) == PARALLEL
)
8736 expr_list
= gen_rtx_EXPR_LIST (VOIDmode
, loc
[0], GEN_INT (offsets
[0]));
8740 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, expr_list
, initialized
);
8742 else if (n_var_parts
)
8746 for (i
= 0; i
< n_var_parts
; i
++)
8748 = gen_rtx_EXPR_LIST (VOIDmode
, loc
[i
], GEN_INT (offsets
[i
]));
8750 parallel
= gen_rtx_PARALLEL (VOIDmode
,
8751 gen_rtvec_v (n_var_parts
, loc
));
8752 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
,
8753 parallel
, initialized
);
8756 if (where
!= EMIT_NOTE_BEFORE_INSN
)
8758 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8759 if (where
== EMIT_NOTE_AFTER_CALL_INSN
)
8760 NOTE_DURING_CALL_P (note
) = true;
8764 /* Make sure that the call related notes come first. */
8765 while (NEXT_INSN (insn
)
8767 && ((NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8768 && NOTE_DURING_CALL_P (insn
))
8769 || NOTE_KIND (insn
) == NOTE_INSN_CALL_ARG_LOCATION
))
8770 insn
= NEXT_INSN (insn
);
8772 && ((NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8773 && NOTE_DURING_CALL_P (insn
))
8774 || NOTE_KIND (insn
) == NOTE_INSN_CALL_ARG_LOCATION
))
8775 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8777 note
= emit_note_before (NOTE_INSN_VAR_LOCATION
, insn
);
8779 NOTE_VAR_LOCATION (note
) = note_vl
;
8781 set_dv_changed (var
->dv
, false);
8782 gcc_assert (var
->in_changed_variables
);
8783 var
->in_changed_variables
= false;
8784 changed_variables
->clear_slot (varp
);
8786 /* Continue traversing the hash table. */
8790 /* While traversing changed_variables, push onto DATA (a stack of RTX
8791 values) entries that aren't user variables. */
8794 var_track_values_to_stack (variable_def
**slot
,
8795 vec
<rtx
, va_heap
> *changed_values_stack
)
8797 variable var
= *slot
;
8799 if (var
->onepart
== ONEPART_VALUE
)
8800 changed_values_stack
->safe_push (dv_as_value (var
->dv
));
8801 else if (var
->onepart
== ONEPART_DEXPR
)
8802 changed_values_stack
->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var
->dv
)));
8807 /* Remove from changed_variables the entry whose DV corresponds to
8808 value or debug_expr VAL. */
8810 remove_value_from_changed_variables (rtx val
)
8812 decl_or_value dv
= dv_from_rtx (val
);
8813 variable_def
**slot
;
8816 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8819 var
->in_changed_variables
= false;
8820 changed_variables
->clear_slot (slot
);
8823 /* If VAL (a value or debug_expr) has backlinks to variables actively
8824 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8825 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8826 have dependencies of their own to notify. */
8829 notify_dependents_of_changed_value (rtx val
, variable_table_type
*htab
,
8830 vec
<rtx
, va_heap
> *changed_values_stack
)
8832 variable_def
**slot
;
8835 decl_or_value dv
= dv_from_rtx (val
);
8837 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8840 slot
= htab
->find_slot_with_hash (dv
, dv_htab_hash (dv
), NO_INSERT
);
8842 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8846 while ((led
= VAR_LOC_DEP_LST (var
)))
8848 decl_or_value ldv
= led
->dv
;
8851 /* Deactivate and remove the backlink, as it was “used up”. It
8852 makes no sense to attempt to notify the same entity again:
8853 either it will be recomputed and re-register an active
8854 dependency, or it will still have the changed mark. */
8856 led
->next
->pprev
= led
->pprev
;
8858 *led
->pprev
= led
->next
;
8862 if (dv_changed_p (ldv
))
8865 switch (dv_onepart_p (ldv
))
8869 set_dv_changed (ldv
, true);
8870 changed_values_stack
->safe_push (dv_as_rtx (ldv
));
8874 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8875 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar
));
8876 variable_was_changed (ivar
, NULL
);
8881 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8884 int i
= ivar
->n_var_parts
;
8887 rtx loc
= ivar
->var_part
[i
].cur_loc
;
8889 if (loc
&& GET_CODE (loc
) == MEM
8890 && XEXP (loc
, 0) == val
)
8892 variable_was_changed (ivar
, NULL
);
8905 /* Take out of changed_variables any entries that don't refer to use
8906 variables. Back-propagate change notifications from values and
8907 debug_exprs to their active dependencies in HTAB or in
8908 CHANGED_VARIABLES. */
8911 process_changed_values (variable_table_type
*htab
)
8915 auto_vec
<rtx
, 20> changed_values_stack
;
8917 /* Move values from changed_variables to changed_values_stack. */
8919 ->traverse
<vec
<rtx
, va_heap
>*, var_track_values_to_stack
>
8920 (&changed_values_stack
);
8922 /* Back-propagate change notifications in values while popping
8923 them from the stack. */
8924 for (n
= i
= changed_values_stack
.length ();
8925 i
> 0; i
= changed_values_stack
.length ())
8927 val
= changed_values_stack
.pop ();
8928 notify_dependents_of_changed_value (val
, htab
, &changed_values_stack
);
8930 /* This condition will hold when visiting each of the entries
8931 originally in changed_variables. We can't remove them
8932 earlier because this could drop the backlinks before we got a
8933 chance to use them. */
8936 remove_value_from_changed_variables (val
);
8942 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8943 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8944 the notes shall be emitted before of after instruction INSN. */
8947 emit_notes_for_changes (rtx_insn
*insn
, enum emit_note_where where
,
8950 emit_note_data data
;
8951 variable_table_type
*htab
= shared_hash_htab (vars
);
8953 if (!changed_variables
->elements ())
8956 if (MAY_HAVE_DEBUG_INSNS
)
8957 process_changed_values (htab
);
8964 ->traverse
<emit_note_data
*, emit_note_insn_var_location
> (&data
);
8967 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8968 same variable in hash table DATA or is not there at all. */
8971 emit_notes_for_differences_1 (variable_def
**slot
, variable_table_type
*new_vars
)
8973 variable old_var
, new_var
;
8976 new_var
= new_vars
->find_with_hash (old_var
->dv
, dv_htab_hash (old_var
->dv
));
8980 /* Variable has disappeared. */
8981 variable empty_var
= NULL
;
8983 if (old_var
->onepart
== ONEPART_VALUE
8984 || old_var
->onepart
== ONEPART_DEXPR
)
8986 empty_var
= variable_from_dropped (old_var
->dv
, NO_INSERT
);
8989 gcc_checking_assert (!empty_var
->in_changed_variables
);
8990 if (!VAR_LOC_1PAUX (old_var
))
8992 VAR_LOC_1PAUX (old_var
) = VAR_LOC_1PAUX (empty_var
);
8993 VAR_LOC_1PAUX (empty_var
) = NULL
;
8996 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
9002 empty_var
= onepart_pool_allocate (old_var
->onepart
);
9003 empty_var
->dv
= old_var
->dv
;
9004 empty_var
->refcount
= 0;
9005 empty_var
->n_var_parts
= 0;
9006 empty_var
->onepart
= old_var
->onepart
;
9007 empty_var
->in_changed_variables
= false;
9010 if (empty_var
->onepart
)
9012 /* Propagate the auxiliary data to (ultimately)
9013 changed_variables. */
9014 empty_var
->var_part
[0].loc_chain
= NULL
;
9015 empty_var
->var_part
[0].cur_loc
= NULL
;
9016 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (old_var
);
9017 VAR_LOC_1PAUX (old_var
) = NULL
;
9019 variable_was_changed (empty_var
, NULL
);
9020 /* Continue traversing the hash table. */
9023 /* Update cur_loc and one-part auxiliary data, before new_var goes
9024 through variable_was_changed. */
9025 if (old_var
!= new_var
&& new_var
->onepart
)
9027 gcc_checking_assert (VAR_LOC_1PAUX (new_var
) == NULL
);
9028 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (old_var
);
9029 VAR_LOC_1PAUX (old_var
) = NULL
;
9030 new_var
->var_part
[0].cur_loc
= old_var
->var_part
[0].cur_loc
;
9032 if (variable_different_p (old_var
, new_var
))
9033 variable_was_changed (new_var
, NULL
);
9035 /* Continue traversing the hash table. */
9039 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9043 emit_notes_for_differences_2 (variable_def
**slot
, variable_table_type
*old_vars
)
9045 variable old_var
, new_var
;
9048 old_var
= old_vars
->find_with_hash (new_var
->dv
, dv_htab_hash (new_var
->dv
));
9052 for (i
= 0; i
< new_var
->n_var_parts
; i
++)
9053 new_var
->var_part
[i
].cur_loc
= NULL
;
9054 variable_was_changed (new_var
, NULL
);
9057 /* Continue traversing the hash table. */
9061 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9065 emit_notes_for_differences (rtx_insn
*insn
, dataflow_set
*old_set
,
9066 dataflow_set
*new_set
)
9068 shared_hash_htab (old_set
->vars
)
9069 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9070 (shared_hash_htab (new_set
->vars
));
9071 shared_hash_htab (new_set
->vars
)
9072 ->traverse
<variable_table_type
*, emit_notes_for_differences_2
>
9073 (shared_hash_htab (old_set
->vars
));
9074 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, new_set
->vars
);
9077 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9080 next_non_note_insn_var_location (rtx_insn
*insn
)
9084 insn
= NEXT_INSN (insn
);
9087 || NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
)
9094 /* Emit the notes for changes of location parts in the basic block BB. */
9097 emit_notes_in_bb (basic_block bb
, dataflow_set
*set
)
9100 micro_operation
*mo
;
9102 dataflow_set_clear (set
);
9103 dataflow_set_copy (set
, &VTI (bb
)->in
);
9105 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
9107 rtx_insn
*insn
= mo
->insn
;
9108 rtx_insn
*next_insn
= next_non_note_insn_var_location (insn
);
9113 dataflow_set_clear_at_call (set
, insn
);
9114 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_CALL_INSN
, set
->vars
);
9116 rtx arguments
= mo
->u
.loc
, *p
= &arguments
;
9120 XEXP (XEXP (*p
, 0), 1)
9121 = vt_expand_loc (XEXP (XEXP (*p
, 0), 1),
9122 shared_hash_htab (set
->vars
));
9123 /* If expansion is successful, keep it in the list. */
9124 if (XEXP (XEXP (*p
, 0), 1))
9126 /* Otherwise, if the following item is data_value for it,
9128 else if (XEXP (*p
, 1)
9129 && REG_P (XEXP (XEXP (*p
, 0), 0))
9130 && MEM_P (XEXP (XEXP (XEXP (*p
, 1), 0), 0))
9131 && REG_P (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0), 0),
9133 && REGNO (XEXP (XEXP (*p
, 0), 0))
9134 == REGNO (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0),
9136 *p
= XEXP (XEXP (*p
, 1), 1);
9137 /* Just drop this item. */
9141 note
= emit_note_after (NOTE_INSN_CALL_ARG_LOCATION
, insn
);
9142 NOTE_VAR_LOCATION (note
) = arguments
;
9148 rtx loc
= mo
->u
.loc
;
9151 var_reg_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9153 var_mem_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9155 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9161 rtx loc
= mo
->u
.loc
;
9165 if (GET_CODE (loc
) == CONCAT
)
9167 val
= XEXP (loc
, 0);
9168 vloc
= XEXP (loc
, 1);
9176 var
= PAT_VAR_LOCATION_DECL (vloc
);
9178 clobber_variable_part (set
, NULL_RTX
,
9179 dv_from_decl (var
), 0, NULL_RTX
);
9182 if (VAL_NEEDS_RESOLUTION (loc
))
9183 val_resolve (set
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
9184 set_variable_part (set
, val
, dv_from_decl (var
), 0,
9185 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9188 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
9189 set_variable_part (set
, PAT_VAR_LOCATION_LOC (vloc
),
9190 dv_from_decl (var
), 0,
9191 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9194 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9200 rtx loc
= mo
->u
.loc
;
9201 rtx val
, vloc
, uloc
;
9203 vloc
= uloc
= XEXP (loc
, 1);
9204 val
= XEXP (loc
, 0);
9206 if (GET_CODE (val
) == CONCAT
)
9208 uloc
= XEXP (val
, 1);
9209 val
= XEXP (val
, 0);
9212 if (VAL_NEEDS_RESOLUTION (loc
))
9213 val_resolve (set
, val
, vloc
, insn
);
9215 val_store (set
, val
, uloc
, insn
, false);
9217 if (VAL_HOLDS_TRACK_EXPR (loc
))
9219 if (GET_CODE (uloc
) == REG
)
9220 var_reg_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9222 else if (GET_CODE (uloc
) == MEM
)
9223 var_mem_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9227 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9233 rtx loc
= mo
->u
.loc
;
9234 rtx val
, vloc
, uloc
;
9238 uloc
= XEXP (vloc
, 1);
9239 val
= XEXP (vloc
, 0);
9242 if (GET_CODE (uloc
) == SET
)
9244 dstv
= SET_DEST (uloc
);
9245 srcv
= SET_SRC (uloc
);
9253 if (GET_CODE (val
) == CONCAT
)
9255 dstv
= vloc
= XEXP (val
, 1);
9256 val
= XEXP (val
, 0);
9259 if (GET_CODE (vloc
) == SET
)
9261 srcv
= SET_SRC (vloc
);
9263 gcc_assert (val
!= srcv
);
9264 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
9266 dstv
= vloc
= SET_DEST (vloc
);
9268 if (VAL_NEEDS_RESOLUTION (loc
))
9269 val_resolve (set
, val
, srcv
, insn
);
9271 else if (VAL_NEEDS_RESOLUTION (loc
))
9273 gcc_assert (GET_CODE (uloc
) == SET
9274 && GET_CODE (SET_SRC (uloc
)) == REG
);
9275 val_resolve (set
, val
, SET_SRC (uloc
), insn
);
9278 if (VAL_HOLDS_TRACK_EXPR (loc
))
9280 if (VAL_EXPR_IS_CLOBBERED (loc
))
9283 var_reg_delete (set
, uloc
, true);
9284 else if (MEM_P (uloc
))
9286 gcc_assert (MEM_P (dstv
));
9287 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
9288 var_mem_delete (set
, dstv
, true);
9293 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
9294 rtx src
= NULL
, dst
= uloc
;
9295 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
9297 if (GET_CODE (uloc
) == SET
)
9299 src
= SET_SRC (uloc
);
9300 dst
= SET_DEST (uloc
);
9305 status
= find_src_status (set
, src
);
9307 src
= find_src_set_src (set
, src
);
9311 var_reg_delete_and_set (set
, dst
, !copied_p
,
9313 else if (MEM_P (dst
))
9315 gcc_assert (MEM_P (dstv
));
9316 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
9317 var_mem_delete_and_set (set
, dstv
, !copied_p
,
9322 else if (REG_P (uloc
))
9323 var_regno_delete (set
, REGNO (uloc
));
9324 else if (MEM_P (uloc
))
9326 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
9327 gcc_checking_assert (vloc
== dstv
);
9329 clobber_overlapping_mems (set
, vloc
);
9332 val_store (set
, val
, dstv
, insn
, true);
9334 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9341 rtx loc
= mo
->u
.loc
;
9344 if (GET_CODE (loc
) == SET
)
9346 set_src
= SET_SRC (loc
);
9347 loc
= SET_DEST (loc
);
9351 var_reg_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9354 var_mem_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9357 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9364 rtx loc
= mo
->u
.loc
;
9365 enum var_init_status src_status
;
9368 if (GET_CODE (loc
) == SET
)
9370 set_src
= SET_SRC (loc
);
9371 loc
= SET_DEST (loc
);
9374 src_status
= find_src_status (set
, set_src
);
9375 set_src
= find_src_set_src (set
, set_src
);
9378 var_reg_delete_and_set (set
, loc
, false, src_status
, set_src
);
9380 var_mem_delete_and_set (set
, loc
, false, src_status
, set_src
);
9382 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9389 rtx loc
= mo
->u
.loc
;
9392 var_reg_delete (set
, loc
, false);
9394 var_mem_delete (set
, loc
, false);
9396 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9402 rtx loc
= mo
->u
.loc
;
9405 var_reg_delete (set
, loc
, true);
9407 var_mem_delete (set
, loc
, true);
9409 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9415 set
->stack_adjust
+= mo
->u
.adjust
;
9421 /* Emit notes for the whole function. */
9424 vt_emit_notes (void)
9429 gcc_assert (!changed_variables
->elements ());
9431 /* Free memory occupied by the out hash tables, as they aren't used
9433 FOR_EACH_BB_FN (bb
, cfun
)
9434 dataflow_set_clear (&VTI (bb
)->out
);
9436 /* Enable emitting notes by functions (mainly by set_variable_part and
9437 delete_variable_part). */
9440 if (MAY_HAVE_DEBUG_INSNS
)
9442 dropped_values
= new variable_table_type (cselib_get_next_uid () * 2);
9445 dataflow_set_init (&cur
);
9447 FOR_EACH_BB_FN (bb
, cfun
)
9449 /* Emit the notes for changes of variable locations between two
9450 subsequent basic blocks. */
9451 emit_notes_for_differences (BB_HEAD (bb
), &cur
, &VTI (bb
)->in
);
9453 if (MAY_HAVE_DEBUG_INSNS
)
9454 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
9456 /* Emit the notes for the changes in the basic block itself. */
9457 emit_notes_in_bb (bb
, &cur
);
9459 if (MAY_HAVE_DEBUG_INSNS
)
9460 delete local_get_addr_cache
;
9461 local_get_addr_cache
= NULL
;
9463 /* Free memory occupied by the in hash table, we won't need it
9465 dataflow_set_clear (&VTI (bb
)->in
);
9467 #ifdef ENABLE_CHECKING
9468 shared_hash_htab (cur
.vars
)
9469 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9470 (shared_hash_htab (empty_shared_hash
));
9472 dataflow_set_destroy (&cur
);
9474 if (MAY_HAVE_DEBUG_INSNS
)
9475 delete dropped_values
;
9476 dropped_values
= NULL
;
9481 /* If there is a declaration and offset associated with register/memory RTL
9482 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9485 vt_get_decl_and_offset (rtx rtl
, tree
*declp
, HOST_WIDE_INT
*offsetp
)
9489 if (REG_ATTRS (rtl
))
9491 *declp
= REG_EXPR (rtl
);
9492 *offsetp
= REG_OFFSET (rtl
);
9496 else if (GET_CODE (rtl
) == PARALLEL
)
9498 tree decl
= NULL_TREE
;
9499 HOST_WIDE_INT offset
= MAX_VAR_PARTS
;
9500 int len
= XVECLEN (rtl
, 0), i
;
9502 for (i
= 0; i
< len
; i
++)
9504 rtx reg
= XEXP (XVECEXP (rtl
, 0, i
), 0);
9505 if (!REG_P (reg
) || !REG_ATTRS (reg
))
9508 decl
= REG_EXPR (reg
);
9509 if (REG_EXPR (reg
) != decl
)
9511 if (REG_OFFSET (reg
) < offset
)
9512 offset
= REG_OFFSET (reg
);
9522 else if (MEM_P (rtl
))
9524 if (MEM_ATTRS (rtl
))
9526 *declp
= MEM_EXPR (rtl
);
9527 *offsetp
= INT_MEM_OFFSET (rtl
);
9534 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9538 record_entry_value (cselib_val
*val
, rtx rtl
)
9540 rtx ev
= gen_rtx_ENTRY_VALUE (GET_MODE (rtl
));
9542 ENTRY_VALUE_EXP (ev
) = rtl
;
9544 cselib_add_permanent_equiv (val
, ev
, get_insns ());
9547 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9550 vt_add_function_parameter (tree parm
)
9552 rtx decl_rtl
= DECL_RTL_IF_SET (parm
);
9553 rtx incoming
= DECL_INCOMING_RTL (parm
);
9556 HOST_WIDE_INT offset
;
9560 if (TREE_CODE (parm
) != PARM_DECL
)
9563 if (!decl_rtl
|| !incoming
)
9566 if (GET_MODE (decl_rtl
) == BLKmode
|| GET_MODE (incoming
) == BLKmode
)
9569 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9570 rewrite the incoming location of parameters passed on the stack
9571 into MEMs based on the argument pointer, so that incoming doesn't
9572 depend on a pseudo. */
9573 if (MEM_P (incoming
)
9574 && (XEXP (incoming
, 0) == crtl
->args
.internal_arg_pointer
9575 || (GET_CODE (XEXP (incoming
, 0)) == PLUS
9576 && XEXP (XEXP (incoming
, 0), 0)
9577 == crtl
->args
.internal_arg_pointer
9578 && CONST_INT_P (XEXP (XEXP (incoming
, 0), 1)))))
9580 HOST_WIDE_INT off
= -FIRST_PARM_OFFSET (current_function_decl
);
9581 if (GET_CODE (XEXP (incoming
, 0)) == PLUS
)
9582 off
+= INTVAL (XEXP (XEXP (incoming
, 0), 1));
9584 = replace_equiv_address_nv (incoming
,
9585 plus_constant (Pmode
,
9586 arg_pointer_rtx
, off
));
9589 #ifdef HAVE_window_save
9590 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9591 If the target machine has an explicit window save instruction, the
9592 actual entry value is the corresponding OUTGOING_REGNO instead. */
9593 if (HAVE_window_save
&& !crtl
->uses_only_leaf_regs
)
9595 if (REG_P (incoming
)
9596 && HARD_REGISTER_P (incoming
)
9597 && OUTGOING_REGNO (REGNO (incoming
)) != REGNO (incoming
))
9600 p
.incoming
= incoming
;
9602 = gen_rtx_REG_offset (incoming
, GET_MODE (incoming
),
9603 OUTGOING_REGNO (REGNO (incoming
)), 0);
9604 p
.outgoing
= incoming
;
9605 vec_safe_push (windowed_parm_regs
, p
);
9607 else if (GET_CODE (incoming
) == PARALLEL
)
9610 = gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (XVECLEN (incoming
, 0)));
9613 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9615 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9618 reg
= gen_rtx_REG_offset (reg
, GET_MODE (reg
),
9619 OUTGOING_REGNO (REGNO (reg
)), 0);
9621 XVECEXP (outgoing
, 0, i
)
9622 = gen_rtx_EXPR_LIST (VOIDmode
, reg
,
9623 XEXP (XVECEXP (incoming
, 0, i
), 1));
9624 vec_safe_push (windowed_parm_regs
, p
);
9627 incoming
= outgoing
;
9629 else if (MEM_P (incoming
)
9630 && REG_P (XEXP (incoming
, 0))
9631 && HARD_REGISTER_P (XEXP (incoming
, 0)))
9633 rtx reg
= XEXP (incoming
, 0);
9634 if (OUTGOING_REGNO (REGNO (reg
)) != REGNO (reg
))
9638 reg
= gen_raw_REG (GET_MODE (reg
), OUTGOING_REGNO (REGNO (reg
)));
9640 vec_safe_push (windowed_parm_regs
, p
);
9641 incoming
= replace_equiv_address_nv (incoming
, reg
);
9647 if (!vt_get_decl_and_offset (incoming
, &decl
, &offset
))
9649 if (MEM_P (incoming
))
9651 /* This means argument is passed by invisible reference. */
9657 if (!vt_get_decl_and_offset (decl_rtl
, &decl
, &offset
))
9659 offset
+= byte_lowpart_offset (GET_MODE (incoming
),
9660 GET_MODE (decl_rtl
));
9669 /* If that DECL_RTL wasn't a pseudo that got spilled to
9670 memory, bail out. Otherwise, the spill slot sharing code
9671 will force the memory to reference spill_slot_decl (%sfp),
9672 so we don't match above. That's ok, the pseudo must have
9673 referenced the entire parameter, so just reset OFFSET. */
9674 if (decl
!= get_spill_slot_decl (false))
9679 if (!track_loc_p (incoming
, parm
, offset
, false, &mode
, &offset
))
9682 out
= &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
;
9684 dv
= dv_from_decl (parm
);
9686 if (target_for_debug_bind (parm
)
9687 /* We can't deal with these right now, because this kind of
9688 variable is single-part. ??? We could handle parallels
9689 that describe multiple locations for the same single
9690 value, but ATM we don't. */
9691 && GET_CODE (incoming
) != PARALLEL
)
9696 /* ??? We shouldn't ever hit this, but it may happen because
9697 arguments passed by invisible reference aren't dealt with
9698 above: incoming-rtl will have Pmode rather than the
9699 expected mode for the type. */
9703 lowpart
= var_lowpart (mode
, incoming
);
9707 val
= cselib_lookup_from_insn (lowpart
, mode
, true,
9708 VOIDmode
, get_insns ());
9710 /* ??? Float-typed values in memory are not handled by
9714 preserve_value (val
);
9715 set_variable_part (out
, val
->val_rtx
, dv
, offset
,
9716 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9717 dv
= dv_from_value (val
->val_rtx
);
9720 if (MEM_P (incoming
))
9722 val
= cselib_lookup_from_insn (XEXP (incoming
, 0), mode
, true,
9723 VOIDmode
, get_insns ());
9726 preserve_value (val
);
9727 incoming
= replace_equiv_address_nv (incoming
, val
->val_rtx
);
9732 if (REG_P (incoming
))
9734 incoming
= var_lowpart (mode
, incoming
);
9735 gcc_assert (REGNO (incoming
) < FIRST_PSEUDO_REGISTER
);
9736 attrs_list_insert (&out
->regs
[REGNO (incoming
)], dv
, offset
,
9738 set_variable_part (out
, incoming
, dv
, offset
,
9739 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9740 if (dv_is_value_p (dv
))
9742 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv
)), incoming
);
9743 if (TREE_CODE (TREE_TYPE (parm
)) == REFERENCE_TYPE
9744 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm
))))
9746 machine_mode indmode
9747 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm
)));
9748 rtx mem
= gen_rtx_MEM (indmode
, incoming
);
9749 cselib_val
*val
= cselib_lookup_from_insn (mem
, indmode
, true,
9754 preserve_value (val
);
9755 record_entry_value (val
, mem
);
9756 set_variable_part (out
, mem
, dv_from_value (val
->val_rtx
), 0,
9757 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9762 else if (GET_CODE (incoming
) == PARALLEL
&& !dv_onepart_p (dv
))
9766 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9768 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9769 offset
= REG_OFFSET (reg
);
9770 gcc_assert (REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
9771 attrs_list_insert (&out
->regs
[REGNO (reg
)], dv
, offset
, reg
);
9772 set_variable_part (out
, reg
, dv
, offset
,
9773 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9776 else if (MEM_P (incoming
))
9778 incoming
= var_lowpart (mode
, incoming
);
9779 set_variable_part (out
, incoming
, dv
, offset
,
9780 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9784 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9787 vt_add_function_parameters (void)
9791 for (parm
= DECL_ARGUMENTS (current_function_decl
);
9792 parm
; parm
= DECL_CHAIN (parm
))
9793 if (!POINTER_BOUNDS_P (parm
))
9794 vt_add_function_parameter (parm
);
9796 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl
)))
9798 tree vexpr
= DECL_VALUE_EXPR (DECL_RESULT (current_function_decl
));
9800 if (TREE_CODE (vexpr
) == INDIRECT_REF
)
9801 vexpr
= TREE_OPERAND (vexpr
, 0);
9803 if (TREE_CODE (vexpr
) == PARM_DECL
9804 && DECL_ARTIFICIAL (vexpr
)
9805 && !DECL_IGNORED_P (vexpr
)
9806 && DECL_NAMELESS (vexpr
))
9807 vt_add_function_parameter (vexpr
);
9811 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9812 ensure it isn't flushed during cselib_reset_table.
9813 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9814 has been eliminated. */
9817 vt_init_cfa_base (void)
9821 #ifdef FRAME_POINTER_CFA_OFFSET
9822 cfa_base_rtx
= frame_pointer_rtx
;
9823 cfa_base_offset
= -FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9825 cfa_base_rtx
= arg_pointer_rtx
;
9826 cfa_base_offset
= -ARG_POINTER_CFA_OFFSET (current_function_decl
);
9828 if (cfa_base_rtx
== hard_frame_pointer_rtx
9829 || !fixed_regs
[REGNO (cfa_base_rtx
)])
9831 cfa_base_rtx
= NULL_RTX
;
9834 if (!MAY_HAVE_DEBUG_INSNS
)
9837 /* Tell alias analysis that cfa_base_rtx should share
9838 find_base_term value with stack pointer or hard frame pointer. */
9839 if (!frame_pointer_needed
)
9840 vt_equate_reg_base_value (cfa_base_rtx
, stack_pointer_rtx
);
9841 else if (!crtl
->stack_realign_tried
)
9842 vt_equate_reg_base_value (cfa_base_rtx
, hard_frame_pointer_rtx
);
9844 val
= cselib_lookup_from_insn (cfa_base_rtx
, GET_MODE (cfa_base_rtx
), 1,
9845 VOIDmode
, get_insns ());
9846 preserve_value (val
);
9847 cselib_preserve_cfa_base_value (val
, REGNO (cfa_base_rtx
));
9850 /* Allocate and initialize the data structures for variable tracking
9851 and parse the RTL to get the micro operations. */
9854 vt_initialize (void)
9857 HOST_WIDE_INT fp_cfa_offset
= -1;
9859 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def
));
9861 empty_shared_hash
= new shared_hash
;
9862 empty_shared_hash
->refcount
= 1;
9863 empty_shared_hash
->htab
= new variable_table_type (1);
9864 changed_variables
= new variable_table_type (10);
9866 /* Init the IN and OUT sets. */
9867 FOR_ALL_BB_FN (bb
, cfun
)
9869 VTI (bb
)->visited
= false;
9870 VTI (bb
)->flooded
= false;
9871 dataflow_set_init (&VTI (bb
)->in
);
9872 dataflow_set_init (&VTI (bb
)->out
);
9873 VTI (bb
)->permp
= NULL
;
9876 if (MAY_HAVE_DEBUG_INSNS
)
9878 cselib_init (CSELIB_RECORD_MEMORY
| CSELIB_PRESERVE_CONSTANTS
);
9879 scratch_regs
= BITMAP_ALLOC (NULL
);
9880 preserved_values
.create (256);
9881 global_get_addr_cache
= new hash_map
<rtx
, rtx
>;
9885 scratch_regs
= NULL
;
9886 global_get_addr_cache
= NULL
;
9889 if (MAY_HAVE_DEBUG_INSNS
)
9895 #ifdef FRAME_POINTER_CFA_OFFSET
9896 reg
= frame_pointer_rtx
;
9897 ofst
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9899 reg
= arg_pointer_rtx
;
9900 ofst
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
9903 ofst
-= INCOMING_FRAME_SP_OFFSET
;
9905 val
= cselib_lookup_from_insn (reg
, GET_MODE (reg
), 1,
9906 VOIDmode
, get_insns ());
9907 preserve_value (val
);
9908 if (reg
!= hard_frame_pointer_rtx
&& fixed_regs
[REGNO (reg
)])
9909 cselib_preserve_cfa_base_value (val
, REGNO (reg
));
9910 expr
= plus_constant (GET_MODE (stack_pointer_rtx
),
9911 stack_pointer_rtx
, -ofst
);
9912 cselib_add_permanent_equiv (val
, expr
, get_insns ());
9916 val
= cselib_lookup_from_insn (stack_pointer_rtx
,
9917 GET_MODE (stack_pointer_rtx
), 1,
9918 VOIDmode
, get_insns ());
9919 preserve_value (val
);
9920 expr
= plus_constant (GET_MODE (reg
), reg
, ofst
);
9921 cselib_add_permanent_equiv (val
, expr
, get_insns ());
9925 /* In order to factor out the adjustments made to the stack pointer or to
9926 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9927 instead of individual location lists, we're going to rewrite MEMs based
9928 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9929 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9930 resp. arg_pointer_rtx. We can do this either when there is no frame
9931 pointer in the function and stack adjustments are consistent for all
9932 basic blocks or when there is a frame pointer and no stack realignment.
9933 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9934 has been eliminated. */
9935 if (!frame_pointer_needed
)
9939 if (!vt_stack_adjustments ())
9942 #ifdef FRAME_POINTER_CFA_OFFSET
9943 reg
= frame_pointer_rtx
;
9945 reg
= arg_pointer_rtx
;
9947 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
9950 if (GET_CODE (elim
) == PLUS
)
9951 elim
= XEXP (elim
, 0);
9952 if (elim
== stack_pointer_rtx
)
9953 vt_init_cfa_base ();
9956 else if (!crtl
->stack_realign_tried
)
9960 #ifdef FRAME_POINTER_CFA_OFFSET
9961 reg
= frame_pointer_rtx
;
9962 fp_cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9964 reg
= arg_pointer_rtx
;
9965 fp_cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
9967 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
9970 if (GET_CODE (elim
) == PLUS
)
9972 fp_cfa_offset
-= INTVAL (XEXP (elim
, 1));
9973 elim
= XEXP (elim
, 0);
9975 if (elim
!= hard_frame_pointer_rtx
)
9982 /* If the stack is realigned and a DRAP register is used, we're going to
9983 rewrite MEMs based on it representing incoming locations of parameters
9984 passed on the stack into MEMs based on the argument pointer. Although
9985 we aren't going to rewrite other MEMs, we still need to initialize the
9986 virtual CFA pointer in order to ensure that the argument pointer will
9987 be seen as a constant throughout the function.
9989 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9990 else if (stack_realign_drap
)
9994 #ifdef FRAME_POINTER_CFA_OFFSET
9995 reg
= frame_pointer_rtx
;
9997 reg
= arg_pointer_rtx
;
9999 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10002 if (GET_CODE (elim
) == PLUS
)
10003 elim
= XEXP (elim
, 0);
10004 if (elim
== hard_frame_pointer_rtx
)
10005 vt_init_cfa_base ();
10009 hard_frame_pointer_adjustment
= -1;
10011 vt_add_function_parameters ();
10013 FOR_EACH_BB_FN (bb
, cfun
)
10016 HOST_WIDE_INT pre
, post
= 0;
10017 basic_block first_bb
, last_bb
;
10019 if (MAY_HAVE_DEBUG_INSNS
)
10021 cselib_record_sets_hook
= add_with_sets
;
10022 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10023 fprintf (dump_file
, "first value: %i\n",
10024 cselib_get_next_uid ());
10031 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
10032 || ! single_pred_p (bb
->next_bb
))
10034 e
= find_edge (bb
, bb
->next_bb
);
10035 if (! e
|| (e
->flags
& EDGE_FALLTHRU
) == 0)
10041 /* Add the micro-operations to the vector. */
10042 FOR_BB_BETWEEN (bb
, first_bb
, last_bb
->next_bb
, next_bb
)
10044 HOST_WIDE_INT offset
= VTI (bb
)->out
.stack_adjust
;
10045 VTI (bb
)->out
.stack_adjust
= VTI (bb
)->in
.stack_adjust
;
10046 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
));
10047 insn
= NEXT_INSN (insn
))
10051 if (!frame_pointer_needed
)
10053 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
10056 micro_operation mo
;
10057 mo
.type
= MO_ADJUST
;
10060 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10061 log_op_type (PATTERN (insn
), bb
, insn
,
10062 MO_ADJUST
, dump_file
);
10063 VTI (bb
)->mos
.safe_push (mo
);
10064 VTI (bb
)->out
.stack_adjust
+= pre
;
10068 cselib_hook_called
= false;
10069 adjust_insn (bb
, insn
);
10070 if (MAY_HAVE_DEBUG_INSNS
)
10073 prepare_call_arguments (bb
, insn
);
10074 cselib_process_insn (insn
);
10075 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10077 print_rtl_single (dump_file
, insn
);
10078 dump_cselib_table (dump_file
);
10081 if (!cselib_hook_called
)
10082 add_with_sets (insn
, 0, 0);
10083 cancel_changes (0);
10085 if (!frame_pointer_needed
&& post
)
10087 micro_operation mo
;
10088 mo
.type
= MO_ADJUST
;
10089 mo
.u
.adjust
= post
;
10091 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10092 log_op_type (PATTERN (insn
), bb
, insn
,
10093 MO_ADJUST
, dump_file
);
10094 VTI (bb
)->mos
.safe_push (mo
);
10095 VTI (bb
)->out
.stack_adjust
+= post
;
10098 if (fp_cfa_offset
!= -1
10099 && hard_frame_pointer_adjustment
== -1
10100 && fp_setter_insn (insn
))
10102 vt_init_cfa_base ();
10103 hard_frame_pointer_adjustment
= fp_cfa_offset
;
10104 /* Disassociate sp from fp now. */
10105 if (MAY_HAVE_DEBUG_INSNS
)
10108 cselib_invalidate_rtx (stack_pointer_rtx
);
10109 v
= cselib_lookup (stack_pointer_rtx
, Pmode
, 1,
10111 if (v
&& !cselib_preserved_value_p (v
))
10113 cselib_set_value_sp_based (v
);
10114 preserve_value (v
);
10120 gcc_assert (offset
== VTI (bb
)->out
.stack_adjust
);
10125 if (MAY_HAVE_DEBUG_INSNS
)
10127 cselib_preserve_only_values ();
10128 cselib_reset_table (cselib_get_next_uid ());
10129 cselib_record_sets_hook
= NULL
;
10133 hard_frame_pointer_adjustment
= -1;
10134 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->flooded
= true;
10135 cfa_base_rtx
= NULL_RTX
;
10139 /* This is *not* reset after each function. It gives each
10140 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10141 a unique label number. */
10143 static int debug_label_num
= 1;
10145 /* Get rid of all debug insns from the insn stream. */
10148 delete_debug_insns (void)
10151 rtx_insn
*insn
, *next
;
10153 if (!MAY_HAVE_DEBUG_INSNS
)
10156 FOR_EACH_BB_FN (bb
, cfun
)
10158 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10159 if (DEBUG_INSN_P (insn
))
10161 tree decl
= INSN_VAR_LOCATION_DECL (insn
);
10162 if (TREE_CODE (decl
) == LABEL_DECL
10163 && DECL_NAME (decl
)
10164 && !DECL_RTL_SET_P (decl
))
10166 PUT_CODE (insn
, NOTE
);
10167 NOTE_KIND (insn
) = NOTE_INSN_DELETED_DEBUG_LABEL
;
10168 NOTE_DELETED_LABEL_NAME (insn
)
10169 = IDENTIFIER_POINTER (DECL_NAME (decl
));
10170 SET_DECL_RTL (decl
, insn
);
10171 CODE_LABEL_NUMBER (insn
) = debug_label_num
++;
10174 delete_insn (insn
);
10179 /* Run a fast, BB-local only version of var tracking, to take care of
10180 information that we don't do global analysis on, such that not all
10181 information is lost. If SKIPPED holds, we're skipping the global
10182 pass entirely, so we should try to use information it would have
10183 handled as well.. */
10186 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED
)
10188 /* ??? Just skip it all for now. */
10189 delete_debug_insns ();
10192 /* Free the data structures needed for variable tracking. */
10199 FOR_EACH_BB_FN (bb
, cfun
)
10201 VTI (bb
)->mos
.release ();
10204 FOR_ALL_BB_FN (bb
, cfun
)
10206 dataflow_set_destroy (&VTI (bb
)->in
);
10207 dataflow_set_destroy (&VTI (bb
)->out
);
10208 if (VTI (bb
)->permp
)
10210 dataflow_set_destroy (VTI (bb
)->permp
);
10211 XDELETE (VTI (bb
)->permp
);
10214 free_aux_for_blocks ();
10215 delete empty_shared_hash
->htab
;
10216 empty_shared_hash
->htab
= NULL
;
10217 delete changed_variables
;
10218 changed_variables
= NULL
;
10219 attrs_def_pool
.release ();
10220 var_pool
.release ();
10221 location_chain_pool
.release ();
10222 shared_hash_pool
.release ();
10224 if (MAY_HAVE_DEBUG_INSNS
)
10226 if (global_get_addr_cache
)
10227 delete global_get_addr_cache
;
10228 global_get_addr_cache
= NULL
;
10229 loc_exp_dep_pool
.release ();
10230 valvar_pool
.release ();
10231 preserved_values
.release ();
10233 BITMAP_FREE (scratch_regs
);
10234 scratch_regs
= NULL
;
10237 #ifdef HAVE_window_save
10238 vec_free (windowed_parm_regs
);
10242 XDELETEVEC (vui_vec
);
10247 /* The entry point to variable tracking pass. */
10249 static inline unsigned int
10250 variable_tracking_main_1 (void)
10254 if (flag_var_tracking_assignments
< 0
10255 /* Var-tracking right now assumes the IR doesn't contain
10256 any pseudos at this point. */
10257 || targetm
.no_register_allocation
)
10259 delete_debug_insns ();
10263 if (n_basic_blocks_for_fn (cfun
) > 500 &&
10264 n_edges_for_fn (cfun
) / n_basic_blocks_for_fn (cfun
) >= 20)
10266 vt_debug_insns_local (true);
10270 mark_dfs_back_edges ();
10271 if (!vt_initialize ())
10274 vt_debug_insns_local (true);
10278 success
= vt_find_locations ();
10280 if (!success
&& flag_var_tracking_assignments
> 0)
10284 delete_debug_insns ();
10286 /* This is later restored by our caller. */
10287 flag_var_tracking_assignments
= 0;
10289 success
= vt_initialize ();
10290 gcc_assert (success
);
10292 success
= vt_find_locations ();
10298 vt_debug_insns_local (false);
10302 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10304 dump_dataflow_sets ();
10305 dump_reg_info (dump_file
);
10306 dump_flow_info (dump_file
, dump_flags
);
10309 timevar_push (TV_VAR_TRACKING_EMIT
);
10311 timevar_pop (TV_VAR_TRACKING_EMIT
);
10314 vt_debug_insns_local (false);
10319 variable_tracking_main (void)
10322 int save
= flag_var_tracking_assignments
;
10324 ret
= variable_tracking_main_1 ();
10326 flag_var_tracking_assignments
= save
;
10333 const pass_data pass_data_variable_tracking
=
10335 RTL_PASS
, /* type */
10336 "vartrack", /* name */
10337 OPTGROUP_NONE
, /* optinfo_flags */
10338 TV_VAR_TRACKING
, /* tv_id */
10339 0, /* properties_required */
10340 0, /* properties_provided */
10341 0, /* properties_destroyed */
10342 0, /* todo_flags_start */
10343 0, /* todo_flags_finish */
10346 class pass_variable_tracking
: public rtl_opt_pass
10349 pass_variable_tracking (gcc::context
*ctxt
)
10350 : rtl_opt_pass (pass_data_variable_tracking
, ctxt
)
10353 /* opt_pass methods: */
10354 virtual bool gate (function
*)
10356 return (flag_var_tracking
&& !targetm
.delay_vartrack
);
10359 virtual unsigned int execute (function
*)
10361 return variable_tracking_main ();
10364 }; // class pass_variable_tracking
10366 } // anon namespace
10369 make_pass_variable_tracking (gcc::context
*ctxt
)
10371 return new pass_variable_tracking (ctxt
);