1 /* LRA (local register allocator) driver and LRA utilities.
2 Copyright (C) 2010-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* The Local Register Allocator (LRA) is a replacement of former
23 reload pass. It is focused to simplify code solving the reload
24 pass tasks, to make the code maintenance easier, and to implement new
25 perspective optimizations.
27 The major LRA design solutions are:
28 o division small manageable, separated sub-tasks
29 o reflection of all transformations and decisions in RTL as more
31 o insn constraints as a primary source of the info (minimizing
32 number of target-depended macros/hooks)
34 In brief LRA works by iterative insn process with the final goal is
35 to satisfy all insn and address constraints:
36 o New reload insns (in brief reloads) and reload pseudos might be
38 o Some pseudos might be spilled to assign hard registers to
40 o Recalculating spilled pseudo values (rematerialization);
41 o Changing spilled pseudos to stack memory or their equivalences;
42 o Allocation stack memory changes the address displacement and
43 new iteration is needed.
45 Here is block diagram of LRA passes:
47 ------------------------
48 --------------- | Undo inheritance for | ---------------
49 | Memory-memory | | spilled pseudos, | | New (and old) |
50 | move coalesce |<---| splits for pseudos got |<-- | pseudos |
51 --------------- | the same hard regs, | | assignment |
52 Start | | and optional reloads | ---------------
53 | | ------------------------ ^
54 V | ---------------- |
55 ----------- V | Update virtual | |
56 | Remove |----> ------------>| register | |
57 | scratches | ^ | displacements | |
58 ----------- | ---------------- |
61 | ------------ pseudos -------------------
62 | |Constraints:| or insns | Inheritance/split |
63 | | RTL |--------->| transformations |
64 | | transfor- | | in EBB scope |
65 | substi- | mations | -------------------
66 | tutions ------------
69 | Spilled pseudo | -------------------
70 | to memory |<----| Rematerialization |
71 | substitution | -------------------
75 -------------------------
76 | Hard regs substitution, |
77 | devirtalization, and |------> Finish
78 | restoring scratches got |
80 -------------------------
82 To speed up the process:
83 o We process only insns affected by changes on previous
85 o We don't use DFA-infrastructure because it results in much slower
86 compiler speed than a special IR described below does;
87 o We use a special insn representation for quick access to insn
88 info which is always *synchronized* with the current RTL;
89 o Insn IR is minimized by memory. It is divided on three parts:
90 o one specific for each insn in RTL (only operand locations);
91 o one common for all insns in RTL with the same insn code
92 (different operand attributes from machine descriptions);
93 o one oriented for maintenance of live info (list of pseudos).
95 o all insns where the pseudo is referenced;
96 o live info (conflicting hard regs, live ranges, # of
98 o data used for assigning (preferred hard regs, costs etc).
100 This file contains LRA driver, LRA utility functions and data, and
101 code for dealing with scratches. */
105 #include "coretypes.h"
113 #include "insn-config.h"
114 #include "insn-codes.h"
117 #include "addresses.h"
125 #include "emit-rtl.h"
130 #include "cfgbuild.h"
132 #include "tree-pass.h"
136 #include "alloc-pool.h"
138 #include "insn-attr.h"
141 /* Dump bitmap SET with TITLE and BB INDEX. */
143 lra_dump_bitmap_with_title (const char *title
, bitmap set
, int index
)
148 static const int max_nums_on_line
= 10;
150 if (bitmap_empty_p (set
))
152 fprintf (lra_dump_file
, " %s %d:", title
, index
);
153 fprintf (lra_dump_file
, "\n");
154 count
= max_nums_on_line
+ 1;
155 EXECUTE_IF_SET_IN_BITMAP (set
, 0, i
, bi
)
157 if (count
> max_nums_on_line
)
159 fprintf (lra_dump_file
, "\n ");
162 fprintf (lra_dump_file
, " %4u", i
);
165 fprintf (lra_dump_file
, "\n");
168 /* Hard registers currently not available for allocation. It can
169 changed after some hard registers become not eliminable. */
170 HARD_REG_SET lra_no_alloc_regs
;
172 static int get_new_reg_value (void);
173 static void expand_reg_info (void);
174 static void invalidate_insn_recog_data (int);
175 static int get_insn_freq (rtx_insn
*);
176 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t
,
179 /* Expand all regno related info needed for LRA. */
181 expand_reg_data (int old
)
185 ira_expand_reg_equiv ();
186 for (int i
= (int) max_reg_num () - 1; i
>= old
; i
--)
187 lra_change_class (i
, ALL_REGS
, " Set", true);
190 /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
191 or of VOIDmode, use MD_MODE for the new reg. Initialize its
192 register class to RCLASS. Print message about assigning class
193 RCLASS containing new register name TITLE unless it is NULL. Use
194 attributes of ORIGINAL if it is a register. The created register
195 will have unique held value. */
197 lra_create_new_reg_with_unique_value (machine_mode md_mode
, rtx original
,
198 enum reg_class rclass
, const char *title
)
203 if (original
== NULL_RTX
|| (mode
= GET_MODE (original
)) == VOIDmode
)
205 lra_assert (mode
!= VOIDmode
);
206 new_reg
= gen_reg_rtx (mode
);
207 if (original
== NULL_RTX
|| ! REG_P (original
))
209 if (lra_dump_file
!= NULL
)
210 fprintf (lra_dump_file
, " Creating newreg=%i", REGNO (new_reg
));
214 if (ORIGINAL_REGNO (original
) >= FIRST_PSEUDO_REGISTER
)
215 ORIGINAL_REGNO (new_reg
) = ORIGINAL_REGNO (original
);
216 REG_USERVAR_P (new_reg
) = REG_USERVAR_P (original
);
217 REG_POINTER (new_reg
) = REG_POINTER (original
);
218 REG_ATTRS (new_reg
) = REG_ATTRS (original
);
219 if (lra_dump_file
!= NULL
)
220 fprintf (lra_dump_file
, " Creating newreg=%i from oldreg=%i",
221 REGNO (new_reg
), REGNO (original
));
223 if (lra_dump_file
!= NULL
)
226 fprintf (lra_dump_file
, ", assigning class %s to%s%s r%d",
227 reg_class_names
[rclass
], *title
== '\0' ? "" : " ",
228 title
, REGNO (new_reg
));
229 fprintf (lra_dump_file
, "\n");
231 expand_reg_data (max_reg_num ());
232 setup_reg_classes (REGNO (new_reg
), rclass
, NO_REGS
, rclass
);
236 /* Analogous to the previous function but also inherits value of
239 lra_create_new_reg (machine_mode md_mode
, rtx original
,
240 enum reg_class rclass
, const char *title
)
245 = lra_create_new_reg_with_unique_value (md_mode
, original
, rclass
, title
);
246 if (original
!= NULL_RTX
&& REG_P (original
))
247 lra_assign_reg_val (REGNO (original
), REGNO (new_reg
));
251 /* Set up for REGNO unique hold value. */
253 lra_set_regno_unique_value (int regno
)
255 lra_reg_info
[regno
].val
= get_new_reg_value ();
258 /* Invalidate INSN related info used by LRA. The info should never be
261 lra_invalidate_insn_data (rtx_insn
*insn
)
263 lra_invalidate_insn_regno_info (insn
);
264 invalidate_insn_recog_data (INSN_UID (insn
));
267 /* Mark INSN deleted and invalidate the insn related info used by
270 lra_set_insn_deleted (rtx_insn
*insn
)
272 lra_invalidate_insn_data (insn
);
273 SET_INSN_DELETED (insn
);
276 /* Delete an unneeded INSN and any previous insns who sole purpose is
277 loading data that is dead in INSN. */
279 lra_delete_dead_insn (rtx_insn
*insn
)
281 rtx_insn
*prev
= prev_real_insn (insn
);
284 /* If the previous insn sets a register that dies in our insn,
286 if (prev
&& GET_CODE (PATTERN (prev
)) == SET
287 && (prev_dest
= SET_DEST (PATTERN (prev
)), REG_P (prev_dest
))
288 && reg_mentioned_p (prev_dest
, PATTERN (insn
))
289 && find_regno_note (insn
, REG_DEAD
, REGNO (prev_dest
))
290 && ! side_effects_p (SET_SRC (PATTERN (prev
))))
291 lra_delete_dead_insn (prev
);
293 lra_set_insn_deleted (insn
);
296 /* Emit insn x = y + z. Return NULL if we failed to do it.
297 Otherwise, return the insn. We don't use gen_add3_insn as it might
300 emit_add3_insn (rtx x
, rtx y
, rtx z
)
304 last
= get_last_insn ();
306 if (have_addptr3_insn (x
, y
, z
))
308 rtx_insn
*insn
= gen_addptr3_insn (x
, y
, z
);
310 /* If the target provides an "addptr" pattern it hopefully does
311 for a reason. So falling back to the normal add would be
313 lra_assert (insn
!= NULL_RTX
);
318 rtx_insn
*insn
= emit_insn (gen_rtx_SET (x
, gen_rtx_PLUS (GET_MODE (y
),
320 if (recog_memoized (insn
) < 0)
322 delete_insns_since (last
);
328 /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
331 emit_add2_insn (rtx x
, rtx y
)
333 rtx_insn
*insn
= emit_add3_insn (x
, x
, y
);
334 if (insn
== NULL_RTX
)
336 insn
= gen_add2_insn (x
, y
);
337 if (insn
!= NULL_RTX
)
343 /* Target checks operands through operand predicates to recognize an
344 insn. We should have a special precaution to generate add insns
345 which are frequent results of elimination.
347 Emit insns for x = y + z. X can be used to store intermediate
348 values and should be not in Y and Z when we use X to store an
349 intermediate value. Y + Z should form [base] [+ index[ * scale]] [
350 + disp] where base and index are registers, disp and scale are
351 constants. Y should contain base if it is present, Z should
352 contain disp if any. index[*scale] can be part of Y or Z. */
354 lra_emit_add (rtx x
, rtx y
, rtx z
)
358 rtx a1
, a2
, base
, index
, disp
, scale
, index_scale
;
361 rtx_insn
*add3_insn
= emit_add3_insn (x
, y
, z
);
362 old
= max_reg_num ();
363 if (add3_insn
!= NULL
)
367 disp
= a2
= NULL_RTX
;
368 if (GET_CODE (y
) == PLUS
)
382 index_scale
= scale
= NULL_RTX
;
383 if (GET_CODE (a1
) == MULT
)
386 index
= XEXP (a1
, 0);
387 scale
= XEXP (a1
, 1);
390 else if (a2
!= NULL_RTX
&& GET_CODE (a2
) == MULT
)
393 index
= XEXP (a2
, 0);
394 scale
= XEXP (a2
, 1);
402 if (! (REG_P (base
) || GET_CODE (base
) == SUBREG
)
403 || (index
!= NULL_RTX
404 && ! (REG_P (index
) || GET_CODE (index
) == SUBREG
))
405 || (disp
!= NULL_RTX
&& ! CONSTANT_P (disp
))
406 || (scale
!= NULL_RTX
&& ! CONSTANT_P (scale
)))
408 /* Probably we have no 3 op add. Last chance is to use 2-op
409 add insn. To succeed, don't move Z to X as an address
410 segment always comes in Y. Otherwise, we might fail when
411 adding the address segment to register. */
412 lra_assert (x
!= y
&& x
!= z
);
413 emit_move_insn (x
, y
);
414 rtx_insn
*insn
= emit_add2_insn (x
, z
);
415 lra_assert (insn
!= NULL_RTX
);
419 if (index_scale
== NULL_RTX
)
421 if (disp
== NULL_RTX
)
423 /* Generate x = index_scale; x = x + base. */
424 lra_assert (index_scale
!= NULL_RTX
&& base
!= NULL_RTX
);
425 emit_move_insn (x
, index_scale
);
426 rtx_insn
*insn
= emit_add2_insn (x
, base
);
427 lra_assert (insn
!= NULL_RTX
);
429 else if (scale
== NULL_RTX
)
431 /* Try x = base + disp. */
432 lra_assert (base
!= NULL_RTX
);
433 last
= get_last_insn ();
434 rtx_insn
*move_insn
=
435 emit_move_insn (x
, gen_rtx_PLUS (GET_MODE (base
), base
, disp
));
436 if (recog_memoized (move_insn
) < 0)
438 delete_insns_since (last
);
439 /* Generate x = disp; x = x + base. */
440 emit_move_insn (x
, disp
);
441 rtx_insn
*add2_insn
= emit_add2_insn (x
, base
);
442 lra_assert (add2_insn
!= NULL_RTX
);
444 /* Generate x = x + index. */
445 if (index
!= NULL_RTX
)
447 rtx_insn
*insn
= emit_add2_insn (x
, index
);
448 lra_assert (insn
!= NULL_RTX
);
453 /* Try x = index_scale; x = x + disp; x = x + base. */
454 last
= get_last_insn ();
455 rtx_insn
*move_insn
= emit_move_insn (x
, index_scale
);
457 if (recog_memoized (move_insn
) >= 0)
459 rtx_insn
*insn
= emit_add2_insn (x
, disp
);
460 if (insn
!= NULL_RTX
)
462 insn
= emit_add2_insn (x
, base
);
463 if (insn
!= NULL_RTX
)
469 delete_insns_since (last
);
470 /* Generate x = disp; x = x + base; x = x + index_scale. */
471 emit_move_insn (x
, disp
);
472 rtx_insn
*insn
= emit_add2_insn (x
, base
);
473 lra_assert (insn
!= NULL_RTX
);
474 insn
= emit_add2_insn (x
, index_scale
);
475 lra_assert (insn
!= NULL_RTX
);
480 /* Functions emit_... can create pseudos -- so expand the pseudo
482 if (old
!= max_reg_num ())
483 expand_reg_data (old
);
486 /* The number of emitted reload insns so far. */
487 int lra_curr_reload_num
;
489 /* Emit x := y, processing special case when y = u + v or y = u + v *
490 scale + w through emit_add (Y can be an address which is base +
491 index reg * scale + displacement in general case). X may be used
492 as intermediate result therefore it should be not in Y. */
494 lra_emit_move (rtx x
, rtx y
)
498 if (GET_CODE (y
) != PLUS
)
500 if (rtx_equal_p (x
, y
))
502 old
= max_reg_num ();
503 emit_move_insn (x
, y
);
505 lra_reg_info
[ORIGINAL_REGNO (x
)].last_reload
= ++lra_curr_reload_num
;
506 /* Function emit_move can create pseudos -- so expand the pseudo
508 if (old
!= max_reg_num ())
509 expand_reg_data (old
);
512 lra_emit_add (x
, XEXP (y
, 0), XEXP (y
, 1));
515 /* Update insn operands which are duplication of operands whose
516 numbers are in array of NOPS (with end marker -1). The insn is
517 represented by its LRA internal representation ID. */
519 lra_update_dups (lra_insn_recog_data_t id
, signed char *nops
)
522 struct lra_static_insn_data
*static_id
= id
->insn_static_data
;
524 for (i
= 0; i
< static_id
->n_dups
; i
++)
525 for (j
= 0; (nop
= nops
[j
]) >= 0; j
++)
526 if (static_id
->dup_num
[i
] == nop
)
527 *id
->dup_loc
[i
] = *id
->operand_loc
[nop
];
532 /* This page contains code dealing with info about registers in the
535 /* Pools for insn reg info. */
536 object_allocator
<lra_insn_reg
> lra_insn_reg_pool ("insn regs");
538 /* Create LRA insn related info about a reference to REGNO in INSN with
539 TYPE (in/out/inout), biggest reference mode MODE, flag that it is
540 reference through subreg (SUBREG_P), flag that is early clobbered
541 in the insn (EARLY_CLOBBER), and reference to the next insn reg
543 static struct lra_insn_reg
*
544 new_insn_reg (rtx_insn
*insn
, int regno
, enum op_type type
,
546 bool subreg_p
, bool early_clobber
, struct lra_insn_reg
*next
)
548 lra_insn_reg
*ir
= lra_insn_reg_pool
.allocate ();
550 ir
->biggest_mode
= mode
;
551 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (lra_reg_info
[regno
].biggest_mode
)
552 && NONDEBUG_INSN_P (insn
))
553 lra_reg_info
[regno
].biggest_mode
= mode
;
554 ir
->subreg_p
= subreg_p
;
555 ir
->early_clobber
= early_clobber
;
561 /* Free insn reg info list IR. */
563 free_insn_regs (struct lra_insn_reg
*ir
)
565 struct lra_insn_reg
*next_ir
;
567 for (; ir
!= NULL
; ir
= next_ir
)
570 lra_insn_reg_pool
.remove (ir
);
574 /* Finish pool for insn reg info. */
576 finish_insn_regs (void)
578 lra_insn_reg_pool
.release ();
583 /* This page contains code dealing LRA insn info (or in other words
584 LRA internal insn representation). */
586 /* Map INSN_CODE -> the static insn data. This info is valid during
587 all translation unit. */
588 struct lra_static_insn_data
*insn_code_data
[NUM_INSN_CODES
];
590 /* Debug insns are represented as a special insn with one input
591 operand which is RTL expression in var_location. */
593 /* The following data are used as static insn operand data for all
594 debug insns. If structure lra_operand_data is changed, the
595 initializer should be changed too. */
596 static struct lra_operand_data debug_operand_data
=
598 NULL
, /* alternative */
599 VOIDmode
, /* We are not interesting in the operand mode. */
604 /* The following data are used as static insn data for all debug
605 insns. If structure lra_static_insn_data is changed, the
606 initializer should be changed too. */
607 static struct lra_static_insn_data debug_insn_static_data
=
610 0, /* Duplication operands #. */
611 -1, /* Commutative operand #. */
612 1, /* Operands #. There is only one operand which is debug RTL
614 0, /* Duplications #. */
615 0, /* Alternatives #. We are not interesting in alternatives
616 because we does not proceed debug_insns for reloads. */
617 NULL
, /* Hard registers referenced in machine description. */
618 NULL
/* Descriptions of operands in alternatives. */
621 /* Called once per compiler work to initialize some LRA data related
624 init_insn_code_data_once (void)
626 memset (insn_code_data
, 0, sizeof (insn_code_data
));
629 /* Called once per compiler work to finalize some LRA data related to
632 finish_insn_code_data_once (void)
634 for (unsigned int i
= 0; i
< NUM_INSN_CODES
; i
++)
636 if (insn_code_data
[i
] != NULL
)
637 free (insn_code_data
[i
]);
641 /* Return static insn data, allocate and setup if necessary. Although
642 dup_num is static data (it depends only on icode), to set it up we
643 need to extract insn first. So recog_data should be valid for
644 normal insn (ICODE >= 0) before the call. */
645 static struct lra_static_insn_data
*
646 get_static_insn_data (int icode
, int nop
, int ndup
, int nalt
)
648 struct lra_static_insn_data
*data
;
651 lra_assert (icode
< (int) NUM_INSN_CODES
);
652 if (icode
>= 0 && (data
= insn_code_data
[icode
]) != NULL
)
654 lra_assert (nop
>= 0 && ndup
>= 0 && nalt
>= 0);
655 n_bytes
= sizeof (struct lra_static_insn_data
)
656 + sizeof (struct lra_operand_data
) * nop
657 + sizeof (int) * ndup
;
658 data
= XNEWVAR (struct lra_static_insn_data
, n_bytes
);
659 data
->operand_alternative
= NULL
;
660 data
->n_operands
= nop
;
662 data
->n_alternatives
= nalt
;
663 data
->operand
= ((struct lra_operand_data
*)
664 ((char *) data
+ sizeof (struct lra_static_insn_data
)));
665 data
->dup_num
= ((int *) ((char *) data
->operand
666 + sizeof (struct lra_operand_data
) * nop
));
671 insn_code_data
[icode
] = data
;
672 for (i
= 0; i
< nop
; i
++)
674 data
->operand
[i
].constraint
675 = insn_data
[icode
].operand
[i
].constraint
;
676 data
->operand
[i
].mode
= insn_data
[icode
].operand
[i
].mode
;
677 data
->operand
[i
].strict_low
= insn_data
[icode
].operand
[i
].strict_low
;
678 data
->operand
[i
].is_operator
679 = insn_data
[icode
].operand
[i
].is_operator
;
680 data
->operand
[i
].type
681 = (data
->operand
[i
].constraint
[0] == '=' ? OP_OUT
682 : data
->operand
[i
].constraint
[0] == '+' ? OP_INOUT
684 data
->operand
[i
].is_address
= false;
686 for (i
= 0; i
< ndup
; i
++)
687 data
->dup_num
[i
] = recog_data
.dup_num
[i
];
692 /* The current length of the following array. */
693 int lra_insn_recog_data_len
;
695 /* Map INSN_UID -> the insn recog data (NULL if unknown). */
696 lra_insn_recog_data_t
*lra_insn_recog_data
;
698 /* Initialize LRA data about insns. */
700 init_insn_recog_data (void)
702 lra_insn_recog_data_len
= 0;
703 lra_insn_recog_data
= NULL
;
706 /* Expand, if necessary, LRA data about insns. */
708 check_and_expand_insn_recog_data (int index
)
712 if (lra_insn_recog_data_len
> index
)
714 old
= lra_insn_recog_data_len
;
715 lra_insn_recog_data_len
= index
* 3 / 2 + 1;
716 lra_insn_recog_data
= XRESIZEVEC (lra_insn_recog_data_t
,
718 lra_insn_recog_data_len
);
719 for (i
= old
; i
< lra_insn_recog_data_len
; i
++)
720 lra_insn_recog_data
[i
] = NULL
;
723 /* Finish LRA DATA about insn. */
725 free_insn_recog_data (lra_insn_recog_data_t data
)
727 if (data
->operand_loc
!= NULL
)
728 free (data
->operand_loc
);
729 if (data
->dup_loc
!= NULL
)
730 free (data
->dup_loc
);
731 if (data
->arg_hard_regs
!= NULL
)
732 free (data
->arg_hard_regs
);
733 if (data
->icode
< 0 && NONDEBUG_INSN_P (data
->insn
))
735 if (data
->insn_static_data
->operand_alternative
!= NULL
)
736 free (const_cast <operand_alternative
*>
737 (data
->insn_static_data
->operand_alternative
));
738 free_insn_regs (data
->insn_static_data
->hard_regs
);
739 free (data
->insn_static_data
);
741 free_insn_regs (data
->regs
);
746 /* Pools for copies. */
747 static object_allocator
<lra_copy
> lra_copy_pool ("lra copies");
749 /* Finish LRA data about all insns. */
751 finish_insn_recog_data (void)
754 lra_insn_recog_data_t data
;
756 for (i
= 0; i
< lra_insn_recog_data_len
; i
++)
757 if ((data
= lra_insn_recog_data
[i
]) != NULL
)
758 free_insn_recog_data (data
);
760 lra_copy_pool
.release ();
761 lra_insn_reg_pool
.release ();
762 free (lra_insn_recog_data
);
765 /* Setup info about operands in alternatives of LRA DATA of insn. */
767 setup_operand_alternative (lra_insn_recog_data_t data
,
768 const operand_alternative
*op_alt
)
771 int icode
= data
->icode
;
772 struct lra_static_insn_data
*static_data
= data
->insn_static_data
;
774 static_data
->commutative
= -1;
775 nop
= static_data
->n_operands
;
776 nalt
= static_data
->n_alternatives
;
777 static_data
->operand_alternative
= op_alt
;
778 for (i
= 0; i
< nop
; i
++)
780 static_data
->operand
[i
].early_clobber
= false;
781 static_data
->operand
[i
].is_address
= false;
782 if (static_data
->operand
[i
].constraint
[0] == '%')
784 /* We currently only support one commutative pair of operands. */
785 if (static_data
->commutative
< 0)
786 static_data
->commutative
= i
;
788 lra_assert (icode
< 0); /* Asm */
789 /* The last operand should not be marked commutative. */
790 lra_assert (i
!= nop
- 1);
793 for (j
= 0; j
< nalt
; j
++)
794 for (i
= 0; i
< nop
; i
++, op_alt
++)
796 static_data
->operand
[i
].early_clobber
|= op_alt
->earlyclobber
;
797 static_data
->operand
[i
].is_address
|= op_alt
->is_address
;
801 /* Recursively process X and collect info about registers, which are
802 not the insn operands, in X with TYPE (in/out/inout) and flag that
803 it is early clobbered in the insn (EARLY_CLOBBER) and add the info
804 to LIST. X is a part of insn given by DATA. Return the result
806 static struct lra_insn_reg
*
807 collect_non_operand_hard_regs (rtx
*x
, lra_insn_recog_data_t data
,
808 struct lra_insn_reg
*list
,
809 enum op_type type
, bool early_clobber
)
811 int i
, j
, regno
, last
;
814 struct lra_insn_reg
*curr
;
816 enum rtx_code code
= GET_CODE (op
);
817 const char *fmt
= GET_RTX_FORMAT (code
);
819 for (i
= 0; i
< data
->insn_static_data
->n_operands
; i
++)
820 if (x
== data
->operand_loc
[i
])
821 /* It is an operand loc. Stop here. */
823 for (i
= 0; i
< data
->insn_static_data
->n_dups
; i
++)
824 if (x
== data
->dup_loc
[i
])
825 /* It is a dup loc. Stop here. */
827 mode
= GET_MODE (op
);
831 op
= SUBREG_REG (op
);
832 code
= GET_CODE (op
);
833 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (op
)))
835 mode
= GET_MODE (op
);
836 if (GET_MODE_SIZE (mode
) > REGMODE_NATURAL_SIZE (mode
))
842 if ((regno
= REGNO (op
)) >= FIRST_PSEUDO_REGISTER
)
844 /* Process all regs even unallocatable ones as we need info
845 about all regs for rematerialization pass. */
846 for (last
= regno
+ hard_regno_nregs
[regno
][mode
];
850 for (curr
= list
; curr
!= NULL
; curr
= curr
->next
)
851 if (curr
->regno
== regno
&& curr
->subreg_p
== subreg_p
852 && curr
->biggest_mode
== mode
)
854 if (curr
->type
!= type
)
855 curr
->type
= OP_INOUT
;
856 if (curr
->early_clobber
!= early_clobber
)
857 curr
->early_clobber
= true;
862 /* This is a new hard regno or the info can not be
863 integrated into the found structure. */
867 /* This clobber is to inform popping floating
869 && ! (FIRST_STACK_REG
<= regno
870 && regno
<= LAST_STACK_REG
));
872 list
= new_insn_reg (data
->insn
, regno
, type
, mode
, subreg_p
,
873 early_clobber
, list
);
881 list
= collect_non_operand_hard_regs (&SET_DEST (op
), data
,
882 list
, OP_OUT
, false);
883 list
= collect_non_operand_hard_regs (&SET_SRC (op
), data
,
887 /* We treat clobber of non-operand hard registers as early
888 clobber (the behavior is expected from asm). */
889 list
= collect_non_operand_hard_regs (&XEXP (op
, 0), data
,
892 case PRE_INC
: case PRE_DEC
: case POST_INC
: case POST_DEC
:
893 list
= collect_non_operand_hard_regs (&XEXP (op
, 0), data
,
894 list
, OP_INOUT
, false);
896 case PRE_MODIFY
: case POST_MODIFY
:
897 list
= collect_non_operand_hard_regs (&XEXP (op
, 0), data
,
898 list
, OP_INOUT
, false);
899 list
= collect_non_operand_hard_regs (&XEXP (op
, 1), data
,
903 fmt
= GET_RTX_FORMAT (code
);
904 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
907 list
= collect_non_operand_hard_regs (&XEXP (op
, i
), data
,
909 else if (fmt
[i
] == 'E')
910 for (j
= XVECLEN (op
, i
) - 1; j
>= 0; j
--)
911 list
= collect_non_operand_hard_regs (&XVECEXP (op
, i
, j
), data
,
918 /* Set up and return info about INSN. Set up the info if it is not set up
920 lra_insn_recog_data_t
921 lra_set_insn_recog_data (rtx_insn
*insn
)
923 lra_insn_recog_data_t data
;
926 unsigned int uid
= INSN_UID (insn
);
927 struct lra_static_insn_data
*insn_static_data
;
929 check_and_expand_insn_recog_data (uid
);
930 if (DEBUG_INSN_P (insn
))
934 icode
= INSN_CODE (insn
);
936 /* It might be a new simple insn which is not recognized yet. */
937 INSN_CODE (insn
) = icode
= recog_memoized (insn
);
939 data
= XNEW (struct lra_insn_recog_data
);
940 lra_insn_recog_data
[uid
] = data
;
942 data
->used_insn_alternative
= -1;
945 if (DEBUG_INSN_P (insn
))
947 data
->insn_static_data
= &debug_insn_static_data
;
948 data
->dup_loc
= NULL
;
949 data
->arg_hard_regs
= NULL
;
950 data
->preferred_alternatives
= ALL_ALTERNATIVES
;
951 data
->operand_loc
= XNEWVEC (rtx
*, 1);
952 data
->operand_loc
[0] = &INSN_VAR_LOCATION_LOC (insn
);
958 machine_mode operand_mode
[MAX_RECOG_OPERANDS
];
959 const char *constraints
[MAX_RECOG_OPERANDS
];
961 nop
= asm_noperands (PATTERN (insn
));
962 data
->operand_loc
= data
->dup_loc
= NULL
;
966 /* It is a special insn like USE or CLOBBER. We should
967 recognize any regular insn otherwise LRA can do nothing
969 gcc_assert (GET_CODE (PATTERN (insn
)) == USE
970 || GET_CODE (PATTERN (insn
)) == CLOBBER
971 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
);
972 data
->insn_static_data
= insn_static_data
973 = get_static_insn_data (-1, 0, 0, nalt
);
977 /* expand_asm_operands makes sure there aren't too many
979 lra_assert (nop
<= MAX_RECOG_OPERANDS
);
981 data
->operand_loc
= XNEWVEC (rtx
*, nop
);
982 /* Now get the operand values and constraints out of the
984 decode_asm_operands (PATTERN (insn
), NULL
,
986 constraints
, operand_mode
, NULL
);
989 const char *p
= recog_data
.constraints
[0];
991 for (p
= constraints
[0]; *p
; p
++)
994 data
->insn_static_data
= insn_static_data
995 = get_static_insn_data (-1, nop
, 0, nalt
);
996 for (i
= 0; i
< nop
; i
++)
998 insn_static_data
->operand
[i
].mode
= operand_mode
[i
];
999 insn_static_data
->operand
[i
].constraint
= constraints
[i
];
1000 insn_static_data
->operand
[i
].strict_low
= false;
1001 insn_static_data
->operand
[i
].is_operator
= false;
1002 insn_static_data
->operand
[i
].is_address
= false;
1005 for (i
= 0; i
< insn_static_data
->n_operands
; i
++)
1006 insn_static_data
->operand
[i
].type
1007 = (insn_static_data
->operand
[i
].constraint
[0] == '=' ? OP_OUT
1008 : insn_static_data
->operand
[i
].constraint
[0] == '+' ? OP_INOUT
1010 data
->preferred_alternatives
= ALL_ALTERNATIVES
;
1013 operand_alternative
*op_alt
= XCNEWVEC (operand_alternative
,
1015 preprocess_constraints (nop
, nalt
, constraints
, op_alt
);
1016 setup_operand_alternative (data
, op_alt
);
1021 insn_extract (insn
);
1022 data
->insn_static_data
= insn_static_data
1023 = get_static_insn_data (icode
, insn_data
[icode
].n_operands
,
1024 insn_data
[icode
].n_dups
,
1025 insn_data
[icode
].n_alternatives
);
1026 n
= insn_static_data
->n_operands
;
1031 locs
= XNEWVEC (rtx
*, n
);
1032 memcpy (locs
, recog_data
.operand_loc
, n
* sizeof (rtx
*));
1034 data
->operand_loc
= locs
;
1035 n
= insn_static_data
->n_dups
;
1040 locs
= XNEWVEC (rtx
*, n
);
1041 memcpy (locs
, recog_data
.dup_loc
, n
* sizeof (rtx
*));
1043 data
->dup_loc
= locs
;
1044 data
->preferred_alternatives
= get_preferred_alternatives (insn
);
1045 const operand_alternative
*op_alt
= preprocess_insn_constraints (icode
);
1046 if (!insn_static_data
->operand_alternative
)
1047 setup_operand_alternative (data
, op_alt
);
1048 else if (op_alt
!= insn_static_data
->operand_alternative
)
1049 insn_static_data
->operand_alternative
= op_alt
;
1051 if (GET_CODE (PATTERN (insn
)) == CLOBBER
|| GET_CODE (PATTERN (insn
)) == USE
)
1052 insn_static_data
->hard_regs
= NULL
;
1054 insn_static_data
->hard_regs
1055 = collect_non_operand_hard_regs (&PATTERN (insn
), data
,
1056 NULL
, OP_IN
, false);
1057 data
->arg_hard_regs
= NULL
;
1062 int n_hard_regs
, regno
, arg_hard_regs
[FIRST_PSEUDO_REGISTER
];
1065 /* Finding implicit hard register usage. We believe it will be
1066 not changed whatever transformations are used. Call insns
1067 are such example. */
1068 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1070 link
= XEXP (link
, 1))
1071 if (((use_p
= GET_CODE (XEXP (link
, 0)) == USE
)
1072 || GET_CODE (XEXP (link
, 0)) == CLOBBER
)
1073 && REG_P (XEXP (XEXP (link
, 0), 0)))
1075 regno
= REGNO (XEXP (XEXP (link
, 0), 0));
1076 lra_assert (regno
< FIRST_PSEUDO_REGISTER
);
1077 /* It is an argument register. */
1078 for (i
= REG_NREGS (XEXP (XEXP (link
, 0), 0)) - 1; i
>= 0; i
--)
1079 arg_hard_regs
[n_hard_regs
++]
1080 = regno
+ i
+ (use_p
? 0 : FIRST_PSEUDO_REGISTER
);
1082 if (n_hard_regs
!= 0)
1084 arg_hard_regs
[n_hard_regs
++] = -1;
1085 data
->arg_hard_regs
= XNEWVEC (int, n_hard_regs
);
1086 memcpy (data
->arg_hard_regs
, arg_hard_regs
,
1087 sizeof (int) * n_hard_regs
);
1090 /* Some output operand can be recognized only from the context not
1091 from the constraints which are empty in this case. Call insn may
1092 contain a hard register in set destination with empty constraint
1093 and extract_insn treats them as an input. */
1094 for (i
= 0; i
< insn_static_data
->n_operands
; i
++)
1098 struct lra_operand_data
*operand
= &insn_static_data
->operand
[i
];
1100 /* ??? Should we treat 'X' the same way. It looks to me that
1101 'X' means anything and empty constraint means we do not
1103 if (operand
->type
!= OP_IN
|| *operand
->constraint
!= '\0'
1104 || operand
->is_operator
)
1106 pat
= PATTERN (insn
);
1107 if (GET_CODE (pat
) == SET
)
1109 if (data
->operand_loc
[i
] != &SET_DEST (pat
))
1112 else if (GET_CODE (pat
) == PARALLEL
)
1114 for (j
= XVECLEN (pat
, 0) - 1; j
>= 0; j
--)
1116 set
= XVECEXP (PATTERN (insn
), 0, j
);
1117 if (GET_CODE (set
) == SET
1118 && &SET_DEST (set
) == data
->operand_loc
[i
])
1126 operand
->type
= OP_OUT
;
1131 /* Return info about insn give by UID. The info should be already set
1133 static lra_insn_recog_data_t
1134 get_insn_recog_data_by_uid (int uid
)
1136 lra_insn_recog_data_t data
;
1138 data
= lra_insn_recog_data
[uid
];
1139 lra_assert (data
!= NULL
);
1143 /* Invalidate all info about insn given by its UID. */
1145 invalidate_insn_recog_data (int uid
)
1147 lra_insn_recog_data_t data
;
1149 data
= lra_insn_recog_data
[uid
];
1150 lra_assert (data
!= NULL
);
1151 free_insn_recog_data (data
);
1152 lra_insn_recog_data
[uid
] = NULL
;
1155 /* Update all the insn info about INSN. It is usually called when
1156 something in the insn was changed. Return the updated info. */
1157 lra_insn_recog_data_t
1158 lra_update_insn_recog_data (rtx_insn
*insn
)
1160 lra_insn_recog_data_t data
;
1162 unsigned int uid
= INSN_UID (insn
);
1163 struct lra_static_insn_data
*insn_static_data
;
1164 HOST_WIDE_INT sp_offset
= 0;
1166 check_and_expand_insn_recog_data (uid
);
1167 if ((data
= lra_insn_recog_data
[uid
]) != NULL
1168 && data
->icode
!= INSN_CODE (insn
))
1170 sp_offset
= data
->sp_offset
;
1171 invalidate_insn_data_regno_info (data
, insn
, get_insn_freq (insn
));
1172 invalidate_insn_recog_data (uid
);
1177 data
= lra_get_insn_recog_data (insn
);
1178 /* Initiate or restore SP offset. */
1179 data
->sp_offset
= sp_offset
;
1182 insn_static_data
= data
->insn_static_data
;
1183 data
->used_insn_alternative
= -1;
1184 if (DEBUG_INSN_P (insn
))
1186 if (data
->icode
< 0)
1189 machine_mode operand_mode
[MAX_RECOG_OPERANDS
];
1190 const char *constraints
[MAX_RECOG_OPERANDS
];
1192 nop
= asm_noperands (PATTERN (insn
));
1195 lra_assert (nop
== data
->insn_static_data
->n_operands
);
1196 /* Now get the operand values and constraints out of the
1198 decode_asm_operands (PATTERN (insn
), NULL
,
1200 constraints
, operand_mode
, NULL
);
1201 #ifdef ENABLE_CHECKING
1205 for (i
= 0; i
< nop
; i
++)
1207 (insn_static_data
->operand
[i
].mode
== operand_mode
[i
]
1208 && insn_static_data
->operand
[i
].constraint
== constraints
[i
]
1209 && ! insn_static_data
->operand
[i
].is_operator
);
1213 #ifdef ENABLE_CHECKING
1217 for (i
= 0; i
< insn_static_data
->n_operands
; i
++)
1219 (insn_static_data
->operand
[i
].type
1220 == (insn_static_data
->operand
[i
].constraint
[0] == '=' ? OP_OUT
1221 : insn_static_data
->operand
[i
].constraint
[0] == '+' ? OP_INOUT
1228 insn_extract (insn
);
1229 n
= insn_static_data
->n_operands
;
1231 memcpy (data
->operand_loc
, recog_data
.operand_loc
, n
* sizeof (rtx
*));
1232 n
= insn_static_data
->n_dups
;
1234 memcpy (data
->dup_loc
, recog_data
.dup_loc
, n
* sizeof (rtx
*));
1235 lra_assert (check_bool_attrs (insn
));
1240 /* Set up that INSN is using alternative ALT now. */
1242 lra_set_used_insn_alternative (rtx_insn
*insn
, int alt
)
1244 lra_insn_recog_data_t data
;
1246 data
= lra_get_insn_recog_data (insn
);
1247 data
->used_insn_alternative
= alt
;
1250 /* Set up that insn with UID is using alternative ALT now. The insn
1251 info should be already set up. */
1253 lra_set_used_insn_alternative_by_uid (int uid
, int alt
)
1255 lra_insn_recog_data_t data
;
1257 check_and_expand_insn_recog_data (uid
);
1258 data
= lra_insn_recog_data
[uid
];
1259 lra_assert (data
!= NULL
);
1260 data
->used_insn_alternative
= alt
;
1265 /* This page contains code dealing with common register info and
1268 /* The size of the following array. */
1269 static int reg_info_size
;
1270 /* Common info about each register. */
1271 struct lra_reg
*lra_reg_info
;
1273 /* Last register value. */
1274 static int last_reg_value
;
1276 /* Return new register value. */
1278 get_new_reg_value (void)
1280 return ++last_reg_value
;
1283 /* Vec referring to pseudo copies. */
1284 static vec
<lra_copy_t
> copy_vec
;
1286 /* Initialize I-th element of lra_reg_info. */
1288 initialize_lra_reg_info_element (int i
)
1290 bitmap_initialize (&lra_reg_info
[i
].insn_bitmap
, ®_obstack
);
1292 lra_reg_info
[i
].no_stack_p
= false;
1294 CLEAR_HARD_REG_SET (lra_reg_info
[i
].conflict_hard_regs
);
1295 CLEAR_HARD_REG_SET (lra_reg_info
[i
].actual_call_used_reg_set
);
1296 lra_reg_info
[i
].preferred_hard_regno1
= -1;
1297 lra_reg_info
[i
].preferred_hard_regno2
= -1;
1298 lra_reg_info
[i
].preferred_hard_regno_profit1
= 0;
1299 lra_reg_info
[i
].preferred_hard_regno_profit2
= 0;
1300 lra_reg_info
[i
].biggest_mode
= VOIDmode
;
1301 lra_reg_info
[i
].live_ranges
= NULL
;
1302 lra_reg_info
[i
].nrefs
= lra_reg_info
[i
].freq
= 0;
1303 lra_reg_info
[i
].last_reload
= 0;
1304 lra_reg_info
[i
].restore_regno
= -1;
1305 lra_reg_info
[i
].val
= get_new_reg_value ();
1306 lra_reg_info
[i
].offset
= 0;
1307 lra_reg_info
[i
].copies
= NULL
;
1310 /* Initialize common reg info and copies. */
1312 init_reg_info (void)
1317 reg_info_size
= max_reg_num () * 3 / 2 + 1;
1318 lra_reg_info
= XNEWVEC (struct lra_reg
, reg_info_size
);
1319 for (i
= 0; i
< reg_info_size
; i
++)
1320 initialize_lra_reg_info_element (i
);
1321 copy_vec
.create (100);
1325 /* Finish common reg info and copies. */
1327 finish_reg_info (void)
1331 for (i
= 0; i
< reg_info_size
; i
++)
1332 bitmap_clear (&lra_reg_info
[i
].insn_bitmap
);
1333 free (lra_reg_info
);
1337 /* Expand common reg info if it is necessary. */
1339 expand_reg_info (void)
1341 int i
, old
= reg_info_size
;
1343 if (reg_info_size
> max_reg_num ())
1345 reg_info_size
= max_reg_num () * 3 / 2 + 1;
1346 lra_reg_info
= XRESIZEVEC (struct lra_reg
, lra_reg_info
, reg_info_size
);
1347 for (i
= old
; i
< reg_info_size
; i
++)
1348 initialize_lra_reg_info_element (i
);
1351 /* Free all copies. */
1353 lra_free_copies (void)
1357 while (copy_vec
.length () != 0)
1359 cp
= copy_vec
.pop ();
1360 lra_reg_info
[cp
->regno1
].copies
= lra_reg_info
[cp
->regno2
].copies
= NULL
;
1361 lra_copy_pool
.remove (cp
);
1365 /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
1366 frequency is FREQ. */
1368 lra_create_copy (int regno1
, int regno2
, int freq
)
1373 lra_assert (regno1
!= regno2
);
1374 regno1_dest_p
= true;
1375 if (regno1
> regno2
)
1377 std::swap (regno1
, regno2
);
1378 regno1_dest_p
= false;
1380 cp
= lra_copy_pool
.allocate ();
1381 copy_vec
.safe_push (cp
);
1382 cp
->regno1_dest_p
= regno1_dest_p
;
1384 cp
->regno1
= regno1
;
1385 cp
->regno2
= regno2
;
1386 cp
->regno1_next
= lra_reg_info
[regno1
].copies
;
1387 lra_reg_info
[regno1
].copies
= cp
;
1388 cp
->regno2_next
= lra_reg_info
[regno2
].copies
;
1389 lra_reg_info
[regno2
].copies
= cp
;
1390 if (lra_dump_file
!= NULL
)
1391 fprintf (lra_dump_file
, " Creating copy r%d%sr%d@%d\n",
1392 regno1
, regno1_dest_p
? "<-" : "->", regno2
, freq
);
1395 /* Return N-th (0, 1, ...) copy. If there is no copy, return
1398 lra_get_copy (int n
)
1400 if (n
>= (int) copy_vec
.length ())
1407 /* This page contains code dealing with info about registers in
1410 /* Process X of insn UID recursively and add info (operand type is
1411 given by TYPE, flag of that it is early clobber is EARLY_CLOBBER)
1412 about registers in X to the insn DATA. */
1414 add_regs_to_insn_regno_info (lra_insn_recog_data_t data
, rtx x
, int uid
,
1415 enum op_type type
, bool early_clobber
)
1422 struct lra_insn_reg
*curr
;
1424 code
= GET_CODE (x
);
1425 mode
= GET_MODE (x
);
1427 if (GET_CODE (x
) == SUBREG
)
1430 code
= GET_CODE (x
);
1431 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
)))
1433 mode
= GET_MODE (x
);
1434 if (GET_MODE_SIZE (mode
) > REGMODE_NATURAL_SIZE (mode
))
1441 /* Process all regs even unallocatable ones as we need info about
1442 all regs for rematerialization pass. */
1444 if (bitmap_set_bit (&lra_reg_info
[regno
].insn_bitmap
, uid
))
1446 data
->regs
= new_insn_reg (data
->insn
, regno
, type
, mode
, subreg_p
,
1447 early_clobber
, data
->regs
);
1452 for (curr
= data
->regs
; curr
!= NULL
; curr
= curr
->next
)
1453 if (curr
->regno
== regno
)
1455 if (curr
->subreg_p
!= subreg_p
|| curr
->biggest_mode
!= mode
)
1456 /* The info can not be integrated into the found
1458 data
->regs
= new_insn_reg (data
->insn
, regno
, type
, mode
,
1459 subreg_p
, early_clobber
,
1463 if (curr
->type
!= type
)
1464 curr
->type
= OP_INOUT
;
1465 if (curr
->early_clobber
!= early_clobber
)
1466 curr
->early_clobber
= true;
1477 add_regs_to_insn_regno_info (data
, SET_DEST (x
), uid
, OP_OUT
, false);
1478 add_regs_to_insn_regno_info (data
, SET_SRC (x
), uid
, OP_IN
, false);
1481 /* We treat clobber of non-operand hard registers as early
1482 clobber (the behavior is expected from asm). */
1483 add_regs_to_insn_regno_info (data
, XEXP (x
, 0), uid
, OP_OUT
, true);
1485 case PRE_INC
: case PRE_DEC
: case POST_INC
: case POST_DEC
:
1486 add_regs_to_insn_regno_info (data
, XEXP (x
, 0), uid
, OP_INOUT
, false);
1488 case PRE_MODIFY
: case POST_MODIFY
:
1489 add_regs_to_insn_regno_info (data
, XEXP (x
, 0), uid
, OP_INOUT
, false);
1490 add_regs_to_insn_regno_info (data
, XEXP (x
, 1), uid
, OP_IN
, false);
1493 if ((code
!= PARALLEL
&& code
!= EXPR_LIST
) || type
!= OP_OUT
)
1494 /* Some targets place small structures in registers for return
1495 values of functions, and those registers are wrapped in
1496 PARALLEL that we may see as the destination of a SET. Here
1499 (call_insn 13 12 14 2 (set (parallel:BLK [
1500 (expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1502 (expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1503 (const_int 8 [0x8]))
1505 (call (mem:QI (symbol_ref:DI (... */
1507 fmt
= GET_RTX_FORMAT (code
);
1508 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1511 add_regs_to_insn_regno_info (data
, XEXP (x
, i
), uid
, type
, false);
1512 else if (fmt
[i
] == 'E')
1514 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1515 add_regs_to_insn_regno_info (data
, XVECEXP (x
, i
, j
), uid
,
1522 /* Return execution frequency of INSN. */
1524 get_insn_freq (rtx_insn
*insn
)
1526 basic_block bb
= BLOCK_FOR_INSN (insn
);
1528 gcc_checking_assert (bb
!= NULL
);
1529 return REG_FREQ_FROM_BB (bb
);
1532 /* Invalidate all reg info of INSN with DATA and execution frequency
1533 FREQ. Update common info about the invalidated registers. */
1535 invalidate_insn_data_regno_info (lra_insn_recog_data_t data
, rtx_insn
*insn
,
1541 struct lra_insn_reg
*ir
, *next_ir
;
1543 uid
= INSN_UID (insn
);
1544 debug_p
= DEBUG_INSN_P (insn
);
1545 for (ir
= data
->regs
; ir
!= NULL
; ir
= next_ir
)
1549 lra_insn_reg_pool
.remove (ir
);
1550 bitmap_clear_bit (&lra_reg_info
[i
].insn_bitmap
, uid
);
1551 if (i
>= FIRST_PSEUDO_REGISTER
&& ! debug_p
)
1553 lra_reg_info
[i
].nrefs
--;
1554 lra_reg_info
[i
].freq
-= freq
;
1555 lra_assert (lra_reg_info
[i
].nrefs
>= 0 && lra_reg_info
[i
].freq
>= 0);
1561 /* Invalidate all reg info of INSN. Update common info about the
1562 invalidated registers. */
1564 lra_invalidate_insn_regno_info (rtx_insn
*insn
)
1566 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn
), insn
,
1567 get_insn_freq (insn
));
1570 /* Update common reg info from reg info of insn given by its DATA and
1571 execution frequency FREQ. */
1573 setup_insn_reg_info (lra_insn_recog_data_t data
, int freq
)
1576 struct lra_insn_reg
*ir
;
1578 for (ir
= data
->regs
; ir
!= NULL
; ir
= ir
->next
)
1579 if ((i
= ir
->regno
) >= FIRST_PSEUDO_REGISTER
)
1581 lra_reg_info
[i
].nrefs
++;
1582 lra_reg_info
[i
].freq
+= freq
;
1586 /* Set up insn reg info of INSN. Update common reg info from reg info
1589 lra_update_insn_regno_info (rtx_insn
*insn
)
1592 lra_insn_recog_data_t data
;
1593 struct lra_static_insn_data
*static_data
;
1597 if (! INSN_P (insn
))
1599 data
= lra_get_insn_recog_data (insn
);
1600 static_data
= data
->insn_static_data
;
1601 freq
= get_insn_freq (insn
);
1602 invalidate_insn_data_regno_info (data
, insn
, freq
);
1603 uid
= INSN_UID (insn
);
1604 for (i
= static_data
->n_operands
- 1; i
>= 0; i
--)
1605 add_regs_to_insn_regno_info (data
, *data
->operand_loc
[i
], uid
,
1606 static_data
->operand
[i
].type
,
1607 static_data
->operand
[i
].early_clobber
);
1608 if ((code
= GET_CODE (PATTERN (insn
))) == CLOBBER
|| code
== USE
)
1609 add_regs_to_insn_regno_info (data
, XEXP (PATTERN (insn
), 0), uid
,
1610 code
== USE
? OP_IN
: OP_OUT
, false);
1612 /* On some targets call insns can refer to pseudos in memory in
1613 CALL_INSN_FUNCTION_USAGE list. Process them in order to
1614 consider their occurrences in calls for different
1615 transformations (e.g. inheritance) with given pseudos. */
1616 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1618 link
= XEXP (link
, 1))
1619 if (((code
= GET_CODE (XEXP (link
, 0))) == USE
|| code
== CLOBBER
)
1620 && MEM_P (XEXP (XEXP (link
, 0), 0)))
1621 add_regs_to_insn_regno_info (data
, XEXP (XEXP (link
, 0), 0), uid
,
1622 code
== USE
? OP_IN
: OP_OUT
, false);
1623 if (NONDEBUG_INSN_P (insn
))
1624 setup_insn_reg_info (data
, freq
);
1627 /* Return reg info of insn given by it UID. */
1628 struct lra_insn_reg
*
1629 lra_get_insn_regs (int uid
)
1631 lra_insn_recog_data_t data
;
1633 data
= get_insn_recog_data_by_uid (uid
);
1639 /* This page contains code dealing with stack of the insns which
1640 should be processed by the next constraint pass. */
1642 /* Bitmap used to put an insn on the stack only in one exemplar. */
1643 static sbitmap lra_constraint_insn_stack_bitmap
;
1645 /* The stack itself. */
1646 vec
<rtx_insn
*> lra_constraint_insn_stack
;
1648 /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
1649 info for INSN, otherwise only update it if INSN is not already on the
1652 lra_push_insn_1 (rtx_insn
*insn
, bool always_update
)
1654 unsigned int uid
= INSN_UID (insn
);
1656 lra_update_insn_regno_info (insn
);
1657 if (uid
>= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap
))
1658 lra_constraint_insn_stack_bitmap
=
1659 sbitmap_resize (lra_constraint_insn_stack_bitmap
, 3 * uid
/ 2, 0);
1660 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap
, uid
))
1662 bitmap_set_bit (lra_constraint_insn_stack_bitmap
, uid
);
1663 if (! always_update
)
1664 lra_update_insn_regno_info (insn
);
1665 lra_constraint_insn_stack
.safe_push (insn
);
1668 /* Put INSN on the stack. */
1670 lra_push_insn (rtx_insn
*insn
)
1672 lra_push_insn_1 (insn
, false);
1675 /* Put INSN on the stack and update its reg info. */
1677 lra_push_insn_and_update_insn_regno_info (rtx_insn
*insn
)
1679 lra_push_insn_1 (insn
, true);
1682 /* Put insn with UID on the stack. */
1684 lra_push_insn_by_uid (unsigned int uid
)
1686 lra_push_insn (lra_insn_recog_data
[uid
]->insn
);
1689 /* Take the last-inserted insns off the stack and return it. */
1693 rtx_insn
*insn
= lra_constraint_insn_stack
.pop ();
1694 bitmap_clear_bit (lra_constraint_insn_stack_bitmap
, INSN_UID (insn
));
1698 /* Return the current size of the insn stack. */
1700 lra_insn_stack_length (void)
1702 return lra_constraint_insn_stack
.length ();
1705 /* Push insns FROM to TO (excluding it) going in reverse order. */
1707 push_insns (rtx_insn
*from
, rtx_insn
*to
)
1711 if (from
== NULL_RTX
)
1713 for (insn
= from
; insn
!= to
; insn
= PREV_INSN (insn
))
1715 lra_push_insn (insn
);
1718 /* Set up sp offset for insn in range [FROM, LAST]. The offset is
1719 taken from the next BB insn after LAST or zero if there in such
1722 setup_sp_offset (rtx_insn
*from
, rtx_insn
*last
)
1724 rtx_insn
*before
= next_nonnote_insn_bb (last
);
1725 HOST_WIDE_INT offset
= (before
== NULL_RTX
|| ! INSN_P (before
)
1726 ? 0 : lra_get_insn_recog_data (before
)->sp_offset
);
1728 for (rtx_insn
*insn
= from
; insn
!= NEXT_INSN (last
); insn
= NEXT_INSN (insn
))
1729 lra_get_insn_recog_data (insn
)->sp_offset
= offset
;
1732 /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
1733 insns onto the stack. Print about emitting the insns with
1736 lra_process_new_insns (rtx_insn
*insn
, rtx_insn
*before
, rtx_insn
*after
,
1741 if (before
== NULL_RTX
&& after
== NULL_RTX
)
1743 if (lra_dump_file
!= NULL
)
1745 dump_insn_slim (lra_dump_file
, insn
);
1746 if (before
!= NULL_RTX
)
1748 fprintf (lra_dump_file
," %s before:\n", title
);
1749 dump_rtl_slim (lra_dump_file
, before
, NULL
, -1, 0);
1751 if (after
!= NULL_RTX
)
1753 fprintf (lra_dump_file
, " %s after:\n", title
);
1754 dump_rtl_slim (lra_dump_file
, after
, NULL
, -1, 0);
1756 fprintf (lra_dump_file
, "\n");
1758 if (before
!= NULL_RTX
)
1760 emit_insn_before (before
, insn
);
1761 push_insns (PREV_INSN (insn
), PREV_INSN (before
));
1762 setup_sp_offset (before
, PREV_INSN (insn
));
1764 if (after
!= NULL_RTX
)
1766 for (last
= after
; NEXT_INSN (last
) != NULL_RTX
; last
= NEXT_INSN (last
))
1768 emit_insn_after (after
, insn
);
1769 push_insns (last
, insn
);
1770 setup_sp_offset (after
, last
);
1776 /* Replace all references to register OLD_REGNO in *LOC with pseudo
1777 register NEW_REG. Try to simplify subreg of constant if SUBREG_P.
1778 Return true if any change was made. */
1780 lra_substitute_pseudo (rtx
*loc
, int old_regno
, rtx new_reg
, bool subreg_p
)
1783 bool result
= false;
1791 code
= GET_CODE (x
);
1792 if (code
== SUBREG
&& subreg_p
)
1794 rtx subst
, inner
= SUBREG_REG (x
);
1795 /* Transform subreg of constant while we still have inner mode
1796 of the subreg. The subreg internal should not be an insn
1798 if (REG_P (inner
) && (int) REGNO (inner
) == old_regno
1799 && CONSTANT_P (new_reg
)
1800 && (subst
= simplify_subreg (GET_MODE (x
), new_reg
, GET_MODE (inner
),
1801 SUBREG_BYTE (x
))) != NULL_RTX
)
1808 else if (code
== REG
&& (int) REGNO (x
) == old_regno
)
1810 machine_mode mode
= GET_MODE (x
);
1811 machine_mode inner_mode
= GET_MODE (new_reg
);
1813 if (mode
!= inner_mode
1814 && ! (CONST_INT_P (new_reg
) && SCALAR_INT_MODE_P (mode
)))
1816 if (GET_MODE_SIZE (mode
) >= GET_MODE_SIZE (inner_mode
)
1817 || ! SCALAR_INT_MODE_P (inner_mode
))
1818 new_reg
= gen_rtx_SUBREG (mode
, new_reg
, 0);
1820 new_reg
= gen_lowpart_SUBREG (mode
, new_reg
);
1826 /* Scan all the operand sub-expressions. */
1827 fmt
= GET_RTX_FORMAT (code
);
1828 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1832 if (lra_substitute_pseudo (&XEXP (x
, i
), old_regno
,
1836 else if (fmt
[i
] == 'E')
1838 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1839 if (lra_substitute_pseudo (&XVECEXP (x
, i
, j
), old_regno
,
1847 /* Call lra_substitute_pseudo within an insn. Try to simplify subreg
1848 of constant if SUBREG_P. This won't update the insn ptr, just the
1849 contents of the insn. */
1851 lra_substitute_pseudo_within_insn (rtx_insn
*insn
, int old_regno
,
1852 rtx new_reg
, bool subreg_p
)
1855 return lra_substitute_pseudo (&loc
, old_regno
, new_reg
, subreg_p
);
1860 /* This page contains code dealing with scratches (changing them onto
1861 pseudos and restoring them from the pseudos).
1863 We change scratches into pseudos at the beginning of LRA to
1864 simplify dealing with them (conflicts, hard register assignments).
1866 If the pseudo denoting scratch was spilled it means that we do need
1867 a hard register for it. Such pseudos are transformed back to
1868 scratches at the end of LRA. */
1870 /* Description of location of a former scratch operand. */
1873 rtx_insn
*insn
; /* Insn where the scratch was. */
1874 int nop
; /* Number of the operand which was a scratch. */
1877 typedef struct sloc
*sloc_t
;
1879 /* Locations of the former scratches. */
1880 static vec
<sloc_t
> scratches
;
1882 /* Bitmap of scratch regnos. */
1883 static bitmap_head scratch_bitmap
;
1885 /* Bitmap of scratch operands. */
1886 static bitmap_head scratch_operand_bitmap
;
1888 /* Return true if pseudo REGNO is made of SCRATCH. */
1890 lra_former_scratch_p (int regno
)
1892 return bitmap_bit_p (&scratch_bitmap
, regno
);
1895 /* Return true if the operand NOP of INSN is a former scratch. */
1897 lra_former_scratch_operand_p (rtx_insn
*insn
, int nop
)
1899 return bitmap_bit_p (&scratch_operand_bitmap
,
1900 INSN_UID (insn
) * MAX_RECOG_OPERANDS
+ nop
) != 0;
1903 /* Register operand NOP in INSN as a former scratch. It will be
1904 changed to scratch back, if it is necessary, at the LRA end. */
1906 lra_register_new_scratch_op (rtx_insn
*insn
, int nop
)
1908 lra_insn_recog_data_t id
= lra_get_insn_recog_data (insn
);
1909 rtx op
= *id
->operand_loc
[nop
];
1910 sloc_t loc
= XNEW (struct sloc
);
1911 lra_assert (REG_P (op
));
1914 scratches
.safe_push (loc
);
1915 bitmap_set_bit (&scratch_bitmap
, REGNO (op
));
1916 bitmap_set_bit (&scratch_operand_bitmap
,
1917 INSN_UID (insn
) * MAX_RECOG_OPERANDS
+ nop
);
1918 add_reg_note (insn
, REG_UNUSED
, op
);
1921 /* Change scratches onto pseudos and save their location. */
1923 remove_scratches (void)
1926 bool insn_changed_p
;
1930 lra_insn_recog_data_t id
;
1931 struct lra_static_insn_data
*static_id
;
1933 scratches
.create (get_max_uid ());
1934 bitmap_initialize (&scratch_bitmap
, ®_obstack
);
1935 bitmap_initialize (&scratch_operand_bitmap
, ®_obstack
);
1936 FOR_EACH_BB_FN (bb
, cfun
)
1937 FOR_BB_INSNS (bb
, insn
)
1940 id
= lra_get_insn_recog_data (insn
);
1941 static_id
= id
->insn_static_data
;
1942 insn_changed_p
= false;
1943 for (i
= 0; i
< static_id
->n_operands
; i
++)
1944 if (GET_CODE (*id
->operand_loc
[i
]) == SCRATCH
1945 && GET_MODE (*id
->operand_loc
[i
]) != VOIDmode
)
1947 insn_changed_p
= true;
1948 *id
->operand_loc
[i
] = reg
1949 = lra_create_new_reg (static_id
->operand
[i
].mode
,
1950 *id
->operand_loc
[i
], ALL_REGS
, NULL
);
1951 lra_register_new_scratch_op (insn
, i
);
1952 if (lra_dump_file
!= NULL
)
1953 fprintf (lra_dump_file
,
1954 "Removing SCRATCH in insn #%u (nop %d)\n",
1955 INSN_UID (insn
), i
);
1958 /* Because we might use DF right after caller-saves sub-pass
1959 we need to keep DF info up to date. */
1960 df_insn_rescan (insn
);
1964 /* Changes pseudos created by function remove_scratches onto scratches. */
1966 restore_scratches (void)
1971 rtx_insn
*last
= NULL
;
1972 lra_insn_recog_data_t id
= NULL
;
1974 for (i
= 0; scratches
.iterate (i
, &loc
); i
++)
1976 if (last
!= loc
->insn
)
1979 id
= lra_get_insn_recog_data (last
);
1981 if (REG_P (*id
->operand_loc
[loc
->nop
])
1982 && ((regno
= REGNO (*id
->operand_loc
[loc
->nop
]))
1983 >= FIRST_PSEUDO_REGISTER
)
1984 && lra_get_regno_hard_regno (regno
) < 0)
1986 /* It should be only case when scratch register with chosen
1987 constraint 'X' did not get memory or hard register. */
1988 lra_assert (lra_former_scratch_p (regno
));
1989 *id
->operand_loc
[loc
->nop
]
1990 = gen_rtx_SCRATCH (GET_MODE (*id
->operand_loc
[loc
->nop
]));
1991 lra_update_dup (id
, loc
->nop
);
1992 if (lra_dump_file
!= NULL
)
1993 fprintf (lra_dump_file
, "Restoring SCRATCH in insn #%u(nop %d)\n",
1994 INSN_UID (loc
->insn
), loc
->nop
);
1997 for (i
= 0; scratches
.iterate (i
, &loc
); i
++)
1999 scratches
.release ();
2000 bitmap_clear (&scratch_bitmap
);
2001 bitmap_clear (&scratch_operand_bitmap
);
2006 #ifdef ENABLE_CHECKING
2008 /* Function checks RTL for correctness. If FINAL_P is true, it is
2009 done at the end of LRA and the check is more rigorous. */
2011 check_rtl (bool final_p
)
2016 lra_assert (! final_p
|| reload_completed
);
2017 FOR_EACH_BB_FN (bb
, cfun
)
2018 FOR_BB_INSNS (bb
, insn
)
2019 if (NONDEBUG_INSN_P (insn
)
2020 && GET_CODE (PATTERN (insn
)) != USE
2021 && GET_CODE (PATTERN (insn
)) != CLOBBER
2022 && GET_CODE (PATTERN (insn
)) != ASM_INPUT
)
2026 #ifdef ENABLED_CHECKING
2027 extract_constrain_insn (insn
);
2031 /* LRA code is based on assumption that all addresses can be
2032 correctly decomposed. LRA can generate reloads for
2033 decomposable addresses. The decomposition code checks the
2034 correctness of the addresses. So we don't need to check
2035 the addresses here. Don't call insn_invalid_p here, it can
2036 change the code at this stage. */
2037 if (recog_memoized (insn
) < 0 && asm_noperands (PATTERN (insn
)) < 0)
2038 fatal_insn_not_found (insn
);
2041 #endif /* #ifdef ENABLE_CHECKING */
2043 /* Determine if the current function has an exception receiver block
2044 that reaches the exit block via non-exceptional edges */
2046 has_nonexceptional_receiver (void)
2050 basic_block
*tos
, *worklist
, bb
;
2052 /* If we're not optimizing, then just err on the safe side. */
2056 /* First determine which blocks can reach exit via normal paths. */
2057 tos
= worklist
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
) + 1);
2059 FOR_EACH_BB_FN (bb
, cfun
)
2060 bb
->flags
&= ~BB_REACHABLE
;
2062 /* Place the exit block on our worklist. */
2063 EXIT_BLOCK_PTR_FOR_FN (cfun
)->flags
|= BB_REACHABLE
;
2064 *tos
++ = EXIT_BLOCK_PTR_FOR_FN (cfun
);
2066 /* Iterate: find everything reachable from what we've already seen. */
2067 while (tos
!= worklist
)
2071 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2072 if (e
->flags
& EDGE_ABNORMAL
)
2079 basic_block src
= e
->src
;
2081 if (!(src
->flags
& BB_REACHABLE
))
2083 src
->flags
|= BB_REACHABLE
;
2089 /* No exceptional block reached exit unexceptionally. */
2094 /* Process recursively X of INSN and add REG_INC notes if necessary. */
2096 add_auto_inc_notes (rtx_insn
*insn
, rtx x
)
2098 enum rtx_code code
= GET_CODE (x
);
2102 if (code
== MEM
&& auto_inc_p (XEXP (x
, 0)))
2104 add_reg_note (insn
, REG_INC
, XEXP (XEXP (x
, 0), 0));
2108 /* Scan all X sub-expressions. */
2109 fmt
= GET_RTX_FORMAT (code
);
2110 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2113 add_auto_inc_notes (insn
, XEXP (x
, i
));
2114 else if (fmt
[i
] == 'E')
2115 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2116 add_auto_inc_notes (insn
, XVECEXP (x
, i
, j
));
2121 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2122 We change pseudos by hard registers without notification of DF and
2123 that can make the notes obsolete. DF-infrastructure does not deal
2124 with REG_INC notes -- so we should regenerate them here. */
2126 update_inc_notes (void)
2132 FOR_EACH_BB_FN (bb
, cfun
)
2133 FOR_BB_INSNS (bb
, insn
)
2134 if (NONDEBUG_INSN_P (insn
))
2136 pnote
= ®_NOTES (insn
);
2139 if (REG_NOTE_KIND (*pnote
) == REG_DEAD
2140 || REG_NOTE_KIND (*pnote
) == REG_UNUSED
2141 || REG_NOTE_KIND (*pnote
) == REG_INC
)
2142 *pnote
= XEXP (*pnote
, 1);
2144 pnote
= &XEXP (*pnote
, 1);
2148 add_auto_inc_notes (insn
, PATTERN (insn
));
2152 /* Set to 1 while in lra. */
2153 int lra_in_progress
;
2155 /* Start of pseudo regnos before the LRA. */
2156 int lra_new_regno_start
;
2158 /* Start of reload pseudo regnos before the new spill pass. */
2159 int lra_constraint_new_regno_start
;
2161 /* Avoid spilling pseudos with regno more than the following value if
2163 int lra_bad_spill_regno_start
;
2165 /* Inheritance pseudo regnos before the new spill pass. */
2166 bitmap_head lra_inheritance_pseudos
;
2168 /* Split regnos before the new spill pass. */
2169 bitmap_head lra_split_regs
;
2171 /* Reload pseudo regnos before the new assignmnet pass which still can
2172 be spilled after the assinment pass as memory is also accepted in
2173 insns for the reload pseudos. */
2174 bitmap_head lra_optional_reload_pseudos
;
2176 /* Pseudo regnos used for subreg reloads before the new assignment
2177 pass. Such pseudos still can be spilled after the assinment
2179 bitmap_head lra_subreg_reload_pseudos
;
2181 /* File used for output of LRA debug information. */
2182 FILE *lra_dump_file
;
2184 /* True if we should try spill into registers of different classes
2185 instead of memory. */
2186 bool lra_reg_spill_p
;
2188 /* Set up value LRA_REG_SPILL_P. */
2190 setup_reg_spill_flag (void)
2194 if (targetm
.spill_class
!= NULL
)
2195 for (cl
= 0; cl
< (int) LIM_REG_CLASSES
; cl
++)
2196 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
2197 if (targetm
.spill_class ((enum reg_class
) cl
,
2198 (machine_mode
) mode
) != NO_REGS
)
2200 lra_reg_spill_p
= true;
2203 lra_reg_spill_p
= false;
2206 /* True if the current function is too big to use regular algorithms
2207 in LRA. In other words, we should use simpler and faster algorithms
2208 in LRA. It also means we should not worry about generation code
2209 for caller saves. The value is set up in IRA. */
2212 /* Major LRA entry function. F is a file should be used to dump LRA
2218 bool live_p
, scratch_p
, inserted_p
;
2222 timevar_push (TV_LRA
);
2224 /* Make sure that the last insn is a note. Some subsequent passes
2226 emit_note (NOTE_INSN_DELETED
);
2228 COPY_HARD_REG_SET (lra_no_alloc_regs
, ira_no_alloc_regs
);
2233 init_insn_recog_data ();
2235 #ifdef ENABLE_CHECKING
2236 /* Some quick check on RTL generated by previous passes. */
2240 lra_in_progress
= 1;
2242 lra_live_range_iter
= lra_coalesce_iter
= lra_constraint_iter
= 0;
2243 lra_assignment_iter
= lra_assignment_iter_after_spill
= 0;
2244 lra_inheritance_iter
= lra_undo_inheritance_iter
= 0;
2245 lra_rematerialization_iter
= 0;
2247 setup_reg_spill_flag ();
2249 /* Function remove_scratches can creates new pseudos for clobbers --
2250 so set up lra_constraint_new_regno_start before its call to
2251 permit changing reg classes for pseudos created by this
2253 lra_constraint_new_regno_start
= lra_new_regno_start
= max_reg_num ();
2254 lra_bad_spill_regno_start
= INT_MAX
;
2255 remove_scratches ();
2256 scratch_p
= lra_constraint_new_regno_start
!= max_reg_num ();
2258 /* A function that has a non-local label that can reach the exit
2259 block via non-exceptional paths must save all call-saved
2261 if (cfun
->has_nonlocal_label
&& has_nonexceptional_receiver ())
2262 crtl
->saves_all_registers
= 1;
2264 if (crtl
->saves_all_registers
)
2265 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2266 if (! call_used_regs
[i
] && ! fixed_regs
[i
] && ! LOCAL_REGNO (i
))
2267 df_set_regs_ever_live (i
, true);
2269 /* We don't DF from now and avoid its using because it is to
2270 expensive when a lot of RTL changes are made. */
2271 df_set_flags (DF_NO_INSN_RESCAN
);
2272 lra_constraint_insn_stack
.create (get_max_uid ());
2273 lra_constraint_insn_stack_bitmap
= sbitmap_alloc (get_max_uid ());
2274 bitmap_clear (lra_constraint_insn_stack_bitmap
);
2275 lra_live_ranges_init ();
2276 lra_constraints_init ();
2277 lra_curr_reload_num
= 0;
2278 push_insns (get_last_insn (), NULL
);
2279 /* It is needed for the 1st coalescing. */
2280 bitmap_initialize (&lra_inheritance_pseudos
, ®_obstack
);
2281 bitmap_initialize (&lra_split_regs
, ®_obstack
);
2282 bitmap_initialize (&lra_optional_reload_pseudos
, ®_obstack
);
2283 bitmap_initialize (&lra_subreg_reload_pseudos
, ®_obstack
);
2285 if (get_frame_size () != 0 && crtl
->stack_alignment_needed
)
2286 /* If we have a stack frame, we must align it now. The stack size
2287 may be a part of the offset computation for register
2289 assign_stack_local (BLKmode
, 0, crtl
->stack_alignment_needed
);
2295 /* We should try to assign hard registers to scratches even
2296 if there were no RTL transformations in
2298 if (! lra_constraints (lra_constraint_iter
== 0)
2299 && (lra_constraint_iter
> 1
2300 || (! scratch_p
&& ! caller_save_needed
)))
2302 /* Constraint transformations may result in that eliminable
2303 hard regs become uneliminable and pseudos which use them
2304 should be spilled. It is better to do it before pseudo
2307 For example, rs6000 can make
2308 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2309 to use a constant pool. */
2310 lra_eliminate (false, false);
2311 /* Do inheritance only for regular algorithms. */
2317 lra_clear_live_ranges ();
2318 /* As a side-effect of lra_create_live_ranges, we calculate
2319 actual_call_used_reg_set, which is needed during
2321 lra_create_live_ranges (true, true);
2327 lra_clear_live_ranges ();
2328 /* We need live ranges for lra_assign -- so build them. But
2329 don't remove dead insns or change global live info as we
2330 can undo inheritance transformations after inheritance
2331 pseudo assigning. */
2332 lra_create_live_ranges (true, false);
2334 /* If we don't spill non-reload and non-inheritance pseudos,
2335 there is no sense to run memory-memory move coalescing.
2336 If inheritance pseudos were spilled, the memory-memory
2337 moves involving them will be removed by pass undoing
2343 bool spill_p
= !lra_assign ();
2345 if (lra_undo_inheritance ())
2351 lra_create_live_ranges (true, true);
2354 if (lra_coalesce ())
2358 lra_clear_live_ranges ();
2361 /* Don't clear optional reloads bitmap until all constraints are
2362 satisfied as we need to differ them from regular reloads. */
2363 bitmap_clear (&lra_optional_reload_pseudos
);
2364 bitmap_clear (&lra_subreg_reload_pseudos
);
2365 bitmap_clear (&lra_inheritance_pseudos
);
2366 bitmap_clear (&lra_split_regs
);
2369 /* We need full live info for spilling pseudos into
2370 registers instead of memory. */
2371 lra_create_live_ranges (lra_reg_spill_p
, true);
2374 /* We should check necessity for spilling here as the above live
2375 range pass can remove spilled pseudos. */
2376 if (! lra_need_for_spills_p ())
2378 /* Now we know what pseudos should be spilled. Try to
2379 rematerialize them first. */
2382 /* We need full live info -- see the comment above. */
2383 lra_create_live_ranges (lra_reg_spill_p
, true);
2385 if (! lra_need_for_spills_p ())
2389 /* Assignment of stack slots changes elimination offsets for
2390 some eliminations. So update the offsets here. */
2391 lra_eliminate (false, false);
2392 lra_constraint_new_regno_start
= max_reg_num ();
2393 if (lra_bad_spill_regno_start
== INT_MAX
2394 && lra_inheritance_iter
> LRA_MAX_INHERITANCE_PASSES
2395 && lra_rematerialization_iter
> LRA_MAX_REMATERIALIZATION_PASSES
)
2396 /* After switching off inheritance and rematerialization
2397 passes, avoid spilling reload pseudos will be created to
2398 prevent LRA cycling in some complicated cases. */
2399 lra_bad_spill_regno_start
= lra_constraint_new_regno_start
;
2400 lra_assignment_iter_after_spill
= 0;
2402 restore_scratches ();
2403 lra_eliminate (true, false);
2404 lra_final_code_change ();
2405 lra_in_progress
= 0;
2407 lra_clear_live_ranges ();
2408 lra_live_ranges_finish ();
2409 lra_constraints_finish ();
2411 sbitmap_free (lra_constraint_insn_stack_bitmap
);
2412 lra_constraint_insn_stack
.release ();
2413 finish_insn_recog_data ();
2414 regstat_free_n_sets_and_refs ();
2416 reload_completed
= 1;
2417 update_inc_notes ();
2419 inserted_p
= fixup_abnormal_edges ();
2421 /* We've possibly turned single trapping insn into multiple ones. */
2422 if (cfun
->can_throw_non_call_exceptions
)
2425 blocks
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
2426 bitmap_ones (blocks
);
2427 find_many_sub_basic_blocks (blocks
);
2428 sbitmap_free (blocks
);
2432 commit_edge_insertions ();
2434 /* Replacing pseudos with their memory equivalents might have
2435 created shared rtx. Subsequent passes would get confused
2436 by this, so unshare everything here. */
2437 unshare_all_rtl_again (get_insns ());
2439 #ifdef ENABLE_CHECKING
2443 timevar_pop (TV_LRA
);
2446 /* Called once per compiler to initialize LRA data once. */
2448 lra_init_once (void)
2450 init_insn_code_data_once ();
2453 /* Called once per compiler to finish LRA data which are initialize
2456 lra_finish_once (void)
2458 finish_insn_code_data_once ();