1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989-2021 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
28 #include "coretypes.h"
30 #include "libgcc_tm.h"
32 #ifdef HAVE_GAS_HIDDEN
33 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
35 #define ATTRIBUTE_HIDDEN
38 /* Work out the largest "word" size that we can deal with on this target. */
39 #if MIN_UNITS_PER_WORD > 4
40 # define LIBGCC2_MAX_UNITS_PER_WORD 8
41 #elif (MIN_UNITS_PER_WORD > 2 \
42 || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
43 # define LIBGCC2_MAX_UNITS_PER_WORD 4
45 # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
48 /* Work out what word size we are using for this compilation.
49 The value can be set on the command line. */
50 #ifndef LIBGCC2_UNITS_PER_WORD
51 #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
54 #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
58 #ifdef DECLARE_LIBRARY_RENAMES
59 DECLARE_LIBRARY_RENAMES
62 #if defined (L_negdi2)
66 const DWunion uu
= {.ll
= u
};
67 const DWunion w
= { {.low
= -uu
.s
.low
,
68 .high
= -uu
.s
.high
- ((UWtype
) -uu
.s
.low
> 0) } };
76 __addvSI3 (Wtype a
, Wtype b
)
80 if (__builtin_add_overflow (a
, b
, &w
))
85 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
87 __addvsi3 (SItype a
, SItype b
)
91 if (__builtin_add_overflow (a
, b
, &w
))
96 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
101 __addvDI3 (DWtype a
, DWtype b
)
105 if (__builtin_add_overflow (a
, b
, &w
))
114 __subvSI3 (Wtype a
, Wtype b
)
118 if (__builtin_sub_overflow (a
, b
, &w
))
123 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
125 __subvsi3 (SItype a
, SItype b
)
129 if (__builtin_sub_overflow (a
, b
, &w
))
134 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
139 __subvDI3 (DWtype a
, DWtype b
)
143 if (__builtin_sub_overflow (a
, b
, &w
))
152 __mulvSI3 (Wtype a
, Wtype b
)
156 if (__builtin_mul_overflow (a
, b
, &w
))
161 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
163 __mulvsi3 (SItype a
, SItype b
)
167 if (__builtin_mul_overflow (a
, b
, &w
))
172 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
181 if (__builtin_sub_overflow (0, a
, &w
))
186 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
192 if (__builtin_sub_overflow (0, a
, &w
))
197 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
206 if (__builtin_sub_overflow (0, a
, &w
))
217 const Wtype v
= 0 - (a
< 0);
220 if (__builtin_add_overflow (a
, v
, &w
))
225 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
229 const SItype v
= 0 - (a
< 0);
232 if (__builtin_add_overflow (a
, v
, &w
))
237 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
244 const DWtype v
= 0 - (a
< 0);
247 if (__builtin_add_overflow (a
, v
, &w
))
256 __mulvDI3 (DWtype u
, DWtype v
)
258 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
259 but the checked multiplication needs only two. */
260 const DWunion uu
= {.ll
= u
};
261 const DWunion vv
= {.ll
= v
};
263 if (__builtin_expect (uu
.s
.high
== uu
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
265 /* u fits in a single Wtype. */
266 if (__builtin_expect (vv
.s
.high
== vv
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
268 /* v fits in a single Wtype as well. */
269 /* A single multiplication. No overflow risk. */
270 return (DWtype
) uu
.s
.low
* (DWtype
) vv
.s
.low
;
274 /* Two multiplications. */
275 DWunion w0
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
276 * (UDWtype
) (UWtype
) vv
.s
.low
};
277 DWunion w1
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
278 * (UDWtype
) (UWtype
) vv
.s
.high
};
281 w1
.s
.high
-= uu
.s
.low
;
284 w1
.ll
+= (UWtype
) w0
.s
.high
;
285 if (__builtin_expect (w1
.s
.high
== w1
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
287 w0
.s
.high
= w1
.s
.low
;
294 if (__builtin_expect (vv
.s
.high
== vv
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
296 /* v fits into a single Wtype. */
297 /* Two multiplications. */
298 DWunion w0
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
299 * (UDWtype
) (UWtype
) vv
.s
.low
};
300 DWunion w1
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.high
301 * (UDWtype
) (UWtype
) vv
.s
.low
};
304 w1
.s
.high
-= vv
.s
.low
;
307 w1
.ll
+= (UWtype
) w0
.s
.high
;
308 if (__builtin_expect (w1
.s
.high
== w1
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
310 w0
.s
.high
= w1
.s
.low
;
316 /* A few sign checks and a single multiplication. */
321 if (uu
.s
.high
== 0 && vv
.s
.high
== 0)
323 const DWtype w
= (UDWtype
) (UWtype
) uu
.s
.low
324 * (UDWtype
) (UWtype
) vv
.s
.low
;
325 if (__builtin_expect (w
>= 0, 1))
331 if (uu
.s
.high
== 0 && vv
.s
.high
== (Wtype
) -1)
333 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
334 * (UDWtype
) (UWtype
) vv
.s
.low
};
336 ww
.s
.high
-= uu
.s
.low
;
337 if (__builtin_expect (ww
.s
.high
< 0, 1))
346 if (uu
.s
.high
== (Wtype
) -1 && vv
.s
.high
== 0)
348 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
349 * (UDWtype
) (UWtype
) vv
.s
.low
};
351 ww
.s
.high
-= vv
.s
.low
;
352 if (__builtin_expect (ww
.s
.high
< 0, 1))
358 if ((uu
.s
.high
& vv
.s
.high
) == (Wtype
) -1
359 && (uu
.s
.low
| vv
.s
.low
) != 0)
361 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
362 * (UDWtype
) (UWtype
) vv
.s
.low
};
364 ww
.s
.high
-= uu
.s
.low
;
365 ww
.s
.high
-= vv
.s
.low
;
366 if (__builtin_expect (ww
.s
.high
>= 0, 1))
380 /* Unless shift functions are defined with full ANSI prototypes,
381 parameter b will be promoted to int if shift_count_type is smaller than an int. */
384 __lshrdi3 (DWtype u
, shift_count_type b
)
389 const DWunion uu
= {.ll
= u
};
390 const shift_count_type bm
= W_TYPE_SIZE
- b
;
396 w
.s
.low
= (UWtype
) uu
.s
.high
>> -bm
;
400 const UWtype carries
= (UWtype
) uu
.s
.high
<< bm
;
402 w
.s
.high
= (UWtype
) uu
.s
.high
>> b
;
403 w
.s
.low
= ((UWtype
) uu
.s
.low
>> b
) | carries
;
412 __ashldi3 (DWtype u
, shift_count_type b
)
417 const DWunion uu
= {.ll
= u
};
418 const shift_count_type bm
= W_TYPE_SIZE
- b
;
424 w
.s
.high
= (UWtype
) uu
.s
.low
<< -bm
;
428 const UWtype carries
= (UWtype
) uu
.s
.low
>> bm
;
430 w
.s
.low
= (UWtype
) uu
.s
.low
<< b
;
431 w
.s
.high
= ((UWtype
) uu
.s
.high
<< b
) | carries
;
440 __ashrdi3 (DWtype u
, shift_count_type b
)
445 const DWunion uu
= {.ll
= u
};
446 const shift_count_type bm
= W_TYPE_SIZE
- b
;
451 /* w.s.high = 1..1 or 0..0 */
452 w
.s
.high
= uu
.s
.high
>> (W_TYPE_SIZE
- 1);
453 w
.s
.low
= uu
.s
.high
>> -bm
;
457 const UWtype carries
= (UWtype
) uu
.s
.high
<< bm
;
459 w
.s
.high
= uu
.s
.high
>> b
;
460 w
.s
.low
= ((UWtype
) uu
.s
.low
>> b
) | carries
;
469 __bswapsi2 (SItype u
)
471 return ((((u
) & 0xff000000u
) >> 24)
472 | (((u
) & 0x00ff0000u
) >> 8)
473 | (((u
) & 0x0000ff00u
) << 8)
474 | (((u
) & 0x000000ffu
) << 24));
479 __bswapdi2 (DItype u
)
481 return ((((u
) & 0xff00000000000000ull
) >> 56)
482 | (((u
) & 0x00ff000000000000ull
) >> 40)
483 | (((u
) & 0x0000ff0000000000ull
) >> 24)
484 | (((u
) & 0x000000ff00000000ull
) >> 8)
485 | (((u
) & 0x00000000ff000000ull
) << 8)
486 | (((u
) & 0x0000000000ff0000ull
) << 24)
487 | (((u
) & 0x000000000000ff00ull
) << 40)
488 | (((u
) & 0x00000000000000ffull
) << 56));
501 count_trailing_zeros (count
, u
);
511 const DWunion uu
= {.ll
= u
};
512 UWtype word
, count
, add
;
515 word
= uu
.s
.low
, add
= 0;
516 else if (uu
.s
.high
!= 0)
517 word
= uu
.s
.high
, add
= W_TYPE_SIZE
;
521 count_trailing_zeros (count
, word
);
522 return count
+ add
+ 1;
528 __muldi3 (DWtype u
, DWtype v
)
530 const DWunion uu
= {.ll
= u
};
531 const DWunion vv
= {.ll
= v
};
532 DWunion w
= {.ll
= __umulsidi3 (uu
.s
.low
, vv
.s
.low
)};
534 w
.s
.high
+= ((UWtype
) uu
.s
.low
* (UWtype
) vv
.s
.high
535 + (UWtype
) uu
.s
.high
* (UWtype
) vv
.s
.low
);
541 #if (defined (L_udivdi3) || defined (L_divdi3) || \
542 defined (L_umoddi3) || defined (L_moddi3))
543 #if defined (sdiv_qrnnd)
544 #define L_udiv_w_sdiv
549 #if defined (sdiv_qrnnd)
550 #if (defined (L_udivdi3) || defined (L_divdi3) || \
551 defined (L_umoddi3) || defined (L_moddi3))
552 static inline __attribute__ ((__always_inline__
))
555 __udiv_w_sdiv (UWtype
*rp
, UWtype a1
, UWtype a0
, UWtype d
)
562 if (a1
< d
- a1
- (a0
>> (W_TYPE_SIZE
- 1)))
564 /* Dividend, divisor, and quotient are nonnegative. */
565 sdiv_qrnnd (q
, r
, a1
, a0
, d
);
569 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
570 sub_ddmmss (c1
, c0
, a1
, a0
, d
>> 1, d
<< (W_TYPE_SIZE
- 1));
571 /* Divide (c1*2^32 + c0) by d. */
572 sdiv_qrnnd (q
, r
, c1
, c0
, d
);
573 /* Add 2^31 to quotient. */
574 q
+= (UWtype
) 1 << (W_TYPE_SIZE
- 1);
579 b1
= d
>> 1; /* d/2, between 2^30 and 2^31 - 1 */
580 c1
= a1
>> 1; /* A/2 */
581 c0
= (a1
<< (W_TYPE_SIZE
- 1)) + (a0
>> 1);
583 if (a1
< b1
) /* A < 2^32*b1, so A/2 < 2^31*b1 */
585 sdiv_qrnnd (q
, r
, c1
, c0
, b1
); /* (A/2) / (d/2) */
587 r
= 2*r
+ (a0
& 1); /* Remainder from A/(2*b1) */
604 else if (c1
< b1
) /* So 2^31 <= (A/2)/b1 < 2^32 */
607 c0
= ~c0
; /* logical NOT */
609 sdiv_qrnnd (q
, r
, c1
, c0
, b1
); /* (A/2) / (d/2) */
611 q
= ~q
; /* (A/2)/b1 */
614 r
= 2*r
+ (a0
& 1); /* A/(2*b1) */
632 else /* Implies c1 = b1 */
633 { /* Hence a1 = d - 1 = 2*b1 - 1 */
651 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
653 __udiv_w_sdiv (UWtype
*rp
__attribute__ ((__unused__
)),
654 UWtype a1
__attribute__ ((__unused__
)),
655 UWtype a0
__attribute__ ((__unused__
)),
656 UWtype d
__attribute__ ((__unused__
)))
663 #if (defined (L_udivdi3) || defined (L_divdi3) || \
664 defined (L_umoddi3) || defined (L_moddi3) || \
665 defined (L_divmoddi4))
670 const UQItype __clz_tab
[256] =
672 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
673 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
674 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
675 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
676 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
677 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
678 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
679 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
690 count_leading_zeros (ret
, x
);
701 const DWunion uu
= {.ll
= x
};
706 word
= uu
.s
.high
, add
= 0;
708 word
= uu
.s
.low
, add
= W_TYPE_SIZE
;
710 count_leading_zeros (ret
, word
);
722 count_trailing_zeros (ret
, x
);
733 const DWunion uu
= {.ll
= x
};
738 word
= uu
.s
.low
, add
= 0;
740 word
= uu
.s
.high
, add
= W_TYPE_SIZE
;
742 count_trailing_zeros (ret
, word
);
757 return W_TYPE_SIZE
- 1;
758 count_leading_zeros (ret
, x
);
766 __clrsbDI2 (DWtype x
)
768 const DWunion uu
= {.ll
= x
};
773 word
= uu
.s
.low
, add
= W_TYPE_SIZE
;
774 else if (uu
.s
.high
== -1)
775 word
= ~uu
.s
.low
, add
= W_TYPE_SIZE
;
776 else if (uu
.s
.high
>= 0)
777 word
= uu
.s
.high
, add
= 0;
779 word
= ~uu
.s
.high
, add
= 0;
784 count_leading_zeros (ret
, word
);
786 return ret
+ add
- 1;
790 #ifdef L_popcount_tab
791 const UQItype __popcount_tab
[256] =
793 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
794 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
795 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
796 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
797 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
798 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
799 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
800 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
804 #if defined(L_popcountsi2) || defined(L_popcountdi2)
805 #define POPCOUNTCST2(x) (((UWtype) x << __CHAR_BIT__) | x)
806 #define POPCOUNTCST4(x) (((UWtype) x << (2 * __CHAR_BIT__)) | x)
807 #define POPCOUNTCST8(x) (((UWtype) x << (4 * __CHAR_BIT__)) | x)
808 #if W_TYPE_SIZE == __CHAR_BIT__
809 #define POPCOUNTCST(x) x
810 #elif W_TYPE_SIZE == 2 * __CHAR_BIT__
811 #define POPCOUNTCST(x) POPCOUNTCST2 (x)
812 #elif W_TYPE_SIZE == 4 * __CHAR_BIT__
813 #define POPCOUNTCST(x) POPCOUNTCST4 (POPCOUNTCST2 (x))
814 #elif W_TYPE_SIZE == 8 * __CHAR_BIT__
815 #define POPCOUNTCST(x) POPCOUNTCST8 (POPCOUNTCST4 (POPCOUNTCST2 (x)))
822 __popcountSI2 (UWtype x
)
824 /* Force table lookup on targets like AVR and RL78 which only
825 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
826 have 1, and other small word targets. */
827 #if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
828 x
= x
- ((x
>> 1) & POPCOUNTCST (0x55));
829 x
= (x
& POPCOUNTCST (0x33)) + ((x
>> 2) & POPCOUNTCST (0x33));
830 x
= (x
+ (x
>> 4)) & POPCOUNTCST (0x0F);
831 return (x
* POPCOUNTCST (0x01)) >> (W_TYPE_SIZE
- __CHAR_BIT__
);
835 for (i
= 0; i
< W_TYPE_SIZE
; i
+= 8)
836 ret
+= __popcount_tab
[(x
>> i
) & 0xff];
846 __popcountDI2 (UDWtype x
)
848 /* Force table lookup on targets like AVR and RL78 which only
849 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
850 have 1, and other small word targets. */
851 #if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
852 const DWunion uu
= {.ll
= x
};
853 UWtype x1
= uu
.s
.low
, x2
= uu
.s
.high
;
854 x1
= x1
- ((x1
>> 1) & POPCOUNTCST (0x55));
855 x2
= x2
- ((x2
>> 1) & POPCOUNTCST (0x55));
856 x1
= (x1
& POPCOUNTCST (0x33)) + ((x1
>> 2) & POPCOUNTCST (0x33));
857 x2
= (x2
& POPCOUNTCST (0x33)) + ((x2
>> 2) & POPCOUNTCST (0x33));
858 x1
= (x1
+ (x1
>> 4)) & POPCOUNTCST (0x0F);
859 x2
= (x2
+ (x2
>> 4)) & POPCOUNTCST (0x0F);
861 return (x1
* POPCOUNTCST (0x01)) >> (W_TYPE_SIZE
- __CHAR_BIT__
);
865 for (i
= 0; i
< 2*W_TYPE_SIZE
; i
+= 8)
866 ret
+= __popcount_tab
[(x
>> i
) & 0xff];
876 __paritySI2 (UWtype x
)
879 # error "fill out the table"
890 return (0x6996 >> x
) & 1;
897 __parityDI2 (UDWtype x
)
899 const DWunion uu
= {.ll
= x
};
900 UWtype nx
= uu
.s
.low
^ uu
.s
.high
;
903 # error "fill out the table"
914 return (0x6996 >> nx
) & 1;
919 #ifdef TARGET_HAS_NO_HW_DIVIDE
921 #if (defined (L_udivdi3) || defined (L_divdi3) || \
922 defined (L_umoddi3) || defined (L_moddi3) || \
923 defined (L_divmoddi4))
924 static inline __attribute__ ((__always_inline__
))
927 __udivmoddi4 (UDWtype n
, UDWtype d
, UDWtype
*rp
)
929 UDWtype q
= 0, r
= n
, y
= d
;
930 UWtype lz1
, lz2
, i
, k
;
932 /* Implements align divisor shift dividend method. This algorithm
933 aligns the divisor under the dividend and then perform number of
934 test-subtract iterations which shift the dividend left. Number of
935 iterations is k + 1 where k is the number of bit positions the
936 divisor must be shifted left to align it under the dividend.
937 quotient bits can be saved in the rightmost positions of the dividend
938 as it shifts left on each test-subtract iteration. */
942 lz1
= __builtin_clzll (d
);
943 lz2
= __builtin_clzll (n
);
948 /* Dividend can exceed 2 ^ (width - 1) - 1 but still be less than the
949 aligned divisor. Normal iteration can drops the high order bit
950 of the dividend. Therefore, first test-subtract iteration is a
951 special case, saving its quotient bit in a separate location and
952 not shifting the dividend. */
963 /* k additional iterations where k regular test subtract shift
964 dividend iterations are done. */
969 r
= ((r
- y
) << 1) + 1;
975 /* First quotient bit is combined with the quotient bits resulting
976 from the k regular iterations. */
989 #if (defined (L_udivdi3) || defined (L_divdi3) || \
990 defined (L_umoddi3) || defined (L_moddi3) || \
991 defined (L_divmoddi4))
992 static inline __attribute__ ((__always_inline__
))
995 __udivmoddi4 (UDWtype n
, UDWtype d
, UDWtype
*rp
)
997 const DWunion nn
= {.ll
= n
};
998 const DWunion dd
= {.ll
= d
};
1000 UWtype d0
, d1
, n0
, n1
, n2
;
1009 #if !UDIV_NEEDS_NORMALIZATION
1016 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
1019 /* Remainder in n0. */
1026 d0
= 1 / d0
; /* Divide intentionally by zero. */
1028 udiv_qrnnd (q1
, n1
, 0, n1
, d0
);
1029 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
1031 /* Remainder in n0. */
1042 #else /* UDIV_NEEDS_NORMALIZATION */
1050 count_leading_zeros (bm
, d0
);
1054 /* Normalize, i.e. make the most significant bit of the
1058 n1
= (n1
<< bm
) | (n0
>> (W_TYPE_SIZE
- bm
));
1062 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
1065 /* Remainder in n0 >> bm. */
1072 d0
= 1 / d0
; /* Divide intentionally by zero. */
1074 count_leading_zeros (bm
, d0
);
1078 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
1079 conclude (the most significant bit of n1 is set) /\ (the
1080 leading quotient digit q1 = 1).
1082 This special case is necessary, not an optimization.
1083 (Shifts counts of W_TYPE_SIZE are undefined.) */
1092 b
= W_TYPE_SIZE
- bm
;
1096 n1
= (n1
<< bm
) | (n0
>> b
);
1099 udiv_qrnnd (q1
, n1
, n2
, n1
, d0
);
1104 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
1106 /* Remainder in n0 >> bm. */
1111 rr
.s
.low
= n0
>> bm
;
1116 #endif /* UDIV_NEEDS_NORMALIZATION */
1127 /* Remainder in n1n0. */
1139 count_leading_zeros (bm
, d1
);
1142 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1143 conclude (the most significant bit of n1 is set) /\ (the
1144 quotient digit q0 = 0 or 1).
1146 This special case is necessary, not an optimization. */
1148 /* The condition on the next line takes advantage of that
1149 n1 >= d1 (true due to program flow). */
1150 if (n1
> d1
|| n0
>= d0
)
1153 sub_ddmmss (n1
, n0
, n1
, n0
, d1
, d0
);
1172 b
= W_TYPE_SIZE
- bm
;
1174 d1
= (d1
<< bm
) | (d0
>> b
);
1177 n1
= (n1
<< bm
) | (n0
>> b
);
1180 udiv_qrnnd (q0
, n1
, n2
, n1
, d1
);
1181 umul_ppmm (m1
, m0
, q0
, d0
);
1183 if (m1
> n1
|| (m1
== n1
&& m0
> n0
))
1186 sub_ddmmss (m1
, m0
, m1
, m0
, d1
, d0
);
1191 /* Remainder in (n1n0 - m1m0) >> bm. */
1194 sub_ddmmss (n1
, n0
, n1
, n0
, m1
, m0
);
1195 rr
.s
.low
= (n1
<< b
) | (n0
>> bm
);
1196 rr
.s
.high
= n1
>> bm
;
1203 const DWunion ww
= {{.low
= q0
, .high
= q1
}};
1211 __divdi3 (DWtype u
, DWtype v
)
1214 DWunion uu
= {.ll
= u
};
1215 DWunion vv
= {.ll
= v
};
1225 w
= __udivmoddi4 (uu
.ll
, vv
.ll
, (UDWtype
*) 0);
1235 __moddi3 (DWtype u
, DWtype v
)
1238 DWunion uu
= {.ll
= u
};
1239 DWunion vv
= {.ll
= v
};
1248 (void) __udivmoddi4 (uu
.ll
, vv
.ll
, (UDWtype
*)&w
);
1258 __divmoddi4 (DWtype u
, DWtype v
, DWtype
*rp
)
1260 Wtype c1
= 0, c2
= 0;
1261 DWunion uu
= {.ll
= u
};
1262 DWunion vv
= {.ll
= v
};
1273 w
= __udivmoddi4 (uu
.ll
, vv
.ll
, (UDWtype
*)&r
);
1286 __umoddi3 (UDWtype u
, UDWtype v
)
1290 (void) __udivmoddi4 (u
, v
, &w
);
1298 __udivdi3 (UDWtype n
, UDWtype d
)
1300 return __udivmoddi4 (n
, d
, (UDWtype
*) 0);
1306 __cmpdi2 (DWtype a
, DWtype b
)
1308 return (a
> b
) - (a
< b
) + 1;
1314 __ucmpdi2 (UDWtype a
, UDWtype b
)
1316 return (a
> b
) - (a
< b
) + 1;
1320 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1322 __fixunstfDI (TFtype a
)
1327 /* Compute high word of result, as a flonum. */
1328 const TFtype b
= (a
/ Wtype_MAXp1_F
);
1329 /* Convert that to fixed (but not to DWtype!),
1330 and shift it into the high word. */
1331 UDWtype v
= (UWtype
) b
;
1333 /* Remove high part from the TFtype, leaving the low part as flonum. */
1335 /* Convert that to fixed (but not to DWtype!) and add it in.
1336 Sometimes A comes out negative. This is significant, since
1337 A has more bits than a long int does. */
1339 v
-= (UWtype
) (- a
);
1346 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1348 __fixtfdi (TFtype a
)
1351 return - __fixunstfDI (-a
);
1352 return __fixunstfDI (a
);
1356 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1358 __fixunsxfDI (XFtype a
)
1363 /* Compute high word of result, as a flonum. */
1364 const XFtype b
= (a
/ Wtype_MAXp1_F
);
1365 /* Convert that to fixed (but not to DWtype!),
1366 and shift it into the high word. */
1367 UDWtype v
= (UWtype
) b
;
1369 /* Remove high part from the XFtype, leaving the low part as flonum. */
1371 /* Convert that to fixed (but not to DWtype!) and add it in.
1372 Sometimes A comes out negative. This is significant, since
1373 A has more bits than a long int does. */
1375 v
-= (UWtype
) (- a
);
1382 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1384 __fixxfdi (XFtype a
)
1387 return - __fixunsxfDI (-a
);
1388 return __fixunsxfDI (a
);
1392 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1394 __fixunsdfDI (DFtype a
)
1396 /* Get high part of result. The division here will just moves the radix
1397 point and will not cause any rounding. Then the conversion to integral
1398 type chops result as desired. */
1399 const UWtype hi
= a
/ Wtype_MAXp1_F
;
1401 /* Get low part of result. Convert `hi' to floating type and scale it back,
1402 then subtract this from the number being converted. This leaves the low
1403 part. Convert that to integral type. */
1404 const UWtype lo
= a
- (DFtype
) hi
* Wtype_MAXp1_F
;
1406 /* Assemble result from the two parts. */
1407 return ((UDWtype
) hi
<< W_TYPE_SIZE
) | lo
;
1411 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1413 __fixdfdi (DFtype a
)
1416 return - __fixunsdfDI (-a
);
1417 return __fixunsdfDI (a
);
1421 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1423 __fixunssfDI (SFtype a
)
1425 #if LIBGCC2_HAS_DF_MODE
1426 /* Convert the SFtype to a DFtype, because that is surely not going
1427 to lose any bits. Some day someone else can write a faster version
1428 that avoids converting to DFtype, and verify it really works right. */
1429 const DFtype dfa
= a
;
1431 /* Get high part of result. The division here will just moves the radix
1432 point and will not cause any rounding. Then the conversion to integral
1433 type chops result as desired. */
1434 const UWtype hi
= dfa
/ Wtype_MAXp1_F
;
1436 /* Get low part of result. Convert `hi' to floating type and scale it back,
1437 then subtract this from the number being converted. This leaves the low
1438 part. Convert that to integral type. */
1439 const UWtype lo
= dfa
- (DFtype
) hi
* Wtype_MAXp1_F
;
1441 /* Assemble result from the two parts. */
1442 return ((UDWtype
) hi
<< W_TYPE_SIZE
) | lo
;
1443 #elif FLT_MANT_DIG < W_TYPE_SIZE
1446 if (a
< Wtype_MAXp1_F
)
1448 if (a
< Wtype_MAXp1_F
* Wtype_MAXp1_F
)
1450 /* Since we know that there are fewer significant bits in the SFmode
1451 quantity than in a word, we know that we can convert out all the
1452 significant bits in one step, and thus avoid losing bits. */
1454 /* ??? This following loop essentially performs frexpf. If we could
1455 use the real libm function, or poke at the actual bits of the fp
1456 format, it would be significantly faster. */
1458 UWtype shift
= 0, counter
;
1462 for (counter
= W_TYPE_SIZE
/ 2; counter
!= 0; counter
>>= 1)
1464 SFtype counterf
= (UWtype
)1 << counter
;
1472 /* Rescale into the range of one word, extract the bits of that
1473 one word, and shift the result into position. */
1476 return (DWtype
)counter
<< shift
;
1485 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1487 __fixsfdi (SFtype a
)
1490 return - __fixunssfDI (-a
);
1491 return __fixunssfDI (a
);
1495 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1497 __floatdixf (DWtype u
)
1499 #if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
1502 XFtype d
= (Wtype
) (u
>> W_TYPE_SIZE
);
1509 #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1511 __floatundixf (UDWtype u
)
1513 #if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
1516 XFtype d
= (UWtype
) (u
>> W_TYPE_SIZE
);
1523 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1525 __floatditf (DWtype u
)
1527 #if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
1530 TFtype d
= (Wtype
) (u
>> W_TYPE_SIZE
);
1537 #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1539 __floatunditf (UDWtype u
)
1541 #if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
1544 TFtype d
= (UWtype
) (u
>> W_TYPE_SIZE
);
1551 #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
1552 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1553 #define DI_SIZE (W_TYPE_SIZE * 2)
1554 #define F_MODE_OK(SIZE) \
1556 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1557 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1558 #if defined(L_floatdisf)
1559 #define FUNC __floatdisf
1560 #define FSTYPE SFtype
1561 #define FSSIZE __LIBGCC_SF_MANT_DIG__
1563 #define FUNC __floatdidf
1564 #define FSTYPE DFtype
1565 #define FSSIZE __LIBGCC_DF_MANT_DIG__
1571 #if FSSIZE >= W_TYPE_SIZE
1572 /* When the word size is small, we never get any rounding error. */
1573 FSTYPE f
= (Wtype
) (u
>> W_TYPE_SIZE
);
1577 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
1578 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
1579 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1581 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
1582 # define FSIZE __LIBGCC_DF_MANT_DIG__
1583 # define FTYPE DFtype
1584 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
1585 # define FSIZE __LIBGCC_XF_MANT_DIG__
1586 # define FTYPE XFtype
1587 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1588 # define FSIZE __LIBGCC_TF_MANT_DIG__
1589 # define FTYPE TFtype
1594 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1596 /* Protect against double-rounding error.
1597 Represent any low-order bits, that might be truncated by a bit that
1598 won't be lost. The bit can go in anywhere below the rounding position
1599 of the FSTYPE. A fixed mask and bit position handles all usual
1601 if (! (- ((DWtype
) 1 << FSIZE
) < u
1602 && u
< ((DWtype
) 1 << FSIZE
)))
1604 if ((UDWtype
) u
& (REP_BIT
- 1))
1606 u
&= ~ (REP_BIT
- 1);
1611 /* Do the calculation in a wider type so that we don't lose any of
1612 the precision of the high word while multiplying it. */
1613 FTYPE f
= (Wtype
) (u
>> W_TYPE_SIZE
);
1618 #if FSSIZE >= W_TYPE_SIZE - 2
1621 /* Finally, the word size is larger than the number of bits in the
1622 required FSTYPE, and we've got no suitable wider type. The only
1623 way to avoid double rounding is to special case the
1626 /* If there are no high bits set, fall back to one conversion. */
1628 return (FSTYPE
)(Wtype
)u
;
1630 /* Otherwise, find the power of two. */
1631 Wtype hi
= u
>> W_TYPE_SIZE
;
1635 UWtype count
, shift
;
1636 #if !defined (COUNT_LEADING_ZEROS_0) || COUNT_LEADING_ZEROS_0 != W_TYPE_SIZE
1638 count
= W_TYPE_SIZE
;
1641 count_leading_zeros (count
, hi
);
1643 /* No leading bits means u == minimum. */
1645 return Wtype_MAXp1_F
* (FSTYPE
) (hi
| ((UWtype
) u
!= 0));
1647 shift
= 1 + W_TYPE_SIZE
- count
;
1649 /* Shift down the most significant bits. */
1652 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1653 if ((UWtype
)u
<< (W_TYPE_SIZE
- shift
))
1656 /* Convert the one word of data, and rescale. */
1658 if (shift
== W_TYPE_SIZE
)
1660 /* The following two cases could be merged if we knew that the target
1661 supported a native unsigned->float conversion. More often, we only
1662 have a signed conversion, and have to add extra fixup code. */
1663 else if (shift
== W_TYPE_SIZE
- 1)
1664 e
= Wtype_MAXp1_F
/ 2;
1666 e
= (Wtype
)1 << shift
;
1672 #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
1673 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1674 #define DI_SIZE (W_TYPE_SIZE * 2)
1675 #define F_MODE_OK(SIZE) \
1677 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1678 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1679 #if defined(L_floatundisf)
1680 #define FUNC __floatundisf
1681 #define FSTYPE SFtype
1682 #define FSSIZE __LIBGCC_SF_MANT_DIG__
1684 #define FUNC __floatundidf
1685 #define FSTYPE DFtype
1686 #define FSSIZE __LIBGCC_DF_MANT_DIG__
1692 #if FSSIZE >= W_TYPE_SIZE
1693 /* When the word size is small, we never get any rounding error. */
1694 FSTYPE f
= (UWtype
) (u
>> W_TYPE_SIZE
);
1698 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
1699 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
1700 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1702 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
1703 # define FSIZE __LIBGCC_DF_MANT_DIG__
1704 # define FTYPE DFtype
1705 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
1706 # define FSIZE __LIBGCC_XF_MANT_DIG__
1707 # define FTYPE XFtype
1708 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1709 # define FSIZE __LIBGCC_TF_MANT_DIG__
1710 # define FTYPE TFtype
1715 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1717 /* Protect against double-rounding error.
1718 Represent any low-order bits, that might be truncated by a bit that
1719 won't be lost. The bit can go in anywhere below the rounding position
1720 of the FSTYPE. A fixed mask and bit position handles all usual
1722 if (u
>= ((UDWtype
) 1 << FSIZE
))
1724 if ((UDWtype
) u
& (REP_BIT
- 1))
1726 u
&= ~ (REP_BIT
- 1);
1731 /* Do the calculation in a wider type so that we don't lose any of
1732 the precision of the high word while multiplying it. */
1733 FTYPE f
= (UWtype
) (u
>> W_TYPE_SIZE
);
1738 #if FSSIZE == W_TYPE_SIZE - 1
1741 /* Finally, the word size is larger than the number of bits in the
1742 required FSTYPE, and we've got no suitable wider type. The only
1743 way to avoid double rounding is to special case the
1746 /* If there are no high bits set, fall back to one conversion. */
1748 return (FSTYPE
)(UWtype
)u
;
1750 /* Otherwise, find the power of two. */
1751 UWtype hi
= u
>> W_TYPE_SIZE
;
1753 UWtype count
, shift
;
1754 count_leading_zeros (count
, hi
);
1756 shift
= W_TYPE_SIZE
- count
;
1758 /* Shift down the most significant bits. */
1761 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1762 if ((UWtype
)u
<< (W_TYPE_SIZE
- shift
))
1765 /* Convert the one word of data, and rescale. */
1767 if (shift
== W_TYPE_SIZE
)
1769 /* The following two cases could be merged if we knew that the target
1770 supported a native unsigned->float conversion. More often, we only
1771 have a signed conversion, and have to add extra fixup code. */
1772 else if (shift
== W_TYPE_SIZE
- 1)
1773 e
= Wtype_MAXp1_F
/ 2;
1775 e
= (Wtype
)1 << shift
;
1781 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1783 __fixunsxfSI (XFtype a
)
1785 if (a
>= - (DFtype
) Wtype_MIN
)
1786 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1791 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1793 __fixunsdfSI (DFtype a
)
1795 if (a
>= - (DFtype
) Wtype_MIN
)
1796 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1801 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1803 __fixunssfSI (SFtype a
)
1805 if (a
>= - (SFtype
) Wtype_MIN
)
1806 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1811 /* Integer power helper used from __builtin_powi for non-constant
1814 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1815 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1816 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1817 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1818 # if defined(L_powisf2)
1819 # define TYPE SFtype
1820 # define NAME __powisf2
1821 # elif defined(L_powidf2)
1822 # define TYPE DFtype
1823 # define NAME __powidf2
1824 # elif defined(L_powixf2)
1825 # define TYPE XFtype
1826 # define NAME __powixf2
1827 # elif defined(L_powitf2)
1828 # define TYPE TFtype
1829 # define NAME __powitf2
1835 NAME (TYPE x
, int m
)
1837 unsigned int n
= m
< 0 ? -(unsigned int) m
: (unsigned int) m
;
1838 TYPE y
= n
% 2 ? x
: 1;
1845 return m
< 0 ? 1/y
: y
;
1850 #if((defined(L_mulhc3) || defined(L_divhc3)) && LIBGCC2_HAS_HF_MODE) \
1851 || ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1852 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1853 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1854 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1860 #if defined(L_mulhc3) || defined(L_divhc3)
1861 # define MTYPE HFtype
1862 # define CTYPE HCtype
1863 # define AMTYPE SFtype
1865 # define CEXT __LIBGCC_HF_FUNC_EXT__
1866 # define NOTRUNC (!__LIBGCC_HF_EXCESS_PRECISION__)
1867 #elif defined(L_mulsc3) || defined(L_divsc3)
1868 # define MTYPE SFtype
1869 # define CTYPE SCtype
1870 # define AMTYPE DFtype
1872 # define CEXT __LIBGCC_SF_FUNC_EXT__
1873 # define NOTRUNC (!__LIBGCC_SF_EXCESS_PRECISION__)
1874 # define RBIG (__LIBGCC_SF_MAX__ / 2)
1875 # define RMIN (__LIBGCC_SF_MIN__)
1876 # define RMIN2 (__LIBGCC_SF_EPSILON__)
1877 # define RMINSCAL (1 / __LIBGCC_SF_EPSILON__)
1878 # define RMAX2 (RBIG * RMIN2)
1879 #elif defined(L_muldc3) || defined(L_divdc3)
1880 # define MTYPE DFtype
1881 # define CTYPE DCtype
1883 # define CEXT __LIBGCC_DF_FUNC_EXT__
1884 # define NOTRUNC (!__LIBGCC_DF_EXCESS_PRECISION__)
1885 # define RBIG (__LIBGCC_DF_MAX__ / 2)
1886 # define RMIN (__LIBGCC_DF_MIN__)
1887 # define RMIN2 (__LIBGCC_DF_EPSILON__)
1888 # define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
1889 # define RMAX2 (RBIG * RMIN2)
1890 #elif defined(L_mulxc3) || defined(L_divxc3)
1891 # define MTYPE XFtype
1892 # define CTYPE XCtype
1894 # define CEXT __LIBGCC_XF_FUNC_EXT__
1895 # define NOTRUNC (!__LIBGCC_XF_EXCESS_PRECISION__)
1896 # define RBIG (__LIBGCC_XF_MAX__ / 2)
1897 # define RMIN (__LIBGCC_XF_MIN__)
1898 # define RMIN2 (__LIBGCC_XF_EPSILON__)
1899 # define RMINSCAL (1 / __LIBGCC_XF_EPSILON__)
1900 # define RMAX2 (RBIG * RMIN2)
1901 #elif defined(L_multc3) || defined(L_divtc3)
1902 # define MTYPE TFtype
1903 # define CTYPE TCtype
1905 # define CEXT __LIBGCC_TF_FUNC_EXT__
1906 # define NOTRUNC (!__LIBGCC_TF_EXCESS_PRECISION__)
1907 # define RBIG (__LIBGCC_TF_MAX__ / 2)
1908 # define RMIN (__LIBGCC_TF_MIN__)
1909 # define RMIN2 (__LIBGCC_TF_EPSILON__)
1910 # define RMINSCAL (1 / __LIBGCC_TF_EPSILON__)
1911 # define RMAX2 (RBIG * RMIN2)
1916 #define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1917 #define _CONCAT3(A,B,C) A##B##C
1919 #define CONCAT2(A,B) _CONCAT2(A,B)
1920 #define _CONCAT2(A,B) A##B
1922 #define isnan(x) __builtin_isnan (x)
1923 #define isfinite(x) __builtin_isfinite (x)
1924 #define isinf(x) __builtin_isinf (x)
1926 #define INFINITY CONCAT2(__builtin_huge_val, CEXT) ()
1929 /* Helpers to make the following code slightly less gross. */
1930 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1931 #define FABS CONCAT2(__builtin_fabs, CEXT)
1933 /* Verify that MTYPE matches up with CEXT. */
1934 extern void *compile_type_assert
[sizeof(INFINITY
) == sizeof(MTYPE
) ? 1 : -1];
1936 /* Ensure that we've lost any extra precision. */
1940 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1943 #if defined(L_mulhc3) || defined(L_mulsc3) || defined(L_muldc3) \
1944 || defined(L_mulxc3) || defined(L_multc3)
1947 CONCAT3(__mul
,MODE
,3) (MTYPE a
, MTYPE b
, MTYPE c
, MTYPE d
)
1949 MTYPE ac
, bd
, ad
, bc
, x
, y
;
1965 if (isnan (x
) && isnan (y
))
1967 /* Recover infinities that computed as NaN + iNaN. */
1969 if (isinf (a
) || isinf (b
))
1971 /* z is infinite. "Box" the infinity and change NaNs in
1972 the other factor to 0. */
1973 a
= COPYSIGN (isinf (a
) ? 1 : 0, a
);
1974 b
= COPYSIGN (isinf (b
) ? 1 : 0, b
);
1975 if (isnan (c
)) c
= COPYSIGN (0, c
);
1976 if (isnan (d
)) d
= COPYSIGN (0, d
);
1979 if (isinf (c
) || isinf (d
))
1981 /* w is infinite. "Box" the infinity and change NaNs in
1982 the other factor to 0. */
1983 c
= COPYSIGN (isinf (c
) ? 1 : 0, c
);
1984 d
= COPYSIGN (isinf (d
) ? 1 : 0, d
);
1985 if (isnan (a
)) a
= COPYSIGN (0, a
);
1986 if (isnan (b
)) b
= COPYSIGN (0, b
);
1990 && (isinf (ac
) || isinf (bd
)
1991 || isinf (ad
) || isinf (bc
)))
1993 /* Recover infinities from overflow by changing NaNs to 0. */
1994 if (isnan (a
)) a
= COPYSIGN (0, a
);
1995 if (isnan (b
)) b
= COPYSIGN (0, b
);
1996 if (isnan (c
)) c
= COPYSIGN (0, c
);
1997 if (isnan (d
)) d
= COPYSIGN (0, d
);
2002 x
= INFINITY
* (a
* c
- b
* d
);
2003 y
= INFINITY
* (a
* d
+ b
* c
);
2011 #endif /* complex multiply */
2013 #if defined(L_divhc3) || defined(L_divsc3) || defined(L_divdc3) \
2014 || defined(L_divxc3) || defined(L_divtc3)
2017 CONCAT3(__div
,MODE
,3) (MTYPE a
, MTYPE b
, MTYPE c
, MTYPE d
)
2019 #if defined(L_divhc3) \
2020 || (defined(L_divsc3) && defined(__LIBGCC_HAVE_HWDBL__) )
2022 /* Half precision is handled with float precision.
2023 float is handled with double precision when double precision
2024 hardware is available.
2025 Due to the additional precision, the simple complex divide
2026 method (without Smith's method) is sufficient to get accurate
2027 answers and runs slightly faster than Smith's method. */
2029 AMTYPE aa
, bb
, cc
, dd
;
2038 denom
= (cc
* cc
) + (dd
* dd
);
2039 x
= ((aa
* cc
) + (bb
* dd
)) / denom
;
2040 y
= ((bb
* cc
) - (aa
* dd
)) / denom
;
2043 MTYPE denom
, ratio
, x
, y
;
2046 /* double, extended, long double have significant potential
2047 underflow/overflow errors that can be greatly reduced with
2048 a limited number of tests and adjustments. float is handled
2049 the same way when no HW double is available.
2052 /* Scale by max(c,d) to reduce chances of denominator overflowing. */
2053 if (FABS (c
) < FABS (d
))
2055 /* Prevent underflow when denominator is near max representable. */
2056 if (FABS (d
) >= RBIG
)
2063 /* Avoid overflow/underflow issues when c and d are small.
2064 Scaling up helps avoid some underflows.
2065 No new overflow possible since c&d < RMIN2. */
2066 if (FABS (d
) < RMIN2
)
2075 if (((FABS (a
) < RMIN
) && (FABS (b
) < RMAX2
) && (FABS (d
) < RMAX2
))
2076 || ((FABS (b
) < RMIN
) && (FABS (a
) < RMAX2
)
2077 && (FABS (d
) < RMAX2
)))
2086 denom
= (c
* ratio
) + d
;
2087 /* Choose alternate order of computation if ratio is subnormal. */
2088 if (FABS (ratio
) > RMIN
)
2090 x
= ((a
* ratio
) + b
) / denom
;
2091 y
= ((b
* ratio
) - a
) / denom
;
2095 x
= ((c
* (a
/ d
)) + b
) / denom
;
2096 y
= ((c
* (b
/ d
)) - a
) / denom
;
2101 /* Prevent underflow when denominator is near max representable. */
2102 if (FABS (c
) >= RBIG
)
2109 /* Avoid overflow/underflow issues when both c and d are small.
2110 Scaling up helps avoid some underflows.
2111 No new overflow possible since both c&d are less than RMIN2. */
2112 if (FABS (c
) < RMIN2
)
2121 if (((FABS (a
) < RMIN
) && (FABS (b
) < RMAX2
) && (FABS (c
) < RMAX2
))
2122 || ((FABS (b
) < RMIN
) && (FABS (a
) < RMAX2
)
2123 && (FABS (c
) < RMAX2
)))
2132 denom
= (d
* ratio
) + c
;
2133 /* Choose alternate order of computation if ratio is subnormal. */
2134 if (FABS (ratio
) > RMIN
)
2136 x
= ((b
* ratio
) + a
) / denom
;
2137 y
= (b
- (a
* ratio
)) / denom
;
2141 x
= (a
+ (d
* (b
/ c
))) / denom
;
2142 y
= (b
- (d
* (a
/ c
))) / denom
;
2147 /* Recover infinities and zeros that computed as NaN+iNaN; the only
2148 cases are nonzero/zero, infinite/finite, and finite/infinite. */
2149 if (isnan (x
) && isnan (y
))
2151 if (c
== 0.0 && d
== 0.0 && (!isnan (a
) || !isnan (b
)))
2153 x
= COPYSIGN (INFINITY
, c
) * a
;
2154 y
= COPYSIGN (INFINITY
, c
) * b
;
2156 else if ((isinf (a
) || isinf (b
)) && isfinite (c
) && isfinite (d
))
2158 a
= COPYSIGN (isinf (a
) ? 1 : 0, a
);
2159 b
= COPYSIGN (isinf (b
) ? 1 : 0, b
);
2160 x
= INFINITY
* (a
* c
+ b
* d
);
2161 y
= INFINITY
* (b
* c
- a
* d
);
2163 else if ((isinf (c
) || isinf (d
)) && isfinite (a
) && isfinite (b
))
2165 c
= COPYSIGN (isinf (c
) ? 1 : 0, c
);
2166 d
= COPYSIGN (isinf (d
) ? 1 : 0, d
);
2167 x
= 0.0 * (a
* c
+ b
* d
);
2168 y
= 0.0 * (b
* c
- a
* d
);
2176 #endif /* complex divide */
2178 #endif /* all complex float routines */
2180 /* From here on down, the routines use normal data types. */
2182 #define SItype bogus_type
2183 #define USItype bogus_type
2184 #define DItype bogus_type
2185 #define UDItype bogus_type
2186 #define SFtype bogus_type
2187 #define DFtype bogus_type
2205 /* Like bcmp except the sign is meaningful.
2206 Result is negative if S1 is less than S2,
2207 positive if S1 is greater, 0 if S1 and S2 are equal. */
2210 __gcc_bcmp (const unsigned char *s1
, const unsigned char *s2
, size_t size
)
2214 const unsigned char c1
= *s1
++, c2
= *s2
++;
2224 /* __eprintf used to be used by GCC's private version of <assert.h>.
2225 We no longer provide that header, but this routine remains in libgcc.a
2226 for binary backward compatibility. Note that it is not included in
2227 the shared version of libgcc. */
2229 #ifndef inhibit_libc
2231 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
2235 __eprintf (const char *string
, const char *expression
,
2236 unsigned int line
, const char *filename
)
2238 fprintf (stderr
, string
, expression
, line
, filename
);
2247 #ifdef L_clear_cache
2248 /* Clear part of an instruction cache. */
2251 __clear_cache (void *beg
__attribute__((__unused__
)),
2252 void *end
__attribute__((__unused__
)))
2254 #ifdef CLEAR_INSN_CACHE
2255 /* Cast the void* pointers to char* as some implementations
2256 of the macro assume the pointers can be subtracted from
2258 CLEAR_INSN_CACHE ((char *) beg
, (char *) end
);
2259 #endif /* CLEAR_INSN_CACHE */
2262 #endif /* L_clear_cache */
2266 /* Jump to a trampoline, loading the static chain address. */
2268 #if defined(WINNT) && ! defined(__CYGWIN__)
2269 #include <windows.h>
2270 int getpagesize (void);
2271 int mprotect (char *,int, int);
2284 mprotect (char *addr
, int len
, int prot
)
2303 if (VirtualProtect (addr
, len
, np
, &op
))
2309 #endif /* WINNT && ! __CYGWIN__ */
2311 #ifdef TRANSFER_FROM_TRAMPOLINE
2312 TRANSFER_FROM_TRAMPOLINE
2314 #endif /* L_trampoline */
2319 #include "gbl-ctors.h"
2321 /* Some systems use __main in a way incompatible with its use in gcc, in these
2322 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2323 give the same symbol without quotes for an alternative entry point. You
2324 must define both, or neither. */
2326 #define NAME__MAIN "__main"
2327 #define SYMBOL__MAIN __main
2330 #if defined (__LIBGCC_INIT_SECTION_ASM_OP__) \
2331 || defined (__LIBGCC_INIT_ARRAY_SECTION_ASM_OP__)
2332 #undef HAS_INIT_SECTION
2333 #define HAS_INIT_SECTION
2336 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2338 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2339 code to run constructors. In that case, we need to handle EH here, too.
2340 But MINGW32 is special because it handles CRTSTUFF and EH on its own. */
2343 #undef __LIBGCC_EH_FRAME_SECTION_NAME__
2346 #ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
2347 #include "unwind-dw2-fde.h"
2348 extern unsigned char __EH_FRAME_BEGIN__
[];
2351 /* Run all the global destructors on exit from the program. */
2354 __do_global_dtors (void)
2356 #ifdef DO_GLOBAL_DTORS_BODY
2357 DO_GLOBAL_DTORS_BODY
;
2359 static func_ptr
*p
= __DTOR_LIST__
+ 1;
2366 #if defined (__LIBGCC_EH_FRAME_SECTION_NAME__) && !defined (HAS_INIT_SECTION)
2368 static int completed
= 0;
2372 __deregister_frame_info (__EH_FRAME_BEGIN__
);
2379 #ifndef HAS_INIT_SECTION
2380 /* Run all the global constructors on entry to the program. */
2383 __do_global_ctors (void)
2385 #ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
2387 static struct object object
;
2388 __register_frame_info (__EH_FRAME_BEGIN__
, &object
);
2391 DO_GLOBAL_CTORS_BODY
;
2392 atexit (__do_global_dtors
);
2394 #endif /* no HAS_INIT_SECTION */
2396 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2397 /* Subroutine called automatically by `main'.
2398 Compiling a global function named `main'
2399 produces an automatic call to this function at the beginning.
2401 For many systems, this routine calls __do_global_ctors.
2402 For systems which support a .init section we use the .init section
2403 to run __do_global_ctors, so we need not do anything here. */
2405 extern void SYMBOL__MAIN (void);
2409 /* Support recursive calls to `main': run initializers just once. */
2410 static int initialized
;
2414 __do_global_ctors ();
2417 #endif /* no HAS_INIT_SECTION or INVOKE__main */
2419 #endif /* L__main */
2420 #endif /* __CYGWIN__ */
2424 #include "gbl-ctors.h"
2426 /* Provide default definitions for the lists of constructors and
2427 destructors, so that we don't get linker errors. These symbols are
2428 intentionally bss symbols, so that gld and/or collect will provide
2429 the right values. */
2431 /* We declare the lists here with two elements each,
2432 so that they are valid empty lists if no other definition is loaded.
2434 If we are using the old "set" extensions to have the gnu linker
2435 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2436 must be in the bss/common section.
2438 Long term no port should use those extensions. But many still do. */
2439 #if !defined(__LIBGCC_INIT_SECTION_ASM_OP__)
2440 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2441 func_ptr __CTOR_LIST__
[2] = {0, 0};
2442 func_ptr __DTOR_LIST__
[2] = {0, 0};
2444 func_ptr __CTOR_LIST__
[2];
2445 func_ptr __DTOR_LIST__
[2];
2447 #endif /* no __LIBGCC_INIT_SECTION_ASM_OP__ */
2448 #endif /* L_ctors */
2449 #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */