YA spurious-uninitialized-variable-warning test
[official-gcc.git] / gcc / loop.c
bloba626784a02a4b2670f4ff4c4a7b9e84346a0edea
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
37 #include "config.h"
38 #include "system.h"
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "expr.h"
42 #include "insn-config.h"
43 #include "insn-flags.h"
44 #include "regs.h"
45 #include "hard-reg-set.h"
46 #include "recog.h"
47 #include "flags.h"
48 #include "real.h"
49 #include "loop.h"
50 #include "except.h"
51 #include "toplev.h"
53 /* Vector mapping INSN_UIDs to luids.
54 The luids are like uids but increase monotonically always.
55 We use them to see whether a jump comes from outside a given loop. */
57 int *uid_luid;
59 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
60 number the insn is contained in. */
62 int *uid_loop_num;
64 /* 1 + largest uid of any insn. */
66 int max_uid_for_loop;
68 /* 1 + luid of last insn. */
70 static int max_luid;
72 /* Number of loops detected in current function. Used as index to the
73 next few tables. */
75 static int max_loop_num;
77 /* Indexed by loop number, contains the first and last insn of each loop. */
79 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
81 /* Likewise for the continue insn */
82 static rtx *loop_number_loop_cont;
84 /* The first code_label that is reached in every loop iteration.
85 0 when not computed yet, initially const0_rtx if a jump couldn't be
86 followed.
87 Also set to 0 when there is no such label before the NOTE_INSN_LOOP_CONT
88 of this loop, or in verify_dominator, if a jump couldn't be followed. */
89 static rtx *loop_number_cont_dominator;
91 /* For each loop, gives the containing loop number, -1 if none. */
93 int *loop_outer_loop;
95 #ifdef HAVE_decrement_and_branch_on_count
96 /* Records whether resource in use by inner loop. */
98 int *loop_used_count_register;
99 #endif /* HAVE_decrement_and_branch_on_count */
101 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
102 really a loop (an insn outside the loop branches into it). */
104 static char *loop_invalid;
106 /* Indexed by loop number, links together all LABEL_REFs which refer to
107 code labels outside the loop. Used by routines that need to know all
108 loop exits, such as final_biv_value and final_giv_value.
110 This does not include loop exits due to return instructions. This is
111 because all bivs and givs are pseudos, and hence must be dead after a
112 return, so the presense of a return does not affect any of the
113 optimizations that use this info. It is simpler to just not include return
114 instructions on this list. */
116 rtx *loop_number_exit_labels;
118 /* Indexed by loop number, counts the number of LABEL_REFs on
119 loop_number_exit_labels for this loop and all loops nested inside it. */
121 int *loop_number_exit_count;
123 /* Nonzero if there is a subroutine call in the current loop. */
125 static int loop_has_call;
127 /* Nonzero if there is a volatile memory reference in the current
128 loop. */
130 static int loop_has_volatile;
132 /* Nonzero if there is a tablejump in the current loop. */
134 static int loop_has_tablejump;
136 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
137 current loop. A continue statement will generate a branch to
138 NEXT_INSN (loop_continue). */
140 static rtx loop_continue;
142 /* Indexed by register number, contains the number of times the reg
143 is set during the loop being scanned.
144 During code motion, a negative value indicates a reg that has been
145 made a candidate; in particular -2 means that it is an candidate that
146 we know is equal to a constant and -1 means that it is an candidate
147 not known equal to a constant.
148 After code motion, regs moved have 0 (which is accurate now)
149 while the failed candidates have the original number of times set.
151 Therefore, at all times, == 0 indicates an invariant register;
152 < 0 a conditionally invariant one. */
154 static varray_type set_in_loop;
156 /* Original value of set_in_loop; same except that this value
157 is not set negative for a reg whose sets have been made candidates
158 and not set to 0 for a reg that is moved. */
160 static varray_type n_times_set;
162 /* Index by register number, 1 indicates that the register
163 cannot be moved or strength reduced. */
165 static varray_type may_not_optimize;
167 /* Contains the insn in which a register was used if it was used
168 exactly once; contains const0_rtx if it was used more than once. */
170 static varray_type reg_single_usage;
172 /* Nonzero means reg N has already been moved out of one loop.
173 This reduces the desire to move it out of another. */
175 static char *moved_once;
177 /* List of MEMs that are stored in this loop. */
179 static rtx loop_store_mems;
181 /* The insn where the first of these was found. */
182 static rtx first_loop_store_insn;
184 typedef struct loop_mem_info {
185 rtx mem; /* The MEM itself. */
186 rtx reg; /* Corresponding pseudo, if any. */
187 int optimize; /* Nonzero if we can optimize access to this MEM. */
188 } loop_mem_info;
190 /* Array of MEMs that are used (read or written) in this loop, but
191 cannot be aliased by anything in this loop, except perhaps
192 themselves. In other words, if loop_mems[i] is altered during the
193 loop, it is altered by an expression that is rtx_equal_p to it. */
195 static loop_mem_info *loop_mems;
197 /* The index of the next available slot in LOOP_MEMS. */
199 static int loop_mems_idx;
201 /* The number of elements allocated in LOOP_MEMs. */
203 static int loop_mems_allocated;
205 /* Nonzero if we don't know what MEMs were changed in the current loop.
206 This happens if the loop contains a call (in which case `loop_has_call'
207 will also be set) or if we store into more than NUM_STORES MEMs. */
209 static int unknown_address_altered;
211 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
212 static int num_movables;
214 /* Count of memory write instructions discovered in the loop. */
215 static int num_mem_sets;
217 /* Number of loops contained within the current one, including itself. */
218 static int loops_enclosed;
220 /* Bound on pseudo register number before loop optimization.
221 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
222 int max_reg_before_loop;
224 /* This obstack is used in product_cheap_p to allocate its rtl. It
225 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
226 If we used the same obstack that it did, we would be deallocating
227 that array. */
229 static struct obstack temp_obstack;
231 /* This is where the pointer to the obstack being used for RTL is stored. */
233 extern struct obstack *rtl_obstack;
235 #define obstack_chunk_alloc xmalloc
236 #define obstack_chunk_free free
238 /* During the analysis of a loop, a chain of `struct movable's
239 is made to record all the movable insns found.
240 Then the entire chain can be scanned to decide which to move. */
242 struct movable
244 rtx insn; /* A movable insn */
245 rtx set_src; /* The expression this reg is set from. */
246 rtx set_dest; /* The destination of this SET. */
247 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
248 of any registers used within the LIBCALL. */
249 int consec; /* Number of consecutive following insns
250 that must be moved with this one. */
251 int regno; /* The register it sets */
252 short lifetime; /* lifetime of that register;
253 may be adjusted when matching movables
254 that load the same value are found. */
255 short savings; /* Number of insns we can move for this reg,
256 including other movables that force this
257 or match this one. */
258 unsigned int cond : 1; /* 1 if only conditionally movable */
259 unsigned int force : 1; /* 1 means MUST move this insn */
260 unsigned int global : 1; /* 1 means reg is live outside this loop */
261 /* If PARTIAL is 1, GLOBAL means something different:
262 that the reg is live outside the range from where it is set
263 to the following label. */
264 unsigned int done : 1; /* 1 inhibits further processing of this */
266 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
267 In particular, moving it does not make it
268 invariant. */
269 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
270 load SRC, rather than copying INSN. */
271 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
272 first insn of a consecutive sets group. */
273 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
274 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
275 that we should avoid changing when clearing
276 the rest of the reg. */
277 struct movable *match; /* First entry for same value */
278 struct movable *forces; /* An insn that must be moved if this is */
279 struct movable *next;
282 static struct movable *the_movables;
284 FILE *loop_dump_stream;
286 /* Forward declarations. */
288 static void verify_dominator PROTO((int));
289 static void find_and_verify_loops PROTO((rtx));
290 static void mark_loop_jump PROTO((rtx, int));
291 static void prescan_loop PROTO((rtx, rtx));
292 static int reg_in_basic_block_p PROTO((rtx, rtx));
293 static int consec_sets_invariant_p PROTO((rtx, int, rtx));
294 static int labels_in_range_p PROTO((rtx, int));
295 static void count_one_set PROTO((rtx, rtx, varray_type, rtx *));
297 static void count_loop_regs_set PROTO((rtx, rtx, varray_type, varray_type,
298 int *, int));
299 static void note_addr_stored PROTO((rtx, rtx));
300 static int loop_reg_used_before_p PROTO((rtx, rtx, rtx, rtx, rtx));
301 static void scan_loop PROTO((rtx, rtx, rtx, int, int));
302 #if 0
303 static void replace_call_address PROTO((rtx, rtx, rtx));
304 #endif
305 static rtx skip_consec_insns PROTO((rtx, int));
306 static int libcall_benefit PROTO((rtx));
307 static void ignore_some_movables PROTO((struct movable *));
308 static void force_movables PROTO((struct movable *));
309 static void combine_movables PROTO((struct movable *, int));
310 static int regs_match_p PROTO((rtx, rtx, struct movable *));
311 static int rtx_equal_for_loop_p PROTO((rtx, rtx, struct movable *));
312 static void add_label_notes PROTO((rtx, rtx));
313 static void move_movables PROTO((struct movable *, int, int, rtx, rtx, int));
314 static int count_nonfixed_reads PROTO((rtx));
315 static void strength_reduce PROTO((rtx, rtx, rtx, int, rtx, rtx, rtx, int, int));
316 static void find_single_use_in_loop PROTO((rtx, rtx, varray_type));
317 static int valid_initial_value_p PROTO((rtx, rtx, int, rtx));
318 static void find_mem_givs PROTO((rtx, rtx, int, rtx, rtx));
319 static void record_biv PROTO((struct induction *, rtx, rtx, rtx, rtx, rtx *, int, int));
320 static void check_final_value PROTO((struct induction *, rtx, rtx,
321 unsigned HOST_WIDE_INT));
322 static void record_giv PROTO((struct induction *, rtx, rtx, rtx, rtx, rtx, int, enum g_types, int, rtx *, rtx, rtx));
323 static void update_giv_derive PROTO((rtx));
324 static int basic_induction_var PROTO((rtx, enum machine_mode, rtx, rtx, rtx *, rtx *, rtx **));
325 static rtx simplify_giv_expr PROTO((rtx, int *));
326 static int general_induction_var PROTO((rtx, rtx *, rtx *, rtx *, int, int *));
327 static int consec_sets_giv PROTO((int, rtx, rtx, rtx, rtx *, rtx *, rtx *));
328 static int check_dbra_loop PROTO((rtx, int, rtx, struct loop_info *));
329 static rtx express_from_1 PROTO((rtx, rtx, rtx));
330 static rtx combine_givs_p PROTO((struct induction *, struct induction *));
331 static void combine_givs PROTO((struct iv_class *));
332 struct recombine_givs_stats;
333 static int find_life_end PROTO((rtx, struct recombine_givs_stats *, rtx, rtx));
334 static void recombine_givs PROTO((struct iv_class *, rtx, rtx, int));
335 static int product_cheap_p PROTO((rtx, rtx));
336 static int maybe_eliminate_biv PROTO((struct iv_class *, rtx, rtx, int, int, int));
337 static int maybe_eliminate_biv_1 PROTO((rtx, rtx, struct iv_class *, int, rtx));
338 static int last_use_this_basic_block PROTO((rtx, rtx));
339 static void record_initial PROTO((rtx, rtx));
340 static void update_reg_last_use PROTO((rtx, rtx));
341 static rtx next_insn_in_loop PROTO((rtx, rtx, rtx, rtx));
342 static void load_mems_and_recount_loop_regs_set PROTO((rtx, rtx, rtx,
343 rtx, int *));
344 static void load_mems PROTO((rtx, rtx, rtx, rtx));
345 static int insert_loop_mem PROTO((rtx *, void *));
346 static int replace_loop_mem PROTO((rtx *, void *));
347 static int replace_label PROTO((rtx *, void *));
349 typedef struct rtx_and_int {
350 rtx r;
351 int i;
352 } rtx_and_int;
354 typedef struct rtx_pair {
355 rtx r1;
356 rtx r2;
357 } rtx_pair;
359 /* Nonzero iff INSN is between START and END, inclusive. */
360 #define INSN_IN_RANGE_P(INSN, START, END) \
361 (INSN_UID (INSN) < max_uid_for_loop \
362 && INSN_LUID (INSN) >= INSN_LUID (START) \
363 && INSN_LUID (INSN) <= INSN_LUID (END))
365 #ifdef HAVE_decrement_and_branch_on_count
366 /* Test whether BCT applicable and safe. */
367 static void insert_bct PROTO((rtx, rtx, struct loop_info *));
369 /* Auxiliary function that inserts the BCT pattern into the loop. */
370 static void instrument_loop_bct PROTO((rtx, rtx, rtx));
371 #endif /* HAVE_decrement_and_branch_on_count */
373 /* Indirect_jump_in_function is computed once per function. */
374 int indirect_jump_in_function = 0;
375 static int indirect_jump_in_function_p PROTO((rtx));
377 static int compute_luids PROTO((rtx, rtx, int));
379 static int biv_elimination_giv_has_0_offset PROTO((struct induction *,
380 struct induction *, rtx));
382 /* Relative gain of eliminating various kinds of operations. */
383 static int add_cost;
384 #if 0
385 static int shift_cost;
386 static int mult_cost;
387 #endif
389 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
390 copy the value of the strength reduced giv to its original register. */
391 static int copy_cost;
393 /* Cost of using a register, to normalize the benefits of a giv. */
394 static int reg_address_cost;
397 void
398 init_loop ()
400 char *free_point = (char *) oballoc (1);
401 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
403 add_cost = rtx_cost (gen_rtx_PLUS (word_mode, reg, reg), SET);
405 #ifdef ADDRESS_COST
406 reg_address_cost = ADDRESS_COST (reg);
407 #else
408 reg_address_cost = rtx_cost (reg, MEM);
409 #endif
411 /* We multiply by 2 to reconcile the difference in scale between
412 these two ways of computing costs. Otherwise the cost of a copy
413 will be far less than the cost of an add. */
415 copy_cost = 2 * 2;
417 /* Free the objects we just allocated. */
418 obfree (free_point);
420 /* Initialize the obstack used for rtl in product_cheap_p. */
421 gcc_obstack_init (&temp_obstack);
424 /* Compute the mapping from uids to luids.
425 LUIDs are numbers assigned to insns, like uids,
426 except that luids increase monotonically through the code.
427 Start at insn START and stop just before END. Assign LUIDs
428 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
429 static int
430 compute_luids (start, end, prev_luid)
431 rtx start, end;
432 int prev_luid;
434 int i;
435 rtx insn;
437 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
439 if (INSN_UID (insn) >= max_uid_for_loop)
440 continue;
441 /* Don't assign luids to line-number NOTEs, so that the distance in
442 luids between two insns is not affected by -g. */
443 if (GET_CODE (insn) != NOTE
444 || NOTE_LINE_NUMBER (insn) <= 0)
445 uid_luid[INSN_UID (insn)] = ++i;
446 else
447 /* Give a line number note the same luid as preceding insn. */
448 uid_luid[INSN_UID (insn)] = i;
450 return i + 1;
453 /* Entry point of this file. Perform loop optimization
454 on the current function. F is the first insn of the function
455 and DUMPFILE is a stream for output of a trace of actions taken
456 (or 0 if none should be output). */
458 void
459 loop_optimize (f, dumpfile, unroll_p, bct_p)
460 /* f is the first instruction of a chain of insns for one function */
461 rtx f;
462 FILE *dumpfile;
463 int unroll_p, bct_p;
465 register rtx insn;
466 register int i;
468 loop_dump_stream = dumpfile;
470 init_recog_no_volatile ();
472 max_reg_before_loop = max_reg_num ();
474 moved_once = (char *) alloca (max_reg_before_loop);
475 bzero (moved_once, max_reg_before_loop);
477 regs_may_share = 0;
479 /* Count the number of loops. */
481 max_loop_num = 0;
482 for (insn = f; insn; insn = NEXT_INSN (insn))
484 if (GET_CODE (insn) == NOTE
485 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
486 max_loop_num++;
489 /* Don't waste time if no loops. */
490 if (max_loop_num == 0)
491 return;
493 /* Get size to use for tables indexed by uids.
494 Leave some space for labels allocated by find_and_verify_loops. */
495 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
497 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
498 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
500 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
501 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
503 /* Allocate tables for recording each loop. We set each entry, so they need
504 not be zeroed. */
505 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
506 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
507 loop_number_loop_cont = (rtx *) alloca (max_loop_num * sizeof (rtx));
508 loop_number_cont_dominator = (rtx *) alloca (max_loop_num * sizeof (rtx));
509 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
510 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
511 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
512 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
514 #ifdef HAVE_decrement_and_branch_on_count
515 /* Allocate for BCT optimization */
516 loop_used_count_register = (int *) alloca (max_loop_num * sizeof (int));
517 bzero ((char *) loop_used_count_register, max_loop_num * sizeof (int));
518 #endif /* HAVE_decrement_and_branch_on_count */
520 /* Find and process each loop.
521 First, find them, and record them in order of their beginnings. */
522 find_and_verify_loops (f);
524 /* Now find all register lifetimes. This must be done after
525 find_and_verify_loops, because it might reorder the insns in the
526 function. */
527 reg_scan (f, max_reg_num (), 1);
529 /* This must occur after reg_scan so that registers created by gcse
530 will have entries in the register tables.
532 We could have added a call to reg_scan after gcse_main in toplev.c,
533 but moving this call to init_alias_analysis is more efficient. */
534 init_alias_analysis ();
536 /* See if we went too far. Note that get_max_uid already returns
537 one more that the maximum uid of all insn. */
538 if (get_max_uid () > max_uid_for_loop)
539 abort ();
540 /* Now reset it to the actual size we need. See above. */
541 max_uid_for_loop = get_max_uid ();
543 /* find_and_verify_loops has already called compute_luids, but it might
544 have rearranged code afterwards, so we need to recompute the luids now. */
545 max_luid = compute_luids (f, NULL_RTX, 0);
547 /* Don't leave gaps in uid_luid for insns that have been
548 deleted. It is possible that the first or last insn
549 using some register has been deleted by cross-jumping.
550 Make sure that uid_luid for that former insn's uid
551 points to the general area where that insn used to be. */
552 for (i = 0; i < max_uid_for_loop; i++)
554 uid_luid[0] = uid_luid[i];
555 if (uid_luid[0] != 0)
556 break;
558 for (i = 0; i < max_uid_for_loop; i++)
559 if (uid_luid[i] == 0)
560 uid_luid[i] = uid_luid[i - 1];
562 /* Create a mapping from loops to BLOCK tree nodes. */
563 if (unroll_p && write_symbols != NO_DEBUG)
564 find_loop_tree_blocks ();
566 /* Determine if the function has indirect jump. On some systems
567 this prevents low overhead loop instructions from being used. */
568 indirect_jump_in_function = indirect_jump_in_function_p (f);
570 /* Now scan the loops, last ones first, since this means inner ones are done
571 before outer ones. */
572 for (i = max_loop_num-1; i >= 0; i--)
573 if (! loop_invalid[i] && loop_number_loop_ends[i])
574 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
575 loop_number_loop_cont[i], unroll_p, bct_p);
577 /* If debugging and unrolling loops, we must replicate the tree nodes
578 corresponding to the blocks inside the loop, so that the original one
579 to one mapping will remain. */
580 if (unroll_p && write_symbols != NO_DEBUG)
581 unroll_block_trees ();
583 end_alias_analysis ();
586 /* Returns the next insn, in execution order, after INSN. START and
587 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
588 respectively. LOOP_TOP, if non-NULL, is the top of the loop in the
589 insn-stream; it is used with loops that are entered near the
590 bottom. */
592 static rtx
593 next_insn_in_loop (insn, start, end, loop_top)
594 rtx insn;
595 rtx start;
596 rtx end;
597 rtx loop_top;
599 insn = NEXT_INSN (insn);
601 if (insn == end)
603 if (loop_top)
604 /* Go to the top of the loop, and continue there. */
605 insn = loop_top;
606 else
607 /* We're done. */
608 insn = NULL_RTX;
611 if (insn == start)
612 /* We're done. */
613 insn = NULL_RTX;
615 return insn;
618 /* Optimize one loop whose start is LOOP_START and end is END.
619 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
620 NOTE_INSN_LOOP_END.
621 LOOP_CONT is the NOTE_INSN_LOOP_CONT. */
623 /* ??? Could also move memory writes out of loops if the destination address
624 is invariant, the source is invariant, the memory write is not volatile,
625 and if we can prove that no read inside the loop can read this address
626 before the write occurs. If there is a read of this address after the
627 write, then we can also mark the memory read as invariant. */
629 static void
630 scan_loop (loop_start, end, loop_cont, unroll_p, bct_p)
631 rtx loop_start, end, loop_cont;
632 int unroll_p, bct_p;
634 register int i;
635 rtx p;
636 /* 1 if we are scanning insns that could be executed zero times. */
637 int maybe_never = 0;
638 /* 1 if we are scanning insns that might never be executed
639 due to a subroutine call which might exit before they are reached. */
640 int call_passed = 0;
641 /* For a rotated loop that is entered near the bottom,
642 this is the label at the top. Otherwise it is zero. */
643 rtx loop_top = 0;
644 /* Jump insn that enters the loop, or 0 if control drops in. */
645 rtx loop_entry_jump = 0;
646 /* Place in the loop where control enters. */
647 rtx scan_start;
648 /* Number of insns in the loop. */
649 int insn_count;
650 int in_libcall = 0;
651 int tem;
652 rtx temp;
653 /* The SET from an insn, if it is the only SET in the insn. */
654 rtx set, set1;
655 /* Chain describing insns movable in current loop. */
656 struct movable *movables = 0;
657 /* Last element in `movables' -- so we can add elements at the end. */
658 struct movable *last_movable = 0;
659 /* Ratio of extra register life span we can justify
660 for saving an instruction. More if loop doesn't call subroutines
661 since in that case saving an insn makes more difference
662 and more registers are available. */
663 int threshold;
664 /* Nonzero if we are scanning instructions in a sub-loop. */
665 int loop_depth = 0;
666 int nregs;
668 /* Determine whether this loop starts with a jump down to a test at
669 the end. This will occur for a small number of loops with a test
670 that is too complex to duplicate in front of the loop.
672 We search for the first insn or label in the loop, skipping NOTEs.
673 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
674 (because we might have a loop executed only once that contains a
675 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
676 (in case we have a degenerate loop).
678 Note that if we mistakenly think that a loop is entered at the top
679 when, in fact, it is entered at the exit test, the only effect will be
680 slightly poorer optimization. Making the opposite error can generate
681 incorrect code. Since very few loops now start with a jump to the
682 exit test, the code here to detect that case is very conservative. */
684 for (p = NEXT_INSN (loop_start);
685 p != end
686 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
687 && (GET_CODE (p) != NOTE
688 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
689 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
690 p = NEXT_INSN (p))
693 scan_start = p;
695 /* Set up variables describing this loop. */
696 prescan_loop (loop_start, end);
697 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
699 /* If loop has a jump before the first label,
700 the true entry is the target of that jump.
701 Start scan from there.
702 But record in LOOP_TOP the place where the end-test jumps
703 back to so we can scan that after the end of the loop. */
704 if (GET_CODE (p) == JUMP_INSN)
706 loop_entry_jump = p;
708 /* Loop entry must be unconditional jump (and not a RETURN) */
709 if (simplejump_p (p)
710 && JUMP_LABEL (p) != 0
711 /* Check to see whether the jump actually
712 jumps out of the loop (meaning it's no loop).
713 This case can happen for things like
714 do {..} while (0). If this label was generated previously
715 by loop, we can't tell anything about it and have to reject
716 the loop. */
717 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, end))
719 loop_top = next_label (scan_start);
720 scan_start = JUMP_LABEL (p);
724 /* If SCAN_START was an insn created by loop, we don't know its luid
725 as required by loop_reg_used_before_p. So skip such loops. (This
726 test may never be true, but it's best to play it safe.)
728 Also, skip loops where we do not start scanning at a label. This
729 test also rejects loops starting with a JUMP_INSN that failed the
730 test above. */
732 if (INSN_UID (scan_start) >= max_uid_for_loop
733 || GET_CODE (scan_start) != CODE_LABEL)
735 if (loop_dump_stream)
736 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
737 INSN_UID (loop_start), INSN_UID (end));
738 return;
741 /* Count number of times each reg is set during this loop.
742 Set VARRAY_CHAR (may_not_optimize, I) if it is not safe to move out
743 the setting of register I. Set VARRAY_RTX (reg_single_usage, I). */
745 /* Allocate extra space for REGS that might be created by
746 load_mems. We allocate a little extra slop as well, in the hopes
747 that even after the moving of movables creates some new registers
748 we won't have to reallocate these arrays. However, we do grow
749 the arrays, if necessary, in load_mems_recount_loop_regs_set. */
750 nregs = max_reg_num () + loop_mems_idx + 16;
751 VARRAY_INT_INIT (set_in_loop, nregs, "set_in_loop");
752 VARRAY_INT_INIT (n_times_set, nregs, "n_times_set");
753 VARRAY_CHAR_INIT (may_not_optimize, nregs, "may_not_optimize");
754 VARRAY_RTX_INIT (reg_single_usage, nregs, "reg_single_usage");
756 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
757 may_not_optimize, reg_single_usage, &insn_count, nregs);
759 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
761 VARRAY_CHAR (may_not_optimize, i) = 1;
762 VARRAY_INT (set_in_loop, i) = 1;
765 #ifdef AVOID_CCMODE_COPIES
766 /* Don't try to move insns which set CC registers if we should not
767 create CCmode register copies. */
768 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
769 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
770 VARRAY_CHAR (may_not_optimize, i) = 1;
771 #endif
773 bcopy ((char *) &set_in_loop->data,
774 (char *) &n_times_set->data, nregs * sizeof (int));
776 if (loop_dump_stream)
778 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
779 INSN_UID (loop_start), INSN_UID (end), insn_count);
780 if (loop_continue)
781 fprintf (loop_dump_stream, "Continue at insn %d.\n",
782 INSN_UID (loop_continue));
785 /* Scan through the loop finding insns that are safe to move.
786 Set set_in_loop negative for the reg being set, so that
787 this reg will be considered invariant for subsequent insns.
788 We consider whether subsequent insns use the reg
789 in deciding whether it is worth actually moving.
791 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
792 and therefore it is possible that the insns we are scanning
793 would never be executed. At such times, we must make sure
794 that it is safe to execute the insn once instead of zero times.
795 When MAYBE_NEVER is 0, all insns will be executed at least once
796 so that is not a problem. */
798 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
799 p != NULL_RTX;
800 p = next_insn_in_loop (p, scan_start, end, loop_top))
802 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
803 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
804 in_libcall = 1;
805 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
806 && find_reg_note (p, REG_RETVAL, NULL_RTX))
807 in_libcall = 0;
809 if (GET_CODE (p) == INSN
810 && (set = single_set (p))
811 && GET_CODE (SET_DEST (set)) == REG
812 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
814 int tem1 = 0;
815 int tem2 = 0;
816 int move_insn = 0;
817 rtx src = SET_SRC (set);
818 rtx dependencies = 0;
820 /* Figure out what to use as a source of this insn. If a REG_EQUIV
821 note is given or if a REG_EQUAL note with a constant operand is
822 specified, use it as the source and mark that we should move
823 this insn by calling emit_move_insn rather that duplicating the
824 insn.
826 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
827 is present. */
828 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
829 if (temp)
830 src = XEXP (temp, 0), move_insn = 1;
831 else
833 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
834 if (temp && CONSTANT_P (XEXP (temp, 0)))
835 src = XEXP (temp, 0), move_insn = 1;
836 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
838 src = XEXP (temp, 0);
839 /* A libcall block can use regs that don't appear in
840 the equivalent expression. To move the libcall,
841 we must move those regs too. */
842 dependencies = libcall_other_reg (p, src);
846 /* Don't try to optimize a register that was made
847 by loop-optimization for an inner loop.
848 We don't know its life-span, so we can't compute the benefit. */
849 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
851 else if (/* The register is used in basic blocks other
852 than the one where it is set (meaning that
853 something after this point in the loop might
854 depend on its value before the set). */
855 ! reg_in_basic_block_p (p, SET_DEST (set))
856 /* And the set is not guaranteed to be executed one
857 the loop starts, or the value before the set is
858 needed before the set occurs...
860 ??? Note we have quadratic behaviour here, mitigated
861 by the fact that the previous test will often fail for
862 large loops. Rather than re-scanning the entire loop
863 each time for register usage, we should build tables
864 of the register usage and use them here instead. */
865 && (maybe_never
866 || loop_reg_used_before_p (set, p, loop_start,
867 scan_start, end)))
868 /* It is unsafe to move the set.
870 This code used to consider it OK to move a set of a variable
871 which was not created by the user and not used in an exit test.
872 That behavior is incorrect and was removed. */
874 else if ((tem = invariant_p (src))
875 && (dependencies == 0
876 || (tem2 = invariant_p (dependencies)) != 0)
877 && (VARRAY_INT (set_in_loop,
878 REGNO (SET_DEST (set))) == 1
879 || (tem1
880 = consec_sets_invariant_p
881 (SET_DEST (set),
882 VARRAY_INT (set_in_loop, REGNO (SET_DEST (set))),
883 p)))
884 /* If the insn can cause a trap (such as divide by zero),
885 can't move it unless it's guaranteed to be executed
886 once loop is entered. Even a function call might
887 prevent the trap insn from being reached
888 (since it might exit!) */
889 && ! ((maybe_never || call_passed)
890 && may_trap_p (src)))
892 register struct movable *m;
893 register int regno = REGNO (SET_DEST (set));
895 /* A potential lossage is where we have a case where two insns
896 can be combined as long as they are both in the loop, but
897 we move one of them outside the loop. For large loops,
898 this can lose. The most common case of this is the address
899 of a function being called.
901 Therefore, if this register is marked as being used exactly
902 once if we are in a loop with calls (a "large loop"), see if
903 we can replace the usage of this register with the source
904 of this SET. If we can, delete this insn.
906 Don't do this if P has a REG_RETVAL note or if we have
907 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
909 if (loop_has_call
910 && VARRAY_RTX (reg_single_usage, regno) != 0
911 && VARRAY_RTX (reg_single_usage, regno) != const0_rtx
912 && REGNO_FIRST_UID (regno) == INSN_UID (p)
913 && (REGNO_LAST_UID (regno)
914 == INSN_UID (VARRAY_RTX (reg_single_usage, regno)))
915 && VARRAY_INT (set_in_loop, regno) == 1
916 && ! side_effects_p (SET_SRC (set))
917 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
918 && (! SMALL_REGISTER_CLASSES
919 || (! (GET_CODE (SET_SRC (set)) == REG
920 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
921 /* This test is not redundant; SET_SRC (set) might be
922 a call-clobbered register and the life of REGNO
923 might span a call. */
924 && ! modified_between_p (SET_SRC (set), p,
925 VARRAY_RTX
926 (reg_single_usage, regno))
927 && no_labels_between_p (p, VARRAY_RTX (reg_single_usage, regno))
928 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
929 VARRAY_RTX
930 (reg_single_usage, regno)))
932 /* Replace any usage in a REG_EQUAL note. Must copy the
933 new source, so that we don't get rtx sharing between the
934 SET_SOURCE and REG_NOTES of insn p. */
935 REG_NOTES (VARRAY_RTX (reg_single_usage, regno))
936 = replace_rtx (REG_NOTES (VARRAY_RTX
937 (reg_single_usage, regno)),
938 SET_DEST (set), copy_rtx (SET_SRC (set)));
940 PUT_CODE (p, NOTE);
941 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
942 NOTE_SOURCE_FILE (p) = 0;
943 VARRAY_INT (set_in_loop, regno) = 0;
944 continue;
947 m = (struct movable *) alloca (sizeof (struct movable));
948 m->next = 0;
949 m->insn = p;
950 m->set_src = src;
951 m->dependencies = dependencies;
952 m->set_dest = SET_DEST (set);
953 m->force = 0;
954 m->consec = VARRAY_INT (set_in_loop,
955 REGNO (SET_DEST (set))) - 1;
956 m->done = 0;
957 m->forces = 0;
958 m->partial = 0;
959 m->move_insn = move_insn;
960 m->move_insn_first = 0;
961 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
962 m->savemode = VOIDmode;
963 m->regno = regno;
964 /* Set M->cond if either invariant_p or consec_sets_invariant_p
965 returned 2 (only conditionally invariant). */
966 m->cond = ((tem | tem1 | tem2) > 1);
967 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
968 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
969 m->match = 0;
970 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
971 - uid_luid[REGNO_FIRST_UID (regno)]);
972 m->savings = VARRAY_INT (n_times_set, regno);
973 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
974 m->savings += libcall_benefit (p);
975 VARRAY_INT (set_in_loop, regno) = move_insn ? -2 : -1;
976 /* Add M to the end of the chain MOVABLES. */
977 if (movables == 0)
978 movables = m;
979 else
980 last_movable->next = m;
981 last_movable = m;
983 if (m->consec > 0)
985 /* It is possible for the first instruction to have a
986 REG_EQUAL note but a non-invariant SET_SRC, so we must
987 remember the status of the first instruction in case
988 the last instruction doesn't have a REG_EQUAL note. */
989 m->move_insn_first = m->move_insn;
991 /* Skip this insn, not checking REG_LIBCALL notes. */
992 p = next_nonnote_insn (p);
993 /* Skip the consecutive insns, if there are any. */
994 p = skip_consec_insns (p, m->consec);
995 /* Back up to the last insn of the consecutive group. */
996 p = prev_nonnote_insn (p);
998 /* We must now reset m->move_insn, m->is_equiv, and possibly
999 m->set_src to correspond to the effects of all the
1000 insns. */
1001 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
1002 if (temp)
1003 m->set_src = XEXP (temp, 0), m->move_insn = 1;
1004 else
1006 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
1007 if (temp && CONSTANT_P (XEXP (temp, 0)))
1008 m->set_src = XEXP (temp, 0), m->move_insn = 1;
1009 else
1010 m->move_insn = 0;
1013 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
1016 /* If this register is always set within a STRICT_LOW_PART
1017 or set to zero, then its high bytes are constant.
1018 So clear them outside the loop and within the loop
1019 just load the low bytes.
1020 We must check that the machine has an instruction to do so.
1021 Also, if the value loaded into the register
1022 depends on the same register, this cannot be done. */
1023 else if (SET_SRC (set) == const0_rtx
1024 && GET_CODE (NEXT_INSN (p)) == INSN
1025 && (set1 = single_set (NEXT_INSN (p)))
1026 && GET_CODE (set1) == SET
1027 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
1028 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
1029 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
1030 == SET_DEST (set))
1031 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
1033 register int regno = REGNO (SET_DEST (set));
1034 if (VARRAY_INT (set_in_loop, regno) == 2)
1036 register struct movable *m;
1037 m = (struct movable *) alloca (sizeof (struct movable));
1038 m->next = 0;
1039 m->insn = p;
1040 m->set_dest = SET_DEST (set);
1041 m->dependencies = 0;
1042 m->force = 0;
1043 m->consec = 0;
1044 m->done = 0;
1045 m->forces = 0;
1046 m->move_insn = 0;
1047 m->move_insn_first = 0;
1048 m->partial = 1;
1049 /* If the insn may not be executed on some cycles,
1050 we can't clear the whole reg; clear just high part.
1051 Not even if the reg is used only within this loop.
1052 Consider this:
1053 while (1)
1054 while (s != t) {
1055 if (foo ()) x = *s;
1056 use (x);
1058 Clearing x before the inner loop could clobber a value
1059 being saved from the last time around the outer loop.
1060 However, if the reg is not used outside this loop
1061 and all uses of the register are in the same
1062 basic block as the store, there is no problem.
1064 If this insn was made by loop, we don't know its
1065 INSN_LUID and hence must make a conservative
1066 assumption. */
1067 m->global = (INSN_UID (p) >= max_uid_for_loop
1068 || (uid_luid[REGNO_LAST_UID (regno)]
1069 > INSN_LUID (end))
1070 || (uid_luid[REGNO_FIRST_UID (regno)]
1071 < INSN_LUID (p))
1072 || (labels_in_range_p
1073 (p, uid_luid[REGNO_FIRST_UID (regno)])));
1074 if (maybe_never && m->global)
1075 m->savemode = GET_MODE (SET_SRC (set1));
1076 else
1077 m->savemode = VOIDmode;
1078 m->regno = regno;
1079 m->cond = 0;
1080 m->match = 0;
1081 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
1082 - uid_luid[REGNO_FIRST_UID (regno)]);
1083 m->savings = 1;
1084 VARRAY_INT (set_in_loop, regno) = -1;
1085 /* Add M to the end of the chain MOVABLES. */
1086 if (movables == 0)
1087 movables = m;
1088 else
1089 last_movable->next = m;
1090 last_movable = m;
1094 /* Past a call insn, we get to insns which might not be executed
1095 because the call might exit. This matters for insns that trap.
1096 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
1097 so they don't count. */
1098 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
1099 call_passed = 1;
1100 /* Past a label or a jump, we get to insns for which we
1101 can't count on whether or how many times they will be
1102 executed during each iteration. Therefore, we can
1103 only move out sets of trivial variables
1104 (those not used after the loop). */
1105 /* Similar code appears twice in strength_reduce. */
1106 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1107 /* If we enter the loop in the middle, and scan around to the
1108 beginning, don't set maybe_never for that. This must be an
1109 unconditional jump, otherwise the code at the top of the
1110 loop might never be executed. Unconditional jumps are
1111 followed a by barrier then loop end. */
1112 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
1113 && NEXT_INSN (NEXT_INSN (p)) == end
1114 && simplejump_p (p)))
1115 maybe_never = 1;
1116 else if (GET_CODE (p) == NOTE)
1118 /* At the virtual top of a converted loop, insns are again known to
1119 be executed: logically, the loop begins here even though the exit
1120 code has been duplicated. */
1121 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1122 maybe_never = call_passed = 0;
1123 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1124 loop_depth++;
1125 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1126 loop_depth--;
1130 /* If one movable subsumes another, ignore that other. */
1132 ignore_some_movables (movables);
1134 /* For each movable insn, see if the reg that it loads
1135 leads when it dies right into another conditionally movable insn.
1136 If so, record that the second insn "forces" the first one,
1137 since the second can be moved only if the first is. */
1139 force_movables (movables);
1141 /* See if there are multiple movable insns that load the same value.
1142 If there are, make all but the first point at the first one
1143 through the `match' field, and add the priorities of them
1144 all together as the priority of the first. */
1146 combine_movables (movables, nregs);
1148 /* Now consider each movable insn to decide whether it is worth moving.
1149 Store 0 in set_in_loop for each reg that is moved.
1151 Generally this increases code size, so do not move moveables when
1152 optimizing for code size. */
1154 if (! optimize_size)
1155 move_movables (movables, threshold,
1156 insn_count, loop_start, end, nregs);
1158 /* Now candidates that still are negative are those not moved.
1159 Change set_in_loop to indicate that those are not actually invariant. */
1160 for (i = 0; i < nregs; i++)
1161 if (VARRAY_INT (set_in_loop, i) < 0)
1162 VARRAY_INT (set_in_loop, i) = VARRAY_INT (n_times_set, i);
1164 /* Now that we've moved some things out of the loop, we might be able to
1165 hoist even more memory references. */
1166 load_mems_and_recount_loop_regs_set (scan_start, end, loop_top,
1167 loop_start, &insn_count);
1169 if (flag_strength_reduce)
1171 the_movables = movables;
1172 strength_reduce (scan_start, end, loop_top,
1173 insn_count, loop_start, end, loop_cont, unroll_p, bct_p);
1176 VARRAY_FREE (reg_single_usage);
1177 VARRAY_FREE (set_in_loop);
1178 VARRAY_FREE (n_times_set);
1179 VARRAY_FREE (may_not_optimize);
1182 /* Add elements to *OUTPUT to record all the pseudo-regs
1183 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1185 void
1186 record_excess_regs (in_this, not_in_this, output)
1187 rtx in_this, not_in_this;
1188 rtx *output;
1190 enum rtx_code code;
1191 char *fmt;
1192 int i;
1194 code = GET_CODE (in_this);
1196 switch (code)
1198 case PC:
1199 case CC0:
1200 case CONST_INT:
1201 case CONST_DOUBLE:
1202 case CONST:
1203 case SYMBOL_REF:
1204 case LABEL_REF:
1205 return;
1207 case REG:
1208 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1209 && ! reg_mentioned_p (in_this, not_in_this))
1210 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1211 return;
1213 default:
1214 break;
1217 fmt = GET_RTX_FORMAT (code);
1218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1220 int j;
1222 switch (fmt[i])
1224 case 'E':
1225 for (j = 0; j < XVECLEN (in_this, i); j++)
1226 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1227 break;
1229 case 'e':
1230 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1231 break;
1236 /* Check what regs are referred to in the libcall block ending with INSN,
1237 aside from those mentioned in the equivalent value.
1238 If there are none, return 0.
1239 If there are one or more, return an EXPR_LIST containing all of them. */
1242 libcall_other_reg (insn, equiv)
1243 rtx insn, equiv;
1245 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1246 rtx p = XEXP (note, 0);
1247 rtx output = 0;
1249 /* First, find all the regs used in the libcall block
1250 that are not mentioned as inputs to the result. */
1252 while (p != insn)
1254 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1255 || GET_CODE (p) == CALL_INSN)
1256 record_excess_regs (PATTERN (p), equiv, &output);
1257 p = NEXT_INSN (p);
1260 return output;
1263 /* Return 1 if all uses of REG
1264 are between INSN and the end of the basic block. */
1266 static int
1267 reg_in_basic_block_p (insn, reg)
1268 rtx insn, reg;
1270 int regno = REGNO (reg);
1271 rtx p;
1273 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1274 return 0;
1276 /* Search this basic block for the already recorded last use of the reg. */
1277 for (p = insn; p; p = NEXT_INSN (p))
1279 switch (GET_CODE (p))
1281 case NOTE:
1282 break;
1284 case INSN:
1285 case CALL_INSN:
1286 /* Ordinary insn: if this is the last use, we win. */
1287 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1288 return 1;
1289 break;
1291 case JUMP_INSN:
1292 /* Jump insn: if this is the last use, we win. */
1293 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1294 return 1;
1295 /* Otherwise, it's the end of the basic block, so we lose. */
1296 return 0;
1298 case CODE_LABEL:
1299 case BARRIER:
1300 /* It's the end of the basic block, so we lose. */
1301 return 0;
1303 default:
1304 break;
1308 /* The "last use" doesn't follow the "first use"?? */
1309 abort ();
1312 /* Compute the benefit of eliminating the insns in the block whose
1313 last insn is LAST. This may be a group of insns used to compute a
1314 value directly or can contain a library call. */
1316 static int
1317 libcall_benefit (last)
1318 rtx last;
1320 rtx insn;
1321 int benefit = 0;
1323 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1324 insn != last; insn = NEXT_INSN (insn))
1326 if (GET_CODE (insn) == CALL_INSN)
1327 benefit += 10; /* Assume at least this many insns in a library
1328 routine. */
1329 else if (GET_CODE (insn) == INSN
1330 && GET_CODE (PATTERN (insn)) != USE
1331 && GET_CODE (PATTERN (insn)) != CLOBBER)
1332 benefit++;
1335 return benefit;
1338 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1340 static rtx
1341 skip_consec_insns (insn, count)
1342 rtx insn;
1343 int count;
1345 for (; count > 0; count--)
1347 rtx temp;
1349 /* If first insn of libcall sequence, skip to end. */
1350 /* Do this at start of loop, since INSN is guaranteed to
1351 be an insn here. */
1352 if (GET_CODE (insn) != NOTE
1353 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1354 insn = XEXP (temp, 0);
1356 do insn = NEXT_INSN (insn);
1357 while (GET_CODE (insn) == NOTE);
1360 return insn;
1363 /* Ignore any movable whose insn falls within a libcall
1364 which is part of another movable.
1365 We make use of the fact that the movable for the libcall value
1366 was made later and so appears later on the chain. */
1368 static void
1369 ignore_some_movables (movables)
1370 struct movable *movables;
1372 register struct movable *m, *m1;
1374 for (m = movables; m; m = m->next)
1376 /* Is this a movable for the value of a libcall? */
1377 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1378 if (note)
1380 rtx insn;
1381 /* Check for earlier movables inside that range,
1382 and mark them invalid. We cannot use LUIDs here because
1383 insns created by loop.c for prior loops don't have LUIDs.
1384 Rather than reject all such insns from movables, we just
1385 explicitly check each insn in the libcall (since invariant
1386 libcalls aren't that common). */
1387 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1388 for (m1 = movables; m1 != m; m1 = m1->next)
1389 if (m1->insn == insn)
1390 m1->done = 1;
1395 /* For each movable insn, see if the reg that it loads
1396 leads when it dies right into another conditionally movable insn.
1397 If so, record that the second insn "forces" the first one,
1398 since the second can be moved only if the first is. */
1400 static void
1401 force_movables (movables)
1402 struct movable *movables;
1404 register struct movable *m, *m1;
1405 for (m1 = movables; m1; m1 = m1->next)
1406 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1407 if (!m1->partial && !m1->done)
1409 int regno = m1->regno;
1410 for (m = m1->next; m; m = m->next)
1411 /* ??? Could this be a bug? What if CSE caused the
1412 register of M1 to be used after this insn?
1413 Since CSE does not update regno_last_uid,
1414 this insn M->insn might not be where it dies.
1415 But very likely this doesn't matter; what matters is
1416 that M's reg is computed from M1's reg. */
1417 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1418 && !m->done)
1419 break;
1420 if (m != 0 && m->set_src == m1->set_dest
1421 /* If m->consec, m->set_src isn't valid. */
1422 && m->consec == 0)
1423 m = 0;
1425 /* Increase the priority of the moving the first insn
1426 since it permits the second to be moved as well. */
1427 if (m != 0)
1429 m->forces = m1;
1430 m1->lifetime += m->lifetime;
1431 m1->savings += m->savings;
1436 /* Find invariant expressions that are equal and can be combined into
1437 one register. */
1439 static void
1440 combine_movables (movables, nregs)
1441 struct movable *movables;
1442 int nregs;
1444 register struct movable *m;
1445 char *matched_regs = (char *) alloca (nregs);
1446 enum machine_mode mode;
1448 /* Regs that are set more than once are not allowed to match
1449 or be matched. I'm no longer sure why not. */
1450 /* Perhaps testing m->consec_sets would be more appropriate here? */
1452 for (m = movables; m; m = m->next)
1453 if (m->match == 0 && VARRAY_INT (n_times_set, m->regno) == 1 && !m->partial)
1455 register struct movable *m1;
1456 int regno = m->regno;
1458 bzero (matched_regs, nregs);
1459 matched_regs[regno] = 1;
1461 /* We want later insns to match the first one. Don't make the first
1462 one match any later ones. So start this loop at m->next. */
1463 for (m1 = m->next; m1; m1 = m1->next)
1464 if (m != m1 && m1->match == 0 && VARRAY_INT (n_times_set, m1->regno) == 1
1465 /* A reg used outside the loop mustn't be eliminated. */
1466 && !m1->global
1467 /* A reg used for zero-extending mustn't be eliminated. */
1468 && !m1->partial
1469 && (matched_regs[m1->regno]
1472 /* Can combine regs with different modes loaded from the
1473 same constant only if the modes are the same or
1474 if both are integer modes with M wider or the same
1475 width as M1. The check for integer is redundant, but
1476 safe, since the only case of differing destination
1477 modes with equal sources is when both sources are
1478 VOIDmode, i.e., CONST_INT. */
1479 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1480 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1481 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1482 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1483 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1484 /* See if the source of M1 says it matches M. */
1485 && ((GET_CODE (m1->set_src) == REG
1486 && matched_regs[REGNO (m1->set_src)])
1487 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1488 movables))))
1489 && ((m->dependencies == m1->dependencies)
1490 || rtx_equal_p (m->dependencies, m1->dependencies)))
1492 m->lifetime += m1->lifetime;
1493 m->savings += m1->savings;
1494 m1->done = 1;
1495 m1->match = m;
1496 matched_regs[m1->regno] = 1;
1500 /* Now combine the regs used for zero-extension.
1501 This can be done for those not marked `global'
1502 provided their lives don't overlap. */
1504 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1505 mode = GET_MODE_WIDER_MODE (mode))
1507 register struct movable *m0 = 0;
1509 /* Combine all the registers for extension from mode MODE.
1510 Don't combine any that are used outside this loop. */
1511 for (m = movables; m; m = m->next)
1512 if (m->partial && ! m->global
1513 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1515 register struct movable *m1;
1516 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1517 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1519 if (m0 == 0)
1521 /* First one: don't check for overlap, just record it. */
1522 m0 = m;
1523 continue;
1526 /* Make sure they extend to the same mode.
1527 (Almost always true.) */
1528 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1529 continue;
1531 /* We already have one: check for overlap with those
1532 already combined together. */
1533 for (m1 = movables; m1 != m; m1 = m1->next)
1534 if (m1 == m0 || (m1->partial && m1->match == m0))
1535 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1536 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1537 goto overlap;
1539 /* No overlap: we can combine this with the others. */
1540 m0->lifetime += m->lifetime;
1541 m0->savings += m->savings;
1542 m->done = 1;
1543 m->match = m0;
1545 overlap: ;
1550 /* Return 1 if regs X and Y will become the same if moved. */
1552 static int
1553 regs_match_p (x, y, movables)
1554 rtx x, y;
1555 struct movable *movables;
1557 int xn = REGNO (x);
1558 int yn = REGNO (y);
1559 struct movable *mx, *my;
1561 for (mx = movables; mx; mx = mx->next)
1562 if (mx->regno == xn)
1563 break;
1565 for (my = movables; my; my = my->next)
1566 if (my->regno == yn)
1567 break;
1569 return (mx && my
1570 && ((mx->match == my->match && mx->match != 0)
1571 || mx->match == my
1572 || mx == my->match));
1575 /* Return 1 if X and Y are identical-looking rtx's.
1576 This is the Lisp function EQUAL for rtx arguments.
1578 If two registers are matching movables or a movable register and an
1579 equivalent constant, consider them equal. */
1581 static int
1582 rtx_equal_for_loop_p (x, y, movables)
1583 rtx x, y;
1584 struct movable *movables;
1586 register int i;
1587 register int j;
1588 register struct movable *m;
1589 register enum rtx_code code;
1590 register char *fmt;
1592 if (x == y)
1593 return 1;
1594 if (x == 0 || y == 0)
1595 return 0;
1597 code = GET_CODE (x);
1599 /* If we have a register and a constant, they may sometimes be
1600 equal. */
1601 if (GET_CODE (x) == REG && VARRAY_INT (set_in_loop, REGNO (x)) == -2
1602 && CONSTANT_P (y))
1604 for (m = movables; m; m = m->next)
1605 if (m->move_insn && m->regno == REGNO (x)
1606 && rtx_equal_p (m->set_src, y))
1607 return 1;
1609 else if (GET_CODE (y) == REG && VARRAY_INT (set_in_loop, REGNO (y)) == -2
1610 && CONSTANT_P (x))
1612 for (m = movables; m; m = m->next)
1613 if (m->move_insn && m->regno == REGNO (y)
1614 && rtx_equal_p (m->set_src, x))
1615 return 1;
1618 /* Otherwise, rtx's of different codes cannot be equal. */
1619 if (code != GET_CODE (y))
1620 return 0;
1622 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1623 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1625 if (GET_MODE (x) != GET_MODE (y))
1626 return 0;
1628 /* These three types of rtx's can be compared nonrecursively. */
1629 if (code == REG)
1630 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1632 if (code == LABEL_REF)
1633 return XEXP (x, 0) == XEXP (y, 0);
1634 if (code == SYMBOL_REF)
1635 return XSTR (x, 0) == XSTR (y, 0);
1637 /* Compare the elements. If any pair of corresponding elements
1638 fail to match, return 0 for the whole things. */
1640 fmt = GET_RTX_FORMAT (code);
1641 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1643 switch (fmt[i])
1645 case 'w':
1646 if (XWINT (x, i) != XWINT (y, i))
1647 return 0;
1648 break;
1650 case 'i':
1651 if (XINT (x, i) != XINT (y, i))
1652 return 0;
1653 break;
1655 case 'E':
1656 /* Two vectors must have the same length. */
1657 if (XVECLEN (x, i) != XVECLEN (y, i))
1658 return 0;
1660 /* And the corresponding elements must match. */
1661 for (j = 0; j < XVECLEN (x, i); j++)
1662 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1663 return 0;
1664 break;
1666 case 'e':
1667 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1668 return 0;
1669 break;
1671 case 's':
1672 if (strcmp (XSTR (x, i), XSTR (y, i)))
1673 return 0;
1674 break;
1676 case 'u':
1677 /* These are just backpointers, so they don't matter. */
1678 break;
1680 case '0':
1681 break;
1683 /* It is believed that rtx's at this level will never
1684 contain anything but integers and other rtx's,
1685 except for within LABEL_REFs and SYMBOL_REFs. */
1686 default:
1687 abort ();
1690 return 1;
1693 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1694 insns in INSNS which use thet reference. */
1696 static void
1697 add_label_notes (x, insns)
1698 rtx x;
1699 rtx insns;
1701 enum rtx_code code = GET_CODE (x);
1702 int i, j;
1703 char *fmt;
1704 rtx insn;
1706 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1708 /* This code used to ignore labels that referred to dispatch tables to
1709 avoid flow generating (slighly) worse code.
1711 We no longer ignore such label references (see LABEL_REF handling in
1712 mark_jump_label for additional information). */
1713 for (insn = insns; insn; insn = NEXT_INSN (insn))
1714 if (reg_mentioned_p (XEXP (x, 0), insn))
1715 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
1716 REG_NOTES (insn));
1719 fmt = GET_RTX_FORMAT (code);
1720 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1722 if (fmt[i] == 'e')
1723 add_label_notes (XEXP (x, i), insns);
1724 else if (fmt[i] == 'E')
1725 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1726 add_label_notes (XVECEXP (x, i, j), insns);
1730 /* Scan MOVABLES, and move the insns that deserve to be moved.
1731 If two matching movables are combined, replace one reg with the
1732 other throughout. */
1734 static void
1735 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1736 struct movable *movables;
1737 int threshold;
1738 int insn_count;
1739 rtx loop_start;
1740 rtx end;
1741 int nregs;
1743 rtx new_start = 0;
1744 register struct movable *m;
1745 register rtx p;
1746 /* Map of pseudo-register replacements to handle combining
1747 when we move several insns that load the same value
1748 into different pseudo-registers. */
1749 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1750 char *already_moved = (char *) alloca (nregs);
1752 bzero (already_moved, nregs);
1753 bzero ((char *) reg_map, nregs * sizeof (rtx));
1755 num_movables = 0;
1757 for (m = movables; m; m = m->next)
1759 /* Describe this movable insn. */
1761 if (loop_dump_stream)
1763 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1764 INSN_UID (m->insn), m->regno, m->lifetime);
1765 if (m->consec > 0)
1766 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1767 if (m->cond)
1768 fprintf (loop_dump_stream, "cond ");
1769 if (m->force)
1770 fprintf (loop_dump_stream, "force ");
1771 if (m->global)
1772 fprintf (loop_dump_stream, "global ");
1773 if (m->done)
1774 fprintf (loop_dump_stream, "done ");
1775 if (m->move_insn)
1776 fprintf (loop_dump_stream, "move-insn ");
1777 if (m->match)
1778 fprintf (loop_dump_stream, "matches %d ",
1779 INSN_UID (m->match->insn));
1780 if (m->forces)
1781 fprintf (loop_dump_stream, "forces %d ",
1782 INSN_UID (m->forces->insn));
1785 /* Count movables. Value used in heuristics in strength_reduce. */
1786 num_movables++;
1788 /* Ignore the insn if it's already done (it matched something else).
1789 Otherwise, see if it is now safe to move. */
1791 if (!m->done
1792 && (! m->cond
1793 || (1 == invariant_p (m->set_src)
1794 && (m->dependencies == 0
1795 || 1 == invariant_p (m->dependencies))
1796 && (m->consec == 0
1797 || 1 == consec_sets_invariant_p (m->set_dest,
1798 m->consec + 1,
1799 m->insn))))
1800 && (! m->forces || m->forces->done))
1802 register int regno;
1803 register rtx p;
1804 int savings = m->savings;
1806 /* We have an insn that is safe to move.
1807 Compute its desirability. */
1809 p = m->insn;
1810 regno = m->regno;
1812 if (loop_dump_stream)
1813 fprintf (loop_dump_stream, "savings %d ", savings);
1815 if (moved_once[regno] && loop_dump_stream)
1816 fprintf (loop_dump_stream, "halved since already moved ");
1818 /* An insn MUST be moved if we already moved something else
1819 which is safe only if this one is moved too: that is,
1820 if already_moved[REGNO] is nonzero. */
1822 /* An insn is desirable to move if the new lifetime of the
1823 register is no more than THRESHOLD times the old lifetime.
1824 If it's not desirable, it means the loop is so big
1825 that moving won't speed things up much,
1826 and it is liable to make register usage worse. */
1828 /* It is also desirable to move if it can be moved at no
1829 extra cost because something else was already moved. */
1831 if (already_moved[regno]
1832 || flag_move_all_movables
1833 || (threshold * savings * m->lifetime) >=
1834 (moved_once[regno] ? insn_count * 2 : insn_count)
1835 || (m->forces && m->forces->done
1836 && VARRAY_INT (n_times_set, m->forces->regno) == 1))
1838 int count;
1839 register struct movable *m1;
1840 rtx first;
1842 /* Now move the insns that set the reg. */
1844 if (m->partial && m->match)
1846 rtx newpat, i1;
1847 rtx r1, r2;
1848 /* Find the end of this chain of matching regs.
1849 Thus, we load each reg in the chain from that one reg.
1850 And that reg is loaded with 0 directly,
1851 since it has ->match == 0. */
1852 for (m1 = m; m1->match; m1 = m1->match);
1853 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1854 SET_DEST (PATTERN (m1->insn)));
1855 i1 = emit_insn_before (newpat, loop_start);
1857 /* Mark the moved, invariant reg as being allowed to
1858 share a hard reg with the other matching invariant. */
1859 REG_NOTES (i1) = REG_NOTES (m->insn);
1860 r1 = SET_DEST (PATTERN (m->insn));
1861 r2 = SET_DEST (PATTERN (m1->insn));
1862 regs_may_share
1863 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1864 gen_rtx_EXPR_LIST (VOIDmode, r2,
1865 regs_may_share));
1866 delete_insn (m->insn);
1868 if (new_start == 0)
1869 new_start = i1;
1871 if (loop_dump_stream)
1872 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1874 /* If we are to re-generate the item being moved with a
1875 new move insn, first delete what we have and then emit
1876 the move insn before the loop. */
1877 else if (m->move_insn)
1879 rtx i1, temp;
1881 for (count = m->consec; count >= 0; count--)
1883 /* If this is the first insn of a library call sequence,
1884 skip to the end. */
1885 if (GET_CODE (p) != NOTE
1886 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1887 p = XEXP (temp, 0);
1889 /* If this is the last insn of a libcall sequence, then
1890 delete every insn in the sequence except the last.
1891 The last insn is handled in the normal manner. */
1892 if (GET_CODE (p) != NOTE
1893 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1895 temp = XEXP (temp, 0);
1896 while (temp != p)
1897 temp = delete_insn (temp);
1900 temp = p;
1901 p = delete_insn (p);
1903 /* simplify_giv_expr expects that it can walk the insns
1904 at m->insn forwards and see this old sequence we are
1905 tossing here. delete_insn does preserve the next
1906 pointers, but when we skip over a NOTE we must fix
1907 it up. Otherwise that code walks into the non-deleted
1908 insn stream. */
1909 while (p && GET_CODE (p) == NOTE)
1910 p = NEXT_INSN (temp) = NEXT_INSN (p);
1913 start_sequence ();
1914 emit_move_insn (m->set_dest, m->set_src);
1915 temp = get_insns ();
1916 end_sequence ();
1918 add_label_notes (m->set_src, temp);
1920 i1 = emit_insns_before (temp, loop_start);
1921 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1922 REG_NOTES (i1)
1923 = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
1924 m->set_src, REG_NOTES (i1));
1926 if (loop_dump_stream)
1927 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1929 /* The more regs we move, the less we like moving them. */
1930 threshold -= 3;
1932 else
1934 for (count = m->consec; count >= 0; count--)
1936 rtx i1, temp;
1938 /* If first insn of libcall sequence, skip to end. */
1939 /* Do this at start of loop, since p is guaranteed to
1940 be an insn here. */
1941 if (GET_CODE (p) != NOTE
1942 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1943 p = XEXP (temp, 0);
1945 /* If last insn of libcall sequence, move all
1946 insns except the last before the loop. The last
1947 insn is handled in the normal manner. */
1948 if (GET_CODE (p) != NOTE
1949 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1951 rtx fn_address = 0;
1952 rtx fn_reg = 0;
1953 rtx fn_address_insn = 0;
1955 first = 0;
1956 for (temp = XEXP (temp, 0); temp != p;
1957 temp = NEXT_INSN (temp))
1959 rtx body;
1960 rtx n;
1961 rtx next;
1963 if (GET_CODE (temp) == NOTE)
1964 continue;
1966 body = PATTERN (temp);
1968 /* Find the next insn after TEMP,
1969 not counting USE or NOTE insns. */
1970 for (next = NEXT_INSN (temp); next != p;
1971 next = NEXT_INSN (next))
1972 if (! (GET_CODE (next) == INSN
1973 && GET_CODE (PATTERN (next)) == USE)
1974 && GET_CODE (next) != NOTE)
1975 break;
1977 /* If that is the call, this may be the insn
1978 that loads the function address.
1980 Extract the function address from the insn
1981 that loads it into a register.
1982 If this insn was cse'd, we get incorrect code.
1984 So emit a new move insn that copies the
1985 function address into the register that the
1986 call insn will use. flow.c will delete any
1987 redundant stores that we have created. */
1988 if (GET_CODE (next) == CALL_INSN
1989 && GET_CODE (body) == SET
1990 && GET_CODE (SET_DEST (body)) == REG
1991 && (n = find_reg_note (temp, REG_EQUAL,
1992 NULL_RTX)))
1994 fn_reg = SET_SRC (body);
1995 if (GET_CODE (fn_reg) != REG)
1996 fn_reg = SET_DEST (body);
1997 fn_address = XEXP (n, 0);
1998 fn_address_insn = temp;
2000 /* We have the call insn.
2001 If it uses the register we suspect it might,
2002 load it with the correct address directly. */
2003 if (GET_CODE (temp) == CALL_INSN
2004 && fn_address != 0
2005 && reg_referenced_p (fn_reg, body))
2006 emit_insn_after (gen_move_insn (fn_reg,
2007 fn_address),
2008 fn_address_insn);
2010 if (GET_CODE (temp) == CALL_INSN)
2012 i1 = emit_call_insn_before (body, loop_start);
2013 /* Because the USAGE information potentially
2014 contains objects other than hard registers
2015 we need to copy it. */
2016 if (CALL_INSN_FUNCTION_USAGE (temp))
2017 CALL_INSN_FUNCTION_USAGE (i1)
2018 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
2020 else
2021 i1 = emit_insn_before (body, loop_start);
2022 if (first == 0)
2023 first = i1;
2024 if (temp == fn_address_insn)
2025 fn_address_insn = i1;
2026 REG_NOTES (i1) = REG_NOTES (temp);
2027 delete_insn (temp);
2029 if (new_start == 0)
2030 new_start = first;
2032 if (m->savemode != VOIDmode)
2034 /* P sets REG to zero; but we should clear only
2035 the bits that are not covered by the mode
2036 m->savemode. */
2037 rtx reg = m->set_dest;
2038 rtx sequence;
2039 rtx tem;
2041 start_sequence ();
2042 tem = expand_binop
2043 (GET_MODE (reg), and_optab, reg,
2044 GEN_INT ((((HOST_WIDE_INT) 1
2045 << GET_MODE_BITSIZE (m->savemode)))
2046 - 1),
2047 reg, 1, OPTAB_LIB_WIDEN);
2048 if (tem == 0)
2049 abort ();
2050 if (tem != reg)
2051 emit_move_insn (reg, tem);
2052 sequence = gen_sequence ();
2053 end_sequence ();
2054 i1 = emit_insn_before (sequence, loop_start);
2056 else if (GET_CODE (p) == CALL_INSN)
2058 i1 = emit_call_insn_before (PATTERN (p), loop_start);
2059 /* Because the USAGE information potentially
2060 contains objects other than hard registers
2061 we need to copy it. */
2062 if (CALL_INSN_FUNCTION_USAGE (p))
2063 CALL_INSN_FUNCTION_USAGE (i1)
2064 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2066 else if (count == m->consec && m->move_insn_first)
2068 /* The SET_SRC might not be invariant, so we must
2069 use the REG_EQUAL note. */
2070 start_sequence ();
2071 emit_move_insn (m->set_dest, m->set_src);
2072 temp = get_insns ();
2073 end_sequence ();
2075 add_label_notes (m->set_src, temp);
2077 i1 = emit_insns_before (temp, loop_start);
2078 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2079 REG_NOTES (i1)
2080 = gen_rtx_EXPR_LIST ((m->is_equiv ? REG_EQUIV
2081 : REG_EQUAL),
2082 m->set_src, REG_NOTES (i1));
2084 else
2085 i1 = emit_insn_before (PATTERN (p), loop_start);
2087 if (REG_NOTES (i1) == 0)
2089 REG_NOTES (i1) = REG_NOTES (p);
2091 /* If there is a REG_EQUAL note present whose value
2092 is not loop invariant, then delete it, since it
2093 may cause problems with later optimization passes.
2094 It is possible for cse to create such notes
2095 like this as a result of record_jump_cond. */
2097 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2098 && ! invariant_p (XEXP (temp, 0)))
2099 remove_note (i1, temp);
2102 if (new_start == 0)
2103 new_start = i1;
2105 if (loop_dump_stream)
2106 fprintf (loop_dump_stream, " moved to %d",
2107 INSN_UID (i1));
2109 /* If library call, now fix the REG_NOTES that contain
2110 insn pointers, namely REG_LIBCALL on FIRST
2111 and REG_RETVAL on I1. */
2112 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2114 XEXP (temp, 0) = first;
2115 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2116 XEXP (temp, 0) = i1;
2119 temp = p;
2120 delete_insn (p);
2121 p = NEXT_INSN (p);
2123 /* simplify_giv_expr expects that it can walk the insns
2124 at m->insn forwards and see this old sequence we are
2125 tossing here. delete_insn does preserve the next
2126 pointers, but when we skip over a NOTE we must fix
2127 it up. Otherwise that code walks into the non-deleted
2128 insn stream. */
2129 while (p && GET_CODE (p) == NOTE)
2130 p = NEXT_INSN (temp) = NEXT_INSN (p);
2133 /* The more regs we move, the less we like moving them. */
2134 threshold -= 3;
2137 /* Any other movable that loads the same register
2138 MUST be moved. */
2139 already_moved[regno] = 1;
2141 /* This reg has been moved out of one loop. */
2142 moved_once[regno] = 1;
2144 /* The reg set here is now invariant. */
2145 if (! m->partial)
2146 VARRAY_INT (set_in_loop, regno) = 0;
2148 m->done = 1;
2150 /* Change the length-of-life info for the register
2151 to say it lives at least the full length of this loop.
2152 This will help guide optimizations in outer loops. */
2154 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2155 /* This is the old insn before all the moved insns.
2156 We can't use the moved insn because it is out of range
2157 in uid_luid. Only the old insns have luids. */
2158 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2159 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
2160 REGNO_LAST_UID (regno) = INSN_UID (end);
2162 /* Combine with this moved insn any other matching movables. */
2164 if (! m->partial)
2165 for (m1 = movables; m1; m1 = m1->next)
2166 if (m1->match == m)
2168 rtx temp;
2170 /* Schedule the reg loaded by M1
2171 for replacement so that shares the reg of M.
2172 If the modes differ (only possible in restricted
2173 circumstances, make a SUBREG. */
2174 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2175 reg_map[m1->regno] = m->set_dest;
2176 else
2177 reg_map[m1->regno]
2178 = gen_lowpart_common (GET_MODE (m1->set_dest),
2179 m->set_dest);
2181 /* Get rid of the matching insn
2182 and prevent further processing of it. */
2183 m1->done = 1;
2185 /* if library call, delete all insn except last, which
2186 is deleted below */
2187 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2188 NULL_RTX)))
2190 for (temp = XEXP (temp, 0); temp != m1->insn;
2191 temp = NEXT_INSN (temp))
2192 delete_insn (temp);
2194 delete_insn (m1->insn);
2196 /* Any other movable that loads the same register
2197 MUST be moved. */
2198 already_moved[m1->regno] = 1;
2200 /* The reg merged here is now invariant,
2201 if the reg it matches is invariant. */
2202 if (! m->partial)
2203 VARRAY_INT (set_in_loop, m1->regno) = 0;
2206 else if (loop_dump_stream)
2207 fprintf (loop_dump_stream, "not desirable");
2209 else if (loop_dump_stream && !m->match)
2210 fprintf (loop_dump_stream, "not safe");
2212 if (loop_dump_stream)
2213 fprintf (loop_dump_stream, "\n");
2216 if (new_start == 0)
2217 new_start = loop_start;
2219 /* Go through all the instructions in the loop, making
2220 all the register substitutions scheduled in REG_MAP. */
2221 for (p = new_start; p != end; p = NEXT_INSN (p))
2222 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2223 || GET_CODE (p) == CALL_INSN)
2225 replace_regs (PATTERN (p), reg_map, nregs, 0);
2226 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2227 INSN_CODE (p) = -1;
2231 #if 0
2232 /* Scan X and replace the address of any MEM in it with ADDR.
2233 REG is the address that MEM should have before the replacement. */
2235 static void
2236 replace_call_address (x, reg, addr)
2237 rtx x, reg, addr;
2239 register enum rtx_code code;
2240 register int i;
2241 register char *fmt;
2243 if (x == 0)
2244 return;
2245 code = GET_CODE (x);
2246 switch (code)
2248 case PC:
2249 case CC0:
2250 case CONST_INT:
2251 case CONST_DOUBLE:
2252 case CONST:
2253 case SYMBOL_REF:
2254 case LABEL_REF:
2255 case REG:
2256 return;
2258 case SET:
2259 /* Short cut for very common case. */
2260 replace_call_address (XEXP (x, 1), reg, addr);
2261 return;
2263 case CALL:
2264 /* Short cut for very common case. */
2265 replace_call_address (XEXP (x, 0), reg, addr);
2266 return;
2268 case MEM:
2269 /* If this MEM uses a reg other than the one we expected,
2270 something is wrong. */
2271 if (XEXP (x, 0) != reg)
2272 abort ();
2273 XEXP (x, 0) = addr;
2274 return;
2276 default:
2277 break;
2280 fmt = GET_RTX_FORMAT (code);
2281 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2283 if (fmt[i] == 'e')
2284 replace_call_address (XEXP (x, i), reg, addr);
2285 if (fmt[i] == 'E')
2287 register int j;
2288 for (j = 0; j < XVECLEN (x, i); j++)
2289 replace_call_address (XVECEXP (x, i, j), reg, addr);
2293 #endif
2295 /* Return the number of memory refs to addresses that vary
2296 in the rtx X. */
2298 static int
2299 count_nonfixed_reads (x)
2300 rtx x;
2302 register enum rtx_code code;
2303 register int i;
2304 register char *fmt;
2305 int value;
2307 if (x == 0)
2308 return 0;
2310 code = GET_CODE (x);
2311 switch (code)
2313 case PC:
2314 case CC0:
2315 case CONST_INT:
2316 case CONST_DOUBLE:
2317 case CONST:
2318 case SYMBOL_REF:
2319 case LABEL_REF:
2320 case REG:
2321 return 0;
2323 case MEM:
2324 return ((invariant_p (XEXP (x, 0)) != 1)
2325 + count_nonfixed_reads (XEXP (x, 0)));
2327 default:
2328 break;
2331 value = 0;
2332 fmt = GET_RTX_FORMAT (code);
2333 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2335 if (fmt[i] == 'e')
2336 value += count_nonfixed_reads (XEXP (x, i));
2337 if (fmt[i] == 'E')
2339 register int j;
2340 for (j = 0; j < XVECLEN (x, i); j++)
2341 value += count_nonfixed_reads (XVECEXP (x, i, j));
2344 return value;
2348 #if 0
2349 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2350 Replace it with an instruction to load just the low bytes
2351 if the machine supports such an instruction,
2352 and insert above LOOP_START an instruction to clear the register. */
2354 static void
2355 constant_high_bytes (p, loop_start)
2356 rtx p, loop_start;
2358 register rtx new;
2359 register int insn_code_number;
2361 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2362 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2364 new = gen_rtx_SET (VOIDmode,
2365 gen_rtx_STRICT_LOW_PART (VOIDmode,
2366 gen_rtx_SUBREG (GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2367 SET_DEST (PATTERN (p)),
2368 0)),
2369 XEXP (SET_SRC (PATTERN (p)), 0));
2370 insn_code_number = recog (new, p);
2372 if (insn_code_number)
2374 register int i;
2376 /* Clear destination register before the loop. */
2377 emit_insn_before (gen_rtx_SET (VOIDmode, SET_DEST (PATTERN (p)),
2378 const0_rtx),
2379 loop_start);
2381 /* Inside the loop, just load the low part. */
2382 PATTERN (p) = new;
2385 #endif
2387 /* Scan a loop setting the variables `unknown_address_altered',
2388 `num_mem_sets', `loop_continue', `loops_enclosed', `loop_has_call',
2389 `loop_has_volatile', and `loop_has_tablejump'.
2390 Also, fill in the array `loop_mems' and the list `loop_store_mems'. */
2392 static void
2393 prescan_loop (start, end)
2394 rtx start, end;
2396 register int level = 1;
2397 rtx insn;
2398 int loop_has_multiple_exit_targets = 0;
2399 /* The label after END. Jumping here is just like falling off the
2400 end of the loop. We use next_nonnote_insn instead of next_label
2401 as a hedge against the (pathological) case where some actual insn
2402 might end up between the two. */
2403 rtx exit_target = next_nonnote_insn (end);
2404 if (exit_target == NULL_RTX || GET_CODE (exit_target) != CODE_LABEL)
2405 loop_has_multiple_exit_targets = 1;
2407 unknown_address_altered = 0;
2408 loop_has_call = 0;
2409 loop_has_volatile = 0;
2410 loop_has_tablejump = 0;
2411 loop_store_mems = NULL_RTX;
2412 first_loop_store_insn = NULL_RTX;
2413 loop_mems_idx = 0;
2415 num_mem_sets = 0;
2416 loops_enclosed = 1;
2417 loop_continue = 0;
2419 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2420 insn = NEXT_INSN (insn))
2422 if (GET_CODE (insn) == NOTE)
2424 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2426 ++level;
2427 /* Count number of loops contained in this one. */
2428 loops_enclosed++;
2430 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2432 --level;
2433 if (level == 0)
2435 end = insn;
2436 break;
2439 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2441 if (level == 1)
2442 loop_continue = insn;
2445 else if (GET_CODE (insn) == CALL_INSN)
2447 if (! CONST_CALL_P (insn))
2448 unknown_address_altered = 1;
2449 loop_has_call = 1;
2451 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2453 rtx label1 = NULL_RTX;
2454 rtx label2 = NULL_RTX;
2456 if (volatile_refs_p (PATTERN (insn)))
2457 loop_has_volatile = 1;
2459 if (GET_CODE (insn) == JUMP_INSN
2460 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2461 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2462 loop_has_tablejump = 1;
2464 note_stores (PATTERN (insn), note_addr_stored);
2465 if (! first_loop_store_insn && loop_store_mems)
2466 first_loop_store_insn = insn;
2468 if (! loop_has_multiple_exit_targets
2469 && GET_CODE (insn) == JUMP_INSN
2470 && GET_CODE (PATTERN (insn)) == SET
2471 && SET_DEST (PATTERN (insn)) == pc_rtx)
2473 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2475 label1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2476 label2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2478 else
2480 label1 = SET_SRC (PATTERN (insn));
2483 do {
2484 if (label1 && label1 != pc_rtx)
2486 if (GET_CODE (label1) != LABEL_REF)
2488 /* Something tricky. */
2489 loop_has_multiple_exit_targets = 1;
2490 break;
2492 else if (XEXP (label1, 0) != exit_target
2493 && LABEL_OUTSIDE_LOOP_P (label1))
2495 /* A jump outside the current loop. */
2496 loop_has_multiple_exit_targets = 1;
2497 break;
2501 label1 = label2;
2502 label2 = NULL_RTX;
2503 } while (label1);
2506 else if (GET_CODE (insn) == RETURN)
2507 loop_has_multiple_exit_targets = 1;
2510 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2511 if (/* We can't tell what MEMs are aliased by what. */
2512 !unknown_address_altered
2513 /* An exception thrown by a called function might land us
2514 anywhere. */
2515 && !loop_has_call
2516 /* We don't want loads for MEMs moved to a location before the
2517 one at which their stack memory becomes allocated. (Note
2518 that this is not a problem for malloc, etc., since those
2519 require actual function calls. */
2520 && !current_function_calls_alloca
2521 /* There are ways to leave the loop other than falling off the
2522 end. */
2523 && !loop_has_multiple_exit_targets)
2524 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2525 insn = NEXT_INSN (insn))
2526 for_each_rtx (&insn, insert_loop_mem, 0);
2529 /* LOOP_NUMBER_CONT_DOMINATOR is now the last label between the loop start
2530 and the continue note that is a the destination of a (cond)jump after
2531 the continue note. If there is any (cond)jump between the loop start
2532 and what we have so far as LOOP_NUMBER_CONT_DOMINATOR that has a
2533 target between LOOP_DOMINATOR and the continue note, move
2534 LOOP_NUMBER_CONT_DOMINATOR forward to that label; if a jump's
2535 destination cannot be determined, clear LOOP_NUMBER_CONT_DOMINATOR. */
2537 static void
2538 verify_dominator (loop_number)
2539 int loop_number;
2541 rtx insn;
2543 if (! loop_number_cont_dominator[loop_number])
2544 /* This can happen for an empty loop, e.g. in
2545 gcc.c-torture/compile/920410-2.c */
2546 return;
2547 if (loop_number_cont_dominator[loop_number] == const0_rtx)
2549 loop_number_cont_dominator[loop_number] = 0;
2550 return;
2552 for (insn = loop_number_loop_starts[loop_number];
2553 insn != loop_number_cont_dominator[loop_number];
2554 insn = NEXT_INSN (insn))
2556 if (GET_CODE (insn) == JUMP_INSN
2557 && GET_CODE (PATTERN (insn)) != RETURN)
2559 rtx label = JUMP_LABEL (insn);
2560 int label_luid = INSN_LUID (label);
2562 if (! condjump_p (insn)
2563 && ! condjump_in_parallel_p (insn))
2565 loop_number_cont_dominator[loop_number] = NULL_RTX;
2566 return;
2568 if (label_luid < INSN_LUID (loop_number_loop_cont[loop_number])
2569 && (label_luid
2570 > INSN_LUID (loop_number_cont_dominator[loop_number])))
2571 loop_number_cont_dominator[loop_number] = label;
2576 /* Scan the function looking for loops. Record the start and end of each loop.
2577 Also mark as invalid loops any loops that contain a setjmp or are branched
2578 to from outside the loop. */
2580 static void
2581 find_and_verify_loops (f)
2582 rtx f;
2584 rtx insn, label;
2585 int current_loop = -1;
2586 int next_loop = -1;
2587 int loop;
2589 compute_luids (f, NULL_RTX, 0);
2591 /* If there are jumps to undefined labels,
2592 treat them as jumps out of any/all loops.
2593 This also avoids writing past end of tables when there are no loops. */
2594 uid_loop_num[0] = -1;
2596 /* Find boundaries of loops, mark which loops are contained within
2597 loops, and invalidate loops that have setjmp. */
2599 for (insn = f; insn; insn = NEXT_INSN (insn))
2601 if (GET_CODE (insn) == NOTE)
2602 switch (NOTE_LINE_NUMBER (insn))
2604 case NOTE_INSN_LOOP_BEG:
2605 loop_number_loop_starts[++next_loop] = insn;
2606 loop_number_loop_ends[next_loop] = 0;
2607 loop_number_loop_cont[next_loop] = 0;
2608 loop_number_cont_dominator[next_loop] = 0;
2609 loop_outer_loop[next_loop] = current_loop;
2610 loop_invalid[next_loop] = 0;
2611 loop_number_exit_labels[next_loop] = 0;
2612 loop_number_exit_count[next_loop] = 0;
2613 current_loop = next_loop;
2614 break;
2616 case NOTE_INSN_SETJMP:
2617 /* In this case, we must invalidate our current loop and any
2618 enclosing loop. */
2619 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2621 loop_invalid[loop] = 1;
2622 if (loop_dump_stream)
2623 fprintf (loop_dump_stream,
2624 "\nLoop at %d ignored due to setjmp.\n",
2625 INSN_UID (loop_number_loop_starts[loop]));
2627 break;
2629 case NOTE_INSN_LOOP_CONT:
2630 loop_number_loop_cont[current_loop] = insn;
2631 break;
2632 case NOTE_INSN_LOOP_END:
2633 if (current_loop == -1)
2634 abort ();
2636 loop_number_loop_ends[current_loop] = insn;
2637 verify_dominator (current_loop);
2638 current_loop = loop_outer_loop[current_loop];
2639 break;
2641 default:
2642 break;
2644 /* If for any loop, this is a jump insn between the NOTE_INSN_LOOP_CONT
2645 and NOTE_INSN_LOOP_END notes, update loop_number_loop_dominator. */
2646 else if (GET_CODE (insn) == JUMP_INSN
2647 && GET_CODE (PATTERN (insn)) != RETURN
2648 && current_loop >= 0)
2650 int this_loop;
2651 rtx label = JUMP_LABEL (insn);
2653 if (! condjump_p (insn) && ! condjump_in_parallel_p (insn))
2654 label = NULL_RTX;
2656 this_loop = current_loop;
2659 /* First see if we care about this loop. */
2660 if (loop_number_loop_cont[this_loop]
2661 && loop_number_cont_dominator[this_loop] != const0_rtx)
2663 /* If the jump destination is not known, invalidate
2664 loop_number_const_dominator. */
2665 if (! label)
2666 loop_number_cont_dominator[this_loop] = const0_rtx;
2667 else
2668 /* Check if the destination is between loop start and
2669 cont. */
2670 if ((INSN_LUID (label)
2671 < INSN_LUID (loop_number_loop_cont[this_loop]))
2672 && (INSN_LUID (label)
2673 > INSN_LUID (loop_number_loop_starts[this_loop]))
2674 /* And if there is no later destination already
2675 recorded. */
2676 && (! loop_number_cont_dominator[this_loop]
2677 || (INSN_LUID (label)
2678 > INSN_LUID (loop_number_cont_dominator
2679 [this_loop]))))
2680 loop_number_cont_dominator[this_loop] = label;
2682 this_loop = loop_outer_loop[this_loop];
2684 while (this_loop >= 0);
2687 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2688 enclosing loop, but this doesn't matter. */
2689 uid_loop_num[INSN_UID (insn)] = current_loop;
2692 /* Any loop containing a label used in an initializer must be invalidated,
2693 because it can be jumped into from anywhere. */
2695 for (label = forced_labels; label; label = XEXP (label, 1))
2697 int loop_num;
2699 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2700 loop_num != -1;
2701 loop_num = loop_outer_loop[loop_num])
2702 loop_invalid[loop_num] = 1;
2705 /* Any loop containing a label used for an exception handler must be
2706 invalidated, because it can be jumped into from anywhere. */
2708 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2710 int loop_num;
2712 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2713 loop_num != -1;
2714 loop_num = loop_outer_loop[loop_num])
2715 loop_invalid[loop_num] = 1;
2718 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2719 loop that it is not contained within, that loop is marked invalid.
2720 If any INSN or CALL_INSN uses a label's address, then the loop containing
2721 that label is marked invalid, because it could be jumped into from
2722 anywhere.
2724 Also look for blocks of code ending in an unconditional branch that
2725 exits the loop. If such a block is surrounded by a conditional
2726 branch around the block, move the block elsewhere (see below) and
2727 invert the jump to point to the code block. This may eliminate a
2728 label in our loop and will simplify processing by both us and a
2729 possible second cse pass. */
2731 for (insn = f; insn; insn = NEXT_INSN (insn))
2732 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2734 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2736 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2738 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2739 if (note)
2741 int loop_num;
2743 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2744 loop_num != -1;
2745 loop_num = loop_outer_loop[loop_num])
2746 loop_invalid[loop_num] = 1;
2750 if (GET_CODE (insn) != JUMP_INSN)
2751 continue;
2753 mark_loop_jump (PATTERN (insn), this_loop_num);
2755 /* See if this is an unconditional branch outside the loop. */
2756 if (this_loop_num != -1
2757 && (GET_CODE (PATTERN (insn)) == RETURN
2758 || (simplejump_p (insn)
2759 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2760 != this_loop_num)))
2761 && get_max_uid () < max_uid_for_loop)
2763 rtx p;
2764 rtx our_next = next_real_insn (insn);
2765 int dest_loop;
2766 int outer_loop = -1;
2768 /* Go backwards until we reach the start of the loop, a label,
2769 or a JUMP_INSN. */
2770 for (p = PREV_INSN (insn);
2771 GET_CODE (p) != CODE_LABEL
2772 && ! (GET_CODE (p) == NOTE
2773 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2774 && GET_CODE (p) != JUMP_INSN;
2775 p = PREV_INSN (p))
2778 /* Check for the case where we have a jump to an inner nested
2779 loop, and do not perform the optimization in that case. */
2781 if (JUMP_LABEL (insn))
2783 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2784 if (dest_loop != -1)
2786 for (outer_loop = dest_loop; outer_loop != -1;
2787 outer_loop = loop_outer_loop[outer_loop])
2788 if (outer_loop == this_loop_num)
2789 break;
2793 /* Make sure that the target of P is within the current loop. */
2795 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2796 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2797 outer_loop = this_loop_num;
2799 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2800 we have a block of code to try to move.
2802 We look backward and then forward from the target of INSN
2803 to find a BARRIER at the same loop depth as the target.
2804 If we find such a BARRIER, we make a new label for the start
2805 of the block, invert the jump in P and point it to that label,
2806 and move the block of code to the spot we found. */
2808 if (outer_loop == -1
2809 && GET_CODE (p) == JUMP_INSN
2810 && JUMP_LABEL (p) != 0
2811 /* Just ignore jumps to labels that were never emitted.
2812 These always indicate compilation errors. */
2813 && INSN_UID (JUMP_LABEL (p)) != 0
2814 && condjump_p (p)
2815 && ! simplejump_p (p)
2816 && next_real_insn (JUMP_LABEL (p)) == our_next)
2818 rtx target
2819 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2820 int target_loop_num = uid_loop_num[INSN_UID (target)];
2821 rtx loc;
2823 for (loc = target; loc; loc = PREV_INSN (loc))
2824 if (GET_CODE (loc) == BARRIER
2825 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2826 break;
2828 if (loc == 0)
2829 for (loc = target; loc; loc = NEXT_INSN (loc))
2830 if (GET_CODE (loc) == BARRIER
2831 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2832 break;
2834 if (loc)
2836 rtx cond_label = JUMP_LABEL (p);
2837 rtx new_label = get_label_after (p);
2839 /* Ensure our label doesn't go away. */
2840 LABEL_NUSES (cond_label)++;
2842 /* Verify that uid_loop_num is large enough and that
2843 we can invert P. */
2844 if (invert_jump (p, new_label))
2846 rtx q, r;
2848 /* If no suitable BARRIER was found, create a suitable
2849 one before TARGET. Since TARGET is a fall through
2850 path, we'll need to insert an jump around our block
2851 and a add a BARRIER before TARGET.
2853 This creates an extra unconditional jump outside
2854 the loop. However, the benefits of removing rarely
2855 executed instructions from inside the loop usually
2856 outweighs the cost of the extra unconditional jump
2857 outside the loop. */
2858 if (loc == 0)
2860 rtx temp;
2862 temp = gen_jump (JUMP_LABEL (insn));
2863 temp = emit_jump_insn_before (temp, target);
2864 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2865 LABEL_NUSES (JUMP_LABEL (insn))++;
2866 loc = emit_barrier_before (target);
2869 /* Include the BARRIER after INSN and copy the
2870 block after LOC. */
2871 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2872 reorder_insns (new_label, NEXT_INSN (insn), loc);
2874 /* All those insns are now in TARGET_LOOP_NUM. */
2875 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2876 q = NEXT_INSN (q))
2877 uid_loop_num[INSN_UID (q)] = target_loop_num;
2879 /* The label jumped to by INSN is no longer a loop exit.
2880 Unless INSN does not have a label (e.g., it is a
2881 RETURN insn), search loop_number_exit_labels to find
2882 its label_ref, and remove it. Also turn off
2883 LABEL_OUTSIDE_LOOP_P bit. */
2884 if (JUMP_LABEL (insn))
2886 int loop_num;
2888 for (q = 0,
2889 r = loop_number_exit_labels[this_loop_num];
2890 r; q = r, r = LABEL_NEXTREF (r))
2891 if (XEXP (r, 0) == JUMP_LABEL (insn))
2893 LABEL_OUTSIDE_LOOP_P (r) = 0;
2894 if (q)
2895 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2896 else
2897 loop_number_exit_labels[this_loop_num]
2898 = LABEL_NEXTREF (r);
2899 break;
2902 for (loop_num = this_loop_num;
2903 loop_num != -1 && loop_num != target_loop_num;
2904 loop_num = loop_outer_loop[loop_num])
2905 loop_number_exit_count[loop_num]--;
2907 /* If we didn't find it, then something is wrong. */
2908 if (! r)
2909 abort ();
2912 /* P is now a jump outside the loop, so it must be put
2913 in loop_number_exit_labels, and marked as such.
2914 The easiest way to do this is to just call
2915 mark_loop_jump again for P. */
2916 mark_loop_jump (PATTERN (p), this_loop_num);
2918 /* If INSN now jumps to the insn after it,
2919 delete INSN. */
2920 if (JUMP_LABEL (insn) != 0
2921 && (next_real_insn (JUMP_LABEL (insn))
2922 == next_real_insn (insn)))
2923 delete_insn (insn);
2926 /* Continue the loop after where the conditional
2927 branch used to jump, since the only branch insn
2928 in the block (if it still remains) is an inter-loop
2929 branch and hence needs no processing. */
2930 insn = NEXT_INSN (cond_label);
2932 if (--LABEL_NUSES (cond_label) == 0)
2933 delete_insn (cond_label);
2935 /* This loop will be continued with NEXT_INSN (insn). */
2936 insn = PREV_INSN (insn);
2943 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2944 loops it is contained in, mark the target loop invalid.
2946 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2948 static void
2949 mark_loop_jump (x, loop_num)
2950 rtx x;
2951 int loop_num;
2953 int dest_loop;
2954 int outer_loop;
2955 int i;
2957 switch (GET_CODE (x))
2959 case PC:
2960 case USE:
2961 case CLOBBER:
2962 case REG:
2963 case MEM:
2964 case CONST_INT:
2965 case CONST_DOUBLE:
2966 case RETURN:
2967 return;
2969 case CONST:
2970 /* There could be a label reference in here. */
2971 mark_loop_jump (XEXP (x, 0), loop_num);
2972 return;
2974 case PLUS:
2975 case MINUS:
2976 case MULT:
2977 mark_loop_jump (XEXP (x, 0), loop_num);
2978 mark_loop_jump (XEXP (x, 1), loop_num);
2979 return;
2981 case LO_SUM:
2982 /* This may refer to a LABEL_REF or SYMBOL_REF. */
2983 mark_loop_jump (XEXP (x, 1), loop_num);
2984 return;
2986 case SIGN_EXTEND:
2987 case ZERO_EXTEND:
2988 mark_loop_jump (XEXP (x, 0), loop_num);
2989 return;
2991 case LABEL_REF:
2992 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2994 /* Link together all labels that branch outside the loop. This
2995 is used by final_[bg]iv_value and the loop unrolling code. Also
2996 mark this LABEL_REF so we know that this branch should predict
2997 false. */
2999 /* A check to make sure the label is not in an inner nested loop,
3000 since this does not count as a loop exit. */
3001 if (dest_loop != -1)
3003 for (outer_loop = dest_loop; outer_loop != -1;
3004 outer_loop = loop_outer_loop[outer_loop])
3005 if (outer_loop == loop_num)
3006 break;
3008 else
3009 outer_loop = -1;
3011 if (loop_num != -1 && outer_loop == -1)
3013 LABEL_OUTSIDE_LOOP_P (x) = 1;
3014 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
3015 loop_number_exit_labels[loop_num] = x;
3017 for (outer_loop = loop_num;
3018 outer_loop != -1 && outer_loop != dest_loop;
3019 outer_loop = loop_outer_loop[outer_loop])
3020 loop_number_exit_count[outer_loop]++;
3023 /* If this is inside a loop, but not in the current loop or one enclosed
3024 by it, it invalidates at least one loop. */
3026 if (dest_loop == -1)
3027 return;
3029 /* We must invalidate every nested loop containing the target of this
3030 label, except those that also contain the jump insn. */
3032 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
3034 /* Stop when we reach a loop that also contains the jump insn. */
3035 for (outer_loop = loop_num; outer_loop != -1;
3036 outer_loop = loop_outer_loop[outer_loop])
3037 if (dest_loop == outer_loop)
3038 return;
3040 /* If we get here, we know we need to invalidate a loop. */
3041 if (loop_dump_stream && ! loop_invalid[dest_loop])
3042 fprintf (loop_dump_stream,
3043 "\nLoop at %d ignored due to multiple entry points.\n",
3044 INSN_UID (loop_number_loop_starts[dest_loop]));
3046 loop_invalid[dest_loop] = 1;
3048 return;
3050 case SET:
3051 /* If this is not setting pc, ignore. */
3052 if (SET_DEST (x) == pc_rtx)
3053 mark_loop_jump (SET_SRC (x), loop_num);
3054 return;
3056 case IF_THEN_ELSE:
3057 mark_loop_jump (XEXP (x, 1), loop_num);
3058 mark_loop_jump (XEXP (x, 2), loop_num);
3059 return;
3061 case PARALLEL:
3062 case ADDR_VEC:
3063 for (i = 0; i < XVECLEN (x, 0); i++)
3064 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
3065 return;
3067 case ADDR_DIFF_VEC:
3068 for (i = 0; i < XVECLEN (x, 1); i++)
3069 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
3070 return;
3072 default:
3073 /* Strictly speaking this is not a jump into the loop, only a possible
3074 jump out of the loop. However, we have no way to link the destination
3075 of this jump onto the list of exit labels. To be safe we mark this
3076 loop and any containing loops as invalid. */
3077 if (loop_num != -1)
3079 for (outer_loop = loop_num; outer_loop != -1;
3080 outer_loop = loop_outer_loop[outer_loop])
3082 if (loop_dump_stream && ! loop_invalid[outer_loop])
3083 fprintf (loop_dump_stream,
3084 "\nLoop at %d ignored due to unknown exit jump.\n",
3085 INSN_UID (loop_number_loop_starts[outer_loop]));
3086 loop_invalid[outer_loop] = 1;
3089 return;
3093 /* Return nonzero if there is a label in the range from
3094 insn INSN to and including the insn whose luid is END
3095 INSN must have an assigned luid (i.e., it must not have
3096 been previously created by loop.c). */
3098 static int
3099 labels_in_range_p (insn, end)
3100 rtx insn;
3101 int end;
3103 while (insn && INSN_LUID (insn) <= end)
3105 if (GET_CODE (insn) == CODE_LABEL)
3106 return 1;
3107 insn = NEXT_INSN (insn);
3110 return 0;
3113 /* Record that a memory reference X is being set. */
3115 static void
3116 note_addr_stored (x, y)
3117 rtx x;
3118 rtx y ATTRIBUTE_UNUSED;
3120 if (x == 0 || GET_CODE (x) != MEM)
3121 return;
3123 /* Count number of memory writes.
3124 This affects heuristics in strength_reduce. */
3125 num_mem_sets++;
3127 /* BLKmode MEM means all memory is clobbered. */
3128 if (GET_MODE (x) == BLKmode)
3129 unknown_address_altered = 1;
3131 if (unknown_address_altered)
3132 return;
3134 loop_store_mems = gen_rtx_EXPR_LIST (VOIDmode, x, loop_store_mems);
3137 /* Return nonzero if the rtx X is invariant over the current loop.
3139 The value is 2 if we refer to something only conditionally invariant.
3141 If `unknown_address_altered' is nonzero, no memory ref is invariant.
3142 Otherwise, a memory ref is invariant if it does not conflict with
3143 anything stored in `loop_store_mems'. */
3146 invariant_p (x)
3147 register rtx x;
3149 register int i;
3150 register enum rtx_code code;
3151 register char *fmt;
3152 int conditional = 0;
3153 rtx mem_list_entry;
3155 if (x == 0)
3156 return 1;
3157 code = GET_CODE (x);
3158 switch (code)
3160 case CONST_INT:
3161 case CONST_DOUBLE:
3162 case SYMBOL_REF:
3163 case CONST:
3164 return 1;
3166 case LABEL_REF:
3167 /* A LABEL_REF is normally invariant, however, if we are unrolling
3168 loops, and this label is inside the loop, then it isn't invariant.
3169 This is because each unrolled copy of the loop body will have
3170 a copy of this label. If this was invariant, then an insn loading
3171 the address of this label into a register might get moved outside
3172 the loop, and then each loop body would end up using the same label.
3174 We don't know the loop bounds here though, so just fail for all
3175 labels. */
3176 if (flag_unroll_loops)
3177 return 0;
3178 else
3179 return 1;
3181 case PC:
3182 case CC0:
3183 case UNSPEC_VOLATILE:
3184 return 0;
3186 case REG:
3187 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3188 since the reg might be set by initialization within the loop. */
3190 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3191 || x == arg_pointer_rtx)
3192 && ! current_function_has_nonlocal_goto)
3193 return 1;
3195 if (loop_has_call
3196 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3197 return 0;
3199 if (VARRAY_INT (set_in_loop, REGNO (x)) < 0)
3200 return 2;
3202 return VARRAY_INT (set_in_loop, REGNO (x)) == 0;
3204 case MEM:
3205 /* Volatile memory references must be rejected. Do this before
3206 checking for read-only items, so that volatile read-only items
3207 will be rejected also. */
3208 if (MEM_VOLATILE_P (x))
3209 return 0;
3211 /* Read-only items (such as constants in a constant pool) are
3212 invariant if their address is. */
3213 if (RTX_UNCHANGING_P (x))
3214 break;
3216 /* If we had a subroutine call, any location in memory could have been
3217 clobbered. */
3218 if (unknown_address_altered)
3219 return 0;
3221 /* See if there is any dependence between a store and this load. */
3222 mem_list_entry = loop_store_mems;
3223 while (mem_list_entry)
3225 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3226 x, rtx_varies_p))
3227 return 0;
3228 mem_list_entry = XEXP (mem_list_entry, 1);
3231 /* It's not invalidated by a store in memory
3232 but we must still verify the address is invariant. */
3233 break;
3235 case ASM_OPERANDS:
3236 /* Don't mess with insns declared volatile. */
3237 if (MEM_VOLATILE_P (x))
3238 return 0;
3239 break;
3241 default:
3242 break;
3245 fmt = GET_RTX_FORMAT (code);
3246 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3248 if (fmt[i] == 'e')
3250 int tem = invariant_p (XEXP (x, i));
3251 if (tem == 0)
3252 return 0;
3253 if (tem == 2)
3254 conditional = 1;
3256 else if (fmt[i] == 'E')
3258 register int j;
3259 for (j = 0; j < XVECLEN (x, i); j++)
3261 int tem = invariant_p (XVECEXP (x, i, j));
3262 if (tem == 0)
3263 return 0;
3264 if (tem == 2)
3265 conditional = 1;
3271 return 1 + conditional;
3275 /* Return nonzero if all the insns in the loop that set REG
3276 are INSN and the immediately following insns,
3277 and if each of those insns sets REG in an invariant way
3278 (not counting uses of REG in them).
3280 The value is 2 if some of these insns are only conditionally invariant.
3282 We assume that INSN itself is the first set of REG
3283 and that its source is invariant. */
3285 static int
3286 consec_sets_invariant_p (reg, n_sets, insn)
3287 int n_sets;
3288 rtx reg, insn;
3290 register rtx p = insn;
3291 register int regno = REGNO (reg);
3292 rtx temp;
3293 /* Number of sets we have to insist on finding after INSN. */
3294 int count = n_sets - 1;
3295 int old = VARRAY_INT (set_in_loop, regno);
3296 int value = 0;
3297 int this;
3299 /* If N_SETS hit the limit, we can't rely on its value. */
3300 if (n_sets == 127)
3301 return 0;
3303 VARRAY_INT (set_in_loop, regno) = 0;
3305 while (count > 0)
3307 register enum rtx_code code;
3308 rtx set;
3310 p = NEXT_INSN (p);
3311 code = GET_CODE (p);
3313 /* If library call, skip to end of it. */
3314 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3315 p = XEXP (temp, 0);
3317 this = 0;
3318 if (code == INSN
3319 && (set = single_set (p))
3320 && GET_CODE (SET_DEST (set)) == REG
3321 && REGNO (SET_DEST (set)) == regno)
3323 this = invariant_p (SET_SRC (set));
3324 if (this != 0)
3325 value |= this;
3326 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3328 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3329 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3330 notes are OK. */
3331 this = (CONSTANT_P (XEXP (temp, 0))
3332 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3333 && invariant_p (XEXP (temp, 0))));
3334 if (this != 0)
3335 value |= this;
3338 if (this != 0)
3339 count--;
3340 else if (code != NOTE)
3342 VARRAY_INT (set_in_loop, regno) = old;
3343 return 0;
3347 VARRAY_INT (set_in_loop, regno) = old;
3348 /* If invariant_p ever returned 2, we return 2. */
3349 return 1 + (value & 2);
3352 #if 0
3353 /* I don't think this condition is sufficient to allow INSN
3354 to be moved, so we no longer test it. */
3356 /* Return 1 if all insns in the basic block of INSN and following INSN
3357 that set REG are invariant according to TABLE. */
3359 static int
3360 all_sets_invariant_p (reg, insn, table)
3361 rtx reg, insn;
3362 short *table;
3364 register rtx p = insn;
3365 register int regno = REGNO (reg);
3367 while (1)
3369 register enum rtx_code code;
3370 p = NEXT_INSN (p);
3371 code = GET_CODE (p);
3372 if (code == CODE_LABEL || code == JUMP_INSN)
3373 return 1;
3374 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3375 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3376 && REGNO (SET_DEST (PATTERN (p))) == regno)
3378 if (!invariant_p (SET_SRC (PATTERN (p)), table))
3379 return 0;
3383 #endif /* 0 */
3385 /* Look at all uses (not sets) of registers in X. For each, if it is
3386 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3387 a different insn, set USAGE[REGNO] to const0_rtx. */
3389 static void
3390 find_single_use_in_loop (insn, x, usage)
3391 rtx insn;
3392 rtx x;
3393 varray_type usage;
3395 enum rtx_code code = GET_CODE (x);
3396 char *fmt = GET_RTX_FORMAT (code);
3397 int i, j;
3399 if (code == REG)
3400 VARRAY_RTX (usage, REGNO (x))
3401 = (VARRAY_RTX (usage, REGNO (x)) != 0
3402 && VARRAY_RTX (usage, REGNO (x)) != insn)
3403 ? const0_rtx : insn;
3405 else if (code == SET)
3407 /* Don't count SET_DEST if it is a REG; otherwise count things
3408 in SET_DEST because if a register is partially modified, it won't
3409 show up as a potential movable so we don't care how USAGE is set
3410 for it. */
3411 if (GET_CODE (SET_DEST (x)) != REG)
3412 find_single_use_in_loop (insn, SET_DEST (x), usage);
3413 find_single_use_in_loop (insn, SET_SRC (x), usage);
3415 else
3416 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3418 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3419 find_single_use_in_loop (insn, XEXP (x, i), usage);
3420 else if (fmt[i] == 'E')
3421 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3422 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3426 /* Count and record any set in X which is contained in INSN. Update
3427 MAY_NOT_MOVE and LAST_SET for any register set in X. */
3429 static void
3430 count_one_set (insn, x, may_not_move, last_set)
3431 rtx insn, x;
3432 varray_type may_not_move;
3433 rtx *last_set;
3435 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3436 /* Don't move a reg that has an explicit clobber.
3437 It's not worth the pain to try to do it correctly. */
3438 VARRAY_CHAR (may_not_move, REGNO (XEXP (x, 0))) = 1;
3440 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3442 rtx dest = SET_DEST (x);
3443 while (GET_CODE (dest) == SUBREG
3444 || GET_CODE (dest) == ZERO_EXTRACT
3445 || GET_CODE (dest) == SIGN_EXTRACT
3446 || GET_CODE (dest) == STRICT_LOW_PART)
3447 dest = XEXP (dest, 0);
3448 if (GET_CODE (dest) == REG)
3450 register int regno = REGNO (dest);
3451 /* If this is the first setting of this reg
3452 in current basic block, and it was set before,
3453 it must be set in two basic blocks, so it cannot
3454 be moved out of the loop. */
3455 if (VARRAY_INT (set_in_loop, regno) > 0
3456 && last_set[regno] == 0)
3457 VARRAY_CHAR (may_not_move, regno) = 1;
3458 /* If this is not first setting in current basic block,
3459 see if reg was used in between previous one and this.
3460 If so, neither one can be moved. */
3461 if (last_set[regno] != 0
3462 && reg_used_between_p (dest, last_set[regno], insn))
3463 VARRAY_CHAR (may_not_move, regno) = 1;
3464 if (VARRAY_INT (set_in_loop, regno) < 127)
3465 ++VARRAY_INT (set_in_loop, regno);
3466 last_set[regno] = insn;
3471 /* Increment SET_IN_LOOP at the index of each register
3472 that is modified by an insn between FROM and TO.
3473 If the value of an element of SET_IN_LOOP becomes 127 or more,
3474 stop incrementing it, to avoid overflow.
3476 Store in SINGLE_USAGE[I] the single insn in which register I is
3477 used, if it is only used once. Otherwise, it is set to 0 (for no
3478 uses) or const0_rtx for more than one use. This parameter may be zero,
3479 in which case this processing is not done.
3481 Store in *COUNT_PTR the number of actual instruction
3482 in the loop. We use this to decide what is worth moving out. */
3484 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3485 In that case, it is the insn that last set reg n. */
3487 static void
3488 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3489 register rtx from, to;
3490 varray_type may_not_move;
3491 varray_type single_usage;
3492 int *count_ptr;
3493 int nregs;
3495 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3496 register rtx insn;
3497 register int count = 0;
3499 bzero ((char *) last_set, nregs * sizeof (rtx));
3500 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3502 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3504 ++count;
3506 /* Record registers that have exactly one use. */
3507 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3509 /* Include uses in REG_EQUAL notes. */
3510 if (REG_NOTES (insn))
3511 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3513 if (GET_CODE (PATTERN (insn)) == SET
3514 || GET_CODE (PATTERN (insn)) == CLOBBER)
3515 count_one_set (insn, PATTERN (insn), may_not_move, last_set);
3516 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3518 register int i;
3519 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3520 count_one_set (insn, XVECEXP (PATTERN (insn), 0, i),
3521 may_not_move, last_set);
3525 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3526 bzero ((char *) last_set, nregs * sizeof (rtx));
3528 *count_ptr = count;
3531 /* Given a loop that is bounded by LOOP_START and LOOP_END
3532 and that is entered at SCAN_START,
3533 return 1 if the register set in SET contained in insn INSN is used by
3534 any insn that precedes INSN in cyclic order starting
3535 from the loop entry point.
3537 We don't want to use INSN_LUID here because if we restrict INSN to those
3538 that have a valid INSN_LUID, it means we cannot move an invariant out
3539 from an inner loop past two loops. */
3541 static int
3542 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3543 rtx set, insn, loop_start, scan_start, loop_end;
3545 rtx reg = SET_DEST (set);
3546 rtx p;
3548 /* Scan forward checking for register usage. If we hit INSN, we
3549 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3550 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3552 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3553 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3554 return 1;
3556 if (p == loop_end)
3557 p = loop_start;
3560 return 0;
3563 /* A "basic induction variable" or biv is a pseudo reg that is set
3564 (within this loop) only by incrementing or decrementing it. */
3565 /* A "general induction variable" or giv is a pseudo reg whose
3566 value is a linear function of a biv. */
3568 /* Bivs are recognized by `basic_induction_var';
3569 Givs by `general_induction_var'. */
3571 /* Indexed by register number, indicates whether or not register is an
3572 induction variable, and if so what type. */
3574 varray_type reg_iv_type;
3576 /* Indexed by register number, contains pointer to `struct induction'
3577 if register is an induction variable. This holds general info for
3578 all induction variables. */
3580 varray_type reg_iv_info;
3582 /* Indexed by register number, contains pointer to `struct iv_class'
3583 if register is a basic induction variable. This holds info describing
3584 the class (a related group) of induction variables that the biv belongs
3585 to. */
3587 struct iv_class **reg_biv_class;
3589 /* The head of a list which links together (via the next field)
3590 every iv class for the current loop. */
3592 struct iv_class *loop_iv_list;
3594 /* Givs made from biv increments are always splittable for loop unrolling.
3595 Since there is no regscan info for them, we have to keep track of them
3596 separately. */
3597 int first_increment_giv, last_increment_giv;
3599 /* Communication with routines called via `note_stores'. */
3601 static rtx note_insn;
3603 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3605 static rtx addr_placeholder;
3607 /* ??? Unfinished optimizations, and possible future optimizations,
3608 for the strength reduction code. */
3610 /* ??? The interaction of biv elimination, and recognition of 'constant'
3611 bivs, may cause problems. */
3613 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3614 performance problems.
3616 Perhaps don't eliminate things that can be combined with an addressing
3617 mode. Find all givs that have the same biv, mult_val, and add_val;
3618 then for each giv, check to see if its only use dies in a following
3619 memory address. If so, generate a new memory address and check to see
3620 if it is valid. If it is valid, then store the modified memory address,
3621 otherwise, mark the giv as not done so that it will get its own iv. */
3623 /* ??? Could try to optimize branches when it is known that a biv is always
3624 positive. */
3626 /* ??? When replace a biv in a compare insn, we should replace with closest
3627 giv so that an optimized branch can still be recognized by the combiner,
3628 e.g. the VAX acb insn. */
3630 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3631 was rerun in loop_optimize whenever a register was added or moved.
3632 Also, some of the optimizations could be a little less conservative. */
3634 /* Perform strength reduction and induction variable elimination.
3636 Pseudo registers created during this function will be beyond the last
3637 valid index in several tables including n_times_set and regno_last_uid.
3638 This does not cause a problem here, because the added registers cannot be
3639 givs outside of their loop, and hence will never be reconsidered.
3640 But scan_loop must check regnos to make sure they are in bounds.
3642 SCAN_START is the first instruction in the loop, as the loop would
3643 actually be executed. END is the NOTE_INSN_LOOP_END. LOOP_TOP is
3644 the first instruction in the loop, as it is layed out in the
3645 instruction stream. LOOP_START is the NOTE_INSN_LOOP_BEG.
3646 LOOP_CONT is the NOTE_INSN_LOOP_CONT. */
3648 static void
3649 strength_reduce (scan_start, end, loop_top, insn_count,
3650 loop_start, loop_end, loop_cont, unroll_p, bct_p)
3651 rtx scan_start;
3652 rtx end;
3653 rtx loop_top;
3654 int insn_count;
3655 rtx loop_start;
3656 rtx loop_end;
3657 rtx loop_cont;
3658 int unroll_p, bct_p ATTRIBUTE_UNUSED;
3660 rtx p;
3661 rtx set;
3662 rtx inc_val;
3663 rtx mult_val;
3664 rtx dest_reg;
3665 rtx *location;
3666 /* This is 1 if current insn is not executed at least once for every loop
3667 iteration. */
3668 int not_every_iteration = 0;
3669 /* This is 1 if current insn may be executed more than once for every
3670 loop iteration. */
3671 int maybe_multiple = 0;
3672 /* Temporary list pointers for traversing loop_iv_list. */
3673 struct iv_class *bl, **backbl;
3674 /* Ratio of extra register life span we can justify
3675 for saving an instruction. More if loop doesn't call subroutines
3676 since in that case saving an insn makes more difference
3677 and more registers are available. */
3678 /* ??? could set this to last value of threshold in move_movables */
3679 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3680 /* Map of pseudo-register replacements. */
3681 rtx *reg_map;
3682 int reg_map_size;
3683 int call_seen;
3684 rtx test;
3685 rtx end_insert_before;
3686 int loop_depth = 0;
3687 int n_extra_increment;
3688 struct loop_info loop_iteration_info;
3689 struct loop_info *loop_info = &loop_iteration_info;
3691 /* If scan_start points to the loop exit test, we have to be wary of
3692 subversive use of gotos inside expression statements. */
3693 if (prev_nonnote_insn (scan_start) != prev_nonnote_insn (loop_start))
3694 maybe_multiple = back_branch_in_range_p (scan_start, loop_start, loop_end);
3696 VARRAY_INT_INIT (reg_iv_type, max_reg_before_loop, "reg_iv_type");
3697 VARRAY_GENERIC_PTR_INIT (reg_iv_info, max_reg_before_loop, "reg_iv_info");
3698 reg_biv_class = (struct iv_class **)
3699 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3700 bzero ((char *) reg_biv_class, (max_reg_before_loop
3701 * sizeof (struct iv_class *)));
3703 loop_iv_list = 0;
3704 addr_placeholder = gen_reg_rtx (Pmode);
3706 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3707 must be put before this insn, so that they will appear in the right
3708 order (i.e. loop order).
3710 If loop_end is the end of the current function, then emit a
3711 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3712 dummy note insn. */
3713 if (NEXT_INSN (loop_end) != 0)
3714 end_insert_before = NEXT_INSN (loop_end);
3715 else
3716 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3718 /* Scan through loop to find all possible bivs. */
3720 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
3721 p != NULL_RTX;
3722 p = next_insn_in_loop (p, scan_start, end, loop_top))
3724 if (GET_CODE (p) == INSN
3725 && (set = single_set (p))
3726 && GET_CODE (SET_DEST (set)) == REG)
3728 dest_reg = SET_DEST (set);
3729 if (REGNO (dest_reg) < max_reg_before_loop
3730 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3731 && REG_IV_TYPE (REGNO (dest_reg)) != NOT_BASIC_INDUCT)
3733 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3734 dest_reg, p, &inc_val, &mult_val,
3735 &location))
3737 /* It is a possible basic induction variable.
3738 Create and initialize an induction structure for it. */
3740 struct induction *v
3741 = (struct induction *) alloca (sizeof (struct induction));
3743 record_biv (v, p, dest_reg, inc_val, mult_val, location,
3744 not_every_iteration, maybe_multiple);
3745 REG_IV_TYPE (REGNO (dest_reg)) = BASIC_INDUCT;
3747 else if (REGNO (dest_reg) < max_reg_before_loop)
3748 REG_IV_TYPE (REGNO (dest_reg)) = NOT_BASIC_INDUCT;
3752 /* Past CODE_LABEL, we get to insns that may be executed multiple
3753 times. The only way we can be sure that they can't is if every
3754 jump insn between here and the end of the loop either
3755 returns, exits the loop, is a jump to a location that is still
3756 behind the label, or is a jump to the loop start. */
3758 if (GET_CODE (p) == CODE_LABEL)
3760 rtx insn = p;
3762 maybe_multiple = 0;
3764 while (1)
3766 insn = NEXT_INSN (insn);
3767 if (insn == scan_start)
3768 break;
3769 if (insn == end)
3771 if (loop_top != 0)
3772 insn = loop_top;
3773 else
3774 break;
3775 if (insn == scan_start)
3776 break;
3779 if (GET_CODE (insn) == JUMP_INSN
3780 && GET_CODE (PATTERN (insn)) != RETURN
3781 && (! condjump_p (insn)
3782 || (JUMP_LABEL (insn) != 0
3783 && JUMP_LABEL (insn) != scan_start
3784 && ! loop_insn_first_p (p, JUMP_LABEL (insn)))))
3786 maybe_multiple = 1;
3787 break;
3792 /* Past a jump, we get to insns for which we can't count
3793 on whether they will be executed during each iteration. */
3794 /* This code appears twice in strength_reduce. There is also similar
3795 code in scan_loop. */
3796 if (GET_CODE (p) == JUMP_INSN
3797 /* If we enter the loop in the middle, and scan around to the
3798 beginning, don't set not_every_iteration for that.
3799 This can be any kind of jump, since we want to know if insns
3800 will be executed if the loop is executed. */
3801 && ! (JUMP_LABEL (p) == loop_top
3802 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3803 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3805 rtx label = 0;
3807 /* If this is a jump outside the loop, then it also doesn't
3808 matter. Check to see if the target of this branch is on the
3809 loop_number_exits_labels list. */
3811 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3812 label;
3813 label = LABEL_NEXTREF (label))
3814 if (XEXP (label, 0) == JUMP_LABEL (p))
3815 break;
3817 if (! label)
3818 not_every_iteration = 1;
3821 else if (GET_CODE (p) == NOTE)
3823 /* At the virtual top of a converted loop, insns are again known to
3824 be executed each iteration: logically, the loop begins here
3825 even though the exit code has been duplicated.
3827 Insns are also again known to be executed each iteration at
3828 the LOOP_CONT note. */
3829 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
3830 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
3831 && loop_depth == 0)
3832 not_every_iteration = 0;
3833 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3834 loop_depth++;
3835 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3836 loop_depth--;
3839 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3840 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3841 or not an insn is known to be executed each iteration of the
3842 loop, whether or not any iterations are known to occur.
3844 Therefore, if we have just passed a label and have no more labels
3845 between here and the test insn of the loop, we know these insns
3846 will be executed each iteration. */
3848 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3849 && no_labels_between_p (p, loop_end)
3850 && loop_insn_first_p (p, loop_cont))
3851 not_every_iteration = 0;
3854 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3855 Make a sanity check against n_times_set. */
3856 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3858 if (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
3859 /* Above happens if register modified by subreg, etc. */
3860 /* Make sure it is not recognized as a basic induction var: */
3861 || VARRAY_INT (n_times_set, bl->regno) != bl->biv_count
3862 /* If never incremented, it is invariant that we decided not to
3863 move. So leave it alone. */
3864 || ! bl->incremented)
3866 if (loop_dump_stream)
3867 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3868 bl->regno,
3869 (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
3870 ? "not induction variable"
3871 : (! bl->incremented ? "never incremented"
3872 : "count error")));
3874 REG_IV_TYPE (bl->regno) = NOT_BASIC_INDUCT;
3875 *backbl = bl->next;
3877 else
3879 backbl = &bl->next;
3881 if (loop_dump_stream)
3882 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3886 /* Exit if there are no bivs. */
3887 if (! loop_iv_list)
3889 /* Can still unroll the loop anyways, but indicate that there is no
3890 strength reduction info available. */
3891 if (unroll_p)
3892 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
3893 loop_info, 0);
3895 return;
3898 /* Find initial value for each biv by searching backwards from loop_start,
3899 halting at first label. Also record any test condition. */
3901 call_seen = 0;
3902 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3904 note_insn = p;
3906 if (GET_CODE (p) == CALL_INSN)
3907 call_seen = 1;
3909 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3910 || GET_CODE (p) == CALL_INSN)
3911 note_stores (PATTERN (p), record_initial);
3913 /* Record any test of a biv that branches around the loop if no store
3914 between it and the start of loop. We only care about tests with
3915 constants and registers and only certain of those. */
3916 if (GET_CODE (p) == JUMP_INSN
3917 && JUMP_LABEL (p) != 0
3918 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3919 && (test = get_condition_for_loop (p)) != 0
3920 && GET_CODE (XEXP (test, 0)) == REG
3921 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3922 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3923 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3924 && bl->init_insn == 0)
3926 /* If an NE test, we have an initial value! */
3927 if (GET_CODE (test) == NE)
3929 bl->init_insn = p;
3930 bl->init_set = gen_rtx_SET (VOIDmode,
3931 XEXP (test, 0), XEXP (test, 1));
3933 else
3934 bl->initial_test = test;
3938 /* Look at the each biv and see if we can say anything better about its
3939 initial value from any initializing insns set up above. (This is done
3940 in two passes to avoid missing SETs in a PARALLEL.) */
3941 for (backbl = &loop_iv_list; (bl = *backbl); backbl = &bl->next)
3943 rtx src;
3944 rtx note;
3946 if (! bl->init_insn)
3947 continue;
3949 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
3950 is a constant, use the value of that. */
3951 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
3952 && CONSTANT_P (XEXP (note, 0)))
3953 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
3954 && CONSTANT_P (XEXP (note, 0))))
3955 src = XEXP (note, 0);
3956 else
3957 src = SET_SRC (bl->init_set);
3959 if (loop_dump_stream)
3960 fprintf (loop_dump_stream,
3961 "Biv %d initialized at insn %d: initial value ",
3962 bl->regno, INSN_UID (bl->init_insn));
3964 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3965 || GET_MODE (src) == VOIDmode)
3966 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3968 bl->initial_value = src;
3970 if (loop_dump_stream)
3972 if (GET_CODE (src) == CONST_INT)
3974 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (src));
3975 fputc ('\n', loop_dump_stream);
3977 else
3979 print_rtl (loop_dump_stream, src);
3980 fprintf (loop_dump_stream, "\n");
3984 else
3986 struct iv_class *bl2 = 0;
3987 rtx increment;
3989 /* Biv initial value is not a simple move. If it is the sum of
3990 another biv and a constant, check if both bivs are incremented
3991 in lockstep. Then we are actually looking at a giv.
3992 For simplicity, we only handle the case where there is but a
3993 single increment, and the register is not used elsewhere. */
3994 if (bl->biv_count == 1
3995 && bl->regno < max_reg_before_loop
3996 && uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
3997 && GET_CODE (src) == PLUS
3998 && GET_CODE (XEXP (src, 0)) == REG
3999 && CONSTANT_P (XEXP (src, 1))
4000 && ((increment = biv_total_increment (bl, loop_start, loop_end))
4001 != NULL_RTX))
4003 int regno = REGNO (XEXP (src, 0));
4005 for (bl2 = loop_iv_list; bl2; bl2 = bl2->next)
4006 if (bl2->regno == regno)
4007 break;
4010 /* Now, can we transform this biv into a giv? */
4011 if (bl2
4012 && bl2->biv_count == 1
4013 && rtx_equal_p (increment,
4014 biv_total_increment (bl2, loop_start, loop_end))
4015 /* init_insn is only set to insns that are before loop_start
4016 without any intervening labels. */
4017 && ! reg_set_between_p (bl2->biv->src_reg,
4018 PREV_INSN (bl->init_insn), loop_start)
4019 /* The register from BL2 must be set before the register from
4020 BL is set, or we must be able to move the latter set after
4021 the former set. Currently there can't be any labels
4022 in-between when biv_toal_increment returns nonzero both times
4023 but we test it here in case some day some real cfg analysis
4024 gets used to set always_computable. */
4025 && ((loop_insn_first_p (bl2->biv->insn, bl->biv->insn)
4026 && no_labels_between_p (bl2->biv->insn, bl->biv->insn))
4027 || (! reg_used_between_p (bl->biv->src_reg, bl->biv->insn,
4028 bl2->biv->insn)
4029 && no_jumps_between_p (bl->biv->insn, bl2->biv->insn)))
4030 && validate_change (bl->biv->insn,
4031 &SET_SRC (single_set (bl->biv->insn)),
4032 copy_rtx (src), 0))
4034 int loop_num = uid_loop_num[INSN_UID (loop_start)];
4035 rtx dominator = loop_number_cont_dominator[loop_num];
4036 rtx giv = bl->biv->src_reg;
4037 rtx giv_insn = bl->biv->insn;
4038 rtx after_giv = NEXT_INSN (giv_insn);
4040 if (loop_dump_stream)
4041 fprintf (loop_dump_stream, "is giv of biv %d\n", bl2->regno);
4042 /* Let this giv be discovered by the generic code. */
4043 REG_IV_TYPE (bl->regno) = UNKNOWN_INDUCT;
4044 /* We can get better optimization if we can move the giv setting
4045 before the first giv use. */
4046 if (dominator
4047 && ! loop_insn_first_p (dominator, scan_start)
4048 && ! reg_set_between_p (bl2->biv->src_reg, loop_start,
4049 dominator)
4050 && ! reg_used_between_p (giv, loop_start, dominator)
4051 && ! reg_used_between_p (giv, giv_insn, loop_end))
4053 rtx p;
4054 rtx next;
4056 for (next = NEXT_INSN (dominator); ; next = NEXT_INSN (next))
4058 if ((GET_RTX_CLASS (GET_CODE (next)) == 'i'
4059 && (reg_mentioned_p (giv, PATTERN (next))
4060 || reg_set_p (bl2->biv->src_reg, next)))
4061 || GET_CODE (next) == JUMP_INSN)
4062 break;
4063 #ifdef HAVE_cc0
4064 if (GET_RTX_CLASS (GET_CODE (next)) != 'i'
4065 || ! sets_cc0_p (PATTERN (next)))
4066 #endif
4067 dominator = next;
4069 if (loop_dump_stream)
4070 fprintf (loop_dump_stream, "move after insn %d\n",
4071 INSN_UID (dominator));
4072 /* Avoid problems with luids by actually moving the insn
4073 and adjusting all luids in the range. */
4074 reorder_insns (giv_insn, giv_insn, dominator);
4075 for (p = dominator; INSN_UID (p) >= max_uid_for_loop; )
4076 p = PREV_INSN (p);
4077 compute_luids (giv_insn, after_giv, INSN_LUID (p));
4078 /* If the only purpose of the init insn is to initialize
4079 this giv, delete it. */
4080 if (single_set (bl->init_insn)
4081 && ! reg_used_between_p (giv, bl->init_insn, loop_start))
4082 delete_insn (bl->init_insn);
4084 else if (! loop_insn_first_p (bl2->biv->insn, bl->biv->insn))
4086 rtx p = PREV_INSN (giv_insn);
4087 while (INSN_UID (p) >= max_uid_for_loop)
4088 p = PREV_INSN (p);
4089 reorder_insns (giv_insn, giv_insn, bl2->biv->insn);
4090 compute_luids (after_giv, NEXT_INSN (giv_insn),
4091 INSN_LUID (p));
4093 /* Remove this biv from the chain. */
4094 if (bl->next)
4095 *bl = *bl->next;
4096 else
4098 *backbl = 0;
4099 break;
4103 /* If we can't make it a giv,
4104 let biv keep initial value of "itself". */
4105 else if (loop_dump_stream)
4106 fprintf (loop_dump_stream, "is complex\n");
4110 /* If a biv is unconditionally incremented several times in a row, convert
4111 all but the last increment into a giv. */
4113 /* Get an upper bound for the number of registers
4114 we might have after all bivs have been processed. */
4115 first_increment_giv = max_reg_num ();
4116 for (n_extra_increment = 0, bl = loop_iv_list; bl; bl = bl->next)
4117 n_extra_increment += bl->biv_count - 1;
4119 /* If the loop contains volatile memory references do not allow any
4120 replacements to take place, since this could loose the volatile markers. */
4121 /* XXX Temporary. */
4122 if (0 && n_extra_increment && ! loop_has_volatile)
4124 int nregs = first_increment_giv + n_extra_increment;
4126 /* Reallocate reg_iv_type and reg_iv_info. */
4127 VARRAY_GROW (reg_iv_type, nregs);
4128 VARRAY_GROW (reg_iv_info, nregs);
4130 for (bl = loop_iv_list; bl; bl = bl->next)
4132 struct induction **vp, *v, *next;
4133 int biv_dead_after_loop = 0;
4135 /* The biv increments lists are in reverse order. Fix this first. */
4136 for (v = bl->biv, bl->biv = 0; v; v = next)
4138 next = v->next_iv;
4139 v->next_iv = bl->biv;
4140 bl->biv = v;
4143 /* We must guard against the case that an early exit between v->insn
4144 and next->insn leaves the biv live after the loop, since that
4145 would mean that we'd be missing an increment for the final
4146 value. The following test to set biv_dead_after_loop is like
4147 the first part of the test to set bl->eliminable.
4148 We don't check here if we can calculate the final value, since
4149 this can't succeed if we already know that there is a jump
4150 between v->insn and next->insn, yet next->always_executed is
4151 set and next->maybe_multiple is cleared. Such a combination
4152 implies that the jump destination is outside the loop.
4153 If we want to make this check more sophisticated, we should
4154 check each branch between v->insn and next->insn individually
4155 to see if the biv is dead at its destination. */
4157 if (uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4158 && bl->init_insn
4159 && INSN_UID (bl->init_insn) < max_uid_for_loop
4160 && (uid_luid[REGNO_FIRST_UID (bl->regno)]
4161 >= INSN_LUID (bl->init_insn))
4162 #ifdef HAVE_decrement_and_branch_until_zero
4163 && ! bl->nonneg
4164 #endif
4165 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4166 biv_dead_after_loop = 1;
4168 for (vp = &bl->biv, next = *vp; v = next, next = v->next_iv;)
4170 HOST_WIDE_INT offset;
4171 rtx set, add_val, old_reg, dest_reg, last_use_insn;
4172 int old_regno, new_regno;
4174 if (! v->always_executed
4175 || v->maybe_multiple
4176 || GET_CODE (v->add_val) != CONST_INT
4177 || ! next->always_executed
4178 || next->maybe_multiple
4179 || ! CONSTANT_P (next->add_val)
4180 || ! (biv_dead_after_loop
4181 || no_jumps_between_p (v->insn, next->insn)))
4183 vp = &v->next_iv;
4184 continue;
4186 offset = INTVAL (v->add_val);
4187 set = single_set (v->insn);
4188 add_val = plus_constant (next->add_val, offset);
4189 old_reg = v->dest_reg;
4190 dest_reg = gen_reg_rtx (v->mode);
4192 /* Unlike reg_iv_type / reg_iv_info, the other three arrays
4193 have been allocated with some slop space, so we may not
4194 actually need to reallocate them. If we do, the following
4195 if statement will be executed just once in this loop. */
4196 if ((unsigned) max_reg_num () > n_times_set->num_elements)
4198 /* Grow all the remaining arrays. */
4199 VARRAY_GROW (set_in_loop, nregs);
4200 VARRAY_GROW (n_times_set, nregs);
4201 VARRAY_GROW (may_not_optimize, nregs);
4204 if (! validate_change (next->insn, next->location, add_val, 0))
4206 vp = &v->next_iv;
4207 continue;
4210 /* Here we can try to eliminate the increment by combining
4211 it into the uses. */
4213 /* Set last_use_insn so that we can check against it. */
4215 for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
4216 p != next->insn;
4217 p = next_insn_in_loop (p, scan_start, end, loop_top))
4219 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
4220 continue;
4221 if (reg_mentioned_p (old_reg, PATTERN (p)))
4223 last_use_insn = p;
4227 /* If we can't get the LUIDs for the insns, we can't
4228 calculate the lifetime. This is likely from unrolling
4229 of an inner loop, so there is little point in making this
4230 a DEST_REG giv anyways. */
4231 if (INSN_UID (v->insn) >= max_uid_for_loop
4232 || INSN_UID (last_use_insn) >= max_uid_for_loop
4233 || ! validate_change (v->insn, &SET_DEST (set), dest_reg, 0))
4235 /* Change the increment at NEXT back to what it was. */
4236 if (! validate_change (next->insn, next->location,
4237 next->add_val, 0))
4238 abort ();
4239 vp = &v->next_iv;
4240 continue;
4242 next->add_val = add_val;
4243 v->dest_reg = dest_reg;
4244 v->giv_type = DEST_REG;
4245 v->location = &SET_SRC (set);
4246 v->cant_derive = 0;
4247 v->combined_with = 0;
4248 v->maybe_dead = 0;
4249 v->derive_adjustment = 0;
4250 v->same = 0;
4251 v->ignore = 0;
4252 v->new_reg = 0;
4253 v->final_value = 0;
4254 v->same_insn = 0;
4255 v->auto_inc_opt = 0;
4256 v->unrolled = 0;
4257 v->shared = 0;
4258 v->derived_from = 0;
4259 v->always_computable = 1;
4260 v->always_executed = 1;
4261 v->replaceable = 1;
4262 v->no_const_addval = 0;
4264 old_regno = REGNO (old_reg);
4265 new_regno = REGNO (dest_reg);
4266 VARRAY_INT (set_in_loop, old_regno)--;
4267 VARRAY_INT (set_in_loop, new_regno) = 1;
4268 VARRAY_INT (n_times_set, old_regno)--;
4269 VARRAY_INT (n_times_set, new_regno) = 1;
4270 VARRAY_CHAR (may_not_optimize, new_regno) = 0;
4272 REG_IV_TYPE (new_regno) = GENERAL_INDUCT;
4273 REG_IV_INFO (new_regno) = v;
4275 /* Remove the increment from the list of biv increments,
4276 and record it as a giv. */
4277 *vp = next;
4278 bl->biv_count--;
4279 v->next_iv = bl->giv;
4280 bl->giv = v;
4281 bl->giv_count++;
4282 v->benefit = rtx_cost (SET_SRC (set), SET);
4283 bl->total_benefit += v->benefit;
4285 /* Now replace the biv with DEST_REG in all insns between
4286 the replaced increment and the next increment, and
4287 remember the last insn that needed a replacement. */
4288 for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
4289 p != next->insn;
4290 p = next_insn_in_loop (p, scan_start, end, loop_top))
4292 rtx note;
4294 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
4295 continue;
4296 if (reg_mentioned_p (old_reg, PATTERN (p)))
4298 last_use_insn = p;
4299 if (! validate_replace_rtx (old_reg, dest_reg, p))
4300 abort ();
4302 for (note = REG_NOTES (p); note; note = XEXP (note, 1))
4304 if (GET_CODE (note) == EXPR_LIST)
4305 XEXP (note, 0)
4306 = replace_rtx (XEXP (note, 0), old_reg, dest_reg);
4310 v->last_use = last_use_insn;
4311 v->lifetime = INSN_LUID (v->insn) - INSN_LUID (last_use_insn);
4312 /* If the lifetime is zero, it means that this register is really
4313 a dead store. So mark this as a giv that can be ignored.
4314 This will not prevent the biv from being eliminated. */
4315 if (v->lifetime == 0)
4316 v->ignore = 1;
4318 if (loop_dump_stream)
4319 fprintf (loop_dump_stream,
4320 "Increment %d of biv %d converted to giv %d.\n\n",
4321 INSN_UID (v->insn), old_regno, new_regno);
4325 last_increment_giv = max_reg_num () - 1;
4327 /* Search the loop for general induction variables. */
4329 /* A register is a giv if: it is only set once, it is a function of a
4330 biv and a constant (or invariant), and it is not a biv. */
4332 not_every_iteration = 0;
4333 loop_depth = 0;
4334 p = scan_start;
4335 while (1)
4337 p = NEXT_INSN (p);
4338 /* At end of a straight-in loop, we are done.
4339 At end of a loop entered at the bottom, scan the top. */
4340 if (p == scan_start)
4341 break;
4342 if (p == end)
4344 if (loop_top != 0)
4345 p = loop_top;
4346 else
4347 break;
4348 if (p == scan_start)
4349 break;
4352 /* Look for a general induction variable in a register. */
4353 if (GET_CODE (p) == INSN
4354 && (set = single_set (p))
4355 && GET_CODE (SET_DEST (set)) == REG
4356 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
4358 rtx src_reg;
4359 rtx add_val;
4360 rtx mult_val;
4361 int benefit;
4362 rtx regnote = 0;
4363 rtx last_consec_insn;
4365 dest_reg = SET_DEST (set);
4366 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
4367 continue;
4369 if (/* SET_SRC is a giv. */
4370 (general_induction_var (SET_SRC (set), &src_reg, &add_val,
4371 &mult_val, 0, &benefit)
4372 /* Equivalent expression is a giv. */
4373 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
4374 && general_induction_var (XEXP (regnote, 0), &src_reg,
4375 &add_val, &mult_val, 0,
4376 &benefit)))
4377 /* Don't try to handle any regs made by loop optimization.
4378 We have nothing on them in regno_first_uid, etc. */
4379 && REGNO (dest_reg) < max_reg_before_loop
4380 /* Don't recognize a BASIC_INDUCT_VAR here. */
4381 && dest_reg != src_reg
4382 /* This must be the only place where the register is set. */
4383 && (VARRAY_INT (n_times_set, REGNO (dest_reg)) == 1
4384 /* or all sets must be consecutive and make a giv. */
4385 || (benefit = consec_sets_giv (benefit, p,
4386 src_reg, dest_reg,
4387 &add_val, &mult_val,
4388 &last_consec_insn))))
4390 struct induction *v
4391 = (struct induction *) alloca (sizeof (struct induction));
4393 /* If this is a library call, increase benefit. */
4394 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
4395 benefit += libcall_benefit (p);
4397 /* Skip the consecutive insns, if there are any. */
4398 if (VARRAY_INT (n_times_set, REGNO (dest_reg)) != 1)
4399 p = last_consec_insn;
4401 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
4402 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
4403 loop_end);
4408 #ifndef DONT_REDUCE_ADDR
4409 /* Look for givs which are memory addresses. */
4410 /* This resulted in worse code on a VAX 8600. I wonder if it
4411 still does. */
4412 if (GET_CODE (p) == INSN)
4413 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
4414 loop_end);
4415 #endif
4417 /* Update the status of whether giv can derive other givs. This can
4418 change when we pass a label or an insn that updates a biv. */
4419 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4420 || GET_CODE (p) == CODE_LABEL)
4421 update_giv_derive (p);
4423 /* Past a jump, we get to insns for which we can't count
4424 on whether they will be executed during each iteration. */
4425 /* This code appears twice in strength_reduce. There is also similar
4426 code in scan_loop. */
4427 if (GET_CODE (p) == JUMP_INSN
4428 /* If we enter the loop in the middle, and scan around to the
4429 beginning, don't set not_every_iteration for that.
4430 This can be any kind of jump, since we want to know if insns
4431 will be executed if the loop is executed. */
4432 && ! (JUMP_LABEL (p) == loop_top
4433 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
4434 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
4436 rtx label = 0;
4438 /* If this is a jump outside the loop, then it also doesn't
4439 matter. Check to see if the target of this branch is on the
4440 loop_number_exits_labels list. */
4442 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
4443 label;
4444 label = LABEL_NEXTREF (label))
4445 if (XEXP (label, 0) == JUMP_LABEL (p))
4446 break;
4448 if (! label)
4449 not_every_iteration = 1;
4452 else if (GET_CODE (p) == NOTE)
4454 /* At the virtual top of a converted loop, insns are again known to
4455 be executed each iteration: logically, the loop begins here
4456 even though the exit code has been duplicated.
4458 Insns are also again known to be executed each iteration at
4459 the LOOP_CONT note. */
4460 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
4461 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
4462 && loop_depth == 0)
4463 not_every_iteration = 0;
4464 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
4465 loop_depth++;
4466 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
4467 loop_depth--;
4470 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4471 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4472 or not an insn is known to be executed each iteration of the
4473 loop, whether or not any iterations are known to occur.
4475 Therefore, if we have just passed a label and have no more labels
4476 between here and the test insn of the loop, we know these insns
4477 will be executed each iteration. */
4479 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
4480 && no_labels_between_p (p, loop_end)
4481 && loop_insn_first_p (p, loop_cont))
4482 not_every_iteration = 0;
4485 /* Try to calculate and save the number of loop iterations. This is
4486 set to zero if the actual number can not be calculated. This must
4487 be called after all giv's have been identified, since otherwise it may
4488 fail if the iteration variable is a giv. */
4490 loop_iterations (loop_start, loop_end, loop_info);
4492 /* Now for each giv for which we still don't know whether or not it is
4493 replaceable, check to see if it is replaceable because its final value
4494 can be calculated. This must be done after loop_iterations is called,
4495 so that final_giv_value will work correctly. */
4497 for (bl = loop_iv_list; bl; bl = bl->next)
4499 struct induction *v;
4501 for (v = bl->giv; v; v = v->next_iv)
4502 if (! v->replaceable && ! v->not_replaceable)
4503 check_final_value (v, loop_start, loop_end, loop_info->n_iterations);
4506 /* Try to prove that the loop counter variable (if any) is always
4507 nonnegative; if so, record that fact with a REG_NONNEG note
4508 so that "decrement and branch until zero" insn can be used. */
4509 check_dbra_loop (loop_end, insn_count, loop_start, loop_info);
4511 /* Create reg_map to hold substitutions for replaceable giv regs.
4512 Some givs might have been made from biv increments, so look at
4513 reg_iv_type for a suitable size. */
4514 reg_map_size = reg_iv_type->num_elements;
4515 reg_map = (rtx *) alloca (reg_map_size * sizeof (rtx));
4516 bzero ((char *) reg_map, reg_map_size * sizeof (rtx));
4518 /* Examine each iv class for feasibility of strength reduction/induction
4519 variable elimination. */
4521 for (bl = loop_iv_list; bl; bl = bl->next)
4523 struct induction *v;
4524 int benefit;
4525 int all_reduced;
4526 rtx final_value = 0;
4527 unsigned nregs;
4529 /* Test whether it will be possible to eliminate this biv
4530 provided all givs are reduced. This is possible if either
4531 the reg is not used outside the loop, or we can compute
4532 what its final value will be.
4534 For architectures with a decrement_and_branch_until_zero insn,
4535 don't do this if we put a REG_NONNEG note on the endtest for
4536 this biv. */
4538 /* Compare against bl->init_insn rather than loop_start.
4539 We aren't concerned with any uses of the biv between
4540 init_insn and loop_start since these won't be affected
4541 by the value of the biv elsewhere in the function, so
4542 long as init_insn doesn't use the biv itself.
4543 March 14, 1989 -- self@bayes.arc.nasa.gov */
4545 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4546 && bl->init_insn
4547 && INSN_UID (bl->init_insn) < max_uid_for_loop
4548 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
4549 #ifdef HAVE_decrement_and_branch_until_zero
4550 && ! bl->nonneg
4551 #endif
4552 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4553 || ((final_value = final_biv_value (bl, loop_start, loop_end,
4554 loop_info->n_iterations))
4555 #ifdef HAVE_decrement_and_branch_until_zero
4556 && ! bl->nonneg
4557 #endif
4559 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
4560 threshold, insn_count);
4561 else
4563 if (loop_dump_stream)
4565 fprintf (loop_dump_stream,
4566 "Cannot eliminate biv %d.\n",
4567 bl->regno);
4568 fprintf (loop_dump_stream,
4569 "First use: insn %d, last use: insn %d.\n",
4570 REGNO_FIRST_UID (bl->regno),
4571 REGNO_LAST_UID (bl->regno));
4575 /* Combine all giv's for this iv_class. */
4576 combine_givs (bl);
4578 /* This will be true at the end, if all givs which depend on this
4579 biv have been strength reduced.
4580 We can't (currently) eliminate the biv unless this is so. */
4581 all_reduced = 1;
4583 /* Check each giv in this class to see if we will benefit by reducing
4584 it. Skip giv's combined with others. */
4585 for (v = bl->giv; v; v = v->next_iv)
4587 struct induction *tv;
4589 if (v->ignore || v->same)
4590 continue;
4592 benefit = v->benefit;
4594 /* Reduce benefit if not replaceable, since we will insert
4595 a move-insn to replace the insn that calculates this giv.
4596 Don't do this unless the giv is a user variable, since it
4597 will often be marked non-replaceable because of the duplication
4598 of the exit code outside the loop. In such a case, the copies
4599 we insert are dead and will be deleted. So they don't have
4600 a cost. Similar situations exist. */
4601 /* ??? The new final_[bg]iv_value code does a much better job
4602 of finding replaceable giv's, and hence this code may no longer
4603 be necessary. */
4604 if (! v->replaceable && ! bl->eliminable
4605 && REG_USERVAR_P (v->dest_reg))
4606 benefit -= copy_cost;
4608 /* Decrease the benefit to count the add-insns that we will
4609 insert to increment the reduced reg for the giv. */
4610 benefit -= add_cost * bl->biv_count;
4612 /* Decide whether to strength-reduce this giv or to leave the code
4613 unchanged (recompute it from the biv each time it is used).
4614 This decision can be made independently for each giv. */
4616 #ifdef AUTO_INC_DEC
4617 /* Attempt to guess whether autoincrement will handle some of the
4618 new add insns; if so, increase BENEFIT (undo the subtraction of
4619 add_cost that was done above). */
4620 if (v->giv_type == DEST_ADDR
4621 && GET_CODE (v->mult_val) == CONST_INT)
4623 if (HAVE_POST_INCREMENT
4624 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4625 benefit += add_cost * bl->biv_count;
4626 else if (HAVE_PRE_INCREMENT
4627 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4628 benefit += add_cost * bl->biv_count;
4629 else if (HAVE_POST_DECREMENT
4630 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4631 benefit += add_cost * bl->biv_count;
4632 else if (HAVE_PRE_DECREMENT
4633 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4634 benefit += add_cost * bl->biv_count;
4636 #endif
4638 /* If an insn is not to be strength reduced, then set its ignore
4639 flag, and clear all_reduced. */
4641 /* A giv that depends on a reversed biv must be reduced if it is
4642 used after the loop exit, otherwise, it would have the wrong
4643 value after the loop exit. To make it simple, just reduce all
4644 of such giv's whether or not we know they are used after the loop
4645 exit. */
4647 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
4648 && ! bl->reversed )
4650 if (loop_dump_stream)
4651 fprintf (loop_dump_stream,
4652 "giv of insn %d not worth while, %d vs %d.\n",
4653 INSN_UID (v->insn),
4654 v->lifetime * threshold * benefit, insn_count);
4655 v->ignore = 1;
4656 all_reduced = 0;
4658 else
4660 /* Check that we can increment the reduced giv without a
4661 multiply insn. If not, reject it. */
4663 for (tv = bl->biv; tv; tv = tv->next_iv)
4664 if (tv->mult_val == const1_rtx
4665 && ! product_cheap_p (tv->add_val, v->mult_val))
4667 if (loop_dump_stream)
4668 fprintf (loop_dump_stream,
4669 "giv of insn %d: would need a multiply.\n",
4670 INSN_UID (v->insn));
4671 v->ignore = 1;
4672 all_reduced = 0;
4673 break;
4678 /* Check for givs whose first use is their definition and whose
4679 last use is the definition of another giv. If so, it is likely
4680 dead and should not be used to derive another giv nor to
4681 eliminate a biv. */
4682 for (v = bl->giv; v; v = v->next_iv)
4684 if (v->ignore
4685 || (v->same && v->same->ignore))
4686 continue;
4688 if (v->last_use)
4690 struct induction *v1;
4692 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4693 if (v->last_use == v1->insn)
4694 v->maybe_dead = 1;
4696 else if (v->giv_type == DEST_REG
4697 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4699 struct induction *v1;
4701 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4702 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4703 v->maybe_dead = 1;
4707 #if 0
4708 /* XXX Temporary. */
4709 /* Now that we know which givs will be reduced, try to rearrange the
4710 combinations to reduce register pressure.
4711 recombine_givs calls find_life_end, which needs reg_iv_type and
4712 reg_iv_info to be valid for all pseudos. We do the necessary
4713 reallocation here since it allows to check if there are still
4714 more bivs to process. */
4715 nregs = max_reg_num ();
4716 if (nregs > reg_iv_type->num_elements)
4718 /* If there are still more bivs to process, allocate some slack
4719 space so that we're not constantly reallocating these arrays. */
4720 if (bl->next)
4721 nregs += nregs / 4;
4722 /* Reallocate reg_iv_type and reg_iv_info. */
4723 VARRAY_GROW (reg_iv_type, nregs);
4724 VARRAY_GROW (reg_iv_info, nregs);
4726 recombine_givs (bl, loop_start, loop_end, unroll_p);
4727 #endif
4729 /* Reduce each giv that we decided to reduce. */
4731 for (v = bl->giv; v; v = v->next_iv)
4733 struct induction *tv;
4734 if (! v->ignore && v->same == 0)
4736 int auto_inc_opt = 0;
4738 /* If the code for derived givs immediately below has already
4739 allocated a new_reg, we must keep it. */
4740 if (! v->new_reg)
4741 v->new_reg = gen_reg_rtx (v->mode);
4743 if (v->derived_from)
4745 struct induction *d = v->derived_from;
4747 /* In case d->dest_reg is not replaceable, we have
4748 to replace it in v->insn now. */
4749 if (! d->new_reg)
4750 d->new_reg = gen_reg_rtx (d->mode);
4751 PATTERN (v->insn)
4752 = replace_rtx (PATTERN (v->insn), d->dest_reg, d->new_reg);
4753 PATTERN (v->insn)
4754 = replace_rtx (PATTERN (v->insn), v->dest_reg, v->new_reg);
4755 if (bl->biv_count != 1)
4757 /* For each place where the biv is incremented, add an
4758 insn to set the new, reduced reg for the giv. */
4759 for (tv = bl->biv; tv; tv = tv->next_iv)
4761 /* We always emit reduced giv increments before the
4762 biv increment when bl->biv_count != 1. So by
4763 emitting the add insns for derived givs after the
4764 biv increment, they pick up the updated value of
4765 the reduced giv. */
4766 emit_insn_after (copy_rtx (PATTERN (v->insn)),
4767 tv->insn);
4771 continue;
4774 #ifdef AUTO_INC_DEC
4775 /* If the target has auto-increment addressing modes, and
4776 this is an address giv, then try to put the increment
4777 immediately after its use, so that flow can create an
4778 auto-increment addressing mode. */
4779 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4780 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4781 /* We don't handle reversed biv's because bl->biv->insn
4782 does not have a valid INSN_LUID. */
4783 && ! bl->reversed
4784 && v->always_executed && ! v->maybe_multiple
4785 && INSN_UID (v->insn) < max_uid_for_loop)
4787 /* If other giv's have been combined with this one, then
4788 this will work only if all uses of the other giv's occur
4789 before this giv's insn. This is difficult to check.
4791 We simplify this by looking for the common case where
4792 there is one DEST_REG giv, and this giv's insn is the
4793 last use of the dest_reg of that DEST_REG giv. If the
4794 increment occurs after the address giv, then we can
4795 perform the optimization. (Otherwise, the increment
4796 would have to go before other_giv, and we would not be
4797 able to combine it with the address giv to get an
4798 auto-inc address.) */
4799 if (v->combined_with)
4801 struct induction *other_giv = 0;
4803 for (tv = bl->giv; tv; tv = tv->next_iv)
4804 if (tv->same == v)
4806 if (other_giv)
4807 break;
4808 else
4809 other_giv = tv;
4811 if (! tv && other_giv
4812 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4813 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4814 == INSN_UID (v->insn))
4815 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4816 auto_inc_opt = 1;
4818 /* Check for case where increment is before the address
4819 giv. Do this test in "loop order". */
4820 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4821 && (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4822 || (INSN_LUID (bl->biv->insn)
4823 > INSN_LUID (scan_start))))
4824 || (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4825 && (INSN_LUID (scan_start)
4826 < INSN_LUID (bl->biv->insn))))
4827 auto_inc_opt = -1;
4828 else
4829 auto_inc_opt = 1;
4831 #ifdef HAVE_cc0
4833 rtx prev;
4835 /* We can't put an insn immediately after one setting
4836 cc0, or immediately before one using cc0. */
4837 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4838 || (auto_inc_opt == -1
4839 && (prev = prev_nonnote_insn (v->insn)) != 0
4840 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4841 && sets_cc0_p (PATTERN (prev))))
4842 auto_inc_opt = 0;
4844 #endif
4846 if (auto_inc_opt)
4847 v->auto_inc_opt = 1;
4849 #endif
4851 /* For each place where the biv is incremented, add an insn
4852 to increment the new, reduced reg for the giv. */
4853 for (tv = bl->biv; tv; tv = tv->next_iv)
4855 rtx insert_before;
4857 if (! auto_inc_opt)
4858 insert_before = tv->insn;
4859 else if (auto_inc_opt == 1)
4860 insert_before = NEXT_INSN (v->insn);
4861 else
4862 insert_before = v->insn;
4864 if (tv->mult_val == const1_rtx)
4865 emit_iv_add_mult (tv->add_val, v->mult_val,
4866 v->new_reg, v->new_reg, insert_before);
4867 else /* tv->mult_val == const0_rtx */
4868 /* A multiply is acceptable here
4869 since this is presumed to be seldom executed. */
4870 emit_iv_add_mult (tv->add_val, v->mult_val,
4871 v->add_val, v->new_reg, insert_before);
4874 /* Add code at loop start to initialize giv's reduced reg. */
4876 emit_iv_add_mult (bl->initial_value, v->mult_val,
4877 v->add_val, v->new_reg, loop_start);
4881 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4882 as not reduced.
4884 For each giv register that can be reduced now: if replaceable,
4885 substitute reduced reg wherever the old giv occurs;
4886 else add new move insn "giv_reg = reduced_reg". */
4888 for (v = bl->giv; v; v = v->next_iv)
4890 if (v->same && v->same->ignore)
4891 v->ignore = 1;
4893 if (v->ignore)
4894 continue;
4896 /* Update expression if this was combined, in case other giv was
4897 replaced. */
4898 if (v->same)
4899 v->new_reg = replace_rtx (v->new_reg,
4900 v->same->dest_reg, v->same->new_reg);
4902 if (v->giv_type == DEST_ADDR)
4903 /* Store reduced reg as the address in the memref where we found
4904 this giv. */
4905 validate_change (v->insn, v->location, v->new_reg, 0);
4906 else if (v->replaceable)
4908 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4910 #if 0
4911 /* I can no longer duplicate the original problem. Perhaps
4912 this is unnecessary now? */
4914 /* Replaceable; it isn't strictly necessary to delete the old
4915 insn and emit a new one, because v->dest_reg is now dead.
4917 However, especially when unrolling loops, the special
4918 handling for (set REG0 REG1) in the second cse pass may
4919 make v->dest_reg live again. To avoid this problem, emit
4920 an insn to set the original giv reg from the reduced giv.
4921 We can not delete the original insn, since it may be part
4922 of a LIBCALL, and the code in flow that eliminates dead
4923 libcalls will fail if it is deleted. */
4924 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4925 v->insn);
4926 #endif
4928 else
4930 /* Not replaceable; emit an insn to set the original giv reg from
4931 the reduced giv, same as above. */
4932 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4933 v->insn);
4936 /* When a loop is reversed, givs which depend on the reversed
4937 biv, and which are live outside the loop, must be set to their
4938 correct final value. This insn is only needed if the giv is
4939 not replaceable. The correct final value is the same as the
4940 value that the giv starts the reversed loop with. */
4941 if (bl->reversed && ! v->replaceable)
4942 emit_iv_add_mult (bl->initial_value, v->mult_val,
4943 v->add_val, v->dest_reg, end_insert_before);
4944 else if (v->final_value)
4946 rtx insert_before;
4948 /* If the loop has multiple exits, emit the insn before the
4949 loop to ensure that it will always be executed no matter
4950 how the loop exits. Otherwise, emit the insn after the loop,
4951 since this is slightly more efficient. */
4952 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4953 insert_before = loop_start;
4954 else
4955 insert_before = end_insert_before;
4956 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4957 insert_before);
4959 #if 0
4960 /* If the insn to set the final value of the giv was emitted
4961 before the loop, then we must delete the insn inside the loop
4962 that sets it. If this is a LIBCALL, then we must delete
4963 every insn in the libcall. Note, however, that
4964 final_giv_value will only succeed when there are multiple
4965 exits if the giv is dead at each exit, hence it does not
4966 matter that the original insn remains because it is dead
4967 anyways. */
4968 /* Delete the insn inside the loop that sets the giv since
4969 the giv is now set before (or after) the loop. */
4970 delete_insn (v->insn);
4971 #endif
4974 if (loop_dump_stream)
4976 fprintf (loop_dump_stream, "giv at %d reduced to ",
4977 INSN_UID (v->insn));
4978 print_rtl (loop_dump_stream, v->new_reg);
4979 fprintf (loop_dump_stream, "\n");
4983 /* All the givs based on the biv bl have been reduced if they
4984 merit it. */
4986 /* For each giv not marked as maybe dead that has been combined with a
4987 second giv, clear any "maybe dead" mark on that second giv.
4988 v->new_reg will either be or refer to the register of the giv it
4989 combined with.
4991 Doing this clearing avoids problems in biv elimination where a
4992 giv's new_reg is a complex value that can't be put in the insn but
4993 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4994 Since the register will be used in either case, we'd prefer it be
4995 used from the simpler giv. */
4997 for (v = bl->giv; v; v = v->next_iv)
4998 if (! v->maybe_dead && v->same)
4999 v->same->maybe_dead = 0;
5001 /* Try to eliminate the biv, if it is a candidate.
5002 This won't work if ! all_reduced,
5003 since the givs we planned to use might not have been reduced.
5005 We have to be careful that we didn't initially think we could eliminate
5006 this biv because of a giv that we now think may be dead and shouldn't
5007 be used as a biv replacement.
5009 Also, there is the possibility that we may have a giv that looks
5010 like it can be used to eliminate a biv, but the resulting insn
5011 isn't valid. This can happen, for example, on the 88k, where a
5012 JUMP_INSN can compare a register only with zero. Attempts to
5013 replace it with a compare with a constant will fail.
5015 Note that in cases where this call fails, we may have replaced some
5016 of the occurrences of the biv with a giv, but no harm was done in
5017 doing so in the rare cases where it can occur. */
5019 if (all_reduced == 1 && bl->eliminable
5020 && maybe_eliminate_biv (bl, loop_start, end, 1,
5021 threshold, insn_count))
5024 /* ?? If we created a new test to bypass the loop entirely,
5025 or otherwise drop straight in, based on this test, then
5026 we might want to rewrite it also. This way some later
5027 pass has more hope of removing the initialization of this
5028 biv entirely. */
5030 /* If final_value != 0, then the biv may be used after loop end
5031 and we must emit an insn to set it just in case.
5033 Reversed bivs already have an insn after the loop setting their
5034 value, so we don't need another one. We can't calculate the
5035 proper final value for such a biv here anyways. */
5036 if (final_value != 0 && ! bl->reversed)
5038 rtx insert_before;
5040 /* If the loop has multiple exits, emit the insn before the
5041 loop to ensure that it will always be executed no matter
5042 how the loop exits. Otherwise, emit the insn after the
5043 loop, since this is slightly more efficient. */
5044 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
5045 insert_before = loop_start;
5046 else
5047 insert_before = end_insert_before;
5049 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
5050 end_insert_before);
5053 #if 0
5054 /* Delete all of the instructions inside the loop which set
5055 the biv, as they are all dead. If is safe to delete them,
5056 because an insn setting a biv will never be part of a libcall. */
5057 /* However, deleting them will invalidate the regno_last_uid info,
5058 so keeping them around is more convenient. Final_biv_value
5059 will only succeed when there are multiple exits if the biv
5060 is dead at each exit, hence it does not matter that the original
5061 insn remains, because it is dead anyways. */
5062 for (v = bl->biv; v; v = v->next_iv)
5063 delete_insn (v->insn);
5064 #endif
5066 if (loop_dump_stream)
5067 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
5068 bl->regno);
5072 /* Go through all the instructions in the loop, making all the
5073 register substitutions scheduled in REG_MAP. */
5075 for (p = loop_start; p != end; p = NEXT_INSN (p))
5076 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5077 || GET_CODE (p) == CALL_INSN)
5079 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
5080 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
5081 INSN_CODE (p) = -1;
5084 /* Unroll loops from within strength reduction so that we can use the
5085 induction variable information that strength_reduce has already
5086 collected. */
5088 if (unroll_p)
5089 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
5090 loop_info, 1);
5092 #ifdef HAVE_decrement_and_branch_on_count
5093 /* Instrument the loop with BCT insn. */
5094 if (HAVE_decrement_and_branch_on_count && bct_p
5095 && flag_branch_on_count_reg)
5096 insert_bct (loop_start, loop_end, loop_info);
5097 #endif /* HAVE_decrement_and_branch_on_count */
5099 if (loop_dump_stream)
5100 fprintf (loop_dump_stream, "\n");
5101 VARRAY_FREE (reg_iv_type);
5102 VARRAY_FREE (reg_iv_info);
5105 /* Return 1 if X is a valid source for an initial value (or as value being
5106 compared against in an initial test).
5108 X must be either a register or constant and must not be clobbered between
5109 the current insn and the start of the loop.
5111 INSN is the insn containing X. */
5113 static int
5114 valid_initial_value_p (x, insn, call_seen, loop_start)
5115 rtx x;
5116 rtx insn;
5117 int call_seen;
5118 rtx loop_start;
5120 if (CONSTANT_P (x))
5121 return 1;
5123 /* Only consider pseudos we know about initialized in insns whose luids
5124 we know. */
5125 if (GET_CODE (x) != REG
5126 || REGNO (x) >= max_reg_before_loop)
5127 return 0;
5129 /* Don't use call-clobbered registers across a call which clobbers it. On
5130 some machines, don't use any hard registers at all. */
5131 if (REGNO (x) < FIRST_PSEUDO_REGISTER
5132 && (SMALL_REGISTER_CLASSES
5133 || (call_used_regs[REGNO (x)] && call_seen)))
5134 return 0;
5136 /* Don't use registers that have been clobbered before the start of the
5137 loop. */
5138 if (reg_set_between_p (x, insn, loop_start))
5139 return 0;
5141 return 1;
5144 /* Scan X for memory refs and check each memory address
5145 as a possible giv. INSN is the insn whose pattern X comes from.
5146 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5147 every loop iteration. */
5149 static void
5150 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
5151 rtx x;
5152 rtx insn;
5153 int not_every_iteration;
5154 rtx loop_start, loop_end;
5156 register int i, j;
5157 register enum rtx_code code;
5158 register char *fmt;
5160 if (x == 0)
5161 return;
5163 code = GET_CODE (x);
5164 switch (code)
5166 case REG:
5167 case CONST_INT:
5168 case CONST:
5169 case CONST_DOUBLE:
5170 case SYMBOL_REF:
5171 case LABEL_REF:
5172 case PC:
5173 case CC0:
5174 case ADDR_VEC:
5175 case ADDR_DIFF_VEC:
5176 case USE:
5177 case CLOBBER:
5178 return;
5180 case MEM:
5182 rtx src_reg;
5183 rtx add_val;
5184 rtx mult_val;
5185 int benefit;
5187 /* This code used to disable creating GIVs with mult_val == 1 and
5188 add_val == 0. However, this leads to lost optimizations when
5189 it comes time to combine a set of related DEST_ADDR GIVs, since
5190 this one would not be seen. */
5192 if (general_induction_var (XEXP (x, 0), &src_reg, &add_val,
5193 &mult_val, 1, &benefit))
5195 /* Found one; record it. */
5196 struct induction *v
5197 = (struct induction *) oballoc (sizeof (struct induction));
5199 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
5200 add_val, benefit, DEST_ADDR, not_every_iteration,
5201 &XEXP (x, 0), loop_start, loop_end);
5203 v->mem_mode = GET_MODE (x);
5206 return;
5208 default:
5209 break;
5212 /* Recursively scan the subexpressions for other mem refs. */
5214 fmt = GET_RTX_FORMAT (code);
5215 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5216 if (fmt[i] == 'e')
5217 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
5218 loop_end);
5219 else if (fmt[i] == 'E')
5220 for (j = 0; j < XVECLEN (x, i); j++)
5221 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
5222 loop_start, loop_end);
5225 /* Fill in the data about one biv update.
5226 V is the `struct induction' in which we record the biv. (It is
5227 allocated by the caller, with alloca.)
5228 INSN is the insn that sets it.
5229 DEST_REG is the biv's reg.
5231 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5232 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5233 being set to INC_VAL.
5235 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5236 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5237 can be executed more than once per iteration. If MAYBE_MULTIPLE
5238 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5239 executed exactly once per iteration. */
5241 static void
5242 record_biv (v, insn, dest_reg, inc_val, mult_val, location,
5243 not_every_iteration, maybe_multiple)
5244 struct induction *v;
5245 rtx insn;
5246 rtx dest_reg;
5247 rtx inc_val;
5248 rtx mult_val;
5249 rtx *location;
5250 int not_every_iteration;
5251 int maybe_multiple;
5253 struct iv_class *bl;
5255 v->insn = insn;
5256 v->src_reg = dest_reg;
5257 v->dest_reg = dest_reg;
5258 v->mult_val = mult_val;
5259 v->add_val = inc_val;
5260 v->location = location;
5261 v->mode = GET_MODE (dest_reg);
5262 v->always_computable = ! not_every_iteration;
5263 v->always_executed = ! not_every_iteration;
5264 v->maybe_multiple = maybe_multiple;
5266 /* Add this to the reg's iv_class, creating a class
5267 if this is the first incrementation of the reg. */
5269 bl = reg_biv_class[REGNO (dest_reg)];
5270 if (bl == 0)
5272 /* Create and initialize new iv_class. */
5274 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
5276 bl->regno = REGNO (dest_reg);
5277 bl->biv = 0;
5278 bl->giv = 0;
5279 bl->biv_count = 0;
5280 bl->giv_count = 0;
5282 /* Set initial value to the reg itself. */
5283 bl->initial_value = dest_reg;
5284 /* We haven't seen the initializing insn yet */
5285 bl->init_insn = 0;
5286 bl->init_set = 0;
5287 bl->initial_test = 0;
5288 bl->incremented = 0;
5289 bl->eliminable = 0;
5290 bl->nonneg = 0;
5291 bl->reversed = 0;
5292 bl->total_benefit = 0;
5294 /* Add this class to loop_iv_list. */
5295 bl->next = loop_iv_list;
5296 loop_iv_list = bl;
5298 /* Put it in the array of biv register classes. */
5299 reg_biv_class[REGNO (dest_reg)] = bl;
5302 /* Update IV_CLASS entry for this biv. */
5303 v->next_iv = bl->biv;
5304 bl->biv = v;
5305 bl->biv_count++;
5306 if (mult_val == const1_rtx)
5307 bl->incremented = 1;
5309 if (loop_dump_stream)
5311 fprintf (loop_dump_stream,
5312 "Insn %d: possible biv, reg %d,",
5313 INSN_UID (insn), REGNO (dest_reg));
5314 if (GET_CODE (inc_val) == CONST_INT)
5316 fprintf (loop_dump_stream, " const =");
5317 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (inc_val));
5318 fputc ('\n', loop_dump_stream);
5320 else
5322 fprintf (loop_dump_stream, " const = ");
5323 print_rtl (loop_dump_stream, inc_val);
5324 fprintf (loop_dump_stream, "\n");
5329 /* Fill in the data about one giv.
5330 V is the `struct induction' in which we record the giv. (It is
5331 allocated by the caller, with alloca.)
5332 INSN is the insn that sets it.
5333 BENEFIT estimates the savings from deleting this insn.
5334 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5335 into a register or is used as a memory address.
5337 SRC_REG is the biv reg which the giv is computed from.
5338 DEST_REG is the giv's reg (if the giv is stored in a reg).
5339 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5340 LOCATION points to the place where this giv's value appears in INSN. */
5342 static void
5343 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
5344 type, not_every_iteration, location, loop_start, loop_end)
5345 struct induction *v;
5346 rtx insn;
5347 rtx src_reg;
5348 rtx dest_reg;
5349 rtx mult_val, add_val;
5350 int benefit;
5351 enum g_types type;
5352 int not_every_iteration;
5353 rtx *location;
5354 rtx loop_start, loop_end;
5356 struct induction *b;
5357 struct iv_class *bl;
5358 rtx set = single_set (insn);
5360 v->insn = insn;
5361 v->src_reg = src_reg;
5362 v->giv_type = type;
5363 v->dest_reg = dest_reg;
5364 v->mult_val = mult_val;
5365 v->add_val = add_val;
5366 v->benefit = benefit;
5367 v->location = location;
5368 v->cant_derive = 0;
5369 v->combined_with = 0;
5370 v->maybe_multiple = 0;
5371 v->maybe_dead = 0;
5372 v->derive_adjustment = 0;
5373 v->same = 0;
5374 v->ignore = 0;
5375 v->new_reg = 0;
5376 v->final_value = 0;
5377 v->same_insn = 0;
5378 v->auto_inc_opt = 0;
5379 v->unrolled = 0;
5380 v->shared = 0;
5381 v->derived_from = 0;
5382 v->last_use = 0;
5384 /* The v->always_computable field is used in update_giv_derive, to
5385 determine whether a giv can be used to derive another giv. For a
5386 DEST_REG giv, INSN computes a new value for the giv, so its value
5387 isn't computable if INSN insn't executed every iteration.
5388 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5389 it does not compute a new value. Hence the value is always computable
5390 regardless of whether INSN is executed each iteration. */
5392 if (type == DEST_ADDR)
5393 v->always_computable = 1;
5394 else
5395 v->always_computable = ! not_every_iteration;
5397 v->always_executed = ! not_every_iteration;
5399 if (type == DEST_ADDR)
5401 v->mode = GET_MODE (*location);
5402 v->lifetime = 1;
5404 else /* type == DEST_REG */
5406 v->mode = GET_MODE (SET_DEST (set));
5408 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
5409 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
5411 /* If the lifetime is zero, it means that this register is
5412 really a dead store. So mark this as a giv that can be
5413 ignored. This will not prevent the biv from being eliminated. */
5414 if (v->lifetime == 0)
5415 v->ignore = 1;
5417 REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
5418 REG_IV_INFO (REGNO (dest_reg)) = v;
5421 /* Add the giv to the class of givs computed from one biv. */
5423 bl = reg_biv_class[REGNO (src_reg)];
5424 if (bl)
5426 v->next_iv = bl->giv;
5427 bl->giv = v;
5428 /* Don't count DEST_ADDR. This is supposed to count the number of
5429 insns that calculate givs. */
5430 if (type == DEST_REG)
5431 bl->giv_count++;
5432 bl->total_benefit += benefit;
5434 else
5435 /* Fatal error, biv missing for this giv? */
5436 abort ();
5438 if (type == DEST_ADDR)
5439 v->replaceable = 1;
5440 else
5442 /* The giv can be replaced outright by the reduced register only if all
5443 of the following conditions are true:
5444 - the insn that sets the giv is always executed on any iteration
5445 on which the giv is used at all
5446 (there are two ways to deduce this:
5447 either the insn is executed on every iteration,
5448 or all uses follow that insn in the same basic block),
5449 - the giv is not used outside the loop
5450 - no assignments to the biv occur during the giv's lifetime. */
5452 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
5453 /* Previous line always fails if INSN was moved by loop opt. */
5454 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
5455 && (! not_every_iteration
5456 || last_use_this_basic_block (dest_reg, insn)))
5458 /* Now check that there are no assignments to the biv within the
5459 giv's lifetime. This requires two separate checks. */
5461 /* Check each biv update, and fail if any are between the first
5462 and last use of the giv.
5464 If this loop contains an inner loop that was unrolled, then
5465 the insn modifying the biv may have been emitted by the loop
5466 unrolling code, and hence does not have a valid luid. Just
5467 mark the biv as not replaceable in this case. It is not very
5468 useful as a biv, because it is used in two different loops.
5469 It is very unlikely that we would be able to optimize the giv
5470 using this biv anyways. */
5472 v->replaceable = 1;
5473 for (b = bl->biv; b; b = b->next_iv)
5475 if (INSN_UID (b->insn) >= max_uid_for_loop
5476 || ((uid_luid[INSN_UID (b->insn)]
5477 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
5478 && (uid_luid[INSN_UID (b->insn)]
5479 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
5481 v->replaceable = 0;
5482 v->not_replaceable = 1;
5483 break;
5487 /* If there are any backwards branches that go from after the
5488 biv update to before it, then this giv is not replaceable. */
5489 if (v->replaceable)
5490 for (b = bl->biv; b; b = b->next_iv)
5491 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
5493 v->replaceable = 0;
5494 v->not_replaceable = 1;
5495 break;
5498 else
5500 /* May still be replaceable, we don't have enough info here to
5501 decide. */
5502 v->replaceable = 0;
5503 v->not_replaceable = 0;
5507 /* Record whether the add_val contains a const_int, for later use by
5508 combine_givs. */
5510 rtx tem = add_val;
5512 v->no_const_addval = 1;
5513 if (tem == const0_rtx)
5515 else if (GET_CODE (tem) == CONST_INT)
5516 v->no_const_addval = 0;
5517 else if (GET_CODE (tem) == PLUS)
5519 while (1)
5521 if (GET_CODE (XEXP (tem, 0)) == PLUS)
5522 tem = XEXP (tem, 0);
5523 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
5524 tem = XEXP (tem, 1);
5525 else
5526 break;
5528 if (GET_CODE (XEXP (tem, 1)) == CONST_INT)
5529 v->no_const_addval = 0;
5533 if (loop_dump_stream)
5535 if (type == DEST_REG)
5536 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
5537 INSN_UID (insn), REGNO (dest_reg));
5538 else
5539 fprintf (loop_dump_stream, "Insn %d: dest address",
5540 INSN_UID (insn));
5542 fprintf (loop_dump_stream, " src reg %d benefit %d",
5543 REGNO (src_reg), v->benefit);
5544 fprintf (loop_dump_stream, " lifetime %d",
5545 v->lifetime);
5547 if (v->replaceable)
5548 fprintf (loop_dump_stream, " replaceable");
5550 if (v->no_const_addval)
5551 fprintf (loop_dump_stream, " ncav");
5553 if (GET_CODE (mult_val) == CONST_INT)
5555 fprintf (loop_dump_stream, " mult ");
5556 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (mult_val));
5558 else
5560 fprintf (loop_dump_stream, " mult ");
5561 print_rtl (loop_dump_stream, mult_val);
5564 if (GET_CODE (add_val) == CONST_INT)
5566 fprintf (loop_dump_stream, " add ");
5567 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (add_val));
5569 else
5571 fprintf (loop_dump_stream, " add ");
5572 print_rtl (loop_dump_stream, add_val);
5576 if (loop_dump_stream)
5577 fprintf (loop_dump_stream, "\n");
5582 /* All this does is determine whether a giv can be made replaceable because
5583 its final value can be calculated. This code can not be part of record_giv
5584 above, because final_giv_value requires that the number of loop iterations
5585 be known, and that can not be accurately calculated until after all givs
5586 have been identified. */
5588 static void
5589 check_final_value (v, loop_start, loop_end, n_iterations)
5590 struct induction *v;
5591 rtx loop_start, loop_end;
5592 unsigned HOST_WIDE_INT n_iterations;
5594 struct iv_class *bl;
5595 rtx final_value = 0;
5597 bl = reg_biv_class[REGNO (v->src_reg)];
5599 /* DEST_ADDR givs will never reach here, because they are always marked
5600 replaceable above in record_giv. */
5602 /* The giv can be replaced outright by the reduced register only if all
5603 of the following conditions are true:
5604 - the insn that sets the giv is always executed on any iteration
5605 on which the giv is used at all
5606 (there are two ways to deduce this:
5607 either the insn is executed on every iteration,
5608 or all uses follow that insn in the same basic block),
5609 - its final value can be calculated (this condition is different
5610 than the one above in record_giv)
5611 - no assignments to the biv occur during the giv's lifetime. */
5613 #if 0
5614 /* This is only called now when replaceable is known to be false. */
5615 /* Clear replaceable, so that it won't confuse final_giv_value. */
5616 v->replaceable = 0;
5617 #endif
5619 if ((final_value = final_giv_value (v, loop_start, loop_end, n_iterations))
5620 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
5622 int biv_increment_seen = 0;
5623 rtx p = v->insn;
5624 rtx last_giv_use;
5626 v->replaceable = 1;
5628 /* When trying to determine whether or not a biv increment occurs
5629 during the lifetime of the giv, we can ignore uses of the variable
5630 outside the loop because final_value is true. Hence we can not
5631 use regno_last_uid and regno_first_uid as above in record_giv. */
5633 /* Search the loop to determine whether any assignments to the
5634 biv occur during the giv's lifetime. Start with the insn
5635 that sets the giv, and search around the loop until we come
5636 back to that insn again.
5638 Also fail if there is a jump within the giv's lifetime that jumps
5639 to somewhere outside the lifetime but still within the loop. This
5640 catches spaghetti code where the execution order is not linear, and
5641 hence the above test fails. Here we assume that the giv lifetime
5642 does not extend from one iteration of the loop to the next, so as
5643 to make the test easier. Since the lifetime isn't known yet,
5644 this requires two loops. See also record_giv above. */
5646 last_giv_use = v->insn;
5648 while (1)
5650 p = NEXT_INSN (p);
5651 if (p == loop_end)
5652 p = NEXT_INSN (loop_start);
5653 if (p == v->insn)
5654 break;
5656 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5657 || GET_CODE (p) == CALL_INSN)
5659 if (biv_increment_seen)
5661 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5663 v->replaceable = 0;
5664 v->not_replaceable = 1;
5665 break;
5668 else if (reg_set_p (v->src_reg, PATTERN (p)))
5669 biv_increment_seen = 1;
5670 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5671 last_giv_use = p;
5675 /* Now that the lifetime of the giv is known, check for branches
5676 from within the lifetime to outside the lifetime if it is still
5677 replaceable. */
5679 if (v->replaceable)
5681 p = v->insn;
5682 while (1)
5684 p = NEXT_INSN (p);
5685 if (p == loop_end)
5686 p = NEXT_INSN (loop_start);
5687 if (p == last_giv_use)
5688 break;
5690 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
5691 && LABEL_NAME (JUMP_LABEL (p))
5692 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
5693 && loop_insn_first_p (loop_start, JUMP_LABEL (p)))
5694 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
5695 && loop_insn_first_p (JUMP_LABEL (p), loop_end))))
5697 v->replaceable = 0;
5698 v->not_replaceable = 1;
5700 if (loop_dump_stream)
5701 fprintf (loop_dump_stream,
5702 "Found branch outside giv lifetime.\n");
5704 break;
5709 /* If it is replaceable, then save the final value. */
5710 if (v->replaceable)
5711 v->final_value = final_value;
5714 if (loop_dump_stream && v->replaceable)
5715 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
5716 INSN_UID (v->insn), REGNO (v->dest_reg));
5719 /* Update the status of whether a giv can derive other givs.
5721 We need to do something special if there is or may be an update to the biv
5722 between the time the giv is defined and the time it is used to derive
5723 another giv.
5725 In addition, a giv that is only conditionally set is not allowed to
5726 derive another giv once a label has been passed.
5728 The cases we look at are when a label or an update to a biv is passed. */
5730 static void
5731 update_giv_derive (p)
5732 rtx p;
5734 struct iv_class *bl;
5735 struct induction *biv, *giv;
5736 rtx tem;
5737 int dummy;
5739 /* Search all IV classes, then all bivs, and finally all givs.
5741 There are three cases we are concerned with. First we have the situation
5742 of a giv that is only updated conditionally. In that case, it may not
5743 derive any givs after a label is passed.
5745 The second case is when a biv update occurs, or may occur, after the
5746 definition of a giv. For certain biv updates (see below) that are
5747 known to occur between the giv definition and use, we can adjust the
5748 giv definition. For others, or when the biv update is conditional,
5749 we must prevent the giv from deriving any other givs. There are two
5750 sub-cases within this case.
5752 If this is a label, we are concerned with any biv update that is done
5753 conditionally, since it may be done after the giv is defined followed by
5754 a branch here (actually, we need to pass both a jump and a label, but
5755 this extra tracking doesn't seem worth it).
5757 If this is a jump, we are concerned about any biv update that may be
5758 executed multiple times. We are actually only concerned about
5759 backward jumps, but it is probably not worth performing the test
5760 on the jump again here.
5762 If this is a biv update, we must adjust the giv status to show that a
5763 subsequent biv update was performed. If this adjustment cannot be done,
5764 the giv cannot derive further givs. */
5766 for (bl = loop_iv_list; bl; bl = bl->next)
5767 for (biv = bl->biv; biv; biv = biv->next_iv)
5768 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5769 || biv->insn == p)
5771 for (giv = bl->giv; giv; giv = giv->next_iv)
5773 /* If cant_derive is already true, there is no point in
5774 checking all of these conditions again. */
5775 if (giv->cant_derive)
5776 continue;
5778 /* If this giv is conditionally set and we have passed a label,
5779 it cannot derive anything. */
5780 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5781 giv->cant_derive = 1;
5783 /* Skip givs that have mult_val == 0, since
5784 they are really invariants. Also skip those that are
5785 replaceable, since we know their lifetime doesn't contain
5786 any biv update. */
5787 else if (giv->mult_val == const0_rtx || giv->replaceable)
5788 continue;
5790 /* The only way we can allow this giv to derive another
5791 is if this is a biv increment and we can form the product
5792 of biv->add_val and giv->mult_val. In this case, we will
5793 be able to compute a compensation. */
5794 else if (biv->insn == p)
5796 tem = 0;
5798 if (biv->mult_val == const1_rtx)
5799 tem = simplify_giv_expr (gen_rtx_MULT (giv->mode,
5800 biv->add_val,
5801 giv->mult_val),
5802 &dummy);
5804 if (tem && giv->derive_adjustment)
5805 tem = simplify_giv_expr (gen_rtx_PLUS (giv->mode, tem,
5806 giv->derive_adjustment),
5807 &dummy);
5808 if (tem)
5809 giv->derive_adjustment = tem;
5810 else
5811 giv->cant_derive = 1;
5813 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5814 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5815 giv->cant_derive = 1;
5820 /* Check whether an insn is an increment legitimate for a basic induction var.
5821 X is the source of insn P, or a part of it.
5822 MODE is the mode in which X should be interpreted.
5824 DEST_REG is the putative biv, also the destination of the insn.
5825 We accept patterns of these forms:
5826 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5827 REG = INVARIANT + REG
5829 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5830 store the additive term into *INC_VAL, and store the place where
5831 we found the additive term into *LOCATION.
5833 If X is an assignment of an invariant into DEST_REG, we set
5834 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5836 We also want to detect a BIV when it corresponds to a variable
5837 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5838 of the variable may be a PLUS that adds a SUBREG of that variable to
5839 an invariant and then sign- or zero-extends the result of the PLUS
5840 into the variable.
5842 Most GIVs in such cases will be in the promoted mode, since that is the
5843 probably the natural computation mode (and almost certainly the mode
5844 used for addresses) on the machine. So we view the pseudo-reg containing
5845 the variable as the BIV, as if it were simply incremented.
5847 Note that treating the entire pseudo as a BIV will result in making
5848 simple increments to any GIVs based on it. However, if the variable
5849 overflows in its declared mode but not its promoted mode, the result will
5850 be incorrect. This is acceptable if the variable is signed, since
5851 overflows in such cases are undefined, but not if it is unsigned, since
5852 those overflows are defined. So we only check for SIGN_EXTEND and
5853 not ZERO_EXTEND.
5855 If we cannot find a biv, we return 0. */
5857 static int
5858 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val, location)
5859 register rtx x;
5860 enum machine_mode mode;
5861 rtx p;
5862 rtx dest_reg;
5863 rtx *inc_val;
5864 rtx *mult_val;
5865 rtx **location;
5867 register enum rtx_code code;
5868 rtx *argp, arg;
5869 rtx insn, set = 0;
5871 code = GET_CODE (x);
5872 switch (code)
5874 case PLUS:
5875 if (rtx_equal_p (XEXP (x, 0), dest_reg)
5876 || (GET_CODE (XEXP (x, 0)) == SUBREG
5877 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5878 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5880 argp = &XEXP (x, 1);
5882 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
5883 || (GET_CODE (XEXP (x, 1)) == SUBREG
5884 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5885 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5887 argp = &XEXP (x, 0);
5889 else
5890 return 0;
5892 arg = *argp;
5893 if (invariant_p (arg) != 1)
5894 return 0;
5896 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5897 *mult_val = const1_rtx;
5898 *location = argp;
5899 return 1;
5901 case SUBREG:
5902 /* If this is a SUBREG for a promoted variable, check the inner
5903 value. */
5904 if (SUBREG_PROMOTED_VAR_P (x))
5905 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
5906 dest_reg, p, inc_val, mult_val, location);
5907 return 0;
5909 case REG:
5910 /* If this register is assigned in a previous insn, look at its
5911 source, but don't go outside the loop or past a label. */
5913 insn = p;
5914 while (1)
5916 do {
5917 insn = PREV_INSN (insn);
5918 } while (insn && GET_CODE (insn) == NOTE
5919 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5921 if (!insn)
5922 break;
5923 set = single_set (insn);
5924 if (set == 0)
5925 break;
5927 if ((SET_DEST (set) == x
5928 || (GET_CODE (SET_DEST (set)) == SUBREG
5929 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
5930 <= UNITS_PER_WORD)
5931 && SUBREG_REG (SET_DEST (set)) == x))
5932 && basic_induction_var (SET_SRC (set),
5933 (GET_MODE (SET_SRC (set)) == VOIDmode
5934 ? GET_MODE (x)
5935 : GET_MODE (SET_SRC (set))),
5936 dest_reg, insn,
5937 inc_val, mult_val, location))
5938 return 1;
5940 /* ... fall through ... */
5942 /* Can accept constant setting of biv only when inside inner most loop.
5943 Otherwise, a biv of an inner loop may be incorrectly recognized
5944 as a biv of the outer loop,
5945 causing code to be moved INTO the inner loop. */
5946 case MEM:
5947 if (invariant_p (x) != 1)
5948 return 0;
5949 case CONST_INT:
5950 case SYMBOL_REF:
5951 case CONST:
5952 /* convert_modes aborts if we try to convert to or from CCmode, so just
5953 exclude that case. It is very unlikely that a condition code value
5954 would be a useful iterator anyways. */
5955 if (loops_enclosed == 1
5956 && GET_MODE_CLASS (mode) != MODE_CC
5957 && GET_MODE_CLASS (GET_MODE (dest_reg)) != MODE_CC)
5959 /* Possible bug here? Perhaps we don't know the mode of X. */
5960 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5961 *mult_val = const0_rtx;
5962 return 1;
5964 else
5965 return 0;
5967 case SIGN_EXTEND:
5968 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5969 dest_reg, p, inc_val, mult_val, location);
5971 case ASHIFTRT:
5972 /* Similar, since this can be a sign extension. */
5973 for (insn = PREV_INSN (p);
5974 (insn && GET_CODE (insn) == NOTE
5975 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5976 insn = PREV_INSN (insn))
5979 if (insn)
5980 set = single_set (insn);
5982 if (set && SET_DEST (set) == XEXP (x, 0)
5983 && GET_CODE (XEXP (x, 1)) == CONST_INT
5984 && INTVAL (XEXP (x, 1)) >= 0
5985 && GET_CODE (SET_SRC (set)) == ASHIFT
5986 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5987 return basic_induction_var (XEXP (SET_SRC (set), 0),
5988 GET_MODE (XEXP (x, 0)),
5989 dest_reg, insn, inc_val, mult_val,
5990 location);
5991 return 0;
5993 default:
5994 return 0;
5998 /* A general induction variable (giv) is any quantity that is a linear
5999 function of a basic induction variable,
6000 i.e. giv = biv * mult_val + add_val.
6001 The coefficients can be any loop invariant quantity.
6002 A giv need not be computed directly from the biv;
6003 it can be computed by way of other givs. */
6005 /* Determine whether X computes a giv.
6006 If it does, return a nonzero value
6007 which is the benefit from eliminating the computation of X;
6008 set *SRC_REG to the register of the biv that it is computed from;
6009 set *ADD_VAL and *MULT_VAL to the coefficients,
6010 such that the value of X is biv * mult + add; */
6012 static int
6013 general_induction_var (x, src_reg, add_val, mult_val, is_addr, pbenefit)
6014 rtx x;
6015 rtx *src_reg;
6016 rtx *add_val;
6017 rtx *mult_val;
6018 int is_addr;
6019 int *pbenefit;
6021 rtx orig_x = x;
6022 char *storage;
6024 /* If this is an invariant, forget it, it isn't a giv. */
6025 if (invariant_p (x) == 1)
6026 return 0;
6028 /* See if the expression could be a giv and get its form.
6029 Mark our place on the obstack in case we don't find a giv. */
6030 storage = (char *) oballoc (0);
6031 *pbenefit = 0;
6032 x = simplify_giv_expr (x, pbenefit);
6033 if (x == 0)
6035 obfree (storage);
6036 return 0;
6039 switch (GET_CODE (x))
6041 case USE:
6042 case CONST_INT:
6043 /* Since this is now an invariant and wasn't before, it must be a giv
6044 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6045 with. */
6046 *src_reg = loop_iv_list->biv->dest_reg;
6047 *mult_val = const0_rtx;
6048 *add_val = x;
6049 break;
6051 case REG:
6052 /* This is equivalent to a BIV. */
6053 *src_reg = x;
6054 *mult_val = const1_rtx;
6055 *add_val = const0_rtx;
6056 break;
6058 case PLUS:
6059 /* Either (plus (biv) (invar)) or
6060 (plus (mult (biv) (invar_1)) (invar_2)). */
6061 if (GET_CODE (XEXP (x, 0)) == MULT)
6063 *src_reg = XEXP (XEXP (x, 0), 0);
6064 *mult_val = XEXP (XEXP (x, 0), 1);
6066 else
6068 *src_reg = XEXP (x, 0);
6069 *mult_val = const1_rtx;
6071 *add_val = XEXP (x, 1);
6072 break;
6074 case MULT:
6075 /* ADD_VAL is zero. */
6076 *src_reg = XEXP (x, 0);
6077 *mult_val = XEXP (x, 1);
6078 *add_val = const0_rtx;
6079 break;
6081 default:
6082 abort ();
6085 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6086 unless they are CONST_INT). */
6087 if (GET_CODE (*add_val) == USE)
6088 *add_val = XEXP (*add_val, 0);
6089 if (GET_CODE (*mult_val) == USE)
6090 *mult_val = XEXP (*mult_val, 0);
6092 if (is_addr)
6094 #ifdef ADDRESS_COST
6095 *pbenefit += ADDRESS_COST (orig_x) - reg_address_cost;
6096 #else
6097 *pbenefit += rtx_cost (orig_x, MEM) - reg_address_cost;
6098 #endif
6100 else
6101 *pbenefit += rtx_cost (orig_x, SET);
6103 /* Always return true if this is a giv so it will be detected as such,
6104 even if the benefit is zero or negative. This allows elimination
6105 of bivs that might otherwise not be eliminated. */
6106 return 1;
6109 /* Given an expression, X, try to form it as a linear function of a biv.
6110 We will canonicalize it to be of the form
6111 (plus (mult (BIV) (invar_1))
6112 (invar_2))
6113 with possible degeneracies.
6115 The invariant expressions must each be of a form that can be used as a
6116 machine operand. We surround then with a USE rtx (a hack, but localized
6117 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6118 routine; it is the caller's responsibility to strip them.
6120 If no such canonicalization is possible (i.e., two biv's are used or an
6121 expression that is neither invariant nor a biv or giv), this routine
6122 returns 0.
6124 For a non-zero return, the result will have a code of CONST_INT, USE,
6125 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6127 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6129 static rtx sge_plus PROTO ((enum machine_mode, rtx, rtx));
6130 static rtx sge_plus_constant PROTO ((rtx, rtx));
6132 static rtx
6133 simplify_giv_expr (x, benefit)
6134 rtx x;
6135 int *benefit;
6137 enum machine_mode mode = GET_MODE (x);
6138 rtx arg0, arg1;
6139 rtx tem;
6141 /* If this is not an integer mode, or if we cannot do arithmetic in this
6142 mode, this can't be a giv. */
6143 if (mode != VOIDmode
6144 && (GET_MODE_CLASS (mode) != MODE_INT
6145 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
6146 return NULL_RTX;
6148 switch (GET_CODE (x))
6150 case PLUS:
6151 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
6152 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
6153 if (arg0 == 0 || arg1 == 0)
6154 return NULL_RTX;
6156 /* Put constant last, CONST_INT last if both constant. */
6157 if ((GET_CODE (arg0) == USE
6158 || GET_CODE (arg0) == CONST_INT)
6159 && ! ((GET_CODE (arg0) == USE
6160 && GET_CODE (arg1) == USE)
6161 || GET_CODE (arg1) == CONST_INT))
6162 tem = arg0, arg0 = arg1, arg1 = tem;
6164 /* Handle addition of zero, then addition of an invariant. */
6165 if (arg1 == const0_rtx)
6166 return arg0;
6167 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
6168 switch (GET_CODE (arg0))
6170 case CONST_INT:
6171 case USE:
6172 /* Adding two invariants must result in an invariant, so enclose
6173 addition operation inside a USE and return it. */
6174 if (GET_CODE (arg0) == USE)
6175 arg0 = XEXP (arg0, 0);
6176 if (GET_CODE (arg1) == USE)
6177 arg1 = XEXP (arg1, 0);
6179 if (GET_CODE (arg0) == CONST_INT)
6180 tem = arg0, arg0 = arg1, arg1 = tem;
6181 if (GET_CODE (arg1) == CONST_INT)
6182 tem = sge_plus_constant (arg0, arg1);
6183 else
6184 tem = sge_plus (mode, arg0, arg1);
6186 if (GET_CODE (tem) != CONST_INT)
6187 tem = gen_rtx_USE (mode, tem);
6188 return tem;
6190 case REG:
6191 case MULT:
6192 /* biv + invar or mult + invar. Return sum. */
6193 return gen_rtx_PLUS (mode, arg0, arg1);
6195 case PLUS:
6196 /* (a + invar_1) + invar_2. Associate. */
6197 return simplify_giv_expr (
6198 gen_rtx_PLUS (mode, XEXP (arg0, 0),
6199 gen_rtx_PLUS (mode, XEXP (arg0, 1), arg1)),
6200 benefit);
6202 default:
6203 abort ();
6206 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6207 MULT to reduce cases. */
6208 if (GET_CODE (arg0) == REG)
6209 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
6210 if (GET_CODE (arg1) == REG)
6211 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
6213 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6214 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6215 Recurse to associate the second PLUS. */
6216 if (GET_CODE (arg1) == MULT)
6217 tem = arg0, arg0 = arg1, arg1 = tem;
6219 if (GET_CODE (arg1) == PLUS)
6220 return simplify_giv_expr (gen_rtx_PLUS (mode,
6221 gen_rtx_PLUS (mode, arg0,
6222 XEXP (arg1, 0)),
6223 XEXP (arg1, 1)),
6224 benefit);
6226 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6227 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
6228 return NULL_RTX;
6230 if (!rtx_equal_p (arg0, arg1))
6231 return NULL_RTX;
6233 return simplify_giv_expr (gen_rtx_MULT (mode,
6234 XEXP (arg0, 0),
6235 gen_rtx_PLUS (mode,
6236 XEXP (arg0, 1),
6237 XEXP (arg1, 1))),
6238 benefit);
6240 case MINUS:
6241 /* Handle "a - b" as "a + b * (-1)". */
6242 return simplify_giv_expr (gen_rtx_PLUS (mode,
6243 XEXP (x, 0),
6244 gen_rtx_MULT (mode, XEXP (x, 1),
6245 constm1_rtx)),
6246 benefit);
6248 case MULT:
6249 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
6250 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
6251 if (arg0 == 0 || arg1 == 0)
6252 return NULL_RTX;
6254 /* Put constant last, CONST_INT last if both constant. */
6255 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
6256 && GET_CODE (arg1) != CONST_INT)
6257 tem = arg0, arg0 = arg1, arg1 = tem;
6259 /* If second argument is not now constant, not giv. */
6260 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
6261 return NULL_RTX;
6263 /* Handle multiply by 0 or 1. */
6264 if (arg1 == const0_rtx)
6265 return const0_rtx;
6267 else if (arg1 == const1_rtx)
6268 return arg0;
6270 switch (GET_CODE (arg0))
6272 case REG:
6273 /* biv * invar. Done. */
6274 return gen_rtx_MULT (mode, arg0, arg1);
6276 case CONST_INT:
6277 /* Product of two constants. */
6278 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
6280 case USE:
6281 /* invar * invar. It is a giv, but very few of these will
6282 actually pay off, so limit to simple registers. */
6283 if (GET_CODE (arg1) != CONST_INT)
6284 return NULL_RTX;
6286 arg0 = XEXP (arg0, 0);
6287 if (GET_CODE (arg0) == REG)
6288 tem = gen_rtx_MULT (mode, arg0, arg1);
6289 else if (GET_CODE (arg0) == MULT
6290 && GET_CODE (XEXP (arg0, 0)) == REG
6291 && GET_CODE (XEXP (arg0, 1)) == CONST_INT)
6293 tem = gen_rtx_MULT (mode, XEXP (arg0, 0),
6294 GEN_INT (INTVAL (XEXP (arg0, 1))
6295 * INTVAL (arg1)));
6297 else
6298 return NULL_RTX;
6299 return gen_rtx_USE (mode, tem);
6301 case MULT:
6302 /* (a * invar_1) * invar_2. Associate. */
6303 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (arg0, 0),
6304 gen_rtx_MULT (mode,
6305 XEXP (arg0, 1),
6306 arg1)),
6307 benefit);
6309 case PLUS:
6310 /* (a + invar_1) * invar_2. Distribute. */
6311 return simplify_giv_expr (gen_rtx_PLUS (mode,
6312 gen_rtx_MULT (mode,
6313 XEXP (arg0, 0),
6314 arg1),
6315 gen_rtx_MULT (mode,
6316 XEXP (arg0, 1),
6317 arg1)),
6318 benefit);
6320 default:
6321 abort ();
6324 case ASHIFT:
6325 /* Shift by constant is multiply by power of two. */
6326 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6327 return 0;
6329 return simplify_giv_expr (gen_rtx_MULT (mode,
6330 XEXP (x, 0),
6331 GEN_INT ((HOST_WIDE_INT) 1
6332 << INTVAL (XEXP (x, 1)))),
6333 benefit);
6335 case NEG:
6336 /* "-a" is "a * (-1)" */
6337 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
6338 benefit);
6340 case NOT:
6341 /* "~a" is "-a - 1". Silly, but easy. */
6342 return simplify_giv_expr (gen_rtx_MINUS (mode,
6343 gen_rtx_NEG (mode, XEXP (x, 0)),
6344 const1_rtx),
6345 benefit);
6347 case USE:
6348 /* Already in proper form for invariant. */
6349 return x;
6351 case REG:
6352 /* If this is a new register, we can't deal with it. */
6353 if (REGNO (x) >= max_reg_before_loop)
6354 return 0;
6356 /* Check for biv or giv. */
6357 switch (REG_IV_TYPE (REGNO (x)))
6359 case BASIC_INDUCT:
6360 return x;
6361 case GENERAL_INDUCT:
6363 struct induction *v = REG_IV_INFO (REGNO (x));
6365 /* Form expression from giv and add benefit. Ensure this giv
6366 can derive another and subtract any needed adjustment if so. */
6367 *benefit += v->benefit;
6368 if (v->cant_derive)
6369 return 0;
6371 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode, v->src_reg,
6372 v->mult_val),
6373 v->add_val);
6374 if (v->derive_adjustment)
6375 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
6376 return simplify_giv_expr (tem, benefit);
6379 default:
6380 /* If it isn't an induction variable, and it is invariant, we
6381 may be able to simplify things further by looking through
6382 the bits we just moved outside the loop. */
6383 if (invariant_p (x) == 1)
6385 struct movable *m;
6387 for (m = the_movables; m ; m = m->next)
6388 if (rtx_equal_p (x, m->set_dest))
6390 /* Ok, we found a match. Substitute and simplify. */
6392 /* If we match another movable, we must use that, as
6393 this one is going away. */
6394 if (m->match)
6395 return simplify_giv_expr (m->match->set_dest, benefit);
6397 /* If consec is non-zero, this is a member of a group of
6398 instructions that were moved together. We handle this
6399 case only to the point of seeking to the last insn and
6400 looking for a REG_EQUAL. Fail if we don't find one. */
6401 if (m->consec != 0)
6403 int i = m->consec;
6404 tem = m->insn;
6405 do { tem = NEXT_INSN (tem); } while (--i > 0);
6407 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
6408 if (tem)
6409 tem = XEXP (tem, 0);
6411 else
6413 tem = single_set (m->insn);
6414 if (tem)
6415 tem = SET_SRC (tem);
6418 if (tem)
6420 /* What we are most interested in is pointer
6421 arithmetic on invariants -- only take
6422 patterns we may be able to do something with. */
6423 if (GET_CODE (tem) == PLUS
6424 || GET_CODE (tem) == MULT
6425 || GET_CODE (tem) == ASHIFT
6426 || GET_CODE (tem) == CONST_INT
6427 || GET_CODE (tem) == SYMBOL_REF)
6429 tem = simplify_giv_expr (tem, benefit);
6430 if (tem)
6431 return tem;
6433 else if (GET_CODE (tem) == CONST
6434 && GET_CODE (XEXP (tem, 0)) == PLUS
6435 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
6436 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
6438 tem = simplify_giv_expr (XEXP (tem, 0), benefit);
6439 if (tem)
6440 return tem;
6443 break;
6446 break;
6449 /* Fall through to general case. */
6450 default:
6451 /* If invariant, return as USE (unless CONST_INT).
6452 Otherwise, not giv. */
6453 if (GET_CODE (x) == USE)
6454 x = XEXP (x, 0);
6456 if (invariant_p (x) == 1)
6458 if (GET_CODE (x) == CONST_INT)
6459 return x;
6460 if (GET_CODE (x) == CONST
6461 && GET_CODE (XEXP (x, 0)) == PLUS
6462 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
6463 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
6464 x = XEXP (x, 0);
6465 return gen_rtx_USE (mode, x);
6467 else
6468 return 0;
6472 /* This routine folds invariants such that there is only ever one
6473 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6475 static rtx
6476 sge_plus_constant (x, c)
6477 rtx x, c;
6479 if (GET_CODE (x) == CONST_INT)
6480 return GEN_INT (INTVAL (x) + INTVAL (c));
6481 else if (GET_CODE (x) != PLUS)
6482 return gen_rtx_PLUS (GET_MODE (x), x, c);
6483 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6485 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
6486 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
6488 else if (GET_CODE (XEXP (x, 0)) == PLUS
6489 || GET_CODE (XEXP (x, 1)) != PLUS)
6491 return gen_rtx_PLUS (GET_MODE (x),
6492 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
6494 else
6496 return gen_rtx_PLUS (GET_MODE (x),
6497 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
6501 static rtx
6502 sge_plus (mode, x, y)
6503 enum machine_mode mode;
6504 rtx x, y;
6506 while (GET_CODE (y) == PLUS)
6508 rtx a = XEXP (y, 0);
6509 if (GET_CODE (a) == CONST_INT)
6510 x = sge_plus_constant (x, a);
6511 else
6512 x = gen_rtx_PLUS (mode, x, a);
6513 y = XEXP (y, 1);
6515 if (GET_CODE (y) == CONST_INT)
6516 x = sge_plus_constant (x, y);
6517 else
6518 x = gen_rtx_PLUS (mode, x, y);
6519 return x;
6522 /* Help detect a giv that is calculated by several consecutive insns;
6523 for example,
6524 giv = biv * M
6525 giv = giv + A
6526 The caller has already identified the first insn P as having a giv as dest;
6527 we check that all other insns that set the same register follow
6528 immediately after P, that they alter nothing else,
6529 and that the result of the last is still a giv.
6531 The value is 0 if the reg set in P is not really a giv.
6532 Otherwise, the value is the amount gained by eliminating
6533 all the consecutive insns that compute the value.
6535 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6536 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6538 The coefficients of the ultimate giv value are stored in
6539 *MULT_VAL and *ADD_VAL. */
6541 static int
6542 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
6543 add_val, mult_val, last_consec_insn)
6544 int first_benefit;
6545 rtx p;
6546 rtx src_reg;
6547 rtx dest_reg;
6548 rtx *add_val;
6549 rtx *mult_val;
6550 rtx *last_consec_insn;
6552 int count;
6553 enum rtx_code code;
6554 int benefit;
6555 rtx temp;
6556 rtx set;
6558 /* Indicate that this is a giv so that we can update the value produced in
6559 each insn of the multi-insn sequence.
6561 This induction structure will be used only by the call to
6562 general_induction_var below, so we can allocate it on our stack.
6563 If this is a giv, our caller will replace the induct var entry with
6564 a new induction structure. */
6565 struct induction *v
6566 = (struct induction *) alloca (sizeof (struct induction));
6567 v->src_reg = src_reg;
6568 v->mult_val = *mult_val;
6569 v->add_val = *add_val;
6570 v->benefit = first_benefit;
6571 v->cant_derive = 0;
6572 v->derive_adjustment = 0;
6574 REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
6575 REG_IV_INFO (REGNO (dest_reg)) = v;
6577 count = VARRAY_INT (n_times_set, REGNO (dest_reg)) - 1;
6579 while (count > 0)
6581 p = NEXT_INSN (p);
6582 code = GET_CODE (p);
6584 /* If libcall, skip to end of call sequence. */
6585 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
6586 p = XEXP (temp, 0);
6588 if (code == INSN
6589 && (set = single_set (p))
6590 && GET_CODE (SET_DEST (set)) == REG
6591 && SET_DEST (set) == dest_reg
6592 && (general_induction_var (SET_SRC (set), &src_reg,
6593 add_val, mult_val, 0, &benefit)
6594 /* Giv created by equivalent expression. */
6595 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
6596 && general_induction_var (XEXP (temp, 0), &src_reg,
6597 add_val, mult_val, 0, &benefit)))
6598 && src_reg == v->src_reg)
6600 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
6601 benefit += libcall_benefit (p);
6603 count--;
6604 v->mult_val = *mult_val;
6605 v->add_val = *add_val;
6606 v->benefit = benefit;
6608 else if (code != NOTE)
6610 /* Allow insns that set something other than this giv to a
6611 constant. Such insns are needed on machines which cannot
6612 include long constants and should not disqualify a giv. */
6613 if (code == INSN
6614 && (set = single_set (p))
6615 && SET_DEST (set) != dest_reg
6616 && CONSTANT_P (SET_SRC (set)))
6617 continue;
6619 REG_IV_TYPE (REGNO (dest_reg)) = UNKNOWN_INDUCT;
6620 return 0;
6624 *last_consec_insn = p;
6625 return v->benefit;
6628 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6629 represented by G1. If no such expression can be found, or it is clear that
6630 it cannot possibly be a valid address, 0 is returned.
6632 To perform the computation, we note that
6633 G1 = x * v + a and
6634 G2 = y * v + b
6635 where `v' is the biv.
6637 So G2 = (y/b) * G1 + (b - a*y/x).
6639 Note that MULT = y/x.
6641 Update: A and B are now allowed to be additive expressions such that
6642 B contains all variables in A. That is, computing B-A will not require
6643 subtracting variables. */
6645 static rtx
6646 express_from_1 (a, b, mult)
6647 rtx a, b, mult;
6649 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
6651 if (mult == const0_rtx)
6652 return b;
6654 /* If MULT is not 1, we cannot handle A with non-constants, since we
6655 would then be required to subtract multiples of the registers in A.
6656 This is theoretically possible, and may even apply to some Fortran
6657 constructs, but it is a lot of work and we do not attempt it here. */
6659 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
6660 return NULL_RTX;
6662 /* In general these structures are sorted top to bottom (down the PLUS
6663 chain), but not left to right across the PLUS. If B is a higher
6664 order giv than A, we can strip one level and recurse. If A is higher
6665 order, we'll eventually bail out, but won't know that until the end.
6666 If they are the same, we'll strip one level around this loop. */
6668 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
6670 rtx ra, rb, oa, ob, tmp;
6672 ra = XEXP (a, 0), oa = XEXP (a, 1);
6673 if (GET_CODE (ra) == PLUS)
6674 tmp = ra, ra = oa, oa = tmp;
6676 rb = XEXP (b, 0), ob = XEXP (b, 1);
6677 if (GET_CODE (rb) == PLUS)
6678 tmp = rb, rb = ob, ob = tmp;
6680 if (rtx_equal_p (ra, rb))
6681 /* We matched: remove one reg completely. */
6682 a = oa, b = ob;
6683 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
6684 /* An alternate match. */
6685 a = oa, b = rb;
6686 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
6687 /* An alternate match. */
6688 a = ra, b = ob;
6689 else
6691 /* Indicates an extra register in B. Strip one level from B and
6692 recurse, hoping B was the higher order expression. */
6693 ob = express_from_1 (a, ob, mult);
6694 if (ob == NULL_RTX)
6695 return NULL_RTX;
6696 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
6700 /* Here we are at the last level of A, go through the cases hoping to
6701 get rid of everything but a constant. */
6703 if (GET_CODE (a) == PLUS)
6705 rtx ra, oa;
6707 ra = XEXP (a, 0), oa = XEXP (a, 1);
6708 if (rtx_equal_p (oa, b))
6709 oa = ra;
6710 else if (!rtx_equal_p (ra, b))
6711 return NULL_RTX;
6713 if (GET_CODE (oa) != CONST_INT)
6714 return NULL_RTX;
6716 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
6718 else if (GET_CODE (a) == CONST_INT)
6720 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
6722 else if (GET_CODE (b) == PLUS)
6724 if (rtx_equal_p (a, XEXP (b, 0)))
6725 return XEXP (b, 1);
6726 else if (rtx_equal_p (a, XEXP (b, 1)))
6727 return XEXP (b, 0);
6728 else
6729 return NULL_RTX;
6731 else if (rtx_equal_p (a, b))
6732 return const0_rtx;
6734 return NULL_RTX;
6738 express_from (g1, g2)
6739 struct induction *g1, *g2;
6741 rtx mult, add;
6743 /* The value that G1 will be multiplied by must be a constant integer. Also,
6744 the only chance we have of getting a valid address is if b*c/a (see above
6745 for notation) is also an integer. */
6746 if (GET_CODE (g1->mult_val) == CONST_INT
6747 && GET_CODE (g2->mult_val) == CONST_INT)
6749 if (g1->mult_val == const0_rtx
6750 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
6751 return NULL_RTX;
6752 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
6754 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
6755 mult = const1_rtx;
6756 else
6758 /* ??? Find out if the one is a multiple of the other? */
6759 return NULL_RTX;
6762 add = express_from_1 (g1->add_val, g2->add_val, mult);
6763 if (add == NULL_RTX)
6764 return NULL_RTX;
6766 /* Form simplified final result. */
6767 if (mult == const0_rtx)
6768 return add;
6769 else if (mult == const1_rtx)
6770 mult = g1->dest_reg;
6771 else
6772 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
6774 if (add == const0_rtx)
6775 return mult;
6776 else
6778 if (GET_CODE (add) == PLUS
6779 && CONSTANT_P (XEXP (add, 1)))
6781 rtx tem = XEXP (add, 1);
6782 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
6783 add = tem;
6786 return gen_rtx_PLUS (g2->mode, mult, add);
6791 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6792 represented by G1. This indicates that G2 should be combined with G1 and
6793 that G2 can use (either directly or via an address expression) a register
6794 used to represent G1. */
6796 static rtx
6797 combine_givs_p (g1, g2)
6798 struct induction *g1, *g2;
6800 rtx tem = express_from (g1, g2);
6802 /* If these givs are identical, they can be combined. We use the results
6803 of express_from because the addends are not in a canonical form, so
6804 rtx_equal_p is a weaker test. */
6805 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
6806 combination to be the other way round. */
6807 if (tem == g1->dest_reg
6808 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
6810 return g1->dest_reg;
6813 /* If G2 can be expressed as a function of G1 and that function is valid
6814 as an address and no more expensive than using a register for G2,
6815 the expression of G2 in terms of G1 can be used. */
6816 if (tem != NULL_RTX
6817 && g2->giv_type == DEST_ADDR
6818 && memory_address_p (g2->mem_mode, tem)
6819 /* ??? Looses, especially with -fforce-addr, where *g2->location
6820 will always be a register, and so anything more complicated
6821 gets discarded. */
6822 #if 0
6823 #ifdef ADDRESS_COST
6824 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
6825 #else
6826 && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
6827 #endif
6828 #endif
6831 return tem;
6834 return NULL_RTX;
6837 struct combine_givs_stats
6839 int giv_number;
6840 int total_benefit;
6843 static int
6844 cmp_combine_givs_stats (x, y)
6845 struct combine_givs_stats *x, *y;
6847 int d;
6848 d = y->total_benefit - x->total_benefit;
6849 /* Stabilize the sort. */
6850 if (!d)
6851 d = x->giv_number - y->giv_number;
6852 return d;
6855 /* Check all pairs of givs for iv_class BL and see if any can be combined with
6856 any other. If so, point SAME to the giv combined with and set NEW_REG to
6857 be an expression (in terms of the other giv's DEST_REG) equivalent to the
6858 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
6860 static void
6861 combine_givs (bl)
6862 struct iv_class *bl;
6864 /* Additional benefit to add for being combined multiple times. */
6865 const int extra_benefit = 3;
6867 struct induction *g1, *g2, **giv_array;
6868 int i, j, k, giv_count;
6869 struct combine_givs_stats *stats;
6870 rtx *can_combine;
6872 /* Count givs, because bl->giv_count is incorrect here. */
6873 giv_count = 0;
6874 for (g1 = bl->giv; g1; g1 = g1->next_iv)
6875 if (!g1->ignore)
6876 giv_count++;
6878 giv_array
6879 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
6880 i = 0;
6881 for (g1 = bl->giv; g1; g1 = g1->next_iv)
6882 if (!g1->ignore)
6883 giv_array[i++] = g1;
6885 stats = (struct combine_givs_stats *) alloca (giv_count * sizeof (*stats));
6886 bzero ((char *) stats, giv_count * sizeof (*stats));
6888 can_combine = (rtx *) alloca (giv_count * giv_count * sizeof(rtx));
6889 bzero ((char *) can_combine, giv_count * giv_count * sizeof(rtx));
6891 for (i = 0; i < giv_count; i++)
6893 int this_benefit;
6894 rtx single_use;
6896 g1 = giv_array[i];
6897 stats[i].giv_number = i;
6899 /* If a DEST_REG GIV is used only once, do not allow it to combine
6900 with anything, for in doing so we will gain nothing that cannot
6901 be had by simply letting the GIV with which we would have combined
6902 to be reduced on its own. The losage shows up in particular with
6903 DEST_ADDR targets on hosts with reg+reg addressing, though it can
6904 be seen elsewhere as well. */
6905 if (g1->giv_type == DEST_REG
6906 && (single_use = VARRAY_RTX (reg_single_usage, REGNO (g1->dest_reg)))
6907 && single_use != const0_rtx)
6908 continue;
6910 this_benefit = g1->benefit;
6911 /* Add an additional weight for zero addends. */
6912 if (g1->no_const_addval)
6913 this_benefit += 1;
6915 for (j = 0; j < giv_count; j++)
6917 rtx this_combine;
6919 g2 = giv_array[j];
6920 if (g1 != g2
6921 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
6923 can_combine[i*giv_count + j] = this_combine;
6924 this_benefit += g2->benefit + extra_benefit;
6927 stats[i].total_benefit = this_benefit;
6930 /* Iterate, combining until we can't. */
6931 restart:
6932 qsort (stats, giv_count, sizeof(*stats), cmp_combine_givs_stats);
6934 if (loop_dump_stream)
6936 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
6937 for (k = 0; k < giv_count; k++)
6939 g1 = giv_array[stats[k].giv_number];
6940 if (!g1->combined_with && !g1->same)
6941 fprintf (loop_dump_stream, " {%d, %d}",
6942 INSN_UID (giv_array[stats[k].giv_number]->insn),
6943 stats[k].total_benefit);
6945 putc ('\n', loop_dump_stream);
6948 for (k = 0; k < giv_count; k++)
6950 int g1_add_benefit = 0;
6952 i = stats[k].giv_number;
6953 g1 = giv_array[i];
6955 /* If it has already been combined, skip. */
6956 if (g1->combined_with || g1->same)
6957 continue;
6959 for (j = 0; j < giv_count; j++)
6961 g2 = giv_array[j];
6962 if (g1 != g2 && can_combine[i*giv_count + j]
6963 /* If it has already been combined, skip. */
6964 && ! g2->same && ! g2->combined_with)
6966 int l;
6968 g2->new_reg = can_combine[i*giv_count + j];
6969 g2->same = g1;
6970 g1->combined_with++;
6971 g1->lifetime += g2->lifetime;
6973 g1_add_benefit += g2->benefit;
6975 /* ??? The new final_[bg]iv_value code does a much better job
6976 of finding replaceable giv's, and hence this code may no
6977 longer be necessary. */
6978 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
6979 g1_add_benefit -= copy_cost;
6981 /* To help optimize the next set of combinations, remove
6982 this giv from the benefits of other potential mates. */
6983 for (l = 0; l < giv_count; ++l)
6985 int m = stats[l].giv_number;
6986 if (can_combine[m*giv_count + j])
6987 stats[l].total_benefit -= g2->benefit + extra_benefit;
6990 if (loop_dump_stream)
6991 fprintf (loop_dump_stream,
6992 "giv at %d combined with giv at %d\n",
6993 INSN_UID (g2->insn), INSN_UID (g1->insn));
6997 /* To help optimize the next set of combinations, remove
6998 this giv from the benefits of other potential mates. */
6999 if (g1->combined_with)
7001 for (j = 0; j < giv_count; ++j)
7003 int m = stats[j].giv_number;
7004 if (can_combine[m*giv_count + i])
7005 stats[j].total_benefit -= g1->benefit + extra_benefit;
7008 g1->benefit += g1_add_benefit;
7010 /* We've finished with this giv, and everything it touched.
7011 Restart the combination so that proper weights for the
7012 rest of the givs are properly taken into account. */
7013 /* ??? Ideally we would compact the arrays at this point, so
7014 as to not cover old ground. But sanely compacting
7015 can_combine is tricky. */
7016 goto restart;
7021 struct recombine_givs_stats
7023 int giv_number;
7024 int start_luid, end_luid;
7027 /* Used below as comparison function for qsort. We want a ascending luid
7028 when scanning the array starting at the end, thus the arguments are
7029 used in reverse. */
7030 static int
7031 cmp_recombine_givs_stats (x, y)
7032 struct recombine_givs_stats *x, *y;
7034 int d;
7035 d = y->start_luid - x->start_luid;
7036 /* Stabilize the sort. */
7037 if (!d)
7038 d = y->giv_number - x->giv_number;
7039 return d;
7042 /* Scan X, which is a part of INSN, for the end of life of a giv. Also
7043 look for the start of life of a giv where the start has not been seen
7044 yet to unlock the search for the end of its life.
7045 Only consider givs that belong to BIV.
7046 Return the total number of lifetime ends that have been found. */
7047 static int
7048 find_life_end (x, stats, insn, biv)
7049 rtx x, insn, biv;
7050 struct recombine_givs_stats *stats;
7052 enum rtx_code code;
7053 char *fmt;
7054 int i, j;
7055 int retval;
7057 code = GET_CODE (x);
7058 switch (code)
7060 case SET:
7062 rtx reg = SET_DEST (x);
7063 if (GET_CODE (reg) == REG)
7065 int regno = REGNO (reg);
7066 struct induction *v = REG_IV_INFO (regno);
7068 if (REG_IV_TYPE (regno) == GENERAL_INDUCT
7069 && ! v->ignore
7070 && v->src_reg == biv
7071 && stats[v->ix].end_luid <= 0)
7073 /* If we see a 0 here for end_luid, it means that we have
7074 scanned the entire loop without finding any use at all.
7075 We must not predicate this code on a start_luid match
7076 since that would make the test fail for givs that have
7077 been hoisted out of inner loops. */
7078 if (stats[v->ix].end_luid == 0)
7080 stats[v->ix].end_luid = stats[v->ix].start_luid;
7081 return 1 + find_life_end (SET_SRC (x), stats, insn, biv);
7083 else if (stats[v->ix].start_luid == INSN_LUID (insn))
7084 stats[v->ix].end_luid = 0;
7086 return find_life_end (SET_SRC (x), stats, insn, biv);
7088 break;
7090 case REG:
7092 int regno = REGNO (x);
7093 struct induction *v = REG_IV_INFO (regno);
7095 if (REG_IV_TYPE (regno) == GENERAL_INDUCT
7096 && ! v->ignore
7097 && v->src_reg == biv
7098 && stats[v->ix].end_luid == 0)
7100 while (INSN_UID (insn) >= max_uid_for_loop)
7101 insn = NEXT_INSN (insn);
7102 stats[v->ix].end_luid = INSN_LUID (insn);
7103 return 1;
7105 return 0;
7107 case LABEL_REF:
7108 case CONST_DOUBLE:
7109 case CONST_INT:
7110 case CONST:
7111 return 0;
7112 default:
7113 break;
7115 fmt = GET_RTX_FORMAT (code);
7116 retval = 0;
7117 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7119 if (fmt[i] == 'e')
7120 retval += find_life_end (XEXP (x, i), stats, insn, biv);
7122 else if (fmt[i] == 'E')
7123 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7124 retval += find_life_end (XVECEXP (x, i, j), stats, insn, biv);
7126 return retval;
7129 /* For each giv that has been combined with another, look if
7130 we can combine it with the most recently used one instead.
7131 This tends to shorten giv lifetimes, and helps the next step:
7132 try to derive givs from other givs. */
7133 static void
7134 recombine_givs (bl, loop_start, loop_end, unroll_p)
7135 struct iv_class *bl;
7136 rtx loop_start, loop_end;
7137 int unroll_p;
7139 struct induction *v, **giv_array, *last_giv;
7140 struct recombine_givs_stats *stats;
7141 int giv_count;
7142 int i, rescan;
7143 int ends_need_computing;
7145 for (giv_count = 0, v = bl->giv; v; v = v->next_iv)
7147 if (! v->ignore)
7148 giv_count++;
7150 giv_array
7151 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
7152 stats = (struct recombine_givs_stats *) alloca (giv_count * sizeof *stats);
7154 /* Initialize stats and set up the ix field for each giv in stats to name
7155 the corresponding index into stats. */
7156 for (i = 0, v = bl->giv; v; v = v->next_iv)
7158 rtx p;
7160 if (v->ignore)
7161 continue;
7162 giv_array[i] = v;
7163 stats[i].giv_number = i;
7164 /* If this giv has been hoisted out of an inner loop, use the luid of
7165 the previous insn. */
7166 for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
7167 p = PREV_INSN (p);
7168 stats[i].start_luid = INSN_LUID (p);
7169 v->ix = i;
7170 i++;
7173 qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
7175 /* Do the actual most-recently-used recombination. */
7176 for (last_giv = 0, i = giv_count - 1; i >= 0; i--)
7178 v = giv_array[stats[i].giv_number];
7179 if (v->same)
7181 struct induction *old_same = v->same;
7182 rtx new_combine;
7184 /* combine_givs_p actually says if we can make this transformation.
7185 The other tests are here only to avoid keeping a giv alive
7186 that could otherwise be eliminated. */
7187 if (last_giv
7188 && ((old_same->maybe_dead && ! old_same->combined_with)
7189 || ! last_giv->maybe_dead
7190 || last_giv->combined_with)
7191 && (new_combine = combine_givs_p (last_giv, v)))
7193 old_same->combined_with--;
7194 v->new_reg = new_combine;
7195 v->same = last_giv;
7196 last_giv->combined_with++;
7197 /* No need to update lifetimes / benefits here since we have
7198 already decided what to reduce. */
7200 if (loop_dump_stream)
7202 fprintf (loop_dump_stream,
7203 "giv at %d recombined with giv at %d as ",
7204 INSN_UID (v->insn), INSN_UID (last_giv->insn));
7205 print_rtl (loop_dump_stream, v->new_reg);
7206 putc ('\n', loop_dump_stream);
7208 continue;
7210 v = v->same;
7212 else if (v->giv_type != DEST_REG)
7213 continue;
7214 if (! last_giv
7215 || (last_giv->maybe_dead && ! last_giv->combined_with)
7216 || ! v->maybe_dead
7217 || v->combined_with)
7218 last_giv = v;
7221 ends_need_computing = 0;
7222 /* For each DEST_REG giv, compute lifetime starts, and try to compute
7223 lifetime ends from regscan info. */
7224 for (i = 0, v = bl->giv; v; v = v->next_iv)
7226 if (v->ignore)
7227 continue;
7228 if (v->giv_type == DEST_ADDR)
7230 /* Loop unrolling of an inner loop can even create new DEST_REG
7231 givs. */
7232 rtx p;
7233 for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
7234 p = PREV_INSN (p);
7235 stats[i].start_luid = stats[i].end_luid = INSN_LUID (p);
7236 if (p != v->insn)
7237 stats[i].end_luid++;
7239 else /* v->giv_type == DEST_REG */
7241 if (v->last_use)
7243 stats[i].start_luid = INSN_LUID (v->insn);
7244 stats[i].end_luid = INSN_LUID (v->last_use);
7246 else if (INSN_UID (v->insn) >= max_uid_for_loop)
7248 rtx p;
7249 /* This insn has been created by loop optimization on an inner
7250 loop. We don't have a proper start_luid that will match
7251 when we see the first set. But we do know that there will
7252 be no use before the set, so we can set end_luid to 0 so that
7253 we'll start looking for the last use right away. */
7254 for (p = PREV_INSN (v->insn); INSN_UID (p) >= max_uid_for_loop; )
7255 p = PREV_INSN (p);
7256 stats[i].start_luid = INSN_LUID (p);
7257 stats[i].end_luid = 0;
7258 ends_need_computing++;
7260 else
7262 int regno = REGNO (v->dest_reg);
7263 int count = VARRAY_INT (n_times_set, regno) - 1;
7264 rtx p = v->insn;
7266 /* Find the first insn that sets the giv, so that we can verify
7267 if this giv's lifetime wraps around the loop. We also need
7268 the luid of the first setting insn in order to detect the
7269 last use properly. */
7270 while (count)
7272 p = prev_nonnote_insn (p);
7273 if (reg_set_p (v->dest_reg, p))
7274 count--;
7277 stats[i].start_luid = INSN_LUID (p);
7278 if (stats[i].start_luid > uid_luid[REGNO_FIRST_UID (regno)])
7280 stats[i].end_luid = -1;
7281 ends_need_computing++;
7283 else
7285 stats[i].end_luid = uid_luid[REGNO_LAST_UID (regno)];
7286 if (stats[i].end_luid > INSN_LUID (loop_end))
7288 stats[i].end_luid = -1;
7289 ends_need_computing++;
7294 i++;
7297 /* If the regscan information was unconclusive for one or more DEST_REG
7298 givs, scan the all insn in the loop to find out lifetime ends. */
7299 if (ends_need_computing)
7301 rtx biv = bl->biv->src_reg;
7302 rtx p = loop_end;
7306 if (p == loop_start)
7307 p = loop_end;
7308 p = PREV_INSN (p);
7309 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
7310 continue;
7311 ends_need_computing -= find_life_end (PATTERN (p), stats, p, biv);
7313 while (ends_need_computing);
7316 /* Set start_luid back to the last insn that sets the giv. This allows
7317 more combinations. */
7318 for (i = 0, v = bl->giv; v; v = v->next_iv)
7320 if (v->ignore)
7321 continue;
7322 if (INSN_UID (v->insn) < max_uid_for_loop)
7323 stats[i].start_luid = INSN_LUID (v->insn);
7324 i++;
7327 /* Now adjust lifetime ends by taking combined givs into account. */
7328 for (i = 0, v = bl->giv; v; v = v->next_iv)
7330 unsigned luid;
7331 int j;
7333 if (v->ignore)
7334 continue;
7335 if (v->same && ! v->same->ignore)
7337 j = v->same->ix;
7338 luid = stats[i].start_luid;
7339 /* Use unsigned arithmetic to model loop wrap-around. */
7340 if (luid - stats[j].start_luid
7341 > (unsigned) stats[j].end_luid - stats[j].start_luid)
7342 stats[j].end_luid = luid;
7344 i++;
7347 qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
7349 /* Try to derive DEST_REG givs from previous DEST_REG givs with the
7350 same mult_val and non-overlapping lifetime. This reduces register
7351 pressure.
7352 Once we find a DEST_REG giv that is suitable to derive others from,
7353 we set last_giv to this giv, and try to derive as many other DEST_REG
7354 givs from it without joining overlapping lifetimes. If we then
7355 encounter a DEST_REG giv that we can't derive, we set rescan to the
7356 index for this giv (unless rescan is already set).
7357 When we are finished with the current LAST_GIV (i.e. the inner loop
7358 terminates), we start again with rescan, which then becomes the new
7359 LAST_GIV. */
7360 for (i = giv_count - 1; i >= 0; i = rescan)
7362 int life_start, life_end;
7364 for (last_giv = 0, rescan = -1; i >= 0; i--)
7366 rtx sum;
7368 v = giv_array[stats[i].giv_number];
7369 if (v->giv_type != DEST_REG || v->derived_from || v->same)
7370 continue;
7371 if (! last_giv)
7373 /* Don't use a giv that's likely to be dead to derive
7374 others - that would be likely to keep that giv alive. */
7375 if (! v->maybe_dead || v->combined_with)
7377 last_giv = v;
7378 life_start = stats[i].start_luid;
7379 life_end = stats[i].end_luid;
7381 continue;
7383 /* Use unsigned arithmetic to model loop wrap around. */
7384 if (((unsigned) stats[i].start_luid - life_start
7385 >= (unsigned) life_end - life_start)
7386 && ((unsigned) stats[i].end_luid - life_start
7387 > (unsigned) life_end - life_start)
7388 /* Check that the giv insn we're about to use for deriving
7389 precedes all uses of that giv. Note that initializing the
7390 derived giv would defeat the purpose of reducing register
7391 pressure.
7392 ??? We could arrange to move the insn. */
7393 && ((unsigned) stats[i].end_luid - INSN_LUID (loop_start)
7394 > (unsigned) stats[i].start_luid - INSN_LUID (loop_start))
7395 && rtx_equal_p (last_giv->mult_val, v->mult_val)
7396 /* ??? Could handle libcalls, but would need more logic. */
7397 && ! find_reg_note (v->insn, REG_RETVAL, NULL_RTX)
7398 /* We would really like to know if for any giv that v
7399 is combined with, v->insn or any intervening biv increment
7400 dominates that combined giv. However, we
7401 don't have this detailed control flow information.
7402 N.B. since last_giv will be reduced, it is valid
7403 anywhere in the loop, so we don't need to check the
7404 validity of last_giv.
7405 We rely here on the fact that v->always_executed implies that
7406 there is no jump to someplace else in the loop before the
7407 giv insn, and hence any insn that is executed before the
7408 giv insn in the loop will have a lower luid. */
7409 && (v->always_executed || ! v->combined_with)
7410 && (sum = express_from (last_giv, v))
7411 /* Make sure we don't make the add more expensive. ADD_COST
7412 doesn't take different costs of registers and constants into
7413 account, so compare the cost of the actual SET_SRCs. */
7414 && (rtx_cost (sum, SET)
7415 <= rtx_cost (SET_SRC (single_set (v->insn)), SET))
7416 /* ??? unroll can't understand anything but reg + const_int
7417 sums. It would be cleaner to fix unroll. */
7418 && ((GET_CODE (sum) == PLUS
7419 && GET_CODE (XEXP (sum, 0)) == REG
7420 && GET_CODE (XEXP (sum, 1)) == CONST_INT)
7421 || ! unroll_p)
7422 && validate_change (v->insn, &PATTERN (v->insn),
7423 gen_rtx_SET (VOIDmode, v->dest_reg, sum), 0))
7425 v->derived_from = last_giv;
7426 life_end = stats[i].end_luid;
7428 if (loop_dump_stream)
7430 fprintf (loop_dump_stream,
7431 "giv at %d derived from %d as ",
7432 INSN_UID (v->insn), INSN_UID (last_giv->insn));
7433 print_rtl (loop_dump_stream, sum);
7434 putc ('\n', loop_dump_stream);
7437 else if (rescan < 0)
7438 rescan = i;
7443 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
7445 void
7446 emit_iv_add_mult (b, m, a, reg, insert_before)
7447 rtx b; /* initial value of basic induction variable */
7448 rtx m; /* multiplicative constant */
7449 rtx a; /* additive constant */
7450 rtx reg; /* destination register */
7451 rtx insert_before;
7453 rtx seq;
7454 rtx result;
7456 /* Prevent unexpected sharing of these rtx. */
7457 a = copy_rtx (a);
7458 b = copy_rtx (b);
7460 /* Increase the lifetime of any invariants moved further in code. */
7461 update_reg_last_use (a, insert_before);
7462 update_reg_last_use (b, insert_before);
7463 update_reg_last_use (m, insert_before);
7465 start_sequence ();
7466 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
7467 if (reg != result)
7468 emit_move_insn (reg, result);
7469 seq = gen_sequence ();
7470 end_sequence ();
7472 emit_insn_before (seq, insert_before);
7474 /* It is entirely possible that the expansion created lots of new
7475 registers. Iterate over the sequence we just created and
7476 record them all. */
7478 if (GET_CODE (seq) == SEQUENCE)
7480 int i;
7481 for (i = 0; i < XVECLEN (seq, 0); ++i)
7483 rtx set = single_set (XVECEXP (seq, 0, i));
7484 if (set && GET_CODE (SET_DEST (set)) == REG)
7485 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
7488 else if (GET_CODE (seq) == SET
7489 && GET_CODE (SET_DEST (seq)) == REG)
7490 record_base_value (REGNO (SET_DEST (seq)), SET_SRC (seq), 0);
7493 /* Test whether A * B can be computed without
7494 an actual multiply insn. Value is 1 if so. */
7496 static int
7497 product_cheap_p (a, b)
7498 rtx a;
7499 rtx b;
7501 int i;
7502 rtx tmp;
7503 struct obstack *old_rtl_obstack = rtl_obstack;
7504 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
7505 int win = 1;
7507 /* If only one is constant, make it B. */
7508 if (GET_CODE (a) == CONST_INT)
7509 tmp = a, a = b, b = tmp;
7511 /* If first constant, both constant, so don't need multiply. */
7512 if (GET_CODE (a) == CONST_INT)
7513 return 1;
7515 /* If second not constant, neither is constant, so would need multiply. */
7516 if (GET_CODE (b) != CONST_INT)
7517 return 0;
7519 /* One operand is constant, so might not need multiply insn. Generate the
7520 code for the multiply and see if a call or multiply, or long sequence
7521 of insns is generated. */
7523 rtl_obstack = &temp_obstack;
7524 start_sequence ();
7525 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
7526 tmp = gen_sequence ();
7527 end_sequence ();
7529 if (GET_CODE (tmp) == SEQUENCE)
7531 if (XVEC (tmp, 0) == 0)
7532 win = 1;
7533 else if (XVECLEN (tmp, 0) > 3)
7534 win = 0;
7535 else
7536 for (i = 0; i < XVECLEN (tmp, 0); i++)
7538 rtx insn = XVECEXP (tmp, 0, i);
7540 if (GET_CODE (insn) != INSN
7541 || (GET_CODE (PATTERN (insn)) == SET
7542 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
7543 || (GET_CODE (PATTERN (insn)) == PARALLEL
7544 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
7545 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
7547 win = 0;
7548 break;
7552 else if (GET_CODE (tmp) == SET
7553 && GET_CODE (SET_SRC (tmp)) == MULT)
7554 win = 0;
7555 else if (GET_CODE (tmp) == PARALLEL
7556 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
7557 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
7558 win = 0;
7560 /* Free any storage we obtained in generating this multiply and restore rtl
7561 allocation to its normal obstack. */
7562 obstack_free (&temp_obstack, storage);
7563 rtl_obstack = old_rtl_obstack;
7565 return win;
7568 /* Check to see if loop can be terminated by a "decrement and branch until
7569 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7570 Also try reversing an increment loop to a decrement loop
7571 to see if the optimization can be performed.
7572 Value is nonzero if optimization was performed. */
7574 /* This is useful even if the architecture doesn't have such an insn,
7575 because it might change a loops which increments from 0 to n to a loop
7576 which decrements from n to 0. A loop that decrements to zero is usually
7577 faster than one that increments from zero. */
7579 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7580 such as approx_final_value, biv_total_increment, loop_iterations, and
7581 final_[bg]iv_value. */
7583 static int
7584 check_dbra_loop (loop_end, insn_count, loop_start, loop_info)
7585 rtx loop_end;
7586 int insn_count;
7587 rtx loop_start;
7588 struct loop_info *loop_info;
7590 struct iv_class *bl;
7591 rtx reg;
7592 rtx jump_label;
7593 rtx final_value;
7594 rtx start_value;
7595 rtx new_add_val;
7596 rtx comparison;
7597 rtx before_comparison;
7598 rtx p;
7599 rtx jump;
7600 rtx first_compare;
7601 int compare_and_branch;
7603 /* If last insn is a conditional branch, and the insn before tests a
7604 register value, try to optimize it. Otherwise, we can't do anything. */
7606 jump = PREV_INSN (loop_end);
7607 comparison = get_condition_for_loop (jump);
7608 if (comparison == 0)
7609 return 0;
7611 /* Try to compute whether the compare/branch at the loop end is one or
7612 two instructions. */
7613 get_condition (jump, &first_compare);
7614 if (first_compare == jump)
7615 compare_and_branch = 1;
7616 else if (first_compare == prev_nonnote_insn (jump))
7617 compare_and_branch = 2;
7618 else
7619 return 0;
7621 /* Check all of the bivs to see if the compare uses one of them.
7622 Skip biv's set more than once because we can't guarantee that
7623 it will be zero on the last iteration. Also skip if the biv is
7624 used between its update and the test insn. */
7626 for (bl = loop_iv_list; bl; bl = bl->next)
7628 if (bl->biv_count == 1
7629 && bl->biv->dest_reg == XEXP (comparison, 0)
7630 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
7631 first_compare))
7632 break;
7635 if (! bl)
7636 return 0;
7638 /* Look for the case where the basic induction variable is always
7639 nonnegative, and equals zero on the last iteration.
7640 In this case, add a reg_note REG_NONNEG, which allows the
7641 m68k DBRA instruction to be used. */
7643 if (((GET_CODE (comparison) == GT
7644 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
7645 && INTVAL (XEXP (comparison, 1)) == -1)
7646 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
7647 && GET_CODE (bl->biv->add_val) == CONST_INT
7648 && INTVAL (bl->biv->add_val) < 0)
7650 /* Initial value must be greater than 0,
7651 init_val % -dec_value == 0 to ensure that it equals zero on
7652 the last iteration */
7654 if (GET_CODE (bl->initial_value) == CONST_INT
7655 && INTVAL (bl->initial_value) > 0
7656 && (INTVAL (bl->initial_value)
7657 % (-INTVAL (bl->biv->add_val))) == 0)
7659 /* register always nonnegative, add REG_NOTE to branch */
7660 REG_NOTES (PREV_INSN (loop_end))
7661 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7662 REG_NOTES (PREV_INSN (loop_end)));
7663 bl->nonneg = 1;
7665 return 1;
7668 /* If the decrement is 1 and the value was tested as >= 0 before
7669 the loop, then we can safely optimize. */
7670 for (p = loop_start; p; p = PREV_INSN (p))
7672 if (GET_CODE (p) == CODE_LABEL)
7673 break;
7674 if (GET_CODE (p) != JUMP_INSN)
7675 continue;
7677 before_comparison = get_condition_for_loop (p);
7678 if (before_comparison
7679 && XEXP (before_comparison, 0) == bl->biv->dest_reg
7680 && GET_CODE (before_comparison) == LT
7681 && XEXP (before_comparison, 1) == const0_rtx
7682 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
7683 && INTVAL (bl->biv->add_val) == -1)
7685 REG_NOTES (PREV_INSN (loop_end))
7686 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7687 REG_NOTES (PREV_INSN (loop_end)));
7688 bl->nonneg = 1;
7690 return 1;
7694 else if (INTVAL (bl->biv->add_val) > 0)
7696 /* Try to change inc to dec, so can apply above optimization. */
7697 /* Can do this if:
7698 all registers modified are induction variables or invariant,
7699 all memory references have non-overlapping addresses
7700 (obviously true if only one write)
7701 allow 2 insns for the compare/jump at the end of the loop. */
7702 /* Also, we must avoid any instructions which use both the reversed
7703 biv and another biv. Such instructions will fail if the loop is
7704 reversed. We meet this condition by requiring that either
7705 no_use_except_counting is true, or else that there is only
7706 one biv. */
7707 int num_nonfixed_reads = 0;
7708 /* 1 if the iteration var is used only to count iterations. */
7709 int no_use_except_counting = 0;
7710 /* 1 if the loop has no memory store, or it has a single memory store
7711 which is reversible. */
7712 int reversible_mem_store = 1;
7714 if (bl->giv_count == 0
7715 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
7717 rtx bivreg = regno_reg_rtx[bl->regno];
7719 /* If there are no givs for this biv, and the only exit is the
7720 fall through at the end of the loop, then
7721 see if perhaps there are no uses except to count. */
7722 no_use_except_counting = 1;
7723 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7724 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
7726 rtx set = single_set (p);
7728 if (set && GET_CODE (SET_DEST (set)) == REG
7729 && REGNO (SET_DEST (set)) == bl->regno)
7730 /* An insn that sets the biv is okay. */
7732 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
7733 || p == prev_nonnote_insn (loop_end))
7734 /* Don't bother about the end test. */
7736 else if (reg_mentioned_p (bivreg, PATTERN (p)))
7738 no_use_except_counting = 0;
7739 break;
7744 if (no_use_except_counting)
7745 ; /* no need to worry about MEMs. */
7746 else if (num_mem_sets <= 1)
7748 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7749 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
7750 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
7752 /* If the loop has a single store, and the destination address is
7753 invariant, then we can't reverse the loop, because this address
7754 might then have the wrong value at loop exit.
7755 This would work if the source was invariant also, however, in that
7756 case, the insn should have been moved out of the loop. */
7758 if (num_mem_sets == 1)
7760 struct induction *v;
7762 reversible_mem_store
7763 = (! unknown_address_altered
7764 && ! invariant_p (XEXP (loop_store_mems, 0)));
7766 /* If the store depends on a register that is set after the
7767 store, it depends on the initial value, and is thus not
7768 reversible. */
7769 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
7771 if (v->giv_type == DEST_REG
7772 && reg_mentioned_p (v->dest_reg,
7773 XEXP (loop_store_mems, 0))
7774 && loop_insn_first_p (first_loop_store_insn, v->insn))
7775 reversible_mem_store = 0;
7779 else
7780 return 0;
7782 /* This code only acts for innermost loops. Also it simplifies
7783 the memory address check by only reversing loops with
7784 zero or one memory access.
7785 Two memory accesses could involve parts of the same array,
7786 and that can't be reversed.
7787 If the biv is used only for counting, than we don't need to worry
7788 about all these things. */
7790 if ((num_nonfixed_reads <= 1
7791 && !loop_has_call
7792 && !loop_has_volatile
7793 && reversible_mem_store
7794 && (bl->giv_count + bl->biv_count + num_mem_sets
7795 + num_movables + compare_and_branch == insn_count)
7796 && (bl == loop_iv_list && bl->next == 0))
7797 || no_use_except_counting)
7799 rtx tem;
7801 /* Loop can be reversed. */
7802 if (loop_dump_stream)
7803 fprintf (loop_dump_stream, "Can reverse loop\n");
7805 /* Now check other conditions:
7807 The increment must be a constant, as must the initial value,
7808 and the comparison code must be LT.
7810 This test can probably be improved since +/- 1 in the constant
7811 can be obtained by changing LT to LE and vice versa; this is
7812 confusing. */
7814 if (comparison
7815 /* for constants, LE gets turned into LT */
7816 && (GET_CODE (comparison) == LT
7817 || (GET_CODE (comparison) == LE
7818 && no_use_except_counting)))
7820 HOST_WIDE_INT add_val, add_adjust, comparison_val;
7821 rtx initial_value, comparison_value;
7822 int nonneg = 0;
7823 enum rtx_code cmp_code;
7824 int comparison_const_width;
7825 unsigned HOST_WIDE_INT comparison_sign_mask;
7827 add_val = INTVAL (bl->biv->add_val);
7828 comparison_value = XEXP (comparison, 1);
7829 if (GET_MODE (comparison_value) == VOIDmode)
7830 comparison_const_width
7831 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
7832 else
7833 comparison_const_width
7834 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
7835 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
7836 comparison_const_width = HOST_BITS_PER_WIDE_INT;
7837 comparison_sign_mask
7838 = (unsigned HOST_WIDE_INT)1 << (comparison_const_width - 1);
7840 /* If the comparison value is not a loop invariant, then we
7841 can not reverse this loop.
7843 ??? If the insns which initialize the comparison value as
7844 a whole compute an invariant result, then we could move
7845 them out of the loop and proceed with loop reversal. */
7846 if (!invariant_p (comparison_value))
7847 return 0;
7849 if (GET_CODE (comparison_value) == CONST_INT)
7850 comparison_val = INTVAL (comparison_value);
7851 initial_value = bl->initial_value;
7853 /* Normalize the initial value if it is an integer and
7854 has no other use except as a counter. This will allow
7855 a few more loops to be reversed. */
7856 if (no_use_except_counting
7857 && GET_CODE (comparison_value) == CONST_INT
7858 && GET_CODE (initial_value) == CONST_INT)
7860 comparison_val = comparison_val - INTVAL (bl->initial_value);
7861 /* The code below requires comparison_val to be a multiple
7862 of add_val in order to do the loop reversal, so
7863 round up comparison_val to a multiple of add_val.
7864 Since comparison_value is constant, we know that the
7865 current comparison code is LT. */
7866 comparison_val = comparison_val + add_val - 1;
7867 comparison_val
7868 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
7869 /* We postpone overflow checks for COMPARISON_VAL here;
7870 even if there is an overflow, we might still be able to
7871 reverse the loop, if converting the loop exit test to
7872 NE is possible. */
7873 initial_value = const0_rtx;
7876 /* First check if we can do a vanilla loop reversal. */
7877 if (initial_value == const0_rtx
7878 /* If we have a decrement_and_branch_on_count, prefer
7879 the NE test, since this will allow that instruction to
7880 be generated. Note that we must use a vanilla loop
7881 reversal if the biv is used to calculate a giv or has
7882 a non-counting use. */
7883 #if ! defined (HAVE_decrement_and_branch_until_zero) && defined (HAVE_decrement_and_branch_on_count)
7884 && (! (add_val == 1 && loop_info->vtop
7885 && (bl->biv_count == 0
7886 || no_use_except_counting)))
7887 #endif
7888 && GET_CODE (comparison_value) == CONST_INT
7889 /* Now do postponed overflow checks on COMPARISON_VAL. */
7890 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
7891 & comparison_sign_mask))
7893 /* Register will always be nonnegative, with value
7894 0 on last iteration */
7895 add_adjust = add_val;
7896 nonneg = 1;
7897 cmp_code = GE;
7899 else if (add_val == 1 && loop_info->vtop
7900 && (bl->biv_count == 0
7901 || no_use_except_counting))
7903 add_adjust = 0;
7904 cmp_code = NE;
7906 else
7907 return 0;
7909 if (GET_CODE (comparison) == LE)
7910 add_adjust -= add_val;
7912 /* If the initial value is not zero, or if the comparison
7913 value is not an exact multiple of the increment, then we
7914 can not reverse this loop. */
7915 if (initial_value == const0_rtx
7916 && GET_CODE (comparison_value) == CONST_INT)
7918 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
7919 return 0;
7921 else
7923 if (! no_use_except_counting || add_val != 1)
7924 return 0;
7927 final_value = comparison_value;
7929 /* Reset these in case we normalized the initial value
7930 and comparison value above. */
7931 if (GET_CODE (comparison_value) == CONST_INT
7932 && GET_CODE (initial_value) == CONST_INT)
7934 comparison_value = GEN_INT (comparison_val);
7935 final_value
7936 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
7938 bl->initial_value = initial_value;
7940 /* Save some info needed to produce the new insns. */
7941 reg = bl->biv->dest_reg;
7942 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
7943 if (jump_label == pc_rtx)
7944 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
7945 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
7947 /* Set start_value; if this is not a CONST_INT, we need
7948 to generate a SUB.
7949 Initialize biv to start_value before loop start.
7950 The old initializing insn will be deleted as a
7951 dead store by flow.c. */
7952 if (initial_value == const0_rtx
7953 && GET_CODE (comparison_value) == CONST_INT)
7955 start_value = GEN_INT (comparison_val - add_adjust);
7956 emit_insn_before (gen_move_insn (reg, start_value),
7957 loop_start);
7959 else if (GET_CODE (initial_value) == CONST_INT)
7961 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
7962 enum machine_mode mode = GET_MODE (reg);
7963 enum insn_code icode
7964 = add_optab->handlers[(int) mode].insn_code;
7965 if (! (*insn_operand_predicate[icode][0]) (reg, mode)
7966 || ! ((*insn_operand_predicate[icode][1])
7967 (comparison_value, mode))
7968 || ! (*insn_operand_predicate[icode][2]) (offset, mode))
7969 return 0;
7970 start_value
7971 = gen_rtx_PLUS (mode, comparison_value, offset);
7972 emit_insn_before ((GEN_FCN (icode)
7973 (reg, comparison_value, offset)),
7974 loop_start);
7975 if (GET_CODE (comparison) == LE)
7976 final_value = gen_rtx_PLUS (mode, comparison_value,
7977 GEN_INT (add_val));
7979 else if (! add_adjust)
7981 enum machine_mode mode = GET_MODE (reg);
7982 enum insn_code icode
7983 = sub_optab->handlers[(int) mode].insn_code;
7984 if (! (*insn_operand_predicate[icode][0]) (reg, mode)
7985 || ! ((*insn_operand_predicate[icode][1])
7986 (comparison_value, mode))
7987 || ! ((*insn_operand_predicate[icode][2])
7988 (initial_value, mode)))
7989 return 0;
7990 start_value
7991 = gen_rtx_MINUS (mode, comparison_value, initial_value);
7992 emit_insn_before ((GEN_FCN (icode)
7993 (reg, comparison_value, initial_value)),
7994 loop_start);
7996 else
7997 /* We could handle the other cases too, but it'll be
7998 better to have a testcase first. */
7999 return 0;
8001 /* We may not have a single insn which can increment a reg, so
8002 create a sequence to hold all the insns from expand_inc. */
8003 start_sequence ();
8004 expand_inc (reg, new_add_val);
8005 tem = gen_sequence ();
8006 end_sequence ();
8008 p = emit_insn_before (tem, bl->biv->insn);
8009 delete_insn (bl->biv->insn);
8011 /* Update biv info to reflect its new status. */
8012 bl->biv->insn = p;
8013 bl->initial_value = start_value;
8014 bl->biv->add_val = new_add_val;
8016 /* Update loop info. */
8017 loop_info->initial_value = reg;
8018 loop_info->initial_equiv_value = reg;
8019 loop_info->final_value = const0_rtx;
8020 loop_info->final_equiv_value = const0_rtx;
8021 loop_info->comparison_value = const0_rtx;
8022 loop_info->comparison_code = cmp_code;
8023 loop_info->increment = new_add_val;
8025 /* Inc LABEL_NUSES so that delete_insn will
8026 not delete the label. */
8027 LABEL_NUSES (XEXP (jump_label, 0)) ++;
8029 /* Emit an insn after the end of the loop to set the biv's
8030 proper exit value if it is used anywhere outside the loop. */
8031 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
8032 || ! bl->init_insn
8033 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
8034 emit_insn_after (gen_move_insn (reg, final_value),
8035 loop_end);
8037 /* Delete compare/branch at end of loop. */
8038 delete_insn (PREV_INSN (loop_end));
8039 if (compare_and_branch == 2)
8040 delete_insn (first_compare);
8042 /* Add new compare/branch insn at end of loop. */
8043 start_sequence ();
8044 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
8045 GET_MODE (reg), 0, 0,
8046 XEXP (jump_label, 0));
8047 tem = gen_sequence ();
8048 end_sequence ();
8049 emit_jump_insn_before (tem, loop_end);
8051 for (tem = PREV_INSN (loop_end);
8052 tem && GET_CODE (tem) != JUMP_INSN;
8053 tem = PREV_INSN (tem))
8056 if (tem)
8057 JUMP_LABEL (tem) = XEXP (jump_label, 0);
8059 if (nonneg)
8061 if (tem)
8063 /* Increment of LABEL_NUSES done above. */
8064 /* Register is now always nonnegative,
8065 so add REG_NONNEG note to the branch. */
8066 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
8067 REG_NOTES (tem));
8069 bl->nonneg = 1;
8072 /* Mark that this biv has been reversed. Each giv which depends
8073 on this biv, and which is also live past the end of the loop
8074 will have to be fixed up. */
8076 bl->reversed = 1;
8078 if (loop_dump_stream)
8080 fprintf (loop_dump_stream, "Reversed loop");
8081 if (bl->nonneg)
8082 fprintf (loop_dump_stream, " and added reg_nonneg\n");
8083 else
8084 fprintf (loop_dump_stream, "\n");
8087 return 1;
8092 return 0;
8095 /* Verify whether the biv BL appears to be eliminable,
8096 based on the insns in the loop that refer to it.
8097 LOOP_START is the first insn of the loop, and END is the end insn.
8099 If ELIMINATE_P is non-zero, actually do the elimination.
8101 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8102 determine whether invariant insns should be placed inside or at the
8103 start of the loop. */
8105 static int
8106 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
8107 struct iv_class *bl;
8108 rtx loop_start;
8109 rtx end;
8110 int eliminate_p;
8111 int threshold, insn_count;
8113 rtx reg = bl->biv->dest_reg;
8114 rtx p;
8116 /* Scan all insns in the loop, stopping if we find one that uses the
8117 biv in a way that we cannot eliminate. */
8119 for (p = loop_start; p != end; p = NEXT_INSN (p))
8121 enum rtx_code code = GET_CODE (p);
8122 rtx where = threshold >= insn_count ? loop_start : p;
8124 /* If this is a libcall that sets a giv, skip ahead to its end. */
8125 if (GET_RTX_CLASS (code) == 'i')
8127 rtx note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
8129 if (note)
8131 rtx last = XEXP (note, 0);
8132 rtx set = single_set (last);
8134 if (set && GET_CODE (SET_DEST (set)) == REG)
8136 int regno = REGNO (SET_DEST (set));
8138 if (REG_IV_TYPE (regno) == GENERAL_INDUCT
8139 && REG_IV_INFO (regno)->src_reg == bl->biv->src_reg)
8140 p = last;
8144 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
8145 && reg_mentioned_p (reg, PATTERN (p))
8146 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
8148 if (loop_dump_stream)
8149 fprintf (loop_dump_stream,
8150 "Cannot eliminate biv %d: biv used in insn %d.\n",
8151 bl->regno, INSN_UID (p));
8152 break;
8156 if (p == end)
8158 if (loop_dump_stream)
8159 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
8160 bl->regno, eliminate_p ? "was" : "can be");
8161 return 1;
8164 return 0;
8167 /* INSN and REFERENCE are instructions in the same insn chain.
8168 Return non-zero if INSN is first. */
8171 loop_insn_first_p (insn, reference)
8172 rtx insn, reference;
8174 rtx p, q;
8176 for (p = insn, q = reference; ;)
8178 /* Start with test for not first so that INSN == REFERENCE yields not
8179 first. */
8180 if (q == insn || ! p)
8181 return 0;
8182 if (p == reference || ! q)
8183 return 1;
8185 if (INSN_UID (p) < max_uid_for_loop
8186 && INSN_UID (q) < max_uid_for_loop)
8187 return INSN_LUID (p) < INSN_LUID (q);
8189 if (INSN_UID (p) >= max_uid_for_loop)
8190 p = NEXT_INSN (p);
8191 if (INSN_UID (q) >= max_uid_for_loop)
8192 q = NEXT_INSN (q);
8196 /* We are trying to eliminate BIV in INSN using GIV. Return non-zero if
8197 the offset that we have to take into account due to auto-increment /
8198 div derivation is zero. */
8199 static int
8200 biv_elimination_giv_has_0_offset (biv, giv, insn)
8201 struct induction *biv, *giv;
8202 rtx insn;
8204 /* If the giv V had the auto-inc address optimization applied
8205 to it, and INSN occurs between the giv insn and the biv
8206 insn, then we'd have to adjust the value used here.
8207 This is rare, so we don't bother to make this possible. */
8208 if (giv->auto_inc_opt
8209 && ((loop_insn_first_p (giv->insn, insn)
8210 && loop_insn_first_p (insn, biv->insn))
8211 || (loop_insn_first_p (biv->insn, insn)
8212 && loop_insn_first_p (insn, giv->insn))))
8213 return 0;
8215 /* If the giv V was derived from another giv, and INSN does
8216 not occur between the giv insn and the biv insn, then we'd
8217 have to adjust the value used here. This is rare, so we don't
8218 bother to make this possible. */
8219 if (giv->derived_from
8220 && ! (giv->always_executed
8221 && loop_insn_first_p (giv->insn, insn)
8222 && loop_insn_first_p (insn, biv->insn)))
8223 return 0;
8224 if (giv->same
8225 && giv->same->derived_from
8226 && ! (giv->same->always_executed
8227 && loop_insn_first_p (giv->same->insn, insn)
8228 && loop_insn_first_p (insn, biv->insn)))
8229 return 0;
8231 return 1;
8234 /* If BL appears in X (part of the pattern of INSN), see if we can
8235 eliminate its use. If so, return 1. If not, return 0.
8237 If BIV does not appear in X, return 1.
8239 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
8240 where extra insns should be added. Depending on how many items have been
8241 moved out of the loop, it will either be before INSN or at the start of
8242 the loop. */
8244 static int
8245 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
8246 rtx x, insn;
8247 struct iv_class *bl;
8248 int eliminate_p;
8249 rtx where;
8251 enum rtx_code code = GET_CODE (x);
8252 rtx reg = bl->biv->dest_reg;
8253 enum machine_mode mode = GET_MODE (reg);
8254 struct induction *v;
8255 rtx arg, tem;
8256 #ifdef HAVE_cc0
8257 rtx new;
8258 #endif
8259 int arg_operand;
8260 char *fmt;
8261 int i, j;
8263 switch (code)
8265 case REG:
8266 /* If we haven't already been able to do something with this BIV,
8267 we can't eliminate it. */
8268 if (x == reg)
8269 return 0;
8270 return 1;
8272 case SET:
8273 /* If this sets the BIV, it is not a problem. */
8274 if (SET_DEST (x) == reg)
8275 return 1;
8277 /* If this is an insn that defines a giv, it is also ok because
8278 it will go away when the giv is reduced. */
8279 for (v = bl->giv; v; v = v->next_iv)
8280 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
8281 return 1;
8283 #ifdef HAVE_cc0
8284 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
8286 /* Can replace with any giv that was reduced and
8287 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8288 Require a constant for MULT_VAL, so we know it's nonzero.
8289 ??? We disable this optimization to avoid potential
8290 overflows. */
8292 for (v = bl->giv; v; v = v->next_iv)
8293 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
8294 && v->add_val == const0_rtx
8295 && ! v->ignore && ! v->maybe_dead && v->always_computable
8296 && v->mode == mode
8297 && 0)
8299 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8300 continue;
8302 if (! eliminate_p)
8303 return 1;
8305 /* If the giv has the opposite direction of change,
8306 then reverse the comparison. */
8307 if (INTVAL (v->mult_val) < 0)
8308 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
8309 const0_rtx, v->new_reg);
8310 else
8311 new = v->new_reg;
8313 /* We can probably test that giv's reduced reg. */
8314 if (validate_change (insn, &SET_SRC (x), new, 0))
8315 return 1;
8318 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8319 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8320 Require a constant for MULT_VAL, so we know it's nonzero.
8321 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8322 overflow problem. */
8324 for (v = bl->giv; v; v = v->next_iv)
8325 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
8326 && ! v->ignore && ! v->maybe_dead && v->always_computable
8327 && v->mode == mode
8328 && (GET_CODE (v->add_val) == SYMBOL_REF
8329 || GET_CODE (v->add_val) == LABEL_REF
8330 || GET_CODE (v->add_val) == CONST
8331 || (GET_CODE (v->add_val) == REG
8332 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
8334 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8335 continue;
8337 if (! eliminate_p)
8338 return 1;
8340 /* If the giv has the opposite direction of change,
8341 then reverse the comparison. */
8342 if (INTVAL (v->mult_val) < 0)
8343 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
8344 v->new_reg);
8345 else
8346 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
8347 copy_rtx (v->add_val));
8349 /* Replace biv with the giv's reduced register. */
8350 update_reg_last_use (v->add_val, insn);
8351 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8352 return 1;
8354 /* Insn doesn't support that constant or invariant. Copy it
8355 into a register (it will be a loop invariant.) */
8356 tem = gen_reg_rtx (GET_MODE (v->new_reg));
8358 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
8359 where);
8361 /* Substitute the new register for its invariant value in
8362 the compare expression. */
8363 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
8364 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8365 return 1;
8368 #endif
8369 break;
8371 case COMPARE:
8372 case EQ: case NE:
8373 case GT: case GE: case GTU: case GEU:
8374 case LT: case LE: case LTU: case LEU:
8375 /* See if either argument is the biv. */
8376 if (XEXP (x, 0) == reg)
8377 arg = XEXP (x, 1), arg_operand = 1;
8378 else if (XEXP (x, 1) == reg)
8379 arg = XEXP (x, 0), arg_operand = 0;
8380 else
8381 break;
8383 if (CONSTANT_P (arg))
8385 /* First try to replace with any giv that has constant positive
8386 mult_val and constant add_val. We might be able to support
8387 negative mult_val, but it seems complex to do it in general. */
8389 for (v = bl->giv; v; v = v->next_iv)
8390 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
8391 && (GET_CODE (v->add_val) == SYMBOL_REF
8392 || GET_CODE (v->add_val) == LABEL_REF
8393 || GET_CODE (v->add_val) == CONST
8394 || (GET_CODE (v->add_val) == REG
8395 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
8396 && ! v->ignore && ! v->maybe_dead && v->always_computable
8397 && v->mode == mode)
8399 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8400 continue;
8402 if (! eliminate_p)
8403 return 1;
8405 /* Replace biv with the giv's reduced reg. */
8406 XEXP (x, 1-arg_operand) = v->new_reg;
8408 /* If all constants are actually constant integers and
8409 the derived constant can be directly placed in the COMPARE,
8410 do so. */
8411 if (GET_CODE (arg) == CONST_INT
8412 && GET_CODE (v->mult_val) == CONST_INT
8413 && GET_CODE (v->add_val) == CONST_INT
8414 && validate_change (insn, &XEXP (x, arg_operand),
8415 GEN_INT (INTVAL (arg)
8416 * INTVAL (v->mult_val)
8417 + INTVAL (v->add_val)), 0))
8418 return 1;
8420 /* Otherwise, load it into a register. */
8421 tem = gen_reg_rtx (mode);
8422 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
8423 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
8424 return 1;
8426 /* If that failed, put back the change we made above. */
8427 XEXP (x, 1-arg_operand) = reg;
8430 /* Look for giv with positive constant mult_val and nonconst add_val.
8431 Insert insns to calculate new compare value.
8432 ??? Turn this off due to possible overflow. */
8434 for (v = bl->giv; v; v = v->next_iv)
8435 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
8436 && ! v->ignore && ! v->maybe_dead && v->always_computable
8437 && v->mode == mode
8438 && 0)
8440 rtx tem;
8442 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8443 continue;
8445 if (! eliminate_p)
8446 return 1;
8448 tem = gen_reg_rtx (mode);
8450 /* Replace biv with giv's reduced register. */
8451 validate_change (insn, &XEXP (x, 1 - arg_operand),
8452 v->new_reg, 1);
8454 /* Compute value to compare against. */
8455 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
8456 /* Use it in this insn. */
8457 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8458 if (apply_change_group ())
8459 return 1;
8462 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
8464 if (invariant_p (arg) == 1)
8466 /* Look for giv with constant positive mult_val and nonconst
8467 add_val. Insert insns to compute new compare value.
8468 ??? Turn this off due to possible overflow. */
8470 for (v = bl->giv; v; v = v->next_iv)
8471 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
8472 && ! v->ignore && ! v->maybe_dead && v->always_computable
8473 && v->mode == mode
8474 && 0)
8476 rtx tem;
8478 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8479 continue;
8481 if (! eliminate_p)
8482 return 1;
8484 tem = gen_reg_rtx (mode);
8486 /* Replace biv with giv's reduced register. */
8487 validate_change (insn, &XEXP (x, 1 - arg_operand),
8488 v->new_reg, 1);
8490 /* Compute value to compare against. */
8491 emit_iv_add_mult (arg, v->mult_val, v->add_val,
8492 tem, where);
8493 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8494 if (apply_change_group ())
8495 return 1;
8499 /* This code has problems. Basically, you can't know when
8500 seeing if we will eliminate BL, whether a particular giv
8501 of ARG will be reduced. If it isn't going to be reduced,
8502 we can't eliminate BL. We can try forcing it to be reduced,
8503 but that can generate poor code.
8505 The problem is that the benefit of reducing TV, below should
8506 be increased if BL can actually be eliminated, but this means
8507 we might have to do a topological sort of the order in which
8508 we try to process biv. It doesn't seem worthwhile to do
8509 this sort of thing now. */
8511 #if 0
8512 /* Otherwise the reg compared with had better be a biv. */
8513 if (GET_CODE (arg) != REG
8514 || REG_IV_TYPE (REGNO (arg)) != BASIC_INDUCT)
8515 return 0;
8517 /* Look for a pair of givs, one for each biv,
8518 with identical coefficients. */
8519 for (v = bl->giv; v; v = v->next_iv)
8521 struct induction *tv;
8523 if (v->ignore || v->maybe_dead || v->mode != mode)
8524 continue;
8526 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
8527 if (! tv->ignore && ! tv->maybe_dead
8528 && rtx_equal_p (tv->mult_val, v->mult_val)
8529 && rtx_equal_p (tv->add_val, v->add_val)
8530 && tv->mode == mode)
8532 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8533 continue;
8535 if (! eliminate_p)
8536 return 1;
8538 /* Replace biv with its giv's reduced reg. */
8539 XEXP (x, 1-arg_operand) = v->new_reg;
8540 /* Replace other operand with the other giv's
8541 reduced reg. */
8542 XEXP (x, arg_operand) = tv->new_reg;
8543 return 1;
8546 #endif
8549 /* If we get here, the biv can't be eliminated. */
8550 return 0;
8552 case MEM:
8553 /* If this address is a DEST_ADDR giv, it doesn't matter if the
8554 biv is used in it, since it will be replaced. */
8555 for (v = bl->giv; v; v = v->next_iv)
8556 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
8557 return 1;
8558 break;
8560 default:
8561 break;
8564 /* See if any subexpression fails elimination. */
8565 fmt = GET_RTX_FORMAT (code);
8566 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8568 switch (fmt[i])
8570 case 'e':
8571 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
8572 eliminate_p, where))
8573 return 0;
8574 break;
8576 case 'E':
8577 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8578 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
8579 eliminate_p, where))
8580 return 0;
8581 break;
8585 return 1;
8588 /* Return nonzero if the last use of REG
8589 is in an insn following INSN in the same basic block. */
8591 static int
8592 last_use_this_basic_block (reg, insn)
8593 rtx reg;
8594 rtx insn;
8596 rtx n;
8597 for (n = insn;
8598 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
8599 n = NEXT_INSN (n))
8601 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
8602 return 1;
8604 return 0;
8607 /* Called via `note_stores' to record the initial value of a biv. Here we
8608 just record the location of the set and process it later. */
8610 static void
8611 record_initial (dest, set)
8612 rtx dest;
8613 rtx set;
8615 struct iv_class *bl;
8617 if (GET_CODE (dest) != REG
8618 || REGNO (dest) >= max_reg_before_loop
8619 || REG_IV_TYPE (REGNO (dest)) != BASIC_INDUCT)
8620 return;
8622 bl = reg_biv_class[REGNO (dest)];
8624 /* If this is the first set found, record it. */
8625 if (bl->init_insn == 0)
8627 bl->init_insn = note_insn;
8628 bl->init_set = set;
8632 /* If any of the registers in X are "old" and currently have a last use earlier
8633 than INSN, update them to have a last use of INSN. Their actual last use
8634 will be the previous insn but it will not have a valid uid_luid so we can't
8635 use it. */
8637 static void
8638 update_reg_last_use (x, insn)
8639 rtx x;
8640 rtx insn;
8642 /* Check for the case where INSN does not have a valid luid. In this case,
8643 there is no need to modify the regno_last_uid, as this can only happen
8644 when code is inserted after the loop_end to set a pseudo's final value,
8645 and hence this insn will never be the last use of x. */
8646 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
8647 && INSN_UID (insn) < max_uid_for_loop
8648 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
8649 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
8650 else
8652 register int i, j;
8653 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
8654 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
8656 if (fmt[i] == 'e')
8657 update_reg_last_use (XEXP (x, i), insn);
8658 else if (fmt[i] == 'E')
8659 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8660 update_reg_last_use (XVECEXP (x, i, j), insn);
8665 /* Given a jump insn JUMP, return the condition that will cause it to branch
8666 to its JUMP_LABEL. If the condition cannot be understood, or is an
8667 inequality floating-point comparison which needs to be reversed, 0 will
8668 be returned.
8670 If EARLIEST is non-zero, it is a pointer to a place where the earliest
8671 insn used in locating the condition was found. If a replacement test
8672 of the condition is desired, it should be placed in front of that
8673 insn and we will be sure that the inputs are still valid.
8675 The condition will be returned in a canonical form to simplify testing by
8676 callers. Specifically:
8678 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
8679 (2) Both operands will be machine operands; (cc0) will have been replaced.
8680 (3) If an operand is a constant, it will be the second operand.
8681 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
8682 for GE, GEU, and LEU. */
8685 get_condition (jump, earliest)
8686 rtx jump;
8687 rtx *earliest;
8689 enum rtx_code code;
8690 rtx prev = jump;
8691 rtx set;
8692 rtx tem;
8693 rtx op0, op1;
8694 int reverse_code = 0;
8695 int did_reverse_condition = 0;
8696 enum machine_mode mode;
8698 /* If this is not a standard conditional jump, we can't parse it. */
8699 if (GET_CODE (jump) != JUMP_INSN
8700 || ! condjump_p (jump) || simplejump_p (jump))
8701 return 0;
8703 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
8704 mode = GET_MODE (XEXP (SET_SRC (PATTERN (jump)), 0));
8705 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
8706 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
8708 if (earliest)
8709 *earliest = jump;
8711 /* If this branches to JUMP_LABEL when the condition is false, reverse
8712 the condition. */
8713 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
8714 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
8715 code = reverse_condition (code), did_reverse_condition ^= 1;
8717 /* If we are comparing a register with zero, see if the register is set
8718 in the previous insn to a COMPARE or a comparison operation. Perform
8719 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
8720 in cse.c */
8722 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
8724 /* Set non-zero when we find something of interest. */
8725 rtx x = 0;
8727 #ifdef HAVE_cc0
8728 /* If comparison with cc0, import actual comparison from compare
8729 insn. */
8730 if (op0 == cc0_rtx)
8732 if ((prev = prev_nonnote_insn (prev)) == 0
8733 || GET_CODE (prev) != INSN
8734 || (set = single_set (prev)) == 0
8735 || SET_DEST (set) != cc0_rtx)
8736 return 0;
8738 op0 = SET_SRC (set);
8739 op1 = CONST0_RTX (GET_MODE (op0));
8740 if (earliest)
8741 *earliest = prev;
8743 #endif
8745 /* If this is a COMPARE, pick up the two things being compared. */
8746 if (GET_CODE (op0) == COMPARE)
8748 op1 = XEXP (op0, 1);
8749 op0 = XEXP (op0, 0);
8750 continue;
8752 else if (GET_CODE (op0) != REG)
8753 break;
8755 /* Go back to the previous insn. Stop if it is not an INSN. We also
8756 stop if it isn't a single set or if it has a REG_INC note because
8757 we don't want to bother dealing with it. */
8759 if ((prev = prev_nonnote_insn (prev)) == 0
8760 || GET_CODE (prev) != INSN
8761 || FIND_REG_INC_NOTE (prev, 0)
8762 || (set = single_set (prev)) == 0)
8763 break;
8765 /* If this is setting OP0, get what it sets it to if it looks
8766 relevant. */
8767 if (rtx_equal_p (SET_DEST (set), op0))
8769 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
8771 /* ??? We may not combine comparisons done in a CCmode with
8772 comparisons not done in a CCmode. This is to aid targets
8773 like Alpha that have an IEEE compliant EQ instruction, and
8774 a non-IEEE compliant BEQ instruction. The use of CCmode is
8775 actually artificial, simply to prevent the combination, but
8776 should not affect other platforms.
8778 However, we must allow VOIDmode comparisons to match either
8779 CCmode or non-CCmode comparison, because some ports have
8780 modeless comparisons inside branch patterns.
8782 ??? This mode check should perhaps look more like the mode check
8783 in simplify_comparison in combine. */
8785 if ((GET_CODE (SET_SRC (set)) == COMPARE
8786 || (((code == NE
8787 || (code == LT
8788 && GET_MODE_CLASS (inner_mode) == MODE_INT
8789 && (GET_MODE_BITSIZE (inner_mode)
8790 <= HOST_BITS_PER_WIDE_INT)
8791 && (STORE_FLAG_VALUE
8792 & ((HOST_WIDE_INT) 1
8793 << (GET_MODE_BITSIZE (inner_mode) - 1))))
8794 #ifdef FLOAT_STORE_FLAG_VALUE
8795 || (code == LT
8796 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
8797 && FLOAT_STORE_FLAG_VALUE < 0)
8798 #endif
8800 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
8801 && (((GET_MODE_CLASS (mode) == MODE_CC)
8802 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
8803 || mode == VOIDmode || inner_mode == VOIDmode))
8804 x = SET_SRC (set);
8805 else if (((code == EQ
8806 || (code == GE
8807 && (GET_MODE_BITSIZE (inner_mode)
8808 <= HOST_BITS_PER_WIDE_INT)
8809 && GET_MODE_CLASS (inner_mode) == MODE_INT
8810 && (STORE_FLAG_VALUE
8811 & ((HOST_WIDE_INT) 1
8812 << (GET_MODE_BITSIZE (inner_mode) - 1))))
8813 #ifdef FLOAT_STORE_FLAG_VALUE
8814 || (code == GE
8815 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
8816 && FLOAT_STORE_FLAG_VALUE < 0)
8817 #endif
8819 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
8820 && (((GET_MODE_CLASS (mode) == MODE_CC)
8821 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
8822 || mode == VOIDmode || inner_mode == VOIDmode))
8825 /* We might have reversed a LT to get a GE here. But this wasn't
8826 actually the comparison of data, so we don't flag that we
8827 have had to reverse the condition. */
8828 did_reverse_condition ^= 1;
8829 reverse_code = 1;
8830 x = SET_SRC (set);
8832 else
8833 break;
8836 else if (reg_set_p (op0, prev))
8837 /* If this sets OP0, but not directly, we have to give up. */
8838 break;
8840 if (x)
8842 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
8843 code = GET_CODE (x);
8844 if (reverse_code)
8846 code = reverse_condition (code);
8847 did_reverse_condition ^= 1;
8848 reverse_code = 0;
8851 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
8852 if (earliest)
8853 *earliest = prev;
8857 /* If constant is first, put it last. */
8858 if (CONSTANT_P (op0))
8859 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
8861 /* If OP0 is the result of a comparison, we weren't able to find what
8862 was really being compared, so fail. */
8863 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
8864 return 0;
8866 /* Canonicalize any ordered comparison with integers involving equality
8867 if we can do computations in the relevant mode and we do not
8868 overflow. */
8870 if (GET_CODE (op1) == CONST_INT
8871 && GET_MODE (op0) != VOIDmode
8872 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
8874 HOST_WIDE_INT const_val = INTVAL (op1);
8875 unsigned HOST_WIDE_INT uconst_val = const_val;
8876 unsigned HOST_WIDE_INT max_val
8877 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
8879 switch (code)
8881 case LE:
8882 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
8883 code = LT, op1 = GEN_INT (const_val + 1);
8884 break;
8886 /* When cross-compiling, const_val might be sign-extended from
8887 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
8888 case GE:
8889 if ((HOST_WIDE_INT) (const_val & max_val)
8890 != (((HOST_WIDE_INT) 1
8891 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
8892 code = GT, op1 = GEN_INT (const_val - 1);
8893 break;
8895 case LEU:
8896 if (uconst_val < max_val)
8897 code = LTU, op1 = GEN_INT (uconst_val + 1);
8898 break;
8900 case GEU:
8901 if (uconst_val != 0)
8902 code = GTU, op1 = GEN_INT (uconst_val - 1);
8903 break;
8905 default:
8906 break;
8910 /* If this was floating-point and we reversed anything other than an
8911 EQ or NE, return zero. */
8912 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
8913 && did_reverse_condition && code != NE && code != EQ
8914 && ! flag_fast_math
8915 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
8916 return 0;
8918 #ifdef HAVE_cc0
8919 /* Never return CC0; return zero instead. */
8920 if (op0 == cc0_rtx)
8921 return 0;
8922 #endif
8924 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
8927 /* Similar to above routine, except that we also put an invariant last
8928 unless both operands are invariants. */
8931 get_condition_for_loop (x)
8932 rtx x;
8934 rtx comparison = get_condition (x, NULL_PTR);
8936 if (comparison == 0
8937 || ! invariant_p (XEXP (comparison, 0))
8938 || invariant_p (XEXP (comparison, 1)))
8939 return comparison;
8941 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
8942 XEXP (comparison, 1), XEXP (comparison, 0));
8945 #ifdef HAVE_decrement_and_branch_on_count
8946 /* Instrument loop for insertion of bct instruction. We distinguish between
8947 loops with compile-time bounds and those with run-time bounds.
8948 Information from loop_iterations() is used to compute compile-time bounds.
8949 Run-time bounds should use loop preconditioning, but currently ignored.
8952 static void
8953 insert_bct (loop_start, loop_end, loop_info)
8954 rtx loop_start, loop_end;
8955 struct loop_info *loop_info;
8957 int i;
8958 unsigned HOST_WIDE_INT n_iterations;
8960 int increment_direction, compare_direction;
8962 /* If the loop condition is <= or >=, the number of iteration
8963 is 1 more than the range of the bounds of the loop. */
8964 int add_iteration = 0;
8966 enum machine_mode loop_var_mode = word_mode;
8968 int loop_num = uid_loop_num [INSN_UID (loop_start)];
8970 /* It's impossible to instrument a competely unrolled loop. */
8971 if (loop_info->unroll_number == -1)
8972 return;
8974 /* Make sure that the count register is not in use. */
8975 if (loop_used_count_register [loop_num])
8977 if (loop_dump_stream)
8978 fprintf (loop_dump_stream,
8979 "insert_bct %d: BCT instrumentation failed: count register already in use\n",
8980 loop_num);
8981 return;
8984 /* Make sure that the function has no indirect jumps. */
8985 if (indirect_jump_in_function)
8987 if (loop_dump_stream)
8988 fprintf (loop_dump_stream,
8989 "insert_bct %d: BCT instrumentation failed: indirect jump in function\n",
8990 loop_num);
8991 return;
8994 /* Make sure that the last loop insn is a conditional jump. */
8995 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
8996 || ! condjump_p (PREV_INSN (loop_end))
8997 || simplejump_p (PREV_INSN (loop_end)))
8999 if (loop_dump_stream)
9000 fprintf (loop_dump_stream,
9001 "insert_bct %d: BCT instrumentation failed: invalid jump at loop end\n",
9002 loop_num);
9003 return;
9006 /* Make sure that the loop does not contain a function call
9007 (the count register might be altered by the called function). */
9008 if (loop_has_call)
9010 if (loop_dump_stream)
9011 fprintf (loop_dump_stream,
9012 "insert_bct %d: BCT instrumentation failed: function call in loop\n",
9013 loop_num);
9014 return;
9017 /* Make sure that the loop does not jump via a table.
9018 (the count register might be used to perform the branch on table). */
9019 if (loop_has_tablejump)
9021 if (loop_dump_stream)
9022 fprintf (loop_dump_stream,
9023 "insert_bct %d: BCT instrumentation failed: computed branch in the loop\n",
9024 loop_num);
9025 return;
9028 /* Account for loop unrolling in instrumented iteration count. */
9029 if (loop_info->unroll_number > 1)
9030 n_iterations = loop_info->n_iterations / loop_info->unroll_number;
9031 else
9032 n_iterations = loop_info->n_iterations;
9034 if (n_iterations != 0 && n_iterations < 3)
9036 /* Allow an enclosing outer loop to benefit if possible. */
9037 if (loop_dump_stream)
9038 fprintf (loop_dump_stream,
9039 "insert_bct %d: Too few iterations to benefit from BCT optimization\n",
9040 loop_num);
9041 return;
9044 /* Try to instrument the loop. */
9046 /* Handle the simpler case, where the bounds are known at compile time. */
9047 if (n_iterations > 0)
9049 /* Mark all enclosing loops that they cannot use count register. */
9050 for (i = loop_num; i != -1; i = loop_outer_loop[i])
9051 loop_used_count_register[i] = 1;
9052 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
9053 return;
9056 /* Handle the more complex case, that the bounds are NOT known
9057 at compile time. In this case we generate run_time calculation
9058 of the number of iterations. */
9060 if (loop_info->iteration_var == 0)
9062 if (loop_dump_stream)
9063 fprintf (loop_dump_stream,
9064 "insert_bct %d: BCT Runtime Instrumentation failed: no loop iteration variable found\n",
9065 loop_num);
9066 return;
9069 if (GET_MODE_CLASS (GET_MODE (loop_info->iteration_var)) != MODE_INT
9070 || GET_MODE_SIZE (GET_MODE (loop_info->iteration_var)) != UNITS_PER_WORD)
9072 if (loop_dump_stream)
9073 fprintf (loop_dump_stream,
9074 "insert_bct %d: BCT Runtime Instrumentation failed: loop variable not integer\n",
9075 loop_num);
9076 return;
9079 /* With runtime bounds, if the compare is of the form '!=' we give up */
9080 if (loop_info->comparison_code == NE)
9082 if (loop_dump_stream)
9083 fprintf (loop_dump_stream,
9084 "insert_bct %d: BCT Runtime Instrumentation failed: runtime bounds with != comparison\n",
9085 loop_num);
9086 return;
9088 /* Use common loop preconditioning code instead. */
9089 #if 0
9090 else
9092 /* We rely on the existence of run-time guard to ensure that the
9093 loop executes at least once. */
9094 rtx sequence;
9095 rtx iterations_num_reg;
9097 unsigned HOST_WIDE_INT increment_value_abs
9098 = INTVAL (increment) * increment_direction;
9100 /* make sure that the increment is a power of two, otherwise (an
9101 expensive) divide is needed. */
9102 if (exact_log2 (increment_value_abs) == -1)
9104 if (loop_dump_stream)
9105 fprintf (loop_dump_stream,
9106 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
9107 return;
9110 /* compute the number of iterations */
9111 start_sequence ();
9113 rtx temp_reg;
9115 /* Again, the number of iterations is calculated by:
9117 ; compare-val - initial-val + (increment -1) + additional-iteration
9118 ; num_iterations = -----------------------------------------------------------------
9119 ; increment
9121 /* ??? Do we have to call copy_rtx here before passing rtx to
9122 expand_binop? */
9123 if (compare_direction > 0)
9125 /* <, <= :the loop variable is increasing */
9126 temp_reg = expand_binop (loop_var_mode, sub_optab,
9127 comparison_value, initial_value,
9128 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9130 else
9132 temp_reg = expand_binop (loop_var_mode, sub_optab,
9133 initial_value, comparison_value,
9134 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9137 if (increment_value_abs - 1 + add_iteration != 0)
9138 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
9139 GEN_INT (increment_value_abs - 1
9140 + add_iteration),
9141 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9143 if (increment_value_abs != 1)
9145 /* ??? This will generate an expensive divide instruction for
9146 most targets. The original authors apparently expected this
9147 to be a shift, since they test for power-of-2 divisors above,
9148 but just naively generating a divide instruction will not give
9149 a shift. It happens to work for the PowerPC target because
9150 the rs6000.md file has a divide pattern that emits shifts.
9151 It will probably not work for any other target. */
9152 iterations_num_reg = expand_binop (loop_var_mode, sdiv_optab,
9153 temp_reg,
9154 GEN_INT (increment_value_abs),
9155 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9157 else
9158 iterations_num_reg = temp_reg;
9160 sequence = gen_sequence ();
9161 end_sequence ();
9162 emit_insn_before (sequence, loop_start);
9163 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
9166 return;
9167 #endif /* Complex case */
9170 /* Instrument loop by inserting a bct in it as follows:
9171 1. A new counter register is created.
9172 2. In the head of the loop the new variable is initialized to the value
9173 passed in the loop_num_iterations parameter.
9174 3. At the end of the loop, comparison of the register with 0 is generated.
9175 The created comparison follows the pattern defined for the
9176 decrement_and_branch_on_count insn, so this insn will be generated.
9177 4. The branch on the old variable are deleted. The compare must remain
9178 because it might be used elsewhere. If the loop-variable or condition
9179 register are used elsewhere, they will be eliminated by flow. */
9181 static void
9182 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
9183 rtx loop_start, loop_end;
9184 rtx loop_num_iterations;
9186 rtx counter_reg;
9187 rtx start_label;
9188 rtx sequence;
9190 if (HAVE_decrement_and_branch_on_count)
9192 if (loop_dump_stream)
9194 fputs ("instrument_bct: Inserting BCT (", loop_dump_stream);
9195 if (GET_CODE (loop_num_iterations) == CONST_INT)
9196 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
9197 INTVAL (loop_num_iterations));
9198 else
9199 fputs ("runtime", loop_dump_stream);
9200 fputs (" iterations)", loop_dump_stream);
9203 /* Discard original jump to continue loop. Original compare result
9204 may still be live, so it cannot be discarded explicitly. */
9205 delete_insn (PREV_INSN (loop_end));
9207 /* Insert the label which will delimit the start of the loop. */
9208 start_label = gen_label_rtx ();
9209 emit_label_after (start_label, loop_start);
9211 /* Insert initialization of the count register into the loop header. */
9212 start_sequence ();
9213 counter_reg = gen_reg_rtx (word_mode);
9214 emit_insn (gen_move_insn (counter_reg, loop_num_iterations));
9215 sequence = gen_sequence ();
9216 end_sequence ();
9217 emit_insn_before (sequence, loop_start);
9219 /* Insert new comparison on the count register instead of the
9220 old one, generating the needed BCT pattern (that will be
9221 later recognized by assembly generation phase). */
9222 emit_jump_insn_before (gen_decrement_and_branch_on_count (counter_reg,
9223 start_label),
9224 loop_end);
9225 LABEL_NUSES (start_label)++;
9229 #endif /* HAVE_decrement_and_branch_on_count */
9231 /* Scan the function and determine whether it has indirect (computed) jumps.
9233 This is taken mostly from flow.c; similar code exists elsewhere
9234 in the compiler. It may be useful to put this into rtlanal.c. */
9235 static int
9236 indirect_jump_in_function_p (start)
9237 rtx start;
9239 rtx insn;
9241 for (insn = start; insn; insn = NEXT_INSN (insn))
9242 if (computed_jump_p (insn))
9243 return 1;
9245 return 0;
9248 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9249 documentation for LOOP_MEMS for the definition of `appropriate'.
9250 This function is called from prescan_loop via for_each_rtx. */
9252 static int
9253 insert_loop_mem (mem, data)
9254 rtx *mem;
9255 void *data ATTRIBUTE_UNUSED;
9257 int i;
9258 rtx m = *mem;
9260 if (m == NULL_RTX)
9261 return 0;
9263 switch (GET_CODE (m))
9265 case MEM:
9266 break;
9268 case CONST_DOUBLE:
9269 /* We're not interested in the MEM associated with a
9270 CONST_DOUBLE, so there's no need to traverse into this. */
9271 return -1;
9273 default:
9274 /* This is not a MEM. */
9275 return 0;
9278 /* See if we've already seen this MEM. */
9279 for (i = 0; i < loop_mems_idx; ++i)
9280 if (rtx_equal_p (m, loop_mems[i].mem))
9282 if (GET_MODE (m) != GET_MODE (loop_mems[i].mem))
9283 /* The modes of the two memory accesses are different. If
9284 this happens, something tricky is going on, and we just
9285 don't optimize accesses to this MEM. */
9286 loop_mems[i].optimize = 0;
9288 return 0;
9291 /* Resize the array, if necessary. */
9292 if (loop_mems_idx == loop_mems_allocated)
9294 if (loop_mems_allocated != 0)
9295 loop_mems_allocated *= 2;
9296 else
9297 loop_mems_allocated = 32;
9299 loop_mems = (loop_mem_info*)
9300 xrealloc (loop_mems,
9301 loop_mems_allocated * sizeof (loop_mem_info));
9304 /* Actually insert the MEM. */
9305 loop_mems[loop_mems_idx].mem = m;
9306 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9307 because we can't put it in a register. We still store it in the
9308 table, though, so that if we see the same address later, but in a
9309 non-BLK mode, we'll not think we can optimize it at that point. */
9310 loop_mems[loop_mems_idx].optimize = (GET_MODE (m) != BLKmode);
9311 loop_mems[loop_mems_idx].reg = NULL_RTX;
9312 ++loop_mems_idx;
9314 return 0;
9317 /* Like load_mems, but also ensures that SET_IN_LOOP,
9318 MAY_NOT_OPTIMIZE, REG_SINGLE_USAGE, and INSN_COUNT have the correct
9319 values after load_mems. */
9321 static void
9322 load_mems_and_recount_loop_regs_set (scan_start, end, loop_top, start,
9323 insn_count)
9324 rtx scan_start;
9325 rtx end;
9326 rtx loop_top;
9327 rtx start;
9328 int *insn_count;
9330 int nregs = max_reg_num ();
9332 load_mems (scan_start, end, loop_top, start);
9334 /* Recalculate set_in_loop and friends since load_mems may have
9335 created new registers. */
9336 if (max_reg_num () > nregs)
9338 int i;
9339 int old_nregs;
9341 old_nregs = nregs;
9342 nregs = max_reg_num ();
9344 if ((unsigned) nregs > set_in_loop->num_elements)
9346 /* Grow all the arrays. */
9347 VARRAY_GROW (set_in_loop, nregs);
9348 VARRAY_GROW (n_times_set, nregs);
9349 VARRAY_GROW (may_not_optimize, nregs);
9350 VARRAY_GROW (reg_single_usage, nregs);
9352 /* Clear the arrays */
9353 bzero ((char *) &set_in_loop->data, nregs * sizeof (int));
9354 bzero ((char *) &may_not_optimize->data, nregs * sizeof (char));
9355 bzero ((char *) &reg_single_usage->data, nregs * sizeof (rtx));
9357 count_loop_regs_set (loop_top ? loop_top : start, end,
9358 may_not_optimize, reg_single_usage,
9359 insn_count, nregs);
9361 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
9363 VARRAY_CHAR (may_not_optimize, i) = 1;
9364 VARRAY_INT (set_in_loop, i) = 1;
9367 #ifdef AVOID_CCMODE_COPIES
9368 /* Don't try to move insns which set CC registers if we should not
9369 create CCmode register copies. */
9370 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
9371 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
9372 VARRAY_CHAR (may_not_optimize, i) = 1;
9373 #endif
9375 /* Set n_times_set for the new registers. */
9376 bcopy ((char *) (&set_in_loop->data.i[0] + old_nregs),
9377 (char *) (&n_times_set->data.i[0] + old_nregs),
9378 (nregs - old_nregs) * sizeof (int));
9382 /* Move MEMs into registers for the duration of the loop. SCAN_START
9383 is the first instruction in the loop (as it is executed). The
9384 other parameters are as for next_insn_in_loop. */
9386 static void
9387 load_mems (scan_start, end, loop_top, start)
9388 rtx scan_start;
9389 rtx end;
9390 rtx loop_top;
9391 rtx start;
9393 int maybe_never = 0;
9394 int i;
9395 rtx p;
9396 rtx label = NULL_RTX;
9397 rtx end_label;
9399 if (loop_mems_idx > 0)
9401 /* Nonzero if the next instruction may never be executed. */
9402 int next_maybe_never = 0;
9404 /* Check to see if it's possible that some instructions in the
9405 loop are never executed. */
9406 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
9407 p != NULL_RTX && !maybe_never;
9408 p = next_insn_in_loop (p, scan_start, end, loop_top))
9410 if (GET_CODE (p) == CODE_LABEL)
9411 maybe_never = 1;
9412 else if (GET_CODE (p) == JUMP_INSN
9413 /* If we enter the loop in the middle, and scan
9414 around to the beginning, don't set maybe_never
9415 for that. This must be an unconditional jump,
9416 otherwise the code at the top of the loop might
9417 never be executed. Unconditional jumps are
9418 followed a by barrier then loop end. */
9419 && ! (GET_CODE (p) == JUMP_INSN
9420 && JUMP_LABEL (p) == loop_top
9421 && NEXT_INSN (NEXT_INSN (p)) == end
9422 && simplejump_p (p)))
9424 if (!condjump_p (p))
9425 /* Something complicated. */
9426 maybe_never = 1;
9427 else
9428 /* If there are any more instructions in the loop, they
9429 might not be reached. */
9430 next_maybe_never = 1;
9432 else if (next_maybe_never)
9433 maybe_never = 1;
9436 /* Actually move the MEMs. */
9437 for (i = 0; i < loop_mems_idx; ++i)
9439 int written = 0;
9440 rtx reg;
9441 rtx mem = loop_mems[i].mem;
9442 rtx mem_list_entry;
9444 if (MEM_VOLATILE_P (mem)
9445 || invariant_p (XEXP (mem, 0)) != 1)
9446 /* There's no telling whether or not MEM is modified. */
9447 loop_mems[i].optimize = 0;
9449 /* Go through the MEMs written to in the loop to see if this
9450 one is aliased by one of them. */
9451 mem_list_entry = loop_store_mems;
9452 while (mem_list_entry)
9454 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
9455 written = 1;
9456 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
9457 mem, rtx_varies_p))
9459 /* MEM is indeed aliased by this store. */
9460 loop_mems[i].optimize = 0;
9461 break;
9463 mem_list_entry = XEXP (mem_list_entry, 1);
9466 /* If this MEM is written to, we must be sure that there
9467 are no reads from another MEM that aliases this one. */
9468 if (loop_mems[i].optimize && written)
9470 int j;
9472 for (j = 0; j < loop_mems_idx; ++j)
9474 if (j == i)
9475 continue;
9476 else if (true_dependence (mem,
9477 VOIDmode,
9478 loop_mems[j].mem,
9479 rtx_varies_p))
9481 /* It's not safe to hoist loop_mems[i] out of
9482 the loop because writes to it might not be
9483 seen by reads from loop_mems[j]. */
9484 loop_mems[i].optimize = 0;
9485 break;
9490 if (maybe_never && may_trap_p (mem))
9491 /* We can't access the MEM outside the loop; it might
9492 cause a trap that wouldn't have happened otherwise. */
9493 loop_mems[i].optimize = 0;
9495 if (!loop_mems[i].optimize)
9496 /* We thought we were going to lift this MEM out of the
9497 loop, but later discovered that we could not. */
9498 continue;
9500 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9501 order to keep scan_loop from moving stores to this MEM
9502 out of the loop just because this REG is neither a
9503 user-variable nor used in the loop test. */
9504 reg = gen_reg_rtx (GET_MODE (mem));
9505 REG_USERVAR_P (reg) = 1;
9506 loop_mems[i].reg = reg;
9508 /* Now, replace all references to the MEM with the
9509 corresponding pesudos. */
9510 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
9511 p != NULL_RTX;
9512 p = next_insn_in_loop (p, scan_start, end, loop_top))
9514 rtx_and_int ri;
9515 ri.r = p;
9516 ri.i = i;
9517 for_each_rtx (&p, replace_loop_mem, &ri);
9520 if (!apply_change_group ())
9521 /* We couldn't replace all occurrences of the MEM. */
9522 loop_mems[i].optimize = 0;
9523 else
9525 rtx set;
9527 /* Load the memory immediately before START, which is
9528 the NOTE_LOOP_BEG. */
9529 set = gen_move_insn (reg, mem);
9530 emit_insn_before (set, start);
9532 if (written)
9534 if (label == NULL_RTX)
9536 /* We must compute the former
9537 right-after-the-end label before we insert
9538 the new one. */
9539 end_label = next_label (end);
9540 label = gen_label_rtx ();
9541 emit_label_after (label, end);
9544 /* Store the memory immediately after END, which is
9545 the NOTE_LOOP_END. */
9546 set = gen_move_insn (copy_rtx (mem), reg);
9547 emit_insn_after (set, label);
9550 if (loop_dump_stream)
9552 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
9553 REGNO (reg), (written ? "r/w" : "r/o"));
9554 print_rtl (loop_dump_stream, mem);
9555 fputc ('\n', loop_dump_stream);
9561 if (label != NULL_RTX)
9563 /* Now, we need to replace all references to the previous exit
9564 label with the new one. */
9565 rtx_pair rr;
9566 rr.r1 = end_label;
9567 rr.r2 = label;
9569 for (p = start; p != end; p = NEXT_INSN (p))
9571 for_each_rtx (&p, replace_label, &rr);
9573 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
9574 field. This is not handled by for_each_rtx because it doesn't
9575 handle unprinted ('0') fields. We need to update JUMP_LABEL
9576 because the immediately following unroll pass will use it.
9577 replace_label would not work anyways, because that only handles
9578 LABEL_REFs. */
9579 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
9580 JUMP_LABEL (p) = label;
9585 /* Replace MEM with its associated pseudo register. This function is
9586 called from load_mems via for_each_rtx. DATA is actually an
9587 rtx_and_int * describing the instruction currently being scanned
9588 and the MEM we are currently replacing. */
9590 static int
9591 replace_loop_mem (mem, data)
9592 rtx *mem;
9593 void *data;
9595 rtx_and_int *ri;
9596 rtx insn;
9597 int i;
9598 rtx m = *mem;
9600 if (m == NULL_RTX)
9601 return 0;
9603 switch (GET_CODE (m))
9605 case MEM:
9606 break;
9608 case CONST_DOUBLE:
9609 /* We're not interested in the MEM associated with a
9610 CONST_DOUBLE, so there's no need to traverse into one. */
9611 return -1;
9613 default:
9614 /* This is not a MEM. */
9615 return 0;
9618 ri = (rtx_and_int*) data;
9619 i = ri->i;
9621 if (!rtx_equal_p (loop_mems[i].mem, m))
9622 /* This is not the MEM we are currently replacing. */
9623 return 0;
9625 insn = ri->r;
9627 /* Actually replace the MEM. */
9628 validate_change (insn, mem, loop_mems[i].reg, 1);
9630 return 0;
9633 /* Replace occurrences of the old exit label for the loop with the new
9634 one. DATA is an rtx_pair containing the old and new labels,
9635 respectively. */
9637 static int
9638 replace_label (x, data)
9639 rtx *x;
9640 void *data;
9642 rtx l = *x;
9643 rtx old_label = ((rtx_pair*) data)->r1;
9644 rtx new_label = ((rtx_pair*) data)->r2;
9646 if (l == NULL_RTX)
9647 return 0;
9649 if (GET_CODE (l) != LABEL_REF)
9650 return 0;
9652 if (XEXP (l, 0) != old_label)
9653 return 0;
9655 XEXP (l, 0) = new_label;
9656 ++LABEL_NUSES (new_label);
9657 --LABEL_NUSES (old_label);
9659 return 0;