Fix gnu11 fallout on SPARC
[official-gcc.git] / gcc / stor-layout.c
blob9f0064bb861701ae53292bc6e4418932fd4908cb
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "stringpool.h"
28 #include "varasm.h"
29 #include "print-tree.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "hashtab.h"
34 #include "hash-set.h"
35 #include "vec.h"
36 #include "machmode.h"
37 #include "hard-reg-set.h"
38 #include "input.h"
39 #include "function.h"
40 #include "expr.h"
41 #include "diagnostic-core.h"
42 #include "target.h"
43 #include "langhooks.h"
44 #include "regs.h"
45 #include "params.h"
46 #include "cgraph.h"
47 #include "tree-inline.h"
48 #include "tree-dump.h"
49 #include "gimplify.h"
51 /* Data type for the expressions representing sizes of data types.
52 It is the first integer type laid out. */
53 tree sizetype_tab[(int) stk_type_kind_last];
55 /* If nonzero, this is an upper limit on alignment of structure fields.
56 The value is measured in bits. */
57 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
59 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
60 in the address spaces' address_mode, not pointer_mode. Set only by
61 internal_reference_types called only by a front end. */
62 static int reference_types_internal = 0;
64 static tree self_referential_size (tree);
65 static void finalize_record_size (record_layout_info);
66 static void finalize_type_size (tree);
67 static void place_union_field (record_layout_info, tree);
68 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
69 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
70 HOST_WIDE_INT, tree);
71 #endif
72 extern void debug_rli (record_layout_info);
74 /* Show that REFERENCE_TYPES are internal and should use address_mode.
75 Called only by front end. */
77 void
78 internal_reference_types (void)
80 reference_types_internal = 1;
83 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
84 to serve as the actual size-expression for a type or decl. */
86 tree
87 variable_size (tree size)
89 /* Obviously. */
90 if (TREE_CONSTANT (size))
91 return size;
93 /* If the size is self-referential, we can't make a SAVE_EXPR (see
94 save_expr for the rationale). But we can do something else. */
95 if (CONTAINS_PLACEHOLDER_P (size))
96 return self_referential_size (size);
98 /* If we are in the global binding level, we can't make a SAVE_EXPR
99 since it may end up being shared across functions, so it is up
100 to the front-end to deal with this case. */
101 if (lang_hooks.decls.global_bindings_p ())
102 return size;
104 return save_expr (size);
107 /* An array of functions used for self-referential size computation. */
108 static GTY(()) vec<tree, va_gc> *size_functions;
110 /* Similar to copy_tree_r but do not copy component references involving
111 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
112 and substituted in substitute_in_expr. */
114 static tree
115 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
117 enum tree_code code = TREE_CODE (*tp);
119 /* Stop at types, decls, constants like copy_tree_r. */
120 if (TREE_CODE_CLASS (code) == tcc_type
121 || TREE_CODE_CLASS (code) == tcc_declaration
122 || TREE_CODE_CLASS (code) == tcc_constant)
124 *walk_subtrees = 0;
125 return NULL_TREE;
128 /* This is the pattern built in ada/make_aligning_type. */
129 else if (code == ADDR_EXPR
130 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
132 *walk_subtrees = 0;
133 return NULL_TREE;
136 /* Default case: the component reference. */
137 else if (code == COMPONENT_REF)
139 tree inner;
140 for (inner = TREE_OPERAND (*tp, 0);
141 REFERENCE_CLASS_P (inner);
142 inner = TREE_OPERAND (inner, 0))
145 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
147 *walk_subtrees = 0;
148 return NULL_TREE;
152 /* We're not supposed to have them in self-referential size trees
153 because we wouldn't properly control when they are evaluated.
154 However, not creating superfluous SAVE_EXPRs requires accurate
155 tracking of readonly-ness all the way down to here, which we
156 cannot always guarantee in practice. So punt in this case. */
157 else if (code == SAVE_EXPR)
158 return error_mark_node;
160 else if (code == STATEMENT_LIST)
161 gcc_unreachable ();
163 return copy_tree_r (tp, walk_subtrees, data);
166 /* Given a SIZE expression that is self-referential, return an equivalent
167 expression to serve as the actual size expression for a type. */
169 static tree
170 self_referential_size (tree size)
172 static unsigned HOST_WIDE_INT fnno = 0;
173 vec<tree> self_refs = vNULL;
174 tree param_type_list = NULL, param_decl_list = NULL;
175 tree t, ref, return_type, fntype, fnname, fndecl;
176 unsigned int i;
177 char buf[128];
178 vec<tree, va_gc> *args = NULL;
180 /* Do not factor out simple operations. */
181 t = skip_simple_constant_arithmetic (size);
182 if (TREE_CODE (t) == CALL_EXPR)
183 return size;
185 /* Collect the list of self-references in the expression. */
186 find_placeholder_in_expr (size, &self_refs);
187 gcc_assert (self_refs.length () > 0);
189 /* Obtain a private copy of the expression. */
190 t = size;
191 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
192 return size;
193 size = t;
195 /* Build the parameter and argument lists in parallel; also
196 substitute the former for the latter in the expression. */
197 vec_alloc (args, self_refs.length ());
198 FOR_EACH_VEC_ELT (self_refs, i, ref)
200 tree subst, param_name, param_type, param_decl;
202 if (DECL_P (ref))
204 /* We shouldn't have true variables here. */
205 gcc_assert (TREE_READONLY (ref));
206 subst = ref;
208 /* This is the pattern built in ada/make_aligning_type. */
209 else if (TREE_CODE (ref) == ADDR_EXPR)
210 subst = ref;
211 /* Default case: the component reference. */
212 else
213 subst = TREE_OPERAND (ref, 1);
215 sprintf (buf, "p%d", i);
216 param_name = get_identifier (buf);
217 param_type = TREE_TYPE (ref);
218 param_decl
219 = build_decl (input_location, PARM_DECL, param_name, param_type);
220 DECL_ARG_TYPE (param_decl) = param_type;
221 DECL_ARTIFICIAL (param_decl) = 1;
222 TREE_READONLY (param_decl) = 1;
224 size = substitute_in_expr (size, subst, param_decl);
226 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
227 param_decl_list = chainon (param_decl, param_decl_list);
228 args->quick_push (ref);
231 self_refs.release ();
233 /* Append 'void' to indicate that the number of parameters is fixed. */
234 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
236 /* The 3 lists have been created in reverse order. */
237 param_type_list = nreverse (param_type_list);
238 param_decl_list = nreverse (param_decl_list);
240 /* Build the function type. */
241 return_type = TREE_TYPE (size);
242 fntype = build_function_type (return_type, param_type_list);
244 /* Build the function declaration. */
245 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
246 fnname = get_file_function_name (buf);
247 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
248 for (t = param_decl_list; t; t = DECL_CHAIN (t))
249 DECL_CONTEXT (t) = fndecl;
250 DECL_ARGUMENTS (fndecl) = param_decl_list;
251 DECL_RESULT (fndecl)
252 = build_decl (input_location, RESULT_DECL, 0, return_type);
253 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
255 /* The function has been created by the compiler and we don't
256 want to emit debug info for it. */
257 DECL_ARTIFICIAL (fndecl) = 1;
258 DECL_IGNORED_P (fndecl) = 1;
260 /* It is supposed to be "const" and never throw. */
261 TREE_READONLY (fndecl) = 1;
262 TREE_NOTHROW (fndecl) = 1;
264 /* We want it to be inlined when this is deemed profitable, as
265 well as discarded if every call has been integrated. */
266 DECL_DECLARED_INLINE_P (fndecl) = 1;
268 /* It is made up of a unique return statement. */
269 DECL_INITIAL (fndecl) = make_node (BLOCK);
270 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
271 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
272 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
273 TREE_STATIC (fndecl) = 1;
275 /* Put it onto the list of size functions. */
276 vec_safe_push (size_functions, fndecl);
278 /* Replace the original expression with a call to the size function. */
279 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
282 /* Take, queue and compile all the size functions. It is essential that
283 the size functions be gimplified at the very end of the compilation
284 in order to guarantee transparent handling of self-referential sizes.
285 Otherwise the GENERIC inliner would not be able to inline them back
286 at each of their call sites, thus creating artificial non-constant
287 size expressions which would trigger nasty problems later on. */
289 void
290 finalize_size_functions (void)
292 unsigned int i;
293 tree fndecl;
295 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
297 allocate_struct_function (fndecl, false);
298 set_cfun (NULL);
299 dump_function (TDI_original, fndecl);
300 gimplify_function_tree (fndecl);
301 dump_function (TDI_generic, fndecl);
302 cgraph_node::finalize_function (fndecl, false);
305 vec_free (size_functions);
308 /* Return the machine mode to use for a nonscalar of SIZE bits. The
309 mode must be in class MCLASS, and have exactly that many value bits;
310 it may have padding as well. If LIMIT is nonzero, modes of wider
311 than MAX_FIXED_MODE_SIZE will not be used. */
313 enum machine_mode
314 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
316 enum machine_mode mode;
317 int i;
319 if (limit && size > MAX_FIXED_MODE_SIZE)
320 return BLKmode;
322 /* Get the first mode which has this size, in the specified class. */
323 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
324 mode = GET_MODE_WIDER_MODE (mode))
325 if (GET_MODE_PRECISION (mode) == size)
326 return mode;
328 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
329 for (i = 0; i < NUM_INT_N_ENTS; i ++)
330 if (int_n_data[i].bitsize == size
331 && int_n_enabled_p[i])
332 return int_n_data[i].m;
334 return BLKmode;
337 /* Similar, except passed a tree node. */
339 enum machine_mode
340 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
342 unsigned HOST_WIDE_INT uhwi;
343 unsigned int ui;
345 if (!tree_fits_uhwi_p (size))
346 return BLKmode;
347 uhwi = tree_to_uhwi (size);
348 ui = uhwi;
349 if (uhwi != ui)
350 return BLKmode;
351 return mode_for_size (ui, mclass, limit);
354 /* Similar, but never return BLKmode; return the narrowest mode that
355 contains at least the requested number of value bits. */
357 enum machine_mode
358 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
360 enum machine_mode mode = VOIDmode;
361 int i;
363 /* Get the first mode which has at least this size, in the
364 specified class. */
365 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
366 mode = GET_MODE_WIDER_MODE (mode))
367 if (GET_MODE_PRECISION (mode) >= size)
368 break;
370 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
371 for (i = 0; i < NUM_INT_N_ENTS; i ++)
372 if (int_n_data[i].bitsize >= size
373 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
374 && int_n_enabled_p[i])
375 mode = int_n_data[i].m;
377 if (mode == VOIDmode)
378 gcc_unreachable ();
380 return mode;
383 /* Find an integer mode of the exact same size, or BLKmode on failure. */
385 enum machine_mode
386 int_mode_for_mode (enum machine_mode mode)
388 switch (GET_MODE_CLASS (mode))
390 case MODE_INT:
391 case MODE_PARTIAL_INT:
392 break;
394 case MODE_COMPLEX_INT:
395 case MODE_COMPLEX_FLOAT:
396 case MODE_FLOAT:
397 case MODE_DECIMAL_FLOAT:
398 case MODE_VECTOR_INT:
399 case MODE_VECTOR_FLOAT:
400 case MODE_FRACT:
401 case MODE_ACCUM:
402 case MODE_UFRACT:
403 case MODE_UACCUM:
404 case MODE_VECTOR_FRACT:
405 case MODE_VECTOR_ACCUM:
406 case MODE_VECTOR_UFRACT:
407 case MODE_VECTOR_UACCUM:
408 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
409 break;
411 case MODE_RANDOM:
412 if (mode == BLKmode)
413 break;
415 /* ... fall through ... */
417 case MODE_CC:
418 default:
419 gcc_unreachable ();
422 return mode;
425 /* Find a mode that can be used for efficient bitwise operations on MODE.
426 Return BLKmode if no such mode exists. */
428 enum machine_mode
429 bitwise_mode_for_mode (enum machine_mode mode)
431 /* Quick exit if we already have a suitable mode. */
432 unsigned int bitsize = GET_MODE_BITSIZE (mode);
433 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
434 return mode;
436 /* Reuse the sanity checks from int_mode_for_mode. */
437 gcc_checking_assert ((int_mode_for_mode (mode), true));
439 /* Try to replace complex modes with complex modes. In general we
440 expect both components to be processed independently, so we only
441 care whether there is a register for the inner mode. */
442 if (COMPLEX_MODE_P (mode))
444 enum machine_mode trial = mode;
445 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
446 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
447 if (trial != BLKmode
448 && have_regs_of_mode[GET_MODE_INNER (trial)])
449 return trial;
452 /* Try to replace vector modes with vector modes. Also try using vector
453 modes if an integer mode would be too big. */
454 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
456 enum machine_mode trial = mode;
457 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
458 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
459 if (trial != BLKmode
460 && have_regs_of_mode[trial]
461 && targetm.vector_mode_supported_p (trial))
462 return trial;
465 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
466 return mode_for_size (bitsize, MODE_INT, true);
469 /* Find a type that can be used for efficient bitwise operations on MODE.
470 Return null if no such mode exists. */
472 tree
473 bitwise_type_for_mode (enum machine_mode mode)
475 mode = bitwise_mode_for_mode (mode);
476 if (mode == BLKmode)
477 return NULL_TREE;
479 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
480 tree inner_type = build_nonstandard_integer_type (inner_size, true);
482 if (VECTOR_MODE_P (mode))
483 return build_vector_type_for_mode (inner_type, mode);
485 if (COMPLEX_MODE_P (mode))
486 return build_complex_type (inner_type);
488 gcc_checking_assert (GET_MODE_INNER (mode) == VOIDmode);
489 return inner_type;
492 /* Find a mode that is suitable for representing a vector with
493 NUNITS elements of mode INNERMODE. Returns BLKmode if there
494 is no suitable mode. */
496 enum machine_mode
497 mode_for_vector (enum machine_mode innermode, unsigned nunits)
499 enum machine_mode mode;
501 /* First, look for a supported vector type. */
502 if (SCALAR_FLOAT_MODE_P (innermode))
503 mode = MIN_MODE_VECTOR_FLOAT;
504 else if (SCALAR_FRACT_MODE_P (innermode))
505 mode = MIN_MODE_VECTOR_FRACT;
506 else if (SCALAR_UFRACT_MODE_P (innermode))
507 mode = MIN_MODE_VECTOR_UFRACT;
508 else if (SCALAR_ACCUM_MODE_P (innermode))
509 mode = MIN_MODE_VECTOR_ACCUM;
510 else if (SCALAR_UACCUM_MODE_P (innermode))
511 mode = MIN_MODE_VECTOR_UACCUM;
512 else
513 mode = MIN_MODE_VECTOR_INT;
515 /* Do not check vector_mode_supported_p here. We'll do that
516 later in vector_type_mode. */
517 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
518 if (GET_MODE_NUNITS (mode) == nunits
519 && GET_MODE_INNER (mode) == innermode)
520 break;
522 /* For integers, try mapping it to a same-sized scalar mode. */
523 if (mode == VOIDmode
524 && GET_MODE_CLASS (innermode) == MODE_INT)
525 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
526 MODE_INT, 0);
528 if (mode == VOIDmode
529 || (GET_MODE_CLASS (mode) == MODE_INT
530 && !have_regs_of_mode[mode]))
531 return BLKmode;
533 return mode;
536 /* Return the alignment of MODE. This will be bounded by 1 and
537 BIGGEST_ALIGNMENT. */
539 unsigned int
540 get_mode_alignment (enum machine_mode mode)
542 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
545 /* Return the precision of the mode, or for a complex or vector mode the
546 precision of the mode of its elements. */
548 unsigned int
549 element_precision (enum machine_mode mode)
551 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
552 mode = GET_MODE_INNER (mode);
554 return GET_MODE_PRECISION (mode);
557 /* Return the natural mode of an array, given that it is SIZE bytes in
558 total and has elements of type ELEM_TYPE. */
560 static enum machine_mode
561 mode_for_array (tree elem_type, tree size)
563 tree elem_size;
564 unsigned HOST_WIDE_INT int_size, int_elem_size;
565 bool limit_p;
567 /* One-element arrays get the component type's mode. */
568 elem_size = TYPE_SIZE (elem_type);
569 if (simple_cst_equal (size, elem_size))
570 return TYPE_MODE (elem_type);
572 limit_p = true;
573 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
575 int_size = tree_to_uhwi (size);
576 int_elem_size = tree_to_uhwi (elem_size);
577 if (int_elem_size > 0
578 && int_size % int_elem_size == 0
579 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
580 int_size / int_elem_size))
581 limit_p = false;
583 return mode_for_size_tree (size, MODE_INT, limit_p);
586 /* Subroutine of layout_decl: Force alignment required for the data type.
587 But if the decl itself wants greater alignment, don't override that. */
589 static inline void
590 do_type_align (tree type, tree decl)
592 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
594 DECL_ALIGN (decl) = TYPE_ALIGN (type);
595 if (TREE_CODE (decl) == FIELD_DECL)
596 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
600 /* Set the size, mode and alignment of a ..._DECL node.
601 TYPE_DECL does need this for C++.
602 Note that LABEL_DECL and CONST_DECL nodes do not need this,
603 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
604 Don't call layout_decl for them.
606 KNOWN_ALIGN is the amount of alignment we can assume this
607 decl has with no special effort. It is relevant only for FIELD_DECLs
608 and depends on the previous fields.
609 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
610 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
611 the record will be aligned to suit. */
613 void
614 layout_decl (tree decl, unsigned int known_align)
616 tree type = TREE_TYPE (decl);
617 enum tree_code code = TREE_CODE (decl);
618 rtx rtl = NULL_RTX;
619 location_t loc = DECL_SOURCE_LOCATION (decl);
621 if (code == CONST_DECL)
622 return;
624 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
625 || code == TYPE_DECL ||code == FIELD_DECL);
627 rtl = DECL_RTL_IF_SET (decl);
629 if (type == error_mark_node)
630 type = void_type_node;
632 /* Usually the size and mode come from the data type without change,
633 however, the front-end may set the explicit width of the field, so its
634 size may not be the same as the size of its type. This happens with
635 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
636 also happens with other fields. For example, the C++ front-end creates
637 zero-sized fields corresponding to empty base classes, and depends on
638 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
639 size in bytes from the size in bits. If we have already set the mode,
640 don't set it again since we can be called twice for FIELD_DECLs. */
642 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
643 if (DECL_MODE (decl) == VOIDmode)
644 DECL_MODE (decl) = TYPE_MODE (type);
646 if (DECL_SIZE (decl) == 0)
648 DECL_SIZE (decl) = TYPE_SIZE (type);
649 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
651 else if (DECL_SIZE_UNIT (decl) == 0)
652 DECL_SIZE_UNIT (decl)
653 = fold_convert_loc (loc, sizetype,
654 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
655 bitsize_unit_node));
657 if (code != FIELD_DECL)
658 /* For non-fields, update the alignment from the type. */
659 do_type_align (type, decl);
660 else
661 /* For fields, it's a bit more complicated... */
663 bool old_user_align = DECL_USER_ALIGN (decl);
664 bool zero_bitfield = false;
665 bool packed_p = DECL_PACKED (decl);
666 unsigned int mfa;
668 if (DECL_BIT_FIELD (decl))
670 DECL_BIT_FIELD_TYPE (decl) = type;
672 /* A zero-length bit-field affects the alignment of the next
673 field. In essence such bit-fields are not influenced by
674 any packing due to #pragma pack or attribute packed. */
675 if (integer_zerop (DECL_SIZE (decl))
676 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
678 zero_bitfield = true;
679 packed_p = false;
680 #ifdef PCC_BITFIELD_TYPE_MATTERS
681 if (PCC_BITFIELD_TYPE_MATTERS)
682 do_type_align (type, decl);
683 else
684 #endif
686 #ifdef EMPTY_FIELD_BOUNDARY
687 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
689 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
690 DECL_USER_ALIGN (decl) = 0;
692 #endif
696 /* See if we can use an ordinary integer mode for a bit-field.
697 Conditions are: a fixed size that is correct for another mode,
698 occupying a complete byte or bytes on proper boundary. */
699 if (TYPE_SIZE (type) != 0
700 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
701 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
703 enum machine_mode xmode
704 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
705 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
707 if (xmode != BLKmode
708 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
709 && (known_align == 0 || known_align >= xalign))
711 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
712 DECL_MODE (decl) = xmode;
713 DECL_BIT_FIELD (decl) = 0;
717 /* Turn off DECL_BIT_FIELD if we won't need it set. */
718 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
719 && known_align >= TYPE_ALIGN (type)
720 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
721 DECL_BIT_FIELD (decl) = 0;
723 else if (packed_p && DECL_USER_ALIGN (decl))
724 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
725 round up; we'll reduce it again below. We want packing to
726 supersede USER_ALIGN inherited from the type, but defer to
727 alignment explicitly specified on the field decl. */;
728 else
729 do_type_align (type, decl);
731 /* If the field is packed and not explicitly aligned, give it the
732 minimum alignment. Note that do_type_align may set
733 DECL_USER_ALIGN, so we need to check old_user_align instead. */
734 if (packed_p
735 && !old_user_align)
736 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
738 if (! packed_p && ! DECL_USER_ALIGN (decl))
740 /* Some targets (i.e. i386, VMS) limit struct field alignment
741 to a lower boundary than alignment of variables unless
742 it was overridden by attribute aligned. */
743 #ifdef BIGGEST_FIELD_ALIGNMENT
744 DECL_ALIGN (decl)
745 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
746 #endif
747 #ifdef ADJUST_FIELD_ALIGN
748 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
749 #endif
752 if (zero_bitfield)
753 mfa = initial_max_fld_align * BITS_PER_UNIT;
754 else
755 mfa = maximum_field_alignment;
756 /* Should this be controlled by DECL_USER_ALIGN, too? */
757 if (mfa != 0)
758 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
761 /* Evaluate nonconstant size only once, either now or as soon as safe. */
762 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
763 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
764 if (DECL_SIZE_UNIT (decl) != 0
765 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
766 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
768 /* If requested, warn about definitions of large data objects. */
769 if (warn_larger_than
770 && (code == VAR_DECL || code == PARM_DECL)
771 && ! DECL_EXTERNAL (decl))
773 tree size = DECL_SIZE_UNIT (decl);
775 if (size != 0 && TREE_CODE (size) == INTEGER_CST
776 && compare_tree_int (size, larger_than_size) > 0)
778 int size_as_int = TREE_INT_CST_LOW (size);
780 if (compare_tree_int (size, size_as_int) == 0)
781 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
782 else
783 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
784 decl, larger_than_size);
788 /* If the RTL was already set, update its mode and mem attributes. */
789 if (rtl)
791 PUT_MODE (rtl, DECL_MODE (decl));
792 SET_DECL_RTL (decl, 0);
793 set_mem_attributes (rtl, decl, 1);
794 SET_DECL_RTL (decl, rtl);
798 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
799 a previous call to layout_decl and calls it again. */
801 void
802 relayout_decl (tree decl)
804 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
805 DECL_MODE (decl) = VOIDmode;
806 if (!DECL_USER_ALIGN (decl))
807 DECL_ALIGN (decl) = 0;
808 SET_DECL_RTL (decl, 0);
810 layout_decl (decl, 0);
813 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
814 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
815 is to be passed to all other layout functions for this record. It is the
816 responsibility of the caller to call `free' for the storage returned.
817 Note that garbage collection is not permitted until we finish laying
818 out the record. */
820 record_layout_info
821 start_record_layout (tree t)
823 record_layout_info rli = XNEW (struct record_layout_info_s);
825 rli->t = t;
827 /* If the type has a minimum specified alignment (via an attribute
828 declaration, for example) use it -- otherwise, start with a
829 one-byte alignment. */
830 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
831 rli->unpacked_align = rli->record_align;
832 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
834 #ifdef STRUCTURE_SIZE_BOUNDARY
835 /* Packed structures don't need to have minimum size. */
836 if (! TYPE_PACKED (t))
838 unsigned tmp;
840 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
841 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
842 if (maximum_field_alignment != 0)
843 tmp = MIN (tmp, maximum_field_alignment);
844 rli->record_align = MAX (rli->record_align, tmp);
846 #endif
848 rli->offset = size_zero_node;
849 rli->bitpos = bitsize_zero_node;
850 rli->prev_field = 0;
851 rli->pending_statics = 0;
852 rli->packed_maybe_necessary = 0;
853 rli->remaining_in_alignment = 0;
855 return rli;
858 /* Return the combined bit position for the byte offset OFFSET and the
859 bit position BITPOS.
861 These functions operate on byte and bit positions present in FIELD_DECLs
862 and assume that these expressions result in no (intermediate) overflow.
863 This assumption is necessary to fold the expressions as much as possible,
864 so as to avoid creating artificially variable-sized types in languages
865 supporting variable-sized types like Ada. */
867 tree
868 bit_from_pos (tree offset, tree bitpos)
870 if (TREE_CODE (offset) == PLUS_EXPR)
871 offset = size_binop (PLUS_EXPR,
872 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
873 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
874 else
875 offset = fold_convert (bitsizetype, offset);
876 return size_binop (PLUS_EXPR, bitpos,
877 size_binop (MULT_EXPR, offset, bitsize_unit_node));
880 /* Return the combined truncated byte position for the byte offset OFFSET and
881 the bit position BITPOS. */
883 tree
884 byte_from_pos (tree offset, tree bitpos)
886 tree bytepos;
887 if (TREE_CODE (bitpos) == MULT_EXPR
888 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
889 bytepos = TREE_OPERAND (bitpos, 0);
890 else
891 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
892 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
895 /* Split the bit position POS into a byte offset *POFFSET and a bit
896 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
898 void
899 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
900 tree pos)
902 tree toff_align = bitsize_int (off_align);
903 if (TREE_CODE (pos) == MULT_EXPR
904 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
906 *poffset = size_binop (MULT_EXPR,
907 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
908 size_int (off_align / BITS_PER_UNIT));
909 *pbitpos = bitsize_zero_node;
911 else
913 *poffset = size_binop (MULT_EXPR,
914 fold_convert (sizetype,
915 size_binop (FLOOR_DIV_EXPR, pos,
916 toff_align)),
917 size_int (off_align / BITS_PER_UNIT));
918 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
922 /* Given a pointer to bit and byte offsets and an offset alignment,
923 normalize the offsets so they are within the alignment. */
925 void
926 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
928 /* If the bit position is now larger than it should be, adjust it
929 downwards. */
930 if (compare_tree_int (*pbitpos, off_align) >= 0)
932 tree offset, bitpos;
933 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
934 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
935 *pbitpos = bitpos;
939 /* Print debugging information about the information in RLI. */
941 DEBUG_FUNCTION void
942 debug_rli (record_layout_info rli)
944 print_node_brief (stderr, "type", rli->t, 0);
945 print_node_brief (stderr, "\noffset", rli->offset, 0);
946 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
948 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
949 rli->record_align, rli->unpacked_align,
950 rli->offset_align);
952 /* The ms_struct code is the only that uses this. */
953 if (targetm.ms_bitfield_layout_p (rli->t))
954 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
956 if (rli->packed_maybe_necessary)
957 fprintf (stderr, "packed may be necessary\n");
959 if (!vec_safe_is_empty (rli->pending_statics))
961 fprintf (stderr, "pending statics:\n");
962 debug_vec_tree (rli->pending_statics);
966 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
967 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
969 void
970 normalize_rli (record_layout_info rli)
972 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
975 /* Returns the size in bytes allocated so far. */
977 tree
978 rli_size_unit_so_far (record_layout_info rli)
980 return byte_from_pos (rli->offset, rli->bitpos);
983 /* Returns the size in bits allocated so far. */
985 tree
986 rli_size_so_far (record_layout_info rli)
988 return bit_from_pos (rli->offset, rli->bitpos);
991 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
992 the next available location within the record is given by KNOWN_ALIGN.
993 Update the variable alignment fields in RLI, and return the alignment
994 to give the FIELD. */
996 unsigned int
997 update_alignment_for_field (record_layout_info rli, tree field,
998 unsigned int known_align)
1000 /* The alignment required for FIELD. */
1001 unsigned int desired_align;
1002 /* The type of this field. */
1003 tree type = TREE_TYPE (field);
1004 /* True if the field was explicitly aligned by the user. */
1005 bool user_align;
1006 bool is_bitfield;
1008 /* Do not attempt to align an ERROR_MARK node */
1009 if (TREE_CODE (type) == ERROR_MARK)
1010 return 0;
1012 /* Lay out the field so we know what alignment it needs. */
1013 layout_decl (field, known_align);
1014 desired_align = DECL_ALIGN (field);
1015 user_align = DECL_USER_ALIGN (field);
1017 is_bitfield = (type != error_mark_node
1018 && DECL_BIT_FIELD_TYPE (field)
1019 && ! integer_zerop (TYPE_SIZE (type)));
1021 /* Record must have at least as much alignment as any field.
1022 Otherwise, the alignment of the field within the record is
1023 meaningless. */
1024 if (targetm.ms_bitfield_layout_p (rli->t))
1026 /* Here, the alignment of the underlying type of a bitfield can
1027 affect the alignment of a record; even a zero-sized field
1028 can do this. The alignment should be to the alignment of
1029 the type, except that for zero-size bitfields this only
1030 applies if there was an immediately prior, nonzero-size
1031 bitfield. (That's the way it is, experimentally.) */
1032 if ((!is_bitfield && !DECL_PACKED (field))
1033 || ((DECL_SIZE (field) == NULL_TREE
1034 || !integer_zerop (DECL_SIZE (field)))
1035 ? !DECL_PACKED (field)
1036 : (rli->prev_field
1037 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1038 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1040 unsigned int type_align = TYPE_ALIGN (type);
1041 type_align = MAX (type_align, desired_align);
1042 if (maximum_field_alignment != 0)
1043 type_align = MIN (type_align, maximum_field_alignment);
1044 rli->record_align = MAX (rli->record_align, type_align);
1045 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1048 #ifdef PCC_BITFIELD_TYPE_MATTERS
1049 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1051 /* Named bit-fields cause the entire structure to have the
1052 alignment implied by their type. Some targets also apply the same
1053 rules to unnamed bitfields. */
1054 if (DECL_NAME (field) != 0
1055 || targetm.align_anon_bitfield ())
1057 unsigned int type_align = TYPE_ALIGN (type);
1059 #ifdef ADJUST_FIELD_ALIGN
1060 if (! TYPE_USER_ALIGN (type))
1061 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1062 #endif
1064 /* Targets might chose to handle unnamed and hence possibly
1065 zero-width bitfield. Those are not influenced by #pragmas
1066 or packed attributes. */
1067 if (integer_zerop (DECL_SIZE (field)))
1069 if (initial_max_fld_align)
1070 type_align = MIN (type_align,
1071 initial_max_fld_align * BITS_PER_UNIT);
1073 else if (maximum_field_alignment != 0)
1074 type_align = MIN (type_align, maximum_field_alignment);
1075 else if (DECL_PACKED (field))
1076 type_align = MIN (type_align, BITS_PER_UNIT);
1078 /* The alignment of the record is increased to the maximum
1079 of the current alignment, the alignment indicated on the
1080 field (i.e., the alignment specified by an __aligned__
1081 attribute), and the alignment indicated by the type of
1082 the field. */
1083 rli->record_align = MAX (rli->record_align, desired_align);
1084 rli->record_align = MAX (rli->record_align, type_align);
1086 if (warn_packed)
1087 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1088 user_align |= TYPE_USER_ALIGN (type);
1091 #endif
1092 else
1094 rli->record_align = MAX (rli->record_align, desired_align);
1095 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1098 TYPE_USER_ALIGN (rli->t) |= user_align;
1100 return desired_align;
1103 /* Called from place_field to handle unions. */
1105 static void
1106 place_union_field (record_layout_info rli, tree field)
1108 update_alignment_for_field (rli, field, /*known_align=*/0);
1110 DECL_FIELD_OFFSET (field) = size_zero_node;
1111 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1112 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1114 /* If this is an ERROR_MARK return *after* having set the
1115 field at the start of the union. This helps when parsing
1116 invalid fields. */
1117 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1118 return;
1120 /* We assume the union's size will be a multiple of a byte so we don't
1121 bother with BITPOS. */
1122 if (TREE_CODE (rli->t) == UNION_TYPE)
1123 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1124 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1125 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1126 DECL_SIZE_UNIT (field), rli->offset);
1129 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1130 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1131 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1132 units of alignment than the underlying TYPE. */
1133 static int
1134 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1135 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1137 /* Note that the calculation of OFFSET might overflow; we calculate it so
1138 that we still get the right result as long as ALIGN is a power of two. */
1139 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1141 offset = offset % align;
1142 return ((offset + size + align - 1) / align
1143 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1145 #endif
1147 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1148 is a FIELD_DECL to be added after those fields already present in
1149 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1150 callers that desire that behavior must manually perform that step.) */
1152 void
1153 place_field (record_layout_info rli, tree field)
1155 /* The alignment required for FIELD. */
1156 unsigned int desired_align;
1157 /* The alignment FIELD would have if we just dropped it into the
1158 record as it presently stands. */
1159 unsigned int known_align;
1160 unsigned int actual_align;
1161 /* The type of this field. */
1162 tree type = TREE_TYPE (field);
1164 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1166 /* If FIELD is static, then treat it like a separate variable, not
1167 really like a structure field. If it is a FUNCTION_DECL, it's a
1168 method. In both cases, all we do is lay out the decl, and we do
1169 it *after* the record is laid out. */
1170 if (TREE_CODE (field) == VAR_DECL)
1172 vec_safe_push (rli->pending_statics, field);
1173 return;
1176 /* Enumerators and enum types which are local to this class need not
1177 be laid out. Likewise for initialized constant fields. */
1178 else if (TREE_CODE (field) != FIELD_DECL)
1179 return;
1181 /* Unions are laid out very differently than records, so split
1182 that code off to another function. */
1183 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1185 place_union_field (rli, field);
1186 return;
1189 else if (TREE_CODE (type) == ERROR_MARK)
1191 /* Place this field at the current allocation position, so we
1192 maintain monotonicity. */
1193 DECL_FIELD_OFFSET (field) = rli->offset;
1194 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1195 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1196 return;
1199 /* Work out the known alignment so far. Note that A & (-A) is the
1200 value of the least-significant bit in A that is one. */
1201 if (! integer_zerop (rli->bitpos))
1202 known_align = (tree_to_uhwi (rli->bitpos)
1203 & - tree_to_uhwi (rli->bitpos));
1204 else if (integer_zerop (rli->offset))
1205 known_align = 0;
1206 else if (tree_fits_uhwi_p (rli->offset))
1207 known_align = (BITS_PER_UNIT
1208 * (tree_to_uhwi (rli->offset)
1209 & - tree_to_uhwi (rli->offset)));
1210 else
1211 known_align = rli->offset_align;
1213 desired_align = update_alignment_for_field (rli, field, known_align);
1214 if (known_align == 0)
1215 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1217 if (warn_packed && DECL_PACKED (field))
1219 if (known_align >= TYPE_ALIGN (type))
1221 if (TYPE_ALIGN (type) > desired_align)
1223 if (STRICT_ALIGNMENT)
1224 warning (OPT_Wattributes, "packed attribute causes "
1225 "inefficient alignment for %q+D", field);
1226 /* Don't warn if DECL_PACKED was set by the type. */
1227 else if (!TYPE_PACKED (rli->t))
1228 warning (OPT_Wattributes, "packed attribute is "
1229 "unnecessary for %q+D", field);
1232 else
1233 rli->packed_maybe_necessary = 1;
1236 /* Does this field automatically have alignment it needs by virtue
1237 of the fields that precede it and the record's own alignment? */
1238 if (known_align < desired_align)
1240 /* No, we need to skip space before this field.
1241 Bump the cumulative size to multiple of field alignment. */
1243 if (!targetm.ms_bitfield_layout_p (rli->t)
1244 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1245 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1247 /* If the alignment is still within offset_align, just align
1248 the bit position. */
1249 if (desired_align < rli->offset_align)
1250 rli->bitpos = round_up (rli->bitpos, desired_align);
1251 else
1253 /* First adjust OFFSET by the partial bits, then align. */
1254 rli->offset
1255 = size_binop (PLUS_EXPR, rli->offset,
1256 fold_convert (sizetype,
1257 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1258 bitsize_unit_node)));
1259 rli->bitpos = bitsize_zero_node;
1261 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1264 if (! TREE_CONSTANT (rli->offset))
1265 rli->offset_align = desired_align;
1266 if (targetm.ms_bitfield_layout_p (rli->t))
1267 rli->prev_field = NULL;
1270 /* Handle compatibility with PCC. Note that if the record has any
1271 variable-sized fields, we need not worry about compatibility. */
1272 #ifdef PCC_BITFIELD_TYPE_MATTERS
1273 if (PCC_BITFIELD_TYPE_MATTERS
1274 && ! targetm.ms_bitfield_layout_p (rli->t)
1275 && TREE_CODE (field) == FIELD_DECL
1276 && type != error_mark_node
1277 && DECL_BIT_FIELD (field)
1278 && (! DECL_PACKED (field)
1279 /* Enter for these packed fields only to issue a warning. */
1280 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1281 && maximum_field_alignment == 0
1282 && ! integer_zerop (DECL_SIZE (field))
1283 && tree_fits_uhwi_p (DECL_SIZE (field))
1284 && tree_fits_uhwi_p (rli->offset)
1285 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1287 unsigned int type_align = TYPE_ALIGN (type);
1288 tree dsize = DECL_SIZE (field);
1289 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1290 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1291 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1293 #ifdef ADJUST_FIELD_ALIGN
1294 if (! TYPE_USER_ALIGN (type))
1295 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1296 #endif
1298 /* A bit field may not span more units of alignment of its type
1299 than its type itself. Advance to next boundary if necessary. */
1300 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1302 if (DECL_PACKED (field))
1304 if (warn_packed_bitfield_compat == 1)
1305 inform
1306 (input_location,
1307 "offset of packed bit-field %qD has changed in GCC 4.4",
1308 field);
1310 else
1311 rli->bitpos = round_up (rli->bitpos, type_align);
1314 if (! DECL_PACKED (field))
1315 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1317 #endif
1319 #ifdef BITFIELD_NBYTES_LIMITED
1320 if (BITFIELD_NBYTES_LIMITED
1321 && ! targetm.ms_bitfield_layout_p (rli->t)
1322 && TREE_CODE (field) == FIELD_DECL
1323 && type != error_mark_node
1324 && DECL_BIT_FIELD_TYPE (field)
1325 && ! DECL_PACKED (field)
1326 && ! integer_zerop (DECL_SIZE (field))
1327 && tree_fits_uhwi_p (DECL_SIZE (field))
1328 && tree_fits_uhwi_p (rli->offset)
1329 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1331 unsigned int type_align = TYPE_ALIGN (type);
1332 tree dsize = DECL_SIZE (field);
1333 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1334 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1335 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1337 #ifdef ADJUST_FIELD_ALIGN
1338 if (! TYPE_USER_ALIGN (type))
1339 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1340 #endif
1342 if (maximum_field_alignment != 0)
1343 type_align = MIN (type_align, maximum_field_alignment);
1344 /* ??? This test is opposite the test in the containing if
1345 statement, so this code is unreachable currently. */
1346 else if (DECL_PACKED (field))
1347 type_align = MIN (type_align, BITS_PER_UNIT);
1349 /* A bit field may not span the unit of alignment of its type.
1350 Advance to next boundary if necessary. */
1351 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1352 rli->bitpos = round_up (rli->bitpos, type_align);
1354 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1356 #endif
1358 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1359 A subtlety:
1360 When a bit field is inserted into a packed record, the whole
1361 size of the underlying type is used by one or more same-size
1362 adjacent bitfields. (That is, if its long:3, 32 bits is
1363 used in the record, and any additional adjacent long bitfields are
1364 packed into the same chunk of 32 bits. However, if the size
1365 changes, a new field of that size is allocated.) In an unpacked
1366 record, this is the same as using alignment, but not equivalent
1367 when packing.
1369 Note: for compatibility, we use the type size, not the type alignment
1370 to determine alignment, since that matches the documentation */
1372 if (targetm.ms_bitfield_layout_p (rli->t))
1374 tree prev_saved = rli->prev_field;
1375 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1377 /* This is a bitfield if it exists. */
1378 if (rli->prev_field)
1380 /* If both are bitfields, nonzero, and the same size, this is
1381 the middle of a run. Zero declared size fields are special
1382 and handled as "end of run". (Note: it's nonzero declared
1383 size, but equal type sizes!) (Since we know that both
1384 the current and previous fields are bitfields by the
1385 time we check it, DECL_SIZE must be present for both.) */
1386 if (DECL_BIT_FIELD_TYPE (field)
1387 && !integer_zerop (DECL_SIZE (field))
1388 && !integer_zerop (DECL_SIZE (rli->prev_field))
1389 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1390 && tree_fits_uhwi_p (TYPE_SIZE (type))
1391 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1393 /* We're in the middle of a run of equal type size fields; make
1394 sure we realign if we run out of bits. (Not decl size,
1395 type size!) */
1396 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1398 if (rli->remaining_in_alignment < bitsize)
1400 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1402 /* out of bits; bump up to next 'word'. */
1403 rli->bitpos
1404 = size_binop (PLUS_EXPR, rli->bitpos,
1405 bitsize_int (rli->remaining_in_alignment));
1406 rli->prev_field = field;
1407 if (typesize < bitsize)
1408 rli->remaining_in_alignment = 0;
1409 else
1410 rli->remaining_in_alignment = typesize - bitsize;
1412 else
1413 rli->remaining_in_alignment -= bitsize;
1415 else
1417 /* End of a run: if leaving a run of bitfields of the same type
1418 size, we have to "use up" the rest of the bits of the type
1419 size.
1421 Compute the new position as the sum of the size for the prior
1422 type and where we first started working on that type.
1423 Note: since the beginning of the field was aligned then
1424 of course the end will be too. No round needed. */
1426 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1428 rli->bitpos
1429 = size_binop (PLUS_EXPR, rli->bitpos,
1430 bitsize_int (rli->remaining_in_alignment));
1432 else
1433 /* We "use up" size zero fields; the code below should behave
1434 as if the prior field was not a bitfield. */
1435 prev_saved = NULL;
1437 /* Cause a new bitfield to be captured, either this time (if
1438 currently a bitfield) or next time we see one. */
1439 if (!DECL_BIT_FIELD_TYPE (field)
1440 || integer_zerop (DECL_SIZE (field)))
1441 rli->prev_field = NULL;
1444 normalize_rli (rli);
1447 /* If we're starting a new run of same type size bitfields
1448 (or a run of non-bitfields), set up the "first of the run"
1449 fields.
1451 That is, if the current field is not a bitfield, or if there
1452 was a prior bitfield the type sizes differ, or if there wasn't
1453 a prior bitfield the size of the current field is nonzero.
1455 Note: we must be sure to test ONLY the type size if there was
1456 a prior bitfield and ONLY for the current field being zero if
1457 there wasn't. */
1459 if (!DECL_BIT_FIELD_TYPE (field)
1460 || (prev_saved != NULL
1461 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1462 : !integer_zerop (DECL_SIZE (field)) ))
1464 /* Never smaller than a byte for compatibility. */
1465 unsigned int type_align = BITS_PER_UNIT;
1467 /* (When not a bitfield), we could be seeing a flex array (with
1468 no DECL_SIZE). Since we won't be using remaining_in_alignment
1469 until we see a bitfield (and come by here again) we just skip
1470 calculating it. */
1471 if (DECL_SIZE (field) != NULL
1472 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1473 && tree_fits_uhwi_p (DECL_SIZE (field)))
1475 unsigned HOST_WIDE_INT bitsize
1476 = tree_to_uhwi (DECL_SIZE (field));
1477 unsigned HOST_WIDE_INT typesize
1478 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1480 if (typesize < bitsize)
1481 rli->remaining_in_alignment = 0;
1482 else
1483 rli->remaining_in_alignment = typesize - bitsize;
1486 /* Now align (conventionally) for the new type. */
1487 type_align = TYPE_ALIGN (TREE_TYPE (field));
1489 if (maximum_field_alignment != 0)
1490 type_align = MIN (type_align, maximum_field_alignment);
1492 rli->bitpos = round_up (rli->bitpos, type_align);
1494 /* If we really aligned, don't allow subsequent bitfields
1495 to undo that. */
1496 rli->prev_field = NULL;
1500 /* Offset so far becomes the position of this field after normalizing. */
1501 normalize_rli (rli);
1502 DECL_FIELD_OFFSET (field) = rli->offset;
1503 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1504 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1506 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1507 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1508 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1510 /* If this field ended up more aligned than we thought it would be (we
1511 approximate this by seeing if its position changed), lay out the field
1512 again; perhaps we can use an integral mode for it now. */
1513 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1514 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1515 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1516 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1517 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1518 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1519 actual_align = (BITS_PER_UNIT
1520 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1521 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1522 else
1523 actual_align = DECL_OFFSET_ALIGN (field);
1524 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1525 store / extract bit field operations will check the alignment of the
1526 record against the mode of bit fields. */
1528 if (known_align != actual_align)
1529 layout_decl (field, actual_align);
1531 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1532 rli->prev_field = field;
1534 /* Now add size of this field to the size of the record. If the size is
1535 not constant, treat the field as being a multiple of bytes and just
1536 adjust the offset, resetting the bit position. Otherwise, apportion the
1537 size amongst the bit position and offset. First handle the case of an
1538 unspecified size, which can happen when we have an invalid nested struct
1539 definition, such as struct j { struct j { int i; } }. The error message
1540 is printed in finish_struct. */
1541 if (DECL_SIZE (field) == 0)
1542 /* Do nothing. */;
1543 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1544 || TREE_OVERFLOW (DECL_SIZE (field)))
1546 rli->offset
1547 = size_binop (PLUS_EXPR, rli->offset,
1548 fold_convert (sizetype,
1549 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1550 bitsize_unit_node)));
1551 rli->offset
1552 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1553 rli->bitpos = bitsize_zero_node;
1554 rli->offset_align = MIN (rli->offset_align, desired_align);
1556 else if (targetm.ms_bitfield_layout_p (rli->t))
1558 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1560 /* If we ended a bitfield before the full length of the type then
1561 pad the struct out to the full length of the last type. */
1562 if ((DECL_CHAIN (field) == NULL
1563 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1564 && DECL_BIT_FIELD_TYPE (field)
1565 && !integer_zerop (DECL_SIZE (field)))
1566 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1567 bitsize_int (rli->remaining_in_alignment));
1569 normalize_rli (rli);
1571 else
1573 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1574 normalize_rli (rli);
1578 /* Assuming that all the fields have been laid out, this function uses
1579 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1580 indicated by RLI. */
1582 static void
1583 finalize_record_size (record_layout_info rli)
1585 tree unpadded_size, unpadded_size_unit;
1587 /* Now we want just byte and bit offsets, so set the offset alignment
1588 to be a byte and then normalize. */
1589 rli->offset_align = BITS_PER_UNIT;
1590 normalize_rli (rli);
1592 /* Determine the desired alignment. */
1593 #ifdef ROUND_TYPE_ALIGN
1594 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1595 rli->record_align);
1596 #else
1597 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1598 #endif
1600 /* Compute the size so far. Be sure to allow for extra bits in the
1601 size in bytes. We have guaranteed above that it will be no more
1602 than a single byte. */
1603 unpadded_size = rli_size_so_far (rli);
1604 unpadded_size_unit = rli_size_unit_so_far (rli);
1605 if (! integer_zerop (rli->bitpos))
1606 unpadded_size_unit
1607 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1609 if (TREE_CODE (unpadded_size_unit) == INTEGER_CST
1610 && !TREE_OVERFLOW (unpadded_size_unit)
1611 && !valid_constant_size_p (unpadded_size_unit))
1612 error ("type %qT is too large", rli->t);
1614 /* Round the size up to be a multiple of the required alignment. */
1615 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1616 TYPE_SIZE_UNIT (rli->t)
1617 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1619 if (TREE_CONSTANT (unpadded_size)
1620 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1621 && input_location != BUILTINS_LOCATION)
1622 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1624 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1625 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1626 && TREE_CONSTANT (unpadded_size))
1628 tree unpacked_size;
1630 #ifdef ROUND_TYPE_ALIGN
1631 rli->unpacked_align
1632 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1633 #else
1634 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1635 #endif
1637 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1638 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1640 if (TYPE_NAME (rli->t))
1642 tree name;
1644 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1645 name = TYPE_NAME (rli->t);
1646 else
1647 name = DECL_NAME (TYPE_NAME (rli->t));
1649 if (STRICT_ALIGNMENT)
1650 warning (OPT_Wpacked, "packed attribute causes inefficient "
1651 "alignment for %qE", name);
1652 else
1653 warning (OPT_Wpacked,
1654 "packed attribute is unnecessary for %qE", name);
1656 else
1658 if (STRICT_ALIGNMENT)
1659 warning (OPT_Wpacked,
1660 "packed attribute causes inefficient alignment");
1661 else
1662 warning (OPT_Wpacked, "packed attribute is unnecessary");
1668 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1670 void
1671 compute_record_mode (tree type)
1673 tree field;
1674 enum machine_mode mode = VOIDmode;
1676 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1677 However, if possible, we use a mode that fits in a register
1678 instead, in order to allow for better optimization down the
1679 line. */
1680 SET_TYPE_MODE (type, BLKmode);
1682 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1683 return;
1685 /* A record which has any BLKmode members must itself be
1686 BLKmode; it can't go in a register. Unless the member is
1687 BLKmode only because it isn't aligned. */
1688 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1690 if (TREE_CODE (field) != FIELD_DECL)
1691 continue;
1693 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1694 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1695 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1696 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1697 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1698 || ! tree_fits_uhwi_p (bit_position (field))
1699 || DECL_SIZE (field) == 0
1700 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1701 return;
1703 /* If this field is the whole struct, remember its mode so
1704 that, say, we can put a double in a class into a DF
1705 register instead of forcing it to live in the stack. */
1706 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1707 mode = DECL_MODE (field);
1709 /* With some targets, it is sub-optimal to access an aligned
1710 BLKmode structure as a scalar. */
1711 if (targetm.member_type_forces_blk (field, mode))
1712 return;
1715 /* If we only have one real field; use its mode if that mode's size
1716 matches the type's size. This only applies to RECORD_TYPE. This
1717 does not apply to unions. */
1718 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1719 && tree_fits_uhwi_p (TYPE_SIZE (type))
1720 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1721 SET_TYPE_MODE (type, mode);
1722 else
1723 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1725 /* If structure's known alignment is less than what the scalar
1726 mode would need, and it matters, then stick with BLKmode. */
1727 if (TYPE_MODE (type) != BLKmode
1728 && STRICT_ALIGNMENT
1729 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1730 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1732 /* If this is the only reason this type is BLKmode, then
1733 don't force containing types to be BLKmode. */
1734 TYPE_NO_FORCE_BLK (type) = 1;
1735 SET_TYPE_MODE (type, BLKmode);
1739 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1740 out. */
1742 static void
1743 finalize_type_size (tree type)
1745 /* Normally, use the alignment corresponding to the mode chosen.
1746 However, where strict alignment is not required, avoid
1747 over-aligning structures, since most compilers do not do this
1748 alignment. */
1750 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1751 && (STRICT_ALIGNMENT
1752 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1753 && TREE_CODE (type) != QUAL_UNION_TYPE
1754 && TREE_CODE (type) != ARRAY_TYPE)))
1756 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1758 /* Don't override a larger alignment requirement coming from a user
1759 alignment of one of the fields. */
1760 if (mode_align >= TYPE_ALIGN (type))
1762 TYPE_ALIGN (type) = mode_align;
1763 TYPE_USER_ALIGN (type) = 0;
1767 /* Do machine-dependent extra alignment. */
1768 #ifdef ROUND_TYPE_ALIGN
1769 TYPE_ALIGN (type)
1770 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1771 #endif
1773 /* If we failed to find a simple way to calculate the unit size
1774 of the type, find it by division. */
1775 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1776 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1777 result will fit in sizetype. We will get more efficient code using
1778 sizetype, so we force a conversion. */
1779 TYPE_SIZE_UNIT (type)
1780 = fold_convert (sizetype,
1781 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1782 bitsize_unit_node));
1784 if (TYPE_SIZE (type) != 0)
1786 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1787 TYPE_SIZE_UNIT (type)
1788 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1791 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1792 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1793 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1794 if (TYPE_SIZE_UNIT (type) != 0
1795 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1796 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1798 /* Also layout any other variants of the type. */
1799 if (TYPE_NEXT_VARIANT (type)
1800 || type != TYPE_MAIN_VARIANT (type))
1802 tree variant;
1803 /* Record layout info of this variant. */
1804 tree size = TYPE_SIZE (type);
1805 tree size_unit = TYPE_SIZE_UNIT (type);
1806 unsigned int align = TYPE_ALIGN (type);
1807 unsigned int precision = TYPE_PRECISION (type);
1808 unsigned int user_align = TYPE_USER_ALIGN (type);
1809 enum machine_mode mode = TYPE_MODE (type);
1811 /* Copy it into all variants. */
1812 for (variant = TYPE_MAIN_VARIANT (type);
1813 variant != 0;
1814 variant = TYPE_NEXT_VARIANT (variant))
1816 TYPE_SIZE (variant) = size;
1817 TYPE_SIZE_UNIT (variant) = size_unit;
1818 TYPE_ALIGN (variant) = align;
1819 TYPE_PRECISION (variant) = precision;
1820 TYPE_USER_ALIGN (variant) = user_align;
1821 SET_TYPE_MODE (variant, mode);
1826 /* Return a new underlying object for a bitfield started with FIELD. */
1828 static tree
1829 start_bitfield_representative (tree field)
1831 tree repr = make_node (FIELD_DECL);
1832 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1833 /* Force the representative to begin at a BITS_PER_UNIT aligned
1834 boundary - C++ may use tail-padding of a base object to
1835 continue packing bits so the bitfield region does not start
1836 at bit zero (see g++.dg/abi/bitfield5.C for example).
1837 Unallocated bits may happen for other reasons as well,
1838 for example Ada which allows explicit bit-granular structure layout. */
1839 DECL_FIELD_BIT_OFFSET (repr)
1840 = size_binop (BIT_AND_EXPR,
1841 DECL_FIELD_BIT_OFFSET (field),
1842 bitsize_int (~(BITS_PER_UNIT - 1)));
1843 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1844 DECL_SIZE (repr) = DECL_SIZE (field);
1845 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1846 DECL_PACKED (repr) = DECL_PACKED (field);
1847 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1848 return repr;
1851 /* Finish up a bitfield group that was started by creating the underlying
1852 object REPR with the last field in the bitfield group FIELD. */
1854 static void
1855 finish_bitfield_representative (tree repr, tree field)
1857 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1858 enum machine_mode mode;
1859 tree nextf, size;
1861 size = size_diffop (DECL_FIELD_OFFSET (field),
1862 DECL_FIELD_OFFSET (repr));
1863 while (TREE_CODE (size) == COMPOUND_EXPR)
1864 size = TREE_OPERAND (size, 1);
1865 gcc_assert (tree_fits_uhwi_p (size));
1866 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1867 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1868 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1869 + tree_to_uhwi (DECL_SIZE (field)));
1871 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1872 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1874 /* Now nothing tells us how to pad out bitsize ... */
1875 nextf = DECL_CHAIN (field);
1876 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1877 nextf = DECL_CHAIN (nextf);
1878 if (nextf)
1880 tree maxsize;
1881 /* If there was an error, the field may be not laid out
1882 correctly. Don't bother to do anything. */
1883 if (TREE_TYPE (nextf) == error_mark_node)
1884 return;
1885 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1886 DECL_FIELD_OFFSET (repr));
1887 if (tree_fits_uhwi_p (maxsize))
1889 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1890 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1891 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1892 /* If the group ends within a bitfield nextf does not need to be
1893 aligned to BITS_PER_UNIT. Thus round up. */
1894 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1896 else
1897 maxbitsize = bitsize;
1899 else
1901 /* ??? If you consider that tail-padding of this struct might be
1902 re-used when deriving from it we cannot really do the following
1903 and thus need to set maxsize to bitsize? Also we cannot
1904 generally rely on maxsize to fold to an integer constant, so
1905 use bitsize as fallback for this case. */
1906 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1907 DECL_FIELD_OFFSET (repr));
1908 if (tree_fits_uhwi_p (maxsize))
1909 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1910 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1911 else
1912 maxbitsize = bitsize;
1915 /* Only if we don't artificially break up the representative in
1916 the middle of a large bitfield with different possibly
1917 overlapping representatives. And all representatives start
1918 at byte offset. */
1919 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1921 /* Find the smallest nice mode to use. */
1922 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1923 mode = GET_MODE_WIDER_MODE (mode))
1924 if (GET_MODE_BITSIZE (mode) >= bitsize)
1925 break;
1926 if (mode != VOIDmode
1927 && (GET_MODE_BITSIZE (mode) > maxbitsize
1928 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1929 mode = VOIDmode;
1931 if (mode == VOIDmode)
1933 /* We really want a BLKmode representative only as a last resort,
1934 considering the member b in
1935 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1936 Otherwise we simply want to split the representative up
1937 allowing for overlaps within the bitfield region as required for
1938 struct { int a : 7; int b : 7;
1939 int c : 10; int d; } __attribute__((packed));
1940 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1941 DECL_SIZE (repr) = bitsize_int (bitsize);
1942 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1943 DECL_MODE (repr) = BLKmode;
1944 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1945 bitsize / BITS_PER_UNIT);
1947 else
1949 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1950 DECL_SIZE (repr) = bitsize_int (modesize);
1951 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1952 DECL_MODE (repr) = mode;
1953 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1956 /* Remember whether the bitfield group is at the end of the
1957 structure or not. */
1958 DECL_CHAIN (repr) = nextf;
1961 /* Compute and set FIELD_DECLs for the underlying objects we should
1962 use for bitfield access for the structure laid out with RLI. */
1964 static void
1965 finish_bitfield_layout (record_layout_info rli)
1967 tree field, prev;
1968 tree repr = NULL_TREE;
1970 /* Unions would be special, for the ease of type-punning optimizations
1971 we could use the underlying type as hint for the representative
1972 if the bitfield would fit and the representative would not exceed
1973 the union in size. */
1974 if (TREE_CODE (rli->t) != RECORD_TYPE)
1975 return;
1977 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1978 field; field = DECL_CHAIN (field))
1980 if (TREE_CODE (field) != FIELD_DECL)
1981 continue;
1983 /* In the C++ memory model, consecutive bit fields in a structure are
1984 considered one memory location and updating a memory location
1985 may not store into adjacent memory locations. */
1986 if (!repr
1987 && DECL_BIT_FIELD_TYPE (field))
1989 /* Start new representative. */
1990 repr = start_bitfield_representative (field);
1992 else if (repr
1993 && ! DECL_BIT_FIELD_TYPE (field))
1995 /* Finish off new representative. */
1996 finish_bitfield_representative (repr, prev);
1997 repr = NULL_TREE;
1999 else if (DECL_BIT_FIELD_TYPE (field))
2001 gcc_assert (repr != NULL_TREE);
2003 /* Zero-size bitfields finish off a representative and
2004 do not have a representative themselves. This is
2005 required by the C++ memory model. */
2006 if (integer_zerop (DECL_SIZE (field)))
2008 finish_bitfield_representative (repr, prev);
2009 repr = NULL_TREE;
2012 /* We assume that either DECL_FIELD_OFFSET of the representative
2013 and each bitfield member is a constant or they are equal.
2014 This is because we need to be able to compute the bit-offset
2015 of each field relative to the representative in get_bit_range
2016 during RTL expansion.
2017 If these constraints are not met, simply force a new
2018 representative to be generated. That will at most
2019 generate worse code but still maintain correctness with
2020 respect to the C++ memory model. */
2021 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2022 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2023 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2024 DECL_FIELD_OFFSET (field), 0)))
2026 finish_bitfield_representative (repr, prev);
2027 repr = start_bitfield_representative (field);
2030 else
2031 continue;
2033 if (repr)
2034 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2036 prev = field;
2039 if (repr)
2040 finish_bitfield_representative (repr, prev);
2043 /* Do all of the work required to layout the type indicated by RLI,
2044 once the fields have been laid out. This function will call `free'
2045 for RLI, unless FREE_P is false. Passing a value other than false
2046 for FREE_P is bad practice; this option only exists to support the
2047 G++ 3.2 ABI. */
2049 void
2050 finish_record_layout (record_layout_info rli, int free_p)
2052 tree variant;
2054 /* Compute the final size. */
2055 finalize_record_size (rli);
2057 /* Compute the TYPE_MODE for the record. */
2058 compute_record_mode (rli->t);
2060 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2061 finalize_type_size (rli->t);
2063 /* Compute bitfield representatives. */
2064 finish_bitfield_layout (rli);
2066 /* Propagate TYPE_PACKED to variants. With C++ templates,
2067 handle_packed_attribute is too early to do this. */
2068 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2069 variant = TYPE_NEXT_VARIANT (variant))
2070 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2072 /* Lay out any static members. This is done now because their type
2073 may use the record's type. */
2074 while (!vec_safe_is_empty (rli->pending_statics))
2075 layout_decl (rli->pending_statics->pop (), 0);
2077 /* Clean up. */
2078 if (free_p)
2080 vec_free (rli->pending_statics);
2081 free (rli);
2086 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2087 NAME, its fields are chained in reverse on FIELDS.
2089 If ALIGN_TYPE is non-null, it is given the same alignment as
2090 ALIGN_TYPE. */
2092 void
2093 finish_builtin_struct (tree type, const char *name, tree fields,
2094 tree align_type)
2096 tree tail, next;
2098 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2100 DECL_FIELD_CONTEXT (fields) = type;
2101 next = DECL_CHAIN (fields);
2102 DECL_CHAIN (fields) = tail;
2104 TYPE_FIELDS (type) = tail;
2106 if (align_type)
2108 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2109 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2112 layout_type (type);
2113 #if 0 /* not yet, should get fixed properly later */
2114 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2115 #else
2116 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2117 TYPE_DECL, get_identifier (name), type);
2118 #endif
2119 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2120 layout_decl (TYPE_NAME (type), 0);
2123 /* Calculate the mode, size, and alignment for TYPE.
2124 For an array type, calculate the element separation as well.
2125 Record TYPE on the chain of permanent or temporary types
2126 so that dbxout will find out about it.
2128 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2129 layout_type does nothing on such a type.
2131 If the type is incomplete, its TYPE_SIZE remains zero. */
2133 void
2134 layout_type (tree type)
2136 gcc_assert (type);
2138 if (type == error_mark_node)
2139 return;
2141 /* Do nothing if type has been laid out before. */
2142 if (TYPE_SIZE (type))
2143 return;
2145 switch (TREE_CODE (type))
2147 case LANG_TYPE:
2148 /* This kind of type is the responsibility
2149 of the language-specific code. */
2150 gcc_unreachable ();
2152 case BOOLEAN_TYPE:
2153 case INTEGER_TYPE:
2154 case ENUMERAL_TYPE:
2155 SET_TYPE_MODE (type,
2156 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2157 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2158 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2159 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2160 break;
2162 case REAL_TYPE:
2163 SET_TYPE_MODE (type,
2164 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2165 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2166 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2167 break;
2169 case FIXED_POINT_TYPE:
2170 /* TYPE_MODE (type) has been set already. */
2171 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2172 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2173 break;
2175 case COMPLEX_TYPE:
2176 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2177 SET_TYPE_MODE (type,
2178 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2179 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2180 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2181 0));
2182 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2183 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2184 break;
2186 case VECTOR_TYPE:
2188 int nunits = TYPE_VECTOR_SUBPARTS (type);
2189 tree innertype = TREE_TYPE (type);
2191 gcc_assert (!(nunits & (nunits - 1)));
2193 /* Find an appropriate mode for the vector type. */
2194 if (TYPE_MODE (type) == VOIDmode)
2195 SET_TYPE_MODE (type,
2196 mode_for_vector (TYPE_MODE (innertype), nunits));
2198 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2199 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2200 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2201 TYPE_SIZE_UNIT (innertype),
2202 size_int (nunits));
2203 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2204 bitsize_int (nunits));
2206 /* For vector types, we do not default to the mode's alignment.
2207 Instead, query a target hook, defaulting to natural alignment.
2208 This prevents ABI changes depending on whether or not native
2209 vector modes are supported. */
2210 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2212 /* However, if the underlying mode requires a bigger alignment than
2213 what the target hook provides, we cannot use the mode. For now,
2214 simply reject that case. */
2215 gcc_assert (TYPE_ALIGN (type)
2216 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2217 break;
2220 case VOID_TYPE:
2221 /* This is an incomplete type and so doesn't have a size. */
2222 TYPE_ALIGN (type) = 1;
2223 TYPE_USER_ALIGN (type) = 0;
2224 SET_TYPE_MODE (type, VOIDmode);
2225 break;
2227 case OFFSET_TYPE:
2228 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2229 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2230 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2231 integral, which may be an __intN. */
2232 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2233 TYPE_PRECISION (type) = POINTER_SIZE;
2234 break;
2236 case FUNCTION_TYPE:
2237 case METHOD_TYPE:
2238 /* It's hard to see what the mode and size of a function ought to
2239 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2240 make it consistent with that. */
2241 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2242 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2243 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2244 break;
2246 case POINTER_TYPE:
2247 case REFERENCE_TYPE:
2249 enum machine_mode mode = TYPE_MODE (type);
2250 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2252 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2253 mode = targetm.addr_space.address_mode (as);
2256 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2257 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2258 TYPE_UNSIGNED (type) = 1;
2259 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2261 break;
2263 case ARRAY_TYPE:
2265 tree index = TYPE_DOMAIN (type);
2266 tree element = TREE_TYPE (type);
2268 build_pointer_type (element);
2270 /* We need to know both bounds in order to compute the size. */
2271 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2272 && TYPE_SIZE (element))
2274 tree ub = TYPE_MAX_VALUE (index);
2275 tree lb = TYPE_MIN_VALUE (index);
2276 tree element_size = TYPE_SIZE (element);
2277 tree length;
2279 /* Make sure that an array of zero-sized element is zero-sized
2280 regardless of its extent. */
2281 if (integer_zerop (element_size))
2282 length = size_zero_node;
2284 /* The computation should happen in the original signedness so
2285 that (possible) negative values are handled appropriately
2286 when determining overflow. */
2287 else
2289 /* ??? When it is obvious that the range is signed
2290 represent it using ssizetype. */
2291 if (TREE_CODE (lb) == INTEGER_CST
2292 && TREE_CODE (ub) == INTEGER_CST
2293 && TYPE_UNSIGNED (TREE_TYPE (lb))
2294 && tree_int_cst_lt (ub, lb))
2296 lb = wide_int_to_tree (ssizetype,
2297 offset_int::from (lb, SIGNED));
2298 ub = wide_int_to_tree (ssizetype,
2299 offset_int::from (ub, SIGNED));
2301 length
2302 = fold_convert (sizetype,
2303 size_binop (PLUS_EXPR,
2304 build_int_cst (TREE_TYPE (lb), 1),
2305 size_binop (MINUS_EXPR, ub, lb)));
2308 /* ??? We have no way to distinguish a null-sized array from an
2309 array spanning the whole sizetype range, so we arbitrarily
2310 decide that [0, -1] is the only valid representation. */
2311 if (integer_zerop (length)
2312 && TREE_OVERFLOW (length)
2313 && integer_zerop (lb))
2314 length = size_zero_node;
2316 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2317 fold_convert (bitsizetype,
2318 length));
2320 /* If we know the size of the element, calculate the total size
2321 directly, rather than do some division thing below. This
2322 optimization helps Fortran assumed-size arrays (where the
2323 size of the array is determined at runtime) substantially. */
2324 if (TYPE_SIZE_UNIT (element))
2325 TYPE_SIZE_UNIT (type)
2326 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2329 /* Now round the alignment and size,
2330 using machine-dependent criteria if any. */
2332 #ifdef ROUND_TYPE_ALIGN
2333 TYPE_ALIGN (type)
2334 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2335 #else
2336 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2337 #endif
2338 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2339 SET_TYPE_MODE (type, BLKmode);
2340 if (TYPE_SIZE (type) != 0
2341 && ! targetm.member_type_forces_blk (type, VOIDmode)
2342 /* BLKmode elements force BLKmode aggregate;
2343 else extract/store fields may lose. */
2344 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2345 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2347 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2348 TYPE_SIZE (type)));
2349 if (TYPE_MODE (type) != BLKmode
2350 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2351 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2353 TYPE_NO_FORCE_BLK (type) = 1;
2354 SET_TYPE_MODE (type, BLKmode);
2357 /* When the element size is constant, check that it is at least as
2358 large as the element alignment. */
2359 if (TYPE_SIZE_UNIT (element)
2360 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2361 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2362 TYPE_ALIGN_UNIT. */
2363 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2364 && !integer_zerop (TYPE_SIZE_UNIT (element))
2365 && compare_tree_int (TYPE_SIZE_UNIT (element),
2366 TYPE_ALIGN_UNIT (element)) < 0)
2367 error ("alignment of array elements is greater than element size");
2368 break;
2371 case RECORD_TYPE:
2372 case UNION_TYPE:
2373 case QUAL_UNION_TYPE:
2375 tree field;
2376 record_layout_info rli;
2378 /* Initialize the layout information. */
2379 rli = start_record_layout (type);
2381 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2382 in the reverse order in building the COND_EXPR that denotes
2383 its size. We reverse them again later. */
2384 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2385 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2387 /* Place all the fields. */
2388 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2389 place_field (rli, field);
2391 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2392 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2394 /* Finish laying out the record. */
2395 finish_record_layout (rli, /*free_p=*/true);
2397 break;
2399 default:
2400 gcc_unreachable ();
2403 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2404 records and unions, finish_record_layout already called this
2405 function. */
2406 if (TREE_CODE (type) != RECORD_TYPE
2407 && TREE_CODE (type) != UNION_TYPE
2408 && TREE_CODE (type) != QUAL_UNION_TYPE)
2409 finalize_type_size (type);
2411 /* We should never see alias sets on incomplete aggregates. And we
2412 should not call layout_type on not incomplete aggregates. */
2413 if (AGGREGATE_TYPE_P (type))
2414 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2417 /* Return the least alignment required for type TYPE. */
2419 unsigned int
2420 min_align_of_type (tree type)
2422 unsigned int align = TYPE_ALIGN (type);
2423 align = MIN (align, BIGGEST_ALIGNMENT);
2424 if (!TYPE_USER_ALIGN (type))
2426 #ifdef BIGGEST_FIELD_ALIGNMENT
2427 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2428 #endif
2429 unsigned int field_align = align;
2430 #ifdef ADJUST_FIELD_ALIGN
2431 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2432 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2433 ggc_free (field);
2434 #endif
2435 align = MIN (align, field_align);
2437 return align / BITS_PER_UNIT;
2440 /* Vector types need to re-check the target flags each time we report
2441 the machine mode. We need to do this because attribute target can
2442 change the result of vector_mode_supported_p and have_regs_of_mode
2443 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2444 change on a per-function basis. */
2445 /* ??? Possibly a better solution is to run through all the types
2446 referenced by a function and re-compute the TYPE_MODE once, rather
2447 than make the TYPE_MODE macro call a function. */
2449 enum machine_mode
2450 vector_type_mode (const_tree t)
2452 enum machine_mode mode;
2454 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2456 mode = t->type_common.mode;
2457 if (VECTOR_MODE_P (mode)
2458 && (!targetm.vector_mode_supported_p (mode)
2459 || !have_regs_of_mode[mode]))
2461 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2463 /* For integers, try mapping it to a same-sized scalar mode. */
2464 if (GET_MODE_CLASS (innermode) == MODE_INT)
2466 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2467 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2469 if (mode != VOIDmode && have_regs_of_mode[mode])
2470 return mode;
2473 return BLKmode;
2476 return mode;
2479 /* Create and return a type for signed integers of PRECISION bits. */
2481 tree
2482 make_signed_type (int precision)
2484 tree type = make_node (INTEGER_TYPE);
2486 TYPE_PRECISION (type) = precision;
2488 fixup_signed_type (type);
2489 return type;
2492 /* Create and return a type for unsigned integers of PRECISION bits. */
2494 tree
2495 make_unsigned_type (int precision)
2497 tree type = make_node (INTEGER_TYPE);
2499 TYPE_PRECISION (type) = precision;
2501 fixup_unsigned_type (type);
2502 return type;
2505 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2506 and SATP. */
2508 tree
2509 make_fract_type (int precision, int unsignedp, int satp)
2511 tree type = make_node (FIXED_POINT_TYPE);
2513 TYPE_PRECISION (type) = precision;
2515 if (satp)
2516 TYPE_SATURATING (type) = 1;
2518 /* Lay out the type: set its alignment, size, etc. */
2519 if (unsignedp)
2521 TYPE_UNSIGNED (type) = 1;
2522 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2524 else
2525 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2526 layout_type (type);
2528 return type;
2531 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2532 and SATP. */
2534 tree
2535 make_accum_type (int precision, int unsignedp, int satp)
2537 tree type = make_node (FIXED_POINT_TYPE);
2539 TYPE_PRECISION (type) = precision;
2541 if (satp)
2542 TYPE_SATURATING (type) = 1;
2544 /* Lay out the type: set its alignment, size, etc. */
2545 if (unsignedp)
2547 TYPE_UNSIGNED (type) = 1;
2548 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2550 else
2551 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2552 layout_type (type);
2554 return type;
2557 /* Initialize sizetypes so layout_type can use them. */
2559 void
2560 initialize_sizetypes (void)
2562 int precision, bprecision;
2564 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2565 if (strcmp (SIZETYPE, "unsigned int") == 0)
2566 precision = INT_TYPE_SIZE;
2567 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2568 precision = LONG_TYPE_SIZE;
2569 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2570 precision = LONG_LONG_TYPE_SIZE;
2571 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2572 precision = SHORT_TYPE_SIZE;
2573 else
2575 int i;
2577 precision = -1;
2578 for (i = 0; i < NUM_INT_N_ENTS; i++)
2579 if (int_n_enabled_p[i])
2581 char name[50];
2582 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2584 if (strcmp (name, SIZETYPE) == 0)
2586 precision = int_n_data[i].bitsize;
2589 if (precision == -1)
2590 gcc_unreachable ();
2593 bprecision
2594 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2595 bprecision
2596 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2597 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2598 bprecision = HOST_BITS_PER_DOUBLE_INT;
2600 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2601 sizetype = make_node (INTEGER_TYPE);
2602 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2603 TYPE_PRECISION (sizetype) = precision;
2604 TYPE_UNSIGNED (sizetype) = 1;
2605 bitsizetype = make_node (INTEGER_TYPE);
2606 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2607 TYPE_PRECISION (bitsizetype) = bprecision;
2608 TYPE_UNSIGNED (bitsizetype) = 1;
2610 /* Now layout both types manually. */
2611 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2612 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2613 TYPE_SIZE (sizetype) = bitsize_int (precision);
2614 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2615 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2617 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2618 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2619 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2620 TYPE_SIZE_UNIT (bitsizetype)
2621 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2622 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2624 /* Create the signed variants of *sizetype. */
2625 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2626 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2627 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2628 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2631 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2632 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2633 for TYPE, based on the PRECISION and whether or not the TYPE
2634 IS_UNSIGNED. PRECISION need not correspond to a width supported
2635 natively by the hardware; for example, on a machine with 8-bit,
2636 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2637 61. */
2639 void
2640 set_min_and_max_values_for_integral_type (tree type,
2641 int precision,
2642 signop sgn)
2644 /* For bitfields with zero width we end up creating integer types
2645 with zero precision. Don't assign any minimum/maximum values
2646 to those types, they don't have any valid value. */
2647 if (precision < 1)
2648 return;
2650 TYPE_MIN_VALUE (type)
2651 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2652 TYPE_MAX_VALUE (type)
2653 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2656 /* Set the extreme values of TYPE based on its precision in bits,
2657 then lay it out. Used when make_signed_type won't do
2658 because the tree code is not INTEGER_TYPE.
2659 E.g. for Pascal, when the -fsigned-char option is given. */
2661 void
2662 fixup_signed_type (tree type)
2664 int precision = TYPE_PRECISION (type);
2666 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2668 /* Lay out the type: set its alignment, size, etc. */
2669 layout_type (type);
2672 /* Set the extreme values of TYPE based on its precision in bits,
2673 then lay it out. This is used both in `make_unsigned_type'
2674 and for enumeral types. */
2676 void
2677 fixup_unsigned_type (tree type)
2679 int precision = TYPE_PRECISION (type);
2681 TYPE_UNSIGNED (type) = 1;
2683 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2685 /* Lay out the type: set its alignment, size, etc. */
2686 layout_type (type);
2689 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2690 starting at BITPOS.
2692 BITREGION_START is the bit position of the first bit in this
2693 sequence of bit fields. BITREGION_END is the last bit in this
2694 sequence. If these two fields are non-zero, we should restrict the
2695 memory access to that range. Otherwise, we are allowed to touch
2696 any adjacent non bit-fields.
2698 ALIGN is the alignment of the underlying object in bits.
2699 VOLATILEP says whether the bitfield is volatile. */
2701 bit_field_mode_iterator
2702 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2703 HOST_WIDE_INT bitregion_start,
2704 HOST_WIDE_INT bitregion_end,
2705 unsigned int align, bool volatilep)
2706 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2707 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2708 m_bitregion_end (bitregion_end), m_align (align),
2709 m_volatilep (volatilep), m_count (0)
2711 if (!m_bitregion_end)
2713 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2714 the bitfield is mapped and won't trap, provided that ALIGN isn't
2715 too large. The cap is the biggest required alignment for data,
2716 or at least the word size. And force one such chunk at least. */
2717 unsigned HOST_WIDE_INT units
2718 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2719 if (bitsize <= 0)
2720 bitsize = 1;
2721 m_bitregion_end = bitpos + bitsize + units - 1;
2722 m_bitregion_end -= m_bitregion_end % units + 1;
2726 /* Calls to this function return successively larger modes that can be used
2727 to represent the bitfield. Return true if another bitfield mode is
2728 available, storing it in *OUT_MODE if so. */
2730 bool
2731 bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2733 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2735 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2737 /* Skip modes that don't have full precision. */
2738 if (unit != GET_MODE_PRECISION (m_mode))
2739 continue;
2741 /* Stop if the mode is too wide to handle efficiently. */
2742 if (unit > MAX_FIXED_MODE_SIZE)
2743 break;
2745 /* Don't deliver more than one multiword mode; the smallest one
2746 should be used. */
2747 if (m_count > 0 && unit > BITS_PER_WORD)
2748 break;
2750 /* Skip modes that are too small. */
2751 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2752 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2753 if (subend > unit)
2754 continue;
2756 /* Stop if the mode goes outside the bitregion. */
2757 HOST_WIDE_INT start = m_bitpos - substart;
2758 if (m_bitregion_start && start < m_bitregion_start)
2759 break;
2760 HOST_WIDE_INT end = start + unit;
2761 if (end > m_bitregion_end + 1)
2762 break;
2764 /* Stop if the mode requires too much alignment. */
2765 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2766 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2767 break;
2769 *out_mode = m_mode;
2770 m_mode = GET_MODE_WIDER_MODE (m_mode);
2771 m_count++;
2772 return true;
2774 return false;
2777 /* Return true if smaller modes are generally preferred for this kind
2778 of bitfield. */
2780 bool
2781 bit_field_mode_iterator::prefer_smaller_modes ()
2783 return (m_volatilep
2784 ? targetm.narrow_volatile_bitfield ()
2785 : !SLOW_BYTE_ACCESS);
2788 /* Find the best machine mode to use when referencing a bit field of length
2789 BITSIZE bits starting at BITPOS.
2791 BITREGION_START is the bit position of the first bit in this
2792 sequence of bit fields. BITREGION_END is the last bit in this
2793 sequence. If these two fields are non-zero, we should restrict the
2794 memory access to that range. Otherwise, we are allowed to touch
2795 any adjacent non bit-fields.
2797 The underlying object is known to be aligned to a boundary of ALIGN bits.
2798 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2799 larger than LARGEST_MODE (usually SImode).
2801 If no mode meets all these conditions, we return VOIDmode.
2803 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2804 smallest mode meeting these conditions.
2806 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2807 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2808 all the conditions.
2810 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2811 decide which of the above modes should be used. */
2813 enum machine_mode
2814 get_best_mode (int bitsize, int bitpos,
2815 unsigned HOST_WIDE_INT bitregion_start,
2816 unsigned HOST_WIDE_INT bitregion_end,
2817 unsigned int align,
2818 enum machine_mode largest_mode, bool volatilep)
2820 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2821 bitregion_end, align, volatilep);
2822 enum machine_mode widest_mode = VOIDmode;
2823 enum machine_mode mode;
2824 while (iter.next_mode (&mode)
2825 /* ??? For historical reasons, reject modes that would normally
2826 receive greater alignment, even if unaligned accesses are
2827 acceptable. This has both advantages and disadvantages.
2828 Removing this check means that something like:
2830 struct s { unsigned int x; unsigned int y; };
2831 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2833 can be implemented using a single load and compare on
2834 64-bit machines that have no alignment restrictions.
2835 For example, on powerpc64-linux-gnu, we would generate:
2837 ld 3,0(3)
2838 cntlzd 3,3
2839 srdi 3,3,6
2842 rather than:
2844 lwz 9,0(3)
2845 cmpwi 7,9,0
2846 bne 7,.L3
2847 lwz 3,4(3)
2848 cntlzw 3,3
2849 srwi 3,3,5
2850 extsw 3,3
2852 .p2align 4,,15
2853 .L3:
2854 li 3,0
2857 However, accessing more than one field can make life harder
2858 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2859 has a series of unsigned short copies followed by a series of
2860 unsigned short comparisons. With this check, both the copies
2861 and comparisons remain 16-bit accesses and FRE is able
2862 to eliminate the latter. Without the check, the comparisons
2863 can be done using 2 64-bit operations, which FRE isn't able
2864 to handle in the same way.
2866 Either way, it would probably be worth disabling this check
2867 during expand. One particular example where removing the
2868 check would help is the get_best_mode call in store_bit_field.
2869 If we are given a memory bitregion of 128 bits that is aligned
2870 to a 64-bit boundary, and the bitfield we want to modify is
2871 in the second half of the bitregion, this check causes
2872 store_bitfield to turn the memory into a 64-bit reference
2873 to the _first_ half of the region. We later use
2874 adjust_bitfield_address to get a reference to the correct half,
2875 but doing so looks to adjust_bitfield_address as though we are
2876 moving past the end of the original object, so it drops the
2877 associated MEM_EXPR and MEM_OFFSET. Removing the check
2878 causes store_bit_field to keep a 128-bit memory reference,
2879 so that the final bitfield reference still has a MEM_EXPR
2880 and MEM_OFFSET. */
2881 && GET_MODE_ALIGNMENT (mode) <= align
2882 && (largest_mode == VOIDmode
2883 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2885 widest_mode = mode;
2886 if (iter.prefer_smaller_modes ())
2887 break;
2889 return widest_mode;
2892 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2893 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2895 void
2896 get_mode_bounds (enum machine_mode mode, int sign,
2897 enum machine_mode target_mode,
2898 rtx *mmin, rtx *mmax)
2900 unsigned size = GET_MODE_PRECISION (mode);
2901 unsigned HOST_WIDE_INT min_val, max_val;
2903 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2905 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2906 if (mode == BImode)
2908 if (STORE_FLAG_VALUE < 0)
2910 min_val = STORE_FLAG_VALUE;
2911 max_val = 0;
2913 else
2915 min_val = 0;
2916 max_val = STORE_FLAG_VALUE;
2919 else if (sign)
2921 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2922 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2924 else
2926 min_val = 0;
2927 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2930 *mmin = gen_int_mode (min_val, target_mode);
2931 *mmax = gen_int_mode (max_val, target_mode);
2934 #include "gt-stor-layout.h"