Fix gnu11 fallout on SPARC
[official-gcc.git] / gcc / sel-sched.c
blob377e1e9b5f6ed7e71d576768096a3b4f950b76cd
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "hashtab.h"
29 #include "hash-set.h"
30 #include "vec.h"
31 #include "machmode.h"
32 #include "input.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "params.h"
40 #include "target.h"
41 #include "output.h"
42 #include "sched-int.h"
43 #include "ggc.h"
44 #include "tree.h"
45 #include "langhooks.h"
46 #include "rtlhooks-def.h"
47 #include "emit-rtl.h"
48 #include "ira.h"
49 #include "rtl-iter.h"
51 #ifdef INSN_SCHEDULING
52 #include "sel-sched-ir.h"
53 #include "sel-sched-dump.h"
54 #include "sel-sched.h"
55 #include "dbgcnt.h"
57 /* Implementation of selective scheduling approach.
58 The below implementation follows the original approach with the following
59 changes:
61 o the scheduler works after register allocation (but can be also tuned
62 to work before RA);
63 o some instructions are not copied or register renamed;
64 o conditional jumps are not moved with code duplication;
65 o several jumps in one parallel group are not supported;
66 o when pipelining outer loops, code motion through inner loops
67 is not supported;
68 o control and data speculation are supported;
69 o some improvements for better compile time/performance were made.
71 Terminology
72 ===========
74 A vinsn, or virtual insn, is an insn with additional data characterizing
75 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
76 Vinsns also act as smart pointers to save memory by reusing them in
77 different expressions. A vinsn is described by vinsn_t type.
79 An expression is a vinsn with additional data characterizing its properties
80 at some point in the control flow graph. The data may be its usefulness,
81 priority, speculative status, whether it was renamed/subsituted, etc.
82 An expression is described by expr_t type.
84 Availability set (av_set) is a set of expressions at a given control flow
85 point. It is represented as av_set_t. The expressions in av sets are kept
86 sorted in the terms of expr_greater_p function. It allows to truncate
87 the set while leaving the best expressions.
89 A fence is a point through which code motion is prohibited. On each step,
90 we gather a parallel group of insns at a fence. It is possible to have
91 multiple fences. A fence is represented via fence_t.
93 A boundary is the border between the fence group and the rest of the code.
94 Currently, we never have more than one boundary per fence, as we finalize
95 the fence group when a jump is scheduled. A boundary is represented
96 via bnd_t.
98 High-level overview
99 ===================
101 The scheduler finds regions to schedule, schedules each one, and finalizes.
102 The regions are formed starting from innermost loops, so that when the inner
103 loop is pipelined, its prologue can be scheduled together with yet unprocessed
104 outer loop. The rest of acyclic regions are found using extend_rgns:
105 the blocks that are not yet allocated to any regions are traversed in top-down
106 order, and a block is added to a region to which all its predecessors belong;
107 otherwise, the block starts its own region.
109 The main scheduling loop (sel_sched_region_2) consists of just
110 scheduling on each fence and updating fences. For each fence,
111 we fill a parallel group of insns (fill_insns) until some insns can be added.
112 First, we compute available exprs (av-set) at the boundary of the current
113 group. Second, we choose the best expression from it. If the stall is
114 required to schedule any of the expressions, we advance the current cycle
115 appropriately. So, the final group does not exactly correspond to a VLIW
116 word. Third, we move the chosen expression to the boundary (move_op)
117 and update the intermediate av sets and liveness sets. We quit fill_insns
118 when either no insns left for scheduling or we have scheduled enough insns
119 so we feel like advancing a scheduling point.
121 Computing available expressions
122 ===============================
124 The computation (compute_av_set) is a bottom-up traversal. At each insn,
125 we're moving the union of its successors' sets through it via
126 moveup_expr_set. The dependent expressions are removed. Local
127 transformations (substitution, speculation) are applied to move more
128 exprs. Then the expr corresponding to the current insn is added.
129 The result is saved on each basic block header.
131 When traversing the CFG, we're moving down for no more than max_ws insns.
132 Also, we do not move down to ineligible successors (is_ineligible_successor),
133 which include moving along a back-edge, moving to already scheduled code,
134 and moving to another fence. The first two restrictions are lifted during
135 pipelining, which allows us to move insns along a back-edge. We always have
136 an acyclic region for scheduling because we forbid motion through fences.
138 Choosing the best expression
139 ============================
141 We sort the final availability set via sel_rank_for_schedule, then we remove
142 expressions which are not yet ready (tick_check_p) or which dest registers
143 cannot be used. For some of them, we choose another register via
144 find_best_reg. To do this, we run find_used_regs to calculate the set of
145 registers which cannot be used. The find_used_regs function performs
146 a traversal of code motion paths for an expr. We consider for renaming
147 only registers which are from the same regclass as the original one and
148 using which does not interfere with any live ranges. Finally, we convert
149 the resulting set to the ready list format and use max_issue and reorder*
150 hooks similarly to the Haifa scheduler.
152 Scheduling the best expression
153 ==============================
155 We run the move_op routine to perform the same type of code motion paths
156 traversal as in find_used_regs. (These are working via the same driver,
157 code_motion_path_driver.) When moving down the CFG, we look for original
158 instruction that gave birth to a chosen expression. We undo
159 the transformations performed on an expression via the history saved in it.
160 When found, we remove the instruction or leave a reg-reg copy/speculation
161 check if needed. On a way up, we insert bookkeeping copies at each join
162 point. If a copy is not needed, it will be removed later during this
163 traversal. We update the saved av sets and liveness sets on the way up, too.
165 Finalizing the schedule
166 =======================
168 When pipelining, we reschedule the blocks from which insns were pipelined
169 to get a tighter schedule. On Itanium, we also perform bundling via
170 the same routine from ia64.c.
172 Dependence analysis changes
173 ===========================
175 We augmented the sched-deps.c with hooks that get called when a particular
176 dependence is found in a particular part of an insn. Using these hooks, we
177 can do several actions such as: determine whether an insn can be moved through
178 another (has_dependence_p, moveup_expr); find out whether an insn can be
179 scheduled on the current cycle (tick_check_p); find out registers that
180 are set/used/clobbered by an insn and find out all the strange stuff that
181 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
182 init_global_and_expr_for_insn).
184 Initialization changes
185 ======================
187 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
188 reused in all of the schedulers. We have split up the initialization of data
189 of such parts into different functions prefixed with scheduler type and
190 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
191 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
192 The same splitting is done with current_sched_info structure:
193 dependence-related parts are in sched_deps_info, common part is in
194 common_sched_info, and haifa/sel/etc part is in current_sched_info.
196 Target contexts
197 ===============
199 As we now have multiple-point scheduling, this would not work with backends
200 which save some of the scheduler state to use it in the target hooks.
201 For this purpose, we introduce a concept of target contexts, which
202 encapsulate such information. The backend should implement simple routines
203 of allocating/freeing/setting such a context. The scheduler calls these
204 as target hooks and handles the target context as an opaque pointer (similar
205 to the DFA state type, state_t).
207 Various speedups
208 ================
210 As the correct data dependence graph is not supported during scheduling (which
211 is to be changed in mid-term), we cache as much of the dependence analysis
212 results as possible to avoid reanalyzing. This includes: bitmap caches on
213 each insn in stream of the region saying yes/no for a query with a pair of
214 UIDs; hashtables with the previously done transformations on each insn in
215 stream; a vector keeping a history of transformations on each expr.
217 Also, we try to minimize the dependence context used on each fence to check
218 whether the given expression is ready for scheduling by removing from it
219 insns that are definitely completed the execution. The results of
220 tick_check_p checks are also cached in a vector on each fence.
222 We keep a valid liveness set on each insn in a region to avoid the high
223 cost of recomputation on large basic blocks.
225 Finally, we try to minimize the number of needed updates to the availability
226 sets. The updates happen in two cases: when fill_insns terminates,
227 we advance all fences and increase the stage number to show that the region
228 has changed and the sets are to be recomputed; and when the next iteration
229 of a loop in fill_insns happens (but this one reuses the saved av sets
230 on bb headers.) Thus, we try to break the fill_insns loop only when
231 "significant" number of insns from the current scheduling window was
232 scheduled. This should be made a target param.
235 TODO: correctly support the data dependence graph at all stages and get rid
236 of all caches. This should speed up the scheduler.
237 TODO: implement moving cond jumps with bookkeeping copies on both targets.
238 TODO: tune the scheduler before RA so it does not create too much pseudos.
241 References:
242 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
243 selective scheduling and software pipelining.
244 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
246 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
247 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
248 for GCC. In Proceedings of GCC Developers' Summit 2006.
250 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
251 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
252 http://rogue.colorado.edu/EPIC7/.
256 /* True when pipelining is enabled. */
257 bool pipelining_p;
259 /* True if bookkeeping is enabled. */
260 bool bookkeeping_p;
262 /* Maximum number of insns that are eligible for renaming. */
263 int max_insns_to_rename;
266 /* Definitions of local types and macros. */
268 /* Represents possible outcomes of moving an expression through an insn. */
269 enum MOVEUP_EXPR_CODE
271 /* The expression is not changed. */
272 MOVEUP_EXPR_SAME,
274 /* Not changed, but requires a new destination register. */
275 MOVEUP_EXPR_AS_RHS,
277 /* Cannot be moved. */
278 MOVEUP_EXPR_NULL,
280 /* Changed (substituted or speculated). */
281 MOVEUP_EXPR_CHANGED
284 /* The container to be passed into rtx search & replace functions. */
285 struct rtx_search_arg
287 /* What we are searching for. */
288 rtx x;
290 /* The occurrence counter. */
291 int n;
294 typedef struct rtx_search_arg *rtx_search_arg_p;
296 /* This struct contains precomputed hard reg sets that are needed when
297 computing registers available for renaming. */
298 struct hard_regs_data
300 /* For every mode, this stores registers available for use with
301 that mode. */
302 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
304 /* True when regs_for_mode[mode] is initialized. */
305 bool regs_for_mode_ok[NUM_MACHINE_MODES];
307 /* For every register, it has regs that are ok to rename into it.
308 The register in question is always set. If not, this means
309 that the whole set is not computed yet. */
310 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
312 /* For every mode, this stores registers not available due to
313 call clobbering. */
314 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
316 /* All registers that are used or call used. */
317 HARD_REG_SET regs_ever_used;
319 #ifdef STACK_REGS
320 /* Stack registers. */
321 HARD_REG_SET stack_regs;
322 #endif
325 /* Holds the results of computation of available for renaming and
326 unavailable hard registers. */
327 struct reg_rename
329 /* These are unavailable due to calls crossing, globalness, etc. */
330 HARD_REG_SET unavailable_hard_regs;
332 /* These are *available* for renaming. */
333 HARD_REG_SET available_for_renaming;
335 /* Whether this code motion path crosses a call. */
336 bool crosses_call;
339 /* A global structure that contains the needed information about harg
340 regs. */
341 static struct hard_regs_data sel_hrd;
344 /* This structure holds local data used in code_motion_path_driver hooks on
345 the same or adjacent levels of recursion. Here we keep those parameters
346 that are not used in code_motion_path_driver routine itself, but only in
347 its hooks. Moreover, all parameters that can be modified in hooks are
348 in this structure, so all other parameters passed explicitly to hooks are
349 read-only. */
350 struct cmpd_local_params
352 /* Local params used in move_op_* functions. */
354 /* Edges for bookkeeping generation. */
355 edge e1, e2;
357 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
358 expr_t c_expr_merged, c_expr_local;
360 /* Local params used in fur_* functions. */
361 /* Copy of the ORIGINAL_INSN list, stores the original insns already
362 found before entering the current level of code_motion_path_driver. */
363 def_list_t old_original_insns;
365 /* Local params used in move_op_* functions. */
366 /* True when we have removed last insn in the block which was
367 also a boundary. Do not update anything or create bookkeeping copies. */
368 BOOL_BITFIELD removed_last_insn : 1;
371 /* Stores the static parameters for move_op_* calls. */
372 struct moveop_static_params
374 /* Destination register. */
375 rtx dest;
377 /* Current C_EXPR. */
378 expr_t c_expr;
380 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
381 they are to be removed. */
382 int uid;
384 #ifdef ENABLE_CHECKING
385 /* This is initialized to the insn on which the driver stopped its traversal. */
386 insn_t failed_insn;
387 #endif
389 /* True if we scheduled an insn with different register. */
390 bool was_renamed;
393 /* Stores the static parameters for fur_* calls. */
394 struct fur_static_params
396 /* Set of registers unavailable on the code motion path. */
397 regset used_regs;
399 /* Pointer to the list of original insns definitions. */
400 def_list_t *original_insns;
402 /* True if a code motion path contains a CALL insn. */
403 bool crosses_call;
406 typedef struct fur_static_params *fur_static_params_p;
407 typedef struct cmpd_local_params *cmpd_local_params_p;
408 typedef struct moveop_static_params *moveop_static_params_p;
410 /* Set of hooks and parameters that determine behaviour specific to
411 move_op or find_used_regs functions. */
412 struct code_motion_path_driver_info_def
414 /* Called on enter to the basic block. */
415 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
417 /* Called when original expr is found. */
418 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
420 /* Called while descending current basic block if current insn is not
421 the original EXPR we're searching for. */
422 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
424 /* Function to merge C_EXPRes from different successors. */
425 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
427 /* Function to finalize merge from different successors and possibly
428 deallocate temporary data structures used for merging. */
429 void (*after_merge_succs) (cmpd_local_params_p, void *);
431 /* Called on the backward stage of recursion to do moveup_expr.
432 Used only with move_op_*. */
433 void (*ascend) (insn_t, void *);
435 /* Called on the ascending pass, before returning from the current basic
436 block or from the whole traversal. */
437 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
439 /* When processing successors in move_op we need only descend into
440 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
441 int succ_flags;
443 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
444 const char *routine_name;
447 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
448 FUR_HOOKS. */
449 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
451 /* Set of hooks for performing move_op and find_used_regs routines with
452 code_motion_path_driver. */
453 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
455 /* True if/when we want to emulate Haifa scheduler in the common code.
456 This is used in sched_rgn_local_init and in various places in
457 sched-deps.c. */
458 int sched_emulate_haifa_p;
460 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
461 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
462 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
463 scheduling window. */
464 int global_level;
466 /* Current fences. */
467 flist_t fences;
469 /* True when separable insns should be scheduled as RHSes. */
470 static bool enable_schedule_as_rhs_p;
472 /* Used in verify_target_availability to assert that target reg is reported
473 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
474 we haven't scheduled anything on the previous fence.
475 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
476 have more conservative value than the one returned by the
477 find_used_regs, thus we shouldn't assert that these values are equal. */
478 static bool scheduled_something_on_previous_fence;
480 /* All newly emitted insns will have their uids greater than this value. */
481 static int first_emitted_uid;
483 /* Set of basic blocks that are forced to start new ebbs. This is a subset
484 of all the ebb heads. */
485 static bitmap_head _forced_ebb_heads;
486 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
488 /* Blocks that need to be rescheduled after pipelining. */
489 bitmap blocks_to_reschedule = NULL;
491 /* True when the first lv set should be ignored when updating liveness. */
492 static bool ignore_first = false;
494 /* Number of insns max_issue has initialized data structures for. */
495 static int max_issue_size = 0;
497 /* Whether we can issue more instructions. */
498 static int can_issue_more;
500 /* Maximum software lookahead window size, reduced when rescheduling after
501 pipelining. */
502 static int max_ws;
504 /* Number of insns scheduled in current region. */
505 static int num_insns_scheduled;
507 /* A vector of expressions is used to be able to sort them. */
508 static vec<expr_t> vec_av_set = vNULL;
510 /* A vector of vinsns is used to hold temporary lists of vinsns. */
511 typedef vec<vinsn_t> vinsn_vec_t;
513 /* This vector has the exprs which may still present in av_sets, but actually
514 can't be moved up due to bookkeeping created during code motion to another
515 fence. See comment near the call to update_and_record_unavailable_insns
516 for the detailed explanations. */
517 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
519 /* This vector has vinsns which are scheduled with renaming on the first fence
520 and then seen on the second. For expressions with such vinsns, target
521 availability information may be wrong. */
522 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
524 /* Vector to store temporary nops inserted in move_op to prevent removal
525 of empty bbs. */
526 static vec<insn_t> vec_temp_moveop_nops = vNULL;
528 /* These bitmaps record original instructions scheduled on the current
529 iteration and bookkeeping copies created by them. */
530 static bitmap current_originators = NULL;
531 static bitmap current_copies = NULL;
533 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
534 visit them afterwards. */
535 static bitmap code_motion_visited_blocks = NULL;
537 /* Variables to accumulate different statistics. */
539 /* The number of bookkeeping copies created. */
540 static int stat_bookkeeping_copies;
542 /* The number of insns that required bookkeeiping for their scheduling. */
543 static int stat_insns_needed_bookkeeping;
545 /* The number of insns that got renamed. */
546 static int stat_renamed_scheduled;
548 /* The number of substitutions made during scheduling. */
549 static int stat_substitutions_total;
552 /* Forward declarations of static functions. */
553 static bool rtx_ok_for_substitution_p (rtx, rtx);
554 static int sel_rank_for_schedule (const void *, const void *);
555 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
556 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
558 static rtx get_dest_from_orig_ops (av_set_t);
559 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
560 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
561 def_list_t *);
562 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
563 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
564 cmpd_local_params_p, void *);
565 static void sel_sched_region_1 (void);
566 static void sel_sched_region_2 (int);
567 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
569 static void debug_state (state_t);
572 /* Functions that work with fences. */
574 /* Advance one cycle on FENCE. */
575 static void
576 advance_one_cycle (fence_t fence)
578 unsigned i;
579 int cycle;
580 rtx_insn *insn;
582 advance_state (FENCE_STATE (fence));
583 cycle = ++FENCE_CYCLE (fence);
584 FENCE_ISSUED_INSNS (fence) = 0;
585 FENCE_STARTS_CYCLE_P (fence) = 1;
586 can_issue_more = issue_rate;
587 FENCE_ISSUE_MORE (fence) = can_issue_more;
589 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
591 if (INSN_READY_CYCLE (insn) < cycle)
593 remove_from_deps (FENCE_DC (fence), insn);
594 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
595 continue;
597 i++;
599 if (sched_verbose >= 2)
601 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
602 debug_state (FENCE_STATE (fence));
606 /* Returns true when SUCC in a fallthru bb of INSN, possibly
607 skipping empty basic blocks. */
608 static bool
609 in_fallthru_bb_p (rtx insn, rtx succ)
611 basic_block bb = BLOCK_FOR_INSN (insn);
612 edge e;
614 if (bb == BLOCK_FOR_INSN (succ))
615 return true;
617 e = find_fallthru_edge_from (bb);
618 if (e)
619 bb = e->dest;
620 else
621 return false;
623 while (sel_bb_empty_p (bb))
624 bb = bb->next_bb;
626 return bb == BLOCK_FOR_INSN (succ);
629 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
630 When a successor will continue a ebb, transfer all parameters of a fence
631 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
632 of scheduling helping to distinguish between the old and the new code. */
633 static void
634 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
635 int orig_max_seqno)
637 bool was_here_p = false;
638 insn_t insn = NULL;
639 insn_t succ;
640 succ_iterator si;
641 ilist_iterator ii;
642 fence_t fence = FLIST_FENCE (old_fences);
643 basic_block bb;
645 /* Get the only element of FENCE_BNDS (fence). */
646 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
648 gcc_assert (!was_here_p);
649 was_here_p = true;
651 gcc_assert (was_here_p && insn != NULL_RTX);
653 /* When in the "middle" of the block, just move this fence
654 to the new list. */
655 bb = BLOCK_FOR_INSN (insn);
656 if (! sel_bb_end_p (insn)
657 || (single_succ_p (bb)
658 && single_pred_p (single_succ (bb))))
660 insn_t succ;
662 succ = (sel_bb_end_p (insn)
663 ? sel_bb_head (single_succ (bb))
664 : NEXT_INSN (insn));
666 if (INSN_SEQNO (succ) > 0
667 && INSN_SEQNO (succ) <= orig_max_seqno
668 && INSN_SCHED_TIMES (succ) <= 0)
670 FENCE_INSN (fence) = succ;
671 move_fence_to_fences (old_fences, new_fences);
673 if (sched_verbose >= 1)
674 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
675 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
677 return;
680 /* Otherwise copy fence's structures to (possibly) multiple successors. */
681 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
683 int seqno = INSN_SEQNO (succ);
685 if (0 < seqno && seqno <= orig_max_seqno
686 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
688 bool b = (in_same_ebb_p (insn, succ)
689 || in_fallthru_bb_p (insn, succ));
691 if (sched_verbose >= 1)
692 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
693 INSN_UID (insn), INSN_UID (succ),
694 BLOCK_NUM (succ), b ? "continue" : "reset");
696 if (b)
697 add_dirty_fence_to_fences (new_fences, succ, fence);
698 else
700 /* Mark block of the SUCC as head of the new ebb. */
701 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
702 add_clean_fence_to_fences (new_fences, succ, fence);
709 /* Functions to support substitution. */
711 /* Returns whether INSN with dependence status DS is eligible for
712 substitution, i.e. it's a copy operation x := y, and RHS that is
713 moved up through this insn should be substituted. */
714 static bool
715 can_substitute_through_p (insn_t insn, ds_t ds)
717 /* We can substitute only true dependencies. */
718 if ((ds & DEP_OUTPUT)
719 || (ds & DEP_ANTI)
720 || ! INSN_RHS (insn)
721 || ! INSN_LHS (insn))
722 return false;
724 /* Now we just need to make sure the INSN_RHS consists of only one
725 simple REG rtx. */
726 if (REG_P (INSN_LHS (insn))
727 && REG_P (INSN_RHS (insn)))
728 return true;
729 return false;
732 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
733 source (if INSN is eligible for substitution). Returns TRUE if
734 substitution was actually performed, FALSE otherwise. Substitution might
735 be not performed because it's either EXPR' vinsn doesn't contain INSN's
736 destination or the resulting insn is invalid for the target machine.
737 When UNDO is true, perform unsubstitution instead (the difference is in
738 the part of rtx on which validate_replace_rtx is called). */
739 static bool
740 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
742 rtx *where;
743 bool new_insn_valid;
744 vinsn_t *vi = &EXPR_VINSN (expr);
745 bool has_rhs = VINSN_RHS (*vi) != NULL;
746 rtx old, new_rtx;
748 /* Do not try to replace in SET_DEST. Although we'll choose new
749 register for the RHS, we don't want to change RHS' original reg.
750 If the insn is not SET, we may still be able to substitute something
751 in it, and if we're here (don't have deps), it doesn't write INSN's
752 dest. */
753 where = (has_rhs
754 ? &VINSN_RHS (*vi)
755 : &PATTERN (VINSN_INSN_RTX (*vi)));
756 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
758 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
759 if (rtx_ok_for_substitution_p (old, *where))
761 rtx_insn *new_insn;
762 rtx *where_replace;
764 /* We should copy these rtxes before substitution. */
765 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
766 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
768 /* Where we'll replace.
769 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
770 used instead of SET_SRC. */
771 where_replace = (has_rhs
772 ? &SET_SRC (PATTERN (new_insn))
773 : &PATTERN (new_insn));
775 new_insn_valid
776 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
777 new_insn);
779 /* ??? Actually, constrain_operands result depends upon choice of
780 destination register. E.g. if we allow single register to be an rhs,
781 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
782 in invalid insn dx=dx, so we'll loose this rhs here.
783 Just can't come up with significant testcase for this, so just
784 leaving it for now. */
785 if (new_insn_valid)
787 change_vinsn_in_expr (expr,
788 create_vinsn_from_insn_rtx (new_insn, false));
790 /* Do not allow clobbering the address register of speculative
791 insns. */
792 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
793 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
794 expr_dest_reg (expr)))
795 EXPR_TARGET_AVAILABLE (expr) = false;
797 return true;
799 else
800 return false;
802 else
803 return false;
806 /* Return the number of places WHAT appears within WHERE.
807 Bail out when we found a reference occupying several hard registers. */
808 static int
809 count_occurrences_equiv (const_rtx what, const_rtx where)
811 int count = 0;
812 subrtx_iterator::array_type array;
813 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
815 const_rtx x = *iter;
816 if (REG_P (x) && REGNO (x) == REGNO (what))
818 /* Bail out if mode is different or more than one register is
819 used. */
820 if (GET_MODE (x) != GET_MODE (what)
821 || (HARD_REGISTER_P (x)
822 && hard_regno_nregs[REGNO (x)][GET_MODE (x)] > 1))
823 return 0;
824 count += 1;
826 else if (GET_CODE (x) == SUBREG
827 && (!REG_P (SUBREG_REG (x))
828 || REGNO (SUBREG_REG (x)) == REGNO (what)))
829 /* ??? Do not support substituting regs inside subregs. In that case,
830 simplify_subreg will be called by validate_replace_rtx, and
831 unsubstitution will fail later. */
832 return 0;
834 return count;
837 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
838 static bool
839 rtx_ok_for_substitution_p (rtx what, rtx where)
841 return (count_occurrences_equiv (what, where) > 0);
845 /* Functions to support register renaming. */
847 /* Substitute VI's set source with REGNO. Returns newly created pattern
848 that has REGNO as its source. */
849 static rtx_insn *
850 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
852 rtx lhs_rtx;
853 rtx pattern;
854 rtx_insn *insn_rtx;
856 lhs_rtx = copy_rtx (VINSN_LHS (vi));
858 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
859 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
861 return insn_rtx;
864 /* Returns whether INSN's src can be replaced with register number
865 NEW_SRC_REG. E.g. the following insn is valid for i386:
867 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
868 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
869 (reg:SI 0 ax [orig:770 c1 ] [770]))
870 (const_int 288 [0x120])) [0 str S1 A8])
871 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
872 (nil))
874 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
875 because of operand constraints:
877 (define_insn "*movqi_1"
878 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
879 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
882 So do constrain_operands here, before choosing NEW_SRC_REG as best
883 reg for rhs. */
885 static bool
886 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
888 vinsn_t vi = INSN_VINSN (insn);
889 enum machine_mode mode;
890 rtx dst_loc;
891 bool res;
893 gcc_assert (VINSN_SEPARABLE_P (vi));
895 get_dest_and_mode (insn, &dst_loc, &mode);
896 gcc_assert (mode == GET_MODE (new_src_reg));
898 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
899 return true;
901 /* See whether SET_SRC can be replaced with this register. */
902 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
903 res = verify_changes (0);
904 cancel_changes (0);
906 return res;
909 /* Returns whether INSN still be valid after replacing it's DEST with
910 register NEW_REG. */
911 static bool
912 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
914 vinsn_t vi = INSN_VINSN (insn);
915 bool res;
917 /* We should deal here only with separable insns. */
918 gcc_assert (VINSN_SEPARABLE_P (vi));
919 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
921 /* See whether SET_DEST can be replaced with this register. */
922 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
923 res = verify_changes (0);
924 cancel_changes (0);
926 return res;
929 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
930 static rtx_insn *
931 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
933 rtx rhs_rtx;
934 rtx pattern;
935 rtx_insn *insn_rtx;
937 rhs_rtx = copy_rtx (VINSN_RHS (vi));
939 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
940 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
942 return insn_rtx;
945 /* Substitute lhs in the given expression EXPR for the register with number
946 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
947 static void
948 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
950 rtx_insn *insn_rtx;
951 vinsn_t vinsn;
953 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
954 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
956 change_vinsn_in_expr (expr, vinsn);
957 EXPR_WAS_RENAMED (expr) = 1;
958 EXPR_TARGET_AVAILABLE (expr) = 1;
961 /* Returns whether VI writes either one of the USED_REGS registers or,
962 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
963 static bool
964 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
965 HARD_REG_SET unavailable_hard_regs)
967 unsigned regno;
968 reg_set_iterator rsi;
970 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
972 if (REGNO_REG_SET_P (used_regs, regno))
973 return true;
974 if (HARD_REGISTER_NUM_P (regno)
975 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
976 return true;
979 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
981 if (REGNO_REG_SET_P (used_regs, regno))
982 return true;
983 if (HARD_REGISTER_NUM_P (regno)
984 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
985 return true;
988 return false;
991 /* Returns register class of the output register in INSN.
992 Returns NO_REGS for call insns because some targets have constraints on
993 destination register of a call insn.
995 Code adopted from regrename.c::build_def_use. */
996 static enum reg_class
997 get_reg_class (rtx_insn *insn)
999 int i, n_ops;
1001 extract_constrain_insn (insn);
1002 preprocess_constraints (insn);
1003 n_ops = recog_data.n_operands;
1005 const operand_alternative *op_alt = which_op_alt ();
1006 if (asm_noperands (PATTERN (insn)) > 0)
1008 for (i = 0; i < n_ops; i++)
1009 if (recog_data.operand_type[i] == OP_OUT)
1011 rtx *loc = recog_data.operand_loc[i];
1012 rtx op = *loc;
1013 enum reg_class cl = alternative_class (op_alt, i);
1015 if (REG_P (op)
1016 && REGNO (op) == ORIGINAL_REGNO (op))
1017 continue;
1019 return cl;
1022 else if (!CALL_P (insn))
1024 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1026 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1027 enum reg_class cl = alternative_class (op_alt, opn);
1029 if (recog_data.operand_type[opn] == OP_OUT ||
1030 recog_data.operand_type[opn] == OP_INOUT)
1031 return cl;
1035 /* Insns like
1036 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1037 may result in returning NO_REGS, cause flags is written implicitly through
1038 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1039 return NO_REGS;
1042 #ifdef HARD_REGNO_RENAME_OK
1043 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1044 static void
1045 init_hard_regno_rename (int regno)
1047 int cur_reg;
1049 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1051 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1053 /* We are not interested in renaming in other regs. */
1054 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1055 continue;
1057 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1058 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1061 #endif
1063 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1064 data first. */
1065 static inline bool
1066 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1068 #ifdef HARD_REGNO_RENAME_OK
1069 /* Check whether this is all calculated. */
1070 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1071 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1073 init_hard_regno_rename (from);
1075 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1076 #else
1077 return true;
1078 #endif
1081 /* Calculate set of registers that are capable of holding MODE. */
1082 static void
1083 init_regs_for_mode (enum machine_mode mode)
1085 int cur_reg;
1087 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1088 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1090 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1092 int nregs;
1093 int i;
1095 /* See whether it accepts all modes that occur in
1096 original insns. */
1097 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1098 continue;
1100 nregs = hard_regno_nregs[cur_reg][mode];
1102 for (i = nregs - 1; i >= 0; --i)
1103 if (fixed_regs[cur_reg + i]
1104 || global_regs[cur_reg + i]
1105 /* Can't use regs which aren't saved by
1106 the prologue. */
1107 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1108 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1109 it affects aliasing globally and invalidates all AV sets. */
1110 || get_reg_base_value (cur_reg + i)
1111 #ifdef LEAF_REGISTERS
1112 /* We can't use a non-leaf register if we're in a
1113 leaf function. */
1114 || (crtl->is_leaf
1115 && !LEAF_REGISTERS[cur_reg + i])
1116 #endif
1118 break;
1120 if (i >= 0)
1121 continue;
1123 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1124 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1125 cur_reg);
1127 /* If the CUR_REG passed all the checks above,
1128 then it's ok. */
1129 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1132 sel_hrd.regs_for_mode_ok[mode] = true;
1135 /* Init all register sets gathered in HRD. */
1136 static void
1137 init_hard_regs_data (void)
1139 int cur_reg = 0;
1140 int cur_mode = 0;
1142 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1143 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1144 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1145 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1147 /* Initialize registers that are valid based on mode when this is
1148 really needed. */
1149 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1150 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1152 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1153 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1154 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1156 #ifdef STACK_REGS
1157 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1159 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1160 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1161 #endif
1164 /* Mark hardware regs in REG_RENAME_P that are not suitable
1165 for renaming rhs in INSN due to hardware restrictions (register class,
1166 modes compatibility etc). This doesn't affect original insn's dest reg,
1167 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1168 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1169 Registers that are in used_regs are always marked in
1170 unavailable_hard_regs as well. */
1172 static void
1173 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1174 regset used_regs ATTRIBUTE_UNUSED)
1176 enum machine_mode mode;
1177 enum reg_class cl = NO_REGS;
1178 rtx orig_dest;
1179 unsigned cur_reg, regno;
1180 hard_reg_set_iterator hrsi;
1182 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1183 gcc_assert (reg_rename_p);
1185 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1187 /* We have decided not to rename 'mem = something;' insns, as 'something'
1188 is usually a register. */
1189 if (!REG_P (orig_dest))
1190 return;
1192 regno = REGNO (orig_dest);
1194 /* If before reload, don't try to work with pseudos. */
1195 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1196 return;
1198 if (reload_completed)
1199 cl = get_reg_class (def->orig_insn);
1201 /* Stop if the original register is one of the fixed_regs, global_regs or
1202 frame pointer, or we could not discover its class. */
1203 if (fixed_regs[regno]
1204 || global_regs[regno]
1205 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1206 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1207 #else
1208 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1209 #endif
1210 || (reload_completed && cl == NO_REGS))
1212 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1214 /* Give a chance for original register, if it isn't in used_regs. */
1215 if (!def->crosses_call)
1216 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1218 return;
1221 /* If something allocated on stack in this function, mark frame pointer
1222 register unavailable, considering also modes.
1223 FIXME: it is enough to do this once per all original defs. */
1224 if (frame_pointer_needed)
1226 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1227 Pmode, FRAME_POINTER_REGNUM);
1229 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1230 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1231 Pmode, HARD_FRAME_POINTER_REGNUM);
1234 #ifdef STACK_REGS
1235 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1236 is equivalent to as if all stack regs were in this set.
1237 I.e. no stack register can be renamed, and even if it's an original
1238 register here we make sure it won't be lifted over it's previous def
1239 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1240 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1241 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1242 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1243 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1244 sel_hrd.stack_regs);
1245 #endif
1247 /* If there's a call on this path, make regs from call_used_reg_set
1248 unavailable. */
1249 if (def->crosses_call)
1250 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1251 call_used_reg_set);
1253 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1254 but not register classes. */
1255 if (!reload_completed)
1256 return;
1258 /* Leave regs as 'available' only from the current
1259 register class. */
1260 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1261 reg_class_contents[cl]);
1263 mode = GET_MODE (orig_dest);
1265 /* Leave only registers available for this mode. */
1266 if (!sel_hrd.regs_for_mode_ok[mode])
1267 init_regs_for_mode (mode);
1268 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1269 sel_hrd.regs_for_mode[mode]);
1271 /* Exclude registers that are partially call clobbered. */
1272 if (def->crosses_call
1273 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1274 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1275 sel_hrd.regs_for_call_clobbered[mode]);
1277 /* Leave only those that are ok to rename. */
1278 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1279 0, cur_reg, hrsi)
1281 int nregs;
1282 int i;
1284 nregs = hard_regno_nregs[cur_reg][mode];
1285 gcc_assert (nregs > 0);
1287 for (i = nregs - 1; i >= 0; --i)
1288 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1289 break;
1291 if (i >= 0)
1292 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1293 cur_reg);
1296 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1297 reg_rename_p->unavailable_hard_regs);
1299 /* Regno is always ok from the renaming part of view, but it really
1300 could be in *unavailable_hard_regs already, so set it here instead
1301 of there. */
1302 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1305 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1306 best register more recently than REG2. */
1307 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1309 /* Indicates the number of times renaming happened before the current one. */
1310 static int reg_rename_this_tick;
1312 /* Choose the register among free, that is suitable for storing
1313 the rhs value.
1315 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1316 originally appears. There could be multiple original operations
1317 for single rhs since we moving it up and merging along different
1318 paths.
1320 Some code is adapted from regrename.c (regrename_optimize).
1321 If original register is available, function returns it.
1322 Otherwise it performs the checks, so the new register should
1323 comply with the following:
1324 - it should not violate any live ranges (such registers are in
1325 REG_RENAME_P->available_for_renaming set);
1326 - it should not be in the HARD_REGS_USED regset;
1327 - it should be in the class compatible with original uses;
1328 - it should not be clobbered through reference with different mode;
1329 - if we're in the leaf function, then the new register should
1330 not be in the LEAF_REGISTERS;
1331 - etc.
1333 If several registers meet the conditions, the register with smallest
1334 tick is returned to achieve more even register allocation.
1336 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1338 If no register satisfies the above conditions, NULL_RTX is returned. */
1339 static rtx
1340 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1341 struct reg_rename *reg_rename_p,
1342 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1344 int best_new_reg;
1345 unsigned cur_reg;
1346 enum machine_mode mode = VOIDmode;
1347 unsigned regno, i, n;
1348 hard_reg_set_iterator hrsi;
1349 def_list_iterator di;
1350 def_t def;
1352 /* If original register is available, return it. */
1353 *is_orig_reg_p_ptr = true;
1355 FOR_EACH_DEF (def, di, original_insns)
1357 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1359 gcc_assert (REG_P (orig_dest));
1361 /* Check that all original operations have the same mode.
1362 This is done for the next loop; if we'd return from this
1363 loop, we'd check only part of them, but in this case
1364 it doesn't matter. */
1365 if (mode == VOIDmode)
1366 mode = GET_MODE (orig_dest);
1367 gcc_assert (mode == GET_MODE (orig_dest));
1369 regno = REGNO (orig_dest);
1370 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1371 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1372 break;
1374 /* All hard registers are available. */
1375 if (i == n)
1377 gcc_assert (mode != VOIDmode);
1379 /* Hard registers should not be shared. */
1380 return gen_rtx_REG (mode, regno);
1384 *is_orig_reg_p_ptr = false;
1385 best_new_reg = -1;
1387 /* Among all available regs choose the register that was
1388 allocated earliest. */
1389 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1390 0, cur_reg, hrsi)
1391 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1393 /* Check that all hard regs for mode are available. */
1394 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1395 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1396 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1397 cur_reg + i))
1398 break;
1400 if (i < n)
1401 continue;
1403 /* All hard registers are available. */
1404 if (best_new_reg < 0
1405 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1407 best_new_reg = cur_reg;
1409 /* Return immediately when we know there's no better reg. */
1410 if (! reg_rename_tick[best_new_reg])
1411 break;
1415 if (best_new_reg >= 0)
1417 /* Use the check from the above loop. */
1418 gcc_assert (mode != VOIDmode);
1419 return gen_rtx_REG (mode, best_new_reg);
1422 return NULL_RTX;
1425 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1426 assumptions about available registers in the function. */
1427 static rtx
1428 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1429 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1431 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1432 original_insns, is_orig_reg_p_ptr);
1434 /* FIXME loop over hard_regno_nregs here. */
1435 gcc_assert (best_reg == NULL_RTX
1436 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1438 return best_reg;
1441 /* Choose the pseudo register for storing rhs value. As this is supposed
1442 to work before reload, we return either the original register or make
1443 the new one. The parameters are the same that in choose_nest_reg_1
1444 functions, except that USED_REGS may contain pseudos.
1445 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1447 TODO: take into account register pressure while doing this. Up to this
1448 moment, this function would never return NULL for pseudos, but we should
1449 not rely on this. */
1450 static rtx
1451 choose_best_pseudo_reg (regset used_regs,
1452 struct reg_rename *reg_rename_p,
1453 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1455 def_list_iterator i;
1456 def_t def;
1457 enum machine_mode mode = VOIDmode;
1458 bool bad_hard_regs = false;
1460 /* We should not use this after reload. */
1461 gcc_assert (!reload_completed);
1463 /* If original register is available, return it. */
1464 *is_orig_reg_p_ptr = true;
1466 FOR_EACH_DEF (def, i, original_insns)
1468 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1469 int orig_regno;
1471 gcc_assert (REG_P (dest));
1473 /* Check that all original operations have the same mode. */
1474 if (mode == VOIDmode)
1475 mode = GET_MODE (dest);
1476 else
1477 gcc_assert (mode == GET_MODE (dest));
1478 orig_regno = REGNO (dest);
1480 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1482 if (orig_regno < FIRST_PSEUDO_REGISTER)
1484 gcc_assert (df_regs_ever_live_p (orig_regno));
1486 /* For hard registers, we have to check hardware imposed
1487 limitations (frame/stack registers, calls crossed). */
1488 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1489 orig_regno))
1491 /* Don't let register cross a call if it doesn't already
1492 cross one. This condition is written in accordance with
1493 that in sched-deps.c sched_analyze_reg(). */
1494 if (!reg_rename_p->crosses_call
1495 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1496 return gen_rtx_REG (mode, orig_regno);
1499 bad_hard_regs = true;
1501 else
1502 return dest;
1506 *is_orig_reg_p_ptr = false;
1508 /* We had some original hard registers that couldn't be used.
1509 Those were likely special. Don't try to create a pseudo. */
1510 if (bad_hard_regs)
1511 return NULL_RTX;
1513 /* We haven't found a register from original operations. Get a new one.
1514 FIXME: control register pressure somehow. */
1516 rtx new_reg = gen_reg_rtx (mode);
1518 gcc_assert (mode != VOIDmode);
1520 max_regno = max_reg_num ();
1521 maybe_extend_reg_info_p ();
1522 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1524 return new_reg;
1528 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1529 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1530 static void
1531 verify_target_availability (expr_t expr, regset used_regs,
1532 struct reg_rename *reg_rename_p)
1534 unsigned n, i, regno;
1535 enum machine_mode mode;
1536 bool target_available, live_available, hard_available;
1538 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1539 return;
1541 regno = expr_dest_regno (expr);
1542 mode = GET_MODE (EXPR_LHS (expr));
1543 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1544 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1546 live_available = hard_available = true;
1547 for (i = 0; i < n; i++)
1549 if (bitmap_bit_p (used_regs, regno + i))
1550 live_available = false;
1551 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1552 hard_available = false;
1555 /* When target is not available, it may be due to hard register
1556 restrictions, e.g. crosses calls, so we check hard_available too. */
1557 if (target_available)
1558 gcc_assert (live_available);
1559 else
1560 /* Check only if we haven't scheduled something on the previous fence,
1561 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1562 and having more than one fence, we may end having targ_un in a block
1563 in which successors target register is actually available.
1565 The last condition handles the case when a dependence from a call insn
1566 was created in sched-deps.c for insns with destination registers that
1567 never crossed a call before, but do cross one after our code motion.
1569 FIXME: in the latter case, we just uselessly called find_used_regs,
1570 because we can't move this expression with any other register
1571 as well. */
1572 gcc_assert (scheduled_something_on_previous_fence || !live_available
1573 || !hard_available
1574 || (!reload_completed && reg_rename_p->crosses_call
1575 && REG_N_CALLS_CROSSED (regno) == 0));
1578 /* Collect unavailable registers due to liveness for EXPR from BNDS
1579 into USED_REGS. Save additional information about available
1580 registers and unavailable due to hardware restriction registers
1581 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1582 list. */
1583 static void
1584 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1585 struct reg_rename *reg_rename_p,
1586 def_list_t *original_insns)
1588 for (; bnds; bnds = BLIST_NEXT (bnds))
1590 bool res;
1591 av_set_t orig_ops = NULL;
1592 bnd_t bnd = BLIST_BND (bnds);
1594 /* If the chosen best expr doesn't belong to current boundary,
1595 skip it. */
1596 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1597 continue;
1599 /* Put in ORIG_OPS all exprs from this boundary that became
1600 RES on top. */
1601 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1603 /* Compute used regs and OR it into the USED_REGS. */
1604 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1605 reg_rename_p, original_insns);
1607 /* FIXME: the assert is true until we'd have several boundaries. */
1608 gcc_assert (res);
1609 av_set_clear (&orig_ops);
1613 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1614 If BEST_REG is valid, replace LHS of EXPR with it. */
1615 static bool
1616 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1618 /* Try whether we'll be able to generate the insn
1619 'dest := best_reg' at the place of the original operation. */
1620 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1622 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1624 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1626 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1627 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1628 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1629 return false;
1632 /* Make sure that EXPR has the right destination
1633 register. */
1634 if (expr_dest_regno (expr) != REGNO (best_reg))
1635 replace_dest_with_reg_in_expr (expr, best_reg);
1636 else
1637 EXPR_TARGET_AVAILABLE (expr) = 1;
1639 return true;
1642 /* Select and assign best register to EXPR searching from BNDS.
1643 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1644 Return FALSE if no register can be chosen, which could happen when:
1645 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1646 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1647 that are used on the moving path. */
1648 static bool
1649 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1651 static struct reg_rename reg_rename_data;
1653 regset used_regs;
1654 def_list_t original_insns = NULL;
1655 bool reg_ok;
1657 *is_orig_reg_p = false;
1659 /* Don't bother to do anything if this insn doesn't set any registers. */
1660 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1661 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1662 return true;
1664 used_regs = get_clear_regset_from_pool ();
1665 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1667 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1668 &original_insns);
1670 #ifdef ENABLE_CHECKING
1671 /* If after reload, make sure we're working with hard regs here. */
1672 if (reload_completed)
1674 reg_set_iterator rsi;
1675 unsigned i;
1677 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1678 gcc_unreachable ();
1680 #endif
1682 if (EXPR_SEPARABLE_P (expr))
1684 rtx best_reg = NULL_RTX;
1685 /* Check that we have computed availability of a target register
1686 correctly. */
1687 verify_target_availability (expr, used_regs, &reg_rename_data);
1689 /* Turn everything in hard regs after reload. */
1690 if (reload_completed)
1692 HARD_REG_SET hard_regs_used;
1693 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1695 /* Join hard registers unavailable due to register class
1696 restrictions and live range intersection. */
1697 IOR_HARD_REG_SET (hard_regs_used,
1698 reg_rename_data.unavailable_hard_regs);
1700 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1701 original_insns, is_orig_reg_p);
1703 else
1704 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1705 original_insns, is_orig_reg_p);
1707 if (!best_reg)
1708 reg_ok = false;
1709 else if (*is_orig_reg_p)
1711 /* In case of unification BEST_REG may be different from EXPR's LHS
1712 when EXPR's LHS is unavailable, and there is another LHS among
1713 ORIGINAL_INSNS. */
1714 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1716 else
1718 /* Forbid renaming of low-cost insns. */
1719 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1720 reg_ok = false;
1721 else
1722 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1725 else
1727 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1728 any of the HARD_REGS_USED set. */
1729 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1730 reg_rename_data.unavailable_hard_regs))
1732 reg_ok = false;
1733 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1735 else
1737 reg_ok = true;
1738 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1742 ilist_clear (&original_insns);
1743 return_regset_to_pool (used_regs);
1745 return reg_ok;
1749 /* Return true if dependence described by DS can be overcomed. */
1750 static bool
1751 can_speculate_dep_p (ds_t ds)
1753 if (spec_info == NULL)
1754 return false;
1756 /* Leave only speculative data. */
1757 ds &= SPECULATIVE;
1759 if (ds == 0)
1760 return false;
1763 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1764 that we can overcome. */
1765 ds_t spec_mask = spec_info->mask;
1767 if ((ds & spec_mask) != ds)
1768 return false;
1771 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1772 return false;
1774 return true;
1777 /* Get a speculation check instruction.
1778 C_EXPR is a speculative expression,
1779 CHECK_DS describes speculations that should be checked,
1780 ORIG_INSN is the original non-speculative insn in the stream. */
1781 static insn_t
1782 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1784 rtx check_pattern;
1785 rtx_insn *insn_rtx;
1786 insn_t insn;
1787 basic_block recovery_block;
1788 rtx_insn *label;
1790 /* Create a recovery block if target is going to emit branchy check, or if
1791 ORIG_INSN was speculative already. */
1792 if (targetm.sched.needs_block_p (check_ds)
1793 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1795 recovery_block = sel_create_recovery_block (orig_insn);
1796 label = BB_HEAD (recovery_block);
1798 else
1800 recovery_block = NULL;
1801 label = NULL;
1804 /* Get pattern of the check. */
1805 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1806 check_ds);
1808 gcc_assert (check_pattern != NULL);
1810 /* Emit check. */
1811 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1813 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1814 INSN_SEQNO (orig_insn), orig_insn);
1816 /* Make check to be non-speculative. */
1817 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1818 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1820 /* Decrease priority of check by difference of load/check instruction
1821 latencies. */
1822 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1823 - sel_vinsn_cost (INSN_VINSN (insn)));
1825 /* Emit copy of original insn (though with replaced target register,
1826 if needed) to the recovery block. */
1827 if (recovery_block != NULL)
1829 rtx twin_rtx;
1831 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1832 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1833 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1834 INSN_EXPR (orig_insn),
1835 INSN_SEQNO (insn),
1836 bb_note (recovery_block));
1839 /* If we've generated a data speculation check, make sure
1840 that all the bookkeeping instruction we'll create during
1841 this move_op () will allocate an ALAT entry so that the
1842 check won't fail.
1843 In case of control speculation we must convert C_EXPR to control
1844 speculative mode, because failing to do so will bring us an exception
1845 thrown by the non-control-speculative load. */
1846 check_ds = ds_get_max_dep_weak (check_ds);
1847 speculate_expr (c_expr, check_ds);
1849 return insn;
1852 /* True when INSN is a "regN = regN" copy. */
1853 static bool
1854 identical_copy_p (rtx insn)
1856 rtx lhs, rhs, pat;
1858 pat = PATTERN (insn);
1860 if (GET_CODE (pat) != SET)
1861 return false;
1863 lhs = SET_DEST (pat);
1864 if (!REG_P (lhs))
1865 return false;
1867 rhs = SET_SRC (pat);
1868 if (!REG_P (rhs))
1869 return false;
1871 return REGNO (lhs) == REGNO (rhs);
1874 /* Undo all transformations on *AV_PTR that were done when
1875 moving through INSN. */
1876 static void
1877 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1879 av_set_iterator av_iter;
1880 expr_t expr;
1881 av_set_t new_set = NULL;
1883 /* First, kill any EXPR that uses registers set by an insn. This is
1884 required for correctness. */
1885 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1886 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1887 && bitmap_intersect_p (INSN_REG_SETS (insn),
1888 VINSN_REG_USES (EXPR_VINSN (expr)))
1889 /* When an insn looks like 'r1 = r1', we could substitute through
1890 it, but the above condition will still hold. This happened with
1891 gcc.c-torture/execute/961125-1.c. */
1892 && !identical_copy_p (insn))
1894 if (sched_verbose >= 6)
1895 sel_print ("Expr %d removed due to use/set conflict\n",
1896 INSN_UID (EXPR_INSN_RTX (expr)));
1897 av_set_iter_remove (&av_iter);
1900 /* Undo transformations looking at the history vector. */
1901 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1903 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1904 insn, EXPR_VINSN (expr), true);
1906 if (index >= 0)
1908 expr_history_def *phist;
1910 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1912 switch (phist->type)
1914 case TRANS_SPECULATION:
1916 ds_t old_ds, new_ds;
1918 /* Compute the difference between old and new speculative
1919 statuses: that's what we need to check.
1920 Earlier we used to assert that the status will really
1921 change. This no longer works because only the probability
1922 bits in the status may have changed during compute_av_set,
1923 and in the case of merging different probabilities of the
1924 same speculative status along different paths we do not
1925 record this in the history vector. */
1926 old_ds = phist->spec_ds;
1927 new_ds = EXPR_SPEC_DONE_DS (expr);
1929 old_ds &= SPECULATIVE;
1930 new_ds &= SPECULATIVE;
1931 new_ds &= ~old_ds;
1933 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1934 break;
1936 case TRANS_SUBSTITUTION:
1938 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1939 vinsn_t new_vi;
1940 bool add = true;
1942 new_vi = phist->old_expr_vinsn;
1944 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1945 == EXPR_SEPARABLE_P (expr));
1946 copy_expr (tmp_expr, expr);
1948 if (vinsn_equal_p (phist->new_expr_vinsn,
1949 EXPR_VINSN (tmp_expr)))
1950 change_vinsn_in_expr (tmp_expr, new_vi);
1951 else
1952 /* This happens when we're unsubstituting on a bookkeeping
1953 copy, which was in turn substituted. The history is wrong
1954 in this case. Do it the hard way. */
1955 add = substitute_reg_in_expr (tmp_expr, insn, true);
1956 if (add)
1957 av_set_add (&new_set, tmp_expr);
1958 clear_expr (tmp_expr);
1959 break;
1961 default:
1962 gcc_unreachable ();
1968 av_set_union_and_clear (av_ptr, &new_set, NULL);
1972 /* Moveup_* helpers for code motion and computing av sets. */
1974 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1975 The difference from the below function is that only substitution is
1976 performed. */
1977 static enum MOVEUP_EXPR_CODE
1978 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1980 vinsn_t vi = EXPR_VINSN (expr);
1981 ds_t *has_dep_p;
1982 ds_t full_ds;
1984 /* Do this only inside insn group. */
1985 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1987 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1988 if (full_ds == 0)
1989 return MOVEUP_EXPR_SAME;
1991 /* Substitution is the possible choice in this case. */
1992 if (has_dep_p[DEPS_IN_RHS])
1994 /* Can't substitute UNIQUE VINSNs. */
1995 gcc_assert (!VINSN_UNIQUE_P (vi));
1997 if (can_substitute_through_p (through_insn,
1998 has_dep_p[DEPS_IN_RHS])
1999 && substitute_reg_in_expr (expr, through_insn, false))
2001 EXPR_WAS_SUBSTITUTED (expr) = true;
2002 return MOVEUP_EXPR_CHANGED;
2005 /* Don't care about this, as even true dependencies may be allowed
2006 in an insn group. */
2007 return MOVEUP_EXPR_SAME;
2010 /* This can catch output dependencies in COND_EXECs. */
2011 if (has_dep_p[DEPS_IN_INSN])
2012 return MOVEUP_EXPR_NULL;
2014 /* This is either an output or an anti dependence, which usually have
2015 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2016 will fix this. */
2017 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2018 return MOVEUP_EXPR_AS_RHS;
2021 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2022 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2023 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2024 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2025 && !sel_insn_is_speculation_check (through_insn))
2027 /* True when a conflict on a target register was found during moveup_expr. */
2028 static bool was_target_conflict = false;
2030 /* Return true when moving a debug INSN across THROUGH_INSN will
2031 create a bookkeeping block. We don't want to create such blocks,
2032 for they would cause codegen differences between compilations with
2033 and without debug info. */
2035 static bool
2036 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2037 insn_t through_insn)
2039 basic_block bbi, bbt;
2040 edge e1, e2;
2041 edge_iterator ei1, ei2;
2043 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2045 if (sched_verbose >= 9)
2046 sel_print ("no bookkeeping required: ");
2047 return FALSE;
2050 bbi = BLOCK_FOR_INSN (insn);
2052 if (EDGE_COUNT (bbi->preds) == 1)
2054 if (sched_verbose >= 9)
2055 sel_print ("only one pred edge: ");
2056 return TRUE;
2059 bbt = BLOCK_FOR_INSN (through_insn);
2061 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2063 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2065 if (find_block_for_bookkeeping (e1, e2, TRUE))
2067 if (sched_verbose >= 9)
2068 sel_print ("found existing block: ");
2069 return FALSE;
2074 if (sched_verbose >= 9)
2075 sel_print ("would create bookkeeping block: ");
2077 return TRUE;
2080 /* Return true when the conflict with newly created implicit clobbers
2081 between EXPR and THROUGH_INSN is found because of renaming. */
2082 static bool
2083 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2085 HARD_REG_SET temp;
2086 rtx_insn *insn;
2087 rtx reg, rhs, pat;
2088 hard_reg_set_iterator hrsi;
2089 unsigned regno;
2090 bool valid;
2092 /* Make a new pseudo register. */
2093 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2094 max_regno = max_reg_num ();
2095 maybe_extend_reg_info_p ();
2097 /* Validate a change and bail out early. */
2098 insn = EXPR_INSN_RTX (expr);
2099 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2100 valid = verify_changes (0);
2101 cancel_changes (0);
2102 if (!valid)
2104 if (sched_verbose >= 6)
2105 sel_print ("implicit clobbers failed validation, ");
2106 return true;
2109 /* Make a new insn with it. */
2110 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2111 pat = gen_rtx_SET (VOIDmode, reg, rhs);
2112 start_sequence ();
2113 insn = emit_insn (pat);
2114 end_sequence ();
2116 /* Calculate implicit clobbers. */
2117 extract_insn (insn);
2118 preprocess_constraints (insn);
2119 ira_implicitly_set_insn_hard_regs (&temp);
2120 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2122 /* If any implicit clobber registers intersect with regular ones in
2123 through_insn, we have a dependency and thus bail out. */
2124 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2126 vinsn_t vi = INSN_VINSN (through_insn);
2127 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2128 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2129 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2130 return true;
2133 return false;
2136 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2137 performing necessary transformations. Record the type of transformation
2138 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2139 permit all dependencies except true ones, and try to remove those
2140 too via forward substitution. All cases when a non-eliminable
2141 non-zero cost dependency exists inside an insn group will be fixed
2142 in tick_check_p instead. */
2143 static enum MOVEUP_EXPR_CODE
2144 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2145 enum local_trans_type *ptrans_type)
2147 vinsn_t vi = EXPR_VINSN (expr);
2148 insn_t insn = VINSN_INSN_RTX (vi);
2149 bool was_changed = false;
2150 bool as_rhs = false;
2151 ds_t *has_dep_p;
2152 ds_t full_ds;
2154 /* ??? We use dependencies of non-debug insns on debug insns to
2155 indicate that the debug insns need to be reset if the non-debug
2156 insn is pulled ahead of it. It's hard to figure out how to
2157 introduce such a notion in sel-sched, but it already fails to
2158 support debug insns in other ways, so we just go ahead and
2159 let the deug insns go corrupt for now. */
2160 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2161 return MOVEUP_EXPR_SAME;
2163 /* When inside_insn_group, delegate to the helper. */
2164 if (inside_insn_group)
2165 return moveup_expr_inside_insn_group (expr, through_insn);
2167 /* Deal with unique insns and control dependencies. */
2168 if (VINSN_UNIQUE_P (vi))
2170 /* We can move jumps without side-effects or jumps that are
2171 mutually exclusive with instruction THROUGH_INSN (all in cases
2172 dependencies allow to do so and jump is not speculative). */
2173 if (control_flow_insn_p (insn))
2175 basic_block fallthru_bb;
2177 /* Do not move checks and do not move jumps through other
2178 jumps. */
2179 if (control_flow_insn_p (through_insn)
2180 || sel_insn_is_speculation_check (insn))
2181 return MOVEUP_EXPR_NULL;
2183 /* Don't move jumps through CFG joins. */
2184 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2185 return MOVEUP_EXPR_NULL;
2187 /* The jump should have a clear fallthru block, and
2188 this block should be in the current region. */
2189 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2190 || ! in_current_region_p (fallthru_bb))
2191 return MOVEUP_EXPR_NULL;
2193 /* And it should be mutually exclusive with through_insn. */
2194 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2195 && ! DEBUG_INSN_P (through_insn))
2196 return MOVEUP_EXPR_NULL;
2199 /* Don't move what we can't move. */
2200 if (EXPR_CANT_MOVE (expr)
2201 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2202 return MOVEUP_EXPR_NULL;
2204 /* Don't move SCHED_GROUP instruction through anything.
2205 If we don't force this, then it will be possible to start
2206 scheduling a sched_group before all its dependencies are
2207 resolved.
2208 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2209 as late as possible through rank_for_schedule. */
2210 if (SCHED_GROUP_P (insn))
2211 return MOVEUP_EXPR_NULL;
2213 else
2214 gcc_assert (!control_flow_insn_p (insn));
2216 /* Don't move debug insns if this would require bookkeeping. */
2217 if (DEBUG_INSN_P (insn)
2218 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2219 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2220 return MOVEUP_EXPR_NULL;
2222 /* Deal with data dependencies. */
2223 was_target_conflict = false;
2224 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2225 if (full_ds == 0)
2227 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2228 return MOVEUP_EXPR_SAME;
2230 else
2232 /* We can move UNIQUE insn up only as a whole and unchanged,
2233 so it shouldn't have any dependencies. */
2234 if (VINSN_UNIQUE_P (vi))
2235 return MOVEUP_EXPR_NULL;
2238 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2240 int res;
2242 res = speculate_expr (expr, full_ds);
2243 if (res >= 0)
2245 /* Speculation was successful. */
2246 full_ds = 0;
2247 was_changed = (res > 0);
2248 if (res == 2)
2249 was_target_conflict = true;
2250 if (ptrans_type)
2251 *ptrans_type = TRANS_SPECULATION;
2252 sel_clear_has_dependence ();
2256 if (has_dep_p[DEPS_IN_INSN])
2257 /* We have some dependency that cannot be discarded. */
2258 return MOVEUP_EXPR_NULL;
2260 if (has_dep_p[DEPS_IN_LHS])
2262 /* Only separable insns can be moved up with the new register.
2263 Anyways, we should mark that the original register is
2264 unavailable. */
2265 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2266 return MOVEUP_EXPR_NULL;
2268 /* When renaming a hard register to a pseudo before reload, extra
2269 dependencies can occur from the implicit clobbers of the insn.
2270 Filter out such cases here. */
2271 if (!reload_completed && REG_P (EXPR_LHS (expr))
2272 && HARD_REGISTER_P (EXPR_LHS (expr))
2273 && implicit_clobber_conflict_p (through_insn, expr))
2275 if (sched_verbose >= 6)
2276 sel_print ("implicit clobbers conflict detected, ");
2277 return MOVEUP_EXPR_NULL;
2279 EXPR_TARGET_AVAILABLE (expr) = false;
2280 was_target_conflict = true;
2281 as_rhs = true;
2284 /* At this point we have either separable insns, that will be lifted
2285 up only as RHSes, or non-separable insns with no dependency in lhs.
2286 If dependency is in RHS, then try to perform substitution and move up
2287 substituted RHS:
2289 Ex. 1: Ex.2
2290 y = x; y = x;
2291 z = y*2; y = y*2;
2293 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2294 moved above y=x assignment as z=x*2.
2296 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2297 side can be moved because of the output dependency. The operation was
2298 cropped to its rhs above. */
2299 if (has_dep_p[DEPS_IN_RHS])
2301 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2303 /* Can't substitute UNIQUE VINSNs. */
2304 gcc_assert (!VINSN_UNIQUE_P (vi));
2306 if (can_speculate_dep_p (*rhs_dsp))
2308 int res;
2310 res = speculate_expr (expr, *rhs_dsp);
2311 if (res >= 0)
2313 /* Speculation was successful. */
2314 *rhs_dsp = 0;
2315 was_changed = (res > 0);
2316 if (res == 2)
2317 was_target_conflict = true;
2318 if (ptrans_type)
2319 *ptrans_type = TRANS_SPECULATION;
2321 else
2322 return MOVEUP_EXPR_NULL;
2324 else if (can_substitute_through_p (through_insn,
2325 *rhs_dsp)
2326 && substitute_reg_in_expr (expr, through_insn, false))
2328 /* ??? We cannot perform substitution AND speculation on the same
2329 insn. */
2330 gcc_assert (!was_changed);
2331 was_changed = true;
2332 if (ptrans_type)
2333 *ptrans_type = TRANS_SUBSTITUTION;
2334 EXPR_WAS_SUBSTITUTED (expr) = true;
2336 else
2337 return MOVEUP_EXPR_NULL;
2340 /* Don't move trapping insns through jumps.
2341 This check should be at the end to give a chance to control speculation
2342 to perform its duties. */
2343 if (CANT_MOVE_TRAPPING (expr, through_insn))
2344 return MOVEUP_EXPR_NULL;
2346 return (was_changed
2347 ? MOVEUP_EXPR_CHANGED
2348 : (as_rhs
2349 ? MOVEUP_EXPR_AS_RHS
2350 : MOVEUP_EXPR_SAME));
2353 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2354 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2355 that can exist within a parallel group. Write to RES the resulting
2356 code for moveup_expr. */
2357 static bool
2358 try_bitmap_cache (expr_t expr, insn_t insn,
2359 bool inside_insn_group,
2360 enum MOVEUP_EXPR_CODE *res)
2362 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2364 /* First check whether we've analyzed this situation already. */
2365 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2367 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2369 if (sched_verbose >= 6)
2370 sel_print ("removed (cached)\n");
2371 *res = MOVEUP_EXPR_NULL;
2372 return true;
2374 else
2376 if (sched_verbose >= 6)
2377 sel_print ("unchanged (cached)\n");
2378 *res = MOVEUP_EXPR_SAME;
2379 return true;
2382 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2384 if (inside_insn_group)
2386 if (sched_verbose >= 6)
2387 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2388 *res = MOVEUP_EXPR_SAME;
2389 return true;
2392 else
2393 EXPR_TARGET_AVAILABLE (expr) = false;
2395 /* This is the only case when propagation result can change over time,
2396 as we can dynamically switch off scheduling as RHS. In this case,
2397 just check the flag to reach the correct decision. */
2398 if (enable_schedule_as_rhs_p)
2400 if (sched_verbose >= 6)
2401 sel_print ("unchanged (as RHS, cached)\n");
2402 *res = MOVEUP_EXPR_AS_RHS;
2403 return true;
2405 else
2407 if (sched_verbose >= 6)
2408 sel_print ("removed (cached as RHS, but renaming"
2409 " is now disabled)\n");
2410 *res = MOVEUP_EXPR_NULL;
2411 return true;
2415 return false;
2418 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2419 if successful. Write to RES the resulting code for moveup_expr. */
2420 static bool
2421 try_transformation_cache (expr_t expr, insn_t insn,
2422 enum MOVEUP_EXPR_CODE *res)
2424 struct transformed_insns *pti
2425 = (struct transformed_insns *)
2426 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2427 &EXPR_VINSN (expr),
2428 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2429 if (pti)
2431 /* This EXPR was already moved through this insn and was
2432 changed as a result. Fetch the proper data from
2433 the hashtable. */
2434 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2435 INSN_UID (insn), pti->type,
2436 pti->vinsn_old, pti->vinsn_new,
2437 EXPR_SPEC_DONE_DS (expr));
2439 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2440 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2441 change_vinsn_in_expr (expr, pti->vinsn_new);
2442 if (pti->was_target_conflict)
2443 EXPR_TARGET_AVAILABLE (expr) = false;
2444 if (pti->type == TRANS_SPECULATION)
2446 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2447 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2450 if (sched_verbose >= 6)
2452 sel_print ("changed (cached): ");
2453 dump_expr (expr);
2454 sel_print ("\n");
2457 *res = MOVEUP_EXPR_CHANGED;
2458 return true;
2461 return false;
2464 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2465 static void
2466 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2467 enum MOVEUP_EXPR_CODE res)
2469 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2471 /* Do not cache result of propagating jumps through an insn group,
2472 as it is always true, which is not useful outside the group. */
2473 if (inside_insn_group)
2474 return;
2476 if (res == MOVEUP_EXPR_NULL)
2478 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2479 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2481 else if (res == MOVEUP_EXPR_SAME)
2483 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2484 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2486 else if (res == MOVEUP_EXPR_AS_RHS)
2488 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2489 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2491 else
2492 gcc_unreachable ();
2495 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2496 and transformation type TRANS_TYPE. */
2497 static void
2498 update_transformation_cache (expr_t expr, insn_t insn,
2499 bool inside_insn_group,
2500 enum local_trans_type trans_type,
2501 vinsn_t expr_old_vinsn)
2503 struct transformed_insns *pti;
2505 if (inside_insn_group)
2506 return;
2508 pti = XNEW (struct transformed_insns);
2509 pti->vinsn_old = expr_old_vinsn;
2510 pti->vinsn_new = EXPR_VINSN (expr);
2511 pti->type = trans_type;
2512 pti->was_target_conflict = was_target_conflict;
2513 pti->ds = EXPR_SPEC_DONE_DS (expr);
2514 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2515 vinsn_attach (pti->vinsn_old);
2516 vinsn_attach (pti->vinsn_new);
2517 *((struct transformed_insns **)
2518 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2519 pti, VINSN_HASH_RTX (expr_old_vinsn),
2520 INSERT)) = pti;
2523 /* Same as moveup_expr, but first looks up the result of
2524 transformation in caches. */
2525 static enum MOVEUP_EXPR_CODE
2526 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2528 enum MOVEUP_EXPR_CODE res;
2529 bool got_answer = false;
2531 if (sched_verbose >= 6)
2533 sel_print ("Moving ");
2534 dump_expr (expr);
2535 sel_print (" through %d: ", INSN_UID (insn));
2538 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2539 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2540 == EXPR_INSN_RTX (expr)))
2541 /* Don't use cached information for debug insns that are heads of
2542 basic blocks. */;
2543 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2544 /* When inside insn group, we do not want remove stores conflicting
2545 with previosly issued loads. */
2546 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2547 else if (try_transformation_cache (expr, insn, &res))
2548 got_answer = true;
2550 if (! got_answer)
2552 /* Invoke moveup_expr and record the results. */
2553 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2554 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2555 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2556 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2557 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2559 /* ??? Invent something better than this. We can't allow old_vinsn
2560 to go, we need it for the history vector. */
2561 vinsn_attach (expr_old_vinsn);
2563 res = moveup_expr (expr, insn, inside_insn_group,
2564 &trans_type);
2565 switch (res)
2567 case MOVEUP_EXPR_NULL:
2568 update_bitmap_cache (expr, insn, inside_insn_group, res);
2569 if (sched_verbose >= 6)
2570 sel_print ("removed\n");
2571 break;
2573 case MOVEUP_EXPR_SAME:
2574 update_bitmap_cache (expr, insn, inside_insn_group, res);
2575 if (sched_verbose >= 6)
2576 sel_print ("unchanged\n");
2577 break;
2579 case MOVEUP_EXPR_AS_RHS:
2580 gcc_assert (!unique_p || inside_insn_group);
2581 update_bitmap_cache (expr, insn, inside_insn_group, res);
2582 if (sched_verbose >= 6)
2583 sel_print ("unchanged (as RHS)\n");
2584 break;
2586 case MOVEUP_EXPR_CHANGED:
2587 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2588 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2589 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2590 INSN_UID (insn), trans_type,
2591 expr_old_vinsn, EXPR_VINSN (expr),
2592 expr_old_spec_ds);
2593 update_transformation_cache (expr, insn, inside_insn_group,
2594 trans_type, expr_old_vinsn);
2595 if (sched_verbose >= 6)
2597 sel_print ("changed: ");
2598 dump_expr (expr);
2599 sel_print ("\n");
2601 break;
2602 default:
2603 gcc_unreachable ();
2606 vinsn_detach (expr_old_vinsn);
2609 return res;
2612 /* Moves an av set AVP up through INSN, performing necessary
2613 transformations. */
2614 static void
2615 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2617 av_set_iterator i;
2618 expr_t expr;
2620 FOR_EACH_EXPR_1 (expr, i, avp)
2623 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2625 case MOVEUP_EXPR_SAME:
2626 case MOVEUP_EXPR_AS_RHS:
2627 break;
2629 case MOVEUP_EXPR_NULL:
2630 av_set_iter_remove (&i);
2631 break;
2633 case MOVEUP_EXPR_CHANGED:
2634 expr = merge_with_other_exprs (avp, &i, expr);
2635 break;
2637 default:
2638 gcc_unreachable ();
2643 /* Moves AVP set along PATH. */
2644 static void
2645 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2647 int last_cycle;
2649 if (sched_verbose >= 6)
2650 sel_print ("Moving expressions up in the insn group...\n");
2651 if (! path)
2652 return;
2653 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2654 while (path
2655 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2657 moveup_set_expr (avp, ILIST_INSN (path), true);
2658 path = ILIST_NEXT (path);
2662 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2663 static bool
2664 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2666 expr_def _tmp, *tmp = &_tmp;
2667 int last_cycle;
2668 bool res = true;
2670 copy_expr_onside (tmp, expr);
2671 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2672 while (path
2673 && res
2674 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2676 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2677 != MOVEUP_EXPR_NULL);
2678 path = ILIST_NEXT (path);
2681 if (res)
2683 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2684 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2686 if (tmp_vinsn != expr_vliw_vinsn)
2687 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2690 clear_expr (tmp);
2691 return res;
2695 /* Functions that compute av and lv sets. */
2697 /* Returns true if INSN is not a downward continuation of the given path P in
2698 the current stage. */
2699 static bool
2700 is_ineligible_successor (insn_t insn, ilist_t p)
2702 insn_t prev_insn;
2704 /* Check if insn is not deleted. */
2705 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2706 gcc_unreachable ();
2707 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2708 gcc_unreachable ();
2710 /* If it's the first insn visited, then the successor is ok. */
2711 if (!p)
2712 return false;
2714 prev_insn = ILIST_INSN (p);
2716 if (/* a backward edge. */
2717 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2718 /* is already visited. */
2719 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2720 && (ilist_is_in_p (p, insn)
2721 /* We can reach another fence here and still seqno of insn
2722 would be equal to seqno of prev_insn. This is possible
2723 when prev_insn is a previously created bookkeeping copy.
2724 In that case it'd get a seqno of insn. Thus, check here
2725 whether insn is in current fence too. */
2726 || IN_CURRENT_FENCE_P (insn)))
2727 /* Was already scheduled on this round. */
2728 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2729 && IN_CURRENT_FENCE_P (insn))
2730 /* An insn from another fence could also be
2731 scheduled earlier even if this insn is not in
2732 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2733 || (!pipelining_p
2734 && INSN_SCHED_TIMES (insn) > 0))
2735 return true;
2736 else
2737 return false;
2740 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2741 of handling multiple successors and properly merging its av_sets. P is
2742 the current path traversed. WS is the size of lookahead window.
2743 Return the av set computed. */
2744 static av_set_t
2745 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2747 struct succs_info *sinfo;
2748 av_set_t expr_in_all_succ_branches = NULL;
2749 int is;
2750 insn_t succ, zero_succ = NULL;
2751 av_set_t av1 = NULL;
2753 gcc_assert (sel_bb_end_p (insn));
2755 /* Find different kind of successors needed for correct computing of
2756 SPEC and TARGET_AVAILABLE attributes. */
2757 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2759 /* Debug output. */
2760 if (sched_verbose >= 6)
2762 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2763 dump_insn_vector (sinfo->succs_ok);
2764 sel_print ("\n");
2765 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2766 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2769 /* Add insn to the tail of current path. */
2770 ilist_add (&p, insn);
2772 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2774 av_set_t succ_set;
2776 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2777 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2779 av_set_split_usefulness (succ_set,
2780 sinfo->probs_ok[is],
2781 sinfo->all_prob);
2783 if (sinfo->all_succs_n > 1)
2785 /* Find EXPR'es that came from *all* successors and save them
2786 into expr_in_all_succ_branches. This set will be used later
2787 for calculating speculation attributes of EXPR'es. */
2788 if (is == 0)
2790 expr_in_all_succ_branches = av_set_copy (succ_set);
2792 /* Remember the first successor for later. */
2793 zero_succ = succ;
2795 else
2797 av_set_iterator i;
2798 expr_t expr;
2800 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2801 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2802 av_set_iter_remove (&i);
2806 /* Union the av_sets. Check liveness restrictions on target registers
2807 in special case of two successors. */
2808 if (sinfo->succs_ok_n == 2 && is == 1)
2810 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2811 basic_block bb1 = BLOCK_FOR_INSN (succ);
2813 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2814 av_set_union_and_live (&av1, &succ_set,
2815 BB_LV_SET (bb0),
2816 BB_LV_SET (bb1),
2817 insn);
2819 else
2820 av_set_union_and_clear (&av1, &succ_set, insn);
2823 /* Check liveness restrictions via hard way when there are more than
2824 two successors. */
2825 if (sinfo->succs_ok_n > 2)
2826 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2828 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2830 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2831 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2832 BB_LV_SET (succ_bb));
2835 /* Finally, check liveness restrictions on paths leaving the region. */
2836 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2837 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2838 mark_unavailable_targets
2839 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2841 if (sinfo->all_succs_n > 1)
2843 av_set_iterator i;
2844 expr_t expr;
2846 /* Increase the spec attribute of all EXPR'es that didn't come
2847 from all successors. */
2848 FOR_EACH_EXPR (expr, i, av1)
2849 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2850 EXPR_SPEC (expr)++;
2852 av_set_clear (&expr_in_all_succ_branches);
2854 /* Do not move conditional branches through other
2855 conditional branches. So, remove all conditional
2856 branches from av_set if current operator is a conditional
2857 branch. */
2858 av_set_substract_cond_branches (&av1);
2861 ilist_remove (&p);
2862 free_succs_info (sinfo);
2864 if (sched_verbose >= 6)
2866 sel_print ("av_succs (%d): ", INSN_UID (insn));
2867 dump_av_set (av1);
2868 sel_print ("\n");
2871 return av1;
2874 /* This function computes av_set for the FIRST_INSN by dragging valid
2875 av_set through all basic block insns either from the end of basic block
2876 (computed using compute_av_set_at_bb_end) or from the insn on which
2877 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2878 below the basic block and handling conditional branches.
2879 FIRST_INSN - the basic block head, P - path consisting of the insns
2880 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2881 and bb ends are added to the path), WS - current window size,
2882 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2883 static av_set_t
2884 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2885 bool need_copy_p)
2887 insn_t cur_insn;
2888 int end_ws = ws;
2889 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2890 insn_t after_bb_end = NEXT_INSN (bb_end);
2891 insn_t last_insn;
2892 av_set_t av = NULL;
2893 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2895 /* Return NULL if insn is not on the legitimate downward path. */
2896 if (is_ineligible_successor (first_insn, p))
2898 if (sched_verbose >= 6)
2899 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2901 return NULL;
2904 /* If insn already has valid av(insn) computed, just return it. */
2905 if (AV_SET_VALID_P (first_insn))
2907 av_set_t av_set;
2909 if (sel_bb_head_p (first_insn))
2910 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2911 else
2912 av_set = NULL;
2914 if (sched_verbose >= 6)
2916 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2917 dump_av_set (av_set);
2918 sel_print ("\n");
2921 return need_copy_p ? av_set_copy (av_set) : av_set;
2924 ilist_add (&p, first_insn);
2926 /* As the result after this loop have completed, in LAST_INSN we'll
2927 have the insn which has valid av_set to start backward computation
2928 from: it either will be NULL because on it the window size was exceeded
2929 or other valid av_set as returned by compute_av_set for the last insn
2930 of the basic block. */
2931 for (last_insn = first_insn; last_insn != after_bb_end;
2932 last_insn = NEXT_INSN (last_insn))
2934 /* We may encounter valid av_set not only on bb_head, but also on
2935 those insns on which previously MAX_WS was exceeded. */
2936 if (AV_SET_VALID_P (last_insn))
2938 if (sched_verbose >= 6)
2939 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2940 break;
2943 /* The special case: the last insn of the BB may be an
2944 ineligible_successor due to its SEQ_NO that was set on
2945 it as a bookkeeping. */
2946 if (last_insn != first_insn
2947 && is_ineligible_successor (last_insn, p))
2949 if (sched_verbose >= 6)
2950 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2951 break;
2954 if (DEBUG_INSN_P (last_insn))
2955 continue;
2957 if (end_ws > max_ws)
2959 /* We can reach max lookahead size at bb_header, so clean av_set
2960 first. */
2961 INSN_WS_LEVEL (last_insn) = global_level;
2963 if (sched_verbose >= 6)
2964 sel_print ("Insn %d is beyond the software lookahead window size\n",
2965 INSN_UID (last_insn));
2966 break;
2969 end_ws++;
2972 /* Get the valid av_set into AV above the LAST_INSN to start backward
2973 computation from. It either will be empty av_set or av_set computed from
2974 the successors on the last insn of the current bb. */
2975 if (last_insn != after_bb_end)
2977 av = NULL;
2979 /* This is needed only to obtain av_sets that are identical to
2980 those computed by the old compute_av_set version. */
2981 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2982 av_set_add (&av, INSN_EXPR (last_insn));
2984 else
2985 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2986 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2988 /* Compute av_set in AV starting from below the LAST_INSN up to
2989 location above the FIRST_INSN. */
2990 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2991 cur_insn = PREV_INSN (cur_insn))
2992 if (!INSN_NOP_P (cur_insn))
2994 expr_t expr;
2996 moveup_set_expr (&av, cur_insn, false);
2998 /* If the expression for CUR_INSN is already in the set,
2999 replace it by the new one. */
3000 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
3001 if (expr != NULL)
3003 clear_expr (expr);
3004 copy_expr (expr, INSN_EXPR (cur_insn));
3006 else
3007 av_set_add (&av, INSN_EXPR (cur_insn));
3010 /* Clear stale bb_av_set. */
3011 if (sel_bb_head_p (first_insn))
3013 av_set_clear (&BB_AV_SET (cur_bb));
3014 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3015 BB_AV_LEVEL (cur_bb) = global_level;
3018 if (sched_verbose >= 6)
3020 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3021 dump_av_set (av);
3022 sel_print ("\n");
3025 ilist_remove (&p);
3026 return av;
3029 /* Compute av set before INSN.
3030 INSN - the current operation (actual rtx INSN)
3031 P - the current path, which is list of insns visited so far
3032 WS - software lookahead window size.
3033 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3034 if we want to save computed av_set in s_i_d, we should make a copy of it.
3036 In the resulting set we will have only expressions that don't have delay
3037 stalls and nonsubstitutable dependences. */
3038 static av_set_t
3039 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3041 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3044 /* Propagate a liveness set LV through INSN. */
3045 static void
3046 propagate_lv_set (regset lv, insn_t insn)
3048 gcc_assert (INSN_P (insn));
3050 if (INSN_NOP_P (insn))
3051 return;
3053 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3056 /* Return livness set at the end of BB. */
3057 static regset
3058 compute_live_after_bb (basic_block bb)
3060 edge e;
3061 edge_iterator ei;
3062 regset lv = get_clear_regset_from_pool ();
3064 gcc_assert (!ignore_first);
3066 FOR_EACH_EDGE (e, ei, bb->succs)
3067 if (sel_bb_empty_p (e->dest))
3069 if (! BB_LV_SET_VALID_P (e->dest))
3071 gcc_unreachable ();
3072 gcc_assert (BB_LV_SET (e->dest) == NULL);
3073 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3074 BB_LV_SET_VALID_P (e->dest) = true;
3076 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3078 else
3079 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3081 return lv;
3084 /* Compute the set of all live registers at the point before INSN and save
3085 it at INSN if INSN is bb header. */
3086 regset
3087 compute_live (insn_t insn)
3089 basic_block bb = BLOCK_FOR_INSN (insn);
3090 insn_t final, temp;
3091 regset lv;
3093 /* Return the valid set if we're already on it. */
3094 if (!ignore_first)
3096 regset src = NULL;
3098 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3099 src = BB_LV_SET (bb);
3100 else
3102 gcc_assert (in_current_region_p (bb));
3103 if (INSN_LIVE_VALID_P (insn))
3104 src = INSN_LIVE (insn);
3107 if (src)
3109 lv = get_regset_from_pool ();
3110 COPY_REG_SET (lv, src);
3112 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3114 COPY_REG_SET (BB_LV_SET (bb), lv);
3115 BB_LV_SET_VALID_P (bb) = true;
3118 return_regset_to_pool (lv);
3119 return lv;
3123 /* We've skipped the wrong lv_set. Don't skip the right one. */
3124 ignore_first = false;
3125 gcc_assert (in_current_region_p (bb));
3127 /* Find a valid LV set in this block or below, if needed.
3128 Start searching from the next insn: either ignore_first is true, or
3129 INSN doesn't have a correct live set. */
3130 temp = NEXT_INSN (insn);
3131 final = NEXT_INSN (BB_END (bb));
3132 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3133 temp = NEXT_INSN (temp);
3134 if (temp == final)
3136 lv = compute_live_after_bb (bb);
3137 temp = PREV_INSN (temp);
3139 else
3141 lv = get_regset_from_pool ();
3142 COPY_REG_SET (lv, INSN_LIVE (temp));
3145 /* Put correct lv sets on the insns which have bad sets. */
3146 final = PREV_INSN (insn);
3147 while (temp != final)
3149 propagate_lv_set (lv, temp);
3150 COPY_REG_SET (INSN_LIVE (temp), lv);
3151 INSN_LIVE_VALID_P (temp) = true;
3152 temp = PREV_INSN (temp);
3155 /* Also put it in a BB. */
3156 if (sel_bb_head_p (insn))
3158 basic_block bb = BLOCK_FOR_INSN (insn);
3160 COPY_REG_SET (BB_LV_SET (bb), lv);
3161 BB_LV_SET_VALID_P (bb) = true;
3164 /* We return LV to the pool, but will not clear it there. Thus we can
3165 legimatelly use LV till the next use of regset_pool_get (). */
3166 return_regset_to_pool (lv);
3167 return lv;
3170 /* Update liveness sets for INSN. */
3171 static inline void
3172 update_liveness_on_insn (rtx_insn *insn)
3174 ignore_first = true;
3175 compute_live (insn);
3178 /* Compute liveness below INSN and write it into REGS. */
3179 static inline void
3180 compute_live_below_insn (rtx_insn *insn, regset regs)
3182 rtx_insn *succ;
3183 succ_iterator si;
3185 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3186 IOR_REG_SET (regs, compute_live (succ));
3189 /* Update the data gathered in av and lv sets starting from INSN. */
3190 static void
3191 update_data_sets (rtx_insn *insn)
3193 update_liveness_on_insn (insn);
3194 if (sel_bb_head_p (insn))
3196 gcc_assert (AV_LEVEL (insn) != 0);
3197 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3198 compute_av_set (insn, NULL, 0, 0);
3203 /* Helper for move_op () and find_used_regs ().
3204 Return speculation type for which a check should be created on the place
3205 of INSN. EXPR is one of the original ops we are searching for. */
3206 static ds_t
3207 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3209 ds_t to_check_ds;
3210 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3212 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3214 if (targetm.sched.get_insn_checked_ds)
3215 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3217 if (spec_info != NULL
3218 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3219 already_checked_ds |= BEGIN_CONTROL;
3221 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3223 to_check_ds &= ~already_checked_ds;
3225 return to_check_ds;
3228 /* Find the set of registers that are unavailable for storing expres
3229 while moving ORIG_OPS up on the path starting from INSN due to
3230 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3232 All the original operations found during the traversal are saved in the
3233 ORIGINAL_INSNS list.
3235 REG_RENAME_P denotes the set of hardware registers that
3236 can not be used with renaming due to the register class restrictions,
3237 mode restrictions and other (the register we'll choose should be
3238 compatible class with the original uses, shouldn't be in call_used_regs,
3239 should be HARD_REGNO_RENAME_OK etc).
3241 Returns TRUE if we've found all original insns, FALSE otherwise.
3243 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3244 to traverse the code motion paths. This helper function finds registers
3245 that are not available for storing expres while moving ORIG_OPS up on the
3246 path starting from INSN. A register considered as used on the moving path,
3247 if one of the following conditions is not satisfied:
3249 (1) a register not set or read on any path from xi to an instance of
3250 the original operation,
3251 (2) not among the live registers of the point immediately following the
3252 first original operation on a given downward path, except for the
3253 original target register of the operation,
3254 (3) not live on the other path of any conditional branch that is passed
3255 by the operation, in case original operations are not present on
3256 both paths of the conditional branch.
3258 All the original operations found during the traversal are saved in the
3259 ORIGINAL_INSNS list.
3261 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3262 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3263 to unavailable hard regs at the point original operation is found. */
3265 static bool
3266 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3267 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3269 def_list_iterator i;
3270 def_t def;
3271 int res;
3272 bool needs_spec_check_p = false;
3273 expr_t expr;
3274 av_set_iterator expr_iter;
3275 struct fur_static_params sparams;
3276 struct cmpd_local_params lparams;
3278 /* We haven't visited any blocks yet. */
3279 bitmap_clear (code_motion_visited_blocks);
3281 /* Init parameters for code_motion_path_driver. */
3282 sparams.crosses_call = false;
3283 sparams.original_insns = original_insns;
3284 sparams.used_regs = used_regs;
3286 /* Set the appropriate hooks and data. */
3287 code_motion_path_driver_info = &fur_hooks;
3289 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3291 reg_rename_p->crosses_call |= sparams.crosses_call;
3293 gcc_assert (res == 1);
3294 gcc_assert (original_insns && *original_insns);
3296 /* ??? We calculate whether an expression needs a check when computing
3297 av sets. This information is not as precise as it could be due to
3298 merging this bit in merge_expr. We can do better in find_used_regs,
3299 but we want to avoid multiple traversals of the same code motion
3300 paths. */
3301 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3302 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3304 /* Mark hardware regs in REG_RENAME_P that are not suitable
3305 for renaming expr in INSN due to hardware restrictions (register class,
3306 modes compatibility etc). */
3307 FOR_EACH_DEF (def, i, *original_insns)
3309 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3311 if (VINSN_SEPARABLE_P (vinsn))
3312 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3314 /* Do not allow clobbering of ld.[sa] address in case some of the
3315 original operations need a check. */
3316 if (needs_spec_check_p)
3317 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3320 return true;
3324 /* Functions to choose the best insn from available ones. */
3326 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3327 static int
3328 sel_target_adjust_priority (expr_t expr)
3330 int priority = EXPR_PRIORITY (expr);
3331 int new_priority;
3333 if (targetm.sched.adjust_priority)
3334 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3335 else
3336 new_priority = priority;
3338 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3339 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3341 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3343 if (sched_verbose >= 4)
3344 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3345 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3346 EXPR_PRIORITY_ADJ (expr), new_priority);
3348 return new_priority;
3351 /* Rank two available exprs for schedule. Never return 0 here. */
3352 static int
3353 sel_rank_for_schedule (const void *x, const void *y)
3355 expr_t tmp = *(const expr_t *) y;
3356 expr_t tmp2 = *(const expr_t *) x;
3357 insn_t tmp_insn, tmp2_insn;
3358 vinsn_t tmp_vinsn, tmp2_vinsn;
3359 int val;
3361 tmp_vinsn = EXPR_VINSN (tmp);
3362 tmp2_vinsn = EXPR_VINSN (tmp2);
3363 tmp_insn = EXPR_INSN_RTX (tmp);
3364 tmp2_insn = EXPR_INSN_RTX (tmp2);
3366 /* Schedule debug insns as early as possible. */
3367 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3368 return -1;
3369 else if (DEBUG_INSN_P (tmp2_insn))
3370 return 1;
3372 /* Prefer SCHED_GROUP_P insns to any others. */
3373 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3375 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3376 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3378 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3379 cannot be cloned. */
3380 if (VINSN_UNIQUE_P (tmp2_vinsn))
3381 return 1;
3382 return -1;
3385 /* Discourage scheduling of speculative checks. */
3386 val = (sel_insn_is_speculation_check (tmp_insn)
3387 - sel_insn_is_speculation_check (tmp2_insn));
3388 if (val)
3389 return val;
3391 /* Prefer not scheduled insn over scheduled one. */
3392 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3394 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3395 if (val)
3396 return val;
3399 /* Prefer jump over non-jump instruction. */
3400 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3401 return -1;
3402 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3403 return 1;
3405 /* Prefer an expr with greater priority. */
3406 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3408 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3409 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3411 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3413 else
3414 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3415 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3416 if (val)
3417 return val;
3419 if (spec_info != NULL && spec_info->mask != 0)
3420 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3422 ds_t ds1, ds2;
3423 dw_t dw1, dw2;
3424 int dw;
3426 ds1 = EXPR_SPEC_DONE_DS (tmp);
3427 if (ds1)
3428 dw1 = ds_weak (ds1);
3429 else
3430 dw1 = NO_DEP_WEAK;
3432 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3433 if (ds2)
3434 dw2 = ds_weak (ds2);
3435 else
3436 dw2 = NO_DEP_WEAK;
3438 dw = dw2 - dw1;
3439 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3440 return dw;
3443 /* Prefer an old insn to a bookkeeping insn. */
3444 if (INSN_UID (tmp_insn) < first_emitted_uid
3445 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3446 return -1;
3447 if (INSN_UID (tmp_insn) >= first_emitted_uid
3448 && INSN_UID (tmp2_insn) < first_emitted_uid)
3449 return 1;
3451 /* Prefer an insn with smaller UID, as a last resort.
3452 We can't safely use INSN_LUID as it is defined only for those insns
3453 that are in the stream. */
3454 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3457 /* Filter out expressions from av set pointed to by AV_PTR
3458 that are pipelined too many times. */
3459 static void
3460 process_pipelined_exprs (av_set_t *av_ptr)
3462 expr_t expr;
3463 av_set_iterator si;
3465 /* Don't pipeline already pipelined code as that would increase
3466 number of unnecessary register moves. */
3467 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3469 if (EXPR_SCHED_TIMES (expr)
3470 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3471 av_set_iter_remove (&si);
3475 /* Filter speculative insns from AV_PTR if we don't want them. */
3476 static void
3477 process_spec_exprs (av_set_t *av_ptr)
3479 expr_t expr;
3480 av_set_iterator si;
3482 if (spec_info == NULL)
3483 return;
3485 /* Scan *AV_PTR to find out if we want to consider speculative
3486 instructions for scheduling. */
3487 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3489 ds_t ds;
3491 ds = EXPR_SPEC_DONE_DS (expr);
3493 /* The probability of a success is too low - don't speculate. */
3494 if ((ds & SPECULATIVE)
3495 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3496 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3497 || (pipelining_p && false
3498 && (ds & DATA_SPEC)
3499 && (ds & CONTROL_SPEC))))
3501 av_set_iter_remove (&si);
3502 continue;
3507 /* Search for any use-like insns in AV_PTR and decide on scheduling
3508 them. Return one when found, and NULL otherwise.
3509 Note that we check here whether a USE could be scheduled to avoid
3510 an infinite loop later. */
3511 static expr_t
3512 process_use_exprs (av_set_t *av_ptr)
3514 expr_t expr;
3515 av_set_iterator si;
3516 bool uses_present_p = false;
3517 bool try_uses_p = true;
3519 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3521 /* This will also initialize INSN_CODE for later use. */
3522 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3524 /* If we have a USE in *AV_PTR that was not scheduled yet,
3525 do so because it will do good only. */
3526 if (EXPR_SCHED_TIMES (expr) <= 0)
3528 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3529 return expr;
3531 av_set_iter_remove (&si);
3533 else
3535 gcc_assert (pipelining_p);
3537 uses_present_p = true;
3540 else
3541 try_uses_p = false;
3544 if (uses_present_p)
3546 /* If we don't want to schedule any USEs right now and we have some
3547 in *AV_PTR, remove them, else just return the first one found. */
3548 if (!try_uses_p)
3550 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3551 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3552 av_set_iter_remove (&si);
3554 else
3556 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3558 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3560 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3561 return expr;
3563 av_set_iter_remove (&si);
3568 return NULL;
3571 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3572 EXPR's history of changes. */
3573 static bool
3574 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3576 vinsn_t vinsn, expr_vinsn;
3577 int n;
3578 unsigned i;
3580 /* Start with checking expr itself and then proceed with all the old forms
3581 of expr taken from its history vector. */
3582 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3583 expr_vinsn;
3584 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3585 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3586 : NULL))
3587 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3588 if (VINSN_SEPARABLE_P (vinsn))
3590 if (vinsn_equal_p (vinsn, expr_vinsn))
3591 return true;
3593 else
3595 /* For non-separable instructions, the blocking insn can have
3596 another pattern due to substitution, and we can't choose
3597 different register as in the above case. Check all registers
3598 being written instead. */
3599 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3600 VINSN_REG_SETS (expr_vinsn)))
3601 return true;
3604 return false;
3607 #ifdef ENABLE_CHECKING
3608 /* Return true if either of expressions from ORIG_OPS can be blocked
3609 by previously created bookkeeping code. STATIC_PARAMS points to static
3610 parameters of move_op. */
3611 static bool
3612 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3614 expr_t expr;
3615 av_set_iterator iter;
3616 moveop_static_params_p sparams;
3618 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3619 created while scheduling on another fence. */
3620 FOR_EACH_EXPR (expr, iter, orig_ops)
3621 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3622 return true;
3624 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3625 sparams = (moveop_static_params_p) static_params;
3627 /* Expressions can be also blocked by bookkeeping created during current
3628 move_op. */
3629 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3630 FOR_EACH_EXPR (expr, iter, orig_ops)
3631 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3632 return true;
3634 /* Expressions in ORIG_OPS may have wrong destination register due to
3635 renaming. Check with the right register instead. */
3636 if (sparams->dest && REG_P (sparams->dest))
3638 rtx reg = sparams->dest;
3639 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3641 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3642 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3643 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3644 return true;
3647 return false;
3649 #endif
3651 /* Clear VINSN_VEC and detach vinsns. */
3652 static void
3653 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3655 unsigned len = vinsn_vec->length ();
3656 if (len > 0)
3658 vinsn_t vinsn;
3659 int n;
3661 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3662 vinsn_detach (vinsn);
3663 vinsn_vec->block_remove (0, len);
3667 /* Add the vinsn of EXPR to the VINSN_VEC. */
3668 static void
3669 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3671 vinsn_attach (EXPR_VINSN (expr));
3672 vinsn_vec->safe_push (EXPR_VINSN (expr));
3675 /* Free the vector representing blocked expressions. */
3676 static void
3677 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3679 vinsn_vec.release ();
3682 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3684 void sel_add_to_insn_priority (rtx insn, int amount)
3686 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3688 if (sched_verbose >= 2)
3689 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3690 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3691 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3694 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3695 true if there is something to schedule. BNDS and FENCE are current
3696 boundaries and fence, respectively. If we need to stall for some cycles
3697 before an expr from AV would become available, write this number to
3698 *PNEED_STALL. */
3699 static bool
3700 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3701 int *pneed_stall)
3703 av_set_iterator si;
3704 expr_t expr;
3705 int sched_next_worked = 0, stalled, n;
3706 static int av_max_prio, est_ticks_till_branch;
3707 int min_need_stall = -1;
3708 deps_t dc = BND_DC (BLIST_BND (bnds));
3710 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3711 already scheduled. */
3712 if (av == NULL)
3713 return false;
3715 /* Empty vector from the previous stuff. */
3716 if (vec_av_set.length () > 0)
3717 vec_av_set.block_remove (0, vec_av_set.length ());
3719 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3720 for each insn. */
3721 gcc_assert (vec_av_set.is_empty ());
3722 FOR_EACH_EXPR (expr, si, av)
3724 vec_av_set.safe_push (expr);
3726 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3728 /* Adjust priority using target backend hook. */
3729 sel_target_adjust_priority (expr);
3732 /* Sort the vector. */
3733 vec_av_set.qsort (sel_rank_for_schedule);
3735 /* We record maximal priority of insns in av set for current instruction
3736 group. */
3737 if (FENCE_STARTS_CYCLE_P (fence))
3738 av_max_prio = est_ticks_till_branch = INT_MIN;
3740 /* Filter out inappropriate expressions. Loop's direction is reversed to
3741 visit "best" instructions first. We assume that vec::unordered_remove
3742 moves last element in place of one being deleted. */
3743 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3745 expr_t expr = vec_av_set[n];
3746 insn_t insn = EXPR_INSN_RTX (expr);
3747 signed char target_available;
3748 bool is_orig_reg_p = true;
3749 int need_cycles, new_prio;
3750 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3752 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3753 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3755 vec_av_set.unordered_remove (n);
3756 continue;
3759 /* Set number of sched_next insns (just in case there
3760 could be several). */
3761 if (FENCE_SCHED_NEXT (fence))
3762 sched_next_worked++;
3764 /* Check all liveness requirements and try renaming.
3765 FIXME: try to minimize calls to this. */
3766 target_available = EXPR_TARGET_AVAILABLE (expr);
3768 /* If insn was already scheduled on the current fence,
3769 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3770 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3771 && !fence_insn_p)
3772 target_available = -1;
3774 /* If the availability of the EXPR is invalidated by the insertion of
3775 bookkeeping earlier, make sure that we won't choose this expr for
3776 scheduling if it's not separable, and if it is separable, then
3777 we have to recompute the set of available registers for it. */
3778 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3780 vec_av_set.unordered_remove (n);
3781 if (sched_verbose >= 4)
3782 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3783 INSN_UID (insn));
3784 continue;
3787 if (target_available == true)
3789 /* Do nothing -- we can use an existing register. */
3790 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3792 else if (/* Non-separable instruction will never
3793 get another register. */
3794 (target_available == false
3795 && !EXPR_SEPARABLE_P (expr))
3796 /* Don't try to find a register for low-priority expression. */
3797 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3798 /* ??? FIXME: Don't try to rename data speculation. */
3799 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3800 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3802 vec_av_set.unordered_remove (n);
3803 if (sched_verbose >= 4)
3804 sel_print ("Expr %d has no suitable target register\n",
3805 INSN_UID (insn));
3807 /* A fence insn should not get here. */
3808 gcc_assert (!fence_insn_p);
3809 continue;
3812 /* At this point a fence insn should always be available. */
3813 gcc_assert (!fence_insn_p
3814 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3816 /* Filter expressions that need to be renamed or speculated when
3817 pipelining, because compensating register copies or speculation
3818 checks are likely to be placed near the beginning of the loop,
3819 causing a stall. */
3820 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3821 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3823 /* Estimation of number of cycles until loop branch for
3824 renaming/speculation to be successful. */
3825 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3827 if ((int) current_loop_nest->ninsns < 9)
3829 vec_av_set.unordered_remove (n);
3830 if (sched_verbose >= 4)
3831 sel_print ("Pipelining expr %d will likely cause stall\n",
3832 INSN_UID (insn));
3833 continue;
3836 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3837 < need_n_ticks_till_branch * issue_rate / 2
3838 && est_ticks_till_branch < need_n_ticks_till_branch)
3840 vec_av_set.unordered_remove (n);
3841 if (sched_verbose >= 4)
3842 sel_print ("Pipelining expr %d will likely cause stall\n",
3843 INSN_UID (insn));
3844 continue;
3848 /* We want to schedule speculation checks as late as possible. Discard
3849 them from av set if there are instructions with higher priority. */
3850 if (sel_insn_is_speculation_check (insn)
3851 && EXPR_PRIORITY (expr) < av_max_prio)
3853 stalled++;
3854 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3855 vec_av_set.unordered_remove (n);
3856 if (sched_verbose >= 4)
3857 sel_print ("Delaying speculation check %d until its first use\n",
3858 INSN_UID (insn));
3859 continue;
3862 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3863 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3864 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3866 /* Don't allow any insns whose data is not yet ready.
3867 Check first whether we've already tried them and failed. */
3868 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3870 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3871 - FENCE_CYCLE (fence));
3872 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3873 est_ticks_till_branch = MAX (est_ticks_till_branch,
3874 EXPR_PRIORITY (expr) + need_cycles);
3876 if (need_cycles > 0)
3878 stalled++;
3879 min_need_stall = (min_need_stall < 0
3880 ? need_cycles
3881 : MIN (min_need_stall, need_cycles));
3882 vec_av_set.unordered_remove (n);
3884 if (sched_verbose >= 4)
3885 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3886 INSN_UID (insn),
3887 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3888 continue;
3892 /* Now resort to dependence analysis to find whether EXPR might be
3893 stalled due to dependencies from FENCE's context. */
3894 need_cycles = tick_check_p (expr, dc, fence);
3895 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3897 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3898 est_ticks_till_branch = MAX (est_ticks_till_branch,
3899 new_prio);
3901 if (need_cycles > 0)
3903 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3905 int new_size = INSN_UID (insn) * 3 / 2;
3907 FENCE_READY_TICKS (fence)
3908 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3909 new_size, FENCE_READY_TICKS_SIZE (fence),
3910 sizeof (int));
3912 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3913 = FENCE_CYCLE (fence) + need_cycles;
3915 stalled++;
3916 min_need_stall = (min_need_stall < 0
3917 ? need_cycles
3918 : MIN (min_need_stall, need_cycles));
3920 vec_av_set.unordered_remove (n);
3922 if (sched_verbose >= 4)
3923 sel_print ("Expr %d is not ready yet until cycle %d\n",
3924 INSN_UID (insn),
3925 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3926 continue;
3929 if (sched_verbose >= 4)
3930 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3931 min_need_stall = 0;
3934 /* Clear SCHED_NEXT. */
3935 if (FENCE_SCHED_NEXT (fence))
3937 gcc_assert (sched_next_worked == 1);
3938 FENCE_SCHED_NEXT (fence) = NULL;
3941 /* No need to stall if this variable was not initialized. */
3942 if (min_need_stall < 0)
3943 min_need_stall = 0;
3945 if (vec_av_set.is_empty ())
3947 /* We need to set *pneed_stall here, because later we skip this code
3948 when ready list is empty. */
3949 *pneed_stall = min_need_stall;
3950 return false;
3952 else
3953 gcc_assert (min_need_stall == 0);
3955 /* Sort the vector. */
3956 vec_av_set.qsort (sel_rank_for_schedule);
3958 if (sched_verbose >= 4)
3960 sel_print ("Total ready exprs: %d, stalled: %d\n",
3961 vec_av_set.length (), stalled);
3962 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3963 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3964 dump_expr (expr);
3965 sel_print ("\n");
3968 *pneed_stall = 0;
3969 return true;
3972 /* Convert a vectored and sorted av set to the ready list that
3973 the rest of the backend wants to see. */
3974 static void
3975 convert_vec_av_set_to_ready (void)
3977 int n;
3978 expr_t expr;
3980 /* Allocate and fill the ready list from the sorted vector. */
3981 ready.n_ready = vec_av_set.length ();
3982 ready.first = ready.n_ready - 1;
3984 gcc_assert (ready.n_ready > 0);
3986 if (ready.n_ready > max_issue_size)
3988 max_issue_size = ready.n_ready;
3989 sched_extend_ready_list (ready.n_ready);
3992 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3994 vinsn_t vi = EXPR_VINSN (expr);
3995 insn_t insn = VINSN_INSN_RTX (vi);
3997 ready_try[n] = 0;
3998 ready.vec[n] = insn;
4002 /* Initialize ready list from *AV_PTR for the max_issue () call.
4003 If any unrecognizable insn found in *AV_PTR, return it (and skip
4004 max_issue). BND and FENCE are current boundary and fence,
4005 respectively. If we need to stall for some cycles before an expr
4006 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4007 static expr_t
4008 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4009 int *pneed_stall)
4011 expr_t expr;
4013 /* We do not support multiple boundaries per fence. */
4014 gcc_assert (BLIST_NEXT (bnds) == NULL);
4016 /* Process expressions required special handling, i.e. pipelined,
4017 speculative and recog() < 0 expressions first. */
4018 process_pipelined_exprs (av_ptr);
4019 process_spec_exprs (av_ptr);
4021 /* A USE could be scheduled immediately. */
4022 expr = process_use_exprs (av_ptr);
4023 if (expr)
4025 *pneed_stall = 0;
4026 return expr;
4029 /* Turn the av set to a vector for sorting. */
4030 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4032 ready.n_ready = 0;
4033 return NULL;
4036 /* Build the final ready list. */
4037 convert_vec_av_set_to_ready ();
4038 return NULL;
4041 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4042 static bool
4043 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4045 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4046 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4047 : FENCE_CYCLE (fence) - 1;
4048 bool res = false;
4049 int sort_p = 0;
4051 if (!targetm.sched.dfa_new_cycle)
4052 return false;
4054 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4056 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4057 insn, last_scheduled_cycle,
4058 FENCE_CYCLE (fence), &sort_p))
4060 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4061 advance_one_cycle (fence);
4062 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4063 res = true;
4066 return res;
4069 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4070 we can issue. FENCE is the current fence. */
4071 static int
4072 invoke_reorder_hooks (fence_t fence)
4074 int issue_more;
4075 bool ran_hook = false;
4077 /* Call the reorder hook at the beginning of the cycle, and call
4078 the reorder2 hook in the middle of the cycle. */
4079 if (FENCE_ISSUED_INSNS (fence) == 0)
4081 if (targetm.sched.reorder
4082 && !SCHED_GROUP_P (ready_element (&ready, 0))
4083 && ready.n_ready > 1)
4085 /* Don't give reorder the most prioritized insn as it can break
4086 pipelining. */
4087 if (pipelining_p)
4088 --ready.n_ready;
4090 issue_more
4091 = targetm.sched.reorder (sched_dump, sched_verbose,
4092 ready_lastpos (&ready),
4093 &ready.n_ready, FENCE_CYCLE (fence));
4095 if (pipelining_p)
4096 ++ready.n_ready;
4098 ran_hook = true;
4100 else
4101 /* Initialize can_issue_more for variable_issue. */
4102 issue_more = issue_rate;
4104 else if (targetm.sched.reorder2
4105 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4107 if (ready.n_ready == 1)
4108 issue_more =
4109 targetm.sched.reorder2 (sched_dump, sched_verbose,
4110 ready_lastpos (&ready),
4111 &ready.n_ready, FENCE_CYCLE (fence));
4112 else
4114 if (pipelining_p)
4115 --ready.n_ready;
4117 issue_more =
4118 targetm.sched.reorder2 (sched_dump, sched_verbose,
4119 ready.n_ready
4120 ? ready_lastpos (&ready) : NULL,
4121 &ready.n_ready, FENCE_CYCLE (fence));
4123 if (pipelining_p)
4124 ++ready.n_ready;
4127 ran_hook = true;
4129 else
4130 issue_more = FENCE_ISSUE_MORE (fence);
4132 /* Ensure that ready list and vec_av_set are in line with each other,
4133 i.e. vec_av_set[i] == ready_element (&ready, i). */
4134 if (issue_more && ran_hook)
4136 int i, j, n;
4137 rtx_insn **arr = ready.vec;
4138 expr_t *vec = vec_av_set.address ();
4140 for (i = 0, n = ready.n_ready; i < n; i++)
4141 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4143 expr_t tmp;
4145 for (j = i; j < n; j++)
4146 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4147 break;
4148 gcc_assert (j < n);
4150 tmp = vec[i];
4151 vec[i] = vec[j];
4152 vec[j] = tmp;
4156 return issue_more;
4159 /* Return an EXPR corresponding to INDEX element of ready list, if
4160 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4161 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4162 ready.vec otherwise. */
4163 static inline expr_t
4164 find_expr_for_ready (int index, bool follow_ready_element)
4166 expr_t expr;
4167 int real_index;
4169 real_index = follow_ready_element ? ready.first - index : index;
4171 expr = vec_av_set[real_index];
4172 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4174 return expr;
4177 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4178 of such insns found. */
4179 static int
4180 invoke_dfa_lookahead_guard (void)
4182 int i, n;
4183 bool have_hook
4184 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4186 if (sched_verbose >= 2)
4187 sel_print ("ready after reorder: ");
4189 for (i = 0, n = 0; i < ready.n_ready; i++)
4191 expr_t expr;
4192 insn_t insn;
4193 int r;
4195 /* In this loop insn is Ith element of the ready list given by
4196 ready_element, not Ith element of ready.vec. */
4197 insn = ready_element (&ready, i);
4199 if (! have_hook || i == 0)
4200 r = 0;
4201 else
4202 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4204 gcc_assert (INSN_CODE (insn) >= 0);
4206 /* Only insns with ready_try = 0 can get here
4207 from fill_ready_list. */
4208 gcc_assert (ready_try [i] == 0);
4209 ready_try[i] = r;
4210 if (!r)
4211 n++;
4213 expr = find_expr_for_ready (i, true);
4215 if (sched_verbose >= 2)
4217 dump_vinsn (EXPR_VINSN (expr));
4218 sel_print (":%d; ", ready_try[i]);
4222 if (sched_verbose >= 2)
4223 sel_print ("\n");
4224 return n;
4227 /* Calculate the number of privileged insns and return it. */
4228 static int
4229 calculate_privileged_insns (void)
4231 expr_t cur_expr, min_spec_expr = NULL;
4232 int privileged_n = 0, i;
4234 for (i = 0; i < ready.n_ready; i++)
4236 if (ready_try[i])
4237 continue;
4239 if (! min_spec_expr)
4240 min_spec_expr = find_expr_for_ready (i, true);
4242 cur_expr = find_expr_for_ready (i, true);
4244 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4245 break;
4247 ++privileged_n;
4250 if (i == ready.n_ready)
4251 privileged_n = 0;
4253 if (sched_verbose >= 2)
4254 sel_print ("privileged_n: %d insns with SPEC %d\n",
4255 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4256 return privileged_n;
4259 /* Call the rest of the hooks after the choice was made. Return
4260 the number of insns that still can be issued given that the current
4261 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4262 and the insn chosen for scheduling, respectively. */
4263 static int
4264 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4266 gcc_assert (INSN_P (best_insn));
4268 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4269 sel_dfa_new_cycle (best_insn, fence);
4271 if (targetm.sched.variable_issue)
4273 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4274 issue_more =
4275 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4276 issue_more);
4277 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4279 else if (GET_CODE (PATTERN (best_insn)) != USE
4280 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4281 issue_more--;
4283 return issue_more;
4286 /* Estimate the cost of issuing INSN on DFA state STATE. */
4287 static int
4288 estimate_insn_cost (rtx_insn *insn, state_t state)
4290 static state_t temp = NULL;
4291 int cost;
4293 if (!temp)
4294 temp = xmalloc (dfa_state_size);
4296 memcpy (temp, state, dfa_state_size);
4297 cost = state_transition (temp, insn);
4299 if (cost < 0)
4300 return 0;
4301 else if (cost == 0)
4302 return 1;
4303 return cost;
4306 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4307 This function properly handles ASMs, USEs etc. */
4308 static int
4309 get_expr_cost (expr_t expr, fence_t fence)
4311 rtx_insn *insn = EXPR_INSN_RTX (expr);
4313 if (recog_memoized (insn) < 0)
4315 if (!FENCE_STARTS_CYCLE_P (fence)
4316 && INSN_ASM_P (insn))
4317 /* This is asm insn which is tryed to be issued on the
4318 cycle not first. Issue it on the next cycle. */
4319 return 1;
4320 else
4321 /* A USE insn, or something else we don't need to
4322 understand. We can't pass these directly to
4323 state_transition because it will trigger a
4324 fatal error for unrecognizable insns. */
4325 return 0;
4327 else
4328 return estimate_insn_cost (insn, FENCE_STATE (fence));
4331 /* Find the best insn for scheduling, either via max_issue or just take
4332 the most prioritized available. */
4333 static int
4334 choose_best_insn (fence_t fence, int privileged_n, int *index)
4336 int can_issue = 0;
4338 if (dfa_lookahead > 0)
4340 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4341 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4342 can_issue = max_issue (&ready, privileged_n,
4343 FENCE_STATE (fence), true, index);
4344 if (sched_verbose >= 2)
4345 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4346 can_issue, FENCE_ISSUED_INSNS (fence));
4348 else
4350 /* We can't use max_issue; just return the first available element. */
4351 int i;
4353 for (i = 0; i < ready.n_ready; i++)
4355 expr_t expr = find_expr_for_ready (i, true);
4357 if (get_expr_cost (expr, fence) < 1)
4359 can_issue = can_issue_more;
4360 *index = i;
4362 if (sched_verbose >= 2)
4363 sel_print ("using %dth insn from the ready list\n", i + 1);
4365 break;
4369 if (i == ready.n_ready)
4371 can_issue = 0;
4372 *index = -1;
4376 return can_issue;
4379 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4380 BNDS and FENCE are current boundaries and scheduling fence respectively.
4381 Return the expr found and NULL if nothing can be issued atm.
4382 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4383 static expr_t
4384 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4385 int *pneed_stall)
4387 expr_t best;
4389 /* Choose the best insn for scheduling via:
4390 1) sorting the ready list based on priority;
4391 2) calling the reorder hook;
4392 3) calling max_issue. */
4393 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4394 if (best == NULL && ready.n_ready > 0)
4396 int privileged_n, index;
4398 can_issue_more = invoke_reorder_hooks (fence);
4399 if (can_issue_more > 0)
4401 /* Try choosing the best insn until we find one that is could be
4402 scheduled due to liveness restrictions on its destination register.
4403 In the future, we'd like to choose once and then just probe insns
4404 in the order of their priority. */
4405 invoke_dfa_lookahead_guard ();
4406 privileged_n = calculate_privileged_insns ();
4407 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4408 if (can_issue_more)
4409 best = find_expr_for_ready (index, true);
4411 /* We had some available insns, so if we can't issue them,
4412 we have a stall. */
4413 if (can_issue_more == 0)
4415 best = NULL;
4416 *pneed_stall = 1;
4420 if (best != NULL)
4422 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4423 can_issue_more);
4424 if (targetm.sched.variable_issue
4425 && can_issue_more == 0)
4426 *pneed_stall = 1;
4429 if (sched_verbose >= 2)
4431 if (best != NULL)
4433 sel_print ("Best expression (vliw form): ");
4434 dump_expr (best);
4435 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4437 else
4438 sel_print ("No best expr found!\n");
4441 return best;
4445 /* Functions that implement the core of the scheduler. */
4448 /* Emit an instruction from EXPR with SEQNO and VINSN after
4449 PLACE_TO_INSERT. */
4450 static insn_t
4451 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4452 insn_t place_to_insert)
4454 /* This assert fails when we have identical instructions
4455 one of which dominates the other. In this case move_op ()
4456 finds the first instruction and doesn't search for second one.
4457 The solution would be to compute av_set after the first found
4458 insn and, if insn present in that set, continue searching.
4459 For now we workaround this issue in move_op. */
4460 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4462 if (EXPR_WAS_RENAMED (expr))
4464 unsigned regno = expr_dest_regno (expr);
4466 if (HARD_REGISTER_NUM_P (regno))
4468 df_set_regs_ever_live (regno, true);
4469 reg_rename_tick[regno] = ++reg_rename_this_tick;
4473 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4474 place_to_insert);
4477 /* Return TRUE if BB can hold bookkeeping code. */
4478 static bool
4479 block_valid_for_bookkeeping_p (basic_block bb)
4481 insn_t bb_end = BB_END (bb);
4483 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4484 return false;
4486 if (INSN_P (bb_end))
4488 if (INSN_SCHED_TIMES (bb_end) > 0)
4489 return false;
4491 else
4492 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4494 return true;
4497 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4498 into E2->dest, except from E1->src (there may be a sequence of empty basic
4499 blocks between E1->src and E2->dest). Return found block, or NULL if new
4500 one must be created. If LAX holds, don't assume there is a simple path
4501 from E1->src to E2->dest. */
4502 static basic_block
4503 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4505 basic_block candidate_block = NULL;
4506 edge e;
4508 /* Loop over edges from E1 to E2, inclusive. */
4509 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4510 EDGE_SUCC (e->dest, 0))
4512 if (EDGE_COUNT (e->dest->preds) == 2)
4514 if (candidate_block == NULL)
4515 candidate_block = (EDGE_PRED (e->dest, 0) == e
4516 ? EDGE_PRED (e->dest, 1)->src
4517 : EDGE_PRED (e->dest, 0)->src);
4518 else
4519 /* Found additional edge leading to path from e1 to e2
4520 from aside. */
4521 return NULL;
4523 else if (EDGE_COUNT (e->dest->preds) > 2)
4524 /* Several edges leading to path from e1 to e2 from aside. */
4525 return NULL;
4527 if (e == e2)
4528 return ((!lax || candidate_block)
4529 && block_valid_for_bookkeeping_p (candidate_block)
4530 ? candidate_block
4531 : NULL);
4533 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4534 return NULL;
4537 if (lax)
4538 return NULL;
4540 gcc_unreachable ();
4543 /* Create new basic block for bookkeeping code for path(s) incoming into
4544 E2->dest, except from E1->src. Return created block. */
4545 static basic_block
4546 create_block_for_bookkeeping (edge e1, edge e2)
4548 basic_block new_bb, bb = e2->dest;
4550 /* Check that we don't spoil the loop structure. */
4551 if (current_loop_nest)
4553 basic_block latch = current_loop_nest->latch;
4555 /* We do not split header. */
4556 gcc_assert (e2->dest != current_loop_nest->header);
4558 /* We do not redirect the only edge to the latch block. */
4559 gcc_assert (e1->dest != latch
4560 || !single_pred_p (latch)
4561 || e1 != single_pred_edge (latch));
4564 /* Split BB to insert BOOK_INSN there. */
4565 new_bb = sched_split_block (bb, NULL);
4567 /* Move note_list from the upper bb. */
4568 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4569 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4570 BB_NOTE_LIST (bb) = NULL;
4572 gcc_assert (e2->dest == bb);
4574 /* Skip block for bookkeeping copy when leaving E1->src. */
4575 if (e1->flags & EDGE_FALLTHRU)
4576 sel_redirect_edge_and_branch_force (e1, new_bb);
4577 else
4578 sel_redirect_edge_and_branch (e1, new_bb);
4580 gcc_assert (e1->dest == new_bb);
4581 gcc_assert (sel_bb_empty_p (bb));
4583 /* To keep basic block numbers in sync between debug and non-debug
4584 compilations, we have to rotate blocks here. Consider that we
4585 started from (a,b)->d, (c,d)->e, and d contained only debug
4586 insns. It would have been removed before if the debug insns
4587 weren't there, so we'd have split e rather than d. So what we do
4588 now is to swap the block numbers of new_bb and
4589 single_succ(new_bb) == e, so that the insns that were in e before
4590 get the new block number. */
4592 if (MAY_HAVE_DEBUG_INSNS)
4594 basic_block succ;
4595 insn_t insn = sel_bb_head (new_bb);
4596 insn_t last;
4598 if (DEBUG_INSN_P (insn)
4599 && single_succ_p (new_bb)
4600 && (succ = single_succ (new_bb))
4601 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4602 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4604 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4605 insn = NEXT_INSN (insn);
4607 if (insn == last)
4609 sel_global_bb_info_def gbi;
4610 sel_region_bb_info_def rbi;
4611 int i;
4613 if (sched_verbose >= 2)
4614 sel_print ("Swapping block ids %i and %i\n",
4615 new_bb->index, succ->index);
4617 i = new_bb->index;
4618 new_bb->index = succ->index;
4619 succ->index = i;
4621 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4622 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4624 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4625 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4626 sizeof (gbi));
4627 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4629 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4630 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4631 sizeof (rbi));
4632 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4634 i = BLOCK_TO_BB (new_bb->index);
4635 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4636 BLOCK_TO_BB (succ->index) = i;
4638 i = CONTAINING_RGN (new_bb->index);
4639 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4640 CONTAINING_RGN (succ->index) = i;
4642 for (i = 0; i < current_nr_blocks; i++)
4643 if (BB_TO_BLOCK (i) == succ->index)
4644 BB_TO_BLOCK (i) = new_bb->index;
4645 else if (BB_TO_BLOCK (i) == new_bb->index)
4646 BB_TO_BLOCK (i) = succ->index;
4648 FOR_BB_INSNS (new_bb, insn)
4649 if (INSN_P (insn))
4650 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4652 FOR_BB_INSNS (succ, insn)
4653 if (INSN_P (insn))
4654 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4656 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4657 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4659 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4660 && LABEL_P (BB_HEAD (succ)));
4662 if (sched_verbose >= 4)
4663 sel_print ("Swapping code labels %i and %i\n",
4664 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4665 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4667 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4668 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4669 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4670 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4675 return bb;
4678 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4679 into E2->dest, except from E1->src. If the returned insn immediately
4680 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4681 static insn_t
4682 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4684 insn_t place_to_insert;
4685 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4686 create new basic block, but insert bookkeeping there. */
4687 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4689 if (book_block)
4691 place_to_insert = BB_END (book_block);
4693 /* Don't use a block containing only debug insns for
4694 bookkeeping, this causes scheduling differences between debug
4695 and non-debug compilations, for the block would have been
4696 removed already. */
4697 if (DEBUG_INSN_P (place_to_insert))
4699 rtx_insn *insn = sel_bb_head (book_block);
4701 while (insn != place_to_insert &&
4702 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4703 insn = NEXT_INSN (insn);
4705 if (insn == place_to_insert)
4706 book_block = NULL;
4710 if (!book_block)
4712 book_block = create_block_for_bookkeeping (e1, e2);
4713 place_to_insert = BB_END (book_block);
4714 if (sched_verbose >= 9)
4715 sel_print ("New block is %i, split from bookkeeping block %i\n",
4716 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4718 else
4720 if (sched_verbose >= 9)
4721 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4724 *fence_to_rewind = NULL;
4725 /* If basic block ends with a jump, insert bookkeeping code right before it.
4726 Notice if we are crossing a fence when taking PREV_INSN. */
4727 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4729 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4730 place_to_insert = PREV_INSN (place_to_insert);
4733 return place_to_insert;
4736 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4737 for JOIN_POINT. */
4738 static int
4739 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4741 int seqno;
4742 rtx next;
4744 /* Check if we are about to insert bookkeeping copy before a jump, and use
4745 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4746 next = NEXT_INSN (place_to_insert);
4747 if (INSN_P (next)
4748 && JUMP_P (next)
4749 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4751 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4752 seqno = INSN_SEQNO (next);
4754 else if (INSN_SEQNO (join_point) > 0)
4755 seqno = INSN_SEQNO (join_point);
4756 else
4758 seqno = get_seqno_by_preds (place_to_insert);
4760 /* Sometimes the fences can move in such a way that there will be
4761 no instructions with positive seqno around this bookkeeping.
4762 This means that there will be no way to get to it by a regular
4763 fence movement. Never mind because we pick up such pieces for
4764 rescheduling anyways, so any positive value will do for now. */
4765 if (seqno < 0)
4767 gcc_assert (pipelining_p);
4768 seqno = 1;
4772 gcc_assert (seqno > 0);
4773 return seqno;
4776 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4777 NEW_SEQNO to it. Return created insn. */
4778 static insn_t
4779 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4781 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4783 vinsn_t new_vinsn
4784 = create_vinsn_from_insn_rtx (new_insn_rtx,
4785 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4787 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4788 place_to_insert);
4790 INSN_SCHED_TIMES (new_insn) = 0;
4791 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4793 return new_insn;
4796 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4797 E2->dest, except from E1->src (there may be a sequence of empty blocks
4798 between E1->src and E2->dest). Return block containing the copy.
4799 All scheduler data is initialized for the newly created insn. */
4800 static basic_block
4801 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4803 insn_t join_point, place_to_insert, new_insn;
4804 int new_seqno;
4805 bool need_to_exchange_data_sets;
4806 fence_t fence_to_rewind;
4808 if (sched_verbose >= 4)
4809 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4810 e2->dest->index);
4812 join_point = sel_bb_head (e2->dest);
4813 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4814 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4815 need_to_exchange_data_sets
4816 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4818 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4820 if (fence_to_rewind)
4821 FENCE_INSN (fence_to_rewind) = new_insn;
4823 /* When inserting bookkeeping insn in new block, av sets should be
4824 following: old basic block (that now holds bookkeeping) data sets are
4825 the same as was before generation of bookkeeping, and new basic block
4826 (that now hold all other insns of old basic block) data sets are
4827 invalid. So exchange data sets for these basic blocks as sel_split_block
4828 mistakenly exchanges them in this case. Cannot do it earlier because
4829 when single instruction is added to new basic block it should hold NULL
4830 lv_set. */
4831 if (need_to_exchange_data_sets)
4832 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4833 BLOCK_FOR_INSN (join_point));
4835 stat_bookkeeping_copies++;
4836 return BLOCK_FOR_INSN (new_insn);
4839 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4840 on FENCE, but we are unable to copy them. */
4841 static void
4842 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4844 expr_t expr;
4845 av_set_iterator i;
4847 /* An expression does not need bookkeeping if it is available on all paths
4848 from current block to original block and current block dominates
4849 original block. We check availability on all paths by examining
4850 EXPR_SPEC; this is not equivalent, because it may be positive even
4851 if expr is available on all paths (but if expr is not available on
4852 any path, EXPR_SPEC will be positive). */
4854 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4856 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4857 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4858 && (EXPR_SPEC (expr)
4859 || !EXPR_ORIG_BB_INDEX (expr)
4860 || !dominated_by_p (CDI_DOMINATORS,
4861 BASIC_BLOCK_FOR_FN (cfun,
4862 EXPR_ORIG_BB_INDEX (expr)),
4863 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4865 if (sched_verbose >= 4)
4866 sel_print ("Expr %d removed because it would need bookkeeping, which "
4867 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4868 av_set_iter_remove (&i);
4873 /* Moving conditional jump through some instructions.
4875 Consider example:
4877 ... <- current scheduling point
4878 NOTE BASIC BLOCK: <- bb header
4879 (p8) add r14=r14+0x9;;
4880 (p8) mov [r14]=r23
4881 (!p8) jump L1;;
4882 NOTE BASIC BLOCK:
4885 We can schedule jump one cycle earlier, than mov, because they cannot be
4886 executed together as their predicates are mutually exclusive.
4888 This is done in this way: first, new fallthrough basic block is created
4889 after jump (it is always can be done, because there already should be a
4890 fallthrough block, where control flow goes in case of predicate being true -
4891 in our example; otherwise there should be a dependence between those
4892 instructions and jump and we cannot schedule jump right now);
4893 next, all instructions between jump and current scheduling point are moved
4894 to this new block. And the result is this:
4896 NOTE BASIC BLOCK:
4897 (!p8) jump L1 <- current scheduling point
4898 NOTE BASIC BLOCK: <- bb header
4899 (p8) add r14=r14+0x9;;
4900 (p8) mov [r14]=r23
4901 NOTE BASIC BLOCK:
4904 static void
4905 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4907 edge ft_edge;
4908 basic_block block_from, block_next, block_new, block_bnd, bb;
4909 rtx_insn *next, *prev, *link, *head;
4911 block_from = BLOCK_FOR_INSN (insn);
4912 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4913 prev = BND_TO (bnd);
4915 #ifdef ENABLE_CHECKING
4916 /* Moving of jump should not cross any other jumps or beginnings of new
4917 basic blocks. The only exception is when we move a jump through
4918 mutually exclusive insns along fallthru edges. */
4919 if (block_from != block_bnd)
4921 bb = block_from;
4922 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4923 link = PREV_INSN (link))
4925 if (INSN_P (link))
4926 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4927 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4929 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4930 bb = BLOCK_FOR_INSN (link);
4934 #endif
4936 /* Jump is moved to the boundary. */
4937 next = PREV_INSN (insn);
4938 BND_TO (bnd) = insn;
4940 ft_edge = find_fallthru_edge_from (block_from);
4941 block_next = ft_edge->dest;
4942 /* There must be a fallthrough block (or where should go
4943 control flow in case of false jump predicate otherwise?). */
4944 gcc_assert (block_next);
4946 /* Create new empty basic block after source block. */
4947 block_new = sel_split_edge (ft_edge);
4948 gcc_assert (block_new->next_bb == block_next
4949 && block_from->next_bb == block_new);
4951 /* Move all instructions except INSN to BLOCK_NEW. */
4952 bb = block_bnd;
4953 head = BB_HEAD (block_new);
4954 while (bb != block_from->next_bb)
4956 rtx_insn *from, *to;
4957 from = bb == block_bnd ? prev : sel_bb_head (bb);
4958 to = bb == block_from ? next : sel_bb_end (bb);
4960 /* The jump being moved can be the first insn in the block.
4961 In this case we don't have to move anything in this block. */
4962 if (NEXT_INSN (to) != from)
4964 reorder_insns (from, to, head);
4966 for (link = to; link != head; link = PREV_INSN (link))
4967 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4968 head = to;
4971 /* Cleanup possibly empty blocks left. */
4972 block_next = bb->next_bb;
4973 if (bb != block_from)
4974 tidy_control_flow (bb, false);
4975 bb = block_next;
4978 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4979 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4981 gcc_assert (!sel_bb_empty_p (block_from)
4982 && !sel_bb_empty_p (block_new));
4984 /* Update data sets for BLOCK_NEW to represent that INSN and
4985 instructions from the other branch of INSN is no longer
4986 available at BLOCK_NEW. */
4987 BB_AV_LEVEL (block_new) = global_level;
4988 gcc_assert (BB_LV_SET (block_new) == NULL);
4989 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4990 update_data_sets (sel_bb_head (block_new));
4992 /* INSN is a new basic block header - so prepare its data
4993 structures and update availability and liveness sets. */
4994 update_data_sets (insn);
4996 if (sched_verbose >= 4)
4997 sel_print ("Moving jump %d\n", INSN_UID (insn));
5000 /* Remove nops generated during move_op for preventing removal of empty
5001 basic blocks. */
5002 static void
5003 remove_temp_moveop_nops (bool full_tidying)
5005 int i;
5006 insn_t insn;
5008 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
5010 gcc_assert (INSN_NOP_P (insn));
5011 return_nop_to_pool (insn, full_tidying);
5014 /* Empty the vector. */
5015 if (vec_temp_moveop_nops.length () > 0)
5016 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5019 /* Records the maximal UID before moving up an instruction. Used for
5020 distinguishing between bookkeeping copies and original insns. */
5021 static int max_uid_before_move_op = 0;
5023 /* Remove from AV_VLIW_P all instructions but next when debug counter
5024 tells us so. Next instruction is fetched from BNDS. */
5025 static void
5026 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5028 if (! dbg_cnt (sel_sched_insn_cnt))
5029 /* Leave only the next insn in av_vliw. */
5031 av_set_iterator av_it;
5032 expr_t expr;
5033 bnd_t bnd = BLIST_BND (bnds);
5034 insn_t next = BND_TO (bnd);
5036 gcc_assert (BLIST_NEXT (bnds) == NULL);
5038 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5039 if (EXPR_INSN_RTX (expr) != next)
5040 av_set_iter_remove (&av_it);
5044 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5045 the computed set to *AV_VLIW_P. */
5046 static void
5047 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5049 if (sched_verbose >= 2)
5051 sel_print ("Boundaries: ");
5052 dump_blist (bnds);
5053 sel_print ("\n");
5056 for (; bnds; bnds = BLIST_NEXT (bnds))
5058 bnd_t bnd = BLIST_BND (bnds);
5059 av_set_t av1_copy;
5060 insn_t bnd_to = BND_TO (bnd);
5062 /* Rewind BND->TO to the basic block header in case some bookkeeping
5063 instructions were inserted before BND->TO and it needs to be
5064 adjusted. */
5065 if (sel_bb_head_p (bnd_to))
5066 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5067 else
5068 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5070 bnd_to = PREV_INSN (bnd_to);
5071 if (sel_bb_head_p (bnd_to))
5072 break;
5075 if (BND_TO (bnd) != bnd_to)
5077 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5078 FENCE_INSN (fence) = bnd_to;
5079 BND_TO (bnd) = bnd_to;
5082 av_set_clear (&BND_AV (bnd));
5083 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5085 av_set_clear (&BND_AV1 (bnd));
5086 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5088 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5090 av1_copy = av_set_copy (BND_AV1 (bnd));
5091 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5094 if (sched_verbose >= 2)
5096 sel_print ("Available exprs (vliw form): ");
5097 dump_av_set (*av_vliw_p);
5098 sel_print ("\n");
5102 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5103 expression. When FOR_MOVEOP is true, also replace the register of
5104 expressions found with the register from EXPR_VLIW. */
5105 static av_set_t
5106 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5108 av_set_t expr_seq = NULL;
5109 expr_t expr;
5110 av_set_iterator i;
5112 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5114 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5116 if (for_moveop)
5118 /* The sequential expression has the right form to pass
5119 to move_op except when renaming happened. Put the
5120 correct register in EXPR then. */
5121 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5123 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5125 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5126 stat_renamed_scheduled++;
5128 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5129 This is needed when renaming came up with original
5130 register. */
5131 else if (EXPR_TARGET_AVAILABLE (expr)
5132 != EXPR_TARGET_AVAILABLE (expr_vliw))
5134 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5135 EXPR_TARGET_AVAILABLE (expr) = 1;
5138 if (EXPR_WAS_SUBSTITUTED (expr))
5139 stat_substitutions_total++;
5142 av_set_add (&expr_seq, expr);
5144 /* With substitution inside insn group, it is possible
5145 that more than one expression in expr_seq will correspond
5146 to expr_vliw. In this case, choose one as the attempt to
5147 move both leads to miscompiles. */
5148 break;
5152 if (for_moveop && sched_verbose >= 2)
5154 sel_print ("Best expression(s) (sequential form): ");
5155 dump_av_set (expr_seq);
5156 sel_print ("\n");
5159 return expr_seq;
5163 /* Move nop to previous block. */
5164 static void ATTRIBUTE_UNUSED
5165 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5167 insn_t prev_insn, next_insn, note;
5169 gcc_assert (sel_bb_head_p (nop)
5170 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5171 note = bb_note (BLOCK_FOR_INSN (nop));
5172 prev_insn = sel_bb_end (prev_bb);
5173 next_insn = NEXT_INSN (nop);
5174 gcc_assert (prev_insn != NULL_RTX
5175 && PREV_INSN (note) == prev_insn);
5177 SET_NEXT_INSN (prev_insn) = nop;
5178 SET_PREV_INSN (nop) = prev_insn;
5180 SET_PREV_INSN (note) = nop;
5181 SET_NEXT_INSN (note) = next_insn;
5183 SET_NEXT_INSN (nop) = note;
5184 SET_PREV_INSN (next_insn) = note;
5186 BB_END (prev_bb) = nop;
5187 BLOCK_FOR_INSN (nop) = prev_bb;
5190 /* Prepare a place to insert the chosen expression on BND. */
5191 static insn_t
5192 prepare_place_to_insert (bnd_t bnd)
5194 insn_t place_to_insert;
5196 /* Init place_to_insert before calling move_op, as the later
5197 can possibly remove BND_TO (bnd). */
5198 if (/* If this is not the first insn scheduled. */
5199 BND_PTR (bnd))
5201 /* Add it after last scheduled. */
5202 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5203 if (DEBUG_INSN_P (place_to_insert))
5205 ilist_t l = BND_PTR (bnd);
5206 while ((l = ILIST_NEXT (l)) &&
5207 DEBUG_INSN_P (ILIST_INSN (l)))
5209 if (!l)
5210 place_to_insert = NULL;
5213 else
5214 place_to_insert = NULL;
5216 if (!place_to_insert)
5218 /* Add it before BND_TO. The difference is in the
5219 basic block, where INSN will be added. */
5220 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5221 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5222 == BLOCK_FOR_INSN (BND_TO (bnd)));
5225 return place_to_insert;
5228 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5229 Return the expression to emit in C_EXPR. */
5230 static bool
5231 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5232 av_set_t expr_seq, expr_t c_expr)
5234 bool b, should_move;
5235 unsigned book_uid;
5236 bitmap_iterator bi;
5237 int n_bookkeeping_copies_before_moveop;
5239 /* Make a move. This call will remove the original operation,
5240 insert all necessary bookkeeping instructions and update the
5241 data sets. After that all we have to do is add the operation
5242 at before BND_TO (BND). */
5243 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5244 max_uid_before_move_op = get_max_uid ();
5245 bitmap_clear (current_copies);
5246 bitmap_clear (current_originators);
5248 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5249 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5251 /* We should be able to find the expression we've chosen for
5252 scheduling. */
5253 gcc_assert (b);
5255 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5256 stat_insns_needed_bookkeeping++;
5258 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5260 unsigned uid;
5261 bitmap_iterator bi;
5263 /* We allocate these bitmaps lazily. */
5264 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5265 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5267 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5268 current_originators);
5270 /* Transitively add all originators' originators. */
5271 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5272 if (INSN_ORIGINATORS_BY_UID (uid))
5273 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5274 INSN_ORIGINATORS_BY_UID (uid));
5277 return should_move;
5281 /* Debug a DFA state as an array of bytes. */
5282 static void
5283 debug_state (state_t state)
5285 unsigned char *p;
5286 unsigned int i, size = dfa_state_size;
5288 sel_print ("state (%u):", size);
5289 for (i = 0, p = (unsigned char *) state; i < size; i++)
5290 sel_print (" %d", p[i]);
5291 sel_print ("\n");
5294 /* Advance state on FENCE with INSN. Return true if INSN is
5295 an ASM, and we should advance state once more. */
5296 static bool
5297 advance_state_on_fence (fence_t fence, insn_t insn)
5299 bool asm_p;
5301 if (recog_memoized (insn) >= 0)
5303 int res;
5304 state_t temp_state = alloca (dfa_state_size);
5306 gcc_assert (!INSN_ASM_P (insn));
5307 asm_p = false;
5309 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5310 res = state_transition (FENCE_STATE (fence), insn);
5311 gcc_assert (res < 0);
5313 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5315 FENCE_ISSUED_INSNS (fence)++;
5317 /* We should never issue more than issue_rate insns. */
5318 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5319 gcc_unreachable ();
5322 else
5324 /* This could be an ASM insn which we'd like to schedule
5325 on the next cycle. */
5326 asm_p = INSN_ASM_P (insn);
5327 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5328 advance_one_cycle (fence);
5331 if (sched_verbose >= 2)
5332 debug_state (FENCE_STATE (fence));
5333 if (!DEBUG_INSN_P (insn))
5334 FENCE_STARTS_CYCLE_P (fence) = 0;
5335 FENCE_ISSUE_MORE (fence) = can_issue_more;
5336 return asm_p;
5339 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5340 is nonzero if we need to stall after issuing INSN. */
5341 static void
5342 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5344 bool asm_p;
5346 /* First, reflect that something is scheduled on this fence. */
5347 asm_p = advance_state_on_fence (fence, insn);
5348 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5349 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5350 if (SCHED_GROUP_P (insn))
5352 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5353 SCHED_GROUP_P (insn) = 0;
5355 else
5356 FENCE_SCHED_NEXT (fence) = NULL;
5357 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5358 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5360 /* Set instruction scheduling info. This will be used in bundling,
5361 pipelining, tick computations etc. */
5362 ++INSN_SCHED_TIMES (insn);
5363 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5364 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5365 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5366 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5368 /* This does not account for adjust_cost hooks, just add the biggest
5369 constant the hook may add to the latency. TODO: make this
5370 a target dependent constant. */
5371 INSN_READY_CYCLE (insn)
5372 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5374 : maximal_insn_latency (insn) + 1);
5376 /* Change these fields last, as they're used above. */
5377 FENCE_AFTER_STALL_P (fence) = 0;
5378 if (asm_p || need_stall)
5379 advance_one_cycle (fence);
5381 /* Indicate that we've scheduled something on this fence. */
5382 FENCE_SCHEDULED_P (fence) = true;
5383 scheduled_something_on_previous_fence = true;
5385 /* Print debug information when insn's fields are updated. */
5386 if (sched_verbose >= 2)
5388 sel_print ("Scheduling insn: ");
5389 dump_insn_1 (insn, 1);
5390 sel_print ("\n");
5394 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5395 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5396 return it. */
5397 static blist_t *
5398 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5399 blist_t *bnds_tailp)
5401 succ_iterator si;
5402 insn_t succ;
5404 advance_deps_context (BND_DC (bnd), insn);
5405 FOR_EACH_SUCC_1 (succ, si, insn,
5406 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5408 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5410 ilist_add (&ptr, insn);
5412 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5413 && is_ineligible_successor (succ, ptr))
5415 ilist_clear (&ptr);
5416 continue;
5419 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5421 if (sched_verbose >= 9)
5422 sel_print ("Updating fence insn from %i to %i\n",
5423 INSN_UID (insn), INSN_UID (succ));
5424 FENCE_INSN (fence) = succ;
5426 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5427 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5430 blist_remove (bndsp);
5431 return bnds_tailp;
5434 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5435 static insn_t
5436 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5438 av_set_t expr_seq;
5439 expr_t c_expr = XALLOCA (expr_def);
5440 insn_t place_to_insert;
5441 insn_t insn;
5442 bool should_move;
5444 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5446 /* In case of scheduling a jump skipping some other instructions,
5447 prepare CFG. After this, jump is at the boundary and can be
5448 scheduled as usual insn by MOVE_OP. */
5449 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5451 insn = EXPR_INSN_RTX (expr_vliw);
5453 /* Speculative jumps are not handled. */
5454 if (insn != BND_TO (bnd)
5455 && !sel_insn_is_speculation_check (insn))
5456 move_cond_jump (insn, bnd);
5459 /* Find a place for C_EXPR to schedule. */
5460 place_to_insert = prepare_place_to_insert (bnd);
5461 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5462 clear_expr (c_expr);
5464 /* Add the instruction. The corner case to care about is when
5465 the expr_seq set has more than one expr, and we chose the one that
5466 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5467 we can't use it. Generate the new vinsn. */
5468 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5470 vinsn_t vinsn_new;
5472 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5473 change_vinsn_in_expr (expr_vliw, vinsn_new);
5474 should_move = false;
5476 if (should_move)
5477 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5478 else
5479 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5480 place_to_insert);
5482 /* Return the nops generated for preserving of data sets back
5483 into pool. */
5484 if (INSN_NOP_P (place_to_insert))
5485 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5486 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5488 av_set_clear (&expr_seq);
5490 /* Save the expression scheduled so to reset target availability if we'll
5491 meet it later on the same fence. */
5492 if (EXPR_WAS_RENAMED (expr_vliw))
5493 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5495 /* Check that the recent movement didn't destroyed loop
5496 structure. */
5497 gcc_assert (!pipelining_p
5498 || current_loop_nest == NULL
5499 || loop_latch_edge (current_loop_nest));
5500 return insn;
5503 /* Stall for N cycles on FENCE. */
5504 static void
5505 stall_for_cycles (fence_t fence, int n)
5507 int could_more;
5509 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5510 while (n--)
5511 advance_one_cycle (fence);
5512 if (could_more)
5513 FENCE_AFTER_STALL_P (fence) = 1;
5516 /* Gather a parallel group of insns at FENCE and assign their seqno
5517 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5518 list for later recalculation of seqnos. */
5519 static void
5520 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5522 blist_t bnds = NULL, *bnds_tailp;
5523 av_set_t av_vliw = NULL;
5524 insn_t insn = FENCE_INSN (fence);
5526 if (sched_verbose >= 2)
5527 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5528 INSN_UID (insn), FENCE_CYCLE (fence));
5530 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5531 bnds_tailp = &BLIST_NEXT (bnds);
5532 set_target_context (FENCE_TC (fence));
5533 can_issue_more = FENCE_ISSUE_MORE (fence);
5534 target_bb = INSN_BB (insn);
5536 /* Do while we can add any operation to the current group. */
5539 blist_t *bnds_tailp1, *bndsp;
5540 expr_t expr_vliw;
5541 int need_stall = false;
5542 int was_stall = 0, scheduled_insns = 0;
5543 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5544 int max_stall = pipelining_p ? 1 : 3;
5545 bool last_insn_was_debug = false;
5546 bool was_debug_bb_end_p = false;
5548 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5549 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5550 remove_insns_for_debug (bnds, &av_vliw);
5552 /* Return early if we have nothing to schedule. */
5553 if (av_vliw == NULL)
5554 break;
5556 /* Choose the best expression and, if needed, destination register
5557 for it. */
5560 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5561 if (! expr_vliw && need_stall)
5563 /* All expressions required a stall. Do not recompute av sets
5564 as we'll get the same answer (modulo the insns between
5565 the fence and its boundary, which will not be available for
5566 pipelining).
5567 If we are going to stall for too long, break to recompute av
5568 sets and bring more insns for pipelining. */
5569 was_stall++;
5570 if (need_stall <= 3)
5571 stall_for_cycles (fence, need_stall);
5572 else
5574 stall_for_cycles (fence, 1);
5575 break;
5579 while (! expr_vliw && need_stall);
5581 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5582 if (!expr_vliw)
5584 av_set_clear (&av_vliw);
5585 break;
5588 bndsp = &bnds;
5589 bnds_tailp1 = bnds_tailp;
5592 /* This code will be executed only once until we'd have several
5593 boundaries per fence. */
5595 bnd_t bnd = BLIST_BND (*bndsp);
5597 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5599 bndsp = &BLIST_NEXT (*bndsp);
5600 continue;
5603 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5604 last_insn_was_debug = DEBUG_INSN_P (insn);
5605 if (last_insn_was_debug)
5606 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5607 update_fence_and_insn (fence, insn, need_stall);
5608 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5610 /* Add insn to the list of scheduled on this cycle instructions. */
5611 ilist_add (*scheduled_insns_tailpp, insn);
5612 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5614 while (*bndsp != *bnds_tailp1);
5616 av_set_clear (&av_vliw);
5617 if (!last_insn_was_debug)
5618 scheduled_insns++;
5620 /* We currently support information about candidate blocks only for
5621 one 'target_bb' block. Hence we can't schedule after jump insn,
5622 as this will bring two boundaries and, hence, necessity to handle
5623 information for two or more blocks concurrently. */
5624 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5625 || (was_stall
5626 && (was_stall >= max_stall
5627 || scheduled_insns >= max_insns)))
5628 break;
5630 while (bnds);
5632 gcc_assert (!FENCE_BNDS (fence));
5634 /* Update boundaries of the FENCE. */
5635 while (bnds)
5637 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5639 if (ptr)
5641 insn = ILIST_INSN (ptr);
5643 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5644 ilist_add (&FENCE_BNDS (fence), insn);
5647 blist_remove (&bnds);
5650 /* Update target context on the fence. */
5651 reset_target_context (FENCE_TC (fence), false);
5654 /* All exprs in ORIG_OPS must have the same destination register or memory.
5655 Return that destination. */
5656 static rtx
5657 get_dest_from_orig_ops (av_set_t orig_ops)
5659 rtx dest = NULL_RTX;
5660 av_set_iterator av_it;
5661 expr_t expr;
5662 bool first_p = true;
5664 FOR_EACH_EXPR (expr, av_it, orig_ops)
5666 rtx x = EXPR_LHS (expr);
5668 if (first_p)
5670 first_p = false;
5671 dest = x;
5673 else
5674 gcc_assert (dest == x
5675 || (dest != NULL_RTX && x != NULL_RTX
5676 && rtx_equal_p (dest, x)));
5679 return dest;
5682 /* Update data sets for the bookkeeping block and record those expressions
5683 which become no longer available after inserting this bookkeeping. */
5684 static void
5685 update_and_record_unavailable_insns (basic_block book_block)
5687 av_set_iterator i;
5688 av_set_t old_av_set = NULL;
5689 expr_t cur_expr;
5690 rtx_insn *bb_end = sel_bb_end (book_block);
5692 /* First, get correct liveness in the bookkeeping block. The problem is
5693 the range between the bookeeping insn and the end of block. */
5694 update_liveness_on_insn (bb_end);
5695 if (control_flow_insn_p (bb_end))
5696 update_liveness_on_insn (PREV_INSN (bb_end));
5698 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5699 fence above, where we may choose to schedule an insn which is
5700 actually blocked from moving up with the bookkeeping we create here. */
5701 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5703 old_av_set = av_set_copy (BB_AV_SET (book_block));
5704 update_data_sets (sel_bb_head (book_block));
5706 /* Traverse all the expressions in the old av_set and check whether
5707 CUR_EXPR is in new AV_SET. */
5708 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5710 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5711 EXPR_VINSN (cur_expr));
5713 if (! new_expr
5714 /* In this case, we can just turn off the E_T_A bit, but we can't
5715 represent this information with the current vector. */
5716 || EXPR_TARGET_AVAILABLE (new_expr)
5717 != EXPR_TARGET_AVAILABLE (cur_expr))
5718 /* Unfortunately, the below code could be also fired up on
5719 separable insns, e.g. when moving insns through the new
5720 speculation check as in PR 53701. */
5721 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5724 av_set_clear (&old_av_set);
5728 /* The main effect of this function is that sparams->c_expr is merged
5729 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5730 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5731 lparams->c_expr_merged is copied back to sparams->c_expr after all
5732 successors has been traversed. lparams->c_expr_local is an expr allocated
5733 on stack in the caller function, and is used if there is more than one
5734 successor.
5736 SUCC is one of the SUCCS_NORMAL successors of INSN,
5737 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5738 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5739 static void
5740 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5741 insn_t succ ATTRIBUTE_UNUSED,
5742 int moveop_drv_call_res,
5743 cmpd_local_params_p lparams, void *static_params)
5745 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5747 /* Nothing to do, if original expr wasn't found below. */
5748 if (moveop_drv_call_res != 1)
5749 return;
5751 /* If this is a first successor. */
5752 if (!lparams->c_expr_merged)
5754 lparams->c_expr_merged = sparams->c_expr;
5755 sparams->c_expr = lparams->c_expr_local;
5757 else
5759 /* We must merge all found expressions to get reasonable
5760 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5761 do so then we can first find the expr with epsilon
5762 speculation success probability and only then with the
5763 good probability. As a result the insn will get epsilon
5764 probability and will never be scheduled because of
5765 weakness_cutoff in find_best_expr.
5767 We call merge_expr_data here instead of merge_expr
5768 because due to speculation C_EXPR and X may have the
5769 same insns with different speculation types. And as of
5770 now such insns are considered non-equal.
5772 However, EXPR_SCHED_TIMES is different -- we must get
5773 SCHED_TIMES from a real insn, not a bookkeeping copy.
5774 We force this here. Instead, we may consider merging
5775 SCHED_TIMES to the maximum instead of minimum in the
5776 below function. */
5777 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5779 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5780 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5781 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5783 clear_expr (sparams->c_expr);
5787 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5789 SUCC is one of the SUCCS_NORMAL successors of INSN,
5790 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5791 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5792 STATIC_PARAMS contain USED_REGS set. */
5793 static void
5794 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5795 int moveop_drv_call_res,
5796 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5797 void *static_params)
5799 regset succ_live;
5800 fur_static_params_p sparams = (fur_static_params_p) static_params;
5802 /* Here we compute live regsets only for branches that do not lie
5803 on the code motion paths. These branches correspond to value
5804 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5805 for such branches code_motion_path_driver is not called. */
5806 if (moveop_drv_call_res != 0)
5807 return;
5809 /* Mark all registers that do not meet the following condition:
5810 (3) not live on the other path of any conditional branch
5811 that is passed by the operation, in case original
5812 operations are not present on both paths of the
5813 conditional branch. */
5814 succ_live = compute_live (succ);
5815 IOR_REG_SET (sparams->used_regs, succ_live);
5818 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5819 into SP->CEXPR. */
5820 static void
5821 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5823 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5825 sp->c_expr = lp->c_expr_merged;
5828 /* Track bookkeeping copies created, insns scheduled, and blocks for
5829 rescheduling when INSN is found by move_op. */
5830 static void
5831 track_scheduled_insns_and_blocks (rtx insn)
5833 /* Even if this insn can be a copy that will be removed during current move_op,
5834 we still need to count it as an originator. */
5835 bitmap_set_bit (current_originators, INSN_UID (insn));
5837 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5839 /* Note that original block needs to be rescheduled, as we pulled an
5840 instruction out of it. */
5841 if (INSN_SCHED_TIMES (insn) > 0)
5842 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5843 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5844 num_insns_scheduled++;
5847 /* For instructions we must immediately remove insn from the
5848 stream, so subsequent update_data_sets () won't include this
5849 insn into av_set.
5850 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5851 if (INSN_UID (insn) > max_uid_before_move_op)
5852 stat_bookkeeping_copies--;
5855 /* Emit a register-register copy for INSN if needed. Return true if
5856 emitted one. PARAMS is the move_op static parameters. */
5857 static bool
5858 maybe_emit_renaming_copy (rtx_insn *insn,
5859 moveop_static_params_p params)
5861 bool insn_emitted = false;
5862 rtx cur_reg;
5864 /* Bail out early when expression can not be renamed at all. */
5865 if (!EXPR_SEPARABLE_P (params->c_expr))
5866 return false;
5868 cur_reg = expr_dest_reg (params->c_expr);
5869 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5871 /* If original operation has expr and the register chosen for
5872 that expr is not original operation's dest reg, substitute
5873 operation's right hand side with the register chosen. */
5874 if (REGNO (params->dest) != REGNO (cur_reg))
5876 insn_t reg_move_insn, reg_move_insn_rtx;
5878 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5879 params->dest);
5880 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5881 INSN_EXPR (insn),
5882 INSN_SEQNO (insn),
5883 insn);
5884 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5885 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5887 insn_emitted = true;
5888 params->was_renamed = true;
5891 return insn_emitted;
5894 /* Emit a speculative check for INSN speculated as EXPR if needed.
5895 Return true if we've emitted one. PARAMS is the move_op static
5896 parameters. */
5897 static bool
5898 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5899 moveop_static_params_p params)
5901 bool insn_emitted = false;
5902 insn_t x;
5903 ds_t check_ds;
5905 check_ds = get_spec_check_type_for_insn (insn, expr);
5906 if (check_ds != 0)
5908 /* A speculation check should be inserted. */
5909 x = create_speculation_check (params->c_expr, check_ds, insn);
5910 insn_emitted = true;
5912 else
5914 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5915 x = insn;
5918 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5919 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5920 return insn_emitted;
5923 /* Handle transformations that leave an insn in place of original
5924 insn such as renaming/speculation. Return true if one of such
5925 transformations actually happened, and we have emitted this insn. */
5926 static bool
5927 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5928 moveop_static_params_p params)
5930 bool insn_emitted = false;
5932 insn_emitted = maybe_emit_renaming_copy (insn, params);
5933 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5935 return insn_emitted;
5938 /* If INSN is the only insn in the basic block (not counting JUMP,
5939 which may be a jump to next insn, and DEBUG_INSNs), we want to
5940 leave a NOP there till the return to fill_insns. */
5942 static bool
5943 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5945 insn_t bb_head, bb_end, bb_next, in_next;
5946 basic_block bb = BLOCK_FOR_INSN (insn);
5948 bb_head = sel_bb_head (bb);
5949 bb_end = sel_bb_end (bb);
5951 if (bb_head == bb_end)
5952 return true;
5954 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5955 bb_head = NEXT_INSN (bb_head);
5957 if (bb_head == bb_end)
5958 return true;
5960 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5961 bb_end = PREV_INSN (bb_end);
5963 if (bb_head == bb_end)
5964 return true;
5966 bb_next = NEXT_INSN (bb_head);
5967 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5968 bb_next = NEXT_INSN (bb_next);
5970 if (bb_next == bb_end && JUMP_P (bb_end))
5971 return true;
5973 in_next = NEXT_INSN (insn);
5974 while (DEBUG_INSN_P (in_next))
5975 in_next = NEXT_INSN (in_next);
5977 if (IN_CURRENT_FENCE_P (in_next))
5978 return true;
5980 return false;
5983 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5984 is not removed but reused when INSN is re-emitted. */
5985 static void
5986 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5988 /* If there's only one insn in the BB, make sure that a nop is
5989 inserted into it, so the basic block won't disappear when we'll
5990 delete INSN below with sel_remove_insn. It should also survive
5991 till the return to fill_insns. */
5992 if (need_nop_to_preserve_insn_bb (insn))
5994 insn_t nop = get_nop_from_pool (insn);
5995 gcc_assert (INSN_NOP_P (nop));
5996 vec_temp_moveop_nops.safe_push (nop);
5999 sel_remove_insn (insn, only_disconnect, false);
6002 /* This function is called when original expr is found.
6003 INSN - current insn traversed, EXPR - the corresponding expr found.
6004 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
6005 is static parameters of move_op. */
6006 static void
6007 move_op_orig_expr_found (insn_t insn, expr_t expr,
6008 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6009 void *static_params)
6011 bool only_disconnect;
6012 moveop_static_params_p params = (moveop_static_params_p) static_params;
6014 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6015 track_scheduled_insns_and_blocks (insn);
6016 handle_emitting_transformations (insn, expr, params);
6017 only_disconnect = params->uid == INSN_UID (insn);
6019 /* Mark that we've disconnected an insn. */
6020 if (only_disconnect)
6021 params->uid = -1;
6022 remove_insn_from_stream (insn, only_disconnect);
6025 /* The function is called when original expr is found.
6026 INSN - current insn traversed, EXPR - the corresponding expr found,
6027 crosses_call and original_insns in STATIC_PARAMS are updated. */
6028 static void
6029 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6030 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6031 void *static_params)
6033 fur_static_params_p params = (fur_static_params_p) static_params;
6034 regset tmp;
6036 if (CALL_P (insn))
6037 params->crosses_call = true;
6039 def_list_add (params->original_insns, insn, params->crosses_call);
6041 /* Mark the registers that do not meet the following condition:
6042 (2) not among the live registers of the point
6043 immediately following the first original operation on
6044 a given downward path, except for the original target
6045 register of the operation. */
6046 tmp = get_clear_regset_from_pool ();
6047 compute_live_below_insn (insn, tmp);
6048 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6049 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6050 IOR_REG_SET (params->used_regs, tmp);
6051 return_regset_to_pool (tmp);
6053 /* (*1) We need to add to USED_REGS registers that are read by
6054 INSN's lhs. This may lead to choosing wrong src register.
6055 E.g. (scheduling const expr enabled):
6057 429: ax=0x0 <- Can't use AX for this expr (0x0)
6058 433: dx=[bp-0x18]
6059 427: [ax+dx+0x1]=ax
6060 REG_DEAD: ax
6061 168: di=dx
6062 REG_DEAD: dx
6064 /* FIXME: see comment above and enable MEM_P
6065 in vinsn_separable_p. */
6066 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6067 || !MEM_P (INSN_LHS (insn)));
6070 /* This function is called on the ascending pass, before returning from
6071 current basic block. */
6072 static void
6073 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6074 void *static_params)
6076 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6077 basic_block book_block = NULL;
6079 /* When we have removed the boundary insn for scheduling, which also
6080 happened to be the end insn in its bb, we don't need to update sets. */
6081 if (!lparams->removed_last_insn
6082 && lparams->e1
6083 && sel_bb_head_p (insn))
6085 /* We should generate bookkeeping code only if we are not at the
6086 top level of the move_op. */
6087 if (sel_num_cfg_preds_gt_1 (insn))
6088 book_block = generate_bookkeeping_insn (sparams->c_expr,
6089 lparams->e1, lparams->e2);
6090 /* Update data sets for the current insn. */
6091 update_data_sets (insn);
6094 /* If bookkeeping code was inserted, we need to update av sets of basic
6095 block that received bookkeeping. After generation of bookkeeping insn,
6096 bookkeeping block does not contain valid av set because we are not following
6097 the original algorithm in every detail with regards to e.g. renaming
6098 simple reg-reg copies. Consider example:
6100 bookkeeping block scheduling fence
6102 \ join /
6103 ----------
6105 ----------
6108 r1 := r2 r1 := r3
6110 We try to schedule insn "r1 := r3" on the current
6111 scheduling fence. Also, note that av set of bookkeeping block
6112 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6113 been scheduled, the CFG is as follows:
6115 r1 := r3 r1 := r3
6116 bookkeeping block scheduling fence
6118 \ join /
6119 ----------
6121 ----------
6124 r1 := r2
6126 Here, insn "r1 := r3" was scheduled at the current scheduling point
6127 and bookkeeping code was generated at the bookeeping block. This
6128 way insn "r1 := r2" is no longer available as a whole instruction
6129 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6130 This situation is handled by calling update_data_sets.
6132 Since update_data_sets is called only on the bookkeeping block, and
6133 it also may have predecessors with av_sets, containing instructions that
6134 are no longer available, we save all such expressions that become
6135 unavailable during data sets update on the bookkeeping block in
6136 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6137 expressions for scheduling. This allows us to avoid recomputation of
6138 av_sets outside the code motion path. */
6140 if (book_block)
6141 update_and_record_unavailable_insns (book_block);
6143 /* If INSN was previously marked for deletion, it's time to do it. */
6144 if (lparams->removed_last_insn)
6145 insn = PREV_INSN (insn);
6147 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6148 kill a block with a single nop in which the insn should be emitted. */
6149 if (lparams->e1)
6150 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6153 /* This function is called on the ascending pass, before returning from the
6154 current basic block. */
6155 static void
6156 fur_at_first_insn (insn_t insn,
6157 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6158 void *static_params ATTRIBUTE_UNUSED)
6160 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6161 || AV_LEVEL (insn) == -1);
6164 /* Called on the backward stage of recursion to call moveup_expr for insn
6165 and sparams->c_expr. */
6166 static void
6167 move_op_ascend (insn_t insn, void *static_params)
6169 enum MOVEUP_EXPR_CODE res;
6170 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6172 if (! INSN_NOP_P (insn))
6174 res = moveup_expr_cached (sparams->c_expr, insn, false);
6175 gcc_assert (res != MOVEUP_EXPR_NULL);
6178 /* Update liveness for this insn as it was invalidated. */
6179 update_liveness_on_insn (insn);
6182 /* This function is called on enter to the basic block.
6183 Returns TRUE if this block already have been visited and
6184 code_motion_path_driver should return 1, FALSE otherwise. */
6185 static int
6186 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6187 void *static_params, bool visited_p)
6189 fur_static_params_p sparams = (fur_static_params_p) static_params;
6191 if (visited_p)
6193 /* If we have found something below this block, there should be at
6194 least one insn in ORIGINAL_INSNS. */
6195 gcc_assert (*sparams->original_insns);
6197 /* Adjust CROSSES_CALL, since we may have come to this block along
6198 different path. */
6199 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6200 |= sparams->crosses_call;
6202 else
6203 local_params->old_original_insns = *sparams->original_insns;
6205 return 1;
6208 /* Same as above but for move_op. */
6209 static int
6210 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6211 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6212 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6214 if (visited_p)
6215 return -1;
6216 return 1;
6219 /* This function is called while descending current basic block if current
6220 insn is not the original EXPR we're searching for.
6222 Return value: FALSE, if code_motion_path_driver should perform a local
6223 cleanup and return 0 itself;
6224 TRUE, if code_motion_path_driver should continue. */
6225 static bool
6226 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6227 void *static_params)
6229 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6231 #ifdef ENABLE_CHECKING
6232 sparams->failed_insn = insn;
6233 #endif
6235 /* If we're scheduling separate expr, in order to generate correct code
6236 we need to stop the search at bookkeeping code generated with the
6237 same destination register or memory. */
6238 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6239 return false;
6240 return true;
6243 /* This function is called while descending current basic block if current
6244 insn is not the original EXPR we're searching for.
6246 Return value: TRUE (code_motion_path_driver should continue). */
6247 static bool
6248 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6250 bool mutexed;
6251 expr_t r;
6252 av_set_iterator avi;
6253 fur_static_params_p sparams = (fur_static_params_p) static_params;
6255 if (CALL_P (insn))
6256 sparams->crosses_call = true;
6257 else if (DEBUG_INSN_P (insn))
6258 return true;
6260 /* If current insn we are looking at cannot be executed together
6261 with original insn, then we can skip it safely.
6263 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6264 INSN = (!p6) r14 = r14 + 1;
6266 Here we can schedule ORIG_OP with lhs = r14, though only
6267 looking at the set of used and set registers of INSN we must
6268 forbid it. So, add set/used in INSN registers to the
6269 untouchable set only if there is an insn in ORIG_OPS that can
6270 affect INSN. */
6271 mutexed = true;
6272 FOR_EACH_EXPR (r, avi, orig_ops)
6273 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6275 mutexed = false;
6276 break;
6279 /* Mark all registers that do not meet the following condition:
6280 (1) Not set or read on any path from xi to an instance of the
6281 original operation. */
6282 if (!mutexed)
6284 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6285 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6286 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6289 return true;
6292 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6293 struct code_motion_path_driver_info_def move_op_hooks = {
6294 move_op_on_enter,
6295 move_op_orig_expr_found,
6296 move_op_orig_expr_not_found,
6297 move_op_merge_succs,
6298 move_op_after_merge_succs,
6299 move_op_ascend,
6300 move_op_at_first_insn,
6301 SUCCS_NORMAL,
6302 "move_op"
6305 /* Hooks and data to perform find_used_regs operations
6306 with code_motion_path_driver. */
6307 struct code_motion_path_driver_info_def fur_hooks = {
6308 fur_on_enter,
6309 fur_orig_expr_found,
6310 fur_orig_expr_not_found,
6311 fur_merge_succs,
6312 NULL, /* fur_after_merge_succs */
6313 NULL, /* fur_ascend */
6314 fur_at_first_insn,
6315 SUCCS_ALL,
6316 "find_used_regs"
6319 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6320 code_motion_path_driver is called recursively. Original operation
6321 was found at least on one path that is starting with one of INSN's
6322 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6323 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6324 of either move_op or find_used_regs depending on the caller.
6326 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6327 know for sure at this point. */
6328 static int
6329 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6330 ilist_t path, void *static_params)
6332 int res = 0;
6333 succ_iterator succ_i;
6334 insn_t succ;
6335 basic_block bb;
6336 int old_index;
6337 unsigned old_succs;
6339 struct cmpd_local_params lparams;
6340 expr_def _x;
6342 lparams.c_expr_local = &_x;
6343 lparams.c_expr_merged = NULL;
6345 /* We need to process only NORMAL succs for move_op, and collect live
6346 registers from ALL branches (including those leading out of the
6347 region) for find_used_regs.
6349 In move_op, there can be a case when insn's bb number has changed
6350 due to created bookkeeping. This happens very rare, as we need to
6351 move expression from the beginning to the end of the same block.
6352 Rescan successors in this case. */
6354 rescan:
6355 bb = BLOCK_FOR_INSN (insn);
6356 old_index = bb->index;
6357 old_succs = EDGE_COUNT (bb->succs);
6359 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6361 int b;
6363 lparams.e1 = succ_i.e1;
6364 lparams.e2 = succ_i.e2;
6366 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6367 current region). */
6368 if (succ_i.current_flags == SUCCS_NORMAL)
6369 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6370 static_params);
6371 else
6372 b = 0;
6374 /* Merge c_expres found or unify live register sets from different
6375 successors. */
6376 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6377 static_params);
6378 if (b == 1)
6379 res = b;
6380 else if (b == -1 && res != 1)
6381 res = b;
6383 /* We have simplified the control flow below this point. In this case,
6384 the iterator becomes invalid. We need to try again.
6385 If we have removed the insn itself, it could be only an
6386 unconditional jump. Thus, do not rescan but break immediately --
6387 we have already visited the only successor block. */
6388 if (!BLOCK_FOR_INSN (insn))
6390 if (sched_verbose >= 6)
6391 sel_print ("Not doing rescan: already visited the only successor"
6392 " of block %d\n", old_index);
6393 break;
6395 if (BLOCK_FOR_INSN (insn)->index != old_index
6396 || EDGE_COUNT (bb->succs) != old_succs)
6398 if (sched_verbose >= 6)
6399 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6400 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6401 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6402 goto rescan;
6406 #ifdef ENABLE_CHECKING
6407 /* Here, RES==1 if original expr was found at least for one of the
6408 successors. After the loop, RES may happen to have zero value
6409 only if at some point the expr searched is present in av_set, but is
6410 not found below. In most cases, this situation is an error.
6411 The exception is when the original operation is blocked by
6412 bookkeeping generated for another fence or for another path in current
6413 move_op. */
6414 gcc_assert (res == 1
6415 || (res == 0
6416 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6417 static_params))
6418 || res == -1);
6419 #endif
6421 /* Merge data, clean up, etc. */
6422 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6423 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6425 return res;
6429 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6430 is the pointer to the av set with expressions we were looking for,
6431 PATH_P is the pointer to the traversed path. */
6432 static inline void
6433 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6435 ilist_remove (path_p);
6436 av_set_clear (orig_ops_p);
6439 /* The driver function that implements move_op or find_used_regs
6440 functionality dependent whether code_motion_path_driver_INFO is set to
6441 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6442 of code (CFG traversal etc) that are shared among both functions. INSN
6443 is the insn we're starting the search from, ORIG_OPS are the expressions
6444 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6445 parameters of the driver, and STATIC_PARAMS are static parameters of
6446 the caller.
6448 Returns whether original instructions were found. Note that top-level
6449 code_motion_path_driver always returns true. */
6450 static int
6451 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6452 cmpd_local_params_p local_params_in,
6453 void *static_params)
6455 expr_t expr = NULL;
6456 basic_block bb = BLOCK_FOR_INSN (insn);
6457 insn_t first_insn, bb_tail, before_first;
6458 bool removed_last_insn = false;
6460 if (sched_verbose >= 6)
6462 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6463 dump_insn (insn);
6464 sel_print (",");
6465 dump_av_set (orig_ops);
6466 sel_print (")\n");
6469 gcc_assert (orig_ops);
6471 /* If no original operations exist below this insn, return immediately. */
6472 if (is_ineligible_successor (insn, path))
6474 if (sched_verbose >= 6)
6475 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6476 return false;
6479 /* The block can have invalid av set, in which case it was created earlier
6480 during move_op. Return immediately. */
6481 if (sel_bb_head_p (insn))
6483 if (! AV_SET_VALID_P (insn))
6485 if (sched_verbose >= 6)
6486 sel_print ("Returned from block %d as it had invalid av set\n",
6487 bb->index);
6488 return false;
6491 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6493 /* We have already found an original operation on this branch, do not
6494 go any further and just return TRUE here. If we don't stop here,
6495 function can have exponential behaviour even on the small code
6496 with many different paths (e.g. with data speculation and
6497 recovery blocks). */
6498 if (sched_verbose >= 6)
6499 sel_print ("Block %d already visited in this traversal\n", bb->index);
6500 if (code_motion_path_driver_info->on_enter)
6501 return code_motion_path_driver_info->on_enter (insn,
6502 local_params_in,
6503 static_params,
6504 true);
6508 if (code_motion_path_driver_info->on_enter)
6509 code_motion_path_driver_info->on_enter (insn, local_params_in,
6510 static_params, false);
6511 orig_ops = av_set_copy (orig_ops);
6513 /* Filter the orig_ops set. */
6514 if (AV_SET_VALID_P (insn))
6515 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6517 /* If no more original ops, return immediately. */
6518 if (!orig_ops)
6520 if (sched_verbose >= 6)
6521 sel_print ("No intersection with av set of block %d\n", bb->index);
6522 return false;
6525 /* For non-speculative insns we have to leave only one form of the
6526 original operation, because if we don't, we may end up with
6527 different C_EXPRes and, consequently, with bookkeepings for different
6528 expression forms along the same code motion path. That may lead to
6529 generation of incorrect code. So for each code motion we stick to
6530 the single form of the instruction, except for speculative insns
6531 which we need to keep in different forms with all speculation
6532 types. */
6533 av_set_leave_one_nonspec (&orig_ops);
6535 /* It is not possible that all ORIG_OPS are filtered out. */
6536 gcc_assert (orig_ops);
6538 /* It is enough to place only heads and tails of visited basic blocks into
6539 the PATH. */
6540 ilist_add (&path, insn);
6541 first_insn = insn;
6542 bb_tail = sel_bb_end (bb);
6544 /* Descend the basic block in search of the original expr; this part
6545 corresponds to the part of the original move_op procedure executed
6546 before the recursive call. */
6547 for (;;)
6549 /* Look at the insn and decide if it could be an ancestor of currently
6550 scheduling operation. If it is so, then the insn "dest = op" could
6551 either be replaced with "dest = reg", because REG now holds the result
6552 of OP, or just removed, if we've scheduled the insn as a whole.
6554 If this insn doesn't contain currently scheduling OP, then proceed
6555 with searching and look at its successors. Operations we're searching
6556 for could have changed when moving up through this insn via
6557 substituting. In this case, perform unsubstitution on them first.
6559 When traversing the DAG below this insn is finished, insert
6560 bookkeeping code, if the insn is a joint point, and remove
6561 leftovers. */
6563 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6564 if (expr)
6566 insn_t last_insn = PREV_INSN (insn);
6568 /* We have found the original operation. */
6569 if (sched_verbose >= 6)
6570 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6572 code_motion_path_driver_info->orig_expr_found
6573 (insn, expr, local_params_in, static_params);
6575 /* Step back, so on the way back we'll start traversing from the
6576 previous insn (or we'll see that it's bb_note and skip that
6577 loop). */
6578 if (insn == first_insn)
6580 first_insn = NEXT_INSN (last_insn);
6581 removed_last_insn = sel_bb_end_p (last_insn);
6583 insn = last_insn;
6584 break;
6586 else
6588 /* We haven't found the original expr, continue descending the basic
6589 block. */
6590 if (code_motion_path_driver_info->orig_expr_not_found
6591 (insn, orig_ops, static_params))
6593 /* Av set ops could have been changed when moving through this
6594 insn. To find them below it, we have to un-substitute them. */
6595 undo_transformations (&orig_ops, insn);
6597 else
6599 /* Clean up and return, if the hook tells us to do so. It may
6600 happen if we've encountered the previously created
6601 bookkeeping. */
6602 code_motion_path_driver_cleanup (&orig_ops, &path);
6603 return -1;
6606 gcc_assert (orig_ops);
6609 /* Stop at insn if we got to the end of BB. */
6610 if (insn == bb_tail)
6611 break;
6613 insn = NEXT_INSN (insn);
6616 /* Here INSN either points to the insn before the original insn (may be
6617 bb_note, if original insn was a bb_head) or to the bb_end. */
6618 if (!expr)
6620 int res;
6621 rtx_insn *last_insn = PREV_INSN (insn);
6622 bool added_to_path;
6624 gcc_assert (insn == sel_bb_end (bb));
6626 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6627 it's already in PATH then). */
6628 if (insn != first_insn)
6630 ilist_add (&path, insn);
6631 added_to_path = true;
6633 else
6634 added_to_path = false;
6636 /* Process_successors should be able to find at least one
6637 successor for which code_motion_path_driver returns TRUE. */
6638 res = code_motion_process_successors (insn, orig_ops,
6639 path, static_params);
6641 /* Jump in the end of basic block could have been removed or replaced
6642 during code_motion_process_successors, so recompute insn as the
6643 last insn in bb. */
6644 if (NEXT_INSN (last_insn) != insn)
6646 insn = sel_bb_end (bb);
6647 first_insn = sel_bb_head (bb);
6650 /* Remove bb tail from path. */
6651 if (added_to_path)
6652 ilist_remove (&path);
6654 if (res != 1)
6656 /* This is the case when one of the original expr is no longer available
6657 due to bookkeeping created on this branch with the same register.
6658 In the original algorithm, which doesn't have update_data_sets call
6659 on a bookkeeping block, it would simply result in returning
6660 FALSE when we've encountered a previously generated bookkeeping
6661 insn in moveop_orig_expr_not_found. */
6662 code_motion_path_driver_cleanup (&orig_ops, &path);
6663 return res;
6667 /* Don't need it any more. */
6668 av_set_clear (&orig_ops);
6670 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6671 the beginning of the basic block. */
6672 before_first = PREV_INSN (first_insn);
6673 while (insn != before_first)
6675 if (code_motion_path_driver_info->ascend)
6676 code_motion_path_driver_info->ascend (insn, static_params);
6678 insn = PREV_INSN (insn);
6681 /* Now we're at the bb head. */
6682 insn = first_insn;
6683 ilist_remove (&path);
6684 local_params_in->removed_last_insn = removed_last_insn;
6685 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6687 /* This should be the very last operation as at bb head we could change
6688 the numbering by creating bookkeeping blocks. */
6689 if (removed_last_insn)
6690 insn = PREV_INSN (insn);
6692 /* If we have simplified the control flow and removed the first jump insn,
6693 there's no point in marking this block in the visited blocks bitmap. */
6694 if (BLOCK_FOR_INSN (insn))
6695 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6696 return true;
6699 /* Move up the operations from ORIG_OPS set traversing the dag starting
6700 from INSN. PATH represents the edges traversed so far.
6701 DEST is the register chosen for scheduling the current expr. Insert
6702 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6703 C_EXPR is how it looks like at the given cfg point.
6704 Set *SHOULD_MOVE to indicate whether we have only disconnected
6705 one of the insns found.
6707 Returns whether original instructions were found, which is asserted
6708 to be true in the caller. */
6709 static bool
6710 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6711 rtx dest, expr_t c_expr, bool *should_move)
6713 struct moveop_static_params sparams;
6714 struct cmpd_local_params lparams;
6715 int res;
6717 /* Init params for code_motion_path_driver. */
6718 sparams.dest = dest;
6719 sparams.c_expr = c_expr;
6720 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6721 #ifdef ENABLE_CHECKING
6722 sparams.failed_insn = NULL;
6723 #endif
6724 sparams.was_renamed = false;
6725 lparams.e1 = NULL;
6727 /* We haven't visited any blocks yet. */
6728 bitmap_clear (code_motion_visited_blocks);
6730 /* Set appropriate hooks and data. */
6731 code_motion_path_driver_info = &move_op_hooks;
6732 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6734 gcc_assert (res != -1);
6736 if (sparams.was_renamed)
6737 EXPR_WAS_RENAMED (expr_vliw) = true;
6739 *should_move = (sparams.uid == -1);
6741 return res;
6745 /* Functions that work with regions. */
6747 /* Current number of seqno used in init_seqno and init_seqno_1. */
6748 static int cur_seqno;
6750 /* A helper for init_seqno. Traverse the region starting from BB and
6751 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6752 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6753 static void
6754 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6756 int bbi = BLOCK_TO_BB (bb->index);
6757 insn_t insn, note = bb_note (bb);
6758 insn_t succ_insn;
6759 succ_iterator si;
6761 bitmap_set_bit (visited_bbs, bbi);
6762 if (blocks_to_reschedule)
6763 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6765 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6766 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6768 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6769 int succ_bbi = BLOCK_TO_BB (succ->index);
6771 gcc_assert (in_current_region_p (succ));
6773 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6775 gcc_assert (succ_bbi > bbi);
6777 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6779 else if (blocks_to_reschedule)
6780 bitmap_set_bit (forced_ebb_heads, succ->index);
6783 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6784 INSN_SEQNO (insn) = cur_seqno--;
6787 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6788 blocks on which we're rescheduling when pipelining, FROM is the block where
6789 traversing region begins (it may not be the head of the region when
6790 pipelining, but the head of the loop instead).
6792 Returns the maximal seqno found. */
6793 static int
6794 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6796 sbitmap visited_bbs;
6797 bitmap_iterator bi;
6798 unsigned bbi;
6800 visited_bbs = sbitmap_alloc (current_nr_blocks);
6802 if (blocks_to_reschedule)
6804 bitmap_ones (visited_bbs);
6805 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6807 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6808 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6811 else
6813 bitmap_clear (visited_bbs);
6814 from = EBB_FIRST_BB (0);
6817 cur_seqno = sched_max_luid - 1;
6818 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6820 /* cur_seqno may be positive if the number of instructions is less than
6821 sched_max_luid - 1 (when rescheduling or if some instructions have been
6822 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6823 gcc_assert (cur_seqno >= 0);
6825 sbitmap_free (visited_bbs);
6826 return sched_max_luid - 1;
6829 /* Initialize scheduling parameters for current region. */
6830 static void
6831 sel_setup_region_sched_flags (void)
6833 enable_schedule_as_rhs_p = 1;
6834 bookkeeping_p = 1;
6835 pipelining_p = (bookkeeping_p
6836 && (flag_sel_sched_pipelining != 0)
6837 && current_loop_nest != NULL
6838 && loop_has_exit_edges (current_loop_nest));
6839 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6840 max_ws = MAX_WS;
6843 /* Return true if all basic blocks of current region are empty. */
6844 static bool
6845 current_region_empty_p (void)
6847 int i;
6848 for (i = 0; i < current_nr_blocks; i++)
6849 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6850 return false;
6852 return true;
6855 /* Prepare and verify loop nest for pipelining. */
6856 static void
6857 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6859 current_loop_nest = get_loop_nest_for_rgn (rgn);
6861 if (!current_loop_nest)
6862 return;
6864 /* If this loop has any saved loop preheaders from nested loops,
6865 add these basic blocks to the current region. */
6866 sel_add_loop_preheaders (bbs);
6868 /* Check that we're starting with a valid information. */
6869 gcc_assert (loop_latch_edge (current_loop_nest));
6870 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6873 /* Compute instruction priorities for current region. */
6874 static void
6875 sel_compute_priorities (int rgn)
6877 sched_rgn_compute_dependencies (rgn);
6879 /* Compute insn priorities in haifa style. Then free haifa style
6880 dependencies that we've calculated for this. */
6881 compute_priorities ();
6883 if (sched_verbose >= 5)
6884 debug_rgn_dependencies (0);
6886 free_rgn_deps ();
6889 /* Init scheduling data for RGN. Returns true when this region should not
6890 be scheduled. */
6891 static bool
6892 sel_region_init (int rgn)
6894 int i;
6895 bb_vec_t bbs;
6897 rgn_setup_region (rgn);
6899 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6900 do region initialization here so the region can be bundled correctly,
6901 but we'll skip the scheduling in sel_sched_region (). */
6902 if (current_region_empty_p ())
6903 return true;
6905 bbs.create (current_nr_blocks);
6907 for (i = 0; i < current_nr_blocks; i++)
6908 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6910 sel_init_bbs (bbs);
6912 if (flag_sel_sched_pipelining)
6913 setup_current_loop_nest (rgn, &bbs);
6915 sel_setup_region_sched_flags ();
6917 /* Initialize luids and dependence analysis which both sel-sched and haifa
6918 need. */
6919 sched_init_luids (bbs);
6920 sched_deps_init (false);
6922 /* Initialize haifa data. */
6923 rgn_setup_sched_infos ();
6924 sel_set_sched_flags ();
6925 haifa_init_h_i_d (bbs);
6927 sel_compute_priorities (rgn);
6928 init_deps_global ();
6930 /* Main initialization. */
6931 sel_setup_sched_infos ();
6932 sel_init_global_and_expr (bbs);
6934 bbs.release ();
6936 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6938 /* Init correct liveness sets on each instruction of a single-block loop.
6939 This is the only situation when we can't update liveness when calling
6940 compute_live for the first insn of the loop. */
6941 if (current_loop_nest)
6943 int header =
6944 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6946 : 0);
6948 if (current_nr_blocks == header + 1)
6949 update_liveness_on_insn
6950 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6953 /* Set hooks so that no newly generated insn will go out unnoticed. */
6954 sel_register_cfg_hooks ();
6956 /* !!! We call target.sched.init () for the whole region, but we invoke
6957 targetm.sched.finish () for every ebb. */
6958 if (targetm.sched.init)
6959 /* None of the arguments are actually used in any target. */
6960 targetm.sched.init (sched_dump, sched_verbose, -1);
6962 first_emitted_uid = get_max_uid () + 1;
6963 preheader_removed = false;
6965 /* Reset register allocation ticks array. */
6966 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6967 reg_rename_this_tick = 0;
6969 bitmap_initialize (forced_ebb_heads, 0);
6970 bitmap_clear (forced_ebb_heads);
6972 setup_nop_vinsn ();
6973 current_copies = BITMAP_ALLOC (NULL);
6974 current_originators = BITMAP_ALLOC (NULL);
6975 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6977 return false;
6980 /* Simplify insns after the scheduling. */
6981 static void
6982 simplify_changed_insns (void)
6984 int i;
6986 for (i = 0; i < current_nr_blocks; i++)
6988 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6989 rtx_insn *insn;
6991 FOR_BB_INSNS (bb, insn)
6992 if (INSN_P (insn))
6994 expr_t expr = INSN_EXPR (insn);
6996 if (EXPR_WAS_SUBSTITUTED (expr))
6997 validate_simplify_insn (insn);
7002 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
7003 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
7004 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
7005 static void
7006 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
7008 rtx_insn *head, *tail;
7009 basic_block bb1 = bb;
7010 if (sched_verbose >= 2)
7011 sel_print ("Finishing schedule in bbs: ");
7015 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7017 if (sched_verbose >= 2)
7018 sel_print ("%d; ", bb1->index);
7020 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7022 if (sched_verbose >= 2)
7023 sel_print ("\n");
7025 get_ebb_head_tail (bb, bb1, &head, &tail);
7027 current_sched_info->head = head;
7028 current_sched_info->tail = tail;
7029 current_sched_info->prev_head = PREV_INSN (head);
7030 current_sched_info->next_tail = NEXT_INSN (tail);
7033 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7034 static void
7035 reset_sched_cycles_in_current_ebb (void)
7037 int last_clock = 0;
7038 int haifa_last_clock = -1;
7039 int haifa_clock = 0;
7040 int issued_insns = 0;
7041 insn_t insn;
7043 if (targetm.sched.init)
7045 /* None of the arguments are actually used in any target.
7046 NB: We should have md_reset () hook for cases like this. */
7047 targetm.sched.init (sched_dump, sched_verbose, -1);
7050 state_reset (curr_state);
7051 advance_state (curr_state);
7053 for (insn = current_sched_info->head;
7054 insn != current_sched_info->next_tail;
7055 insn = NEXT_INSN (insn))
7057 int cost, haifa_cost;
7058 int sort_p;
7059 bool asm_p, real_insn, after_stall, all_issued;
7060 int clock;
7062 if (!INSN_P (insn))
7063 continue;
7065 asm_p = false;
7066 real_insn = recog_memoized (insn) >= 0;
7067 clock = INSN_SCHED_CYCLE (insn);
7069 cost = clock - last_clock;
7071 /* Initialize HAIFA_COST. */
7072 if (! real_insn)
7074 asm_p = INSN_ASM_P (insn);
7076 if (asm_p)
7077 /* This is asm insn which *had* to be scheduled first
7078 on the cycle. */
7079 haifa_cost = 1;
7080 else
7081 /* This is a use/clobber insn. It should not change
7082 cost. */
7083 haifa_cost = 0;
7085 else
7086 haifa_cost = estimate_insn_cost (insn, curr_state);
7088 /* Stall for whatever cycles we've stalled before. */
7089 after_stall = 0;
7090 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7092 haifa_cost = cost;
7093 after_stall = 1;
7095 all_issued = issued_insns == issue_rate;
7096 if (haifa_cost == 0 && all_issued)
7097 haifa_cost = 1;
7098 if (haifa_cost > 0)
7100 int i = 0;
7102 while (haifa_cost--)
7104 advance_state (curr_state);
7105 issued_insns = 0;
7106 i++;
7108 if (sched_verbose >= 2)
7110 sel_print ("advance_state (state_transition)\n");
7111 debug_state (curr_state);
7114 /* The DFA may report that e.g. insn requires 2 cycles to be
7115 issued, but on the next cycle it says that insn is ready
7116 to go. Check this here. */
7117 if (!after_stall
7118 && real_insn
7119 && haifa_cost > 0
7120 && estimate_insn_cost (insn, curr_state) == 0)
7121 break;
7123 /* When the data dependency stall is longer than the DFA stall,
7124 and when we have issued exactly issue_rate insns and stalled,
7125 it could be that after this longer stall the insn will again
7126 become unavailable to the DFA restrictions. Looks strange
7127 but happens e.g. on x86-64. So recheck DFA on the last
7128 iteration. */
7129 if ((after_stall || all_issued)
7130 && real_insn
7131 && haifa_cost == 0)
7132 haifa_cost = estimate_insn_cost (insn, curr_state);
7135 haifa_clock += i;
7136 if (sched_verbose >= 2)
7137 sel_print ("haifa clock: %d\n", haifa_clock);
7139 else
7140 gcc_assert (haifa_cost == 0);
7142 if (sched_verbose >= 2)
7143 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7145 if (targetm.sched.dfa_new_cycle)
7146 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7147 haifa_last_clock, haifa_clock,
7148 &sort_p))
7150 advance_state (curr_state);
7151 issued_insns = 0;
7152 haifa_clock++;
7153 if (sched_verbose >= 2)
7155 sel_print ("advance_state (dfa_new_cycle)\n");
7156 debug_state (curr_state);
7157 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7161 if (real_insn)
7163 static state_t temp = NULL;
7165 if (!temp)
7166 temp = xmalloc (dfa_state_size);
7167 memcpy (temp, curr_state, dfa_state_size);
7169 cost = state_transition (curr_state, insn);
7170 if (memcmp (temp, curr_state, dfa_state_size))
7171 issued_insns++;
7173 if (sched_verbose >= 2)
7175 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7176 haifa_clock + 1);
7177 debug_state (curr_state);
7179 gcc_assert (cost < 0);
7182 if (targetm.sched.variable_issue)
7183 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7185 INSN_SCHED_CYCLE (insn) = haifa_clock;
7187 last_clock = clock;
7188 haifa_last_clock = haifa_clock;
7192 /* Put TImode markers on insns starting a new issue group. */
7193 static void
7194 put_TImodes (void)
7196 int last_clock = -1;
7197 insn_t insn;
7199 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7200 insn = NEXT_INSN (insn))
7202 int cost, clock;
7204 if (!INSN_P (insn))
7205 continue;
7207 clock = INSN_SCHED_CYCLE (insn);
7208 cost = (last_clock == -1) ? 1 : clock - last_clock;
7210 gcc_assert (cost >= 0);
7212 if (issue_rate > 1
7213 && GET_CODE (PATTERN (insn)) != USE
7214 && GET_CODE (PATTERN (insn)) != CLOBBER)
7216 if (reload_completed && cost > 0)
7217 PUT_MODE (insn, TImode);
7219 last_clock = clock;
7222 if (sched_verbose >= 2)
7223 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7227 /* Perform MD_FINISH on EBBs comprising current region. When
7228 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7229 to produce correct sched cycles on insns. */
7230 static void
7231 sel_region_target_finish (bool reset_sched_cycles_p)
7233 int i;
7234 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7236 for (i = 0; i < current_nr_blocks; i++)
7238 if (bitmap_bit_p (scheduled_blocks, i))
7239 continue;
7241 /* While pipelining outer loops, skip bundling for loop
7242 preheaders. Those will be rescheduled in the outer loop. */
7243 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7244 continue;
7246 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7248 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7249 continue;
7251 if (reset_sched_cycles_p)
7252 reset_sched_cycles_in_current_ebb ();
7254 if (targetm.sched.init)
7255 targetm.sched.init (sched_dump, sched_verbose, -1);
7257 put_TImodes ();
7259 if (targetm.sched.finish)
7261 targetm.sched.finish (sched_dump, sched_verbose);
7263 /* Extend luids so that insns generated by the target will
7264 get zero luid. */
7265 sched_extend_luids ();
7269 BITMAP_FREE (scheduled_blocks);
7272 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7273 is true, make an additional pass emulating scheduler to get correct insn
7274 cycles for md_finish calls. */
7275 static void
7276 sel_region_finish (bool reset_sched_cycles_p)
7278 simplify_changed_insns ();
7279 sched_finish_ready_list ();
7280 free_nop_pool ();
7282 /* Free the vectors. */
7283 vec_av_set.release ();
7284 BITMAP_FREE (current_copies);
7285 BITMAP_FREE (current_originators);
7286 BITMAP_FREE (code_motion_visited_blocks);
7287 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7288 vinsn_vec_free (vec_target_unavailable_vinsns);
7290 /* If LV_SET of the region head should be updated, do it now because
7291 there will be no other chance. */
7293 succ_iterator si;
7294 insn_t insn;
7296 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7297 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7299 basic_block bb = BLOCK_FOR_INSN (insn);
7301 if (!BB_LV_SET_VALID_P (bb))
7302 compute_live (insn);
7306 /* Emulate the Haifa scheduler for bundling. */
7307 if (reload_completed)
7308 sel_region_target_finish (reset_sched_cycles_p);
7310 sel_finish_global_and_expr ();
7312 bitmap_clear (forced_ebb_heads);
7314 free_nop_vinsn ();
7316 finish_deps_global ();
7317 sched_finish_luids ();
7318 h_d_i_d.release ();
7320 sel_finish_bbs ();
7321 BITMAP_FREE (blocks_to_reschedule);
7323 sel_unregister_cfg_hooks ();
7325 max_issue_size = 0;
7329 /* Functions that implement the scheduler driver. */
7331 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7332 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7333 of insns scheduled -- these would be postprocessed later. */
7334 static void
7335 schedule_on_fences (flist_t fences, int max_seqno,
7336 ilist_t **scheduled_insns_tailpp)
7338 flist_t old_fences = fences;
7340 if (sched_verbose >= 1)
7342 sel_print ("\nScheduling on fences: ");
7343 dump_flist (fences);
7344 sel_print ("\n");
7347 scheduled_something_on_previous_fence = false;
7348 for (; fences; fences = FLIST_NEXT (fences))
7350 fence_t fence = NULL;
7351 int seqno = 0;
7352 flist_t fences2;
7353 bool first_p = true;
7355 /* Choose the next fence group to schedule.
7356 The fact that insn can be scheduled only once
7357 on the cycle is guaranteed by two properties:
7358 1. seqnos of parallel groups decrease with each iteration.
7359 2. If is_ineligible_successor () sees the larger seqno, it
7360 checks if candidate insn is_in_current_fence_p (). */
7361 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7363 fence_t f = FLIST_FENCE (fences2);
7365 if (!FENCE_PROCESSED_P (f))
7367 int i = INSN_SEQNO (FENCE_INSN (f));
7369 if (first_p || i > seqno)
7371 seqno = i;
7372 fence = f;
7373 first_p = false;
7375 else
7376 /* ??? Seqnos of different groups should be different. */
7377 gcc_assert (1 || i != seqno);
7381 gcc_assert (fence);
7383 /* As FENCE is nonnull, SEQNO is initialized. */
7384 seqno -= max_seqno + 1;
7385 fill_insns (fence, seqno, scheduled_insns_tailpp);
7386 FENCE_PROCESSED_P (fence) = true;
7389 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7390 don't need to keep bookkeeping-invalidated and target-unavailable
7391 vinsns any more. */
7392 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7393 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7396 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7397 static void
7398 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7400 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7402 /* The first element is already processed. */
7403 while ((fences = FLIST_NEXT (fences)))
7405 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7407 if (*min_seqno > seqno)
7408 *min_seqno = seqno;
7409 else if (*max_seqno < seqno)
7410 *max_seqno = seqno;
7414 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7415 static flist_t
7416 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7418 flist_t old_fences = fences;
7419 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7420 int max_time = 0;
7422 flist_tail_init (new_fences);
7423 for (; fences; fences = FLIST_NEXT (fences))
7425 fence_t fence = FLIST_FENCE (fences);
7426 insn_t insn;
7428 if (!FENCE_BNDS (fence))
7430 /* This fence doesn't have any successors. */
7431 if (!FENCE_SCHEDULED_P (fence))
7433 /* Nothing was scheduled on this fence. */
7434 int seqno;
7436 insn = FENCE_INSN (fence);
7437 seqno = INSN_SEQNO (insn);
7438 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7440 if (sched_verbose >= 1)
7441 sel_print ("Fence %d[%d] has not changed\n",
7442 INSN_UID (insn),
7443 BLOCK_NUM (insn));
7444 move_fence_to_fences (fences, new_fences);
7447 else
7448 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7449 max_time = MAX (max_time, FENCE_CYCLE (fence));
7452 flist_clear (&old_fences);
7453 *ptime = max_time;
7454 return FLIST_TAIL_HEAD (new_fences);
7457 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7458 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7459 the highest seqno used in a region. Return the updated highest seqno. */
7460 static int
7461 update_seqnos_and_stage (int min_seqno, int max_seqno,
7462 int highest_seqno_in_use,
7463 ilist_t *pscheduled_insns)
7465 int new_hs;
7466 ilist_iterator ii;
7467 insn_t insn;
7469 /* Actually, new_hs is the seqno of the instruction, that was
7470 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7471 if (*pscheduled_insns)
7473 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7474 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7475 gcc_assert (new_hs > highest_seqno_in_use);
7477 else
7478 new_hs = highest_seqno_in_use;
7480 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7482 gcc_assert (INSN_SEQNO (insn) < 0);
7483 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7484 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7486 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7487 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7488 require > 1GB of memory e.g. on limit-fnargs.c. */
7489 if (! pipelining_p)
7490 free_data_for_scheduled_insn (insn);
7493 ilist_clear (pscheduled_insns);
7494 global_level++;
7496 return new_hs;
7499 /* The main driver for scheduling a region. This function is responsible
7500 for correct propagation of fences (i.e. scheduling points) and creating
7501 a group of parallel insns at each of them. It also supports
7502 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7503 of scheduling. */
7504 static void
7505 sel_sched_region_2 (int orig_max_seqno)
7507 int highest_seqno_in_use = orig_max_seqno;
7508 int max_time = 0;
7510 stat_bookkeeping_copies = 0;
7511 stat_insns_needed_bookkeeping = 0;
7512 stat_renamed_scheduled = 0;
7513 stat_substitutions_total = 0;
7514 num_insns_scheduled = 0;
7516 while (fences)
7518 int min_seqno, max_seqno;
7519 ilist_t scheduled_insns = NULL;
7520 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7522 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7523 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7524 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7525 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7526 highest_seqno_in_use,
7527 &scheduled_insns);
7530 if (sched_verbose >= 1)
7532 sel_print ("Total scheduling time: %d cycles\n", max_time);
7533 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7534 "bookkeeping, %d insns renamed, %d insns substituted\n",
7535 stat_bookkeeping_copies,
7536 stat_insns_needed_bookkeeping,
7537 stat_renamed_scheduled,
7538 stat_substitutions_total);
7542 /* Schedule a region. When pipelining, search for possibly never scheduled
7543 bookkeeping code and schedule it. Reschedule pipelined code without
7544 pipelining after. */
7545 static void
7546 sel_sched_region_1 (void)
7548 int orig_max_seqno;
7550 /* Remove empty blocks that might be in the region from the beginning. */
7551 purge_empty_blocks ();
7553 orig_max_seqno = init_seqno (NULL, NULL);
7554 gcc_assert (orig_max_seqno >= 1);
7556 /* When pipelining outer loops, create fences on the loop header,
7557 not preheader. */
7558 fences = NULL;
7559 if (current_loop_nest)
7560 init_fences (BB_END (EBB_FIRST_BB (0)));
7561 else
7562 init_fences (bb_note (EBB_FIRST_BB (0)));
7563 global_level = 1;
7565 sel_sched_region_2 (orig_max_seqno);
7567 gcc_assert (fences == NULL);
7569 if (pipelining_p)
7571 int i;
7572 basic_block bb;
7573 struct flist_tail_def _new_fences;
7574 flist_tail_t new_fences = &_new_fences;
7575 bool do_p = true;
7577 pipelining_p = false;
7578 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7579 bookkeeping_p = false;
7580 enable_schedule_as_rhs_p = false;
7582 /* Schedule newly created code, that has not been scheduled yet. */
7583 do_p = true;
7585 while (do_p)
7587 do_p = false;
7589 for (i = 0; i < current_nr_blocks; i++)
7591 basic_block bb = EBB_FIRST_BB (i);
7593 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7595 if (! bb_ends_ebb_p (bb))
7596 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7597 if (sel_bb_empty_p (bb))
7599 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7600 continue;
7602 clear_outdated_rtx_info (bb);
7603 if (sel_insn_is_speculation_check (BB_END (bb))
7604 && JUMP_P (BB_END (bb)))
7605 bitmap_set_bit (blocks_to_reschedule,
7606 BRANCH_EDGE (bb)->dest->index);
7608 else if (! sel_bb_empty_p (bb)
7609 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7610 bitmap_set_bit (blocks_to_reschedule, bb->index);
7613 for (i = 0; i < current_nr_blocks; i++)
7615 bb = EBB_FIRST_BB (i);
7617 /* While pipelining outer loops, skip bundling for loop
7618 preheaders. Those will be rescheduled in the outer
7619 loop. */
7620 if (sel_is_loop_preheader_p (bb))
7622 clear_outdated_rtx_info (bb);
7623 continue;
7626 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7628 flist_tail_init (new_fences);
7630 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7632 /* Mark BB as head of the new ebb. */
7633 bitmap_set_bit (forced_ebb_heads, bb->index);
7635 gcc_assert (fences == NULL);
7637 init_fences (bb_note (bb));
7639 sel_sched_region_2 (orig_max_seqno);
7641 do_p = true;
7642 break;
7649 /* Schedule the RGN region. */
7650 void
7651 sel_sched_region (int rgn)
7653 bool schedule_p;
7654 bool reset_sched_cycles_p;
7656 if (sel_region_init (rgn))
7657 return;
7659 if (sched_verbose >= 1)
7660 sel_print ("Scheduling region %d\n", rgn);
7662 schedule_p = (!sched_is_disabled_for_current_region_p ()
7663 && dbg_cnt (sel_sched_region_cnt));
7664 reset_sched_cycles_p = pipelining_p;
7665 if (schedule_p)
7666 sel_sched_region_1 ();
7667 else
7668 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7669 reset_sched_cycles_p = true;
7671 sel_region_finish (reset_sched_cycles_p);
7674 /* Perform global init for the scheduler. */
7675 static void
7676 sel_global_init (void)
7678 calculate_dominance_info (CDI_DOMINATORS);
7679 alloc_sched_pools ();
7681 /* Setup the infos for sched_init. */
7682 sel_setup_sched_infos ();
7683 setup_sched_dump ();
7685 sched_rgn_init (false);
7686 sched_init ();
7688 sched_init_bbs ();
7689 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7690 after_recovery = 0;
7691 can_issue_more = issue_rate;
7693 sched_extend_target ();
7694 sched_deps_init (true);
7695 setup_nop_and_exit_insns ();
7696 sel_extend_global_bb_info ();
7697 init_lv_sets ();
7698 init_hard_regs_data ();
7701 /* Free the global data of the scheduler. */
7702 static void
7703 sel_global_finish (void)
7705 free_bb_note_pool ();
7706 free_lv_sets ();
7707 sel_finish_global_bb_info ();
7709 free_regset_pool ();
7710 free_nop_and_exit_insns ();
7712 sched_rgn_finish ();
7713 sched_deps_finish ();
7714 sched_finish ();
7716 if (current_loops)
7717 sel_finish_pipelining ();
7719 free_sched_pools ();
7720 free_dominance_info (CDI_DOMINATORS);
7723 /* Return true when we need to skip selective scheduling. Used for debugging. */
7724 bool
7725 maybe_skip_selective_scheduling (void)
7727 return ! dbg_cnt (sel_sched_cnt);
7730 /* The entry point. */
7731 void
7732 run_selective_scheduling (void)
7734 int rgn;
7736 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7737 return;
7739 sel_global_init ();
7741 for (rgn = 0; rgn < nr_regions; rgn++)
7742 sel_sched_region (rgn);
7744 sel_global_finish ();
7747 #endif