Fix gnu11 fallout on SPARC
[official-gcc.git] / gcc / postreload.c
blobdcdfedfd920b399b417ccd519402ef88020c15e9
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "hashtab.h"
33 #include "hash-set.h"
34 #include "vec.h"
35 #include "input.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "optabs.h"
39 #include "regs.h"
40 #include "basic-block.h"
41 #include "reload.h"
42 #include "recog.h"
43 #include "cselib.h"
44 #include "diagnostic-core.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "target.h"
48 #include "tree-pass.h"
49 #include "df.h"
50 #include "dbgcnt.h"
52 static int reload_cse_noop_set_p (rtx);
53 static bool reload_cse_simplify (rtx_insn *, rtx);
54 static void reload_cse_regs_1 (void);
55 static int reload_cse_simplify_set (rtx, rtx_insn *);
56 static int reload_cse_simplify_operands (rtx_insn *, rtx);
58 static void reload_combine (void);
59 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
60 static void reload_combine_note_store (rtx, const_rtx, void *);
62 static bool reload_cse_move2add (rtx_insn *);
63 static void move2add_note_store (rtx, const_rtx, void *);
65 /* Call cse / combine like post-reload optimization phases.
66 FIRST is the first instruction. */
68 static void
69 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
71 bool moves_converted;
72 reload_cse_regs_1 ();
73 reload_combine ();
74 moves_converted = reload_cse_move2add (first);
75 if (flag_expensive_optimizations)
77 if (moves_converted)
78 reload_combine ();
79 reload_cse_regs_1 ();
83 /* See whether a single set SET is a noop. */
84 static int
85 reload_cse_noop_set_p (rtx set)
87 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
88 return 0;
90 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
93 /* Try to simplify INSN. Return true if the CFG may have changed. */
94 static bool
95 reload_cse_simplify (rtx_insn *insn, rtx testreg)
97 rtx body = PATTERN (insn);
98 basic_block insn_bb = BLOCK_FOR_INSN (insn);
99 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
101 if (GET_CODE (body) == SET)
103 int count = 0;
105 /* Simplify even if we may think it is a no-op.
106 We may think a memory load of a value smaller than WORD_SIZE
107 is redundant because we haven't taken into account possible
108 implicit extension. reload_cse_simplify_set() will bring
109 this out, so it's safer to simplify before we delete. */
110 count += reload_cse_simplify_set (body, insn);
112 if (!count && reload_cse_noop_set_p (body))
114 rtx value = SET_DEST (body);
115 if (REG_P (value)
116 && ! REG_FUNCTION_VALUE_P (value))
117 value = 0;
118 if (check_for_inc_dec (insn))
119 delete_insn_and_edges (insn);
120 /* We're done with this insn. */
121 goto done;
124 if (count > 0)
125 apply_change_group ();
126 else
127 reload_cse_simplify_operands (insn, testreg);
129 else if (GET_CODE (body) == PARALLEL)
131 int i;
132 int count = 0;
133 rtx value = NULL_RTX;
135 /* Registers mentioned in the clobber list for an asm cannot be reused
136 within the body of the asm. Invalidate those registers now so that
137 we don't try to substitute values for them. */
138 if (asm_noperands (body) >= 0)
140 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
142 rtx part = XVECEXP (body, 0, i);
143 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
144 cselib_invalidate_rtx (XEXP (part, 0));
148 /* If every action in a PARALLEL is a noop, we can delete
149 the entire PARALLEL. */
150 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
152 rtx part = XVECEXP (body, 0, i);
153 if (GET_CODE (part) == SET)
155 if (! reload_cse_noop_set_p (part))
156 break;
157 if (REG_P (SET_DEST (part))
158 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
160 if (value)
161 break;
162 value = SET_DEST (part);
165 else if (GET_CODE (part) != CLOBBER)
166 break;
169 if (i < 0)
171 if (check_for_inc_dec (insn))
172 delete_insn_and_edges (insn);
173 /* We're done with this insn. */
174 goto done;
177 /* It's not a no-op, but we can try to simplify it. */
178 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
179 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
180 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
182 if (count > 0)
183 apply_change_group ();
184 else
185 reload_cse_simplify_operands (insn, testreg);
188 done:
189 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
192 /* Do a very simple CSE pass over the hard registers.
194 This function detects no-op moves where we happened to assign two
195 different pseudo-registers to the same hard register, and then
196 copied one to the other. Reload will generate a useless
197 instruction copying a register to itself.
199 This function also detects cases where we load a value from memory
200 into two different registers, and (if memory is more expensive than
201 registers) changes it to simply copy the first register into the
202 second register.
204 Another optimization is performed that scans the operands of each
205 instruction to see whether the value is already available in a
206 hard register. It then replaces the operand with the hard register
207 if possible, much like an optional reload would. */
209 static void
210 reload_cse_regs_1 (void)
212 bool cfg_changed = false;
213 basic_block bb;
214 rtx_insn *insn;
215 rtx testreg = gen_rtx_REG (VOIDmode, -1);
217 cselib_init (CSELIB_RECORD_MEMORY);
218 init_alias_analysis ();
220 FOR_EACH_BB_FN (bb, cfun)
221 FOR_BB_INSNS (bb, insn)
223 if (INSN_P (insn))
224 cfg_changed |= reload_cse_simplify (insn, testreg);
226 cselib_process_insn (insn);
229 /* Clean up. */
230 end_alias_analysis ();
231 cselib_finish ();
232 if (cfg_changed)
233 cleanup_cfg (0);
236 /* Try to simplify a single SET instruction. SET is the set pattern.
237 INSN is the instruction it came from.
238 This function only handles one case: if we set a register to a value
239 which is not a register, we try to find that value in some other register
240 and change the set into a register copy. */
242 static int
243 reload_cse_simplify_set (rtx set, rtx_insn *insn)
245 int did_change = 0;
246 int dreg;
247 rtx src;
248 reg_class_t dclass;
249 int old_cost;
250 cselib_val *val;
251 struct elt_loc_list *l;
252 #ifdef LOAD_EXTEND_OP
253 enum rtx_code extend_op = UNKNOWN;
254 #endif
255 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
257 dreg = true_regnum (SET_DEST (set));
258 if (dreg < 0)
259 return 0;
261 src = SET_SRC (set);
262 if (side_effects_p (src) || true_regnum (src) >= 0)
263 return 0;
265 dclass = REGNO_REG_CLASS (dreg);
267 #ifdef LOAD_EXTEND_OP
268 /* When replacing a memory with a register, we need to honor assumptions
269 that combine made wrt the contents of sign bits. We'll do this by
270 generating an extend instruction instead of a reg->reg copy. Thus
271 the destination must be a register that we can widen. */
272 if (MEM_P (src)
273 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
274 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
275 && !REG_P (SET_DEST (set)))
276 return 0;
277 #endif
279 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
280 if (! val)
281 return 0;
283 /* If memory loads are cheaper than register copies, don't change them. */
284 if (MEM_P (src))
285 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
286 else if (REG_P (src))
287 old_cost = register_move_cost (GET_MODE (src),
288 REGNO_REG_CLASS (REGNO (src)), dclass);
289 else
290 old_cost = set_src_cost (src, speed);
292 for (l = val->locs; l; l = l->next)
294 rtx this_rtx = l->loc;
295 int this_cost;
297 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
299 #ifdef LOAD_EXTEND_OP
300 if (extend_op != UNKNOWN)
302 wide_int result;
304 if (!CONST_SCALAR_INT_P (this_rtx))
305 continue;
307 switch (extend_op)
309 case ZERO_EXTEND:
310 result = wide_int::from (std::make_pair (this_rtx,
311 GET_MODE (src)),
312 BITS_PER_WORD, UNSIGNED);
313 break;
314 case SIGN_EXTEND:
315 result = wide_int::from (std::make_pair (this_rtx,
316 GET_MODE (src)),
317 BITS_PER_WORD, SIGNED);
318 break;
319 default:
320 gcc_unreachable ();
322 this_rtx = immed_wide_int_const (result, word_mode);
324 #endif
325 this_cost = set_src_cost (this_rtx, speed);
327 else if (REG_P (this_rtx))
329 #ifdef LOAD_EXTEND_OP
330 if (extend_op != UNKNOWN)
332 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
333 this_cost = set_src_cost (this_rtx, speed);
335 else
336 #endif
337 this_cost = register_move_cost (GET_MODE (this_rtx),
338 REGNO_REG_CLASS (REGNO (this_rtx)),
339 dclass);
341 else
342 continue;
344 /* If equal costs, prefer registers over anything else. That
345 tends to lead to smaller instructions on some machines. */
346 if (this_cost < old_cost
347 || (this_cost == old_cost
348 && REG_P (this_rtx)
349 && !REG_P (SET_SRC (set))))
351 #ifdef LOAD_EXTEND_OP
352 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
353 && extend_op != UNKNOWN
354 #ifdef CANNOT_CHANGE_MODE_CLASS
355 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
356 word_mode,
357 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
358 #endif
361 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
362 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
363 validate_change (insn, &SET_DEST (set), wide_dest, 1);
365 #endif
367 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
368 old_cost = this_cost, did_change = 1;
372 return did_change;
375 /* Try to replace operands in INSN with equivalent values that are already
376 in registers. This can be viewed as optional reloading.
378 For each non-register operand in the insn, see if any hard regs are
379 known to be equivalent to that operand. Record the alternatives which
380 can accept these hard registers. Among all alternatives, select the
381 ones which are better or equal to the one currently matching, where
382 "better" is in terms of '?' and '!' constraints. Among the remaining
383 alternatives, select the one which replaces most operands with
384 hard registers. */
386 static int
387 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
389 int i, j;
391 /* For each operand, all registers that are equivalent to it. */
392 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
394 const char *constraints[MAX_RECOG_OPERANDS];
396 /* Vector recording how bad an alternative is. */
397 int *alternative_reject;
398 /* Vector recording how many registers can be introduced by choosing
399 this alternative. */
400 int *alternative_nregs;
401 /* Array of vectors recording, for each operand and each alternative,
402 which hard register to substitute, or -1 if the operand should be
403 left as it is. */
404 int *op_alt_regno[MAX_RECOG_OPERANDS];
405 /* Array of alternatives, sorted in order of decreasing desirability. */
406 int *alternative_order;
408 extract_constrain_insn (insn);
410 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
411 return 0;
413 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
414 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
415 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
416 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
417 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
419 /* For each operand, find out which regs are equivalent. */
420 for (i = 0; i < recog_data.n_operands; i++)
422 cselib_val *v;
423 struct elt_loc_list *l;
424 rtx op;
426 CLEAR_HARD_REG_SET (equiv_regs[i]);
428 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
429 right, so avoid the problem here. Likewise if we have a constant
430 and the insn pattern doesn't tell us the mode we need. */
431 if (LABEL_P (recog_data.operand[i])
432 || (CONSTANT_P (recog_data.operand[i])
433 && recog_data.operand_mode[i] == VOIDmode))
434 continue;
436 op = recog_data.operand[i];
437 #ifdef LOAD_EXTEND_OP
438 if (MEM_P (op)
439 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
440 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
442 rtx set = single_set (insn);
444 /* We might have multiple sets, some of which do implicit
445 extension. Punt on this for now. */
446 if (! set)
447 continue;
448 /* If the destination is also a MEM or a STRICT_LOW_PART, no
449 extension applies.
450 Also, if there is an explicit extension, we don't have to
451 worry about an implicit one. */
452 else if (MEM_P (SET_DEST (set))
453 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
454 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
455 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
456 ; /* Continue ordinary processing. */
457 #ifdef CANNOT_CHANGE_MODE_CLASS
458 /* If the register cannot change mode to word_mode, it follows that
459 it cannot have been used in word_mode. */
460 else if (REG_P (SET_DEST (set))
461 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
462 word_mode,
463 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
464 ; /* Continue ordinary processing. */
465 #endif
466 /* If this is a straight load, make the extension explicit. */
467 else if (REG_P (SET_DEST (set))
468 && recog_data.n_operands == 2
469 && SET_SRC (set) == op
470 && SET_DEST (set) == recog_data.operand[1-i])
472 validate_change (insn, recog_data.operand_loc[i],
473 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
474 word_mode, op),
476 validate_change (insn, recog_data.operand_loc[1-i],
477 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
479 if (! apply_change_group ())
480 return 0;
481 return reload_cse_simplify_operands (insn, testreg);
483 else
484 /* ??? There might be arithmetic operations with memory that are
485 safe to optimize, but is it worth the trouble? */
486 continue;
488 #endif /* LOAD_EXTEND_OP */
489 if (side_effects_p (op))
490 continue;
491 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
492 if (! v)
493 continue;
495 for (l = v->locs; l; l = l->next)
496 if (REG_P (l->loc))
497 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
500 alternative_mask preferred = get_preferred_alternatives (insn);
501 for (i = 0; i < recog_data.n_operands; i++)
503 enum machine_mode mode;
504 int regno;
505 const char *p;
507 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
508 for (j = 0; j < recog_data.n_alternatives; j++)
509 op_alt_regno[i][j] = -1;
511 p = constraints[i] = recog_data.constraints[i];
512 mode = recog_data.operand_mode[i];
514 /* Add the reject values for each alternative given by the constraints
515 for this operand. */
516 j = 0;
517 while (*p != '\0')
519 char c = *p++;
520 if (c == ',')
521 j++;
522 else if (c == '?')
523 alternative_reject[j] += 3;
524 else if (c == '!')
525 alternative_reject[j] += 300;
528 /* We won't change operands which are already registers. We
529 also don't want to modify output operands. */
530 regno = true_regnum (recog_data.operand[i]);
531 if (regno >= 0
532 || constraints[i][0] == '='
533 || constraints[i][0] == '+')
534 continue;
536 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
538 enum reg_class rclass = NO_REGS;
540 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
541 continue;
543 SET_REGNO_RAW (testreg, regno);
544 PUT_MODE (testreg, mode);
546 /* We found a register equal to this operand. Now look for all
547 alternatives that can accept this register and have not been
548 assigned a register they can use yet. */
549 j = 0;
550 p = constraints[i];
551 for (;;)
553 char c = *p;
555 switch (c)
557 case 'g':
558 rclass = reg_class_subunion[rclass][GENERAL_REGS];
559 break;
561 default:
562 rclass
563 = (reg_class_subunion
564 [rclass]
565 [reg_class_for_constraint (lookup_constraint (p))]);
566 break;
568 case ',': case '\0':
569 /* See if REGNO fits this alternative, and set it up as the
570 replacement register if we don't have one for this
571 alternative yet and the operand being replaced is not
572 a cheap CONST_INT. */
573 if (op_alt_regno[i][j] == -1
574 && TEST_BIT (preferred, j)
575 && reg_fits_class_p (testreg, rclass, 0, mode)
576 && (!CONST_INT_P (recog_data.operand[i])
577 || (set_src_cost (recog_data.operand[i],
578 optimize_bb_for_speed_p
579 (BLOCK_FOR_INSN (insn)))
580 > set_src_cost (testreg,
581 optimize_bb_for_speed_p
582 (BLOCK_FOR_INSN (insn))))))
584 alternative_nregs[j]++;
585 op_alt_regno[i][j] = regno;
587 j++;
588 rclass = NO_REGS;
589 break;
591 p += CONSTRAINT_LEN (c, p);
593 if (c == '\0')
594 break;
599 /* Record all alternatives which are better or equal to the currently
600 matching one in the alternative_order array. */
601 for (i = j = 0; i < recog_data.n_alternatives; i++)
602 if (alternative_reject[i] <= alternative_reject[which_alternative])
603 alternative_order[j++] = i;
604 recog_data.n_alternatives = j;
606 /* Sort it. Given a small number of alternatives, a dumb algorithm
607 won't hurt too much. */
608 for (i = 0; i < recog_data.n_alternatives - 1; i++)
610 int best = i;
611 int best_reject = alternative_reject[alternative_order[i]];
612 int best_nregs = alternative_nregs[alternative_order[i]];
613 int tmp;
615 for (j = i + 1; j < recog_data.n_alternatives; j++)
617 int this_reject = alternative_reject[alternative_order[j]];
618 int this_nregs = alternative_nregs[alternative_order[j]];
620 if (this_reject < best_reject
621 || (this_reject == best_reject && this_nregs > best_nregs))
623 best = j;
624 best_reject = this_reject;
625 best_nregs = this_nregs;
629 tmp = alternative_order[best];
630 alternative_order[best] = alternative_order[i];
631 alternative_order[i] = tmp;
634 /* Substitute the operands as determined by op_alt_regno for the best
635 alternative. */
636 j = alternative_order[0];
638 for (i = 0; i < recog_data.n_operands; i++)
640 enum machine_mode mode = recog_data.operand_mode[i];
641 if (op_alt_regno[i][j] == -1)
642 continue;
644 validate_change (insn, recog_data.operand_loc[i],
645 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
648 for (i = recog_data.n_dups - 1; i >= 0; i--)
650 int op = recog_data.dup_num[i];
651 enum machine_mode mode = recog_data.operand_mode[op];
653 if (op_alt_regno[op][j] == -1)
654 continue;
656 validate_change (insn, recog_data.dup_loc[i],
657 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
660 return apply_change_group ();
663 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
664 addressing now.
665 This code might also be useful when reload gave up on reg+reg addressing
666 because of clashes between the return register and INDEX_REG_CLASS. */
668 /* The maximum number of uses of a register we can keep track of to
669 replace them with reg+reg addressing. */
670 #define RELOAD_COMBINE_MAX_USES 16
672 /* Describes a recorded use of a register. */
673 struct reg_use
675 /* The insn where a register has been used. */
676 rtx_insn *insn;
677 /* Points to the memory reference enclosing the use, if any, NULL_RTX
678 otherwise. */
679 rtx containing_mem;
680 /* Location of the register within INSN. */
681 rtx *usep;
682 /* The reverse uid of the insn. */
683 int ruid;
686 /* If the register is used in some unknown fashion, USE_INDEX is negative.
687 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
688 indicates where it is first set or clobbered.
689 Otherwise, USE_INDEX is the index of the last encountered use of the
690 register (which is first among these we have seen since we scan backwards).
691 USE_RUID indicates the first encountered, i.e. last, of these uses.
692 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
693 with a constant offset; OFFSET contains this constant in that case.
694 STORE_RUID is always meaningful if we only want to use a value in a
695 register in a different place: it denotes the next insn in the insn
696 stream (i.e. the last encountered) that sets or clobbers the register.
697 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
698 static struct
700 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
701 rtx offset;
702 int use_index;
703 int store_ruid;
704 int real_store_ruid;
705 int use_ruid;
706 bool all_offsets_match;
707 } reg_state[FIRST_PSEUDO_REGISTER];
709 /* Reverse linear uid. This is increased in reload_combine while scanning
710 the instructions from last to first. It is used to set last_label_ruid
711 and the store_ruid / use_ruid fields in reg_state. */
712 static int reload_combine_ruid;
714 /* The RUID of the last label we encountered in reload_combine. */
715 static int last_label_ruid;
717 /* The RUID of the last jump we encountered in reload_combine. */
718 static int last_jump_ruid;
720 /* The register numbers of the first and last index register. A value of
721 -1 in LAST_INDEX_REG indicates that we've previously computed these
722 values and found no suitable index registers. */
723 static int first_index_reg = -1;
724 static int last_index_reg;
726 #define LABEL_LIVE(LABEL) \
727 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
729 /* Subroutine of reload_combine_split_ruids, called to fix up a single
730 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
732 static inline void
733 reload_combine_split_one_ruid (int *pruid, int split_ruid)
735 if (*pruid > split_ruid)
736 (*pruid)++;
739 /* Called when we insert a new insn in a position we've already passed in
740 the scan. Examine all our state, increasing all ruids that are higher
741 than SPLIT_RUID by one in order to make room for a new insn. */
743 static void
744 reload_combine_split_ruids (int split_ruid)
746 unsigned i;
748 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
749 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
750 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
752 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
754 int j, idx = reg_state[i].use_index;
755 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
756 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
757 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
758 split_ruid);
759 if (idx < 0)
760 continue;
761 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
763 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
764 split_ruid);
769 /* Called when we are about to rescan a previously encountered insn with
770 reload_combine_note_use after modifying some part of it. This clears all
771 information about uses in that particular insn. */
773 static void
774 reload_combine_purge_insn_uses (rtx_insn *insn)
776 unsigned i;
778 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
780 int j, k, idx = reg_state[i].use_index;
781 if (idx < 0)
782 continue;
783 j = k = RELOAD_COMBINE_MAX_USES;
784 while (j-- > idx)
786 if (reg_state[i].reg_use[j].insn != insn)
788 k--;
789 if (k != j)
790 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
793 reg_state[i].use_index = k;
797 /* Called when we need to forget about all uses of REGNO after an insn
798 which is identified by RUID. */
800 static void
801 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
803 int j, k, idx = reg_state[regno].use_index;
804 if (idx < 0)
805 return;
806 j = k = RELOAD_COMBINE_MAX_USES;
807 while (j-- > idx)
809 if (reg_state[regno].reg_use[j].ruid >= ruid)
811 k--;
812 if (k != j)
813 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
816 reg_state[regno].use_index = k;
819 /* Find the use of REGNO with the ruid that is highest among those
820 lower than RUID_LIMIT, and return it if it is the only use of this
821 reg in the insn. Return NULL otherwise. */
823 static struct reg_use *
824 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
826 int i, best_ruid = 0;
827 int use_idx = reg_state[regno].use_index;
828 struct reg_use *retval;
830 if (use_idx < 0)
831 return NULL;
832 retval = NULL;
833 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
835 struct reg_use *use = reg_state[regno].reg_use + i;
836 int this_ruid = use->ruid;
837 if (this_ruid >= ruid_limit)
838 continue;
839 if (this_ruid > best_ruid)
841 best_ruid = this_ruid;
842 retval = use;
844 else if (this_ruid == best_ruid)
845 retval = NULL;
847 if (last_label_ruid >= best_ruid)
848 return NULL;
849 return retval;
852 /* After we've moved an add insn, fix up any debug insns that occur
853 between the old location of the add and the new location. REG is
854 the destination register of the add insn; REPLACEMENT is the
855 SET_SRC of the add. FROM and TO specify the range in which we
856 should make this change on debug insns. */
858 static void
859 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
861 rtx_insn *insn;
862 for (insn = from; insn != to; insn = NEXT_INSN (insn))
864 rtx t;
866 if (!DEBUG_INSN_P (insn))
867 continue;
869 t = INSN_VAR_LOCATION_LOC (insn);
870 t = simplify_replace_rtx (t, reg, replacement);
871 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
875 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
876 with SRC in the insn described by USE, taking costs into account. Return
877 true if we made the replacement. */
879 static bool
880 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
882 rtx_insn *use_insn = use->insn;
883 rtx mem = use->containing_mem;
884 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
886 if (mem != NULL_RTX)
888 addr_space_t as = MEM_ADDR_SPACE (mem);
889 rtx oldaddr = XEXP (mem, 0);
890 rtx newaddr = NULL_RTX;
891 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
892 int new_cost;
894 newaddr = simplify_replace_rtx (oldaddr, reg, src);
895 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
897 XEXP (mem, 0) = newaddr;
898 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
899 XEXP (mem, 0) = oldaddr;
900 if (new_cost <= old_cost
901 && validate_change (use_insn,
902 &XEXP (mem, 0), newaddr, 0))
903 return true;
906 else
908 rtx new_set = single_set (use_insn);
909 if (new_set
910 && REG_P (SET_DEST (new_set))
911 && GET_CODE (SET_SRC (new_set)) == PLUS
912 && REG_P (XEXP (SET_SRC (new_set), 0))
913 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
915 rtx new_src;
916 int old_cost = set_src_cost (SET_SRC (new_set), speed);
918 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
919 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
921 if (set_src_cost (new_src, speed) <= old_cost
922 && validate_change (use_insn, &SET_SRC (new_set),
923 new_src, 0))
924 return true;
927 return false;
930 /* Called by reload_combine when scanning INSN. This function tries to detect
931 patterns where a constant is added to a register, and the result is used
932 in an address.
933 Return true if no further processing is needed on INSN; false if it wasn't
934 recognized and should be handled normally. */
936 static bool
937 reload_combine_recognize_const_pattern (rtx_insn *insn)
939 int from_ruid = reload_combine_ruid;
940 rtx set, pat, reg, src, addreg;
941 unsigned int regno;
942 struct reg_use *use;
943 bool must_move_add;
944 rtx_insn *add_moved_after_insn = NULL;
945 int add_moved_after_ruid = 0;
946 int clobbered_regno = -1;
948 set = single_set (insn);
949 if (set == NULL_RTX)
950 return false;
952 reg = SET_DEST (set);
953 src = SET_SRC (set);
954 if (!REG_P (reg)
955 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
956 || GET_MODE (reg) != Pmode
957 || reg == stack_pointer_rtx)
958 return false;
960 regno = REGNO (reg);
962 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
963 uses of REG1 inside an address, or inside another add insn. If
964 possible and profitable, merge the addition into subsequent
965 uses. */
966 if (GET_CODE (src) != PLUS
967 || !REG_P (XEXP (src, 0))
968 || !CONSTANT_P (XEXP (src, 1)))
969 return false;
971 addreg = XEXP (src, 0);
972 must_move_add = rtx_equal_p (reg, addreg);
974 pat = PATTERN (insn);
975 if (must_move_add && set != pat)
977 /* We have to be careful when moving the add; apart from the
978 single_set there may also be clobbers. Recognize one special
979 case, that of one clobber alongside the set (likely a clobber
980 of the CC register). */
981 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
982 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
983 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
984 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
985 return false;
986 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
991 use = reload_combine_closest_single_use (regno, from_ruid);
993 if (use)
994 /* Start the search for the next use from here. */
995 from_ruid = use->ruid;
997 if (use && GET_MODE (*use->usep) == Pmode)
999 bool delete_add = false;
1000 rtx_insn *use_insn = use->insn;
1001 int use_ruid = use->ruid;
1003 /* Avoid moving the add insn past a jump. */
1004 if (must_move_add && use_ruid <= last_jump_ruid)
1005 break;
1007 /* If the add clobbers another hard reg in parallel, don't move
1008 it past a real set of this hard reg. */
1009 if (must_move_add && clobbered_regno >= 0
1010 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1011 break;
1013 #ifdef HAVE_cc0
1014 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1015 if (must_move_add && sets_cc0_p (PATTERN (use_insn)))
1016 break;
1017 #endif
1019 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1020 /* Avoid moving a use of ADDREG past a point where it is stored. */
1021 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1022 break;
1024 /* We also must not move the addition past an insn that sets
1025 the same register, unless we can combine two add insns. */
1026 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1028 if (use->containing_mem == NULL_RTX)
1029 delete_add = true;
1030 else
1031 break;
1034 if (try_replace_in_use (use, reg, src))
1036 reload_combine_purge_insn_uses (use_insn);
1037 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1038 use_ruid, NULL_RTX);
1040 if (delete_add)
1042 fixup_debug_insns (reg, src, insn, use_insn);
1043 delete_insn (insn);
1044 return true;
1046 if (must_move_add)
1048 add_moved_after_insn = use_insn;
1049 add_moved_after_ruid = use_ruid;
1051 continue;
1054 /* If we get here, we couldn't handle this use. */
1055 if (must_move_add)
1056 break;
1058 while (use);
1060 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1061 /* Process the add normally. */
1062 return false;
1064 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1066 reorder_insns (insn, insn, add_moved_after_insn);
1067 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1068 reload_combine_split_ruids (add_moved_after_ruid - 1);
1069 reload_combine_note_use (&PATTERN (insn), insn,
1070 add_moved_after_ruid, NULL_RTX);
1071 reg_state[regno].store_ruid = add_moved_after_ruid;
1073 return true;
1076 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1077 can handle and improve. Return true if no further processing is needed on
1078 INSN; false if it wasn't recognized and should be handled normally. */
1080 static bool
1081 reload_combine_recognize_pattern (rtx_insn *insn)
1083 rtx set, reg, src;
1084 unsigned int regno;
1086 set = single_set (insn);
1087 if (set == NULL_RTX)
1088 return false;
1090 reg = SET_DEST (set);
1091 src = SET_SRC (set);
1092 if (!REG_P (reg)
1093 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1094 return false;
1096 regno = REGNO (reg);
1098 /* Look for (set (REGX) (CONST_INT))
1099 (set (REGX) (PLUS (REGX) (REGY)))
1101 ... (MEM (REGX)) ...
1102 and convert it to
1103 (set (REGZ) (CONST_INT))
1105 ... (MEM (PLUS (REGZ) (REGY)))... .
1107 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1108 and that we know all uses of REGX before it dies.
1109 Also, explicitly check that REGX != REGY; our life information
1110 does not yet show whether REGY changes in this insn. */
1112 if (GET_CODE (src) == PLUS
1113 && reg_state[regno].all_offsets_match
1114 && last_index_reg != -1
1115 && REG_P (XEXP (src, 1))
1116 && rtx_equal_p (XEXP (src, 0), reg)
1117 && !rtx_equal_p (XEXP (src, 1), reg)
1118 && reg_state[regno].use_index >= 0
1119 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1120 && last_label_ruid < reg_state[regno].use_ruid)
1122 rtx base = XEXP (src, 1);
1123 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1124 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1125 rtx index_reg = NULL_RTX;
1126 rtx reg_sum = NULL_RTX;
1127 int i;
1129 /* Now we need to set INDEX_REG to an index register (denoted as
1130 REGZ in the illustration above) and REG_SUM to the expression
1131 register+register that we want to use to substitute uses of REG
1132 (typically in MEMs) with. First check REG and BASE for being
1133 index registers; we can use them even if they are not dead. */
1134 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1135 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1136 REGNO (base)))
1138 index_reg = reg;
1139 reg_sum = src;
1141 else
1143 /* Otherwise, look for a free index register. Since we have
1144 checked above that neither REG nor BASE are index registers,
1145 if we find anything at all, it will be different from these
1146 two registers. */
1147 for (i = first_index_reg; i <= last_index_reg; i++)
1149 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1150 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1151 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1152 && (call_used_regs[i] || df_regs_ever_live_p (i))
1153 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1154 && !fixed_regs[i] && !global_regs[i]
1155 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1156 && targetm.hard_regno_scratch_ok (i))
1158 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1159 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1160 break;
1165 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1166 (REGY), i.e. BASE, is not clobbered before the last use we'll
1167 create. */
1168 if (reg_sum
1169 && prev_set
1170 && CONST_INT_P (SET_SRC (prev_set))
1171 && rtx_equal_p (SET_DEST (prev_set), reg)
1172 && (reg_state[REGNO (base)].store_ruid
1173 <= reg_state[regno].use_ruid))
1175 /* Change destination register and, if necessary, the constant
1176 value in PREV, the constant loading instruction. */
1177 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1178 if (reg_state[regno].offset != const0_rtx)
1179 validate_change (prev,
1180 &SET_SRC (prev_set),
1181 GEN_INT (INTVAL (SET_SRC (prev_set))
1182 + INTVAL (reg_state[regno].offset)),
1185 /* Now for every use of REG that we have recorded, replace REG
1186 with REG_SUM. */
1187 for (i = reg_state[regno].use_index;
1188 i < RELOAD_COMBINE_MAX_USES; i++)
1189 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1190 reg_state[regno].reg_use[i].usep,
1191 /* Each change must have its own
1192 replacement. */
1193 reg_sum, 1);
1195 if (apply_change_group ())
1197 struct reg_use *lowest_ruid = NULL;
1199 /* For every new use of REG_SUM, we have to record the use
1200 of BASE therein, i.e. operand 1. */
1201 for (i = reg_state[regno].use_index;
1202 i < RELOAD_COMBINE_MAX_USES; i++)
1204 struct reg_use *use = reg_state[regno].reg_use + i;
1205 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1206 use->ruid, use->containing_mem);
1207 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1208 lowest_ruid = use;
1211 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1213 /* Delete the reg-reg addition. */
1214 delete_insn (insn);
1216 if (reg_state[regno].offset != const0_rtx)
1217 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1218 are now invalid. */
1219 remove_reg_equal_equiv_notes (prev);
1221 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1222 return true;
1226 return false;
1229 static void
1230 reload_combine (void)
1232 rtx_insn *insn, *prev;
1233 basic_block bb;
1234 unsigned int r;
1235 int min_labelno, n_labels;
1236 HARD_REG_SET ever_live_at_start, *label_live;
1238 /* To avoid wasting too much time later searching for an index register,
1239 determine the minimum and maximum index register numbers. */
1240 if (INDEX_REG_CLASS == NO_REGS)
1241 last_index_reg = -1;
1242 else if (first_index_reg == -1 && last_index_reg == 0)
1244 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1245 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1247 if (first_index_reg == -1)
1248 first_index_reg = r;
1250 last_index_reg = r;
1253 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1254 to -1 so we'll know to quit early the next time we get here. */
1255 if (first_index_reg == -1)
1257 last_index_reg = -1;
1258 return;
1262 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1263 information is a bit fuzzy immediately after reload, but it's
1264 still good enough to determine which registers are live at a jump
1265 destination. */
1266 min_labelno = get_first_label_num ();
1267 n_labels = max_label_num () - min_labelno;
1268 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1269 CLEAR_HARD_REG_SET (ever_live_at_start);
1271 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1273 insn = BB_HEAD (bb);
1274 if (LABEL_P (insn))
1276 HARD_REG_SET live;
1277 bitmap live_in = df_get_live_in (bb);
1279 REG_SET_TO_HARD_REG_SET (live, live_in);
1280 compute_use_by_pseudos (&live, live_in);
1281 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1282 IOR_HARD_REG_SET (ever_live_at_start, live);
1286 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1287 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1288 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1290 reg_state[r].store_ruid = 0;
1291 reg_state[r].real_store_ruid = 0;
1292 if (fixed_regs[r])
1293 reg_state[r].use_index = -1;
1294 else
1295 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1298 for (insn = get_last_insn (); insn; insn = prev)
1300 bool control_flow_insn;
1301 rtx note;
1303 prev = PREV_INSN (insn);
1305 /* We cannot do our optimization across labels. Invalidating all the use
1306 information we have would be costly, so we just note where the label
1307 is and then later disable any optimization that would cross it. */
1308 if (LABEL_P (insn))
1309 last_label_ruid = reload_combine_ruid;
1310 else if (BARRIER_P (insn))
1312 /* Crossing a barrier resets all the use information. */
1313 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1314 if (! fixed_regs[r])
1315 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1317 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1318 /* Optimizations across insns being marked as volatile must be
1319 prevented. All the usage information is invalidated
1320 here. */
1321 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1322 if (! fixed_regs[r]
1323 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1324 reg_state[r].use_index = -1;
1326 if (! NONDEBUG_INSN_P (insn))
1327 continue;
1329 reload_combine_ruid++;
1331 control_flow_insn = control_flow_insn_p (insn);
1332 if (control_flow_insn)
1333 last_jump_ruid = reload_combine_ruid;
1335 if (reload_combine_recognize_const_pattern (insn)
1336 || reload_combine_recognize_pattern (insn))
1337 continue;
1339 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1341 if (CALL_P (insn))
1343 rtx link;
1345 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1346 if (call_used_regs[r])
1348 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1349 reg_state[r].store_ruid = reload_combine_ruid;
1352 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1353 link = XEXP (link, 1))
1355 rtx setuse = XEXP (link, 0);
1356 rtx usage_rtx = XEXP (setuse, 0);
1357 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1358 && REG_P (usage_rtx))
1360 unsigned int i;
1361 unsigned int start_reg = REGNO (usage_rtx);
1362 unsigned int num_regs
1363 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1364 unsigned int end_reg = start_reg + num_regs - 1;
1365 for (i = start_reg; i <= end_reg; i++)
1366 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1368 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1369 reg_state[i].store_ruid = reload_combine_ruid;
1371 else
1372 reg_state[i].use_index = -1;
1377 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1379 /* Non-spill registers might be used at the call destination in
1380 some unknown fashion, so we have to mark the unknown use. */
1381 HARD_REG_SET *live;
1383 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1384 && JUMP_LABEL (insn))
1386 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1387 live = NULL;
1388 else
1389 live = &LABEL_LIVE (JUMP_LABEL (insn));
1391 else
1392 live = &ever_live_at_start;
1394 if (live)
1395 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1396 if (TEST_HARD_REG_BIT (*live, r))
1397 reg_state[r].use_index = -1;
1400 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1401 NULL_RTX);
1403 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1405 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1407 int regno = REGNO (XEXP (note, 0));
1408 reg_state[regno].store_ruid = reload_combine_ruid;
1409 reg_state[regno].real_store_ruid = reload_combine_ruid;
1410 reg_state[regno].use_index = -1;
1415 free (label_live);
1418 /* Check if DST is a register or a subreg of a register; if it is,
1419 update store_ruid, real_store_ruid and use_index in the reg_state
1420 structure accordingly. Called via note_stores from reload_combine. */
1422 static void
1423 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1425 int regno = 0;
1426 int i;
1427 enum machine_mode mode = GET_MODE (dst);
1429 if (GET_CODE (dst) == SUBREG)
1431 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1432 GET_MODE (SUBREG_REG (dst)),
1433 SUBREG_BYTE (dst),
1434 GET_MODE (dst));
1435 dst = SUBREG_REG (dst);
1438 /* Some targets do argument pushes without adding REG_INC notes. */
1440 if (MEM_P (dst))
1442 dst = XEXP (dst, 0);
1443 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1444 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1445 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1447 regno = REGNO (XEXP (dst, 0));
1448 mode = GET_MODE (XEXP (dst, 0));
1449 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1451 /* We could probably do better, but for now mark the register
1452 as used in an unknown fashion and set/clobbered at this
1453 insn. */
1454 reg_state[i].use_index = -1;
1455 reg_state[i].store_ruid = reload_combine_ruid;
1456 reg_state[i].real_store_ruid = reload_combine_ruid;
1459 else
1460 return;
1463 if (!REG_P (dst))
1464 return;
1465 regno += REGNO (dst);
1467 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1468 careful with registers / register parts that are not full words.
1469 Similarly for ZERO_EXTRACT. */
1470 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1471 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1473 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1475 reg_state[i].use_index = -1;
1476 reg_state[i].store_ruid = reload_combine_ruid;
1477 reg_state[i].real_store_ruid = reload_combine_ruid;
1480 else
1482 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1484 reg_state[i].store_ruid = reload_combine_ruid;
1485 if (GET_CODE (set) == SET)
1486 reg_state[i].real_store_ruid = reload_combine_ruid;
1487 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1492 /* XP points to a piece of rtl that has to be checked for any uses of
1493 registers.
1494 *XP is the pattern of INSN, or a part of it.
1495 Called from reload_combine, and recursively by itself. */
1496 static void
1497 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1499 rtx x = *xp;
1500 enum rtx_code code = x->code;
1501 const char *fmt;
1502 int i, j;
1503 rtx offset = const0_rtx; /* For the REG case below. */
1505 switch (code)
1507 case SET:
1508 if (REG_P (SET_DEST (x)))
1510 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1511 return;
1513 break;
1515 case USE:
1516 /* If this is the USE of a return value, we can't change it. */
1517 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1519 /* Mark the return register as used in an unknown fashion. */
1520 rtx reg = XEXP (x, 0);
1521 int regno = REGNO (reg);
1522 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1524 while (--nregs >= 0)
1525 reg_state[regno + nregs].use_index = -1;
1526 return;
1528 break;
1530 case CLOBBER:
1531 if (REG_P (SET_DEST (x)))
1533 /* No spurious CLOBBERs of pseudo registers may remain. */
1534 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1535 return;
1537 break;
1539 case PLUS:
1540 /* We are interested in (plus (reg) (const_int)) . */
1541 if (!REG_P (XEXP (x, 0))
1542 || !CONST_INT_P (XEXP (x, 1)))
1543 break;
1544 offset = XEXP (x, 1);
1545 x = XEXP (x, 0);
1546 /* Fall through. */
1547 case REG:
1549 int regno = REGNO (x);
1550 int use_index;
1551 int nregs;
1553 /* No spurious USEs of pseudo registers may remain. */
1554 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1556 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1558 /* We can't substitute into multi-hard-reg uses. */
1559 if (nregs > 1)
1561 while (--nregs >= 0)
1562 reg_state[regno + nregs].use_index = -1;
1563 return;
1566 /* We may be called to update uses in previously seen insns.
1567 Don't add uses beyond the last store we saw. */
1568 if (ruid < reg_state[regno].store_ruid)
1569 return;
1571 /* If this register is already used in some unknown fashion, we
1572 can't do anything.
1573 If we decrement the index from zero to -1, we can't store more
1574 uses, so this register becomes used in an unknown fashion. */
1575 use_index = --reg_state[regno].use_index;
1576 if (use_index < 0)
1577 return;
1579 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1581 /* This is the first use of this register we have seen since we
1582 marked it as dead. */
1583 reg_state[regno].offset = offset;
1584 reg_state[regno].all_offsets_match = true;
1585 reg_state[regno].use_ruid = ruid;
1587 else
1589 if (reg_state[regno].use_ruid > ruid)
1590 reg_state[regno].use_ruid = ruid;
1592 if (! rtx_equal_p (offset, reg_state[regno].offset))
1593 reg_state[regno].all_offsets_match = false;
1596 reg_state[regno].reg_use[use_index].insn = insn;
1597 reg_state[regno].reg_use[use_index].ruid = ruid;
1598 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1599 reg_state[regno].reg_use[use_index].usep = xp;
1600 return;
1603 case MEM:
1604 containing_mem = x;
1605 break;
1607 default:
1608 break;
1611 /* Recursively process the components of X. */
1612 fmt = GET_RTX_FORMAT (code);
1613 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1615 if (fmt[i] == 'e')
1616 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1617 else if (fmt[i] == 'E')
1619 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1620 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1621 containing_mem);
1626 /* See if we can reduce the cost of a constant by replacing a move
1627 with an add. We track situations in which a register is set to a
1628 constant or to a register plus a constant. */
1629 /* We cannot do our optimization across labels. Invalidating all the
1630 information about register contents we have would be costly, so we
1631 use move2add_last_label_luid to note where the label is and then
1632 later disable any optimization that would cross it.
1633 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1634 are only valid if reg_set_luid[n] is greater than
1635 move2add_last_label_luid.
1636 For a set that established a new (potential) base register with
1637 non-constant value, we use move2add_luid from the place where the
1638 setting insn is encountered; registers based off that base then
1639 get the same reg_set_luid. Constants all get
1640 move2add_last_label_luid + 1 as their reg_set_luid. */
1641 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1643 /* If reg_base_reg[n] is negative, register n has been set to
1644 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1645 If reg_base_reg[n] is non-negative, register n has been set to the
1646 sum of reg_offset[n] and the value of register reg_base_reg[n]
1647 before reg_set_luid[n], calculated in mode reg_mode[n] .
1648 For multi-hard-register registers, all but the first one are
1649 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1650 marks it as invalid. */
1651 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1652 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1653 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1654 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1656 /* move2add_luid is linearly increased while scanning the instructions
1657 from first to last. It is used to set reg_set_luid in
1658 reload_cse_move2add and move2add_note_store. */
1659 static int move2add_luid;
1661 /* move2add_last_label_luid is set whenever a label is found. Labels
1662 invalidate all previously collected reg_offset data. */
1663 static int move2add_last_label_luid;
1665 /* ??? We don't know how zero / sign extension is handled, hence we
1666 can't go from a narrower to a wider mode. */
1667 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1668 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1669 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1670 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1672 /* Record that REG is being set to a value with the mode of REG. */
1674 static void
1675 move2add_record_mode (rtx reg)
1677 int regno, nregs;
1678 enum machine_mode mode = GET_MODE (reg);
1680 if (GET_CODE (reg) == SUBREG)
1682 regno = subreg_regno (reg);
1683 nregs = subreg_nregs (reg);
1685 else if (REG_P (reg))
1687 regno = REGNO (reg);
1688 nregs = hard_regno_nregs[regno][mode];
1690 else
1691 gcc_unreachable ();
1692 for (int i = nregs - 1; i > 0; i--)
1693 reg_mode[regno + i] = BLKmode;
1694 reg_mode[regno] = mode;
1697 /* Record that REG is being set to the sum of SYM and OFF. */
1699 static void
1700 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1702 int regno = REGNO (reg);
1704 move2add_record_mode (reg);
1705 reg_set_luid[regno] = move2add_luid;
1706 reg_base_reg[regno] = -1;
1707 reg_symbol_ref[regno] = sym;
1708 reg_offset[regno] = INTVAL (off);
1711 /* Check if REGNO contains a valid value in MODE. */
1713 static bool
1714 move2add_valid_value_p (int regno, enum machine_mode mode)
1716 if (reg_set_luid[regno] <= move2add_last_label_luid)
1717 return false;
1719 if (mode != reg_mode[regno])
1721 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1722 return false;
1723 /* The value loaded into regno in reg_mode[regno] is also valid in
1724 mode after truncation only if (REG:mode regno) is the lowpart of
1725 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1726 regno of the lowpart might be different. */
1727 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1728 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1729 if (s_off != 0)
1730 /* We could in principle adjust regno, check reg_mode[regno] to be
1731 BLKmode, and return s_off to the caller (vs. -1 for failure),
1732 but we currently have no callers that could make use of this
1733 information. */
1734 return false;
1737 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1738 if (reg_mode[regno + i] != BLKmode)
1739 return false;
1740 return true;
1743 /* This function is called with INSN that sets REG to (SYM + OFF),
1744 while REG is known to already have value (SYM + offset).
1745 This function tries to change INSN into an add instruction
1746 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1747 It also updates the information about REG's known value.
1748 Return true if we made a change. */
1750 static bool
1751 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1753 rtx pat = PATTERN (insn);
1754 rtx src = SET_SRC (pat);
1755 int regno = REGNO (reg);
1756 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1757 GET_MODE (reg));
1758 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1759 bool changed = false;
1761 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1762 use (set (reg) (reg)) instead.
1763 We don't delete this insn, nor do we convert it into a
1764 note, to avoid losing register notes or the return
1765 value flag. jump2 already knows how to get rid of
1766 no-op moves. */
1767 if (new_src == const0_rtx)
1769 /* If the constants are different, this is a
1770 truncation, that, if turned into (set (reg)
1771 (reg)), would be discarded. Maybe we should
1772 try a truncMN pattern? */
1773 if (INTVAL (off) == reg_offset [regno])
1774 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1776 else
1778 struct full_rtx_costs oldcst, newcst;
1779 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1781 get_full_set_rtx_cost (pat, &oldcst);
1782 SET_SRC (pat) = tem;
1783 get_full_set_rtx_cost (pat, &newcst);
1784 SET_SRC (pat) = src;
1786 if (costs_lt_p (&newcst, &oldcst, speed)
1787 && have_add2_insn (reg, new_src))
1788 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1789 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1791 enum machine_mode narrow_mode;
1792 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1793 narrow_mode != VOIDmode
1794 && narrow_mode != GET_MODE (reg);
1795 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1797 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1798 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1799 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1801 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1802 rtx narrow_src = gen_int_mode (INTVAL (off),
1803 narrow_mode);
1804 rtx new_set
1805 = gen_rtx_SET (VOIDmode,
1806 gen_rtx_STRICT_LOW_PART (VOIDmode,
1807 narrow_reg),
1808 narrow_src);
1809 get_full_set_rtx_cost (new_set, &newcst);
1810 if (costs_lt_p (&newcst, &oldcst, speed))
1812 changed = validate_change (insn, &PATTERN (insn),
1813 new_set, 0);
1814 if (changed)
1815 break;
1821 move2add_record_sym_value (reg, sym, off);
1822 return changed;
1826 /* This function is called with INSN that sets REG to (SYM + OFF),
1827 but REG doesn't have known value (SYM + offset). This function
1828 tries to find another register which is known to already have
1829 value (SYM + offset) and change INSN into an add instruction
1830 (set (REG) (plus (the found register) (OFF - offset))) if such
1831 a register is found. It also updates the information about
1832 REG's known value.
1833 Return true iff we made a change. */
1835 static bool
1836 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1838 rtx pat = PATTERN (insn);
1839 rtx src = SET_SRC (pat);
1840 int regno = REGNO (reg);
1841 int min_regno = 0;
1842 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1843 int i;
1844 bool changed = false;
1845 struct full_rtx_costs oldcst, newcst, mincst;
1846 rtx plus_expr;
1848 init_costs_to_max (&mincst);
1849 get_full_set_rtx_cost (pat, &oldcst);
1851 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1852 SET_SRC (pat) = plus_expr;
1854 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1855 if (move2add_valid_value_p (i, GET_MODE (reg))
1856 && reg_base_reg[i] < 0
1857 && reg_symbol_ref[i] != NULL_RTX
1858 && rtx_equal_p (sym, reg_symbol_ref[i]))
1860 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1861 GET_MODE (reg));
1862 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1863 use (set (reg) (reg)) instead.
1864 We don't delete this insn, nor do we convert it into a
1865 note, to avoid losing register notes or the return
1866 value flag. jump2 already knows how to get rid of
1867 no-op moves. */
1868 if (new_src == const0_rtx)
1870 init_costs_to_zero (&mincst);
1871 min_regno = i;
1872 break;
1874 else
1876 XEXP (plus_expr, 1) = new_src;
1877 get_full_set_rtx_cost (pat, &newcst);
1879 if (costs_lt_p (&newcst, &mincst, speed))
1881 mincst = newcst;
1882 min_regno = i;
1886 SET_SRC (pat) = src;
1888 if (costs_lt_p (&mincst, &oldcst, speed))
1890 rtx tem;
1892 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1893 if (i != min_regno)
1895 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1896 GET_MODE (reg));
1897 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1899 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1900 changed = true;
1902 reg_set_luid[regno] = move2add_luid;
1903 move2add_record_sym_value (reg, sym, off);
1904 return changed;
1907 /* Convert move insns with constant inputs to additions if they are cheaper.
1908 Return true if any changes were made. */
1909 static bool
1910 reload_cse_move2add (rtx_insn *first)
1912 int i;
1913 rtx_insn *insn;
1914 bool changed = false;
1916 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1918 reg_set_luid[i] = 0;
1919 reg_offset[i] = 0;
1920 reg_base_reg[i] = 0;
1921 reg_symbol_ref[i] = NULL_RTX;
1922 reg_mode[i] = VOIDmode;
1925 move2add_last_label_luid = 0;
1926 move2add_luid = 2;
1927 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1929 rtx pat, note;
1931 if (LABEL_P (insn))
1933 move2add_last_label_luid = move2add_luid;
1934 /* We're going to increment move2add_luid twice after a
1935 label, so that we can use move2add_last_label_luid + 1 as
1936 the luid for constants. */
1937 move2add_luid++;
1938 continue;
1940 if (! INSN_P (insn))
1941 continue;
1942 pat = PATTERN (insn);
1943 /* For simplicity, we only perform this optimization on
1944 straightforward SETs. */
1945 if (GET_CODE (pat) == SET
1946 && REG_P (SET_DEST (pat)))
1948 rtx reg = SET_DEST (pat);
1949 int regno = REGNO (reg);
1950 rtx src = SET_SRC (pat);
1952 /* Check if we have valid information on the contents of this
1953 register in the mode of REG. */
1954 if (move2add_valid_value_p (regno, GET_MODE (reg))
1955 && dbg_cnt (cse2_move2add))
1957 /* Try to transform (set (REGX) (CONST_INT A))
1959 (set (REGX) (CONST_INT B))
1961 (set (REGX) (CONST_INT A))
1963 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1965 (set (REGX) (CONST_INT A))
1967 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1970 if (CONST_INT_P (src)
1971 && reg_base_reg[regno] < 0
1972 && reg_symbol_ref[regno] == NULL_RTX)
1974 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1975 continue;
1978 /* Try to transform (set (REGX) (REGY))
1979 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1981 (set (REGX) (REGY))
1982 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1984 (set (REGX) (REGY))
1985 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1987 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1988 else if (REG_P (src)
1989 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1990 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1991 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
1993 rtx_insn *next = next_nonnote_nondebug_insn (insn);
1994 rtx set = NULL_RTX;
1995 if (next)
1996 set = single_set (next);
1997 if (set
1998 && SET_DEST (set) == reg
1999 && GET_CODE (SET_SRC (set)) == PLUS
2000 && XEXP (SET_SRC (set), 0) == reg
2001 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
2003 rtx src3 = XEXP (SET_SRC (set), 1);
2004 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
2005 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2006 HOST_WIDE_INT regno_offset = reg_offset[regno];
2007 rtx new_src =
2008 gen_int_mode (added_offset
2009 + base_offset
2010 - regno_offset,
2011 GET_MODE (reg));
2012 bool success = false;
2013 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2015 if (new_src == const0_rtx)
2016 /* See above why we create (set (reg) (reg)) here. */
2017 success
2018 = validate_change (next, &SET_SRC (set), reg, 0);
2019 else
2021 rtx old_src = SET_SRC (set);
2022 struct full_rtx_costs oldcst, newcst;
2023 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2025 get_full_set_rtx_cost (set, &oldcst);
2026 SET_SRC (set) = tem;
2027 get_full_set_src_cost (tem, &newcst);
2028 SET_SRC (set) = old_src;
2029 costs_add_n_insns (&oldcst, 1);
2031 if (costs_lt_p (&newcst, &oldcst, speed)
2032 && have_add2_insn (reg, new_src))
2034 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
2035 success
2036 = validate_change (next, &PATTERN (next),
2037 newpat, 0);
2040 if (success)
2041 delete_insn (insn);
2042 changed |= success;
2043 insn = next;
2044 move2add_record_mode (reg);
2045 reg_offset[regno]
2046 = trunc_int_for_mode (added_offset + base_offset,
2047 GET_MODE (reg));
2048 continue;
2053 /* Try to transform
2054 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2056 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2058 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2060 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2061 if ((GET_CODE (src) == SYMBOL_REF
2062 || (GET_CODE (src) == CONST
2063 && GET_CODE (XEXP (src, 0)) == PLUS
2064 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2065 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2066 && dbg_cnt (cse2_move2add))
2068 rtx sym, off;
2070 if (GET_CODE (src) == SYMBOL_REF)
2072 sym = src;
2073 off = const0_rtx;
2075 else
2077 sym = XEXP (XEXP (src, 0), 0);
2078 off = XEXP (XEXP (src, 0), 1);
2081 /* If the reg already contains the value which is sum of
2082 sym and some constant value, we can use an add2 insn. */
2083 if (move2add_valid_value_p (regno, GET_MODE (reg))
2084 && reg_base_reg[regno] < 0
2085 && reg_symbol_ref[regno] != NULL_RTX
2086 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2087 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2089 /* Otherwise, we have to find a register whose value is sum
2090 of sym and some constant value. */
2091 else
2092 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2094 continue;
2098 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2100 if (REG_NOTE_KIND (note) == REG_INC
2101 && REG_P (XEXP (note, 0)))
2103 /* Reset the information about this register. */
2104 int regno = REGNO (XEXP (note, 0));
2105 if (regno < FIRST_PSEUDO_REGISTER)
2107 move2add_record_mode (XEXP (note, 0));
2108 reg_mode[regno] = VOIDmode;
2112 note_stores (PATTERN (insn), move2add_note_store, insn);
2114 /* If INSN is a conditional branch, we try to extract an
2115 implicit set out of it. */
2116 if (any_condjump_p (insn))
2118 rtx cnd = fis_get_condition (insn);
2120 if (cnd != NULL_RTX
2121 && GET_CODE (cnd) == NE
2122 && REG_P (XEXP (cnd, 0))
2123 && !reg_set_p (XEXP (cnd, 0), insn)
2124 /* The following two checks, which are also in
2125 move2add_note_store, are intended to reduce the
2126 number of calls to gen_rtx_SET to avoid memory
2127 allocation if possible. */
2128 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2129 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
2130 && CONST_INT_P (XEXP (cnd, 1)))
2132 rtx implicit_set =
2133 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
2134 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2138 /* If this is a CALL_INSN, all call used registers are stored with
2139 unknown values. */
2140 if (CALL_P (insn))
2142 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2144 if (call_used_regs[i])
2145 /* Reset the information about this register. */
2146 reg_mode[i] = VOIDmode;
2150 return changed;
2153 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2154 contains SET.
2155 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2156 Called from reload_cse_move2add via note_stores. */
2158 static void
2159 move2add_note_store (rtx dst, const_rtx set, void *data)
2161 rtx_insn *insn = (rtx_insn *) data;
2162 unsigned int regno = 0;
2163 enum machine_mode mode = GET_MODE (dst);
2165 /* Some targets do argument pushes without adding REG_INC notes. */
2167 if (MEM_P (dst))
2169 dst = XEXP (dst, 0);
2170 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2171 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2172 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2173 return;
2176 if (GET_CODE (dst) == SUBREG)
2177 regno = subreg_regno (dst);
2178 else if (REG_P (dst))
2179 regno = REGNO (dst);
2180 else
2181 return;
2183 if (SCALAR_INT_MODE_P (mode)
2184 && GET_CODE (set) == SET)
2186 rtx note, sym = NULL_RTX;
2187 rtx off;
2189 note = find_reg_equal_equiv_note (insn);
2190 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2192 sym = XEXP (note, 0);
2193 off = const0_rtx;
2195 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2196 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2197 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2198 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2200 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2201 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2204 if (sym != NULL_RTX)
2206 move2add_record_sym_value (dst, sym, off);
2207 return;
2211 if (SCALAR_INT_MODE_P (mode)
2212 && GET_CODE (set) == SET
2213 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2214 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2216 rtx src = SET_SRC (set);
2217 rtx base_reg;
2218 unsigned HOST_WIDE_INT offset;
2219 int base_regno;
2221 switch (GET_CODE (src))
2223 case PLUS:
2224 if (REG_P (XEXP (src, 0)))
2226 base_reg = XEXP (src, 0);
2228 if (CONST_INT_P (XEXP (src, 1)))
2229 offset = UINTVAL (XEXP (src, 1));
2230 else if (REG_P (XEXP (src, 1))
2231 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2233 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2234 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2235 offset = reg_offset[REGNO (XEXP (src, 1))];
2236 /* Maybe the first register is known to be a
2237 constant. */
2238 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2239 && reg_base_reg[REGNO (base_reg)] < 0
2240 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2242 offset = reg_offset[REGNO (base_reg)];
2243 base_reg = XEXP (src, 1);
2245 else
2246 goto invalidate;
2248 else
2249 goto invalidate;
2251 break;
2254 goto invalidate;
2256 case REG:
2257 base_reg = src;
2258 offset = 0;
2259 break;
2261 case CONST_INT:
2262 /* Start tracking the register as a constant. */
2263 reg_base_reg[regno] = -1;
2264 reg_symbol_ref[regno] = NULL_RTX;
2265 reg_offset[regno] = INTVAL (SET_SRC (set));
2266 /* We assign the same luid to all registers set to constants. */
2267 reg_set_luid[regno] = move2add_last_label_luid + 1;
2268 move2add_record_mode (dst);
2269 return;
2271 default:
2272 goto invalidate;
2275 base_regno = REGNO (base_reg);
2276 /* If information about the base register is not valid, set it
2277 up as a new base register, pretending its value is known
2278 starting from the current insn. */
2279 if (!move2add_valid_value_p (base_regno, mode))
2281 reg_base_reg[base_regno] = base_regno;
2282 reg_symbol_ref[base_regno] = NULL_RTX;
2283 reg_offset[base_regno] = 0;
2284 reg_set_luid[base_regno] = move2add_luid;
2285 gcc_assert (GET_MODE (base_reg) == mode);
2286 move2add_record_mode (base_reg);
2289 /* Copy base information from our base register. */
2290 reg_set_luid[regno] = reg_set_luid[base_regno];
2291 reg_base_reg[regno] = reg_base_reg[base_regno];
2292 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2294 /* Compute the sum of the offsets or constants. */
2295 reg_offset[regno]
2296 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2298 move2add_record_mode (dst);
2300 else
2302 invalidate:
2303 /* Invalidate the contents of the register. */
2304 move2add_record_mode (dst);
2305 reg_mode[regno] = VOIDmode;
2309 namespace {
2311 const pass_data pass_data_postreload_cse =
2313 RTL_PASS, /* type */
2314 "postreload", /* name */
2315 OPTGROUP_NONE, /* optinfo_flags */
2316 TV_RELOAD_CSE_REGS, /* tv_id */
2317 0, /* properties_required */
2318 0, /* properties_provided */
2319 0, /* properties_destroyed */
2320 0, /* todo_flags_start */
2321 TODO_df_finish, /* todo_flags_finish */
2324 class pass_postreload_cse : public rtl_opt_pass
2326 public:
2327 pass_postreload_cse (gcc::context *ctxt)
2328 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2331 /* opt_pass methods: */
2332 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2334 virtual unsigned int execute (function *);
2336 }; // class pass_postreload_cse
2338 unsigned int
2339 pass_postreload_cse::execute (function *fun)
2341 if (!dbg_cnt (postreload_cse))
2342 return 0;
2344 /* Do a very simple CSE pass over just the hard registers. */
2345 reload_cse_regs (get_insns ());
2346 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2347 Remove any EH edges associated with them. */
2348 if (fun->can_throw_non_call_exceptions
2349 && purge_all_dead_edges ())
2350 cleanup_cfg (0);
2352 return 0;
2355 } // anon namespace
2357 rtl_opt_pass *
2358 make_pass_postreload_cse (gcc::context *ctxt)
2360 return new pass_postreload_cse (ctxt);