Fix gnu11 fallout on SPARC
[official-gcc.git] / gcc / expr.c
blob5519af22181c9fc02dea0db3c3a87fa95c274fb3
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "machmode.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "stringpool.h"
28 #include "stor-layout.h"
29 #include "attribs.h"
30 #include "varasm.h"
31 #include "flags.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "except.h"
35 #include "hashtab.h"
36 #include "hash-set.h"
37 #include "vec.h"
38 #include "input.h"
39 #include "function.h"
40 #include "insn-config.h"
41 #include "insn-attr.h"
42 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
43 #include "expr.h"
44 #include "optabs.h"
45 #include "libfuncs.h"
46 #include "recog.h"
47 #include "reload.h"
48 #include "typeclass.h"
49 #include "toplev.h"
50 #include "langhooks.h"
51 #include "intl.h"
52 #include "tm_p.h"
53 #include "tree-iterator.h"
54 #include "basic-block.h"
55 #include "tree-ssa-alias.h"
56 #include "internal-fn.h"
57 #include "gimple-expr.h"
58 #include "is-a.h"
59 #include "gimple.h"
60 #include "gimple-ssa.h"
61 #include "cgraph.h"
62 #include "tree-ssanames.h"
63 #include "target.h"
64 #include "common/common-target.h"
65 #include "timevar.h"
66 #include "df.h"
67 #include "diagnostic.h"
68 #include "tree-ssa-live.h"
69 #include "tree-outof-ssa.h"
70 #include "target-globals.h"
71 #include "params.h"
72 #include "tree-ssa-address.h"
73 #include "cfgexpand.h"
74 #include "builtins.h"
76 #ifndef STACK_PUSH_CODE
77 #ifdef STACK_GROWS_DOWNWARD
78 #define STACK_PUSH_CODE PRE_DEC
79 #else
80 #define STACK_PUSH_CODE PRE_INC
81 #endif
82 #endif
85 /* If this is nonzero, we do not bother generating VOLATILE
86 around volatile memory references, and we are willing to
87 output indirect addresses. If cse is to follow, we reject
88 indirect addresses so a useful potential cse is generated;
89 if it is used only once, instruction combination will produce
90 the same indirect address eventually. */
91 int cse_not_expected;
93 /* This structure is used by move_by_pieces to describe the move to
94 be performed. */
95 struct move_by_pieces_d
97 rtx to;
98 rtx to_addr;
99 int autinc_to;
100 int explicit_inc_to;
101 rtx from;
102 rtx from_addr;
103 int autinc_from;
104 int explicit_inc_from;
105 unsigned HOST_WIDE_INT len;
106 HOST_WIDE_INT offset;
107 int reverse;
110 /* This structure is used by store_by_pieces to describe the clear to
111 be performed. */
113 struct store_by_pieces_d
115 rtx to;
116 rtx to_addr;
117 int autinc_to;
118 int explicit_inc_to;
119 unsigned HOST_WIDE_INT len;
120 HOST_WIDE_INT offset;
121 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
122 void *constfundata;
123 int reverse;
126 static void move_by_pieces_1 (insn_gen_fn, machine_mode,
127 struct move_by_pieces_d *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
130 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
131 unsigned HOST_WIDE_INT);
132 static tree emit_block_move_libcall_fn (int);
133 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
134 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
135 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
136 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
137 static void store_by_pieces_2 (insn_gen_fn, machine_mode,
138 struct store_by_pieces_d *);
139 static tree clear_storage_libcall_fn (int);
140 static rtx_insn *compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, int, alias_set_type);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
147 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
148 enum machine_mode, tree, alias_set_type, bool);
150 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
152 static int is_aligning_offset (const_tree, const_tree);
153 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
154 enum expand_modifier);
155 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
156 static rtx do_store_flag (sepops, rtx, enum machine_mode);
157 #ifdef PUSH_ROUNDING
158 static void emit_single_push_insn (enum machine_mode, rtx, tree);
159 #endif
160 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx, int);
161 static rtx const_vector_from_tree (tree);
162 static void write_complex_part (rtx, rtx, bool);
164 /* This macro is used to determine whether move_by_pieces should be called
165 to perform a structure copy. */
166 #ifndef MOVE_BY_PIECES_P
167 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
168 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
169 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
170 #endif
172 /* This macro is used to determine whether clear_by_pieces should be
173 called to clear storage. */
174 #ifndef CLEAR_BY_PIECES_P
175 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
176 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
177 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
178 #endif
180 /* This macro is used to determine whether store_by_pieces should be
181 called to "memset" storage with byte values other than zero. */
182 #ifndef SET_BY_PIECES_P
183 #define SET_BY_PIECES_P(SIZE, ALIGN) \
184 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
185 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
186 #endif
188 /* This macro is used to determine whether store_by_pieces should be
189 called to "memcpy" storage when the source is a constant string. */
190 #ifndef STORE_BY_PIECES_P
191 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
192 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
193 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
194 #endif
196 /* This is run to set up which modes can be used
197 directly in memory and to initialize the block move optab. It is run
198 at the beginning of compilation and when the target is reinitialized. */
200 void
201 init_expr_target (void)
203 rtx insn, pat;
204 enum machine_mode mode;
205 int num_clobbers;
206 rtx mem, mem1;
207 rtx reg;
209 /* Try indexing by frame ptr and try by stack ptr.
210 It is known that on the Convex the stack ptr isn't a valid index.
211 With luck, one or the other is valid on any machine. */
212 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
213 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
215 /* A scratch register we can modify in-place below to avoid
216 useless RTL allocations. */
217 reg = gen_rtx_REG (VOIDmode, -1);
219 insn = rtx_alloc (INSN);
220 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
221 PATTERN (insn) = pat;
223 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
224 mode = (enum machine_mode) ((int) mode + 1))
226 int regno;
228 direct_load[(int) mode] = direct_store[(int) mode] = 0;
229 PUT_MODE (mem, mode);
230 PUT_MODE (mem1, mode);
231 PUT_MODE (reg, mode);
233 /* See if there is some register that can be used in this mode and
234 directly loaded or stored from memory. */
236 if (mode != VOIDmode && mode != BLKmode)
237 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
238 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
239 regno++)
241 if (! HARD_REGNO_MODE_OK (regno, mode))
242 continue;
244 SET_REGNO (reg, regno);
246 SET_SRC (pat) = mem;
247 SET_DEST (pat) = reg;
248 if (recog (pat, insn, &num_clobbers) >= 0)
249 direct_load[(int) mode] = 1;
251 SET_SRC (pat) = mem1;
252 SET_DEST (pat) = reg;
253 if (recog (pat, insn, &num_clobbers) >= 0)
254 direct_load[(int) mode] = 1;
256 SET_SRC (pat) = reg;
257 SET_DEST (pat) = mem;
258 if (recog (pat, insn, &num_clobbers) >= 0)
259 direct_store[(int) mode] = 1;
261 SET_SRC (pat) = reg;
262 SET_DEST (pat) = mem1;
263 if (recog (pat, insn, &num_clobbers) >= 0)
264 direct_store[(int) mode] = 1;
268 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
270 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
271 mode = GET_MODE_WIDER_MODE (mode))
273 enum machine_mode srcmode;
274 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
275 srcmode = GET_MODE_WIDER_MODE (srcmode))
277 enum insn_code ic;
279 ic = can_extend_p (mode, srcmode, 0);
280 if (ic == CODE_FOR_nothing)
281 continue;
283 PUT_MODE (mem, srcmode);
285 if (insn_operand_matches (ic, 1, mem))
286 float_extend_from_mem[mode][srcmode] = true;
291 /* This is run at the start of compiling a function. */
293 void
294 init_expr (void)
296 memset (&crtl->expr, 0, sizeof (crtl->expr));
299 /* Copy data from FROM to TO, where the machine modes are not the same.
300 Both modes may be integer, or both may be floating, or both may be
301 fixed-point.
302 UNSIGNEDP should be nonzero if FROM is an unsigned type.
303 This causes zero-extension instead of sign-extension. */
305 void
306 convert_move (rtx to, rtx from, int unsignedp)
308 enum machine_mode to_mode = GET_MODE (to);
309 enum machine_mode from_mode = GET_MODE (from);
310 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
311 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
312 enum insn_code code;
313 rtx libcall;
315 /* rtx code for making an equivalent value. */
316 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
317 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
320 gcc_assert (to_real == from_real);
321 gcc_assert (to_mode != BLKmode);
322 gcc_assert (from_mode != BLKmode);
324 /* If the source and destination are already the same, then there's
325 nothing to do. */
326 if (to == from)
327 return;
329 /* If FROM is a SUBREG that indicates that we have already done at least
330 the required extension, strip it. We don't handle such SUBREGs as
331 TO here. */
333 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
334 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
335 >= GET_MODE_PRECISION (to_mode))
336 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
337 from = gen_lowpart (to_mode, from), from_mode = to_mode;
339 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
341 if (to_mode == from_mode
342 || (from_mode == VOIDmode && CONSTANT_P (from)))
344 emit_move_insn (to, from);
345 return;
348 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
350 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
352 if (VECTOR_MODE_P (to_mode))
353 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
354 else
355 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
357 emit_move_insn (to, from);
358 return;
361 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
363 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
364 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
365 return;
368 if (to_real)
370 rtx value;
371 rtx_insn *insns;
372 convert_optab tab;
374 gcc_assert ((GET_MODE_PRECISION (from_mode)
375 != GET_MODE_PRECISION (to_mode))
376 || (DECIMAL_FLOAT_MODE_P (from_mode)
377 != DECIMAL_FLOAT_MODE_P (to_mode)));
379 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
380 /* Conversion between decimal float and binary float, same size. */
381 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
382 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
383 tab = sext_optab;
384 else
385 tab = trunc_optab;
387 /* Try converting directly if the insn is supported. */
389 code = convert_optab_handler (tab, to_mode, from_mode);
390 if (code != CODE_FOR_nothing)
392 emit_unop_insn (code, to, from,
393 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
394 return;
397 /* Otherwise use a libcall. */
398 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
400 /* Is this conversion implemented yet? */
401 gcc_assert (libcall);
403 start_sequence ();
404 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
405 1, from, from_mode);
406 insns = get_insns ();
407 end_sequence ();
408 emit_libcall_block (insns, to, value,
409 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
410 from)
411 : gen_rtx_FLOAT_EXTEND (to_mode, from));
412 return;
415 /* Handle pointer conversion. */ /* SPEE 900220. */
416 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
418 convert_optab ctab;
420 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
421 ctab = trunc_optab;
422 else if (unsignedp)
423 ctab = zext_optab;
424 else
425 ctab = sext_optab;
427 if (convert_optab_handler (ctab, to_mode, from_mode)
428 != CODE_FOR_nothing)
430 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
431 to, from, UNKNOWN);
432 return;
436 /* Targets are expected to provide conversion insns between PxImode and
437 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
438 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
440 enum machine_mode full_mode
441 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
443 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
444 != CODE_FOR_nothing);
446 if (full_mode != from_mode)
447 from = convert_to_mode (full_mode, from, unsignedp);
448 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
449 to, from, UNKNOWN);
450 return;
452 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
454 rtx new_from;
455 enum machine_mode full_mode
456 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
457 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
458 enum insn_code icode;
460 icode = convert_optab_handler (ctab, full_mode, from_mode);
461 gcc_assert (icode != CODE_FOR_nothing);
463 if (to_mode == full_mode)
465 emit_unop_insn (icode, to, from, UNKNOWN);
466 return;
469 new_from = gen_reg_rtx (full_mode);
470 emit_unop_insn (icode, new_from, from, UNKNOWN);
472 /* else proceed to integer conversions below. */
473 from_mode = full_mode;
474 from = new_from;
477 /* Make sure both are fixed-point modes or both are not. */
478 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
479 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
480 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
482 /* If we widen from_mode to to_mode and they are in the same class,
483 we won't saturate the result.
484 Otherwise, always saturate the result to play safe. */
485 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
486 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
487 expand_fixed_convert (to, from, 0, 0);
488 else
489 expand_fixed_convert (to, from, 0, 1);
490 return;
493 /* Now both modes are integers. */
495 /* Handle expanding beyond a word. */
496 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
497 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
499 rtx_insn *insns;
500 rtx lowpart;
501 rtx fill_value;
502 rtx lowfrom;
503 int i;
504 enum machine_mode lowpart_mode;
505 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
507 /* Try converting directly if the insn is supported. */
508 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
509 != CODE_FOR_nothing)
511 /* If FROM is a SUBREG, put it into a register. Do this
512 so that we always generate the same set of insns for
513 better cse'ing; if an intermediate assignment occurred,
514 we won't be doing the operation directly on the SUBREG. */
515 if (optimize > 0 && GET_CODE (from) == SUBREG)
516 from = force_reg (from_mode, from);
517 emit_unop_insn (code, to, from, equiv_code);
518 return;
520 /* Next, try converting via full word. */
521 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
522 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
523 != CODE_FOR_nothing))
525 rtx word_to = gen_reg_rtx (word_mode);
526 if (REG_P (to))
528 if (reg_overlap_mentioned_p (to, from))
529 from = force_reg (from_mode, from);
530 emit_clobber (to);
532 convert_move (word_to, from, unsignedp);
533 emit_unop_insn (code, to, word_to, equiv_code);
534 return;
537 /* No special multiword conversion insn; do it by hand. */
538 start_sequence ();
540 /* Since we will turn this into a no conflict block, we must ensure the
541 the source does not overlap the target so force it into an isolated
542 register when maybe so. Likewise for any MEM input, since the
543 conversion sequence might require several references to it and we
544 must ensure we're getting the same value every time. */
546 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
547 from = force_reg (from_mode, from);
549 /* Get a copy of FROM widened to a word, if necessary. */
550 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
551 lowpart_mode = word_mode;
552 else
553 lowpart_mode = from_mode;
555 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
557 lowpart = gen_lowpart (lowpart_mode, to);
558 emit_move_insn (lowpart, lowfrom);
560 /* Compute the value to put in each remaining word. */
561 if (unsignedp)
562 fill_value = const0_rtx;
563 else
564 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
565 LT, lowfrom, const0_rtx,
566 lowpart_mode, 0, -1);
568 /* Fill the remaining words. */
569 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
571 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
572 rtx subword = operand_subword (to, index, 1, to_mode);
574 gcc_assert (subword);
576 if (fill_value != subword)
577 emit_move_insn (subword, fill_value);
580 insns = get_insns ();
581 end_sequence ();
583 emit_insn (insns);
584 return;
587 /* Truncating multi-word to a word or less. */
588 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
589 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
591 if (!((MEM_P (from)
592 && ! MEM_VOLATILE_P (from)
593 && direct_load[(int) to_mode]
594 && ! mode_dependent_address_p (XEXP (from, 0),
595 MEM_ADDR_SPACE (from)))
596 || REG_P (from)
597 || GET_CODE (from) == SUBREG))
598 from = force_reg (from_mode, from);
599 convert_move (to, gen_lowpart (word_mode, from), 0);
600 return;
603 /* Now follow all the conversions between integers
604 no more than a word long. */
606 /* For truncation, usually we can just refer to FROM in a narrower mode. */
607 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
608 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
610 if (!((MEM_P (from)
611 && ! MEM_VOLATILE_P (from)
612 && direct_load[(int) to_mode]
613 && ! mode_dependent_address_p (XEXP (from, 0),
614 MEM_ADDR_SPACE (from)))
615 || REG_P (from)
616 || GET_CODE (from) == SUBREG))
617 from = force_reg (from_mode, from);
618 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
619 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
620 from = copy_to_reg (from);
621 emit_move_insn (to, gen_lowpart (to_mode, from));
622 return;
625 /* Handle extension. */
626 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
628 /* Convert directly if that works. */
629 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
630 != CODE_FOR_nothing)
632 emit_unop_insn (code, to, from, equiv_code);
633 return;
635 else
637 enum machine_mode intermediate;
638 rtx tmp;
639 int shift_amount;
641 /* Search for a mode to convert via. */
642 for (intermediate = from_mode; intermediate != VOIDmode;
643 intermediate = GET_MODE_WIDER_MODE (intermediate))
644 if (((can_extend_p (to_mode, intermediate, unsignedp)
645 != CODE_FOR_nothing)
646 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
647 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
648 && (can_extend_p (intermediate, from_mode, unsignedp)
649 != CODE_FOR_nothing))
651 convert_move (to, convert_to_mode (intermediate, from,
652 unsignedp), unsignedp);
653 return;
656 /* No suitable intermediate mode.
657 Generate what we need with shifts. */
658 shift_amount = (GET_MODE_PRECISION (to_mode)
659 - GET_MODE_PRECISION (from_mode));
660 from = gen_lowpart (to_mode, force_reg (from_mode, from));
661 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
662 to, unsignedp);
663 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
664 to, unsignedp);
665 if (tmp != to)
666 emit_move_insn (to, tmp);
667 return;
671 /* Support special truncate insns for certain modes. */
672 if (convert_optab_handler (trunc_optab, to_mode,
673 from_mode) != CODE_FOR_nothing)
675 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
676 to, from, UNKNOWN);
677 return;
680 /* Handle truncation of volatile memrefs, and so on;
681 the things that couldn't be truncated directly,
682 and for which there was no special instruction.
684 ??? Code above formerly short-circuited this, for most integer
685 mode pairs, with a force_reg in from_mode followed by a recursive
686 call to this routine. Appears always to have been wrong. */
687 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
689 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
690 emit_move_insn (to, temp);
691 return;
694 /* Mode combination is not recognized. */
695 gcc_unreachable ();
698 /* Return an rtx for a value that would result
699 from converting X to mode MODE.
700 Both X and MODE may be floating, or both integer.
701 UNSIGNEDP is nonzero if X is an unsigned value.
702 This can be done by referring to a part of X in place
703 or by copying to a new temporary with conversion. */
706 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
708 return convert_modes (mode, VOIDmode, x, unsignedp);
711 /* Return an rtx for a value that would result
712 from converting X from mode OLDMODE to mode MODE.
713 Both modes may be floating, or both integer.
714 UNSIGNEDP is nonzero if X is an unsigned value.
716 This can be done by referring to a part of X in place
717 or by copying to a new temporary with conversion.
719 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
722 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
724 rtx temp;
726 /* If FROM is a SUBREG that indicates that we have already done at least
727 the required extension, strip it. */
729 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
730 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
731 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
732 x = gen_lowpart (mode, SUBREG_REG (x));
734 if (GET_MODE (x) != VOIDmode)
735 oldmode = GET_MODE (x);
737 if (mode == oldmode)
738 return x;
740 if (CONST_SCALAR_INT_P (x) && GET_MODE_CLASS (mode) == MODE_INT)
742 /* If the caller did not tell us the old mode, then there is not
743 much to do with respect to canonicalization. We have to
744 assume that all the bits are significant. */
745 if (GET_MODE_CLASS (oldmode) != MODE_INT)
746 oldmode = MAX_MODE_INT;
747 wide_int w = wide_int::from (std::make_pair (x, oldmode),
748 GET_MODE_PRECISION (mode),
749 unsignedp ? UNSIGNED : SIGNED);
750 return immed_wide_int_const (w, mode);
753 /* We can do this with a gen_lowpart if both desired and current modes
754 are integer, and this is either a constant integer, a register, or a
755 non-volatile MEM. */
756 if (GET_MODE_CLASS (mode) == MODE_INT
757 && GET_MODE_CLASS (oldmode) == MODE_INT
758 && GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
759 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) mode])
760 || (REG_P (x)
761 && (!HARD_REGISTER_P (x)
762 || HARD_REGNO_MODE_OK (REGNO (x), mode))
763 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x)))))
765 return gen_lowpart (mode, x);
767 /* Converting from integer constant into mode is always equivalent to an
768 subreg operation. */
769 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
771 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
772 return simplify_gen_subreg (mode, x, oldmode, 0);
775 temp = gen_reg_rtx (mode);
776 convert_move (temp, x, unsignedp);
777 return temp;
780 /* Return the largest alignment we can use for doing a move (or store)
781 of MAX_PIECES. ALIGN is the largest alignment we could use. */
783 static unsigned int
784 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
786 enum machine_mode tmode;
788 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
789 if (align >= GET_MODE_ALIGNMENT (tmode))
790 align = GET_MODE_ALIGNMENT (tmode);
791 else
793 enum machine_mode tmode, xmode;
795 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
796 tmode != VOIDmode;
797 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
798 if (GET_MODE_SIZE (tmode) > max_pieces
799 || SLOW_UNALIGNED_ACCESS (tmode, align))
800 break;
802 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
805 return align;
808 /* Return the widest integer mode no wider than SIZE. If no such mode
809 can be found, return VOIDmode. */
811 static enum machine_mode
812 widest_int_mode_for_size (unsigned int size)
814 enum machine_mode tmode, mode = VOIDmode;
816 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
817 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
818 if (GET_MODE_SIZE (tmode) < size)
819 mode = tmode;
821 return mode;
824 /* STORE_MAX_PIECES is the number of bytes at a time that we can
825 store efficiently. Due to internal GCC limitations, this is
826 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
827 for an immediate constant. */
829 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
831 /* Determine whether the LEN bytes can be moved by using several move
832 instructions. Return nonzero if a call to move_by_pieces should
833 succeed. */
836 can_move_by_pieces (unsigned HOST_WIDE_INT len ATTRIBUTE_UNUSED,
837 unsigned int align ATTRIBUTE_UNUSED)
839 return MOVE_BY_PIECES_P (len, align);
842 /* Generate several move instructions to copy LEN bytes from block FROM to
843 block TO. (These are MEM rtx's with BLKmode).
845 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
846 used to push FROM to the stack.
848 ALIGN is maximum stack alignment we can assume.
850 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
851 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
852 stpcpy. */
855 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
856 unsigned int align, int endp)
858 struct move_by_pieces_d data;
859 enum machine_mode to_addr_mode;
860 enum machine_mode from_addr_mode = get_address_mode (from);
861 rtx to_addr, from_addr = XEXP (from, 0);
862 unsigned int max_size = MOVE_MAX_PIECES + 1;
863 enum insn_code icode;
865 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
867 data.offset = 0;
868 data.from_addr = from_addr;
869 if (to)
871 to_addr_mode = get_address_mode (to);
872 to_addr = XEXP (to, 0);
873 data.to = to;
874 data.autinc_to
875 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
876 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
877 data.reverse
878 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
880 else
882 to_addr_mode = VOIDmode;
883 to_addr = NULL_RTX;
884 data.to = NULL_RTX;
885 data.autinc_to = 1;
886 #ifdef STACK_GROWS_DOWNWARD
887 data.reverse = 1;
888 #else
889 data.reverse = 0;
890 #endif
892 data.to_addr = to_addr;
893 data.from = from;
894 data.autinc_from
895 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
896 || GET_CODE (from_addr) == POST_INC
897 || GET_CODE (from_addr) == POST_DEC);
899 data.explicit_inc_from = 0;
900 data.explicit_inc_to = 0;
901 if (data.reverse) data.offset = len;
902 data.len = len;
904 /* If copying requires more than two move insns,
905 copy addresses to registers (to make displacements shorter)
906 and use post-increment if available. */
907 if (!(data.autinc_from && data.autinc_to)
908 && move_by_pieces_ninsns (len, align, max_size) > 2)
910 /* Find the mode of the largest move...
911 MODE might not be used depending on the definitions of the
912 USE_* macros below. */
913 enum machine_mode mode ATTRIBUTE_UNUSED
914 = widest_int_mode_for_size (max_size);
916 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
918 data.from_addr = copy_to_mode_reg (from_addr_mode,
919 plus_constant (from_addr_mode,
920 from_addr, len));
921 data.autinc_from = 1;
922 data.explicit_inc_from = -1;
924 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
926 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
927 data.autinc_from = 1;
928 data.explicit_inc_from = 1;
930 if (!data.autinc_from && CONSTANT_P (from_addr))
931 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
932 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
934 data.to_addr = copy_to_mode_reg (to_addr_mode,
935 plus_constant (to_addr_mode,
936 to_addr, len));
937 data.autinc_to = 1;
938 data.explicit_inc_to = -1;
940 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
942 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
943 data.autinc_to = 1;
944 data.explicit_inc_to = 1;
946 if (!data.autinc_to && CONSTANT_P (to_addr))
947 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
950 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
952 /* First move what we can in the largest integer mode, then go to
953 successively smaller modes. */
955 while (max_size > 1 && data.len > 0)
957 enum machine_mode mode = widest_int_mode_for_size (max_size);
959 if (mode == VOIDmode)
960 break;
962 icode = optab_handler (mov_optab, mode);
963 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
964 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
966 max_size = GET_MODE_SIZE (mode);
969 /* The code above should have handled everything. */
970 gcc_assert (!data.len);
972 if (endp)
974 rtx to1;
976 gcc_assert (!data.reverse);
977 if (data.autinc_to)
979 if (endp == 2)
981 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
982 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
983 else
984 data.to_addr = copy_to_mode_reg (to_addr_mode,
985 plus_constant (to_addr_mode,
986 data.to_addr,
987 -1));
989 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
990 data.offset);
992 else
994 if (endp == 2)
995 --data.offset;
996 to1 = adjust_address (data.to, QImode, data.offset);
998 return to1;
1000 else
1001 return data.to;
1004 /* Return number of insns required to move L bytes by pieces.
1005 ALIGN (in bits) is maximum alignment we can assume. */
1007 unsigned HOST_WIDE_INT
1008 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1009 unsigned int max_size)
1011 unsigned HOST_WIDE_INT n_insns = 0;
1013 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1015 while (max_size > 1 && l > 0)
1017 enum machine_mode mode;
1018 enum insn_code icode;
1020 mode = widest_int_mode_for_size (max_size);
1022 if (mode == VOIDmode)
1023 break;
1025 icode = optab_handler (mov_optab, mode);
1026 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1027 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1029 max_size = GET_MODE_SIZE (mode);
1032 gcc_assert (!l);
1033 return n_insns;
1036 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1037 with move instructions for mode MODE. GENFUN is the gen_... function
1038 to make a move insn for that mode. DATA has all the other info. */
1040 static void
1041 move_by_pieces_1 (insn_gen_fn genfun, machine_mode mode,
1042 struct move_by_pieces_d *data)
1044 unsigned int size = GET_MODE_SIZE (mode);
1045 rtx to1 = NULL_RTX, from1;
1047 while (data->len >= size)
1049 if (data->reverse)
1050 data->offset -= size;
1052 if (data->to)
1054 if (data->autinc_to)
1055 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1056 data->offset);
1057 else
1058 to1 = adjust_address (data->to, mode, data->offset);
1061 if (data->autinc_from)
1062 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1063 data->offset);
1064 else
1065 from1 = adjust_address (data->from, mode, data->offset);
1067 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1068 emit_insn (gen_add2_insn (data->to_addr,
1069 gen_int_mode (-(HOST_WIDE_INT) size,
1070 GET_MODE (data->to_addr))));
1071 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1072 emit_insn (gen_add2_insn (data->from_addr,
1073 gen_int_mode (-(HOST_WIDE_INT) size,
1074 GET_MODE (data->from_addr))));
1076 if (data->to)
1077 emit_insn ((*genfun) (to1, from1));
1078 else
1080 #ifdef PUSH_ROUNDING
1081 emit_single_push_insn (mode, from1, NULL);
1082 #else
1083 gcc_unreachable ();
1084 #endif
1087 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1088 emit_insn (gen_add2_insn (data->to_addr,
1089 gen_int_mode (size,
1090 GET_MODE (data->to_addr))));
1091 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1092 emit_insn (gen_add2_insn (data->from_addr,
1093 gen_int_mode (size,
1094 GET_MODE (data->from_addr))));
1096 if (! data->reverse)
1097 data->offset += size;
1099 data->len -= size;
1103 /* Emit code to move a block Y to a block X. This may be done with
1104 string-move instructions, with multiple scalar move instructions,
1105 or with a library call.
1107 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1108 SIZE is an rtx that says how long they are.
1109 ALIGN is the maximum alignment we can assume they have.
1110 METHOD describes what kind of copy this is, and what mechanisms may be used.
1111 MIN_SIZE is the minimal size of block to move
1112 MAX_SIZE is the maximal size of block to move, if it can not be represented
1113 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1115 Return the address of the new block, if memcpy is called and returns it,
1116 0 otherwise. */
1119 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1120 unsigned int expected_align, HOST_WIDE_INT expected_size,
1121 unsigned HOST_WIDE_INT min_size,
1122 unsigned HOST_WIDE_INT max_size,
1123 unsigned HOST_WIDE_INT probable_max_size)
1125 bool may_use_call;
1126 rtx retval = 0;
1127 unsigned int align;
1129 gcc_assert (size);
1130 if (CONST_INT_P (size)
1131 && INTVAL (size) == 0)
1132 return 0;
1134 switch (method)
1136 case BLOCK_OP_NORMAL:
1137 case BLOCK_OP_TAILCALL:
1138 may_use_call = true;
1139 break;
1141 case BLOCK_OP_CALL_PARM:
1142 may_use_call = block_move_libcall_safe_for_call_parm ();
1144 /* Make inhibit_defer_pop nonzero around the library call
1145 to force it to pop the arguments right away. */
1146 NO_DEFER_POP;
1147 break;
1149 case BLOCK_OP_NO_LIBCALL:
1150 may_use_call = false;
1151 break;
1153 default:
1154 gcc_unreachable ();
1157 gcc_assert (MEM_P (x) && MEM_P (y));
1158 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1159 gcc_assert (align >= BITS_PER_UNIT);
1161 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1162 block copy is more efficient for other large modes, e.g. DCmode. */
1163 x = adjust_address (x, BLKmode, 0);
1164 y = adjust_address (y, BLKmode, 0);
1166 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1167 can be incorrect is coming from __builtin_memcpy. */
1168 if (CONST_INT_P (size))
1170 x = shallow_copy_rtx (x);
1171 y = shallow_copy_rtx (y);
1172 set_mem_size (x, INTVAL (size));
1173 set_mem_size (y, INTVAL (size));
1176 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1177 move_by_pieces (x, y, INTVAL (size), align, 0);
1178 else if (emit_block_move_via_movmem (x, y, size, align,
1179 expected_align, expected_size,
1180 min_size, max_size, probable_max_size))
1182 else if (may_use_call
1183 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1184 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1186 /* Since x and y are passed to a libcall, mark the corresponding
1187 tree EXPR as addressable. */
1188 tree y_expr = MEM_EXPR (y);
1189 tree x_expr = MEM_EXPR (x);
1190 if (y_expr)
1191 mark_addressable (y_expr);
1192 if (x_expr)
1193 mark_addressable (x_expr);
1194 retval = emit_block_move_via_libcall (x, y, size,
1195 method == BLOCK_OP_TAILCALL);
1198 else
1199 emit_block_move_via_loop (x, y, size, align);
1201 if (method == BLOCK_OP_CALL_PARM)
1202 OK_DEFER_POP;
1204 return retval;
1208 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1210 unsigned HOST_WIDE_INT max, min = 0;
1211 if (GET_CODE (size) == CONST_INT)
1212 min = max = UINTVAL (size);
1213 else
1214 max = GET_MODE_MASK (GET_MODE (size));
1215 return emit_block_move_hints (x, y, size, method, 0, -1,
1216 min, max, max);
1219 /* A subroutine of emit_block_move. Returns true if calling the
1220 block move libcall will not clobber any parameters which may have
1221 already been placed on the stack. */
1223 static bool
1224 block_move_libcall_safe_for_call_parm (void)
1226 #if defined (REG_PARM_STACK_SPACE)
1227 tree fn;
1228 #endif
1230 /* If arguments are pushed on the stack, then they're safe. */
1231 if (PUSH_ARGS)
1232 return true;
1234 /* If registers go on the stack anyway, any argument is sure to clobber
1235 an outgoing argument. */
1236 #if defined (REG_PARM_STACK_SPACE)
1237 fn = emit_block_move_libcall_fn (false);
1238 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1239 depend on its argument. */
1240 (void) fn;
1241 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1242 && REG_PARM_STACK_SPACE (fn) != 0)
1243 return false;
1244 #endif
1246 /* If any argument goes in memory, then it might clobber an outgoing
1247 argument. */
1249 CUMULATIVE_ARGS args_so_far_v;
1250 cumulative_args_t args_so_far;
1251 tree fn, arg;
1253 fn = emit_block_move_libcall_fn (false);
1254 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1255 args_so_far = pack_cumulative_args (&args_so_far_v);
1257 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1258 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1260 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1261 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1262 NULL_TREE, true);
1263 if (!tmp || !REG_P (tmp))
1264 return false;
1265 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1266 return false;
1267 targetm.calls.function_arg_advance (args_so_far, mode,
1268 NULL_TREE, true);
1271 return true;
1274 /* A subroutine of emit_block_move. Expand a movmem pattern;
1275 return true if successful. */
1277 static bool
1278 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1279 unsigned int expected_align, HOST_WIDE_INT expected_size,
1280 unsigned HOST_WIDE_INT min_size,
1281 unsigned HOST_WIDE_INT max_size,
1282 unsigned HOST_WIDE_INT probable_max_size)
1284 int save_volatile_ok = volatile_ok;
1285 enum machine_mode mode;
1287 if (expected_align < align)
1288 expected_align = align;
1289 if (expected_size != -1)
1291 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1292 expected_size = probable_max_size;
1293 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1294 expected_size = min_size;
1297 /* Since this is a move insn, we don't care about volatility. */
1298 volatile_ok = 1;
1300 /* Try the most limited insn first, because there's no point
1301 including more than one in the machine description unless
1302 the more limited one has some advantage. */
1304 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1305 mode = GET_MODE_WIDER_MODE (mode))
1307 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1309 if (code != CODE_FOR_nothing
1310 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1311 here because if SIZE is less than the mode mask, as it is
1312 returned by the macro, it will definitely be less than the
1313 actual mode mask. Since SIZE is within the Pmode address
1314 space, we limit MODE to Pmode. */
1315 && ((CONST_INT_P (size)
1316 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1317 <= (GET_MODE_MASK (mode) >> 1)))
1318 || max_size <= (GET_MODE_MASK (mode) >> 1)
1319 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1321 struct expand_operand ops[9];
1322 unsigned int nops;
1324 /* ??? When called via emit_block_move_for_call, it'd be
1325 nice if there were some way to inform the backend, so
1326 that it doesn't fail the expansion because it thinks
1327 emitting the libcall would be more efficient. */
1328 nops = insn_data[(int) code].n_generator_args;
1329 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1331 create_fixed_operand (&ops[0], x);
1332 create_fixed_operand (&ops[1], y);
1333 /* The check above guarantees that this size conversion is valid. */
1334 create_convert_operand_to (&ops[2], size, mode, true);
1335 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1336 if (nops >= 6)
1338 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1339 create_integer_operand (&ops[5], expected_size);
1341 if (nops >= 8)
1343 create_integer_operand (&ops[6], min_size);
1344 /* If we can not represent the maximal size,
1345 make parameter NULL. */
1346 if ((HOST_WIDE_INT) max_size != -1)
1347 create_integer_operand (&ops[7], max_size);
1348 else
1349 create_fixed_operand (&ops[7], NULL);
1351 if (nops == 9)
1353 /* If we can not represent the maximal size,
1354 make parameter NULL. */
1355 if ((HOST_WIDE_INT) probable_max_size != -1)
1356 create_integer_operand (&ops[8], probable_max_size);
1357 else
1358 create_fixed_operand (&ops[8], NULL);
1360 if (maybe_expand_insn (code, nops, ops))
1362 volatile_ok = save_volatile_ok;
1363 return true;
1368 volatile_ok = save_volatile_ok;
1369 return false;
1372 /* A subroutine of emit_block_move. Expand a call to memcpy.
1373 Return the return value from memcpy, 0 otherwise. */
1376 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1378 rtx dst_addr, src_addr;
1379 tree call_expr, fn, src_tree, dst_tree, size_tree;
1380 enum machine_mode size_mode;
1381 rtx retval;
1383 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1384 pseudos. We can then place those new pseudos into a VAR_DECL and
1385 use them later. */
1387 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1388 src_addr = copy_addr_to_reg (XEXP (src, 0));
1390 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1391 src_addr = convert_memory_address (ptr_mode, src_addr);
1393 dst_tree = make_tree (ptr_type_node, dst_addr);
1394 src_tree = make_tree (ptr_type_node, src_addr);
1396 size_mode = TYPE_MODE (sizetype);
1398 size = convert_to_mode (size_mode, size, 1);
1399 size = copy_to_mode_reg (size_mode, size);
1401 /* It is incorrect to use the libcall calling conventions to call
1402 memcpy in this context. This could be a user call to memcpy and
1403 the user may wish to examine the return value from memcpy. For
1404 targets where libcalls and normal calls have different conventions
1405 for returning pointers, we could end up generating incorrect code. */
1407 size_tree = make_tree (sizetype, size);
1409 fn = emit_block_move_libcall_fn (true);
1410 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1411 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1413 retval = expand_normal (call_expr);
1415 return retval;
1418 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1419 for the function we use for block copies. */
1421 static GTY(()) tree block_move_fn;
1423 void
1424 init_block_move_fn (const char *asmspec)
1426 if (!block_move_fn)
1428 tree args, fn, attrs, attr_args;
1430 fn = get_identifier ("memcpy");
1431 args = build_function_type_list (ptr_type_node, ptr_type_node,
1432 const_ptr_type_node, sizetype,
1433 NULL_TREE);
1435 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1436 DECL_EXTERNAL (fn) = 1;
1437 TREE_PUBLIC (fn) = 1;
1438 DECL_ARTIFICIAL (fn) = 1;
1439 TREE_NOTHROW (fn) = 1;
1440 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1441 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1443 attr_args = build_tree_list (NULL_TREE, build_string (1, "1"));
1444 attrs = tree_cons (get_identifier ("fn spec"), attr_args, NULL);
1446 decl_attributes (&fn, attrs, ATTR_FLAG_BUILT_IN);
1448 block_move_fn = fn;
1451 if (asmspec)
1452 set_user_assembler_name (block_move_fn, asmspec);
1455 static tree
1456 emit_block_move_libcall_fn (int for_call)
1458 static bool emitted_extern;
1460 if (!block_move_fn)
1461 init_block_move_fn (NULL);
1463 if (for_call && !emitted_extern)
1465 emitted_extern = true;
1466 make_decl_rtl (block_move_fn);
1469 return block_move_fn;
1472 /* A subroutine of emit_block_move. Copy the data via an explicit
1473 loop. This is used only when libcalls are forbidden. */
1474 /* ??? It'd be nice to copy in hunks larger than QImode. */
1476 static void
1477 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1478 unsigned int align ATTRIBUTE_UNUSED)
1480 rtx_code_label *cmp_label, *top_label;
1481 rtx iter, x_addr, y_addr, tmp;
1482 enum machine_mode x_addr_mode = get_address_mode (x);
1483 enum machine_mode y_addr_mode = get_address_mode (y);
1484 enum machine_mode iter_mode;
1486 iter_mode = GET_MODE (size);
1487 if (iter_mode == VOIDmode)
1488 iter_mode = word_mode;
1490 top_label = gen_label_rtx ();
1491 cmp_label = gen_label_rtx ();
1492 iter = gen_reg_rtx (iter_mode);
1494 emit_move_insn (iter, const0_rtx);
1496 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1497 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1498 do_pending_stack_adjust ();
1500 emit_jump (cmp_label);
1501 emit_label (top_label);
1503 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1504 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1506 if (x_addr_mode != y_addr_mode)
1507 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1508 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1510 x = change_address (x, QImode, x_addr);
1511 y = change_address (y, QImode, y_addr);
1513 emit_move_insn (x, y);
1515 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1516 true, OPTAB_LIB_WIDEN);
1517 if (tmp != iter)
1518 emit_move_insn (iter, tmp);
1520 emit_label (cmp_label);
1522 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1523 true, top_label, REG_BR_PROB_BASE * 90 / 100);
1526 /* Copy all or part of a value X into registers starting at REGNO.
1527 The number of registers to be filled is NREGS. */
1529 void
1530 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1532 int i;
1533 #ifdef HAVE_load_multiple
1534 rtx pat;
1535 rtx_insn *last;
1536 #endif
1538 if (nregs == 0)
1539 return;
1541 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1542 x = validize_mem (force_const_mem (mode, x));
1544 /* See if the machine can do this with a load multiple insn. */
1545 #ifdef HAVE_load_multiple
1546 if (HAVE_load_multiple)
1548 last = get_last_insn ();
1549 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1550 GEN_INT (nregs));
1551 if (pat)
1553 emit_insn (pat);
1554 return;
1556 else
1557 delete_insns_since (last);
1559 #endif
1561 for (i = 0; i < nregs; i++)
1562 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1563 operand_subword_force (x, i, mode));
1566 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1567 The number of registers to be filled is NREGS. */
1569 void
1570 move_block_from_reg (int regno, rtx x, int nregs)
1572 int i;
1574 if (nregs == 0)
1575 return;
1577 /* See if the machine can do this with a store multiple insn. */
1578 #ifdef HAVE_store_multiple
1579 if (HAVE_store_multiple)
1581 rtx_insn *last = get_last_insn ();
1582 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1583 GEN_INT (nregs));
1584 if (pat)
1586 emit_insn (pat);
1587 return;
1589 else
1590 delete_insns_since (last);
1592 #endif
1594 for (i = 0; i < nregs; i++)
1596 rtx tem = operand_subword (x, i, 1, BLKmode);
1598 gcc_assert (tem);
1600 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1604 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1605 ORIG, where ORIG is a non-consecutive group of registers represented by
1606 a PARALLEL. The clone is identical to the original except in that the
1607 original set of registers is replaced by a new set of pseudo registers.
1608 The new set has the same modes as the original set. */
1611 gen_group_rtx (rtx orig)
1613 int i, length;
1614 rtx *tmps;
1616 gcc_assert (GET_CODE (orig) == PARALLEL);
1618 length = XVECLEN (orig, 0);
1619 tmps = XALLOCAVEC (rtx, length);
1621 /* Skip a NULL entry in first slot. */
1622 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1624 if (i)
1625 tmps[0] = 0;
1627 for (; i < length; i++)
1629 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1630 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1632 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1635 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1638 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1639 except that values are placed in TMPS[i], and must later be moved
1640 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1642 static void
1643 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1645 rtx src;
1646 int start, i;
1647 enum machine_mode m = GET_MODE (orig_src);
1649 gcc_assert (GET_CODE (dst) == PARALLEL);
1651 if (m != VOIDmode
1652 && !SCALAR_INT_MODE_P (m)
1653 && !MEM_P (orig_src)
1654 && GET_CODE (orig_src) != CONCAT)
1656 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1657 if (imode == BLKmode)
1658 src = assign_stack_temp (GET_MODE (orig_src), ssize);
1659 else
1660 src = gen_reg_rtx (imode);
1661 if (imode != BLKmode)
1662 src = gen_lowpart (GET_MODE (orig_src), src);
1663 emit_move_insn (src, orig_src);
1664 /* ...and back again. */
1665 if (imode != BLKmode)
1666 src = gen_lowpart (imode, src);
1667 emit_group_load_1 (tmps, dst, src, type, ssize);
1668 return;
1671 /* Check for a NULL entry, used to indicate that the parameter goes
1672 both on the stack and in registers. */
1673 if (XEXP (XVECEXP (dst, 0, 0), 0))
1674 start = 0;
1675 else
1676 start = 1;
1678 /* Process the pieces. */
1679 for (i = start; i < XVECLEN (dst, 0); i++)
1681 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1682 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1683 unsigned int bytelen = GET_MODE_SIZE (mode);
1684 int shift = 0;
1686 /* Handle trailing fragments that run over the size of the struct. */
1687 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1689 /* Arrange to shift the fragment to where it belongs.
1690 extract_bit_field loads to the lsb of the reg. */
1691 if (
1692 #ifdef BLOCK_REG_PADDING
1693 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1694 == (BYTES_BIG_ENDIAN ? upward : downward)
1695 #else
1696 BYTES_BIG_ENDIAN
1697 #endif
1699 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1700 bytelen = ssize - bytepos;
1701 gcc_assert (bytelen > 0);
1704 /* If we won't be loading directly from memory, protect the real source
1705 from strange tricks we might play; but make sure that the source can
1706 be loaded directly into the destination. */
1707 src = orig_src;
1708 if (!MEM_P (orig_src)
1709 && (!CONSTANT_P (orig_src)
1710 || (GET_MODE (orig_src) != mode
1711 && GET_MODE (orig_src) != VOIDmode)))
1713 if (GET_MODE (orig_src) == VOIDmode)
1714 src = gen_reg_rtx (mode);
1715 else
1716 src = gen_reg_rtx (GET_MODE (orig_src));
1718 emit_move_insn (src, orig_src);
1721 /* Optimize the access just a bit. */
1722 if (MEM_P (src)
1723 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1724 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1725 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1726 && bytelen == GET_MODE_SIZE (mode))
1728 tmps[i] = gen_reg_rtx (mode);
1729 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1731 else if (COMPLEX_MODE_P (mode)
1732 && GET_MODE (src) == mode
1733 && bytelen == GET_MODE_SIZE (mode))
1734 /* Let emit_move_complex do the bulk of the work. */
1735 tmps[i] = src;
1736 else if (GET_CODE (src) == CONCAT)
1738 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1739 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1741 if ((bytepos == 0 && bytelen == slen0)
1742 || (bytepos != 0 && bytepos + bytelen <= slen))
1744 /* The following assumes that the concatenated objects all
1745 have the same size. In this case, a simple calculation
1746 can be used to determine the object and the bit field
1747 to be extracted. */
1748 tmps[i] = XEXP (src, bytepos / slen0);
1749 if (! CONSTANT_P (tmps[i])
1750 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1751 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1752 (bytepos % slen0) * BITS_PER_UNIT,
1753 1, NULL_RTX, mode, mode);
1755 else
1757 rtx mem;
1759 gcc_assert (!bytepos);
1760 mem = assign_stack_temp (GET_MODE (src), slen);
1761 emit_move_insn (mem, src);
1762 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1763 0, 1, NULL_RTX, mode, mode);
1766 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1767 SIMD register, which is currently broken. While we get GCC
1768 to emit proper RTL for these cases, let's dump to memory. */
1769 else if (VECTOR_MODE_P (GET_MODE (dst))
1770 && REG_P (src))
1772 int slen = GET_MODE_SIZE (GET_MODE (src));
1773 rtx mem;
1775 mem = assign_stack_temp (GET_MODE (src), slen);
1776 emit_move_insn (mem, src);
1777 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1779 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1780 && XVECLEN (dst, 0) > 1)
1781 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
1782 else if (CONSTANT_P (src))
1784 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1786 if (len == ssize)
1787 tmps[i] = src;
1788 else
1790 rtx first, second;
1792 /* TODO: const_wide_int can have sizes other than this... */
1793 gcc_assert (2 * len == ssize);
1794 split_double (src, &first, &second);
1795 if (i)
1796 tmps[i] = second;
1797 else
1798 tmps[i] = first;
1801 else if (REG_P (src) && GET_MODE (src) == mode)
1802 tmps[i] = src;
1803 else
1804 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1805 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1806 mode, mode);
1808 if (shift)
1809 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1810 shift, tmps[i], 0);
1814 /* Emit code to move a block SRC of type TYPE to a block DST,
1815 where DST is non-consecutive registers represented by a PARALLEL.
1816 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1817 if not known. */
1819 void
1820 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1822 rtx *tmps;
1823 int i;
1825 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1826 emit_group_load_1 (tmps, dst, src, type, ssize);
1828 /* Copy the extracted pieces into the proper (probable) hard regs. */
1829 for (i = 0; i < XVECLEN (dst, 0); i++)
1831 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1832 if (d == NULL)
1833 continue;
1834 emit_move_insn (d, tmps[i]);
1838 /* Similar, but load SRC into new pseudos in a format that looks like
1839 PARALLEL. This can later be fed to emit_group_move to get things
1840 in the right place. */
1843 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1845 rtvec vec;
1846 int i;
1848 vec = rtvec_alloc (XVECLEN (parallel, 0));
1849 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1851 /* Convert the vector to look just like the original PARALLEL, except
1852 with the computed values. */
1853 for (i = 0; i < XVECLEN (parallel, 0); i++)
1855 rtx e = XVECEXP (parallel, 0, i);
1856 rtx d = XEXP (e, 0);
1858 if (d)
1860 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1861 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1863 RTVEC_ELT (vec, i) = e;
1866 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1869 /* Emit code to move a block SRC to block DST, where SRC and DST are
1870 non-consecutive groups of registers, each represented by a PARALLEL. */
1872 void
1873 emit_group_move (rtx dst, rtx src)
1875 int i;
1877 gcc_assert (GET_CODE (src) == PARALLEL
1878 && GET_CODE (dst) == PARALLEL
1879 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1881 /* Skip first entry if NULL. */
1882 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1883 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1884 XEXP (XVECEXP (src, 0, i), 0));
1887 /* Move a group of registers represented by a PARALLEL into pseudos. */
1890 emit_group_move_into_temps (rtx src)
1892 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1893 int i;
1895 for (i = 0; i < XVECLEN (src, 0); i++)
1897 rtx e = XVECEXP (src, 0, i);
1898 rtx d = XEXP (e, 0);
1900 if (d)
1901 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1902 RTVEC_ELT (vec, i) = e;
1905 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1908 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1909 where SRC is non-consecutive registers represented by a PARALLEL.
1910 SSIZE represents the total size of block ORIG_DST, or -1 if not
1911 known. */
1913 void
1914 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1916 rtx *tmps, dst;
1917 int start, finish, i;
1918 enum machine_mode m = GET_MODE (orig_dst);
1920 gcc_assert (GET_CODE (src) == PARALLEL);
1922 if (!SCALAR_INT_MODE_P (m)
1923 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1925 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1926 if (imode == BLKmode)
1927 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
1928 else
1929 dst = gen_reg_rtx (imode);
1930 emit_group_store (dst, src, type, ssize);
1931 if (imode != BLKmode)
1932 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1933 emit_move_insn (orig_dst, dst);
1934 return;
1937 /* Check for a NULL entry, used to indicate that the parameter goes
1938 both on the stack and in registers. */
1939 if (XEXP (XVECEXP (src, 0, 0), 0))
1940 start = 0;
1941 else
1942 start = 1;
1943 finish = XVECLEN (src, 0);
1945 tmps = XALLOCAVEC (rtx, finish);
1947 /* Copy the (probable) hard regs into pseudos. */
1948 for (i = start; i < finish; i++)
1950 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1951 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1953 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1954 emit_move_insn (tmps[i], reg);
1956 else
1957 tmps[i] = reg;
1960 /* If we won't be storing directly into memory, protect the real destination
1961 from strange tricks we might play. */
1962 dst = orig_dst;
1963 if (GET_CODE (dst) == PARALLEL)
1965 rtx temp;
1967 /* We can get a PARALLEL dst if there is a conditional expression in
1968 a return statement. In that case, the dst and src are the same,
1969 so no action is necessary. */
1970 if (rtx_equal_p (dst, src))
1971 return;
1973 /* It is unclear if we can ever reach here, but we may as well handle
1974 it. Allocate a temporary, and split this into a store/load to/from
1975 the temporary. */
1976 temp = assign_stack_temp (GET_MODE (dst), ssize);
1977 emit_group_store (temp, src, type, ssize);
1978 emit_group_load (dst, temp, type, ssize);
1979 return;
1981 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1983 enum machine_mode outer = GET_MODE (dst);
1984 enum machine_mode inner;
1985 HOST_WIDE_INT bytepos;
1986 bool done = false;
1987 rtx temp;
1989 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1990 dst = gen_reg_rtx (outer);
1992 /* Make life a bit easier for combine. */
1993 /* If the first element of the vector is the low part
1994 of the destination mode, use a paradoxical subreg to
1995 initialize the destination. */
1996 if (start < finish)
1998 inner = GET_MODE (tmps[start]);
1999 bytepos = subreg_lowpart_offset (inner, outer);
2000 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2002 temp = simplify_gen_subreg (outer, tmps[start],
2003 inner, 0);
2004 if (temp)
2006 emit_move_insn (dst, temp);
2007 done = true;
2008 start++;
2013 /* If the first element wasn't the low part, try the last. */
2014 if (!done
2015 && start < finish - 1)
2017 inner = GET_MODE (tmps[finish - 1]);
2018 bytepos = subreg_lowpart_offset (inner, outer);
2019 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2021 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2022 inner, 0);
2023 if (temp)
2025 emit_move_insn (dst, temp);
2026 done = true;
2027 finish--;
2032 /* Otherwise, simply initialize the result to zero. */
2033 if (!done)
2034 emit_move_insn (dst, CONST0_RTX (outer));
2037 /* Process the pieces. */
2038 for (i = start; i < finish; i++)
2040 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2041 enum machine_mode mode = GET_MODE (tmps[i]);
2042 unsigned int bytelen = GET_MODE_SIZE (mode);
2043 unsigned int adj_bytelen;
2044 rtx dest = dst;
2046 /* Handle trailing fragments that run over the size of the struct. */
2047 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2048 adj_bytelen = ssize - bytepos;
2049 else
2050 adj_bytelen = bytelen;
2052 if (GET_CODE (dst) == CONCAT)
2054 if (bytepos + adj_bytelen
2055 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2056 dest = XEXP (dst, 0);
2057 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2059 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2060 dest = XEXP (dst, 1);
2062 else
2064 enum machine_mode dest_mode = GET_MODE (dest);
2065 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2067 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2069 if (GET_MODE_ALIGNMENT (dest_mode)
2070 >= GET_MODE_ALIGNMENT (tmp_mode))
2072 dest = assign_stack_temp (dest_mode,
2073 GET_MODE_SIZE (dest_mode));
2074 emit_move_insn (adjust_address (dest,
2075 tmp_mode,
2076 bytepos),
2077 tmps[i]);
2078 dst = dest;
2080 else
2082 dest = assign_stack_temp (tmp_mode,
2083 GET_MODE_SIZE (tmp_mode));
2084 emit_move_insn (dest, tmps[i]);
2085 dst = adjust_address (dest, dest_mode, bytepos);
2087 break;
2091 /* Handle trailing fragments that run over the size of the struct. */
2092 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2094 /* store_bit_field always takes its value from the lsb.
2095 Move the fragment to the lsb if it's not already there. */
2096 if (
2097 #ifdef BLOCK_REG_PADDING
2098 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2099 == (BYTES_BIG_ENDIAN ? upward : downward)
2100 #else
2101 BYTES_BIG_ENDIAN
2102 #endif
2105 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2106 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2107 shift, tmps[i], 0);
2110 /* Make sure not to write past the end of the struct. */
2111 store_bit_field (dest,
2112 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2113 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2114 VOIDmode, tmps[i]);
2117 /* Optimize the access just a bit. */
2118 else if (MEM_P (dest)
2119 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2120 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2121 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2122 && bytelen == GET_MODE_SIZE (mode))
2123 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2125 else
2126 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2127 0, 0, mode, tmps[i]);
2130 /* Copy from the pseudo into the (probable) hard reg. */
2131 if (orig_dst != dst)
2132 emit_move_insn (orig_dst, dst);
2135 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2136 of the value stored in X. */
2139 maybe_emit_group_store (rtx x, tree type)
2141 enum machine_mode mode = TYPE_MODE (type);
2142 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2143 if (GET_CODE (x) == PARALLEL)
2145 rtx result = gen_reg_rtx (mode);
2146 emit_group_store (result, x, type, int_size_in_bytes (type));
2147 return result;
2149 return x;
2152 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2154 This is used on targets that return BLKmode values in registers. */
2156 void
2157 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2159 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2160 rtx src = NULL, dst = NULL;
2161 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2162 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2163 enum machine_mode mode = GET_MODE (srcreg);
2164 enum machine_mode tmode = GET_MODE (target);
2165 enum machine_mode copy_mode;
2167 /* BLKmode registers created in the back-end shouldn't have survived. */
2168 gcc_assert (mode != BLKmode);
2170 /* If the structure doesn't take up a whole number of words, see whether
2171 SRCREG is padded on the left or on the right. If it's on the left,
2172 set PADDING_CORRECTION to the number of bits to skip.
2174 In most ABIs, the structure will be returned at the least end of
2175 the register, which translates to right padding on little-endian
2176 targets and left padding on big-endian targets. The opposite
2177 holds if the structure is returned at the most significant
2178 end of the register. */
2179 if (bytes % UNITS_PER_WORD != 0
2180 && (targetm.calls.return_in_msb (type)
2181 ? !BYTES_BIG_ENDIAN
2182 : BYTES_BIG_ENDIAN))
2183 padding_correction
2184 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2186 /* We can use a single move if we have an exact mode for the size. */
2187 else if (MEM_P (target)
2188 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))
2189 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2190 && bytes == GET_MODE_SIZE (mode))
2192 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2193 return;
2196 /* And if we additionally have the same mode for a register. */
2197 else if (REG_P (target)
2198 && GET_MODE (target) == mode
2199 && bytes == GET_MODE_SIZE (mode))
2201 emit_move_insn (target, srcreg);
2202 return;
2205 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2206 into a new pseudo which is a full word. */
2207 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2209 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2210 mode = word_mode;
2213 /* Copy the structure BITSIZE bits at a time. If the target lives in
2214 memory, take care of not reading/writing past its end by selecting
2215 a copy mode suited to BITSIZE. This should always be possible given
2216 how it is computed.
2218 If the target lives in register, make sure not to select a copy mode
2219 larger than the mode of the register.
2221 We could probably emit more efficient code for machines which do not use
2222 strict alignment, but it doesn't seem worth the effort at the current
2223 time. */
2225 copy_mode = word_mode;
2226 if (MEM_P (target))
2228 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2229 if (mem_mode != BLKmode)
2230 copy_mode = mem_mode;
2232 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2233 copy_mode = tmode;
2235 for (bitpos = 0, xbitpos = padding_correction;
2236 bitpos < bytes * BITS_PER_UNIT;
2237 bitpos += bitsize, xbitpos += bitsize)
2239 /* We need a new source operand each time xbitpos is on a
2240 word boundary and when xbitpos == padding_correction
2241 (the first time through). */
2242 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2243 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2245 /* We need a new destination operand each time bitpos is on
2246 a word boundary. */
2247 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2248 dst = target;
2249 else if (bitpos % BITS_PER_WORD == 0)
2250 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2252 /* Use xbitpos for the source extraction (right justified) and
2253 bitpos for the destination store (left justified). */
2254 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2255 extract_bit_field (src, bitsize,
2256 xbitpos % BITS_PER_WORD, 1,
2257 NULL_RTX, copy_mode, copy_mode));
2261 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2262 register if it contains any data, otherwise return null.
2264 This is used on targets that return BLKmode values in registers. */
2267 copy_blkmode_to_reg (enum machine_mode mode, tree src)
2269 int i, n_regs;
2270 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2271 unsigned int bitsize;
2272 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2273 enum machine_mode dst_mode;
2275 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2277 x = expand_normal (src);
2279 bytes = int_size_in_bytes (TREE_TYPE (src));
2280 if (bytes == 0)
2281 return NULL_RTX;
2283 /* If the structure doesn't take up a whole number of words, see
2284 whether the register value should be padded on the left or on
2285 the right. Set PADDING_CORRECTION to the number of padding
2286 bits needed on the left side.
2288 In most ABIs, the structure will be returned at the least end of
2289 the register, which translates to right padding on little-endian
2290 targets and left padding on big-endian targets. The opposite
2291 holds if the structure is returned at the most significant
2292 end of the register. */
2293 if (bytes % UNITS_PER_WORD != 0
2294 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2295 ? !BYTES_BIG_ENDIAN
2296 : BYTES_BIG_ENDIAN))
2297 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2298 * BITS_PER_UNIT));
2300 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2301 dst_words = XALLOCAVEC (rtx, n_regs);
2302 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2304 /* Copy the structure BITSIZE bits at a time. */
2305 for (bitpos = 0, xbitpos = padding_correction;
2306 bitpos < bytes * BITS_PER_UNIT;
2307 bitpos += bitsize, xbitpos += bitsize)
2309 /* We need a new destination pseudo each time xbitpos is
2310 on a word boundary and when xbitpos == padding_correction
2311 (the first time through). */
2312 if (xbitpos % BITS_PER_WORD == 0
2313 || xbitpos == padding_correction)
2315 /* Generate an appropriate register. */
2316 dst_word = gen_reg_rtx (word_mode);
2317 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2319 /* Clear the destination before we move anything into it. */
2320 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2323 /* We need a new source operand each time bitpos is on a word
2324 boundary. */
2325 if (bitpos % BITS_PER_WORD == 0)
2326 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2328 /* Use bitpos for the source extraction (left justified) and
2329 xbitpos for the destination store (right justified). */
2330 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2331 0, 0, word_mode,
2332 extract_bit_field (src_word, bitsize,
2333 bitpos % BITS_PER_WORD, 1,
2334 NULL_RTX, word_mode, word_mode));
2337 if (mode == BLKmode)
2339 /* Find the smallest integer mode large enough to hold the
2340 entire structure. */
2341 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2342 mode != VOIDmode;
2343 mode = GET_MODE_WIDER_MODE (mode))
2344 /* Have we found a large enough mode? */
2345 if (GET_MODE_SIZE (mode) >= bytes)
2346 break;
2348 /* A suitable mode should have been found. */
2349 gcc_assert (mode != VOIDmode);
2352 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2353 dst_mode = word_mode;
2354 else
2355 dst_mode = mode;
2356 dst = gen_reg_rtx (dst_mode);
2358 for (i = 0; i < n_regs; i++)
2359 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2361 if (mode != dst_mode)
2362 dst = gen_lowpart (mode, dst);
2364 return dst;
2367 /* Add a USE expression for REG to the (possibly empty) list pointed
2368 to by CALL_FUSAGE. REG must denote a hard register. */
2370 void
2371 use_reg_mode (rtx *call_fusage, rtx reg, enum machine_mode mode)
2373 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2375 *call_fusage
2376 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2379 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2380 to by CALL_FUSAGE. REG must denote a hard register. */
2382 void
2383 clobber_reg_mode (rtx *call_fusage, rtx reg, enum machine_mode mode)
2385 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2387 *call_fusage
2388 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2391 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2392 starting at REGNO. All of these registers must be hard registers. */
2394 void
2395 use_regs (rtx *call_fusage, int regno, int nregs)
2397 int i;
2399 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2401 for (i = 0; i < nregs; i++)
2402 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2405 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2406 PARALLEL REGS. This is for calls that pass values in multiple
2407 non-contiguous locations. The Irix 6 ABI has examples of this. */
2409 void
2410 use_group_regs (rtx *call_fusage, rtx regs)
2412 int i;
2414 for (i = 0; i < XVECLEN (regs, 0); i++)
2416 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2418 /* A NULL entry means the parameter goes both on the stack and in
2419 registers. This can also be a MEM for targets that pass values
2420 partially on the stack and partially in registers. */
2421 if (reg != 0 && REG_P (reg))
2422 use_reg (call_fusage, reg);
2426 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2427 assigment and the code of the expresion on the RHS is CODE. Return
2428 NULL otherwise. */
2430 static gimple
2431 get_def_for_expr (tree name, enum tree_code code)
2433 gimple def_stmt;
2435 if (TREE_CODE (name) != SSA_NAME)
2436 return NULL;
2438 def_stmt = get_gimple_for_ssa_name (name);
2439 if (!def_stmt
2440 || gimple_assign_rhs_code (def_stmt) != code)
2441 return NULL;
2443 return def_stmt;
2446 #ifdef HAVE_conditional_move
2447 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2448 assigment and the class of the expresion on the RHS is CLASS. Return
2449 NULL otherwise. */
2451 static gimple
2452 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2454 gimple def_stmt;
2456 if (TREE_CODE (name) != SSA_NAME)
2457 return NULL;
2459 def_stmt = get_gimple_for_ssa_name (name);
2460 if (!def_stmt
2461 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2462 return NULL;
2464 return def_stmt;
2466 #endif
2469 /* Determine whether the LEN bytes generated by CONSTFUN can be
2470 stored to memory using several move instructions. CONSTFUNDATA is
2471 a pointer which will be passed as argument in every CONSTFUN call.
2472 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2473 a memset operation and false if it's a copy of a constant string.
2474 Return nonzero if a call to store_by_pieces should succeed. */
2477 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2478 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2479 void *constfundata, unsigned int align, bool memsetp)
2481 unsigned HOST_WIDE_INT l;
2482 unsigned int max_size;
2483 HOST_WIDE_INT offset = 0;
2484 enum machine_mode mode;
2485 enum insn_code icode;
2486 int reverse;
2487 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2488 rtx cst ATTRIBUTE_UNUSED;
2490 if (len == 0)
2491 return 1;
2493 if (! (memsetp
2494 ? SET_BY_PIECES_P (len, align)
2495 : STORE_BY_PIECES_P (len, align)))
2496 return 0;
2498 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2500 /* We would first store what we can in the largest integer mode, then go to
2501 successively smaller modes. */
2503 for (reverse = 0;
2504 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2505 reverse++)
2507 l = len;
2508 max_size = STORE_MAX_PIECES + 1;
2509 while (max_size > 1 && l > 0)
2511 mode = widest_int_mode_for_size (max_size);
2513 if (mode == VOIDmode)
2514 break;
2516 icode = optab_handler (mov_optab, mode);
2517 if (icode != CODE_FOR_nothing
2518 && align >= GET_MODE_ALIGNMENT (mode))
2520 unsigned int size = GET_MODE_SIZE (mode);
2522 while (l >= size)
2524 if (reverse)
2525 offset -= size;
2527 cst = (*constfun) (constfundata, offset, mode);
2528 if (!targetm.legitimate_constant_p (mode, cst))
2529 return 0;
2531 if (!reverse)
2532 offset += size;
2534 l -= size;
2538 max_size = GET_MODE_SIZE (mode);
2541 /* The code above should have handled everything. */
2542 gcc_assert (!l);
2545 return 1;
2548 /* Generate several move instructions to store LEN bytes generated by
2549 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2550 pointer which will be passed as argument in every CONSTFUN call.
2551 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2552 a memset operation and false if it's a copy of a constant string.
2553 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2554 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2555 stpcpy. */
2558 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2559 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2560 void *constfundata, unsigned int align, bool memsetp, int endp)
2562 enum machine_mode to_addr_mode = get_address_mode (to);
2563 struct store_by_pieces_d data;
2565 if (len == 0)
2567 gcc_assert (endp != 2);
2568 return to;
2571 gcc_assert (memsetp
2572 ? SET_BY_PIECES_P (len, align)
2573 : STORE_BY_PIECES_P (len, align));
2574 data.constfun = constfun;
2575 data.constfundata = constfundata;
2576 data.len = len;
2577 data.to = to;
2578 store_by_pieces_1 (&data, align);
2579 if (endp)
2581 rtx to1;
2583 gcc_assert (!data.reverse);
2584 if (data.autinc_to)
2586 if (endp == 2)
2588 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2589 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2590 else
2591 data.to_addr = copy_to_mode_reg (to_addr_mode,
2592 plus_constant (to_addr_mode,
2593 data.to_addr,
2594 -1));
2596 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2597 data.offset);
2599 else
2601 if (endp == 2)
2602 --data.offset;
2603 to1 = adjust_address (data.to, QImode, data.offset);
2605 return to1;
2607 else
2608 return data.to;
2611 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2612 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2614 static void
2615 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2617 struct store_by_pieces_d data;
2619 if (len == 0)
2620 return;
2622 data.constfun = clear_by_pieces_1;
2623 data.constfundata = NULL;
2624 data.len = len;
2625 data.to = to;
2626 store_by_pieces_1 (&data, align);
2629 /* Callback routine for clear_by_pieces.
2630 Return const0_rtx unconditionally. */
2632 static rtx
2633 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2634 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2635 enum machine_mode mode ATTRIBUTE_UNUSED)
2637 return const0_rtx;
2640 /* Subroutine of clear_by_pieces and store_by_pieces.
2641 Generate several move instructions to store LEN bytes of block TO. (A MEM
2642 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2644 static void
2645 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2646 unsigned int align ATTRIBUTE_UNUSED)
2648 enum machine_mode to_addr_mode = get_address_mode (data->to);
2649 rtx to_addr = XEXP (data->to, 0);
2650 unsigned int max_size = STORE_MAX_PIECES + 1;
2651 enum insn_code icode;
2653 data->offset = 0;
2654 data->to_addr = to_addr;
2655 data->autinc_to
2656 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2657 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2659 data->explicit_inc_to = 0;
2660 data->reverse
2661 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2662 if (data->reverse)
2663 data->offset = data->len;
2665 /* If storing requires more than two move insns,
2666 copy addresses to registers (to make displacements shorter)
2667 and use post-increment if available. */
2668 if (!data->autinc_to
2669 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2671 /* Determine the main mode we'll be using.
2672 MODE might not be used depending on the definitions of the
2673 USE_* macros below. */
2674 enum machine_mode mode ATTRIBUTE_UNUSED
2675 = widest_int_mode_for_size (max_size);
2677 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2679 data->to_addr = copy_to_mode_reg (to_addr_mode,
2680 plus_constant (to_addr_mode,
2681 to_addr,
2682 data->len));
2683 data->autinc_to = 1;
2684 data->explicit_inc_to = -1;
2687 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2688 && ! data->autinc_to)
2690 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2691 data->autinc_to = 1;
2692 data->explicit_inc_to = 1;
2695 if ( !data->autinc_to && CONSTANT_P (to_addr))
2696 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2699 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2701 /* First store what we can in the largest integer mode, then go to
2702 successively smaller modes. */
2704 while (max_size > 1 && data->len > 0)
2706 enum machine_mode mode = widest_int_mode_for_size (max_size);
2708 if (mode == VOIDmode)
2709 break;
2711 icode = optab_handler (mov_optab, mode);
2712 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2713 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2715 max_size = GET_MODE_SIZE (mode);
2718 /* The code above should have handled everything. */
2719 gcc_assert (!data->len);
2722 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2723 with move instructions for mode MODE. GENFUN is the gen_... function
2724 to make a move insn for that mode. DATA has all the other info. */
2726 static void
2727 store_by_pieces_2 (insn_gen_fn genfun, machine_mode mode,
2728 struct store_by_pieces_d *data)
2730 unsigned int size = GET_MODE_SIZE (mode);
2731 rtx to1, cst;
2733 while (data->len >= size)
2735 if (data->reverse)
2736 data->offset -= size;
2738 if (data->autinc_to)
2739 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2740 data->offset);
2741 else
2742 to1 = adjust_address (data->to, mode, data->offset);
2744 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2745 emit_insn (gen_add2_insn (data->to_addr,
2746 gen_int_mode (-(HOST_WIDE_INT) size,
2747 GET_MODE (data->to_addr))));
2749 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2750 emit_insn ((*genfun) (to1, cst));
2752 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2753 emit_insn (gen_add2_insn (data->to_addr,
2754 gen_int_mode (size,
2755 GET_MODE (data->to_addr))));
2757 if (! data->reverse)
2758 data->offset += size;
2760 data->len -= size;
2764 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2765 its length in bytes. */
2768 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2769 unsigned int expected_align, HOST_WIDE_INT expected_size,
2770 unsigned HOST_WIDE_INT min_size,
2771 unsigned HOST_WIDE_INT max_size,
2772 unsigned HOST_WIDE_INT probable_max_size)
2774 enum machine_mode mode = GET_MODE (object);
2775 unsigned int align;
2777 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2779 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2780 just move a zero. Otherwise, do this a piece at a time. */
2781 if (mode != BLKmode
2782 && CONST_INT_P (size)
2783 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2785 rtx zero = CONST0_RTX (mode);
2786 if (zero != NULL)
2788 emit_move_insn (object, zero);
2789 return NULL;
2792 if (COMPLEX_MODE_P (mode))
2794 zero = CONST0_RTX (GET_MODE_INNER (mode));
2795 if (zero != NULL)
2797 write_complex_part (object, zero, 0);
2798 write_complex_part (object, zero, 1);
2799 return NULL;
2804 if (size == const0_rtx)
2805 return NULL;
2807 align = MEM_ALIGN (object);
2809 if (CONST_INT_P (size)
2810 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2811 clear_by_pieces (object, INTVAL (size), align);
2812 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2813 expected_align, expected_size,
2814 min_size, max_size, probable_max_size))
2816 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2817 return set_storage_via_libcall (object, size, const0_rtx,
2818 method == BLOCK_OP_TAILCALL);
2819 else
2820 gcc_unreachable ();
2822 return NULL;
2826 clear_storage (rtx object, rtx size, enum block_op_methods method)
2828 unsigned HOST_WIDE_INT max, min = 0;
2829 if (GET_CODE (size) == CONST_INT)
2830 min = max = UINTVAL (size);
2831 else
2832 max = GET_MODE_MASK (GET_MODE (size));
2833 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
2837 /* A subroutine of clear_storage. Expand a call to memset.
2838 Return the return value of memset, 0 otherwise. */
2841 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2843 tree call_expr, fn, object_tree, size_tree, val_tree;
2844 enum machine_mode size_mode;
2845 rtx retval;
2847 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2848 place those into new pseudos into a VAR_DECL and use them later. */
2850 object = copy_addr_to_reg (XEXP (object, 0));
2852 size_mode = TYPE_MODE (sizetype);
2853 size = convert_to_mode (size_mode, size, 1);
2854 size = copy_to_mode_reg (size_mode, size);
2856 /* It is incorrect to use the libcall calling conventions to call
2857 memset in this context. This could be a user call to memset and
2858 the user may wish to examine the return value from memset. For
2859 targets where libcalls and normal calls have different conventions
2860 for returning pointers, we could end up generating incorrect code. */
2862 object_tree = make_tree (ptr_type_node, object);
2863 if (!CONST_INT_P (val))
2864 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2865 size_tree = make_tree (sizetype, size);
2866 val_tree = make_tree (integer_type_node, val);
2868 fn = clear_storage_libcall_fn (true);
2869 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2870 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2872 retval = expand_normal (call_expr);
2874 return retval;
2877 /* A subroutine of set_storage_via_libcall. Create the tree node
2878 for the function we use for block clears. */
2880 tree block_clear_fn;
2882 void
2883 init_block_clear_fn (const char *asmspec)
2885 if (!block_clear_fn)
2887 tree fn, args;
2889 fn = get_identifier ("memset");
2890 args = build_function_type_list (ptr_type_node, ptr_type_node,
2891 integer_type_node, sizetype,
2892 NULL_TREE);
2894 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2895 DECL_EXTERNAL (fn) = 1;
2896 TREE_PUBLIC (fn) = 1;
2897 DECL_ARTIFICIAL (fn) = 1;
2898 TREE_NOTHROW (fn) = 1;
2899 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2900 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2902 block_clear_fn = fn;
2905 if (asmspec)
2906 set_user_assembler_name (block_clear_fn, asmspec);
2909 static tree
2910 clear_storage_libcall_fn (int for_call)
2912 static bool emitted_extern;
2914 if (!block_clear_fn)
2915 init_block_clear_fn (NULL);
2917 if (for_call && !emitted_extern)
2919 emitted_extern = true;
2920 make_decl_rtl (block_clear_fn);
2923 return block_clear_fn;
2926 /* Expand a setmem pattern; return true if successful. */
2928 bool
2929 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2930 unsigned int expected_align, HOST_WIDE_INT expected_size,
2931 unsigned HOST_WIDE_INT min_size,
2932 unsigned HOST_WIDE_INT max_size,
2933 unsigned HOST_WIDE_INT probable_max_size)
2935 /* Try the most limited insn first, because there's no point
2936 including more than one in the machine description unless
2937 the more limited one has some advantage. */
2939 enum machine_mode mode;
2941 if (expected_align < align)
2942 expected_align = align;
2943 if (expected_size != -1)
2945 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
2946 expected_size = max_size;
2947 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
2948 expected_size = min_size;
2951 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2952 mode = GET_MODE_WIDER_MODE (mode))
2954 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2956 if (code != CODE_FOR_nothing
2957 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2958 here because if SIZE is less than the mode mask, as it is
2959 returned by the macro, it will definitely be less than the
2960 actual mode mask. Since SIZE is within the Pmode address
2961 space, we limit MODE to Pmode. */
2962 && ((CONST_INT_P (size)
2963 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2964 <= (GET_MODE_MASK (mode) >> 1)))
2965 || max_size <= (GET_MODE_MASK (mode) >> 1)
2966 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
2968 struct expand_operand ops[9];
2969 unsigned int nops;
2971 nops = insn_data[(int) code].n_generator_args;
2972 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
2974 create_fixed_operand (&ops[0], object);
2975 /* The check above guarantees that this size conversion is valid. */
2976 create_convert_operand_to (&ops[1], size, mode, true);
2977 create_convert_operand_from (&ops[2], val, byte_mode, true);
2978 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2979 if (nops >= 6)
2981 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2982 create_integer_operand (&ops[5], expected_size);
2984 if (nops >= 8)
2986 create_integer_operand (&ops[6], min_size);
2987 /* If we can not represent the maximal size,
2988 make parameter NULL. */
2989 if ((HOST_WIDE_INT) max_size != -1)
2990 create_integer_operand (&ops[7], max_size);
2991 else
2992 create_fixed_operand (&ops[7], NULL);
2994 if (nops == 9)
2996 /* If we can not represent the maximal size,
2997 make parameter NULL. */
2998 if ((HOST_WIDE_INT) probable_max_size != -1)
2999 create_integer_operand (&ops[8], probable_max_size);
3000 else
3001 create_fixed_operand (&ops[8], NULL);
3003 if (maybe_expand_insn (code, nops, ops))
3004 return true;
3008 return false;
3012 /* Write to one of the components of the complex value CPLX. Write VAL to
3013 the real part if IMAG_P is false, and the imaginary part if its true. */
3015 static void
3016 write_complex_part (rtx cplx, rtx val, bool imag_p)
3018 enum machine_mode cmode;
3019 enum machine_mode imode;
3020 unsigned ibitsize;
3022 if (GET_CODE (cplx) == CONCAT)
3024 emit_move_insn (XEXP (cplx, imag_p), val);
3025 return;
3028 cmode = GET_MODE (cplx);
3029 imode = GET_MODE_INNER (cmode);
3030 ibitsize = GET_MODE_BITSIZE (imode);
3032 /* For MEMs simplify_gen_subreg may generate an invalid new address
3033 because, e.g., the original address is considered mode-dependent
3034 by the target, which restricts simplify_subreg from invoking
3035 adjust_address_nv. Instead of preparing fallback support for an
3036 invalid address, we call adjust_address_nv directly. */
3037 if (MEM_P (cplx))
3039 emit_move_insn (adjust_address_nv (cplx, imode,
3040 imag_p ? GET_MODE_SIZE (imode) : 0),
3041 val);
3042 return;
3045 /* If the sub-object is at least word sized, then we know that subregging
3046 will work. This special case is important, since store_bit_field
3047 wants to operate on integer modes, and there's rarely an OImode to
3048 correspond to TCmode. */
3049 if (ibitsize >= BITS_PER_WORD
3050 /* For hard regs we have exact predicates. Assume we can split
3051 the original object if it spans an even number of hard regs.
3052 This special case is important for SCmode on 64-bit platforms
3053 where the natural size of floating-point regs is 32-bit. */
3054 || (REG_P (cplx)
3055 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3056 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
3058 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3059 imag_p ? GET_MODE_SIZE (imode) : 0);
3060 if (part)
3062 emit_move_insn (part, val);
3063 return;
3065 else
3066 /* simplify_gen_subreg may fail for sub-word MEMs. */
3067 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3070 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val);
3073 /* Extract one of the components of the complex value CPLX. Extract the
3074 real part if IMAG_P is false, and the imaginary part if it's true. */
3076 static rtx
3077 read_complex_part (rtx cplx, bool imag_p)
3079 enum machine_mode cmode, imode;
3080 unsigned ibitsize;
3082 if (GET_CODE (cplx) == CONCAT)
3083 return XEXP (cplx, imag_p);
3085 cmode = GET_MODE (cplx);
3086 imode = GET_MODE_INNER (cmode);
3087 ibitsize = GET_MODE_BITSIZE (imode);
3089 /* Special case reads from complex constants that got spilled to memory. */
3090 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3092 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3093 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3095 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3096 if (CONSTANT_CLASS_P (part))
3097 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3101 /* For MEMs simplify_gen_subreg may generate an invalid new address
3102 because, e.g., the original address is considered mode-dependent
3103 by the target, which restricts simplify_subreg from invoking
3104 adjust_address_nv. Instead of preparing fallback support for an
3105 invalid address, we call adjust_address_nv directly. */
3106 if (MEM_P (cplx))
3107 return adjust_address_nv (cplx, imode,
3108 imag_p ? GET_MODE_SIZE (imode) : 0);
3110 /* If the sub-object is at least word sized, then we know that subregging
3111 will work. This special case is important, since extract_bit_field
3112 wants to operate on integer modes, and there's rarely an OImode to
3113 correspond to TCmode. */
3114 if (ibitsize >= BITS_PER_WORD
3115 /* For hard regs we have exact predicates. Assume we can split
3116 the original object if it spans an even number of hard regs.
3117 This special case is important for SCmode on 64-bit platforms
3118 where the natural size of floating-point regs is 32-bit. */
3119 || (REG_P (cplx)
3120 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3121 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
3123 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3124 imag_p ? GET_MODE_SIZE (imode) : 0);
3125 if (ret)
3126 return ret;
3127 else
3128 /* simplify_gen_subreg may fail for sub-word MEMs. */
3129 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3132 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3133 true, NULL_RTX, imode, imode);
3136 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3137 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3138 represented in NEW_MODE. If FORCE is true, this will never happen, as
3139 we'll force-create a SUBREG if needed. */
3141 static rtx
3142 emit_move_change_mode (enum machine_mode new_mode,
3143 enum machine_mode old_mode, rtx x, bool force)
3145 rtx ret;
3147 if (push_operand (x, GET_MODE (x)))
3149 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3150 MEM_COPY_ATTRIBUTES (ret, x);
3152 else if (MEM_P (x))
3154 /* We don't have to worry about changing the address since the
3155 size in bytes is supposed to be the same. */
3156 if (reload_in_progress)
3158 /* Copy the MEM to change the mode and move any
3159 substitutions from the old MEM to the new one. */
3160 ret = adjust_address_nv (x, new_mode, 0);
3161 copy_replacements (x, ret);
3163 else
3164 ret = adjust_address (x, new_mode, 0);
3166 else
3168 /* Note that we do want simplify_subreg's behavior of validating
3169 that the new mode is ok for a hard register. If we were to use
3170 simplify_gen_subreg, we would create the subreg, but would
3171 probably run into the target not being able to implement it. */
3172 /* Except, of course, when FORCE is true, when this is exactly what
3173 we want. Which is needed for CCmodes on some targets. */
3174 if (force)
3175 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3176 else
3177 ret = simplify_subreg (new_mode, x, old_mode, 0);
3180 return ret;
3183 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3184 an integer mode of the same size as MODE. Returns the instruction
3185 emitted, or NULL if such a move could not be generated. */
3187 static rtx_insn *
3188 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3190 enum machine_mode imode;
3191 enum insn_code code;
3193 /* There must exist a mode of the exact size we require. */
3194 imode = int_mode_for_mode (mode);
3195 if (imode == BLKmode)
3196 return NULL;
3198 /* The target must support moves in this mode. */
3199 code = optab_handler (mov_optab, imode);
3200 if (code == CODE_FOR_nothing)
3201 return NULL;
3203 x = emit_move_change_mode (imode, mode, x, force);
3204 if (x == NULL_RTX)
3205 return NULL;
3206 y = emit_move_change_mode (imode, mode, y, force);
3207 if (y == NULL_RTX)
3208 return NULL;
3209 return emit_insn (GEN_FCN (code) (x, y));
3212 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3213 Return an equivalent MEM that does not use an auto-increment. */
3216 emit_move_resolve_push (enum machine_mode mode, rtx x)
3218 enum rtx_code code = GET_CODE (XEXP (x, 0));
3219 HOST_WIDE_INT adjust;
3220 rtx temp;
3222 adjust = GET_MODE_SIZE (mode);
3223 #ifdef PUSH_ROUNDING
3224 adjust = PUSH_ROUNDING (adjust);
3225 #endif
3226 if (code == PRE_DEC || code == POST_DEC)
3227 adjust = -adjust;
3228 else if (code == PRE_MODIFY || code == POST_MODIFY)
3230 rtx expr = XEXP (XEXP (x, 0), 1);
3231 HOST_WIDE_INT val;
3233 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3234 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3235 val = INTVAL (XEXP (expr, 1));
3236 if (GET_CODE (expr) == MINUS)
3237 val = -val;
3238 gcc_assert (adjust == val || adjust == -val);
3239 adjust = val;
3242 /* Do not use anti_adjust_stack, since we don't want to update
3243 stack_pointer_delta. */
3244 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3245 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3246 0, OPTAB_LIB_WIDEN);
3247 if (temp != stack_pointer_rtx)
3248 emit_move_insn (stack_pointer_rtx, temp);
3250 switch (code)
3252 case PRE_INC:
3253 case PRE_DEC:
3254 case PRE_MODIFY:
3255 temp = stack_pointer_rtx;
3256 break;
3257 case POST_INC:
3258 case POST_DEC:
3259 case POST_MODIFY:
3260 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3261 break;
3262 default:
3263 gcc_unreachable ();
3266 return replace_equiv_address (x, temp);
3269 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3270 X is known to satisfy push_operand, and MODE is known to be complex.
3271 Returns the last instruction emitted. */
3273 rtx_insn *
3274 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3276 enum machine_mode submode = GET_MODE_INNER (mode);
3277 bool imag_first;
3279 #ifdef PUSH_ROUNDING
3280 unsigned int submodesize = GET_MODE_SIZE (submode);
3282 /* In case we output to the stack, but the size is smaller than the
3283 machine can push exactly, we need to use move instructions. */
3284 if (PUSH_ROUNDING (submodesize) != submodesize)
3286 x = emit_move_resolve_push (mode, x);
3287 return emit_move_insn (x, y);
3289 #endif
3291 /* Note that the real part always precedes the imag part in memory
3292 regardless of machine's endianness. */
3293 switch (GET_CODE (XEXP (x, 0)))
3295 case PRE_DEC:
3296 case POST_DEC:
3297 imag_first = true;
3298 break;
3299 case PRE_INC:
3300 case POST_INC:
3301 imag_first = false;
3302 break;
3303 default:
3304 gcc_unreachable ();
3307 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3308 read_complex_part (y, imag_first));
3309 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3310 read_complex_part (y, !imag_first));
3313 /* A subroutine of emit_move_complex. Perform the move from Y to X
3314 via two moves of the parts. Returns the last instruction emitted. */
3316 rtx_insn *
3317 emit_move_complex_parts (rtx x, rtx y)
3319 /* Show the output dies here. This is necessary for SUBREGs
3320 of pseudos since we cannot track their lifetimes correctly;
3321 hard regs shouldn't appear here except as return values. */
3322 if (!reload_completed && !reload_in_progress
3323 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3324 emit_clobber (x);
3326 write_complex_part (x, read_complex_part (y, false), false);
3327 write_complex_part (x, read_complex_part (y, true), true);
3329 return get_last_insn ();
3332 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3333 MODE is known to be complex. Returns the last instruction emitted. */
3335 static rtx_insn *
3336 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3338 bool try_int;
3340 /* Need to take special care for pushes, to maintain proper ordering
3341 of the data, and possibly extra padding. */
3342 if (push_operand (x, mode))
3343 return emit_move_complex_push (mode, x, y);
3345 /* See if we can coerce the target into moving both values at once, except
3346 for floating point where we favor moving as parts if this is easy. */
3347 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3348 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3349 && !(REG_P (x)
3350 && HARD_REGISTER_P (x)
3351 && hard_regno_nregs[REGNO (x)][mode] == 1)
3352 && !(REG_P (y)
3353 && HARD_REGISTER_P (y)
3354 && hard_regno_nregs[REGNO (y)][mode] == 1))
3355 try_int = false;
3356 /* Not possible if the values are inherently not adjacent. */
3357 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3358 try_int = false;
3359 /* Is possible if both are registers (or subregs of registers). */
3360 else if (register_operand (x, mode) && register_operand (y, mode))
3361 try_int = true;
3362 /* If one of the operands is a memory, and alignment constraints
3363 are friendly enough, we may be able to do combined memory operations.
3364 We do not attempt this if Y is a constant because that combination is
3365 usually better with the by-parts thing below. */
3366 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3367 && (!STRICT_ALIGNMENT
3368 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3369 try_int = true;
3370 else
3371 try_int = false;
3373 if (try_int)
3375 rtx_insn *ret;
3377 /* For memory to memory moves, optimal behavior can be had with the
3378 existing block move logic. */
3379 if (MEM_P (x) && MEM_P (y))
3381 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3382 BLOCK_OP_NO_LIBCALL);
3383 return get_last_insn ();
3386 ret = emit_move_via_integer (mode, x, y, true);
3387 if (ret)
3388 return ret;
3391 return emit_move_complex_parts (x, y);
3394 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3395 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3397 static rtx_insn *
3398 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3400 rtx_insn *ret;
3402 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3403 if (mode != CCmode)
3405 enum insn_code code = optab_handler (mov_optab, CCmode);
3406 if (code != CODE_FOR_nothing)
3408 x = emit_move_change_mode (CCmode, mode, x, true);
3409 y = emit_move_change_mode (CCmode, mode, y, true);
3410 return emit_insn (GEN_FCN (code) (x, y));
3414 /* Otherwise, find the MODE_INT mode of the same width. */
3415 ret = emit_move_via_integer (mode, x, y, false);
3416 gcc_assert (ret != NULL);
3417 return ret;
3420 /* Return true if word I of OP lies entirely in the
3421 undefined bits of a paradoxical subreg. */
3423 static bool
3424 undefined_operand_subword_p (const_rtx op, int i)
3426 enum machine_mode innermode, innermostmode;
3427 int offset;
3428 if (GET_CODE (op) != SUBREG)
3429 return false;
3430 innermode = GET_MODE (op);
3431 innermostmode = GET_MODE (SUBREG_REG (op));
3432 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3433 /* The SUBREG_BYTE represents offset, as if the value were stored in
3434 memory, except for a paradoxical subreg where we define
3435 SUBREG_BYTE to be 0; undo this exception as in
3436 simplify_subreg. */
3437 if (SUBREG_BYTE (op) == 0
3438 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3440 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3441 if (WORDS_BIG_ENDIAN)
3442 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3443 if (BYTES_BIG_ENDIAN)
3444 offset += difference % UNITS_PER_WORD;
3446 if (offset >= GET_MODE_SIZE (innermostmode)
3447 || offset <= -GET_MODE_SIZE (word_mode))
3448 return true;
3449 return false;
3452 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3453 MODE is any multi-word or full-word mode that lacks a move_insn
3454 pattern. Note that you will get better code if you define such
3455 patterns, even if they must turn into multiple assembler instructions. */
3457 static rtx_insn *
3458 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3460 rtx_insn *last_insn = 0;
3461 rtx_insn *seq;
3462 rtx inner;
3463 bool need_clobber;
3464 int i;
3466 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3468 /* If X is a push on the stack, do the push now and replace
3469 X with a reference to the stack pointer. */
3470 if (push_operand (x, mode))
3471 x = emit_move_resolve_push (mode, x);
3473 /* If we are in reload, see if either operand is a MEM whose address
3474 is scheduled for replacement. */
3475 if (reload_in_progress && MEM_P (x)
3476 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3477 x = replace_equiv_address_nv (x, inner);
3478 if (reload_in_progress && MEM_P (y)
3479 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3480 y = replace_equiv_address_nv (y, inner);
3482 start_sequence ();
3484 need_clobber = false;
3485 for (i = 0;
3486 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3487 i++)
3489 rtx xpart = operand_subword (x, i, 1, mode);
3490 rtx ypart;
3492 /* Do not generate code for a move if it would come entirely
3493 from the undefined bits of a paradoxical subreg. */
3494 if (undefined_operand_subword_p (y, i))
3495 continue;
3497 ypart = operand_subword (y, i, 1, mode);
3499 /* If we can't get a part of Y, put Y into memory if it is a
3500 constant. Otherwise, force it into a register. Then we must
3501 be able to get a part of Y. */
3502 if (ypart == 0 && CONSTANT_P (y))
3504 y = use_anchored_address (force_const_mem (mode, y));
3505 ypart = operand_subword (y, i, 1, mode);
3507 else if (ypart == 0)
3508 ypart = operand_subword_force (y, i, mode);
3510 gcc_assert (xpart && ypart);
3512 need_clobber |= (GET_CODE (xpart) == SUBREG);
3514 last_insn = emit_move_insn (xpart, ypart);
3517 seq = get_insns ();
3518 end_sequence ();
3520 /* Show the output dies here. This is necessary for SUBREGs
3521 of pseudos since we cannot track their lifetimes correctly;
3522 hard regs shouldn't appear here except as return values.
3523 We never want to emit such a clobber after reload. */
3524 if (x != y
3525 && ! (reload_in_progress || reload_completed)
3526 && need_clobber != 0)
3527 emit_clobber (x);
3529 emit_insn (seq);
3531 return last_insn;
3534 /* Low level part of emit_move_insn.
3535 Called just like emit_move_insn, but assumes X and Y
3536 are basically valid. */
3538 rtx_insn *
3539 emit_move_insn_1 (rtx x, rtx y)
3541 enum machine_mode mode = GET_MODE (x);
3542 enum insn_code code;
3544 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3546 code = optab_handler (mov_optab, mode);
3547 if (code != CODE_FOR_nothing)
3548 return emit_insn (GEN_FCN (code) (x, y));
3550 /* Expand complex moves by moving real part and imag part. */
3551 if (COMPLEX_MODE_P (mode))
3552 return emit_move_complex (mode, x, y);
3554 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3555 || ALL_FIXED_POINT_MODE_P (mode))
3557 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3559 /* If we can't find an integer mode, use multi words. */
3560 if (result)
3561 return result;
3562 else
3563 return emit_move_multi_word (mode, x, y);
3566 if (GET_MODE_CLASS (mode) == MODE_CC)
3567 return emit_move_ccmode (mode, x, y);
3569 /* Try using a move pattern for the corresponding integer mode. This is
3570 only safe when simplify_subreg can convert MODE constants into integer
3571 constants. At present, it can only do this reliably if the value
3572 fits within a HOST_WIDE_INT. */
3573 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3575 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3577 if (ret)
3579 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3580 return ret;
3584 return emit_move_multi_word (mode, x, y);
3587 /* Generate code to copy Y into X.
3588 Both Y and X must have the same mode, except that
3589 Y can be a constant with VOIDmode.
3590 This mode cannot be BLKmode; use emit_block_move for that.
3592 Return the last instruction emitted. */
3594 rtx_insn *
3595 emit_move_insn (rtx x, rtx y)
3597 enum machine_mode mode = GET_MODE (x);
3598 rtx y_cst = NULL_RTX;
3599 rtx_insn *last_insn;
3600 rtx set;
3602 gcc_assert (mode != BLKmode
3603 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3605 if (CONSTANT_P (y))
3607 if (optimize
3608 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3609 && (last_insn = compress_float_constant (x, y)))
3610 return last_insn;
3612 y_cst = y;
3614 if (!targetm.legitimate_constant_p (mode, y))
3616 y = force_const_mem (mode, y);
3618 /* If the target's cannot_force_const_mem prevented the spill,
3619 assume that the target's move expanders will also take care
3620 of the non-legitimate constant. */
3621 if (!y)
3622 y = y_cst;
3623 else
3624 y = use_anchored_address (y);
3628 /* If X or Y are memory references, verify that their addresses are valid
3629 for the machine. */
3630 if (MEM_P (x)
3631 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3632 MEM_ADDR_SPACE (x))
3633 && ! push_operand (x, GET_MODE (x))))
3634 x = validize_mem (x);
3636 if (MEM_P (y)
3637 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3638 MEM_ADDR_SPACE (y)))
3639 y = validize_mem (y);
3641 gcc_assert (mode != BLKmode);
3643 last_insn = emit_move_insn_1 (x, y);
3645 if (y_cst && REG_P (x)
3646 && (set = single_set (last_insn)) != NULL_RTX
3647 && SET_DEST (set) == x
3648 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3649 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3651 return last_insn;
3654 /* If Y is representable exactly in a narrower mode, and the target can
3655 perform the extension directly from constant or memory, then emit the
3656 move as an extension. */
3658 static rtx_insn *
3659 compress_float_constant (rtx x, rtx y)
3661 enum machine_mode dstmode = GET_MODE (x);
3662 enum machine_mode orig_srcmode = GET_MODE (y);
3663 enum machine_mode srcmode;
3664 REAL_VALUE_TYPE r;
3665 int oldcost, newcost;
3666 bool speed = optimize_insn_for_speed_p ();
3668 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3670 if (targetm.legitimate_constant_p (dstmode, y))
3671 oldcost = set_src_cost (y, speed);
3672 else
3673 oldcost = set_src_cost (force_const_mem (dstmode, y), speed);
3675 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3676 srcmode != orig_srcmode;
3677 srcmode = GET_MODE_WIDER_MODE (srcmode))
3679 enum insn_code ic;
3680 rtx trunc_y;
3681 rtx_insn *last_insn;
3683 /* Skip if the target can't extend this way. */
3684 ic = can_extend_p (dstmode, srcmode, 0);
3685 if (ic == CODE_FOR_nothing)
3686 continue;
3688 /* Skip if the narrowed value isn't exact. */
3689 if (! exact_real_truncate (srcmode, &r))
3690 continue;
3692 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3694 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3696 /* Skip if the target needs extra instructions to perform
3697 the extension. */
3698 if (!insn_operand_matches (ic, 1, trunc_y))
3699 continue;
3700 /* This is valid, but may not be cheaper than the original. */
3701 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3702 speed);
3703 if (oldcost < newcost)
3704 continue;
3706 else if (float_extend_from_mem[dstmode][srcmode])
3708 trunc_y = force_const_mem (srcmode, trunc_y);
3709 /* This is valid, but may not be cheaper than the original. */
3710 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3711 speed);
3712 if (oldcost < newcost)
3713 continue;
3714 trunc_y = validize_mem (trunc_y);
3716 else
3717 continue;
3719 /* For CSE's benefit, force the compressed constant pool entry
3720 into a new pseudo. This constant may be used in different modes,
3721 and if not, combine will put things back together for us. */
3722 trunc_y = force_reg (srcmode, trunc_y);
3724 /* If x is a hard register, perform the extension into a pseudo,
3725 so that e.g. stack realignment code is aware of it. */
3726 rtx target = x;
3727 if (REG_P (x) && HARD_REGISTER_P (x))
3728 target = gen_reg_rtx (dstmode);
3730 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3731 last_insn = get_last_insn ();
3733 if (REG_P (target))
3734 set_unique_reg_note (last_insn, REG_EQUAL, y);
3736 if (target != x)
3737 return emit_move_insn (x, target);
3738 return last_insn;
3741 return NULL;
3744 /* Pushing data onto the stack. */
3746 /* Push a block of length SIZE (perhaps variable)
3747 and return an rtx to address the beginning of the block.
3748 The value may be virtual_outgoing_args_rtx.
3750 EXTRA is the number of bytes of padding to push in addition to SIZE.
3751 BELOW nonzero means this padding comes at low addresses;
3752 otherwise, the padding comes at high addresses. */
3755 push_block (rtx size, int extra, int below)
3757 rtx temp;
3759 size = convert_modes (Pmode, ptr_mode, size, 1);
3760 if (CONSTANT_P (size))
3761 anti_adjust_stack (plus_constant (Pmode, size, extra));
3762 else if (REG_P (size) && extra == 0)
3763 anti_adjust_stack (size);
3764 else
3766 temp = copy_to_mode_reg (Pmode, size);
3767 if (extra != 0)
3768 temp = expand_binop (Pmode, add_optab, temp,
3769 gen_int_mode (extra, Pmode),
3770 temp, 0, OPTAB_LIB_WIDEN);
3771 anti_adjust_stack (temp);
3774 #ifndef STACK_GROWS_DOWNWARD
3775 if (0)
3776 #else
3777 if (1)
3778 #endif
3780 temp = virtual_outgoing_args_rtx;
3781 if (extra != 0 && below)
3782 temp = plus_constant (Pmode, temp, extra);
3784 else
3786 if (CONST_INT_P (size))
3787 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3788 -INTVAL (size) - (below ? 0 : extra));
3789 else if (extra != 0 && !below)
3790 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3791 negate_rtx (Pmode, plus_constant (Pmode, size,
3792 extra)));
3793 else
3794 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3795 negate_rtx (Pmode, size));
3798 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3801 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3803 static rtx
3804 mem_autoinc_base (rtx mem)
3806 if (MEM_P (mem))
3808 rtx addr = XEXP (mem, 0);
3809 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3810 return XEXP (addr, 0);
3812 return NULL;
3815 /* A utility routine used here, in reload, and in try_split. The insns
3816 after PREV up to and including LAST are known to adjust the stack,
3817 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3818 placing notes as appropriate. PREV may be NULL, indicating the
3819 entire insn sequence prior to LAST should be scanned.
3821 The set of allowed stack pointer modifications is small:
3822 (1) One or more auto-inc style memory references (aka pushes),
3823 (2) One or more addition/subtraction with the SP as destination,
3824 (3) A single move insn with the SP as destination,
3825 (4) A call_pop insn,
3826 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3828 Insns in the sequence that do not modify the SP are ignored,
3829 except for noreturn calls.
3831 The return value is the amount of adjustment that can be trivially
3832 verified, via immediate operand or auto-inc. If the adjustment
3833 cannot be trivially extracted, the return value is INT_MIN. */
3835 HOST_WIDE_INT
3836 find_args_size_adjust (rtx_insn *insn)
3838 rtx dest, set, pat;
3839 int i;
3841 pat = PATTERN (insn);
3842 set = NULL;
3844 /* Look for a call_pop pattern. */
3845 if (CALL_P (insn))
3847 /* We have to allow non-call_pop patterns for the case
3848 of emit_single_push_insn of a TLS address. */
3849 if (GET_CODE (pat) != PARALLEL)
3850 return 0;
3852 /* All call_pop have a stack pointer adjust in the parallel.
3853 The call itself is always first, and the stack adjust is
3854 usually last, so search from the end. */
3855 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3857 set = XVECEXP (pat, 0, i);
3858 if (GET_CODE (set) != SET)
3859 continue;
3860 dest = SET_DEST (set);
3861 if (dest == stack_pointer_rtx)
3862 break;
3864 /* We'd better have found the stack pointer adjust. */
3865 if (i == 0)
3866 return 0;
3867 /* Fall through to process the extracted SET and DEST
3868 as if it was a standalone insn. */
3870 else if (GET_CODE (pat) == SET)
3871 set = pat;
3872 else if ((set = single_set (insn)) != NULL)
3874 else if (GET_CODE (pat) == PARALLEL)
3876 /* ??? Some older ports use a parallel with a stack adjust
3877 and a store for a PUSH_ROUNDING pattern, rather than a
3878 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3879 /* ??? See h8300 and m68k, pushqi1. */
3880 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3882 set = XVECEXP (pat, 0, i);
3883 if (GET_CODE (set) != SET)
3884 continue;
3885 dest = SET_DEST (set);
3886 if (dest == stack_pointer_rtx)
3887 break;
3889 /* We do not expect an auto-inc of the sp in the parallel. */
3890 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
3891 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3892 != stack_pointer_rtx);
3894 if (i < 0)
3895 return 0;
3897 else
3898 return 0;
3900 dest = SET_DEST (set);
3902 /* Look for direct modifications of the stack pointer. */
3903 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
3905 /* Look for a trivial adjustment, otherwise assume nothing. */
3906 /* Note that the SPU restore_stack_block pattern refers to
3907 the stack pointer in V4SImode. Consider that non-trivial. */
3908 if (SCALAR_INT_MODE_P (GET_MODE (dest))
3909 && GET_CODE (SET_SRC (set)) == PLUS
3910 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
3911 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3912 return INTVAL (XEXP (SET_SRC (set), 1));
3913 /* ??? Reload can generate no-op moves, which will be cleaned
3914 up later. Recognize it and continue searching. */
3915 else if (rtx_equal_p (dest, SET_SRC (set)))
3916 return 0;
3917 else
3918 return HOST_WIDE_INT_MIN;
3920 else
3922 rtx mem, addr;
3924 /* Otherwise only think about autoinc patterns. */
3925 if (mem_autoinc_base (dest) == stack_pointer_rtx)
3927 mem = dest;
3928 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3929 != stack_pointer_rtx);
3931 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
3932 mem = SET_SRC (set);
3933 else
3934 return 0;
3936 addr = XEXP (mem, 0);
3937 switch (GET_CODE (addr))
3939 case PRE_INC:
3940 case POST_INC:
3941 return GET_MODE_SIZE (GET_MODE (mem));
3942 case PRE_DEC:
3943 case POST_DEC:
3944 return -GET_MODE_SIZE (GET_MODE (mem));
3945 case PRE_MODIFY:
3946 case POST_MODIFY:
3947 addr = XEXP (addr, 1);
3948 gcc_assert (GET_CODE (addr) == PLUS);
3949 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
3950 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
3951 return INTVAL (XEXP (addr, 1));
3952 default:
3953 gcc_unreachable ();
3959 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, int end_args_size)
3961 int args_size = end_args_size;
3962 bool saw_unknown = false;
3963 rtx_insn *insn;
3965 for (insn = last; insn != prev; insn = PREV_INSN (insn))
3967 HOST_WIDE_INT this_delta;
3969 if (!NONDEBUG_INSN_P (insn))
3970 continue;
3972 this_delta = find_args_size_adjust (insn);
3973 if (this_delta == 0)
3975 if (!CALL_P (insn)
3976 || ACCUMULATE_OUTGOING_ARGS
3977 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
3978 continue;
3981 gcc_assert (!saw_unknown);
3982 if (this_delta == HOST_WIDE_INT_MIN)
3983 saw_unknown = true;
3985 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
3986 #ifdef STACK_GROWS_DOWNWARD
3987 this_delta = -(unsigned HOST_WIDE_INT) this_delta;
3988 #endif
3989 args_size -= this_delta;
3992 return saw_unknown ? INT_MIN : args_size;
3995 #ifdef PUSH_ROUNDING
3996 /* Emit single push insn. */
3998 static void
3999 emit_single_push_insn_1 (enum machine_mode mode, rtx x, tree type)
4001 rtx dest_addr;
4002 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4003 rtx dest;
4004 enum insn_code icode;
4006 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4007 /* If there is push pattern, use it. Otherwise try old way of throwing
4008 MEM representing push operation to move expander. */
4009 icode = optab_handler (push_optab, mode);
4010 if (icode != CODE_FOR_nothing)
4012 struct expand_operand ops[1];
4014 create_input_operand (&ops[0], x, mode);
4015 if (maybe_expand_insn (icode, 1, ops))
4016 return;
4018 if (GET_MODE_SIZE (mode) == rounded_size)
4019 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4020 /* If we are to pad downward, adjust the stack pointer first and
4021 then store X into the stack location using an offset. This is
4022 because emit_move_insn does not know how to pad; it does not have
4023 access to type. */
4024 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
4026 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
4027 HOST_WIDE_INT offset;
4029 emit_move_insn (stack_pointer_rtx,
4030 expand_binop (Pmode,
4031 #ifdef STACK_GROWS_DOWNWARD
4032 sub_optab,
4033 #else
4034 add_optab,
4035 #endif
4036 stack_pointer_rtx,
4037 gen_int_mode (rounded_size, Pmode),
4038 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4040 offset = (HOST_WIDE_INT) padding_size;
4041 #ifdef STACK_GROWS_DOWNWARD
4042 if (STACK_PUSH_CODE == POST_DEC)
4043 /* We have already decremented the stack pointer, so get the
4044 previous value. */
4045 offset += (HOST_WIDE_INT) rounded_size;
4046 #else
4047 if (STACK_PUSH_CODE == POST_INC)
4048 /* We have already incremented the stack pointer, so get the
4049 previous value. */
4050 offset -= (HOST_WIDE_INT) rounded_size;
4051 #endif
4052 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4053 gen_int_mode (offset, Pmode));
4055 else
4057 #ifdef STACK_GROWS_DOWNWARD
4058 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4059 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4060 gen_int_mode (-(HOST_WIDE_INT) rounded_size,
4061 Pmode));
4062 #else
4063 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4064 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4065 gen_int_mode (rounded_size, Pmode));
4066 #endif
4067 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4070 dest = gen_rtx_MEM (mode, dest_addr);
4072 if (type != 0)
4074 set_mem_attributes (dest, type, 1);
4076 if (cfun->tail_call_marked)
4077 /* Function incoming arguments may overlap with sibling call
4078 outgoing arguments and we cannot allow reordering of reads
4079 from function arguments with stores to outgoing arguments
4080 of sibling calls. */
4081 set_mem_alias_set (dest, 0);
4083 emit_move_insn (dest, x);
4086 /* Emit and annotate a single push insn. */
4088 static void
4089 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
4091 int delta, old_delta = stack_pointer_delta;
4092 rtx_insn *prev = get_last_insn ();
4093 rtx_insn *last;
4095 emit_single_push_insn_1 (mode, x, type);
4097 last = get_last_insn ();
4099 /* Notice the common case where we emitted exactly one insn. */
4100 if (PREV_INSN (last) == prev)
4102 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
4103 return;
4106 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4107 gcc_assert (delta == INT_MIN || delta == old_delta);
4109 #endif
4111 /* Generate code to push X onto the stack, assuming it has mode MODE and
4112 type TYPE.
4113 MODE is redundant except when X is a CONST_INT (since they don't
4114 carry mode info).
4115 SIZE is an rtx for the size of data to be copied (in bytes),
4116 needed only if X is BLKmode.
4118 ALIGN (in bits) is maximum alignment we can assume.
4120 If PARTIAL and REG are both nonzero, then copy that many of the first
4121 bytes of X into registers starting with REG, and push the rest of X.
4122 The amount of space pushed is decreased by PARTIAL bytes.
4123 REG must be a hard register in this case.
4124 If REG is zero but PARTIAL is not, take any all others actions for an
4125 argument partially in registers, but do not actually load any
4126 registers.
4128 EXTRA is the amount in bytes of extra space to leave next to this arg.
4129 This is ignored if an argument block has already been allocated.
4131 On a machine that lacks real push insns, ARGS_ADDR is the address of
4132 the bottom of the argument block for this call. We use indexing off there
4133 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4134 argument block has not been preallocated.
4136 ARGS_SO_FAR is the size of args previously pushed for this call.
4138 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4139 for arguments passed in registers. If nonzero, it will be the number
4140 of bytes required. */
4142 void
4143 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
4144 unsigned int align, int partial, rtx reg, int extra,
4145 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4146 rtx alignment_pad)
4148 rtx xinner;
4149 enum direction stack_direction
4150 #ifdef STACK_GROWS_DOWNWARD
4151 = downward;
4152 #else
4153 = upward;
4154 #endif
4156 /* Decide where to pad the argument: `downward' for below,
4157 `upward' for above, or `none' for don't pad it.
4158 Default is below for small data on big-endian machines; else above. */
4159 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
4161 /* Invert direction if stack is post-decrement.
4162 FIXME: why? */
4163 if (STACK_PUSH_CODE == POST_DEC)
4164 if (where_pad != none)
4165 where_pad = (where_pad == downward ? upward : downward);
4167 xinner = x;
4169 if (mode == BLKmode
4170 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4172 /* Copy a block into the stack, entirely or partially. */
4174 rtx temp;
4175 int used;
4176 int offset;
4177 int skip;
4179 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4180 used = partial - offset;
4182 if (mode != BLKmode)
4184 /* A value is to be stored in an insufficiently aligned
4185 stack slot; copy via a suitably aligned slot if
4186 necessary. */
4187 size = GEN_INT (GET_MODE_SIZE (mode));
4188 if (!MEM_P (xinner))
4190 temp = assign_temp (type, 1, 1);
4191 emit_move_insn (temp, xinner);
4192 xinner = temp;
4196 gcc_assert (size);
4198 /* USED is now the # of bytes we need not copy to the stack
4199 because registers will take care of them. */
4201 if (partial != 0)
4202 xinner = adjust_address (xinner, BLKmode, used);
4204 /* If the partial register-part of the arg counts in its stack size,
4205 skip the part of stack space corresponding to the registers.
4206 Otherwise, start copying to the beginning of the stack space,
4207 by setting SKIP to 0. */
4208 skip = (reg_parm_stack_space == 0) ? 0 : used;
4210 #ifdef PUSH_ROUNDING
4211 /* Do it with several push insns if that doesn't take lots of insns
4212 and if there is no difficulty with push insns that skip bytes
4213 on the stack for alignment purposes. */
4214 if (args_addr == 0
4215 && PUSH_ARGS
4216 && CONST_INT_P (size)
4217 && skip == 0
4218 && MEM_ALIGN (xinner) >= align
4219 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
4220 /* Here we avoid the case of a structure whose weak alignment
4221 forces many pushes of a small amount of data,
4222 and such small pushes do rounding that causes trouble. */
4223 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
4224 || align >= BIGGEST_ALIGNMENT
4225 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4226 == (align / BITS_PER_UNIT)))
4227 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4229 /* Push padding now if padding above and stack grows down,
4230 or if padding below and stack grows up.
4231 But if space already allocated, this has already been done. */
4232 if (extra && args_addr == 0
4233 && where_pad != none && where_pad != stack_direction)
4234 anti_adjust_stack (GEN_INT (extra));
4236 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4238 else
4239 #endif /* PUSH_ROUNDING */
4241 rtx target;
4243 /* Otherwise make space on the stack and copy the data
4244 to the address of that space. */
4246 /* Deduct words put into registers from the size we must copy. */
4247 if (partial != 0)
4249 if (CONST_INT_P (size))
4250 size = GEN_INT (INTVAL (size) - used);
4251 else
4252 size = expand_binop (GET_MODE (size), sub_optab, size,
4253 gen_int_mode (used, GET_MODE (size)),
4254 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4257 /* Get the address of the stack space.
4258 In this case, we do not deal with EXTRA separately.
4259 A single stack adjust will do. */
4260 if (! args_addr)
4262 temp = push_block (size, extra, where_pad == downward);
4263 extra = 0;
4265 else if (CONST_INT_P (args_so_far))
4266 temp = memory_address (BLKmode,
4267 plus_constant (Pmode, args_addr,
4268 skip + INTVAL (args_so_far)));
4269 else
4270 temp = memory_address (BLKmode,
4271 plus_constant (Pmode,
4272 gen_rtx_PLUS (Pmode,
4273 args_addr,
4274 args_so_far),
4275 skip));
4277 if (!ACCUMULATE_OUTGOING_ARGS)
4279 /* If the source is referenced relative to the stack pointer,
4280 copy it to another register to stabilize it. We do not need
4281 to do this if we know that we won't be changing sp. */
4283 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4284 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4285 temp = copy_to_reg (temp);
4288 target = gen_rtx_MEM (BLKmode, temp);
4290 /* We do *not* set_mem_attributes here, because incoming arguments
4291 may overlap with sibling call outgoing arguments and we cannot
4292 allow reordering of reads from function arguments with stores
4293 to outgoing arguments of sibling calls. We do, however, want
4294 to record the alignment of the stack slot. */
4295 /* ALIGN may well be better aligned than TYPE, e.g. due to
4296 PARM_BOUNDARY. Assume the caller isn't lying. */
4297 set_mem_align (target, align);
4299 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4302 else if (partial > 0)
4304 /* Scalar partly in registers. */
4306 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4307 int i;
4308 int not_stack;
4309 /* # bytes of start of argument
4310 that we must make space for but need not store. */
4311 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4312 int args_offset = INTVAL (args_so_far);
4313 int skip;
4315 /* Push padding now if padding above and stack grows down,
4316 or if padding below and stack grows up.
4317 But if space already allocated, this has already been done. */
4318 if (extra && args_addr == 0
4319 && where_pad != none && where_pad != stack_direction)
4320 anti_adjust_stack (GEN_INT (extra));
4322 /* If we make space by pushing it, we might as well push
4323 the real data. Otherwise, we can leave OFFSET nonzero
4324 and leave the space uninitialized. */
4325 if (args_addr == 0)
4326 offset = 0;
4328 /* Now NOT_STACK gets the number of words that we don't need to
4329 allocate on the stack. Convert OFFSET to words too. */
4330 not_stack = (partial - offset) / UNITS_PER_WORD;
4331 offset /= UNITS_PER_WORD;
4333 /* If the partial register-part of the arg counts in its stack size,
4334 skip the part of stack space corresponding to the registers.
4335 Otherwise, start copying to the beginning of the stack space,
4336 by setting SKIP to 0. */
4337 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4339 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4340 x = validize_mem (force_const_mem (mode, x));
4342 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4343 SUBREGs of such registers are not allowed. */
4344 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4345 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4346 x = copy_to_reg (x);
4348 /* Loop over all the words allocated on the stack for this arg. */
4349 /* We can do it by words, because any scalar bigger than a word
4350 has a size a multiple of a word. */
4351 for (i = size - 1; i >= not_stack; i--)
4352 if (i >= not_stack + offset)
4353 emit_push_insn (operand_subword_force (x, i, mode),
4354 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4355 0, args_addr,
4356 GEN_INT (args_offset + ((i - not_stack + skip)
4357 * UNITS_PER_WORD)),
4358 reg_parm_stack_space, alignment_pad);
4360 else
4362 rtx addr;
4363 rtx dest;
4365 /* Push padding now if padding above and stack grows down,
4366 or if padding below and stack grows up.
4367 But if space already allocated, this has already been done. */
4368 if (extra && args_addr == 0
4369 && where_pad != none && where_pad != stack_direction)
4370 anti_adjust_stack (GEN_INT (extra));
4372 #ifdef PUSH_ROUNDING
4373 if (args_addr == 0 && PUSH_ARGS)
4374 emit_single_push_insn (mode, x, type);
4375 else
4376 #endif
4378 if (CONST_INT_P (args_so_far))
4379 addr
4380 = memory_address (mode,
4381 plus_constant (Pmode, args_addr,
4382 INTVAL (args_so_far)));
4383 else
4384 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4385 args_so_far));
4386 dest = gen_rtx_MEM (mode, addr);
4388 /* We do *not* set_mem_attributes here, because incoming arguments
4389 may overlap with sibling call outgoing arguments and we cannot
4390 allow reordering of reads from function arguments with stores
4391 to outgoing arguments of sibling calls. We do, however, want
4392 to record the alignment of the stack slot. */
4393 /* ALIGN may well be better aligned than TYPE, e.g. due to
4394 PARM_BOUNDARY. Assume the caller isn't lying. */
4395 set_mem_align (dest, align);
4397 emit_move_insn (dest, x);
4401 /* If part should go in registers, copy that part
4402 into the appropriate registers. Do this now, at the end,
4403 since mem-to-mem copies above may do function calls. */
4404 if (partial > 0 && reg != 0)
4406 /* Handle calls that pass values in multiple non-contiguous locations.
4407 The Irix 6 ABI has examples of this. */
4408 if (GET_CODE (reg) == PARALLEL)
4409 emit_group_load (reg, x, type, -1);
4410 else
4412 gcc_assert (partial % UNITS_PER_WORD == 0);
4413 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4417 if (extra && args_addr == 0 && where_pad == stack_direction)
4418 anti_adjust_stack (GEN_INT (extra));
4420 if (alignment_pad && args_addr == 0)
4421 anti_adjust_stack (alignment_pad);
4424 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4425 operations. */
4427 static rtx
4428 get_subtarget (rtx x)
4430 return (optimize
4431 || x == 0
4432 /* Only registers can be subtargets. */
4433 || !REG_P (x)
4434 /* Don't use hard regs to avoid extending their life. */
4435 || REGNO (x) < FIRST_PSEUDO_REGISTER
4436 ? 0 : x);
4439 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4440 FIELD is a bitfield. Returns true if the optimization was successful,
4441 and there's nothing else to do. */
4443 static bool
4444 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4445 unsigned HOST_WIDE_INT bitpos,
4446 unsigned HOST_WIDE_INT bitregion_start,
4447 unsigned HOST_WIDE_INT bitregion_end,
4448 enum machine_mode mode1, rtx str_rtx,
4449 tree to, tree src)
4451 enum machine_mode str_mode = GET_MODE (str_rtx);
4452 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4453 tree op0, op1;
4454 rtx value, result;
4455 optab binop;
4456 gimple srcstmt;
4457 enum tree_code code;
4459 if (mode1 != VOIDmode
4460 || bitsize >= BITS_PER_WORD
4461 || str_bitsize > BITS_PER_WORD
4462 || TREE_SIDE_EFFECTS (to)
4463 || TREE_THIS_VOLATILE (to))
4464 return false;
4466 STRIP_NOPS (src);
4467 if (TREE_CODE (src) != SSA_NAME)
4468 return false;
4469 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4470 return false;
4472 srcstmt = get_gimple_for_ssa_name (src);
4473 if (!srcstmt
4474 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4475 return false;
4477 code = gimple_assign_rhs_code (srcstmt);
4479 op0 = gimple_assign_rhs1 (srcstmt);
4481 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4482 to find its initialization. Hopefully the initialization will
4483 be from a bitfield load. */
4484 if (TREE_CODE (op0) == SSA_NAME)
4486 gimple op0stmt = get_gimple_for_ssa_name (op0);
4488 /* We want to eventually have OP0 be the same as TO, which
4489 should be a bitfield. */
4490 if (!op0stmt
4491 || !is_gimple_assign (op0stmt)
4492 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4493 return false;
4494 op0 = gimple_assign_rhs1 (op0stmt);
4497 op1 = gimple_assign_rhs2 (srcstmt);
4499 if (!operand_equal_p (to, op0, 0))
4500 return false;
4502 if (MEM_P (str_rtx))
4504 unsigned HOST_WIDE_INT offset1;
4506 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4507 str_mode = word_mode;
4508 str_mode = get_best_mode (bitsize, bitpos,
4509 bitregion_start, bitregion_end,
4510 MEM_ALIGN (str_rtx), str_mode, 0);
4511 if (str_mode == VOIDmode)
4512 return false;
4513 str_bitsize = GET_MODE_BITSIZE (str_mode);
4515 offset1 = bitpos;
4516 bitpos %= str_bitsize;
4517 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4518 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4520 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4521 return false;
4523 /* If the bit field covers the whole REG/MEM, store_field
4524 will likely generate better code. */
4525 if (bitsize >= str_bitsize)
4526 return false;
4528 /* We can't handle fields split across multiple entities. */
4529 if (bitpos + bitsize > str_bitsize)
4530 return false;
4532 if (BYTES_BIG_ENDIAN)
4533 bitpos = str_bitsize - bitpos - bitsize;
4535 switch (code)
4537 case PLUS_EXPR:
4538 case MINUS_EXPR:
4539 /* For now, just optimize the case of the topmost bitfield
4540 where we don't need to do any masking and also
4541 1 bit bitfields where xor can be used.
4542 We might win by one instruction for the other bitfields
4543 too if insv/extv instructions aren't used, so that
4544 can be added later. */
4545 if (bitpos + bitsize != str_bitsize
4546 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4547 break;
4549 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4550 value = convert_modes (str_mode,
4551 TYPE_MODE (TREE_TYPE (op1)), value,
4552 TYPE_UNSIGNED (TREE_TYPE (op1)));
4554 /* We may be accessing data outside the field, which means
4555 we can alias adjacent data. */
4556 if (MEM_P (str_rtx))
4558 str_rtx = shallow_copy_rtx (str_rtx);
4559 set_mem_alias_set (str_rtx, 0);
4560 set_mem_expr (str_rtx, 0);
4563 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4564 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4566 value = expand_and (str_mode, value, const1_rtx, NULL);
4567 binop = xor_optab;
4569 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4570 result = expand_binop (str_mode, binop, str_rtx,
4571 value, str_rtx, 1, OPTAB_WIDEN);
4572 if (result != str_rtx)
4573 emit_move_insn (str_rtx, result);
4574 return true;
4576 case BIT_IOR_EXPR:
4577 case BIT_XOR_EXPR:
4578 if (TREE_CODE (op1) != INTEGER_CST)
4579 break;
4580 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4581 value = convert_modes (str_mode,
4582 TYPE_MODE (TREE_TYPE (op1)), value,
4583 TYPE_UNSIGNED (TREE_TYPE (op1)));
4585 /* We may be accessing data outside the field, which means
4586 we can alias adjacent data. */
4587 if (MEM_P (str_rtx))
4589 str_rtx = shallow_copy_rtx (str_rtx);
4590 set_mem_alias_set (str_rtx, 0);
4591 set_mem_expr (str_rtx, 0);
4594 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4595 if (bitpos + bitsize != str_bitsize)
4597 rtx mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << bitsize) - 1,
4598 str_mode);
4599 value = expand_and (str_mode, value, mask, NULL_RTX);
4601 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4602 result = expand_binop (str_mode, binop, str_rtx,
4603 value, str_rtx, 1, OPTAB_WIDEN);
4604 if (result != str_rtx)
4605 emit_move_insn (str_rtx, result);
4606 return true;
4608 default:
4609 break;
4612 return false;
4615 /* In the C++ memory model, consecutive bit fields in a structure are
4616 considered one memory location.
4618 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4619 returns the bit range of consecutive bits in which this COMPONENT_REF
4620 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4621 and *OFFSET may be adjusted in the process.
4623 If the access does not need to be restricted, 0 is returned in both
4624 *BITSTART and *BITEND. */
4626 static void
4627 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4628 unsigned HOST_WIDE_INT *bitend,
4629 tree exp,
4630 HOST_WIDE_INT *bitpos,
4631 tree *offset)
4633 HOST_WIDE_INT bitoffset;
4634 tree field, repr;
4636 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4638 field = TREE_OPERAND (exp, 1);
4639 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4640 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4641 need to limit the range we can access. */
4642 if (!repr)
4644 *bitstart = *bitend = 0;
4645 return;
4648 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4649 part of a larger bit field, then the representative does not serve any
4650 useful purpose. This can occur in Ada. */
4651 if (handled_component_p (TREE_OPERAND (exp, 0)))
4653 enum machine_mode rmode;
4654 HOST_WIDE_INT rbitsize, rbitpos;
4655 tree roffset;
4656 int unsignedp;
4657 int volatilep = 0;
4658 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4659 &roffset, &rmode, &unsignedp, &volatilep, false);
4660 if ((rbitpos % BITS_PER_UNIT) != 0)
4662 *bitstart = *bitend = 0;
4663 return;
4667 /* Compute the adjustment to bitpos from the offset of the field
4668 relative to the representative. DECL_FIELD_OFFSET of field and
4669 repr are the same by construction if they are not constants,
4670 see finish_bitfield_layout. */
4671 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
4672 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
4673 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
4674 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
4675 else
4676 bitoffset = 0;
4677 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4678 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4680 /* If the adjustment is larger than bitpos, we would have a negative bit
4681 position for the lower bound and this may wreak havoc later. Adjust
4682 offset and bitpos to make the lower bound non-negative in that case. */
4683 if (bitoffset > *bitpos)
4685 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4686 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4688 *bitpos += adjust;
4689 if (*offset == NULL_TREE)
4690 *offset = size_int (-adjust / BITS_PER_UNIT);
4691 else
4692 *offset
4693 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4694 *bitstart = 0;
4696 else
4697 *bitstart = *bitpos - bitoffset;
4699 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4702 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4703 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4704 DECL_RTL was not set yet, return NORTL. */
4706 static inline bool
4707 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4709 if (TREE_CODE (addr) != ADDR_EXPR)
4710 return false;
4712 tree base = TREE_OPERAND (addr, 0);
4714 if (!DECL_P (base)
4715 || TREE_ADDRESSABLE (base)
4716 || DECL_MODE (base) == BLKmode)
4717 return false;
4719 if (!DECL_RTL_SET_P (base))
4720 return nortl;
4722 return (!MEM_P (DECL_RTL (base)));
4725 /* Returns true if the MEM_REF REF refers to an object that does not
4726 reside in memory and has non-BLKmode. */
4728 static inline bool
4729 mem_ref_refers_to_non_mem_p (tree ref)
4731 tree base = TREE_OPERAND (ref, 0);
4732 return addr_expr_of_non_mem_decl_p_1 (base, false);
4735 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4736 is true, try generating a nontemporal store. */
4738 void
4739 expand_assignment (tree to, tree from, bool nontemporal)
4741 rtx to_rtx = 0;
4742 rtx result;
4743 enum machine_mode mode;
4744 unsigned int align;
4745 enum insn_code icode;
4747 /* Don't crash if the lhs of the assignment was erroneous. */
4748 if (TREE_CODE (to) == ERROR_MARK)
4750 expand_normal (from);
4751 return;
4754 /* Optimize away no-op moves without side-effects. */
4755 if (operand_equal_p (to, from, 0))
4756 return;
4758 /* Handle misaligned stores. */
4759 mode = TYPE_MODE (TREE_TYPE (to));
4760 if ((TREE_CODE (to) == MEM_REF
4761 || TREE_CODE (to) == TARGET_MEM_REF)
4762 && mode != BLKmode
4763 && !mem_ref_refers_to_non_mem_p (to)
4764 && ((align = get_object_alignment (to))
4765 < GET_MODE_ALIGNMENT (mode))
4766 && (((icode = optab_handler (movmisalign_optab, mode))
4767 != CODE_FOR_nothing)
4768 || SLOW_UNALIGNED_ACCESS (mode, align)))
4770 rtx reg, mem;
4772 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4773 reg = force_not_mem (reg);
4774 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4776 if (icode != CODE_FOR_nothing)
4778 struct expand_operand ops[2];
4780 create_fixed_operand (&ops[0], mem);
4781 create_input_operand (&ops[1], reg, mode);
4782 /* The movmisalign<mode> pattern cannot fail, else the assignment
4783 would silently be omitted. */
4784 expand_insn (icode, 2, ops);
4786 else
4787 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg);
4788 return;
4791 /* Assignment of a structure component needs special treatment
4792 if the structure component's rtx is not simply a MEM.
4793 Assignment of an array element at a constant index, and assignment of
4794 an array element in an unaligned packed structure field, has the same
4795 problem. Same for (partially) storing into a non-memory object. */
4796 if (handled_component_p (to)
4797 || (TREE_CODE (to) == MEM_REF
4798 && mem_ref_refers_to_non_mem_p (to))
4799 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4801 enum machine_mode mode1;
4802 HOST_WIDE_INT bitsize, bitpos;
4803 unsigned HOST_WIDE_INT bitregion_start = 0;
4804 unsigned HOST_WIDE_INT bitregion_end = 0;
4805 tree offset;
4806 int unsignedp;
4807 int volatilep = 0;
4808 tree tem;
4810 push_temp_slots ();
4811 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4812 &unsignedp, &volatilep, true);
4814 /* Make sure bitpos is not negative, it can wreak havoc later. */
4815 if (bitpos < 0)
4817 gcc_assert (offset == NULL_TREE);
4818 offset = size_int (bitpos >> (BITS_PER_UNIT == 8
4819 ? 3 : exact_log2 (BITS_PER_UNIT)));
4820 bitpos &= BITS_PER_UNIT - 1;
4823 if (TREE_CODE (to) == COMPONENT_REF
4824 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
4825 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
4826 /* The C++ memory model naturally applies to byte-aligned fields.
4827 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4828 BITSIZE are not byte-aligned, there is no need to limit the range
4829 we can access. This can occur with packed structures in Ada. */
4830 else if (bitsize > 0
4831 && bitsize % BITS_PER_UNIT == 0
4832 && bitpos % BITS_PER_UNIT == 0)
4834 bitregion_start = bitpos;
4835 bitregion_end = bitpos + bitsize - 1;
4838 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
4840 /* If the field has a mode, we want to access it in the
4841 field's mode, not the computed mode.
4842 If a MEM has VOIDmode (external with incomplete type),
4843 use BLKmode for it instead. */
4844 if (MEM_P (to_rtx))
4846 if (mode1 != VOIDmode)
4847 to_rtx = adjust_address (to_rtx, mode1, 0);
4848 else if (GET_MODE (to_rtx) == VOIDmode)
4849 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4852 if (offset != 0)
4854 enum machine_mode address_mode;
4855 rtx offset_rtx;
4857 if (!MEM_P (to_rtx))
4859 /* We can get constant negative offsets into arrays with broken
4860 user code. Translate this to a trap instead of ICEing. */
4861 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4862 expand_builtin_trap ();
4863 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4866 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4867 address_mode = get_address_mode (to_rtx);
4868 if (GET_MODE (offset_rtx) != address_mode)
4869 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4871 /* If we have an expression in OFFSET_RTX and a non-zero
4872 byte offset in BITPOS, adding the byte offset before the
4873 OFFSET_RTX results in better intermediate code, which makes
4874 later rtl optimization passes perform better.
4876 We prefer intermediate code like this:
4878 r124:DI=r123:DI+0x18
4879 [r124:DI]=r121:DI
4881 ... instead of ...
4883 r124:DI=r123:DI+0x10
4884 [r124:DI+0x8]=r121:DI
4886 This is only done for aligned data values, as these can
4887 be expected to result in single move instructions. */
4888 if (mode1 != VOIDmode
4889 && bitpos != 0
4890 && bitsize > 0
4891 && (bitpos % bitsize) == 0
4892 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4893 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
4895 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4896 bitregion_start = 0;
4897 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
4898 bitregion_end -= bitpos;
4899 bitpos = 0;
4902 to_rtx = offset_address (to_rtx, offset_rtx,
4903 highest_pow2_factor_for_target (to,
4904 offset));
4907 /* No action is needed if the target is not a memory and the field
4908 lies completely outside that target. This can occur if the source
4909 code contains an out-of-bounds access to a small array. */
4910 if (!MEM_P (to_rtx)
4911 && GET_MODE (to_rtx) != BLKmode
4912 && (unsigned HOST_WIDE_INT) bitpos
4913 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
4915 expand_normal (from);
4916 result = NULL;
4918 /* Handle expand_expr of a complex value returning a CONCAT. */
4919 else if (GET_CODE (to_rtx) == CONCAT)
4921 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
4922 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
4923 && bitpos == 0
4924 && bitsize == mode_bitsize)
4925 result = store_expr (from, to_rtx, false, nontemporal);
4926 else if (bitsize == mode_bitsize / 2
4927 && (bitpos == 0 || bitpos == mode_bitsize / 2))
4928 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4929 nontemporal);
4930 else if (bitpos + bitsize <= mode_bitsize / 2)
4931 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
4932 bitregion_start, bitregion_end,
4933 mode1, from,
4934 get_alias_set (to), nontemporal);
4935 else if (bitpos >= mode_bitsize / 2)
4936 result = store_field (XEXP (to_rtx, 1), bitsize,
4937 bitpos - mode_bitsize / 2,
4938 bitregion_start, bitregion_end,
4939 mode1, from,
4940 get_alias_set (to), nontemporal);
4941 else if (bitpos == 0 && bitsize == mode_bitsize)
4943 rtx from_rtx;
4944 result = expand_normal (from);
4945 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
4946 TYPE_MODE (TREE_TYPE (from)), 0);
4947 emit_move_insn (XEXP (to_rtx, 0),
4948 read_complex_part (from_rtx, false));
4949 emit_move_insn (XEXP (to_rtx, 1),
4950 read_complex_part (from_rtx, true));
4952 else
4954 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
4955 GET_MODE_SIZE (GET_MODE (to_rtx)));
4956 write_complex_part (temp, XEXP (to_rtx, 0), false);
4957 write_complex_part (temp, XEXP (to_rtx, 1), true);
4958 result = store_field (temp, bitsize, bitpos,
4959 bitregion_start, bitregion_end,
4960 mode1, from,
4961 get_alias_set (to), nontemporal);
4962 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
4963 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
4966 else
4968 if (MEM_P (to_rtx))
4970 /* If the field is at offset zero, we could have been given the
4971 DECL_RTX of the parent struct. Don't munge it. */
4972 to_rtx = shallow_copy_rtx (to_rtx);
4973 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4974 if (volatilep)
4975 MEM_VOLATILE_P (to_rtx) = 1;
4978 if (optimize_bitfield_assignment_op (bitsize, bitpos,
4979 bitregion_start, bitregion_end,
4980 mode1,
4981 to_rtx, to, from))
4982 result = NULL;
4983 else
4984 result = store_field (to_rtx, bitsize, bitpos,
4985 bitregion_start, bitregion_end,
4986 mode1, from,
4987 get_alias_set (to), nontemporal);
4990 if (result)
4991 preserve_temp_slots (result);
4992 pop_temp_slots ();
4993 return;
4996 /* If the rhs is a function call and its value is not an aggregate,
4997 call the function before we start to compute the lhs.
4998 This is needed for correct code for cases such as
4999 val = setjmp (buf) on machines where reference to val
5000 requires loading up part of an address in a separate insn.
5002 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5003 since it might be a promoted variable where the zero- or sign- extension
5004 needs to be done. Handling this in the normal way is safe because no
5005 computation is done before the call. The same is true for SSA names. */
5006 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5007 && COMPLETE_TYPE_P (TREE_TYPE (from))
5008 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5009 && ! (((TREE_CODE (to) == VAR_DECL
5010 || TREE_CODE (to) == PARM_DECL
5011 || TREE_CODE (to) == RESULT_DECL)
5012 && REG_P (DECL_RTL (to)))
5013 || TREE_CODE (to) == SSA_NAME))
5015 rtx value;
5017 push_temp_slots ();
5018 value = expand_normal (from);
5019 if (to_rtx == 0)
5020 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5022 /* Handle calls that return values in multiple non-contiguous locations.
5023 The Irix 6 ABI has examples of this. */
5024 if (GET_CODE (to_rtx) == PARALLEL)
5026 if (GET_CODE (value) == PARALLEL)
5027 emit_group_move (to_rtx, value);
5028 else
5029 emit_group_load (to_rtx, value, TREE_TYPE (from),
5030 int_size_in_bytes (TREE_TYPE (from)));
5032 else if (GET_CODE (value) == PARALLEL)
5033 emit_group_store (to_rtx, value, TREE_TYPE (from),
5034 int_size_in_bytes (TREE_TYPE (from)));
5035 else if (GET_MODE (to_rtx) == BLKmode)
5037 /* Handle calls that return BLKmode values in registers. */
5038 if (REG_P (value))
5039 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5040 else
5041 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5043 else
5045 if (POINTER_TYPE_P (TREE_TYPE (to)))
5046 value = convert_memory_address_addr_space
5047 (GET_MODE (to_rtx), value,
5048 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5050 emit_move_insn (to_rtx, value);
5052 preserve_temp_slots (to_rtx);
5053 pop_temp_slots ();
5054 return;
5057 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5058 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5060 /* Don't move directly into a return register. */
5061 if (TREE_CODE (to) == RESULT_DECL
5062 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5064 rtx temp;
5066 push_temp_slots ();
5068 /* If the source is itself a return value, it still is in a pseudo at
5069 this point so we can move it back to the return register directly. */
5070 if (REG_P (to_rtx)
5071 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5072 && TREE_CODE (from) != CALL_EXPR)
5073 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5074 else
5075 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5077 /* Handle calls that return values in multiple non-contiguous locations.
5078 The Irix 6 ABI has examples of this. */
5079 if (GET_CODE (to_rtx) == PARALLEL)
5081 if (GET_CODE (temp) == PARALLEL)
5082 emit_group_move (to_rtx, temp);
5083 else
5084 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5085 int_size_in_bytes (TREE_TYPE (from)));
5087 else if (temp)
5088 emit_move_insn (to_rtx, temp);
5090 preserve_temp_slots (to_rtx);
5091 pop_temp_slots ();
5092 return;
5095 /* In case we are returning the contents of an object which overlaps
5096 the place the value is being stored, use a safe function when copying
5097 a value through a pointer into a structure value return block. */
5098 if (TREE_CODE (to) == RESULT_DECL
5099 && TREE_CODE (from) == INDIRECT_REF
5100 && ADDR_SPACE_GENERIC_P
5101 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5102 && refs_may_alias_p (to, from)
5103 && cfun->returns_struct
5104 && !cfun->returns_pcc_struct)
5106 rtx from_rtx, size;
5108 push_temp_slots ();
5109 size = expr_size (from);
5110 from_rtx = expand_normal (from);
5112 emit_library_call (memmove_libfunc, LCT_NORMAL,
5113 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
5114 XEXP (from_rtx, 0), Pmode,
5115 convert_to_mode (TYPE_MODE (sizetype),
5116 size, TYPE_UNSIGNED (sizetype)),
5117 TYPE_MODE (sizetype));
5119 preserve_temp_slots (to_rtx);
5120 pop_temp_slots ();
5121 return;
5124 /* Compute FROM and store the value in the rtx we got. */
5126 push_temp_slots ();
5127 result = store_expr (from, to_rtx, 0, nontemporal);
5128 preserve_temp_slots (result);
5129 pop_temp_slots ();
5130 return;
5133 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5134 succeeded, false otherwise. */
5136 bool
5137 emit_storent_insn (rtx to, rtx from)
5139 struct expand_operand ops[2];
5140 enum machine_mode mode = GET_MODE (to);
5141 enum insn_code code = optab_handler (storent_optab, mode);
5143 if (code == CODE_FOR_nothing)
5144 return false;
5146 create_fixed_operand (&ops[0], to);
5147 create_input_operand (&ops[1], from, mode);
5148 return maybe_expand_insn (code, 2, ops);
5151 /* Generate code for computing expression EXP,
5152 and storing the value into TARGET.
5154 If the mode is BLKmode then we may return TARGET itself.
5155 It turns out that in BLKmode it doesn't cause a problem.
5156 because C has no operators that could combine two different
5157 assignments into the same BLKmode object with different values
5158 with no sequence point. Will other languages need this to
5159 be more thorough?
5161 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5162 stack, and block moves may need to be treated specially.
5164 If NONTEMPORAL is true, try using a nontemporal store instruction. */
5167 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
5169 rtx temp;
5170 rtx alt_rtl = NULL_RTX;
5171 location_t loc = curr_insn_location ();
5173 if (VOID_TYPE_P (TREE_TYPE (exp)))
5175 /* C++ can generate ?: expressions with a throw expression in one
5176 branch and an rvalue in the other. Here, we resolve attempts to
5177 store the throw expression's nonexistent result. */
5178 gcc_assert (!call_param_p);
5179 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5180 return NULL_RTX;
5182 if (TREE_CODE (exp) == COMPOUND_EXPR)
5184 /* Perform first part of compound expression, then assign from second
5185 part. */
5186 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5187 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5188 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5189 nontemporal);
5191 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5193 /* For conditional expression, get safe form of the target. Then
5194 test the condition, doing the appropriate assignment on either
5195 side. This avoids the creation of unnecessary temporaries.
5196 For non-BLKmode, it is more efficient not to do this. */
5198 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5200 do_pending_stack_adjust ();
5201 NO_DEFER_POP;
5202 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
5203 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5204 nontemporal);
5205 emit_jump_insn (gen_jump (lab2));
5206 emit_barrier ();
5207 emit_label (lab1);
5208 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5209 nontemporal);
5210 emit_label (lab2);
5211 OK_DEFER_POP;
5213 return NULL_RTX;
5215 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5216 /* If this is a scalar in a register that is stored in a wider mode
5217 than the declared mode, compute the result into its declared mode
5218 and then convert to the wider mode. Our value is the computed
5219 expression. */
5221 rtx inner_target = 0;
5223 /* We can do the conversion inside EXP, which will often result
5224 in some optimizations. Do the conversion in two steps: first
5225 change the signedness, if needed, then the extend. But don't
5226 do this if the type of EXP is a subtype of something else
5227 since then the conversion might involve more than just
5228 converting modes. */
5229 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5230 && TREE_TYPE (TREE_TYPE (exp)) == 0
5231 && GET_MODE_PRECISION (GET_MODE (target))
5232 == TYPE_PRECISION (TREE_TYPE (exp)))
5234 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5235 TYPE_UNSIGNED (TREE_TYPE (exp))))
5237 /* Some types, e.g. Fortran's logical*4, won't have a signed
5238 version, so use the mode instead. */
5239 tree ntype
5240 = (signed_or_unsigned_type_for
5241 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5242 if (ntype == NULL)
5243 ntype = lang_hooks.types.type_for_mode
5244 (TYPE_MODE (TREE_TYPE (exp)),
5245 SUBREG_PROMOTED_SIGN (target));
5247 exp = fold_convert_loc (loc, ntype, exp);
5250 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5251 (GET_MODE (SUBREG_REG (target)),
5252 SUBREG_PROMOTED_SIGN (target)),
5253 exp);
5255 inner_target = SUBREG_REG (target);
5258 temp = expand_expr (exp, inner_target, VOIDmode,
5259 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5261 /* If TEMP is a VOIDmode constant, use convert_modes to make
5262 sure that we properly convert it. */
5263 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5265 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5266 temp, SUBREG_PROMOTED_SIGN (target));
5267 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
5268 GET_MODE (target), temp,
5269 SUBREG_PROMOTED_SIGN (target));
5272 convert_move (SUBREG_REG (target), temp,
5273 SUBREG_PROMOTED_SIGN (target));
5275 return NULL_RTX;
5277 else if ((TREE_CODE (exp) == STRING_CST
5278 || (TREE_CODE (exp) == MEM_REF
5279 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5280 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5281 == STRING_CST
5282 && integer_zerop (TREE_OPERAND (exp, 1))))
5283 && !nontemporal && !call_param_p
5284 && MEM_P (target))
5286 /* Optimize initialization of an array with a STRING_CST. */
5287 HOST_WIDE_INT exp_len, str_copy_len;
5288 rtx dest_mem;
5289 tree str = TREE_CODE (exp) == STRING_CST
5290 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5292 exp_len = int_expr_size (exp);
5293 if (exp_len <= 0)
5294 goto normal_expr;
5296 if (TREE_STRING_LENGTH (str) <= 0)
5297 goto normal_expr;
5299 str_copy_len = strlen (TREE_STRING_POINTER (str));
5300 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5301 goto normal_expr;
5303 str_copy_len = TREE_STRING_LENGTH (str);
5304 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5305 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5307 str_copy_len += STORE_MAX_PIECES - 1;
5308 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5310 str_copy_len = MIN (str_copy_len, exp_len);
5311 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5312 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5313 MEM_ALIGN (target), false))
5314 goto normal_expr;
5316 dest_mem = target;
5318 dest_mem = store_by_pieces (dest_mem,
5319 str_copy_len, builtin_strncpy_read_str,
5320 CONST_CAST (char *,
5321 TREE_STRING_POINTER (str)),
5322 MEM_ALIGN (target), false,
5323 exp_len > str_copy_len ? 1 : 0);
5324 if (exp_len > str_copy_len)
5325 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5326 GEN_INT (exp_len - str_copy_len),
5327 BLOCK_OP_NORMAL);
5328 return NULL_RTX;
5330 else
5332 rtx tmp_target;
5334 normal_expr:
5335 /* If we want to use a nontemporal store, force the value to
5336 register first. */
5337 tmp_target = nontemporal ? NULL_RTX : target;
5338 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5339 (call_param_p
5340 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5341 &alt_rtl, false);
5344 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5345 the same as that of TARGET, adjust the constant. This is needed, for
5346 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5347 only a word-sized value. */
5348 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5349 && TREE_CODE (exp) != ERROR_MARK
5350 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5351 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5352 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5354 /* If value was not generated in the target, store it there.
5355 Convert the value to TARGET's type first if necessary and emit the
5356 pending incrementations that have been queued when expanding EXP.
5357 Note that we cannot emit the whole queue blindly because this will
5358 effectively disable the POST_INC optimization later.
5360 If TEMP and TARGET compare equal according to rtx_equal_p, but
5361 one or both of them are volatile memory refs, we have to distinguish
5362 two cases:
5363 - expand_expr has used TARGET. In this case, we must not generate
5364 another copy. This can be detected by TARGET being equal according
5365 to == .
5366 - expand_expr has not used TARGET - that means that the source just
5367 happens to have the same RTX form. Since temp will have been created
5368 by expand_expr, it will compare unequal according to == .
5369 We must generate a copy in this case, to reach the correct number
5370 of volatile memory references. */
5372 if ((! rtx_equal_p (temp, target)
5373 || (temp != target && (side_effects_p (temp)
5374 || side_effects_p (target))))
5375 && TREE_CODE (exp) != ERROR_MARK
5376 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5377 but TARGET is not valid memory reference, TEMP will differ
5378 from TARGET although it is really the same location. */
5379 && !(alt_rtl
5380 && rtx_equal_p (alt_rtl, target)
5381 && !side_effects_p (alt_rtl)
5382 && !side_effects_p (target))
5383 /* If there's nothing to copy, don't bother. Don't call
5384 expr_size unless necessary, because some front-ends (C++)
5385 expr_size-hook must not be given objects that are not
5386 supposed to be bit-copied or bit-initialized. */
5387 && expr_size (exp) != const0_rtx)
5389 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5391 if (GET_MODE (target) == BLKmode)
5393 /* Handle calls that return BLKmode values in registers. */
5394 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5395 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5396 else
5397 store_bit_field (target,
5398 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5399 0, 0, 0, GET_MODE (temp), temp);
5401 else
5402 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5405 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5407 /* Handle copying a string constant into an array. The string
5408 constant may be shorter than the array. So copy just the string's
5409 actual length, and clear the rest. First get the size of the data
5410 type of the string, which is actually the size of the target. */
5411 rtx size = expr_size (exp);
5413 if (CONST_INT_P (size)
5414 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5415 emit_block_move (target, temp, size,
5416 (call_param_p
5417 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5418 else
5420 enum machine_mode pointer_mode
5421 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5422 enum machine_mode address_mode = get_address_mode (target);
5424 /* Compute the size of the data to copy from the string. */
5425 tree copy_size
5426 = size_binop_loc (loc, MIN_EXPR,
5427 make_tree (sizetype, size),
5428 size_int (TREE_STRING_LENGTH (exp)));
5429 rtx copy_size_rtx
5430 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5431 (call_param_p
5432 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5433 rtx_code_label *label = 0;
5435 /* Copy that much. */
5436 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5437 TYPE_UNSIGNED (sizetype));
5438 emit_block_move (target, temp, copy_size_rtx,
5439 (call_param_p
5440 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5442 /* Figure out how much is left in TARGET that we have to clear.
5443 Do all calculations in pointer_mode. */
5444 if (CONST_INT_P (copy_size_rtx))
5446 size = plus_constant (address_mode, size,
5447 -INTVAL (copy_size_rtx));
5448 target = adjust_address (target, BLKmode,
5449 INTVAL (copy_size_rtx));
5451 else
5453 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5454 copy_size_rtx, NULL_RTX, 0,
5455 OPTAB_LIB_WIDEN);
5457 if (GET_MODE (copy_size_rtx) != address_mode)
5458 copy_size_rtx = convert_to_mode (address_mode,
5459 copy_size_rtx,
5460 TYPE_UNSIGNED (sizetype));
5462 target = offset_address (target, copy_size_rtx,
5463 highest_pow2_factor (copy_size));
5464 label = gen_label_rtx ();
5465 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5466 GET_MODE (size), 0, label);
5469 if (size != const0_rtx)
5470 clear_storage (target, size, BLOCK_OP_NORMAL);
5472 if (label)
5473 emit_label (label);
5476 /* Handle calls that return values in multiple non-contiguous locations.
5477 The Irix 6 ABI has examples of this. */
5478 else if (GET_CODE (target) == PARALLEL)
5480 if (GET_CODE (temp) == PARALLEL)
5481 emit_group_move (target, temp);
5482 else
5483 emit_group_load (target, temp, TREE_TYPE (exp),
5484 int_size_in_bytes (TREE_TYPE (exp)));
5486 else if (GET_CODE (temp) == PARALLEL)
5487 emit_group_store (target, temp, TREE_TYPE (exp),
5488 int_size_in_bytes (TREE_TYPE (exp)));
5489 else if (GET_MODE (temp) == BLKmode)
5490 emit_block_move (target, temp, expr_size (exp),
5491 (call_param_p
5492 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5493 /* If we emit a nontemporal store, there is nothing else to do. */
5494 else if (nontemporal && emit_storent_insn (target, temp))
5496 else
5498 temp = force_operand (temp, target);
5499 if (temp != target)
5500 emit_move_insn (target, temp);
5504 return NULL_RTX;
5507 /* Return true if field F of structure TYPE is a flexible array. */
5509 static bool
5510 flexible_array_member_p (const_tree f, const_tree type)
5512 const_tree tf;
5514 tf = TREE_TYPE (f);
5515 return (DECL_CHAIN (f) == NULL
5516 && TREE_CODE (tf) == ARRAY_TYPE
5517 && TYPE_DOMAIN (tf)
5518 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5519 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5520 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5521 && int_size_in_bytes (type) >= 0);
5524 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5525 must have in order for it to completely initialize a value of type TYPE.
5526 Return -1 if the number isn't known.
5528 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5530 static HOST_WIDE_INT
5531 count_type_elements (const_tree type, bool for_ctor_p)
5533 switch (TREE_CODE (type))
5535 case ARRAY_TYPE:
5537 tree nelts;
5539 nelts = array_type_nelts (type);
5540 if (nelts && tree_fits_uhwi_p (nelts))
5542 unsigned HOST_WIDE_INT n;
5544 n = tree_to_uhwi (nelts) + 1;
5545 if (n == 0 || for_ctor_p)
5546 return n;
5547 else
5548 return n * count_type_elements (TREE_TYPE (type), false);
5550 return for_ctor_p ? -1 : 1;
5553 case RECORD_TYPE:
5555 unsigned HOST_WIDE_INT n;
5556 tree f;
5558 n = 0;
5559 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5560 if (TREE_CODE (f) == FIELD_DECL)
5562 if (!for_ctor_p)
5563 n += count_type_elements (TREE_TYPE (f), false);
5564 else if (!flexible_array_member_p (f, type))
5565 /* Don't count flexible arrays, which are not supposed
5566 to be initialized. */
5567 n += 1;
5570 return n;
5573 case UNION_TYPE:
5574 case QUAL_UNION_TYPE:
5576 tree f;
5577 HOST_WIDE_INT n, m;
5579 gcc_assert (!for_ctor_p);
5580 /* Estimate the number of scalars in each field and pick the
5581 maximum. Other estimates would do instead; the idea is simply
5582 to make sure that the estimate is not sensitive to the ordering
5583 of the fields. */
5584 n = 1;
5585 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5586 if (TREE_CODE (f) == FIELD_DECL)
5588 m = count_type_elements (TREE_TYPE (f), false);
5589 /* If the field doesn't span the whole union, add an extra
5590 scalar for the rest. */
5591 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5592 TYPE_SIZE (type)) != 1)
5593 m++;
5594 if (n < m)
5595 n = m;
5597 return n;
5600 case COMPLEX_TYPE:
5601 return 2;
5603 case VECTOR_TYPE:
5604 return TYPE_VECTOR_SUBPARTS (type);
5606 case INTEGER_TYPE:
5607 case REAL_TYPE:
5608 case FIXED_POINT_TYPE:
5609 case ENUMERAL_TYPE:
5610 case BOOLEAN_TYPE:
5611 case POINTER_TYPE:
5612 case OFFSET_TYPE:
5613 case REFERENCE_TYPE:
5614 case NULLPTR_TYPE:
5615 return 1;
5617 case ERROR_MARK:
5618 return 0;
5620 case VOID_TYPE:
5621 case METHOD_TYPE:
5622 case FUNCTION_TYPE:
5623 case LANG_TYPE:
5624 default:
5625 gcc_unreachable ();
5629 /* Helper for categorize_ctor_elements. Identical interface. */
5631 static bool
5632 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5633 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5635 unsigned HOST_WIDE_INT idx;
5636 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5637 tree value, purpose, elt_type;
5639 /* Whether CTOR is a valid constant initializer, in accordance with what
5640 initializer_constant_valid_p does. If inferred from the constructor
5641 elements, true until proven otherwise. */
5642 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5643 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5645 nz_elts = 0;
5646 init_elts = 0;
5647 num_fields = 0;
5648 elt_type = NULL_TREE;
5650 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5652 HOST_WIDE_INT mult = 1;
5654 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5656 tree lo_index = TREE_OPERAND (purpose, 0);
5657 tree hi_index = TREE_OPERAND (purpose, 1);
5659 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5660 mult = (tree_to_uhwi (hi_index)
5661 - tree_to_uhwi (lo_index) + 1);
5663 num_fields += mult;
5664 elt_type = TREE_TYPE (value);
5666 switch (TREE_CODE (value))
5668 case CONSTRUCTOR:
5670 HOST_WIDE_INT nz = 0, ic = 0;
5672 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5673 p_complete);
5675 nz_elts += mult * nz;
5676 init_elts += mult * ic;
5678 if (const_from_elts_p && const_p)
5679 const_p = const_elt_p;
5681 break;
5683 case INTEGER_CST:
5684 case REAL_CST:
5685 case FIXED_CST:
5686 if (!initializer_zerop (value))
5687 nz_elts += mult;
5688 init_elts += mult;
5689 break;
5691 case STRING_CST:
5692 nz_elts += mult * TREE_STRING_LENGTH (value);
5693 init_elts += mult * TREE_STRING_LENGTH (value);
5694 break;
5696 case COMPLEX_CST:
5697 if (!initializer_zerop (TREE_REALPART (value)))
5698 nz_elts += mult;
5699 if (!initializer_zerop (TREE_IMAGPART (value)))
5700 nz_elts += mult;
5701 init_elts += mult;
5702 break;
5704 case VECTOR_CST:
5706 unsigned i;
5707 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5709 tree v = VECTOR_CST_ELT (value, i);
5710 if (!initializer_zerop (v))
5711 nz_elts += mult;
5712 init_elts += mult;
5715 break;
5717 default:
5719 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5720 nz_elts += mult * tc;
5721 init_elts += mult * tc;
5723 if (const_from_elts_p && const_p)
5724 const_p = initializer_constant_valid_p (value, elt_type)
5725 != NULL_TREE;
5727 break;
5731 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5732 num_fields, elt_type))
5733 *p_complete = false;
5735 *p_nz_elts += nz_elts;
5736 *p_init_elts += init_elts;
5738 return const_p;
5741 /* Examine CTOR to discover:
5742 * how many scalar fields are set to nonzero values,
5743 and place it in *P_NZ_ELTS;
5744 * how many scalar fields in total are in CTOR,
5745 and place it in *P_ELT_COUNT.
5746 * whether the constructor is complete -- in the sense that every
5747 meaningful byte is explicitly given a value --
5748 and place it in *P_COMPLETE.
5750 Return whether or not CTOR is a valid static constant initializer, the same
5751 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5753 bool
5754 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5755 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5757 *p_nz_elts = 0;
5758 *p_init_elts = 0;
5759 *p_complete = true;
5761 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
5764 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5765 of which had type LAST_TYPE. Each element was itself a complete
5766 initializer, in the sense that every meaningful byte was explicitly
5767 given a value. Return true if the same is true for the constructor
5768 as a whole. */
5770 bool
5771 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
5772 const_tree last_type)
5774 if (TREE_CODE (type) == UNION_TYPE
5775 || TREE_CODE (type) == QUAL_UNION_TYPE)
5777 if (num_elts == 0)
5778 return false;
5780 gcc_assert (num_elts == 1 && last_type);
5782 /* ??? We could look at each element of the union, and find the
5783 largest element. Which would avoid comparing the size of the
5784 initialized element against any tail padding in the union.
5785 Doesn't seem worth the effort... */
5786 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
5789 return count_type_elements (type, true) == num_elts;
5792 /* Return 1 if EXP contains mostly (3/4) zeros. */
5794 static int
5795 mostly_zeros_p (const_tree exp)
5797 if (TREE_CODE (exp) == CONSTRUCTOR)
5799 HOST_WIDE_INT nz_elts, init_elts;
5800 bool complete_p;
5802 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5803 return !complete_p || nz_elts < init_elts / 4;
5806 return initializer_zerop (exp);
5809 /* Return 1 if EXP contains all zeros. */
5811 static int
5812 all_zeros_p (const_tree exp)
5814 if (TREE_CODE (exp) == CONSTRUCTOR)
5816 HOST_WIDE_INT nz_elts, init_elts;
5817 bool complete_p;
5819 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5820 return nz_elts == 0;
5823 return initializer_zerop (exp);
5826 /* Helper function for store_constructor.
5827 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5828 CLEARED is as for store_constructor.
5829 ALIAS_SET is the alias set to use for any stores.
5831 This provides a recursive shortcut back to store_constructor when it isn't
5832 necessary to go through store_field. This is so that we can pass through
5833 the cleared field to let store_constructor know that we may not have to
5834 clear a substructure if the outer structure has already been cleared. */
5836 static void
5837 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5838 HOST_WIDE_INT bitpos, enum machine_mode mode,
5839 tree exp, int cleared, alias_set_type alias_set)
5841 if (TREE_CODE (exp) == CONSTRUCTOR
5842 /* We can only call store_constructor recursively if the size and
5843 bit position are on a byte boundary. */
5844 && bitpos % BITS_PER_UNIT == 0
5845 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5846 /* If we have a nonzero bitpos for a register target, then we just
5847 let store_field do the bitfield handling. This is unlikely to
5848 generate unnecessary clear instructions anyways. */
5849 && (bitpos == 0 || MEM_P (target)))
5851 if (MEM_P (target))
5852 target
5853 = adjust_address (target,
5854 GET_MODE (target) == BLKmode
5855 || 0 != (bitpos
5856 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5857 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5860 /* Update the alias set, if required. */
5861 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5862 && MEM_ALIAS_SET (target) != 0)
5864 target = copy_rtx (target);
5865 set_mem_alias_set (target, alias_set);
5868 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5870 else
5871 store_field (target, bitsize, bitpos, 0, 0, mode, exp, alias_set, false);
5875 /* Returns the number of FIELD_DECLs in TYPE. */
5877 static int
5878 fields_length (const_tree type)
5880 tree t = TYPE_FIELDS (type);
5881 int count = 0;
5883 for (; t; t = DECL_CHAIN (t))
5884 if (TREE_CODE (t) == FIELD_DECL)
5885 ++count;
5887 return count;
5891 /* Store the value of constructor EXP into the rtx TARGET.
5892 TARGET is either a REG or a MEM; we know it cannot conflict, since
5893 safe_from_p has been called.
5894 CLEARED is true if TARGET is known to have been zero'd.
5895 SIZE is the number of bytes of TARGET we are allowed to modify: this
5896 may not be the same as the size of EXP if we are assigning to a field
5897 which has been packed to exclude padding bits. */
5899 static void
5900 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5902 tree type = TREE_TYPE (exp);
5903 #ifdef WORD_REGISTER_OPERATIONS
5904 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5905 #endif
5907 switch (TREE_CODE (type))
5909 case RECORD_TYPE:
5910 case UNION_TYPE:
5911 case QUAL_UNION_TYPE:
5913 unsigned HOST_WIDE_INT idx;
5914 tree field, value;
5916 /* If size is zero or the target is already cleared, do nothing. */
5917 if (size == 0 || cleared)
5918 cleared = 1;
5919 /* We either clear the aggregate or indicate the value is dead. */
5920 else if ((TREE_CODE (type) == UNION_TYPE
5921 || TREE_CODE (type) == QUAL_UNION_TYPE)
5922 && ! CONSTRUCTOR_ELTS (exp))
5923 /* If the constructor is empty, clear the union. */
5925 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5926 cleared = 1;
5929 /* If we are building a static constructor into a register,
5930 set the initial value as zero so we can fold the value into
5931 a constant. But if more than one register is involved,
5932 this probably loses. */
5933 else if (REG_P (target) && TREE_STATIC (exp)
5934 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5936 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5937 cleared = 1;
5940 /* If the constructor has fewer fields than the structure or
5941 if we are initializing the structure to mostly zeros, clear
5942 the whole structure first. Don't do this if TARGET is a
5943 register whose mode size isn't equal to SIZE since
5944 clear_storage can't handle this case. */
5945 else if (size > 0
5946 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp))
5947 != fields_length (type))
5948 || mostly_zeros_p (exp))
5949 && (!REG_P (target)
5950 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5951 == size)))
5953 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5954 cleared = 1;
5957 if (REG_P (target) && !cleared)
5958 emit_clobber (target);
5960 /* Store each element of the constructor into the
5961 corresponding field of TARGET. */
5962 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5964 enum machine_mode mode;
5965 HOST_WIDE_INT bitsize;
5966 HOST_WIDE_INT bitpos = 0;
5967 tree offset;
5968 rtx to_rtx = target;
5970 /* Just ignore missing fields. We cleared the whole
5971 structure, above, if any fields are missing. */
5972 if (field == 0)
5973 continue;
5975 if (cleared && initializer_zerop (value))
5976 continue;
5978 if (tree_fits_uhwi_p (DECL_SIZE (field)))
5979 bitsize = tree_to_uhwi (DECL_SIZE (field));
5980 else
5981 bitsize = -1;
5983 mode = DECL_MODE (field);
5984 if (DECL_BIT_FIELD (field))
5985 mode = VOIDmode;
5987 offset = DECL_FIELD_OFFSET (field);
5988 if (tree_fits_shwi_p (offset)
5989 && tree_fits_shwi_p (bit_position (field)))
5991 bitpos = int_bit_position (field);
5992 offset = 0;
5994 else
5995 bitpos = tree_to_shwi (DECL_FIELD_BIT_OFFSET (field));
5997 if (offset)
5999 enum machine_mode address_mode;
6000 rtx offset_rtx;
6002 offset
6003 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
6004 make_tree (TREE_TYPE (exp),
6005 target));
6007 offset_rtx = expand_normal (offset);
6008 gcc_assert (MEM_P (to_rtx));
6010 address_mode = get_address_mode (to_rtx);
6011 if (GET_MODE (offset_rtx) != address_mode)
6012 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
6014 to_rtx = offset_address (to_rtx, offset_rtx,
6015 highest_pow2_factor (offset));
6018 #ifdef WORD_REGISTER_OPERATIONS
6019 /* If this initializes a field that is smaller than a
6020 word, at the start of a word, try to widen it to a full
6021 word. This special case allows us to output C++ member
6022 function initializations in a form that the optimizers
6023 can understand. */
6024 if (REG_P (target)
6025 && bitsize < BITS_PER_WORD
6026 && bitpos % BITS_PER_WORD == 0
6027 && GET_MODE_CLASS (mode) == MODE_INT
6028 && TREE_CODE (value) == INTEGER_CST
6029 && exp_size >= 0
6030 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6032 tree type = TREE_TYPE (value);
6034 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6036 type = lang_hooks.types.type_for_mode
6037 (word_mode, TYPE_UNSIGNED (type));
6038 value = fold_convert (type, value);
6041 if (BYTES_BIG_ENDIAN)
6042 value
6043 = fold_build2 (LSHIFT_EXPR, type, value,
6044 build_int_cst (type,
6045 BITS_PER_WORD - bitsize));
6046 bitsize = BITS_PER_WORD;
6047 mode = word_mode;
6049 #endif
6051 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6052 && DECL_NONADDRESSABLE_P (field))
6054 to_rtx = copy_rtx (to_rtx);
6055 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6058 store_constructor_field (to_rtx, bitsize, bitpos, mode,
6059 value, cleared,
6060 get_alias_set (TREE_TYPE (field)));
6062 break;
6064 case ARRAY_TYPE:
6066 tree value, index;
6067 unsigned HOST_WIDE_INT i;
6068 int need_to_clear;
6069 tree domain;
6070 tree elttype = TREE_TYPE (type);
6071 int const_bounds_p;
6072 HOST_WIDE_INT minelt = 0;
6073 HOST_WIDE_INT maxelt = 0;
6075 domain = TYPE_DOMAIN (type);
6076 const_bounds_p = (TYPE_MIN_VALUE (domain)
6077 && TYPE_MAX_VALUE (domain)
6078 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6079 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6081 /* If we have constant bounds for the range of the type, get them. */
6082 if (const_bounds_p)
6084 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6085 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6088 /* If the constructor has fewer elements than the array, clear
6089 the whole array first. Similarly if this is static
6090 constructor of a non-BLKmode object. */
6091 if (cleared)
6092 need_to_clear = 0;
6093 else if (REG_P (target) && TREE_STATIC (exp))
6094 need_to_clear = 1;
6095 else
6097 unsigned HOST_WIDE_INT idx;
6098 tree index, value;
6099 HOST_WIDE_INT count = 0, zero_count = 0;
6100 need_to_clear = ! const_bounds_p;
6102 /* This loop is a more accurate version of the loop in
6103 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6104 is also needed to check for missing elements. */
6105 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6107 HOST_WIDE_INT this_node_count;
6109 if (need_to_clear)
6110 break;
6112 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6114 tree lo_index = TREE_OPERAND (index, 0);
6115 tree hi_index = TREE_OPERAND (index, 1);
6117 if (! tree_fits_uhwi_p (lo_index)
6118 || ! tree_fits_uhwi_p (hi_index))
6120 need_to_clear = 1;
6121 break;
6124 this_node_count = (tree_to_uhwi (hi_index)
6125 - tree_to_uhwi (lo_index) + 1);
6127 else
6128 this_node_count = 1;
6130 count += this_node_count;
6131 if (mostly_zeros_p (value))
6132 zero_count += this_node_count;
6135 /* Clear the entire array first if there are any missing
6136 elements, or if the incidence of zero elements is >=
6137 75%. */
6138 if (! need_to_clear
6139 && (count < maxelt - minelt + 1
6140 || 4 * zero_count >= 3 * count))
6141 need_to_clear = 1;
6144 if (need_to_clear && size > 0)
6146 if (REG_P (target))
6147 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6148 else
6149 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6150 cleared = 1;
6153 if (!cleared && REG_P (target))
6154 /* Inform later passes that the old value is dead. */
6155 emit_clobber (target);
6157 /* Store each element of the constructor into the
6158 corresponding element of TARGET, determined by counting the
6159 elements. */
6160 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6162 enum machine_mode mode;
6163 HOST_WIDE_INT bitsize;
6164 HOST_WIDE_INT bitpos;
6165 rtx xtarget = target;
6167 if (cleared && initializer_zerop (value))
6168 continue;
6170 mode = TYPE_MODE (elttype);
6171 if (mode == BLKmode)
6172 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6173 ? tree_to_uhwi (TYPE_SIZE (elttype))
6174 : -1);
6175 else
6176 bitsize = GET_MODE_BITSIZE (mode);
6178 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6180 tree lo_index = TREE_OPERAND (index, 0);
6181 tree hi_index = TREE_OPERAND (index, 1);
6182 rtx index_r, pos_rtx;
6183 HOST_WIDE_INT lo, hi, count;
6184 tree position;
6186 /* If the range is constant and "small", unroll the loop. */
6187 if (const_bounds_p
6188 && tree_fits_shwi_p (lo_index)
6189 && tree_fits_shwi_p (hi_index)
6190 && (lo = tree_to_shwi (lo_index),
6191 hi = tree_to_shwi (hi_index),
6192 count = hi - lo + 1,
6193 (!MEM_P (target)
6194 || count <= 2
6195 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6196 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6197 <= 40 * 8)))))
6199 lo -= minelt; hi -= minelt;
6200 for (; lo <= hi; lo++)
6202 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6204 if (MEM_P (target)
6205 && !MEM_KEEP_ALIAS_SET_P (target)
6206 && TREE_CODE (type) == ARRAY_TYPE
6207 && TYPE_NONALIASED_COMPONENT (type))
6209 target = copy_rtx (target);
6210 MEM_KEEP_ALIAS_SET_P (target) = 1;
6213 store_constructor_field
6214 (target, bitsize, bitpos, mode, value, cleared,
6215 get_alias_set (elttype));
6218 else
6220 rtx_code_label *loop_start = gen_label_rtx ();
6221 rtx_code_label *loop_end = gen_label_rtx ();
6222 tree exit_cond;
6224 expand_normal (hi_index);
6226 index = build_decl (EXPR_LOCATION (exp),
6227 VAR_DECL, NULL_TREE, domain);
6228 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6229 SET_DECL_RTL (index, index_r);
6230 store_expr (lo_index, index_r, 0, false);
6232 /* Build the head of the loop. */
6233 do_pending_stack_adjust ();
6234 emit_label (loop_start);
6236 /* Assign value to element index. */
6237 position =
6238 fold_convert (ssizetype,
6239 fold_build2 (MINUS_EXPR,
6240 TREE_TYPE (index),
6241 index,
6242 TYPE_MIN_VALUE (domain)));
6244 position =
6245 size_binop (MULT_EXPR, position,
6246 fold_convert (ssizetype,
6247 TYPE_SIZE_UNIT (elttype)));
6249 pos_rtx = expand_normal (position);
6250 xtarget = offset_address (target, pos_rtx,
6251 highest_pow2_factor (position));
6252 xtarget = adjust_address (xtarget, mode, 0);
6253 if (TREE_CODE (value) == CONSTRUCTOR)
6254 store_constructor (value, xtarget, cleared,
6255 bitsize / BITS_PER_UNIT);
6256 else
6257 store_expr (value, xtarget, 0, false);
6259 /* Generate a conditional jump to exit the loop. */
6260 exit_cond = build2 (LT_EXPR, integer_type_node,
6261 index, hi_index);
6262 jumpif (exit_cond, loop_end, -1);
6264 /* Update the loop counter, and jump to the head of
6265 the loop. */
6266 expand_assignment (index,
6267 build2 (PLUS_EXPR, TREE_TYPE (index),
6268 index, integer_one_node),
6269 false);
6271 emit_jump (loop_start);
6273 /* Build the end of the loop. */
6274 emit_label (loop_end);
6277 else if ((index != 0 && ! tree_fits_shwi_p (index))
6278 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6280 tree position;
6282 if (index == 0)
6283 index = ssize_int (1);
6285 if (minelt)
6286 index = fold_convert (ssizetype,
6287 fold_build2 (MINUS_EXPR,
6288 TREE_TYPE (index),
6289 index,
6290 TYPE_MIN_VALUE (domain)));
6292 position =
6293 size_binop (MULT_EXPR, index,
6294 fold_convert (ssizetype,
6295 TYPE_SIZE_UNIT (elttype)));
6296 xtarget = offset_address (target,
6297 expand_normal (position),
6298 highest_pow2_factor (position));
6299 xtarget = adjust_address (xtarget, mode, 0);
6300 store_expr (value, xtarget, 0, false);
6302 else
6304 if (index != 0)
6305 bitpos = ((tree_to_shwi (index) - minelt)
6306 * tree_to_uhwi (TYPE_SIZE (elttype)));
6307 else
6308 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6310 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6311 && TREE_CODE (type) == ARRAY_TYPE
6312 && TYPE_NONALIASED_COMPONENT (type))
6314 target = copy_rtx (target);
6315 MEM_KEEP_ALIAS_SET_P (target) = 1;
6317 store_constructor_field (target, bitsize, bitpos, mode, value,
6318 cleared, get_alias_set (elttype));
6321 break;
6324 case VECTOR_TYPE:
6326 unsigned HOST_WIDE_INT idx;
6327 constructor_elt *ce;
6328 int i;
6329 int need_to_clear;
6330 int icode = CODE_FOR_nothing;
6331 tree elttype = TREE_TYPE (type);
6332 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6333 enum machine_mode eltmode = TYPE_MODE (elttype);
6334 HOST_WIDE_INT bitsize;
6335 HOST_WIDE_INT bitpos;
6336 rtvec vector = NULL;
6337 unsigned n_elts;
6338 alias_set_type alias;
6340 gcc_assert (eltmode != BLKmode);
6342 n_elts = TYPE_VECTOR_SUBPARTS (type);
6343 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6345 enum machine_mode mode = GET_MODE (target);
6347 icode = (int) optab_handler (vec_init_optab, mode);
6348 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6349 if (icode != CODE_FOR_nothing)
6351 tree value;
6353 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6354 if (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE)
6356 icode = CODE_FOR_nothing;
6357 break;
6360 if (icode != CODE_FOR_nothing)
6362 unsigned int i;
6364 vector = rtvec_alloc (n_elts);
6365 for (i = 0; i < n_elts; i++)
6366 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
6370 /* If the constructor has fewer elements than the vector,
6371 clear the whole array first. Similarly if this is static
6372 constructor of a non-BLKmode object. */
6373 if (cleared)
6374 need_to_clear = 0;
6375 else if (REG_P (target) && TREE_STATIC (exp))
6376 need_to_clear = 1;
6377 else
6379 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6380 tree value;
6382 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6384 int n_elts_here = tree_to_uhwi
6385 (int_const_binop (TRUNC_DIV_EXPR,
6386 TYPE_SIZE (TREE_TYPE (value)),
6387 TYPE_SIZE (elttype)));
6389 count += n_elts_here;
6390 if (mostly_zeros_p (value))
6391 zero_count += n_elts_here;
6394 /* Clear the entire vector first if there are any missing elements,
6395 or if the incidence of zero elements is >= 75%. */
6396 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6399 if (need_to_clear && size > 0 && !vector)
6401 if (REG_P (target))
6402 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6403 else
6404 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6405 cleared = 1;
6408 /* Inform later passes that the old value is dead. */
6409 if (!cleared && !vector && REG_P (target))
6410 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6412 if (MEM_P (target))
6413 alias = MEM_ALIAS_SET (target);
6414 else
6415 alias = get_alias_set (elttype);
6417 /* Store each element of the constructor into the corresponding
6418 element of TARGET, determined by counting the elements. */
6419 for (idx = 0, i = 0;
6420 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6421 idx++, i += bitsize / elt_size)
6423 HOST_WIDE_INT eltpos;
6424 tree value = ce->value;
6426 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6427 if (cleared && initializer_zerop (value))
6428 continue;
6430 if (ce->index)
6431 eltpos = tree_to_uhwi (ce->index);
6432 else
6433 eltpos = i;
6435 if (vector)
6437 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6438 elements. */
6439 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6440 RTVEC_ELT (vector, eltpos)
6441 = expand_normal (value);
6443 else
6445 enum machine_mode value_mode =
6446 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6447 ? TYPE_MODE (TREE_TYPE (value))
6448 : eltmode;
6449 bitpos = eltpos * elt_size;
6450 store_constructor_field (target, bitsize, bitpos, value_mode,
6451 value, cleared, alias);
6455 if (vector)
6456 emit_insn (GEN_FCN (icode)
6457 (target,
6458 gen_rtx_PARALLEL (GET_MODE (target), vector)));
6459 break;
6462 default:
6463 gcc_unreachable ();
6467 /* Store the value of EXP (an expression tree)
6468 into a subfield of TARGET which has mode MODE and occupies
6469 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6470 If MODE is VOIDmode, it means that we are storing into a bit-field.
6472 BITREGION_START is bitpos of the first bitfield in this region.
6473 BITREGION_END is the bitpos of the ending bitfield in this region.
6474 These two fields are 0, if the C++ memory model does not apply,
6475 or we are not interested in keeping track of bitfield regions.
6477 Always return const0_rtx unless we have something particular to
6478 return.
6480 ALIAS_SET is the alias set for the destination. This value will
6481 (in general) be different from that for TARGET, since TARGET is a
6482 reference to the containing structure.
6484 If NONTEMPORAL is true, try generating a nontemporal store. */
6486 static rtx
6487 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6488 unsigned HOST_WIDE_INT bitregion_start,
6489 unsigned HOST_WIDE_INT bitregion_end,
6490 enum machine_mode mode, tree exp,
6491 alias_set_type alias_set, bool nontemporal)
6493 if (TREE_CODE (exp) == ERROR_MARK)
6494 return const0_rtx;
6496 /* If we have nothing to store, do nothing unless the expression has
6497 side-effects. */
6498 if (bitsize == 0)
6499 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6501 if (GET_CODE (target) == CONCAT)
6503 /* We're storing into a struct containing a single __complex. */
6505 gcc_assert (!bitpos);
6506 return store_expr (exp, target, 0, nontemporal);
6509 /* If the structure is in a register or if the component
6510 is a bit field, we cannot use addressing to access it.
6511 Use bit-field techniques or SUBREG to store in it. */
6513 if (mode == VOIDmode
6514 || (mode != BLKmode && ! direct_store[(int) mode]
6515 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6516 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6517 || REG_P (target)
6518 || GET_CODE (target) == SUBREG
6519 /* If the field isn't aligned enough to store as an ordinary memref,
6520 store it as a bit field. */
6521 || (mode != BLKmode
6522 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6523 || bitpos % GET_MODE_ALIGNMENT (mode))
6524 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6525 || (bitpos % BITS_PER_UNIT != 0)))
6526 || (bitsize >= 0 && mode != BLKmode
6527 && GET_MODE_BITSIZE (mode) > bitsize)
6528 /* If the RHS and field are a constant size and the size of the
6529 RHS isn't the same size as the bitfield, we must use bitfield
6530 operations. */
6531 || (bitsize >= 0
6532 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6533 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
6534 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6535 decl we must use bitfield operations. */
6536 || (bitsize >= 0
6537 && TREE_CODE (exp) == MEM_REF
6538 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6539 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6540 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
6541 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6543 rtx temp;
6544 gimple nop_def;
6546 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6547 implies a mask operation. If the precision is the same size as
6548 the field we're storing into, that mask is redundant. This is
6549 particularly common with bit field assignments generated by the
6550 C front end. */
6551 nop_def = get_def_for_expr (exp, NOP_EXPR);
6552 if (nop_def)
6554 tree type = TREE_TYPE (exp);
6555 if (INTEGRAL_TYPE_P (type)
6556 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6557 && bitsize == TYPE_PRECISION (type))
6559 tree op = gimple_assign_rhs1 (nop_def);
6560 type = TREE_TYPE (op);
6561 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6562 exp = op;
6566 temp = expand_normal (exp);
6568 /* If BITSIZE is narrower than the size of the type of EXP
6569 we will be narrowing TEMP. Normally, what's wanted are the
6570 low-order bits. However, if EXP's type is a record and this is
6571 big-endian machine, we want the upper BITSIZE bits. */
6572 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
6573 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
6574 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
6575 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6576 GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
6577 NULL_RTX, 1);
6579 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6580 if (mode != VOIDmode && mode != BLKmode
6581 && mode != TYPE_MODE (TREE_TYPE (exp)))
6582 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6584 /* If the modes of TEMP and TARGET are both BLKmode, both
6585 must be in memory and BITPOS must be aligned on a byte
6586 boundary. If so, we simply do a block copy. Likewise
6587 for a BLKmode-like TARGET. */
6588 if (GET_MODE (temp) == BLKmode
6589 && (GET_MODE (target) == BLKmode
6590 || (MEM_P (target)
6591 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6592 && (bitpos % BITS_PER_UNIT) == 0
6593 && (bitsize % BITS_PER_UNIT) == 0)))
6595 gcc_assert (MEM_P (target) && MEM_P (temp)
6596 && (bitpos % BITS_PER_UNIT) == 0);
6598 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6599 emit_block_move (target, temp,
6600 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6601 / BITS_PER_UNIT),
6602 BLOCK_OP_NORMAL);
6604 return const0_rtx;
6607 /* Handle calls that return values in multiple non-contiguous locations.
6608 The Irix 6 ABI has examples of this. */
6609 if (GET_CODE (temp) == PARALLEL)
6611 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6612 rtx temp_target;
6613 if (mode == BLKmode || mode == VOIDmode)
6614 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6615 temp_target = gen_reg_rtx (mode);
6616 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6617 temp = temp_target;
6619 else if (mode == BLKmode)
6621 /* Handle calls that return BLKmode values in registers. */
6622 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6624 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6625 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6626 temp = temp_target;
6628 else
6630 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6631 rtx temp_target;
6632 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6633 temp_target = gen_reg_rtx (mode);
6634 temp_target
6635 = extract_bit_field (temp, size * BITS_PER_UNIT, 0, 1,
6636 temp_target, mode, mode);
6637 temp = temp_target;
6641 /* Store the value in the bitfield. */
6642 store_bit_field (target, bitsize, bitpos,
6643 bitregion_start, bitregion_end,
6644 mode, temp);
6646 return const0_rtx;
6648 else
6650 /* Now build a reference to just the desired component. */
6651 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6653 if (to_rtx == target)
6654 to_rtx = copy_rtx (to_rtx);
6656 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6657 set_mem_alias_set (to_rtx, alias_set);
6659 return store_expr (exp, to_rtx, 0, nontemporal);
6663 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6664 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6665 codes and find the ultimate containing object, which we return.
6667 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6668 bit position, and *PUNSIGNEDP to the signedness of the field.
6669 If the position of the field is variable, we store a tree
6670 giving the variable offset (in units) in *POFFSET.
6671 This offset is in addition to the bit position.
6672 If the position is not variable, we store 0 in *POFFSET.
6674 If any of the extraction expressions is volatile,
6675 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6677 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6678 Otherwise, it is a mode that can be used to access the field.
6680 If the field describes a variable-sized object, *PMODE is set to
6681 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6682 this case, but the address of the object can be found.
6684 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6685 look through nodes that serve as markers of a greater alignment than
6686 the one that can be deduced from the expression. These nodes make it
6687 possible for front-ends to prevent temporaries from being created by
6688 the middle-end on alignment considerations. For that purpose, the
6689 normal operating mode at high-level is to always pass FALSE so that
6690 the ultimate containing object is really returned; moreover, the
6691 associated predicate handled_component_p will always return TRUE
6692 on these nodes, thus indicating that they are essentially handled
6693 by get_inner_reference. TRUE should only be passed when the caller
6694 is scanning the expression in order to build another representation
6695 and specifically knows how to handle these nodes; as such, this is
6696 the normal operating mode in the RTL expanders. */
6698 tree
6699 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6700 HOST_WIDE_INT *pbitpos, tree *poffset,
6701 enum machine_mode *pmode, int *punsignedp,
6702 int *pvolatilep, bool keep_aligning)
6704 tree size_tree = 0;
6705 enum machine_mode mode = VOIDmode;
6706 bool blkmode_bitfield = false;
6707 tree offset = size_zero_node;
6708 offset_int bit_offset = 0;
6710 /* First get the mode, signedness, and size. We do this from just the
6711 outermost expression. */
6712 *pbitsize = -1;
6713 if (TREE_CODE (exp) == COMPONENT_REF)
6715 tree field = TREE_OPERAND (exp, 1);
6716 size_tree = DECL_SIZE (field);
6717 if (flag_strict_volatile_bitfields > 0
6718 && TREE_THIS_VOLATILE (exp)
6719 && DECL_BIT_FIELD_TYPE (field)
6720 && DECL_MODE (field) != BLKmode)
6721 /* Volatile bitfields should be accessed in the mode of the
6722 field's type, not the mode computed based on the bit
6723 size. */
6724 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6725 else if (!DECL_BIT_FIELD (field))
6726 mode = DECL_MODE (field);
6727 else if (DECL_MODE (field) == BLKmode)
6728 blkmode_bitfield = true;
6730 *punsignedp = DECL_UNSIGNED (field);
6732 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6734 size_tree = TREE_OPERAND (exp, 1);
6735 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6736 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6738 /* For vector types, with the correct size of access, use the mode of
6739 inner type. */
6740 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6741 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6742 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6743 mode = TYPE_MODE (TREE_TYPE (exp));
6745 else
6747 mode = TYPE_MODE (TREE_TYPE (exp));
6748 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6750 if (mode == BLKmode)
6751 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6752 else
6753 *pbitsize = GET_MODE_BITSIZE (mode);
6756 if (size_tree != 0)
6758 if (! tree_fits_uhwi_p (size_tree))
6759 mode = BLKmode, *pbitsize = -1;
6760 else
6761 *pbitsize = tree_to_uhwi (size_tree);
6764 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6765 and find the ultimate containing object. */
6766 while (1)
6768 switch (TREE_CODE (exp))
6770 case BIT_FIELD_REF:
6771 bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
6772 break;
6774 case COMPONENT_REF:
6776 tree field = TREE_OPERAND (exp, 1);
6777 tree this_offset = component_ref_field_offset (exp);
6779 /* If this field hasn't been filled in yet, don't go past it.
6780 This should only happen when folding expressions made during
6781 type construction. */
6782 if (this_offset == 0)
6783 break;
6785 offset = size_binop (PLUS_EXPR, offset, this_offset);
6786 bit_offset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
6788 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6790 break;
6792 case ARRAY_REF:
6793 case ARRAY_RANGE_REF:
6795 tree index = TREE_OPERAND (exp, 1);
6796 tree low_bound = array_ref_low_bound (exp);
6797 tree unit_size = array_ref_element_size (exp);
6799 /* We assume all arrays have sizes that are a multiple of a byte.
6800 First subtract the lower bound, if any, in the type of the
6801 index, then convert to sizetype and multiply by the size of
6802 the array element. */
6803 if (! integer_zerop (low_bound))
6804 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6805 index, low_bound);
6807 offset = size_binop (PLUS_EXPR, offset,
6808 size_binop (MULT_EXPR,
6809 fold_convert (sizetype, index),
6810 unit_size));
6812 break;
6814 case REALPART_EXPR:
6815 break;
6817 case IMAGPART_EXPR:
6818 bit_offset += *pbitsize;
6819 break;
6821 case VIEW_CONVERT_EXPR:
6822 if (keep_aligning && STRICT_ALIGNMENT
6823 && (TYPE_ALIGN (TREE_TYPE (exp))
6824 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6825 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6826 < BIGGEST_ALIGNMENT)
6827 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6828 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6829 goto done;
6830 break;
6832 case MEM_REF:
6833 /* Hand back the decl for MEM[&decl, off]. */
6834 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6836 tree off = TREE_OPERAND (exp, 1);
6837 if (!integer_zerop (off))
6839 offset_int boff, coff = mem_ref_offset (exp);
6840 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
6841 bit_offset += boff;
6843 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6845 goto done;
6847 default:
6848 goto done;
6851 /* If any reference in the chain is volatile, the effect is volatile. */
6852 if (TREE_THIS_VOLATILE (exp))
6853 *pvolatilep = 1;
6855 exp = TREE_OPERAND (exp, 0);
6857 done:
6859 /* If OFFSET is constant, see if we can return the whole thing as a
6860 constant bit position. Make sure to handle overflow during
6861 this conversion. */
6862 if (TREE_CODE (offset) == INTEGER_CST)
6864 offset_int tem = wi::sext (wi::to_offset (offset),
6865 TYPE_PRECISION (sizetype));
6866 tem = wi::lshift (tem, LOG2_BITS_PER_UNIT);
6867 tem += bit_offset;
6868 if (wi::fits_shwi_p (tem))
6870 *pbitpos = tem.to_shwi ();
6871 *poffset = offset = NULL_TREE;
6875 /* Otherwise, split it up. */
6876 if (offset)
6878 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6879 if (wi::neg_p (bit_offset))
6881 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
6882 offset_int tem = bit_offset.and_not (mask);
6883 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6884 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6885 bit_offset -= tem;
6886 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
6887 offset = size_binop (PLUS_EXPR, offset,
6888 wide_int_to_tree (sizetype, tem));
6891 *pbitpos = bit_offset.to_shwi ();
6892 *poffset = offset;
6895 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6896 if (mode == VOIDmode
6897 && blkmode_bitfield
6898 && (*pbitpos % BITS_PER_UNIT) == 0
6899 && (*pbitsize % BITS_PER_UNIT) == 0)
6900 *pmode = BLKmode;
6901 else
6902 *pmode = mode;
6904 return exp;
6907 /* Return a tree of sizetype representing the size, in bytes, of the element
6908 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6910 tree
6911 array_ref_element_size (tree exp)
6913 tree aligned_size = TREE_OPERAND (exp, 3);
6914 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6915 location_t loc = EXPR_LOCATION (exp);
6917 /* If a size was specified in the ARRAY_REF, it's the size measured
6918 in alignment units of the element type. So multiply by that value. */
6919 if (aligned_size)
6921 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6922 sizetype from another type of the same width and signedness. */
6923 if (TREE_TYPE (aligned_size) != sizetype)
6924 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6925 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6926 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6929 /* Otherwise, take the size from that of the element type. Substitute
6930 any PLACEHOLDER_EXPR that we have. */
6931 else
6932 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6935 /* Return a tree representing the lower bound of the array mentioned in
6936 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6938 tree
6939 array_ref_low_bound (tree exp)
6941 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6943 /* If a lower bound is specified in EXP, use it. */
6944 if (TREE_OPERAND (exp, 2))
6945 return TREE_OPERAND (exp, 2);
6947 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6948 substituting for a PLACEHOLDER_EXPR as needed. */
6949 if (domain_type && TYPE_MIN_VALUE (domain_type))
6950 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6952 /* Otherwise, return a zero of the appropriate type. */
6953 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6956 /* Returns true if REF is an array reference to an array at the end of
6957 a structure. If this is the case, the array may be allocated larger
6958 than its upper bound implies. */
6960 bool
6961 array_at_struct_end_p (tree ref)
6963 if (TREE_CODE (ref) != ARRAY_REF
6964 && TREE_CODE (ref) != ARRAY_RANGE_REF)
6965 return false;
6967 while (handled_component_p (ref))
6969 /* If the reference chain contains a component reference to a
6970 non-union type and there follows another field the reference
6971 is not at the end of a structure. */
6972 if (TREE_CODE (ref) == COMPONENT_REF
6973 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
6975 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
6976 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
6977 nextf = DECL_CHAIN (nextf);
6978 if (nextf)
6979 return false;
6982 ref = TREE_OPERAND (ref, 0);
6985 /* If the reference is based on a declared entity, the size of the array
6986 is constrained by its given domain. */
6987 if (DECL_P (ref))
6988 return false;
6990 return true;
6993 /* Return a tree representing the upper bound of the array mentioned in
6994 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6996 tree
6997 array_ref_up_bound (tree exp)
6999 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
7001 /* If there is a domain type and it has an upper bound, use it, substituting
7002 for a PLACEHOLDER_EXPR as needed. */
7003 if (domain_type && TYPE_MAX_VALUE (domain_type))
7004 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
7006 /* Otherwise fail. */
7007 return NULL_TREE;
7010 /* Return a tree representing the offset, in bytes, of the field referenced
7011 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
7013 tree
7014 component_ref_field_offset (tree exp)
7016 tree aligned_offset = TREE_OPERAND (exp, 2);
7017 tree field = TREE_OPERAND (exp, 1);
7018 location_t loc = EXPR_LOCATION (exp);
7020 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
7021 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7022 value. */
7023 if (aligned_offset)
7025 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7026 sizetype from another type of the same width and signedness. */
7027 if (TREE_TYPE (aligned_offset) != sizetype)
7028 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
7029 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
7030 size_int (DECL_OFFSET_ALIGN (field)
7031 / BITS_PER_UNIT));
7034 /* Otherwise, take the offset from that of the field. Substitute
7035 any PLACEHOLDER_EXPR that we have. */
7036 else
7037 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
7040 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7042 static unsigned HOST_WIDE_INT
7043 target_align (const_tree target)
7045 /* We might have a chain of nested references with intermediate misaligning
7046 bitfields components, so need to recurse to find out. */
7048 unsigned HOST_WIDE_INT this_align, outer_align;
7050 switch (TREE_CODE (target))
7052 case BIT_FIELD_REF:
7053 return 1;
7055 case COMPONENT_REF:
7056 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7057 outer_align = target_align (TREE_OPERAND (target, 0));
7058 return MIN (this_align, outer_align);
7060 case ARRAY_REF:
7061 case ARRAY_RANGE_REF:
7062 this_align = TYPE_ALIGN (TREE_TYPE (target));
7063 outer_align = target_align (TREE_OPERAND (target, 0));
7064 return MIN (this_align, outer_align);
7066 CASE_CONVERT:
7067 case NON_LVALUE_EXPR:
7068 case VIEW_CONVERT_EXPR:
7069 this_align = TYPE_ALIGN (TREE_TYPE (target));
7070 outer_align = target_align (TREE_OPERAND (target, 0));
7071 return MAX (this_align, outer_align);
7073 default:
7074 return TYPE_ALIGN (TREE_TYPE (target));
7079 /* Given an rtx VALUE that may contain additions and multiplications, return
7080 an equivalent value that just refers to a register, memory, or constant.
7081 This is done by generating instructions to perform the arithmetic and
7082 returning a pseudo-register containing the value.
7084 The returned value may be a REG, SUBREG, MEM or constant. */
7087 force_operand (rtx value, rtx target)
7089 rtx op1, op2;
7090 /* Use subtarget as the target for operand 0 of a binary operation. */
7091 rtx subtarget = get_subtarget (target);
7092 enum rtx_code code = GET_CODE (value);
7094 /* Check for subreg applied to an expression produced by loop optimizer. */
7095 if (code == SUBREG
7096 && !REG_P (SUBREG_REG (value))
7097 && !MEM_P (SUBREG_REG (value)))
7099 value
7100 = simplify_gen_subreg (GET_MODE (value),
7101 force_reg (GET_MODE (SUBREG_REG (value)),
7102 force_operand (SUBREG_REG (value),
7103 NULL_RTX)),
7104 GET_MODE (SUBREG_REG (value)),
7105 SUBREG_BYTE (value));
7106 code = GET_CODE (value);
7109 /* Check for a PIC address load. */
7110 if ((code == PLUS || code == MINUS)
7111 && XEXP (value, 0) == pic_offset_table_rtx
7112 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7113 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7114 || GET_CODE (XEXP (value, 1)) == CONST))
7116 if (!subtarget)
7117 subtarget = gen_reg_rtx (GET_MODE (value));
7118 emit_move_insn (subtarget, value);
7119 return subtarget;
7122 if (ARITHMETIC_P (value))
7124 op2 = XEXP (value, 1);
7125 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7126 subtarget = 0;
7127 if (code == MINUS && CONST_INT_P (op2))
7129 code = PLUS;
7130 op2 = negate_rtx (GET_MODE (value), op2);
7133 /* Check for an addition with OP2 a constant integer and our first
7134 operand a PLUS of a virtual register and something else. In that
7135 case, we want to emit the sum of the virtual register and the
7136 constant first and then add the other value. This allows virtual
7137 register instantiation to simply modify the constant rather than
7138 creating another one around this addition. */
7139 if (code == PLUS && CONST_INT_P (op2)
7140 && GET_CODE (XEXP (value, 0)) == PLUS
7141 && REG_P (XEXP (XEXP (value, 0), 0))
7142 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7143 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7145 rtx temp = expand_simple_binop (GET_MODE (value), code,
7146 XEXP (XEXP (value, 0), 0), op2,
7147 subtarget, 0, OPTAB_LIB_WIDEN);
7148 return expand_simple_binop (GET_MODE (value), code, temp,
7149 force_operand (XEXP (XEXP (value,
7150 0), 1), 0),
7151 target, 0, OPTAB_LIB_WIDEN);
7154 op1 = force_operand (XEXP (value, 0), subtarget);
7155 op2 = force_operand (op2, NULL_RTX);
7156 switch (code)
7158 case MULT:
7159 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7160 case DIV:
7161 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7162 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7163 target, 1, OPTAB_LIB_WIDEN);
7164 else
7165 return expand_divmod (0,
7166 FLOAT_MODE_P (GET_MODE (value))
7167 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7168 GET_MODE (value), op1, op2, target, 0);
7169 case MOD:
7170 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7171 target, 0);
7172 case UDIV:
7173 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7174 target, 1);
7175 case UMOD:
7176 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7177 target, 1);
7178 case ASHIFTRT:
7179 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7180 target, 0, OPTAB_LIB_WIDEN);
7181 default:
7182 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7183 target, 1, OPTAB_LIB_WIDEN);
7186 if (UNARY_P (value))
7188 if (!target)
7189 target = gen_reg_rtx (GET_MODE (value));
7190 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7191 switch (code)
7193 case ZERO_EXTEND:
7194 case SIGN_EXTEND:
7195 case TRUNCATE:
7196 case FLOAT_EXTEND:
7197 case FLOAT_TRUNCATE:
7198 convert_move (target, op1, code == ZERO_EXTEND);
7199 return target;
7201 case FIX:
7202 case UNSIGNED_FIX:
7203 expand_fix (target, op1, code == UNSIGNED_FIX);
7204 return target;
7206 case FLOAT:
7207 case UNSIGNED_FLOAT:
7208 expand_float (target, op1, code == UNSIGNED_FLOAT);
7209 return target;
7211 default:
7212 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7216 #ifdef INSN_SCHEDULING
7217 /* On machines that have insn scheduling, we want all memory reference to be
7218 explicit, so we need to deal with such paradoxical SUBREGs. */
7219 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7220 value
7221 = simplify_gen_subreg (GET_MODE (value),
7222 force_reg (GET_MODE (SUBREG_REG (value)),
7223 force_operand (SUBREG_REG (value),
7224 NULL_RTX)),
7225 GET_MODE (SUBREG_REG (value)),
7226 SUBREG_BYTE (value));
7227 #endif
7229 return value;
7232 /* Subroutine of expand_expr: return nonzero iff there is no way that
7233 EXP can reference X, which is being modified. TOP_P is nonzero if this
7234 call is going to be used to determine whether we need a temporary
7235 for EXP, as opposed to a recursive call to this function.
7237 It is always safe for this routine to return zero since it merely
7238 searches for optimization opportunities. */
7241 safe_from_p (const_rtx x, tree exp, int top_p)
7243 rtx exp_rtl = 0;
7244 int i, nops;
7246 if (x == 0
7247 /* If EXP has varying size, we MUST use a target since we currently
7248 have no way of allocating temporaries of variable size
7249 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7250 So we assume here that something at a higher level has prevented a
7251 clash. This is somewhat bogus, but the best we can do. Only
7252 do this when X is BLKmode and when we are at the top level. */
7253 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7254 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7255 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7256 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7257 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7258 != INTEGER_CST)
7259 && GET_MODE (x) == BLKmode)
7260 /* If X is in the outgoing argument area, it is always safe. */
7261 || (MEM_P (x)
7262 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7263 || (GET_CODE (XEXP (x, 0)) == PLUS
7264 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7265 return 1;
7267 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7268 find the underlying pseudo. */
7269 if (GET_CODE (x) == SUBREG)
7271 x = SUBREG_REG (x);
7272 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7273 return 0;
7276 /* Now look at our tree code and possibly recurse. */
7277 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7279 case tcc_declaration:
7280 exp_rtl = DECL_RTL_IF_SET (exp);
7281 break;
7283 case tcc_constant:
7284 return 1;
7286 case tcc_exceptional:
7287 if (TREE_CODE (exp) == TREE_LIST)
7289 while (1)
7291 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7292 return 0;
7293 exp = TREE_CHAIN (exp);
7294 if (!exp)
7295 return 1;
7296 if (TREE_CODE (exp) != TREE_LIST)
7297 return safe_from_p (x, exp, 0);
7300 else if (TREE_CODE (exp) == CONSTRUCTOR)
7302 constructor_elt *ce;
7303 unsigned HOST_WIDE_INT idx;
7305 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7306 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7307 || !safe_from_p (x, ce->value, 0))
7308 return 0;
7309 return 1;
7311 else if (TREE_CODE (exp) == ERROR_MARK)
7312 return 1; /* An already-visited SAVE_EXPR? */
7313 else
7314 return 0;
7316 case tcc_statement:
7317 /* The only case we look at here is the DECL_INITIAL inside a
7318 DECL_EXPR. */
7319 return (TREE_CODE (exp) != DECL_EXPR
7320 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7321 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7322 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7324 case tcc_binary:
7325 case tcc_comparison:
7326 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7327 return 0;
7328 /* Fall through. */
7330 case tcc_unary:
7331 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7333 case tcc_expression:
7334 case tcc_reference:
7335 case tcc_vl_exp:
7336 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7337 the expression. If it is set, we conflict iff we are that rtx or
7338 both are in memory. Otherwise, we check all operands of the
7339 expression recursively. */
7341 switch (TREE_CODE (exp))
7343 case ADDR_EXPR:
7344 /* If the operand is static or we are static, we can't conflict.
7345 Likewise if we don't conflict with the operand at all. */
7346 if (staticp (TREE_OPERAND (exp, 0))
7347 || TREE_STATIC (exp)
7348 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7349 return 1;
7351 /* Otherwise, the only way this can conflict is if we are taking
7352 the address of a DECL a that address if part of X, which is
7353 very rare. */
7354 exp = TREE_OPERAND (exp, 0);
7355 if (DECL_P (exp))
7357 if (!DECL_RTL_SET_P (exp)
7358 || !MEM_P (DECL_RTL (exp)))
7359 return 0;
7360 else
7361 exp_rtl = XEXP (DECL_RTL (exp), 0);
7363 break;
7365 case MEM_REF:
7366 if (MEM_P (x)
7367 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7368 get_alias_set (exp)))
7369 return 0;
7370 break;
7372 case CALL_EXPR:
7373 /* Assume that the call will clobber all hard registers and
7374 all of memory. */
7375 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7376 || MEM_P (x))
7377 return 0;
7378 break;
7380 case WITH_CLEANUP_EXPR:
7381 case CLEANUP_POINT_EXPR:
7382 /* Lowered by gimplify.c. */
7383 gcc_unreachable ();
7385 case SAVE_EXPR:
7386 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7388 default:
7389 break;
7392 /* If we have an rtx, we do not need to scan our operands. */
7393 if (exp_rtl)
7394 break;
7396 nops = TREE_OPERAND_LENGTH (exp);
7397 for (i = 0; i < nops; i++)
7398 if (TREE_OPERAND (exp, i) != 0
7399 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7400 return 0;
7402 break;
7404 case tcc_type:
7405 /* Should never get a type here. */
7406 gcc_unreachable ();
7409 /* If we have an rtl, find any enclosed object. Then see if we conflict
7410 with it. */
7411 if (exp_rtl)
7413 if (GET_CODE (exp_rtl) == SUBREG)
7415 exp_rtl = SUBREG_REG (exp_rtl);
7416 if (REG_P (exp_rtl)
7417 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7418 return 0;
7421 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7422 are memory and they conflict. */
7423 return ! (rtx_equal_p (x, exp_rtl)
7424 || (MEM_P (x) && MEM_P (exp_rtl)
7425 && true_dependence (exp_rtl, VOIDmode, x)));
7428 /* If we reach here, it is safe. */
7429 return 1;
7433 /* Return the highest power of two that EXP is known to be a multiple of.
7434 This is used in updating alignment of MEMs in array references. */
7436 unsigned HOST_WIDE_INT
7437 highest_pow2_factor (const_tree exp)
7439 unsigned HOST_WIDE_INT ret;
7440 int trailing_zeros = tree_ctz (exp);
7441 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7442 return BIGGEST_ALIGNMENT;
7443 ret = (unsigned HOST_WIDE_INT) 1 << trailing_zeros;
7444 if (ret > BIGGEST_ALIGNMENT)
7445 return BIGGEST_ALIGNMENT;
7446 return ret;
7449 /* Similar, except that the alignment requirements of TARGET are
7450 taken into account. Assume it is at least as aligned as its
7451 type, unless it is a COMPONENT_REF in which case the layout of
7452 the structure gives the alignment. */
7454 static unsigned HOST_WIDE_INT
7455 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7457 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7458 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7460 return MAX (factor, talign);
7463 #ifdef HAVE_conditional_move
7464 /* Convert the tree comparison code TCODE to the rtl one where the
7465 signedness is UNSIGNEDP. */
7467 static enum rtx_code
7468 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7470 enum rtx_code code;
7471 switch (tcode)
7473 case EQ_EXPR:
7474 code = EQ;
7475 break;
7476 case NE_EXPR:
7477 code = NE;
7478 break;
7479 case LT_EXPR:
7480 code = unsignedp ? LTU : LT;
7481 break;
7482 case LE_EXPR:
7483 code = unsignedp ? LEU : LE;
7484 break;
7485 case GT_EXPR:
7486 code = unsignedp ? GTU : GT;
7487 break;
7488 case GE_EXPR:
7489 code = unsignedp ? GEU : GE;
7490 break;
7491 case UNORDERED_EXPR:
7492 code = UNORDERED;
7493 break;
7494 case ORDERED_EXPR:
7495 code = ORDERED;
7496 break;
7497 case UNLT_EXPR:
7498 code = UNLT;
7499 break;
7500 case UNLE_EXPR:
7501 code = UNLE;
7502 break;
7503 case UNGT_EXPR:
7504 code = UNGT;
7505 break;
7506 case UNGE_EXPR:
7507 code = UNGE;
7508 break;
7509 case UNEQ_EXPR:
7510 code = UNEQ;
7511 break;
7512 case LTGT_EXPR:
7513 code = LTGT;
7514 break;
7516 default:
7517 gcc_unreachable ();
7519 return code;
7521 #endif
7523 /* Subroutine of expand_expr. Expand the two operands of a binary
7524 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7525 The value may be stored in TARGET if TARGET is nonzero. The
7526 MODIFIER argument is as documented by expand_expr. */
7528 static void
7529 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7530 enum expand_modifier modifier)
7532 if (! safe_from_p (target, exp1, 1))
7533 target = 0;
7534 if (operand_equal_p (exp0, exp1, 0))
7536 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7537 *op1 = copy_rtx (*op0);
7539 else
7541 /* If we need to preserve evaluation order, copy exp0 into its own
7542 temporary variable so that it can't be clobbered by exp1. */
7543 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
7544 exp0 = save_expr (exp0);
7545 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7546 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7551 /* Return a MEM that contains constant EXP. DEFER is as for
7552 output_constant_def and MODIFIER is as for expand_expr. */
7554 static rtx
7555 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7557 rtx mem;
7559 mem = output_constant_def (exp, defer);
7560 if (modifier != EXPAND_INITIALIZER)
7561 mem = use_anchored_address (mem);
7562 return mem;
7565 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7566 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7568 static rtx
7569 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
7570 enum expand_modifier modifier, addr_space_t as)
7572 rtx result, subtarget;
7573 tree inner, offset;
7574 HOST_WIDE_INT bitsize, bitpos;
7575 int volatilep, unsignedp;
7576 enum machine_mode mode1;
7578 /* If we are taking the address of a constant and are at the top level,
7579 we have to use output_constant_def since we can't call force_const_mem
7580 at top level. */
7581 /* ??? This should be considered a front-end bug. We should not be
7582 generating ADDR_EXPR of something that isn't an LVALUE. The only
7583 exception here is STRING_CST. */
7584 if (CONSTANT_CLASS_P (exp))
7586 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7587 if (modifier < EXPAND_SUM)
7588 result = force_operand (result, target);
7589 return result;
7592 /* Everything must be something allowed by is_gimple_addressable. */
7593 switch (TREE_CODE (exp))
7595 case INDIRECT_REF:
7596 /* This case will happen via recursion for &a->b. */
7597 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7599 case MEM_REF:
7601 tree tem = TREE_OPERAND (exp, 0);
7602 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7603 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7604 return expand_expr (tem, target, tmode, modifier);
7607 case CONST_DECL:
7608 /* Expand the initializer like constants above. */
7609 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7610 0, modifier), 0);
7611 if (modifier < EXPAND_SUM)
7612 result = force_operand (result, target);
7613 return result;
7615 case REALPART_EXPR:
7616 /* The real part of the complex number is always first, therefore
7617 the address is the same as the address of the parent object. */
7618 offset = 0;
7619 bitpos = 0;
7620 inner = TREE_OPERAND (exp, 0);
7621 break;
7623 case IMAGPART_EXPR:
7624 /* The imaginary part of the complex number is always second.
7625 The expression is therefore always offset by the size of the
7626 scalar type. */
7627 offset = 0;
7628 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7629 inner = TREE_OPERAND (exp, 0);
7630 break;
7632 case COMPOUND_LITERAL_EXPR:
7633 /* Allow COMPOUND_LITERAL_EXPR in initializers, if e.g.
7634 rtl_for_decl_init is called on DECL_INITIAL with
7635 COMPOUNT_LITERAL_EXPRs in it, they aren't gimplified. */
7636 if (modifier == EXPAND_INITIALIZER
7637 && COMPOUND_LITERAL_EXPR_DECL (exp))
7638 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7639 target, tmode, modifier, as);
7640 /* FALLTHRU */
7641 default:
7642 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7643 expand_expr, as that can have various side effects; LABEL_DECLs for
7644 example, may not have their DECL_RTL set yet. Expand the rtl of
7645 CONSTRUCTORs too, which should yield a memory reference for the
7646 constructor's contents. Assume language specific tree nodes can
7647 be expanded in some interesting way. */
7648 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7649 if (DECL_P (exp)
7650 || TREE_CODE (exp) == CONSTRUCTOR
7651 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7653 result = expand_expr (exp, target, tmode,
7654 modifier == EXPAND_INITIALIZER
7655 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7657 /* If the DECL isn't in memory, then the DECL wasn't properly
7658 marked TREE_ADDRESSABLE, which will be either a front-end
7659 or a tree optimizer bug. */
7661 if (TREE_ADDRESSABLE (exp)
7662 && ! MEM_P (result)
7663 && ! targetm.calls.allocate_stack_slots_for_args ())
7665 error ("local frame unavailable (naked function?)");
7666 return result;
7668 else
7669 gcc_assert (MEM_P (result));
7670 result = XEXP (result, 0);
7672 /* ??? Is this needed anymore? */
7673 if (DECL_P (exp))
7674 TREE_USED (exp) = 1;
7676 if (modifier != EXPAND_INITIALIZER
7677 && modifier != EXPAND_CONST_ADDRESS
7678 && modifier != EXPAND_SUM)
7679 result = force_operand (result, target);
7680 return result;
7683 /* Pass FALSE as the last argument to get_inner_reference although
7684 we are expanding to RTL. The rationale is that we know how to
7685 handle "aligning nodes" here: we can just bypass them because
7686 they won't change the final object whose address will be returned
7687 (they actually exist only for that purpose). */
7688 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7689 &mode1, &unsignedp, &volatilep, false);
7690 break;
7693 /* We must have made progress. */
7694 gcc_assert (inner != exp);
7696 subtarget = offset || bitpos ? NULL_RTX : target;
7697 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7698 inner alignment, force the inner to be sufficiently aligned. */
7699 if (CONSTANT_CLASS_P (inner)
7700 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7702 inner = copy_node (inner);
7703 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7704 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7705 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7707 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7709 if (offset)
7711 rtx tmp;
7713 if (modifier != EXPAND_NORMAL)
7714 result = force_operand (result, NULL);
7715 tmp = expand_expr (offset, NULL_RTX, tmode,
7716 modifier == EXPAND_INITIALIZER
7717 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7719 /* expand_expr is allowed to return an object in a mode other
7720 than TMODE. If it did, we need to convert. */
7721 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
7722 tmp = convert_modes (tmode, GET_MODE (tmp),
7723 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
7724 result = convert_memory_address_addr_space (tmode, result, as);
7725 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7727 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7728 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7729 else
7731 subtarget = bitpos ? NULL_RTX : target;
7732 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7733 1, OPTAB_LIB_WIDEN);
7737 if (bitpos)
7739 /* Someone beforehand should have rejected taking the address
7740 of such an object. */
7741 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7743 result = convert_memory_address_addr_space (tmode, result, as);
7744 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7745 if (modifier < EXPAND_SUM)
7746 result = force_operand (result, target);
7749 return result;
7752 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7753 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7755 static rtx
7756 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7757 enum expand_modifier modifier)
7759 addr_space_t as = ADDR_SPACE_GENERIC;
7760 enum machine_mode address_mode = Pmode;
7761 enum machine_mode pointer_mode = ptr_mode;
7762 enum machine_mode rmode;
7763 rtx result;
7765 /* Target mode of VOIDmode says "whatever's natural". */
7766 if (tmode == VOIDmode)
7767 tmode = TYPE_MODE (TREE_TYPE (exp));
7769 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7771 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7772 address_mode = targetm.addr_space.address_mode (as);
7773 pointer_mode = targetm.addr_space.pointer_mode (as);
7776 /* We can get called with some Weird Things if the user does silliness
7777 like "(short) &a". In that case, convert_memory_address won't do
7778 the right thing, so ignore the given target mode. */
7779 if (tmode != address_mode && tmode != pointer_mode)
7780 tmode = address_mode;
7782 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7783 tmode, modifier, as);
7785 /* Despite expand_expr claims concerning ignoring TMODE when not
7786 strictly convenient, stuff breaks if we don't honor it. Note
7787 that combined with the above, we only do this for pointer modes. */
7788 rmode = GET_MODE (result);
7789 if (rmode == VOIDmode)
7790 rmode = tmode;
7791 if (rmode != tmode)
7792 result = convert_memory_address_addr_space (tmode, result, as);
7794 return result;
7797 /* Generate code for computing CONSTRUCTOR EXP.
7798 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7799 is TRUE, instead of creating a temporary variable in memory
7800 NULL is returned and the caller needs to handle it differently. */
7802 static rtx
7803 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7804 bool avoid_temp_mem)
7806 tree type = TREE_TYPE (exp);
7807 enum machine_mode mode = TYPE_MODE (type);
7809 /* Try to avoid creating a temporary at all. This is possible
7810 if all of the initializer is zero.
7811 FIXME: try to handle all [0..255] initializers we can handle
7812 with memset. */
7813 if (TREE_STATIC (exp)
7814 && !TREE_ADDRESSABLE (exp)
7815 && target != 0 && mode == BLKmode
7816 && all_zeros_p (exp))
7818 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7819 return target;
7822 /* All elts simple constants => refer to a constant in memory. But
7823 if this is a non-BLKmode mode, let it store a field at a time
7824 since that should make a CONST_INT, CONST_WIDE_INT or
7825 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7826 use, it is best to store directly into the target unless the type
7827 is large enough that memcpy will be used. If we are making an
7828 initializer and all operands are constant, put it in memory as
7829 well.
7831 FIXME: Avoid trying to fill vector constructors piece-meal.
7832 Output them with output_constant_def below unless we're sure
7833 they're zeros. This should go away when vector initializers
7834 are treated like VECTOR_CST instead of arrays. */
7835 if ((TREE_STATIC (exp)
7836 && ((mode == BLKmode
7837 && ! (target != 0 && safe_from_p (target, exp, 1)))
7838 || TREE_ADDRESSABLE (exp)
7839 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
7840 && (! MOVE_BY_PIECES_P
7841 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
7842 TYPE_ALIGN (type)))
7843 && ! mostly_zeros_p (exp))))
7844 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7845 && TREE_CONSTANT (exp)))
7847 rtx constructor;
7849 if (avoid_temp_mem)
7850 return NULL_RTX;
7852 constructor = expand_expr_constant (exp, 1, modifier);
7854 if (modifier != EXPAND_CONST_ADDRESS
7855 && modifier != EXPAND_INITIALIZER
7856 && modifier != EXPAND_SUM)
7857 constructor = validize_mem (constructor);
7859 return constructor;
7862 /* Handle calls that pass values in multiple non-contiguous
7863 locations. The Irix 6 ABI has examples of this. */
7864 if (target == 0 || ! safe_from_p (target, exp, 1)
7865 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7867 if (avoid_temp_mem)
7868 return NULL_RTX;
7870 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
7873 store_constructor (exp, target, 0, int_expr_size (exp));
7874 return target;
7878 /* expand_expr: generate code for computing expression EXP.
7879 An rtx for the computed value is returned. The value is never null.
7880 In the case of a void EXP, const0_rtx is returned.
7882 The value may be stored in TARGET if TARGET is nonzero.
7883 TARGET is just a suggestion; callers must assume that
7884 the rtx returned may not be the same as TARGET.
7886 If TARGET is CONST0_RTX, it means that the value will be ignored.
7888 If TMODE is not VOIDmode, it suggests generating the
7889 result in mode TMODE. But this is done only when convenient.
7890 Otherwise, TMODE is ignored and the value generated in its natural mode.
7891 TMODE is just a suggestion; callers must assume that
7892 the rtx returned may not have mode TMODE.
7894 Note that TARGET may have neither TMODE nor MODE. In that case, it
7895 probably will not be used.
7897 If MODIFIER is EXPAND_SUM then when EXP is an addition
7898 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7899 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7900 products as above, or REG or MEM, or constant.
7901 Ordinarily in such cases we would output mul or add instructions
7902 and then return a pseudo reg containing the sum.
7904 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7905 it also marks a label as absolutely required (it can't be dead).
7906 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7907 This is used for outputting expressions used in initializers.
7909 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7910 with a constant address even if that address is not normally legitimate.
7911 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7913 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7914 a call parameter. Such targets require special care as we haven't yet
7915 marked TARGET so that it's safe from being trashed by libcalls. We
7916 don't want to use TARGET for anything but the final result;
7917 Intermediate values must go elsewhere. Additionally, calls to
7918 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7920 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7921 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7922 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7923 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7924 recursively.
7926 If INNER_REFERENCE_P is true, we are expanding an inner reference.
7927 In this case, we don't adjust a returned MEM rtx that wouldn't be
7928 sufficiently aligned for its mode; instead, it's up to the caller
7929 to deal with it afterwards. This is used to make sure that unaligned
7930 base objects for which out-of-bounds accesses are supported, for
7931 example record types with trailing arrays, aren't realigned behind
7932 the back of the caller.
7933 The normal operating mode is to pass FALSE for this parameter. */
7936 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7937 enum expand_modifier modifier, rtx *alt_rtl,
7938 bool inner_reference_p)
7940 rtx ret;
7942 /* Handle ERROR_MARK before anybody tries to access its type. */
7943 if (TREE_CODE (exp) == ERROR_MARK
7944 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7946 ret = CONST0_RTX (tmode);
7947 return ret ? ret : const0_rtx;
7950 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
7951 inner_reference_p);
7952 return ret;
7955 /* Try to expand the conditional expression which is represented by
7956 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
7957 return the rtl reg which repsents the result. Otherwise return
7958 NULL_RTL. */
7960 static rtx
7961 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
7962 tree treeop1 ATTRIBUTE_UNUSED,
7963 tree treeop2 ATTRIBUTE_UNUSED)
7965 #ifdef HAVE_conditional_move
7966 rtx insn;
7967 rtx op00, op01, op1, op2;
7968 enum rtx_code comparison_code;
7969 enum machine_mode comparison_mode;
7970 gimple srcstmt;
7971 rtx temp;
7972 tree type = TREE_TYPE (treeop1);
7973 int unsignedp = TYPE_UNSIGNED (type);
7974 enum machine_mode mode = TYPE_MODE (type);
7975 enum machine_mode orig_mode = mode;
7977 /* If we cannot do a conditional move on the mode, try doing it
7978 with the promoted mode. */
7979 if (!can_conditionally_move_p (mode))
7981 mode = promote_mode (type, mode, &unsignedp);
7982 if (!can_conditionally_move_p (mode))
7983 return NULL_RTX;
7984 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
7986 else
7987 temp = assign_temp (type, 0, 1);
7989 start_sequence ();
7990 expand_operands (treeop1, treeop2,
7991 temp, &op1, &op2, EXPAND_NORMAL);
7993 if (TREE_CODE (treeop0) == SSA_NAME
7994 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
7996 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
7997 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
7998 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
7999 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8000 comparison_mode = TYPE_MODE (type);
8001 unsignedp = TYPE_UNSIGNED (type);
8002 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8004 else if (TREE_CODE_CLASS (TREE_CODE (treeop0)) == tcc_comparison)
8006 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8007 enum tree_code cmpcode = TREE_CODE (treeop0);
8008 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8009 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8010 unsignedp = TYPE_UNSIGNED (type);
8011 comparison_mode = TYPE_MODE (type);
8012 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8014 else
8016 op00 = expand_normal (treeop0);
8017 op01 = const0_rtx;
8018 comparison_code = NE;
8019 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8022 if (GET_MODE (op1) != mode)
8023 op1 = gen_lowpart (mode, op1);
8025 if (GET_MODE (op2) != mode)
8026 op2 = gen_lowpart (mode, op2);
8028 /* Try to emit the conditional move. */
8029 insn = emit_conditional_move (temp, comparison_code,
8030 op00, op01, comparison_mode,
8031 op1, op2, mode,
8032 unsignedp);
8034 /* If we could do the conditional move, emit the sequence,
8035 and return. */
8036 if (insn)
8038 rtx_insn *seq = get_insns ();
8039 end_sequence ();
8040 emit_insn (seq);
8041 return convert_modes (orig_mode, mode, temp, 0);
8044 /* Otherwise discard the sequence and fall back to code with
8045 branches. */
8046 end_sequence ();
8047 #endif
8048 return NULL_RTX;
8052 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
8053 enum expand_modifier modifier)
8055 rtx op0, op1, op2, temp;
8056 tree type;
8057 int unsignedp;
8058 enum machine_mode mode;
8059 enum tree_code code = ops->code;
8060 optab this_optab;
8061 rtx subtarget, original_target;
8062 int ignore;
8063 bool reduce_bit_field;
8064 location_t loc = ops->location;
8065 tree treeop0, treeop1, treeop2;
8066 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8067 ? reduce_to_bit_field_precision ((expr), \
8068 target, \
8069 type) \
8070 : (expr))
8072 type = ops->type;
8073 mode = TYPE_MODE (type);
8074 unsignedp = TYPE_UNSIGNED (type);
8076 treeop0 = ops->op0;
8077 treeop1 = ops->op1;
8078 treeop2 = ops->op2;
8080 /* We should be called only on simple (binary or unary) expressions,
8081 exactly those that are valid in gimple expressions that aren't
8082 GIMPLE_SINGLE_RHS (or invalid). */
8083 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8084 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8085 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8087 ignore = (target == const0_rtx
8088 || ((CONVERT_EXPR_CODE_P (code)
8089 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8090 && TREE_CODE (type) == VOID_TYPE));
8092 /* We should be called only if we need the result. */
8093 gcc_assert (!ignore);
8095 /* An operation in what may be a bit-field type needs the
8096 result to be reduced to the precision of the bit-field type,
8097 which is narrower than that of the type's mode. */
8098 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8099 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8101 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8102 target = 0;
8104 /* Use subtarget as the target for operand 0 of a binary operation. */
8105 subtarget = get_subtarget (target);
8106 original_target = target;
8108 switch (code)
8110 case NON_LVALUE_EXPR:
8111 case PAREN_EXPR:
8112 CASE_CONVERT:
8113 if (treeop0 == error_mark_node)
8114 return const0_rtx;
8116 if (TREE_CODE (type) == UNION_TYPE)
8118 tree valtype = TREE_TYPE (treeop0);
8120 /* If both input and output are BLKmode, this conversion isn't doing
8121 anything except possibly changing memory attribute. */
8122 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8124 rtx result = expand_expr (treeop0, target, tmode,
8125 modifier);
8127 result = copy_rtx (result);
8128 set_mem_attributes (result, type, 0);
8129 return result;
8132 if (target == 0)
8134 if (TYPE_MODE (type) != BLKmode)
8135 target = gen_reg_rtx (TYPE_MODE (type));
8136 else
8137 target = assign_temp (type, 1, 1);
8140 if (MEM_P (target))
8141 /* Store data into beginning of memory target. */
8142 store_expr (treeop0,
8143 adjust_address (target, TYPE_MODE (valtype), 0),
8144 modifier == EXPAND_STACK_PARM,
8145 false);
8147 else
8149 gcc_assert (REG_P (target));
8151 /* Store this field into a union of the proper type. */
8152 store_field (target,
8153 MIN ((int_size_in_bytes (TREE_TYPE
8154 (treeop0))
8155 * BITS_PER_UNIT),
8156 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8157 0, 0, 0, TYPE_MODE (valtype), treeop0, 0, false);
8160 /* Return the entire union. */
8161 return target;
8164 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8166 op0 = expand_expr (treeop0, target, VOIDmode,
8167 modifier);
8169 /* If the signedness of the conversion differs and OP0 is
8170 a promoted SUBREG, clear that indication since we now
8171 have to do the proper extension. */
8172 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8173 && GET_CODE (op0) == SUBREG)
8174 SUBREG_PROMOTED_VAR_P (op0) = 0;
8176 return REDUCE_BIT_FIELD (op0);
8179 op0 = expand_expr (treeop0, NULL_RTX, mode,
8180 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8181 if (GET_MODE (op0) == mode)
8184 /* If OP0 is a constant, just convert it into the proper mode. */
8185 else if (CONSTANT_P (op0))
8187 tree inner_type = TREE_TYPE (treeop0);
8188 enum machine_mode inner_mode = GET_MODE (op0);
8190 if (inner_mode == VOIDmode)
8191 inner_mode = TYPE_MODE (inner_type);
8193 if (modifier == EXPAND_INITIALIZER)
8194 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8195 subreg_lowpart_offset (mode,
8196 inner_mode));
8197 else
8198 op0= convert_modes (mode, inner_mode, op0,
8199 TYPE_UNSIGNED (inner_type));
8202 else if (modifier == EXPAND_INITIALIZER)
8203 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8205 else if (target == 0)
8206 op0 = convert_to_mode (mode, op0,
8207 TYPE_UNSIGNED (TREE_TYPE
8208 (treeop0)));
8209 else
8211 convert_move (target, op0,
8212 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8213 op0 = target;
8216 return REDUCE_BIT_FIELD (op0);
8218 case ADDR_SPACE_CONVERT_EXPR:
8220 tree treeop0_type = TREE_TYPE (treeop0);
8221 addr_space_t as_to;
8222 addr_space_t as_from;
8224 gcc_assert (POINTER_TYPE_P (type));
8225 gcc_assert (POINTER_TYPE_P (treeop0_type));
8227 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8228 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8230 /* Conversions between pointers to the same address space should
8231 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8232 gcc_assert (as_to != as_from);
8234 /* Ask target code to handle conversion between pointers
8235 to overlapping address spaces. */
8236 if (targetm.addr_space.subset_p (as_to, as_from)
8237 || targetm.addr_space.subset_p (as_from, as_to))
8239 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8240 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8241 gcc_assert (op0);
8242 return op0;
8245 /* For disjoint address spaces, converting anything but
8246 a null pointer invokes undefined behaviour. We simply
8247 always return a null pointer here. */
8248 return CONST0_RTX (mode);
8251 case POINTER_PLUS_EXPR:
8252 /* Even though the sizetype mode and the pointer's mode can be different
8253 expand is able to handle this correctly and get the correct result out
8254 of the PLUS_EXPR code. */
8255 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8256 if sizetype precision is smaller than pointer precision. */
8257 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8258 treeop1 = fold_convert_loc (loc, type,
8259 fold_convert_loc (loc, ssizetype,
8260 treeop1));
8261 /* If sizetype precision is larger than pointer precision, truncate the
8262 offset to have matching modes. */
8263 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8264 treeop1 = fold_convert_loc (loc, type, treeop1);
8266 case PLUS_EXPR:
8267 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8268 something else, make sure we add the register to the constant and
8269 then to the other thing. This case can occur during strength
8270 reduction and doing it this way will produce better code if the
8271 frame pointer or argument pointer is eliminated.
8273 fold-const.c will ensure that the constant is always in the inner
8274 PLUS_EXPR, so the only case we need to do anything about is if
8275 sp, ap, or fp is our second argument, in which case we must swap
8276 the innermost first argument and our second argument. */
8278 if (TREE_CODE (treeop0) == PLUS_EXPR
8279 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8280 && TREE_CODE (treeop1) == VAR_DECL
8281 && (DECL_RTL (treeop1) == frame_pointer_rtx
8282 || DECL_RTL (treeop1) == stack_pointer_rtx
8283 || DECL_RTL (treeop1) == arg_pointer_rtx))
8285 gcc_unreachable ();
8288 /* If the result is to be ptr_mode and we are adding an integer to
8289 something, we might be forming a constant. So try to use
8290 plus_constant. If it produces a sum and we can't accept it,
8291 use force_operand. This allows P = &ARR[const] to generate
8292 efficient code on machines where a SYMBOL_REF is not a valid
8293 address.
8295 If this is an EXPAND_SUM call, always return the sum. */
8296 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8297 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8299 if (modifier == EXPAND_STACK_PARM)
8300 target = 0;
8301 if (TREE_CODE (treeop0) == INTEGER_CST
8302 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8303 && TREE_CONSTANT (treeop1))
8305 rtx constant_part;
8306 HOST_WIDE_INT wc;
8307 enum machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8309 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8310 EXPAND_SUM);
8311 /* Use wi::shwi to ensure that the constant is
8312 truncated according to the mode of OP1, then sign extended
8313 to a HOST_WIDE_INT. Using the constant directly can result
8314 in non-canonical RTL in a 64x32 cross compile. */
8315 wc = TREE_INT_CST_LOW (treeop0);
8316 constant_part =
8317 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8318 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8319 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8320 op1 = force_operand (op1, target);
8321 return REDUCE_BIT_FIELD (op1);
8324 else if (TREE_CODE (treeop1) == INTEGER_CST
8325 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8326 && TREE_CONSTANT (treeop0))
8328 rtx constant_part;
8329 HOST_WIDE_INT wc;
8330 enum machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8332 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8333 (modifier == EXPAND_INITIALIZER
8334 ? EXPAND_INITIALIZER : EXPAND_SUM));
8335 if (! CONSTANT_P (op0))
8337 op1 = expand_expr (treeop1, NULL_RTX,
8338 VOIDmode, modifier);
8339 /* Return a PLUS if modifier says it's OK. */
8340 if (modifier == EXPAND_SUM
8341 || modifier == EXPAND_INITIALIZER)
8342 return simplify_gen_binary (PLUS, mode, op0, op1);
8343 goto binop2;
8345 /* Use wi::shwi to ensure that the constant is
8346 truncated according to the mode of OP1, then sign extended
8347 to a HOST_WIDE_INT. Using the constant directly can result
8348 in non-canonical RTL in a 64x32 cross compile. */
8349 wc = TREE_INT_CST_LOW (treeop1);
8350 constant_part
8351 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8352 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8353 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8354 op0 = force_operand (op0, target);
8355 return REDUCE_BIT_FIELD (op0);
8359 /* Use TER to expand pointer addition of a negated value
8360 as pointer subtraction. */
8361 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8362 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8363 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8364 && TREE_CODE (treeop1) == SSA_NAME
8365 && TYPE_MODE (TREE_TYPE (treeop0))
8366 == TYPE_MODE (TREE_TYPE (treeop1)))
8368 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
8369 if (def)
8371 treeop1 = gimple_assign_rhs1 (def);
8372 code = MINUS_EXPR;
8373 goto do_minus;
8377 /* No sense saving up arithmetic to be done
8378 if it's all in the wrong mode to form part of an address.
8379 And force_operand won't know whether to sign-extend or
8380 zero-extend. */
8381 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8382 || mode != ptr_mode)
8384 expand_operands (treeop0, treeop1,
8385 subtarget, &op0, &op1, EXPAND_NORMAL);
8386 if (op0 == const0_rtx)
8387 return op1;
8388 if (op1 == const0_rtx)
8389 return op0;
8390 goto binop2;
8393 expand_operands (treeop0, treeop1,
8394 subtarget, &op0, &op1, modifier);
8395 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8397 case MINUS_EXPR:
8398 do_minus:
8399 /* For initializers, we are allowed to return a MINUS of two
8400 symbolic constants. Here we handle all cases when both operands
8401 are constant. */
8402 /* Handle difference of two symbolic constants,
8403 for the sake of an initializer. */
8404 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8405 && really_constant_p (treeop0)
8406 && really_constant_p (treeop1))
8408 expand_operands (treeop0, treeop1,
8409 NULL_RTX, &op0, &op1, modifier);
8411 /* If the last operand is a CONST_INT, use plus_constant of
8412 the negated constant. Else make the MINUS. */
8413 if (CONST_INT_P (op1))
8414 return REDUCE_BIT_FIELD (plus_constant (mode, op0,
8415 -INTVAL (op1)));
8416 else
8417 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8420 /* No sense saving up arithmetic to be done
8421 if it's all in the wrong mode to form part of an address.
8422 And force_operand won't know whether to sign-extend or
8423 zero-extend. */
8424 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8425 || mode != ptr_mode)
8426 goto binop;
8428 expand_operands (treeop0, treeop1,
8429 subtarget, &op0, &op1, modifier);
8431 /* Convert A - const to A + (-const). */
8432 if (CONST_INT_P (op1))
8434 op1 = negate_rtx (mode, op1);
8435 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8438 goto binop2;
8440 case WIDEN_MULT_PLUS_EXPR:
8441 case WIDEN_MULT_MINUS_EXPR:
8442 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8443 op2 = expand_normal (treeop2);
8444 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8445 target, unsignedp);
8446 return target;
8448 case WIDEN_MULT_EXPR:
8449 /* If first operand is constant, swap them.
8450 Thus the following special case checks need only
8451 check the second operand. */
8452 if (TREE_CODE (treeop0) == INTEGER_CST)
8454 tree t1 = treeop0;
8455 treeop0 = treeop1;
8456 treeop1 = t1;
8459 /* First, check if we have a multiplication of one signed and one
8460 unsigned operand. */
8461 if (TREE_CODE (treeop1) != INTEGER_CST
8462 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8463 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8465 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8466 this_optab = usmul_widen_optab;
8467 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8468 != CODE_FOR_nothing)
8470 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8471 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8472 EXPAND_NORMAL);
8473 else
8474 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8475 EXPAND_NORMAL);
8476 /* op0 and op1 might still be constant, despite the above
8477 != INTEGER_CST check. Handle it. */
8478 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8480 op0 = convert_modes (innermode, mode, op0, true);
8481 op1 = convert_modes (innermode, mode, op1, false);
8482 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8483 target, unsignedp));
8485 goto binop3;
8488 /* Check for a multiplication with matching signedness. */
8489 else if ((TREE_CODE (treeop1) == INTEGER_CST
8490 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8491 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8492 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8494 tree op0type = TREE_TYPE (treeop0);
8495 enum machine_mode innermode = TYPE_MODE (op0type);
8496 bool zextend_p = TYPE_UNSIGNED (op0type);
8497 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8498 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8500 if (TREE_CODE (treeop0) != INTEGER_CST)
8502 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8503 != CODE_FOR_nothing)
8505 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8506 EXPAND_NORMAL);
8507 /* op0 and op1 might still be constant, despite the above
8508 != INTEGER_CST check. Handle it. */
8509 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8511 widen_mult_const:
8512 op0 = convert_modes (innermode, mode, op0, zextend_p);
8514 = convert_modes (innermode, mode, op1,
8515 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8516 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8517 target,
8518 unsignedp));
8520 temp = expand_widening_mult (mode, op0, op1, target,
8521 unsignedp, this_optab);
8522 return REDUCE_BIT_FIELD (temp);
8524 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8525 != CODE_FOR_nothing
8526 && innermode == word_mode)
8528 rtx htem, hipart;
8529 op0 = expand_normal (treeop0);
8530 if (TREE_CODE (treeop1) == INTEGER_CST)
8531 op1 = convert_modes (innermode, mode,
8532 expand_normal (treeop1),
8533 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8534 else
8535 op1 = expand_normal (treeop1);
8536 /* op0 and op1 might still be constant, despite the above
8537 != INTEGER_CST check. Handle it. */
8538 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8539 goto widen_mult_const;
8540 temp = expand_binop (mode, other_optab, op0, op1, target,
8541 unsignedp, OPTAB_LIB_WIDEN);
8542 hipart = gen_highpart (innermode, temp);
8543 htem = expand_mult_highpart_adjust (innermode, hipart,
8544 op0, op1, hipart,
8545 zextend_p);
8546 if (htem != hipart)
8547 emit_move_insn (hipart, htem);
8548 return REDUCE_BIT_FIELD (temp);
8552 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8553 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8554 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8555 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8557 case FMA_EXPR:
8559 optab opt = fma_optab;
8560 gimple def0, def2;
8562 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8563 call. */
8564 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8566 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8567 tree call_expr;
8569 gcc_assert (fn != NULL_TREE);
8570 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8571 return expand_builtin (call_expr, target, subtarget, mode, false);
8574 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8575 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8577 op0 = op2 = NULL;
8579 if (def0 && def2
8580 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8582 opt = fnms_optab;
8583 op0 = expand_normal (gimple_assign_rhs1 (def0));
8584 op2 = expand_normal (gimple_assign_rhs1 (def2));
8586 else if (def0
8587 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8589 opt = fnma_optab;
8590 op0 = expand_normal (gimple_assign_rhs1 (def0));
8592 else if (def2
8593 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8595 opt = fms_optab;
8596 op2 = expand_normal (gimple_assign_rhs1 (def2));
8599 if (op0 == NULL)
8600 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8601 if (op2 == NULL)
8602 op2 = expand_normal (treeop2);
8603 op1 = expand_normal (treeop1);
8605 return expand_ternary_op (TYPE_MODE (type), opt,
8606 op0, op1, op2, target, 0);
8609 case MULT_EXPR:
8610 /* If this is a fixed-point operation, then we cannot use the code
8611 below because "expand_mult" doesn't support sat/no-sat fixed-point
8612 multiplications. */
8613 if (ALL_FIXED_POINT_MODE_P (mode))
8614 goto binop;
8616 /* If first operand is constant, swap them.
8617 Thus the following special case checks need only
8618 check the second operand. */
8619 if (TREE_CODE (treeop0) == INTEGER_CST)
8621 tree t1 = treeop0;
8622 treeop0 = treeop1;
8623 treeop1 = t1;
8626 /* Attempt to return something suitable for generating an
8627 indexed address, for machines that support that. */
8629 if (modifier == EXPAND_SUM && mode == ptr_mode
8630 && tree_fits_shwi_p (treeop1))
8632 tree exp1 = treeop1;
8634 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8635 EXPAND_SUM);
8637 if (!REG_P (op0))
8638 op0 = force_operand (op0, NULL_RTX);
8639 if (!REG_P (op0))
8640 op0 = copy_to_mode_reg (mode, op0);
8642 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8643 gen_int_mode (tree_to_shwi (exp1),
8644 TYPE_MODE (TREE_TYPE (exp1)))));
8647 if (modifier == EXPAND_STACK_PARM)
8648 target = 0;
8650 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8651 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8653 case TRUNC_DIV_EXPR:
8654 case FLOOR_DIV_EXPR:
8655 case CEIL_DIV_EXPR:
8656 case ROUND_DIV_EXPR:
8657 case EXACT_DIV_EXPR:
8658 /* If this is a fixed-point operation, then we cannot use the code
8659 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8660 divisions. */
8661 if (ALL_FIXED_POINT_MODE_P (mode))
8662 goto binop;
8664 if (modifier == EXPAND_STACK_PARM)
8665 target = 0;
8666 /* Possible optimization: compute the dividend with EXPAND_SUM
8667 then if the divisor is constant can optimize the case
8668 where some terms of the dividend have coeffs divisible by it. */
8669 expand_operands (treeop0, treeop1,
8670 subtarget, &op0, &op1, EXPAND_NORMAL);
8671 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8673 case RDIV_EXPR:
8674 goto binop;
8676 case MULT_HIGHPART_EXPR:
8677 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8678 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8679 gcc_assert (temp);
8680 return temp;
8682 case TRUNC_MOD_EXPR:
8683 case FLOOR_MOD_EXPR:
8684 case CEIL_MOD_EXPR:
8685 case ROUND_MOD_EXPR:
8686 if (modifier == EXPAND_STACK_PARM)
8687 target = 0;
8688 expand_operands (treeop0, treeop1,
8689 subtarget, &op0, &op1, EXPAND_NORMAL);
8690 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8692 case FIXED_CONVERT_EXPR:
8693 op0 = expand_normal (treeop0);
8694 if (target == 0 || modifier == EXPAND_STACK_PARM)
8695 target = gen_reg_rtx (mode);
8697 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8698 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8699 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8700 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8701 else
8702 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8703 return target;
8705 case FIX_TRUNC_EXPR:
8706 op0 = expand_normal (treeop0);
8707 if (target == 0 || modifier == EXPAND_STACK_PARM)
8708 target = gen_reg_rtx (mode);
8709 expand_fix (target, op0, unsignedp);
8710 return target;
8712 case FLOAT_EXPR:
8713 op0 = expand_normal (treeop0);
8714 if (target == 0 || modifier == EXPAND_STACK_PARM)
8715 target = gen_reg_rtx (mode);
8716 /* expand_float can't figure out what to do if FROM has VOIDmode.
8717 So give it the correct mode. With -O, cse will optimize this. */
8718 if (GET_MODE (op0) == VOIDmode)
8719 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8720 op0);
8721 expand_float (target, op0,
8722 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8723 return target;
8725 case NEGATE_EXPR:
8726 op0 = expand_expr (treeop0, subtarget,
8727 VOIDmode, EXPAND_NORMAL);
8728 if (modifier == EXPAND_STACK_PARM)
8729 target = 0;
8730 temp = expand_unop (mode,
8731 optab_for_tree_code (NEGATE_EXPR, type,
8732 optab_default),
8733 op0, target, 0);
8734 gcc_assert (temp);
8735 return REDUCE_BIT_FIELD (temp);
8737 case ABS_EXPR:
8738 op0 = expand_expr (treeop0, subtarget,
8739 VOIDmode, EXPAND_NORMAL);
8740 if (modifier == EXPAND_STACK_PARM)
8741 target = 0;
8743 /* ABS_EXPR is not valid for complex arguments. */
8744 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8745 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8747 /* Unsigned abs is simply the operand. Testing here means we don't
8748 risk generating incorrect code below. */
8749 if (TYPE_UNSIGNED (type))
8750 return op0;
8752 return expand_abs (mode, op0, target, unsignedp,
8753 safe_from_p (target, treeop0, 1));
8755 case MAX_EXPR:
8756 case MIN_EXPR:
8757 target = original_target;
8758 if (target == 0
8759 || modifier == EXPAND_STACK_PARM
8760 || (MEM_P (target) && MEM_VOLATILE_P (target))
8761 || GET_MODE (target) != mode
8762 || (REG_P (target)
8763 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8764 target = gen_reg_rtx (mode);
8765 expand_operands (treeop0, treeop1,
8766 target, &op0, &op1, EXPAND_NORMAL);
8768 /* First try to do it with a special MIN or MAX instruction.
8769 If that does not win, use a conditional jump to select the proper
8770 value. */
8771 this_optab = optab_for_tree_code (code, type, optab_default);
8772 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8773 OPTAB_WIDEN);
8774 if (temp != 0)
8775 return temp;
8777 /* At this point, a MEM target is no longer useful; we will get better
8778 code without it. */
8780 if (! REG_P (target))
8781 target = gen_reg_rtx (mode);
8783 /* If op1 was placed in target, swap op0 and op1. */
8784 if (target != op0 && target == op1)
8786 temp = op0;
8787 op0 = op1;
8788 op1 = temp;
8791 /* We generate better code and avoid problems with op1 mentioning
8792 target by forcing op1 into a pseudo if it isn't a constant. */
8793 if (! CONSTANT_P (op1))
8794 op1 = force_reg (mode, op1);
8797 enum rtx_code comparison_code;
8798 rtx cmpop1 = op1;
8800 if (code == MAX_EXPR)
8801 comparison_code = unsignedp ? GEU : GE;
8802 else
8803 comparison_code = unsignedp ? LEU : LE;
8805 /* Canonicalize to comparisons against 0. */
8806 if (op1 == const1_rtx)
8808 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8809 or (a != 0 ? a : 1) for unsigned.
8810 For MIN we are safe converting (a <= 1 ? a : 1)
8811 into (a <= 0 ? a : 1) */
8812 cmpop1 = const0_rtx;
8813 if (code == MAX_EXPR)
8814 comparison_code = unsignedp ? NE : GT;
8816 if (op1 == constm1_rtx && !unsignedp)
8818 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8819 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8820 cmpop1 = const0_rtx;
8821 if (code == MIN_EXPR)
8822 comparison_code = LT;
8824 #ifdef HAVE_conditional_move
8825 /* Use a conditional move if possible. */
8826 if (can_conditionally_move_p (mode))
8828 rtx insn;
8830 start_sequence ();
8832 /* Try to emit the conditional move. */
8833 insn = emit_conditional_move (target, comparison_code,
8834 op0, cmpop1, mode,
8835 op0, op1, mode,
8836 unsignedp);
8838 /* If we could do the conditional move, emit the sequence,
8839 and return. */
8840 if (insn)
8842 rtx_insn *seq = get_insns ();
8843 end_sequence ();
8844 emit_insn (seq);
8845 return target;
8848 /* Otherwise discard the sequence and fall back to code with
8849 branches. */
8850 end_sequence ();
8852 #endif
8853 if (target != op0)
8854 emit_move_insn (target, op0);
8856 temp = gen_label_rtx ();
8857 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8858 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8859 -1);
8861 emit_move_insn (target, op1);
8862 emit_label (temp);
8863 return target;
8865 case BIT_NOT_EXPR:
8866 op0 = expand_expr (treeop0, subtarget,
8867 VOIDmode, EXPAND_NORMAL);
8868 if (modifier == EXPAND_STACK_PARM)
8869 target = 0;
8870 /* In case we have to reduce the result to bitfield precision
8871 for unsigned bitfield expand this as XOR with a proper constant
8872 instead. */
8873 if (reduce_bit_field && TYPE_UNSIGNED (type))
8875 wide_int mask = wi::mask (TYPE_PRECISION (type),
8876 false, GET_MODE_PRECISION (mode));
8878 temp = expand_binop (mode, xor_optab, op0,
8879 immed_wide_int_const (mask, mode),
8880 target, 1, OPTAB_LIB_WIDEN);
8882 else
8883 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8884 gcc_assert (temp);
8885 return temp;
8887 /* ??? Can optimize bitwise operations with one arg constant.
8888 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8889 and (a bitwise1 b) bitwise2 b (etc)
8890 but that is probably not worth while. */
8892 case BIT_AND_EXPR:
8893 case BIT_IOR_EXPR:
8894 case BIT_XOR_EXPR:
8895 goto binop;
8897 case LROTATE_EXPR:
8898 case RROTATE_EXPR:
8899 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8900 || (GET_MODE_PRECISION (TYPE_MODE (type))
8901 == TYPE_PRECISION (type)));
8902 /* fall through */
8904 case LSHIFT_EXPR:
8905 case RSHIFT_EXPR:
8906 /* If this is a fixed-point operation, then we cannot use the code
8907 below because "expand_shift" doesn't support sat/no-sat fixed-point
8908 shifts. */
8909 if (ALL_FIXED_POINT_MODE_P (mode))
8910 goto binop;
8912 if (! safe_from_p (subtarget, treeop1, 1))
8913 subtarget = 0;
8914 if (modifier == EXPAND_STACK_PARM)
8915 target = 0;
8916 op0 = expand_expr (treeop0, subtarget,
8917 VOIDmode, EXPAND_NORMAL);
8918 temp = expand_variable_shift (code, mode, op0, treeop1, target,
8919 unsignedp);
8920 if (code == LSHIFT_EXPR)
8921 temp = REDUCE_BIT_FIELD (temp);
8922 return temp;
8924 /* Could determine the answer when only additive constants differ. Also,
8925 the addition of one can be handled by changing the condition. */
8926 case LT_EXPR:
8927 case LE_EXPR:
8928 case GT_EXPR:
8929 case GE_EXPR:
8930 case EQ_EXPR:
8931 case NE_EXPR:
8932 case UNORDERED_EXPR:
8933 case ORDERED_EXPR:
8934 case UNLT_EXPR:
8935 case UNLE_EXPR:
8936 case UNGT_EXPR:
8937 case UNGE_EXPR:
8938 case UNEQ_EXPR:
8939 case LTGT_EXPR:
8940 temp = do_store_flag (ops,
8941 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8942 tmode != VOIDmode ? tmode : mode);
8943 if (temp)
8944 return temp;
8946 /* Use a compare and a jump for BLKmode comparisons, or for function
8947 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8949 if ((target == 0
8950 || modifier == EXPAND_STACK_PARM
8951 || ! safe_from_p (target, treeop0, 1)
8952 || ! safe_from_p (target, treeop1, 1)
8953 /* Make sure we don't have a hard reg (such as function's return
8954 value) live across basic blocks, if not optimizing. */
8955 || (!optimize && REG_P (target)
8956 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8957 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8959 emit_move_insn (target, const0_rtx);
8961 op1 = gen_label_rtx ();
8962 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8964 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
8965 emit_move_insn (target, constm1_rtx);
8966 else
8967 emit_move_insn (target, const1_rtx);
8969 emit_label (op1);
8970 return target;
8972 case COMPLEX_EXPR:
8973 /* Get the rtx code of the operands. */
8974 op0 = expand_normal (treeop0);
8975 op1 = expand_normal (treeop1);
8977 if (!target)
8978 target = gen_reg_rtx (TYPE_MODE (type));
8979 else
8980 /* If target overlaps with op1, then either we need to force
8981 op1 into a pseudo (if target also overlaps with op0),
8982 or write the complex parts in reverse order. */
8983 switch (GET_CODE (target))
8985 case CONCAT:
8986 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
8988 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
8990 complex_expr_force_op1:
8991 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
8992 emit_move_insn (temp, op1);
8993 op1 = temp;
8994 break;
8996 complex_expr_swap_order:
8997 /* Move the imaginary (op1) and real (op0) parts to their
8998 location. */
8999 write_complex_part (target, op1, true);
9000 write_complex_part (target, op0, false);
9002 return target;
9004 break;
9005 case MEM:
9006 temp = adjust_address_nv (target,
9007 GET_MODE_INNER (GET_MODE (target)), 0);
9008 if (reg_overlap_mentioned_p (temp, op1))
9010 enum machine_mode imode = GET_MODE_INNER (GET_MODE (target));
9011 temp = adjust_address_nv (target, imode,
9012 GET_MODE_SIZE (imode));
9013 if (reg_overlap_mentioned_p (temp, op0))
9014 goto complex_expr_force_op1;
9015 goto complex_expr_swap_order;
9017 break;
9018 default:
9019 if (reg_overlap_mentioned_p (target, op1))
9021 if (reg_overlap_mentioned_p (target, op0))
9022 goto complex_expr_force_op1;
9023 goto complex_expr_swap_order;
9025 break;
9028 /* Move the real (op0) and imaginary (op1) parts to their location. */
9029 write_complex_part (target, op0, false);
9030 write_complex_part (target, op1, true);
9032 return target;
9034 case WIDEN_SUM_EXPR:
9036 tree oprnd0 = treeop0;
9037 tree oprnd1 = treeop1;
9039 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9040 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9041 target, unsignedp);
9042 return target;
9045 case REDUC_MAX_EXPR:
9046 case REDUC_MIN_EXPR:
9047 case REDUC_PLUS_EXPR:
9049 op0 = expand_normal (treeop0);
9050 this_optab = optab_for_tree_code (code, type, optab_default);
9051 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
9052 gcc_assert (temp);
9053 return temp;
9056 case VEC_LSHIFT_EXPR:
9057 case VEC_RSHIFT_EXPR:
9059 target = expand_vec_shift_expr (ops, target);
9060 return target;
9063 case VEC_UNPACK_HI_EXPR:
9064 case VEC_UNPACK_LO_EXPR:
9066 op0 = expand_normal (treeop0);
9067 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9068 target, unsignedp);
9069 gcc_assert (temp);
9070 return temp;
9073 case VEC_UNPACK_FLOAT_HI_EXPR:
9074 case VEC_UNPACK_FLOAT_LO_EXPR:
9076 op0 = expand_normal (treeop0);
9077 /* The signedness is determined from input operand. */
9078 temp = expand_widen_pattern_expr
9079 (ops, op0, NULL_RTX, NULL_RTX,
9080 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9082 gcc_assert (temp);
9083 return temp;
9086 case VEC_WIDEN_MULT_HI_EXPR:
9087 case VEC_WIDEN_MULT_LO_EXPR:
9088 case VEC_WIDEN_MULT_EVEN_EXPR:
9089 case VEC_WIDEN_MULT_ODD_EXPR:
9090 case VEC_WIDEN_LSHIFT_HI_EXPR:
9091 case VEC_WIDEN_LSHIFT_LO_EXPR:
9092 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9093 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9094 target, unsignedp);
9095 gcc_assert (target);
9096 return target;
9098 case VEC_PACK_TRUNC_EXPR:
9099 case VEC_PACK_SAT_EXPR:
9100 case VEC_PACK_FIX_TRUNC_EXPR:
9101 mode = TYPE_MODE (TREE_TYPE (treeop0));
9102 goto binop;
9104 case VEC_PERM_EXPR:
9105 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9106 op2 = expand_normal (treeop2);
9108 /* Careful here: if the target doesn't support integral vector modes,
9109 a constant selection vector could wind up smooshed into a normal
9110 integral constant. */
9111 if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
9113 tree sel_type = TREE_TYPE (treeop2);
9114 enum machine_mode vmode
9115 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)),
9116 TYPE_VECTOR_SUBPARTS (sel_type));
9117 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
9118 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
9119 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
9121 else
9122 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
9124 temp = expand_vec_perm (mode, op0, op1, op2, target);
9125 gcc_assert (temp);
9126 return temp;
9128 case DOT_PROD_EXPR:
9130 tree oprnd0 = treeop0;
9131 tree oprnd1 = treeop1;
9132 tree oprnd2 = treeop2;
9133 rtx op2;
9135 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9136 op2 = expand_normal (oprnd2);
9137 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9138 target, unsignedp);
9139 return target;
9142 case SAD_EXPR:
9144 tree oprnd0 = treeop0;
9145 tree oprnd1 = treeop1;
9146 tree oprnd2 = treeop2;
9147 rtx op2;
9149 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9150 op2 = expand_normal (oprnd2);
9151 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9152 target, unsignedp);
9153 return target;
9156 case REALIGN_LOAD_EXPR:
9158 tree oprnd0 = treeop0;
9159 tree oprnd1 = treeop1;
9160 tree oprnd2 = treeop2;
9161 rtx op2;
9163 this_optab = optab_for_tree_code (code, type, optab_default);
9164 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9165 op2 = expand_normal (oprnd2);
9166 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9167 target, unsignedp);
9168 gcc_assert (temp);
9169 return temp;
9172 case COND_EXPR:
9173 /* A COND_EXPR with its type being VOID_TYPE represents a
9174 conditional jump and is handled in
9175 expand_gimple_cond_expr. */
9176 gcc_assert (!VOID_TYPE_P (type));
9178 /* Note that COND_EXPRs whose type is a structure or union
9179 are required to be constructed to contain assignments of
9180 a temporary variable, so that we can evaluate them here
9181 for side effect only. If type is void, we must do likewise. */
9183 gcc_assert (!TREE_ADDRESSABLE (type)
9184 && !ignore
9185 && TREE_TYPE (treeop1) != void_type_node
9186 && TREE_TYPE (treeop2) != void_type_node);
9188 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9189 if (temp)
9190 return temp;
9192 /* If we are not to produce a result, we have no target. Otherwise,
9193 if a target was specified use it; it will not be used as an
9194 intermediate target unless it is safe. If no target, use a
9195 temporary. */
9197 if (modifier != EXPAND_STACK_PARM
9198 && original_target
9199 && safe_from_p (original_target, treeop0, 1)
9200 && GET_MODE (original_target) == mode
9201 && !MEM_P (original_target))
9202 temp = original_target;
9203 else
9204 temp = assign_temp (type, 0, 1);
9206 do_pending_stack_adjust ();
9207 NO_DEFER_POP;
9208 op0 = gen_label_rtx ();
9209 op1 = gen_label_rtx ();
9210 jumpifnot (treeop0, op0, -1);
9211 store_expr (treeop1, temp,
9212 modifier == EXPAND_STACK_PARM,
9213 false);
9215 emit_jump_insn (gen_jump (op1));
9216 emit_barrier ();
9217 emit_label (op0);
9218 store_expr (treeop2, temp,
9219 modifier == EXPAND_STACK_PARM,
9220 false);
9222 emit_label (op1);
9223 OK_DEFER_POP;
9224 return temp;
9226 case VEC_COND_EXPR:
9227 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9228 return target;
9230 default:
9231 gcc_unreachable ();
9234 /* Here to do an ordinary binary operator. */
9235 binop:
9236 expand_operands (treeop0, treeop1,
9237 subtarget, &op0, &op1, EXPAND_NORMAL);
9238 binop2:
9239 this_optab = optab_for_tree_code (code, type, optab_default);
9240 binop3:
9241 if (modifier == EXPAND_STACK_PARM)
9242 target = 0;
9243 temp = expand_binop (mode, this_optab, op0, op1, target,
9244 unsignedp, OPTAB_LIB_WIDEN);
9245 gcc_assert (temp);
9246 /* Bitwise operations do not need bitfield reduction as we expect their
9247 operands being properly truncated. */
9248 if (code == BIT_XOR_EXPR
9249 || code == BIT_AND_EXPR
9250 || code == BIT_IOR_EXPR)
9251 return temp;
9252 return REDUCE_BIT_FIELD (temp);
9254 #undef REDUCE_BIT_FIELD
9257 /* Return TRUE if expression STMT is suitable for replacement.
9258 Never consider memory loads as replaceable, because those don't ever lead
9259 into constant expressions. */
9261 static bool
9262 stmt_is_replaceable_p (gimple stmt)
9264 if (ssa_is_replaceable_p (stmt))
9266 /* Don't move around loads. */
9267 if (!gimple_assign_single_p (stmt)
9268 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9269 return true;
9271 return false;
9275 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
9276 enum expand_modifier modifier, rtx *alt_rtl,
9277 bool inner_reference_p)
9279 rtx op0, op1, temp, decl_rtl;
9280 tree type;
9281 int unsignedp;
9282 enum machine_mode mode;
9283 enum tree_code code = TREE_CODE (exp);
9284 rtx subtarget, original_target;
9285 int ignore;
9286 tree context;
9287 bool reduce_bit_field;
9288 location_t loc = EXPR_LOCATION (exp);
9289 struct separate_ops ops;
9290 tree treeop0, treeop1, treeop2;
9291 tree ssa_name = NULL_TREE;
9292 gimple g;
9294 type = TREE_TYPE (exp);
9295 mode = TYPE_MODE (type);
9296 unsignedp = TYPE_UNSIGNED (type);
9298 treeop0 = treeop1 = treeop2 = NULL_TREE;
9299 if (!VL_EXP_CLASS_P (exp))
9300 switch (TREE_CODE_LENGTH (code))
9302 default:
9303 case 3: treeop2 = TREE_OPERAND (exp, 2);
9304 case 2: treeop1 = TREE_OPERAND (exp, 1);
9305 case 1: treeop0 = TREE_OPERAND (exp, 0);
9306 case 0: break;
9308 ops.code = code;
9309 ops.type = type;
9310 ops.op0 = treeop0;
9311 ops.op1 = treeop1;
9312 ops.op2 = treeop2;
9313 ops.location = loc;
9315 ignore = (target == const0_rtx
9316 || ((CONVERT_EXPR_CODE_P (code)
9317 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9318 && TREE_CODE (type) == VOID_TYPE));
9320 /* An operation in what may be a bit-field type needs the
9321 result to be reduced to the precision of the bit-field type,
9322 which is narrower than that of the type's mode. */
9323 reduce_bit_field = (!ignore
9324 && INTEGRAL_TYPE_P (type)
9325 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
9327 /* If we are going to ignore this result, we need only do something
9328 if there is a side-effect somewhere in the expression. If there
9329 is, short-circuit the most common cases here. Note that we must
9330 not call expand_expr with anything but const0_rtx in case this
9331 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9333 if (ignore)
9335 if (! TREE_SIDE_EFFECTS (exp))
9336 return const0_rtx;
9338 /* Ensure we reference a volatile object even if value is ignored, but
9339 don't do this if all we are doing is taking its address. */
9340 if (TREE_THIS_VOLATILE (exp)
9341 && TREE_CODE (exp) != FUNCTION_DECL
9342 && mode != VOIDmode && mode != BLKmode
9343 && modifier != EXPAND_CONST_ADDRESS)
9345 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9346 if (MEM_P (temp))
9347 copy_to_reg (temp);
9348 return const0_rtx;
9351 if (TREE_CODE_CLASS (code) == tcc_unary
9352 || code == BIT_FIELD_REF
9353 || code == COMPONENT_REF
9354 || code == INDIRECT_REF)
9355 return expand_expr (treeop0, const0_rtx, VOIDmode,
9356 modifier);
9358 else if (TREE_CODE_CLASS (code) == tcc_binary
9359 || TREE_CODE_CLASS (code) == tcc_comparison
9360 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9362 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9363 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9364 return const0_rtx;
9367 target = 0;
9370 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9371 target = 0;
9373 /* Use subtarget as the target for operand 0 of a binary operation. */
9374 subtarget = get_subtarget (target);
9375 original_target = target;
9377 switch (code)
9379 case LABEL_DECL:
9381 tree function = decl_function_context (exp);
9383 temp = label_rtx (exp);
9384 temp = gen_rtx_LABEL_REF (Pmode, temp);
9386 if (function != current_function_decl
9387 && function != 0)
9388 LABEL_REF_NONLOCAL_P (temp) = 1;
9390 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9391 return temp;
9394 case SSA_NAME:
9395 /* ??? ivopts calls expander, without any preparation from
9396 out-of-ssa. So fake instructions as if this was an access to the
9397 base variable. This unnecessarily allocates a pseudo, see how we can
9398 reuse it, if partition base vars have it set already. */
9399 if (!currently_expanding_to_rtl)
9401 tree var = SSA_NAME_VAR (exp);
9402 if (var && DECL_RTL_SET_P (var))
9403 return DECL_RTL (var);
9404 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9405 LAST_VIRTUAL_REGISTER + 1);
9408 g = get_gimple_for_ssa_name (exp);
9409 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9410 if (g == NULL
9411 && modifier == EXPAND_INITIALIZER
9412 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9413 && (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9414 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9415 g = SSA_NAME_DEF_STMT (exp);
9416 if (g)
9418 rtx r;
9419 ops.code = gimple_assign_rhs_code (g);
9420 switch (get_gimple_rhs_class (ops.code))
9422 case GIMPLE_TERNARY_RHS:
9423 ops.op2 = gimple_assign_rhs3 (g);
9424 /* Fallthru */
9425 case GIMPLE_BINARY_RHS:
9426 ops.op1 = gimple_assign_rhs2 (g);
9427 /* Fallthru */
9428 case GIMPLE_UNARY_RHS:
9429 ops.op0 = gimple_assign_rhs1 (g);
9430 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9431 ops.location = gimple_location (g);
9432 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9433 break;
9434 case GIMPLE_SINGLE_RHS:
9436 location_t saved_loc = curr_insn_location ();
9437 set_curr_insn_location (gimple_location (g));
9438 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9439 tmode, modifier, NULL, inner_reference_p);
9440 set_curr_insn_location (saved_loc);
9441 break;
9443 default:
9444 gcc_unreachable ();
9446 if (REG_P (r) && !REG_EXPR (r))
9447 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9448 return r;
9451 ssa_name = exp;
9452 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9453 exp = SSA_NAME_VAR (ssa_name);
9454 goto expand_decl_rtl;
9456 case PARM_DECL:
9457 case VAR_DECL:
9458 /* If a static var's type was incomplete when the decl was written,
9459 but the type is complete now, lay out the decl now. */
9460 if (DECL_SIZE (exp) == 0
9461 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9462 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9463 layout_decl (exp, 0);
9465 /* ... fall through ... */
9467 case FUNCTION_DECL:
9468 case RESULT_DECL:
9469 decl_rtl = DECL_RTL (exp);
9470 expand_decl_rtl:
9471 gcc_assert (decl_rtl);
9472 decl_rtl = copy_rtx (decl_rtl);
9473 /* Record writes to register variables. */
9474 if (modifier == EXPAND_WRITE
9475 && REG_P (decl_rtl)
9476 && HARD_REGISTER_P (decl_rtl))
9477 add_to_hard_reg_set (&crtl->asm_clobbers,
9478 GET_MODE (decl_rtl), REGNO (decl_rtl));
9480 /* Ensure variable marked as used even if it doesn't go through
9481 a parser. If it hasn't be used yet, write out an external
9482 definition. */
9483 TREE_USED (exp) = 1;
9485 /* Show we haven't gotten RTL for this yet. */
9486 temp = 0;
9488 /* Variables inherited from containing functions should have
9489 been lowered by this point. */
9490 context = decl_function_context (exp);
9491 gcc_assert (SCOPE_FILE_SCOPE_P (context)
9492 || context == current_function_decl
9493 || TREE_STATIC (exp)
9494 || DECL_EXTERNAL (exp)
9495 /* ??? C++ creates functions that are not TREE_STATIC. */
9496 || TREE_CODE (exp) == FUNCTION_DECL);
9498 /* This is the case of an array whose size is to be determined
9499 from its initializer, while the initializer is still being parsed.
9500 ??? We aren't parsing while expanding anymore. */
9502 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9503 temp = validize_mem (decl_rtl);
9505 /* If DECL_RTL is memory, we are in the normal case and the
9506 address is not valid, get the address into a register. */
9508 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9510 if (alt_rtl)
9511 *alt_rtl = decl_rtl;
9512 decl_rtl = use_anchored_address (decl_rtl);
9513 if (modifier != EXPAND_CONST_ADDRESS
9514 && modifier != EXPAND_SUM
9515 && !memory_address_addr_space_p (DECL_MODE (exp),
9516 XEXP (decl_rtl, 0),
9517 MEM_ADDR_SPACE (decl_rtl)))
9518 temp = replace_equiv_address (decl_rtl,
9519 copy_rtx (XEXP (decl_rtl, 0)));
9522 /* If we got something, return it. But first, set the alignment
9523 if the address is a register. */
9524 if (temp != 0)
9526 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
9527 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9529 return temp;
9532 /* If the mode of DECL_RTL does not match that of the decl,
9533 there are two cases: we are dealing with a BLKmode value
9534 that is returned in a register, or we are dealing with
9535 a promoted value. In the latter case, return a SUBREG
9536 of the wanted mode, but mark it so that we know that it
9537 was already extended. */
9538 if (REG_P (decl_rtl)
9539 && DECL_MODE (exp) != BLKmode
9540 && GET_MODE (decl_rtl) != DECL_MODE (exp))
9542 enum machine_mode pmode;
9544 /* Get the signedness to be used for this variable. Ensure we get
9545 the same mode we got when the variable was declared. */
9546 if (code == SSA_NAME
9547 && (g = SSA_NAME_DEF_STMT (ssa_name))
9548 && gimple_code (g) == GIMPLE_CALL
9549 && !gimple_call_internal_p (g))
9550 pmode = promote_function_mode (type, mode, &unsignedp,
9551 gimple_call_fntype (g),
9553 else
9554 pmode = promote_decl_mode (exp, &unsignedp);
9555 gcc_assert (GET_MODE (decl_rtl) == pmode);
9557 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9558 SUBREG_PROMOTED_VAR_P (temp) = 1;
9559 SUBREG_PROMOTED_SET (temp, unsignedp);
9560 return temp;
9563 return decl_rtl;
9565 case INTEGER_CST:
9566 /* Given that TYPE_PRECISION (type) is not always equal to
9567 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9568 the former to the latter according to the signedness of the
9569 type. */
9570 temp = immed_wide_int_const (wide_int::from
9571 (exp,
9572 GET_MODE_PRECISION (TYPE_MODE (type)),
9573 TYPE_SIGN (type)),
9574 TYPE_MODE (type));
9575 return temp;
9577 case VECTOR_CST:
9579 tree tmp = NULL_TREE;
9580 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9581 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9582 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9583 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9584 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9585 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9586 return const_vector_from_tree (exp);
9587 if (GET_MODE_CLASS (mode) == MODE_INT)
9589 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
9590 if (type_for_mode)
9591 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
9593 if (!tmp)
9595 vec<constructor_elt, va_gc> *v;
9596 unsigned i;
9597 vec_alloc (v, VECTOR_CST_NELTS (exp));
9598 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9599 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9600 tmp = build_constructor (type, v);
9602 return expand_expr (tmp, ignore ? const0_rtx : target,
9603 tmode, modifier);
9606 case CONST_DECL:
9607 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
9609 case REAL_CST:
9610 /* If optimized, generate immediate CONST_DOUBLE
9611 which will be turned into memory by reload if necessary.
9613 We used to force a register so that loop.c could see it. But
9614 this does not allow gen_* patterns to perform optimizations with
9615 the constants. It also produces two insns in cases like "x = 1.0;".
9616 On most machines, floating-point constants are not permitted in
9617 many insns, so we'd end up copying it to a register in any case.
9619 Now, we do the copying in expand_binop, if appropriate. */
9620 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
9621 TYPE_MODE (TREE_TYPE (exp)));
9623 case FIXED_CST:
9624 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
9625 TYPE_MODE (TREE_TYPE (exp)));
9627 case COMPLEX_CST:
9628 /* Handle evaluating a complex constant in a CONCAT target. */
9629 if (original_target && GET_CODE (original_target) == CONCAT)
9631 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
9632 rtx rtarg, itarg;
9634 rtarg = XEXP (original_target, 0);
9635 itarg = XEXP (original_target, 1);
9637 /* Move the real and imaginary parts separately. */
9638 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
9639 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
9641 if (op0 != rtarg)
9642 emit_move_insn (rtarg, op0);
9643 if (op1 != itarg)
9644 emit_move_insn (itarg, op1);
9646 return original_target;
9649 /* ... fall through ... */
9651 case STRING_CST:
9652 temp = expand_expr_constant (exp, 1, modifier);
9654 /* temp contains a constant address.
9655 On RISC machines where a constant address isn't valid,
9656 make some insns to get that address into a register. */
9657 if (modifier != EXPAND_CONST_ADDRESS
9658 && modifier != EXPAND_INITIALIZER
9659 && modifier != EXPAND_SUM
9660 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
9661 MEM_ADDR_SPACE (temp)))
9662 return replace_equiv_address (temp,
9663 copy_rtx (XEXP (temp, 0)));
9664 return temp;
9666 case SAVE_EXPR:
9668 tree val = treeop0;
9669 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
9670 inner_reference_p);
9672 if (!SAVE_EXPR_RESOLVED_P (exp))
9674 /* We can indeed still hit this case, typically via builtin
9675 expanders calling save_expr immediately before expanding
9676 something. Assume this means that we only have to deal
9677 with non-BLKmode values. */
9678 gcc_assert (GET_MODE (ret) != BLKmode);
9680 val = build_decl (curr_insn_location (),
9681 VAR_DECL, NULL, TREE_TYPE (exp));
9682 DECL_ARTIFICIAL (val) = 1;
9683 DECL_IGNORED_P (val) = 1;
9684 treeop0 = val;
9685 TREE_OPERAND (exp, 0) = treeop0;
9686 SAVE_EXPR_RESOLVED_P (exp) = 1;
9688 if (!CONSTANT_P (ret))
9689 ret = copy_to_reg (ret);
9690 SET_DECL_RTL (val, ret);
9693 return ret;
9697 case CONSTRUCTOR:
9698 /* If we don't need the result, just ensure we evaluate any
9699 subexpressions. */
9700 if (ignore)
9702 unsigned HOST_WIDE_INT idx;
9703 tree value;
9705 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
9706 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
9708 return const0_rtx;
9711 return expand_constructor (exp, target, modifier, false);
9713 case TARGET_MEM_REF:
9715 addr_space_t as
9716 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9717 enum insn_code icode;
9718 unsigned int align;
9720 op0 = addr_for_mem_ref (exp, as, true);
9721 op0 = memory_address_addr_space (mode, op0, as);
9722 temp = gen_rtx_MEM (mode, op0);
9723 set_mem_attributes (temp, exp, 0);
9724 set_mem_addr_space (temp, as);
9725 align = get_object_alignment (exp);
9726 if (modifier != EXPAND_WRITE
9727 && modifier != EXPAND_MEMORY
9728 && mode != BLKmode
9729 && align < GET_MODE_ALIGNMENT (mode)
9730 /* If the target does not have special handling for unaligned
9731 loads of mode then it can use regular moves for them. */
9732 && ((icode = optab_handler (movmisalign_optab, mode))
9733 != CODE_FOR_nothing))
9735 struct expand_operand ops[2];
9737 /* We've already validated the memory, and we're creating a
9738 new pseudo destination. The predicates really can't fail,
9739 nor can the generator. */
9740 create_output_operand (&ops[0], NULL_RTX, mode);
9741 create_fixed_operand (&ops[1], temp);
9742 expand_insn (icode, 2, ops);
9743 temp = ops[0].value;
9745 return temp;
9748 case MEM_REF:
9750 addr_space_t as
9751 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9752 enum machine_mode address_mode;
9753 tree base = TREE_OPERAND (exp, 0);
9754 gimple def_stmt;
9755 enum insn_code icode;
9756 unsigned align;
9757 /* Handle expansion of non-aliased memory with non-BLKmode. That
9758 might end up in a register. */
9759 if (mem_ref_refers_to_non_mem_p (exp))
9761 HOST_WIDE_INT offset = mem_ref_offset (exp).to_short_addr ();
9762 base = TREE_OPERAND (base, 0);
9763 if (offset == 0
9764 && tree_fits_uhwi_p (TYPE_SIZE (type))
9765 && (GET_MODE_BITSIZE (DECL_MODE (base))
9766 == tree_to_uhwi (TYPE_SIZE (type))))
9767 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
9768 target, tmode, modifier);
9769 if (TYPE_MODE (type) == BLKmode)
9771 temp = assign_stack_temp (DECL_MODE (base),
9772 GET_MODE_SIZE (DECL_MODE (base)));
9773 store_expr (base, temp, 0, false);
9774 temp = adjust_address (temp, BLKmode, offset);
9775 set_mem_size (temp, int_size_in_bytes (type));
9776 return temp;
9778 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
9779 bitsize_int (offset * BITS_PER_UNIT));
9780 return expand_expr (exp, target, tmode, modifier);
9782 address_mode = targetm.addr_space.address_mode (as);
9783 base = TREE_OPERAND (exp, 0);
9784 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
9786 tree mask = gimple_assign_rhs2 (def_stmt);
9787 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
9788 gimple_assign_rhs1 (def_stmt), mask);
9789 TREE_OPERAND (exp, 0) = base;
9791 align = get_object_alignment (exp);
9792 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
9793 op0 = memory_address_addr_space (mode, op0, as);
9794 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9796 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
9797 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
9798 op0 = memory_address_addr_space (mode, op0, as);
9800 temp = gen_rtx_MEM (mode, op0);
9801 set_mem_attributes (temp, exp, 0);
9802 set_mem_addr_space (temp, as);
9803 if (TREE_THIS_VOLATILE (exp))
9804 MEM_VOLATILE_P (temp) = 1;
9805 if (modifier != EXPAND_WRITE
9806 && modifier != EXPAND_MEMORY
9807 && !inner_reference_p
9808 && mode != BLKmode
9809 && align < GET_MODE_ALIGNMENT (mode))
9811 if ((icode = optab_handler (movmisalign_optab, mode))
9812 != CODE_FOR_nothing)
9814 struct expand_operand ops[2];
9816 /* We've already validated the memory, and we're creating a
9817 new pseudo destination. The predicates really can't fail,
9818 nor can the generator. */
9819 create_output_operand (&ops[0], NULL_RTX, mode);
9820 create_fixed_operand (&ops[1], temp);
9821 expand_insn (icode, 2, ops);
9822 temp = ops[0].value;
9824 else if (SLOW_UNALIGNED_ACCESS (mode, align))
9825 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
9826 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
9827 (modifier == EXPAND_STACK_PARM
9828 ? NULL_RTX : target),
9829 mode, mode);
9831 return temp;
9834 case ARRAY_REF:
9837 tree array = treeop0;
9838 tree index = treeop1;
9839 tree init;
9841 /* Fold an expression like: "foo"[2].
9842 This is not done in fold so it won't happen inside &.
9843 Don't fold if this is for wide characters since it's too
9844 difficult to do correctly and this is a very rare case. */
9846 if (modifier != EXPAND_CONST_ADDRESS
9847 && modifier != EXPAND_INITIALIZER
9848 && modifier != EXPAND_MEMORY)
9850 tree t = fold_read_from_constant_string (exp);
9852 if (t)
9853 return expand_expr (t, target, tmode, modifier);
9856 /* If this is a constant index into a constant array,
9857 just get the value from the array. Handle both the cases when
9858 we have an explicit constructor and when our operand is a variable
9859 that was declared const. */
9861 if (modifier != EXPAND_CONST_ADDRESS
9862 && modifier != EXPAND_INITIALIZER
9863 && modifier != EXPAND_MEMORY
9864 && TREE_CODE (array) == CONSTRUCTOR
9865 && ! TREE_SIDE_EFFECTS (array)
9866 && TREE_CODE (index) == INTEGER_CST)
9868 unsigned HOST_WIDE_INT ix;
9869 tree field, value;
9871 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
9872 field, value)
9873 if (tree_int_cst_equal (field, index))
9875 if (!TREE_SIDE_EFFECTS (value))
9876 return expand_expr (fold (value), target, tmode, modifier);
9877 break;
9881 else if (optimize >= 1
9882 && modifier != EXPAND_CONST_ADDRESS
9883 && modifier != EXPAND_INITIALIZER
9884 && modifier != EXPAND_MEMORY
9885 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
9886 && TREE_CODE (index) == INTEGER_CST
9887 && (TREE_CODE (array) == VAR_DECL
9888 || TREE_CODE (array) == CONST_DECL)
9889 && (init = ctor_for_folding (array)) != error_mark_node)
9891 if (init == NULL_TREE)
9893 tree value = build_zero_cst (type);
9894 if (TREE_CODE (value) == CONSTRUCTOR)
9896 /* If VALUE is a CONSTRUCTOR, this optimization is only
9897 useful if this doesn't store the CONSTRUCTOR into
9898 memory. If it does, it is more efficient to just
9899 load the data from the array directly. */
9900 rtx ret = expand_constructor (value, target,
9901 modifier, true);
9902 if (ret == NULL_RTX)
9903 value = NULL_TREE;
9906 if (value)
9907 return expand_expr (value, target, tmode, modifier);
9909 else if (TREE_CODE (init) == CONSTRUCTOR)
9911 unsigned HOST_WIDE_INT ix;
9912 tree field, value;
9914 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
9915 field, value)
9916 if (tree_int_cst_equal (field, index))
9918 if (TREE_SIDE_EFFECTS (value))
9919 break;
9921 if (TREE_CODE (value) == CONSTRUCTOR)
9923 /* If VALUE is a CONSTRUCTOR, this
9924 optimization is only useful if
9925 this doesn't store the CONSTRUCTOR
9926 into memory. If it does, it is more
9927 efficient to just load the data from
9928 the array directly. */
9929 rtx ret = expand_constructor (value, target,
9930 modifier, true);
9931 if (ret == NULL_RTX)
9932 break;
9935 return
9936 expand_expr (fold (value), target, tmode, modifier);
9939 else if (TREE_CODE (init) == STRING_CST)
9941 tree low_bound = array_ref_low_bound (exp);
9942 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
9944 /* Optimize the special case of a zero lower bound.
9946 We convert the lower bound to sizetype to avoid problems
9947 with constant folding. E.g. suppose the lower bound is
9948 1 and its mode is QI. Without the conversion
9949 (ARRAY + (INDEX - (unsigned char)1))
9950 becomes
9951 (ARRAY + (-(unsigned char)1) + INDEX)
9952 which becomes
9953 (ARRAY + 255 + INDEX). Oops! */
9954 if (!integer_zerop (low_bound))
9955 index1 = size_diffop_loc (loc, index1,
9956 fold_convert_loc (loc, sizetype,
9957 low_bound));
9959 if (compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
9961 tree type = TREE_TYPE (TREE_TYPE (init));
9962 enum machine_mode mode = TYPE_MODE (type);
9964 if (GET_MODE_CLASS (mode) == MODE_INT
9965 && GET_MODE_SIZE (mode) == 1)
9966 return gen_int_mode (TREE_STRING_POINTER (init)
9967 [TREE_INT_CST_LOW (index1)],
9968 mode);
9973 goto normal_inner_ref;
9975 case COMPONENT_REF:
9976 /* If the operand is a CONSTRUCTOR, we can just extract the
9977 appropriate field if it is present. */
9978 if (TREE_CODE (treeop0) == CONSTRUCTOR)
9980 unsigned HOST_WIDE_INT idx;
9981 tree field, value;
9983 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
9984 idx, field, value)
9985 if (field == treeop1
9986 /* We can normally use the value of the field in the
9987 CONSTRUCTOR. However, if this is a bitfield in
9988 an integral mode that we can fit in a HOST_WIDE_INT,
9989 we must mask only the number of bits in the bitfield,
9990 since this is done implicitly by the constructor. If
9991 the bitfield does not meet either of those conditions,
9992 we can't do this optimization. */
9993 && (! DECL_BIT_FIELD (field)
9994 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
9995 && (GET_MODE_PRECISION (DECL_MODE (field))
9996 <= HOST_BITS_PER_WIDE_INT))))
9998 if (DECL_BIT_FIELD (field)
9999 && modifier == EXPAND_STACK_PARM)
10000 target = 0;
10001 op0 = expand_expr (value, target, tmode, modifier);
10002 if (DECL_BIT_FIELD (field))
10004 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10005 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
10007 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10009 op1 = gen_int_mode (((HOST_WIDE_INT) 1 << bitsize) - 1,
10010 imode);
10011 op0 = expand_and (imode, op0, op1, target);
10013 else
10015 int count = GET_MODE_PRECISION (imode) - bitsize;
10017 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10018 target, 0);
10019 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10020 target, 0);
10024 return op0;
10027 goto normal_inner_ref;
10029 case BIT_FIELD_REF:
10030 case ARRAY_RANGE_REF:
10031 normal_inner_ref:
10033 enum machine_mode mode1, mode2;
10034 HOST_WIDE_INT bitsize, bitpos;
10035 tree offset;
10036 int volatilep = 0, must_force_mem;
10037 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
10038 &mode1, &unsignedp, &volatilep, true);
10039 rtx orig_op0, memloc;
10040 bool mem_attrs_from_type = false;
10042 /* If we got back the original object, something is wrong. Perhaps
10043 we are evaluating an expression too early. In any event, don't
10044 infinitely recurse. */
10045 gcc_assert (tem != exp);
10047 /* If TEM's type is a union of variable size, pass TARGET to the inner
10048 computation, since it will need a temporary and TARGET is known
10049 to have to do. This occurs in unchecked conversion in Ada. */
10050 orig_op0 = op0
10051 = expand_expr_real (tem,
10052 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10053 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10054 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10055 != INTEGER_CST)
10056 && modifier != EXPAND_STACK_PARM
10057 ? target : NULL_RTX),
10058 VOIDmode,
10059 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10060 NULL, true);
10062 /* If the field has a mode, we want to access it in the
10063 field's mode, not the computed mode.
10064 If a MEM has VOIDmode (external with incomplete type),
10065 use BLKmode for it instead. */
10066 if (MEM_P (op0))
10068 if (mode1 != VOIDmode)
10069 op0 = adjust_address (op0, mode1, 0);
10070 else if (GET_MODE (op0) == VOIDmode)
10071 op0 = adjust_address (op0, BLKmode, 0);
10074 mode2
10075 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10077 /* If we have either an offset, a BLKmode result, or a reference
10078 outside the underlying object, we must force it to memory.
10079 Such a case can occur in Ada if we have unchecked conversion
10080 of an expression from a scalar type to an aggregate type or
10081 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10082 passed a partially uninitialized object or a view-conversion
10083 to a larger size. */
10084 must_force_mem = (offset
10085 || mode1 == BLKmode
10086 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
10088 /* Handle CONCAT first. */
10089 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10091 if (bitpos == 0
10092 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
10093 return op0;
10094 if (bitpos == 0
10095 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10096 && bitsize)
10098 op0 = XEXP (op0, 0);
10099 mode2 = GET_MODE (op0);
10101 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10102 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
10103 && bitpos
10104 && bitsize)
10106 op0 = XEXP (op0, 1);
10107 bitpos = 0;
10108 mode2 = GET_MODE (op0);
10110 else
10111 /* Otherwise force into memory. */
10112 must_force_mem = 1;
10115 /* If this is a constant, put it in a register if it is a legitimate
10116 constant and we don't need a memory reference. */
10117 if (CONSTANT_P (op0)
10118 && mode2 != BLKmode
10119 && targetm.legitimate_constant_p (mode2, op0)
10120 && !must_force_mem)
10121 op0 = force_reg (mode2, op0);
10123 /* Otherwise, if this is a constant, try to force it to the constant
10124 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10125 is a legitimate constant. */
10126 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10127 op0 = validize_mem (memloc);
10129 /* Otherwise, if this is a constant or the object is not in memory
10130 and need be, put it there. */
10131 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10133 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10134 emit_move_insn (memloc, op0);
10135 op0 = memloc;
10136 mem_attrs_from_type = true;
10139 if (offset)
10141 enum machine_mode address_mode;
10142 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10143 EXPAND_SUM);
10145 gcc_assert (MEM_P (op0));
10147 address_mode = get_address_mode (op0);
10148 if (GET_MODE (offset_rtx) != address_mode)
10149 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10151 /* See the comment in expand_assignment for the rationale. */
10152 if (mode1 != VOIDmode
10153 && bitpos != 0
10154 && bitsize > 0
10155 && (bitpos % bitsize) == 0
10156 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
10157 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10159 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10160 bitpos = 0;
10163 op0 = offset_address (op0, offset_rtx,
10164 highest_pow2_factor (offset));
10167 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10168 record its alignment as BIGGEST_ALIGNMENT. */
10169 if (MEM_P (op0) && bitpos == 0 && offset != 0
10170 && is_aligning_offset (offset, tem))
10171 set_mem_align (op0, BIGGEST_ALIGNMENT);
10173 /* Don't forget about volatility even if this is a bitfield. */
10174 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10176 if (op0 == orig_op0)
10177 op0 = copy_rtx (op0);
10179 MEM_VOLATILE_P (op0) = 1;
10182 /* In cases where an aligned union has an unaligned object
10183 as a field, we might be extracting a BLKmode value from
10184 an integer-mode (e.g., SImode) object. Handle this case
10185 by doing the extract into an object as wide as the field
10186 (which we know to be the width of a basic mode), then
10187 storing into memory, and changing the mode to BLKmode. */
10188 if (mode1 == VOIDmode
10189 || REG_P (op0) || GET_CODE (op0) == SUBREG
10190 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10191 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10192 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10193 && modifier != EXPAND_CONST_ADDRESS
10194 && modifier != EXPAND_INITIALIZER
10195 && modifier != EXPAND_MEMORY)
10196 /* If the bitfield is volatile and the bitsize
10197 is narrower than the access size of the bitfield,
10198 we need to extract bitfields from the access. */
10199 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10200 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10201 && mode1 != BLKmode
10202 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
10203 /* If the field isn't aligned enough to fetch as a memref,
10204 fetch it as a bit field. */
10205 || (mode1 != BLKmode
10206 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10207 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
10208 || (MEM_P (op0)
10209 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10210 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
10211 && modifier != EXPAND_MEMORY
10212 && ((modifier == EXPAND_CONST_ADDRESS
10213 || modifier == EXPAND_INITIALIZER)
10214 ? STRICT_ALIGNMENT
10215 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
10216 || (bitpos % BITS_PER_UNIT != 0)))
10217 /* If the type and the field are a constant size and the
10218 size of the type isn't the same size as the bitfield,
10219 we must use bitfield operations. */
10220 || (bitsize >= 0
10221 && TYPE_SIZE (TREE_TYPE (exp))
10222 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10223 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10224 bitsize)))
10226 enum machine_mode ext_mode = mode;
10228 if (ext_mode == BLKmode
10229 && ! (target != 0 && MEM_P (op0)
10230 && MEM_P (target)
10231 && bitpos % BITS_PER_UNIT == 0))
10232 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
10234 if (ext_mode == BLKmode)
10236 if (target == 0)
10237 target = assign_temp (type, 1, 1);
10239 /* ??? Unlike the similar test a few lines below, this one is
10240 very likely obsolete. */
10241 if (bitsize == 0)
10242 return target;
10244 /* In this case, BITPOS must start at a byte boundary and
10245 TARGET, if specified, must be a MEM. */
10246 gcc_assert (MEM_P (op0)
10247 && (!target || MEM_P (target))
10248 && !(bitpos % BITS_PER_UNIT));
10250 emit_block_move (target,
10251 adjust_address (op0, VOIDmode,
10252 bitpos / BITS_PER_UNIT),
10253 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10254 / BITS_PER_UNIT),
10255 (modifier == EXPAND_STACK_PARM
10256 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10258 return target;
10261 /* If we have nothing to extract, the result will be 0 for targets
10262 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10263 return 0 for the sake of consistency, as reading a zero-sized
10264 bitfield is valid in Ada and the value is fully specified. */
10265 if (bitsize == 0)
10266 return const0_rtx;
10268 op0 = validize_mem (op0);
10270 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10271 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10273 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10274 (modifier == EXPAND_STACK_PARM
10275 ? NULL_RTX : target),
10276 ext_mode, ext_mode);
10278 /* If the result is a record type and BITSIZE is narrower than
10279 the mode of OP0, an integral mode, and this is a big endian
10280 machine, we must put the field into the high-order bits. */
10281 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
10282 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10283 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
10284 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
10285 GET_MODE_BITSIZE (GET_MODE (op0))
10286 - bitsize, op0, 1);
10288 /* If the result type is BLKmode, store the data into a temporary
10289 of the appropriate type, but with the mode corresponding to the
10290 mode for the data we have (op0's mode). */
10291 if (mode == BLKmode)
10293 rtx new_rtx
10294 = assign_stack_temp_for_type (ext_mode,
10295 GET_MODE_BITSIZE (ext_mode),
10296 type);
10297 emit_move_insn (new_rtx, op0);
10298 op0 = copy_rtx (new_rtx);
10299 PUT_MODE (op0, BLKmode);
10302 return op0;
10305 /* If the result is BLKmode, use that to access the object
10306 now as well. */
10307 if (mode == BLKmode)
10308 mode1 = BLKmode;
10310 /* Get a reference to just this component. */
10311 if (modifier == EXPAND_CONST_ADDRESS
10312 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10313 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10314 else
10315 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10317 if (op0 == orig_op0)
10318 op0 = copy_rtx (op0);
10320 /* If op0 is a temporary because of forcing to memory, pass only the
10321 type to set_mem_attributes so that the original expression is never
10322 marked as ADDRESSABLE through MEM_EXPR of the temporary. */
10323 if (mem_attrs_from_type)
10324 set_mem_attributes (op0, type, 0);
10325 else
10326 set_mem_attributes (op0, exp, 0);
10328 if (REG_P (XEXP (op0, 0)))
10329 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10331 MEM_VOLATILE_P (op0) |= volatilep;
10332 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10333 || modifier == EXPAND_CONST_ADDRESS
10334 || modifier == EXPAND_INITIALIZER)
10335 return op0;
10337 if (target == 0)
10338 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10340 convert_move (target, op0, unsignedp);
10341 return target;
10344 case OBJ_TYPE_REF:
10345 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10347 case CALL_EXPR:
10348 /* All valid uses of __builtin_va_arg_pack () are removed during
10349 inlining. */
10350 if (CALL_EXPR_VA_ARG_PACK (exp))
10351 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10353 tree fndecl = get_callee_fndecl (exp), attr;
10355 if (fndecl
10356 && (attr = lookup_attribute ("error",
10357 DECL_ATTRIBUTES (fndecl))) != NULL)
10358 error ("%Kcall to %qs declared with attribute error: %s",
10359 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10360 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10361 if (fndecl
10362 && (attr = lookup_attribute ("warning",
10363 DECL_ATTRIBUTES (fndecl))) != NULL)
10364 warning_at (tree_nonartificial_location (exp),
10365 0, "%Kcall to %qs declared with attribute warning: %s",
10366 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10367 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10369 /* Check for a built-in function. */
10370 if (fndecl && DECL_BUILT_IN (fndecl))
10372 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10373 return expand_builtin (exp, target, subtarget, tmode, ignore);
10376 return expand_call (exp, target, ignore);
10378 case VIEW_CONVERT_EXPR:
10379 op0 = NULL_RTX;
10381 /* If we are converting to BLKmode, try to avoid an intermediate
10382 temporary by fetching an inner memory reference. */
10383 if (mode == BLKmode
10384 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
10385 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10386 && handled_component_p (treeop0))
10388 enum machine_mode mode1;
10389 HOST_WIDE_INT bitsize, bitpos;
10390 tree offset;
10391 int unsignedp;
10392 int volatilep = 0;
10393 tree tem
10394 = get_inner_reference (treeop0, &bitsize, &bitpos,
10395 &offset, &mode1, &unsignedp, &volatilep,
10396 true);
10397 rtx orig_op0;
10399 /* ??? We should work harder and deal with non-zero offsets. */
10400 if (!offset
10401 && (bitpos % BITS_PER_UNIT) == 0
10402 && bitsize >= 0
10403 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
10405 /* See the normal_inner_ref case for the rationale. */
10406 orig_op0
10407 = expand_expr_real (tem,
10408 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10409 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10410 != INTEGER_CST)
10411 && modifier != EXPAND_STACK_PARM
10412 ? target : NULL_RTX),
10413 VOIDmode,
10414 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10415 NULL, true);
10417 if (MEM_P (orig_op0))
10419 op0 = orig_op0;
10421 /* Get a reference to just this component. */
10422 if (modifier == EXPAND_CONST_ADDRESS
10423 || modifier == EXPAND_SUM
10424 || modifier == EXPAND_INITIALIZER)
10425 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10426 else
10427 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10429 if (op0 == orig_op0)
10430 op0 = copy_rtx (op0);
10432 set_mem_attributes (op0, treeop0, 0);
10433 if (REG_P (XEXP (op0, 0)))
10434 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10436 MEM_VOLATILE_P (op0) |= volatilep;
10441 if (!op0)
10442 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
10443 NULL, inner_reference_p);
10445 /* If the input and output modes are both the same, we are done. */
10446 if (mode == GET_MODE (op0))
10448 /* If neither mode is BLKmode, and both modes are the same size
10449 then we can use gen_lowpart. */
10450 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10451 && (GET_MODE_PRECISION (mode)
10452 == GET_MODE_PRECISION (GET_MODE (op0)))
10453 && !COMPLEX_MODE_P (GET_MODE (op0)))
10455 if (GET_CODE (op0) == SUBREG)
10456 op0 = force_reg (GET_MODE (op0), op0);
10457 temp = gen_lowpart_common (mode, op0);
10458 if (temp)
10459 op0 = temp;
10460 else
10462 if (!REG_P (op0) && !MEM_P (op0))
10463 op0 = force_reg (GET_MODE (op0), op0);
10464 op0 = gen_lowpart (mode, op0);
10467 /* If both types are integral, convert from one mode to the other. */
10468 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10469 op0 = convert_modes (mode, GET_MODE (op0), op0,
10470 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10471 /* If the output type is a bit-field type, do an extraction. */
10472 else if (reduce_bit_field)
10473 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
10474 TYPE_UNSIGNED (type), NULL_RTX,
10475 mode, mode);
10476 /* As a last resort, spill op0 to memory, and reload it in a
10477 different mode. */
10478 else if (!MEM_P (op0))
10480 /* If the operand is not a MEM, force it into memory. Since we
10481 are going to be changing the mode of the MEM, don't call
10482 force_const_mem for constants because we don't allow pool
10483 constants to change mode. */
10484 tree inner_type = TREE_TYPE (treeop0);
10486 gcc_assert (!TREE_ADDRESSABLE (exp));
10488 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10489 target
10490 = assign_stack_temp_for_type
10491 (TYPE_MODE (inner_type),
10492 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10494 emit_move_insn (target, op0);
10495 op0 = target;
10498 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10499 output type is such that the operand is known to be aligned, indicate
10500 that it is. Otherwise, we need only be concerned about alignment for
10501 non-BLKmode results. */
10502 if (MEM_P (op0))
10504 enum insn_code icode;
10506 if (TYPE_ALIGN_OK (type))
10508 /* ??? Copying the MEM without substantially changing it might
10509 run afoul of the code handling volatile memory references in
10510 store_expr, which assumes that TARGET is returned unmodified
10511 if it has been used. */
10512 op0 = copy_rtx (op0);
10513 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
10515 else if (modifier != EXPAND_WRITE
10516 && modifier != EXPAND_MEMORY
10517 && !inner_reference_p
10518 && mode != BLKmode
10519 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10521 /* If the target does have special handling for unaligned
10522 loads of mode then use them. */
10523 if ((icode = optab_handler (movmisalign_optab, mode))
10524 != CODE_FOR_nothing)
10526 rtx reg, insn;
10528 op0 = adjust_address (op0, mode, 0);
10529 /* We've already validated the memory, and we're creating a
10530 new pseudo destination. The predicates really can't
10531 fail. */
10532 reg = gen_reg_rtx (mode);
10534 /* Nor can the insn generator. */
10535 insn = GEN_FCN (icode) (reg, op0);
10536 emit_insn (insn);
10537 return reg;
10539 else if (STRICT_ALIGNMENT)
10541 tree inner_type = TREE_TYPE (treeop0);
10542 HOST_WIDE_INT temp_size
10543 = MAX (int_size_in_bytes (inner_type),
10544 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
10545 rtx new_rtx
10546 = assign_stack_temp_for_type (mode, temp_size, type);
10547 rtx new_with_op0_mode
10548 = adjust_address (new_rtx, GET_MODE (op0), 0);
10550 gcc_assert (!TREE_ADDRESSABLE (exp));
10552 if (GET_MODE (op0) == BLKmode)
10553 emit_block_move (new_with_op0_mode, op0,
10554 GEN_INT (GET_MODE_SIZE (mode)),
10555 (modifier == EXPAND_STACK_PARM
10556 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10557 else
10558 emit_move_insn (new_with_op0_mode, op0);
10560 op0 = new_rtx;
10564 op0 = adjust_address (op0, mode, 0);
10567 return op0;
10569 case MODIFY_EXPR:
10571 tree lhs = treeop0;
10572 tree rhs = treeop1;
10573 gcc_assert (ignore);
10575 /* Check for |= or &= of a bitfield of size one into another bitfield
10576 of size 1. In this case, (unless we need the result of the
10577 assignment) we can do this more efficiently with a
10578 test followed by an assignment, if necessary.
10580 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10581 things change so we do, this code should be enhanced to
10582 support it. */
10583 if (TREE_CODE (lhs) == COMPONENT_REF
10584 && (TREE_CODE (rhs) == BIT_IOR_EXPR
10585 || TREE_CODE (rhs) == BIT_AND_EXPR)
10586 && TREE_OPERAND (rhs, 0) == lhs
10587 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
10588 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
10589 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
10591 rtx_code_label *label = gen_label_rtx ();
10592 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
10593 do_jump (TREE_OPERAND (rhs, 1),
10594 value ? label : 0,
10595 value ? 0 : label, -1);
10596 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
10597 false);
10598 do_pending_stack_adjust ();
10599 emit_label (label);
10600 return const0_rtx;
10603 expand_assignment (lhs, rhs, false);
10604 return const0_rtx;
10607 case ADDR_EXPR:
10608 return expand_expr_addr_expr (exp, target, tmode, modifier);
10610 case REALPART_EXPR:
10611 op0 = expand_normal (treeop0);
10612 return read_complex_part (op0, false);
10614 case IMAGPART_EXPR:
10615 op0 = expand_normal (treeop0);
10616 return read_complex_part (op0, true);
10618 case RETURN_EXPR:
10619 case LABEL_EXPR:
10620 case GOTO_EXPR:
10621 case SWITCH_EXPR:
10622 case ASM_EXPR:
10623 /* Expanded in cfgexpand.c. */
10624 gcc_unreachable ();
10626 case TRY_CATCH_EXPR:
10627 case CATCH_EXPR:
10628 case EH_FILTER_EXPR:
10629 case TRY_FINALLY_EXPR:
10630 /* Lowered by tree-eh.c. */
10631 gcc_unreachable ();
10633 case WITH_CLEANUP_EXPR:
10634 case CLEANUP_POINT_EXPR:
10635 case TARGET_EXPR:
10636 case CASE_LABEL_EXPR:
10637 case VA_ARG_EXPR:
10638 case BIND_EXPR:
10639 case INIT_EXPR:
10640 case CONJ_EXPR:
10641 case COMPOUND_EXPR:
10642 case PREINCREMENT_EXPR:
10643 case PREDECREMENT_EXPR:
10644 case POSTINCREMENT_EXPR:
10645 case POSTDECREMENT_EXPR:
10646 case LOOP_EXPR:
10647 case EXIT_EXPR:
10648 case COMPOUND_LITERAL_EXPR:
10649 /* Lowered by gimplify.c. */
10650 gcc_unreachable ();
10652 case FDESC_EXPR:
10653 /* Function descriptors are not valid except for as
10654 initialization constants, and should not be expanded. */
10655 gcc_unreachable ();
10657 case WITH_SIZE_EXPR:
10658 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10659 have pulled out the size to use in whatever context it needed. */
10660 return expand_expr_real (treeop0, original_target, tmode,
10661 modifier, alt_rtl, inner_reference_p);
10663 default:
10664 return expand_expr_real_2 (&ops, target, tmode, modifier);
10668 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10669 signedness of TYPE), possibly returning the result in TARGET. */
10670 static rtx
10671 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
10673 HOST_WIDE_INT prec = TYPE_PRECISION (type);
10674 if (target && GET_MODE (target) != GET_MODE (exp))
10675 target = 0;
10676 /* For constant values, reduce using build_int_cst_type. */
10677 if (CONST_INT_P (exp))
10679 HOST_WIDE_INT value = INTVAL (exp);
10680 tree t = build_int_cst_type (type, value);
10681 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
10683 else if (TYPE_UNSIGNED (type))
10685 enum machine_mode mode = GET_MODE (exp);
10686 rtx mask = immed_wide_int_const
10687 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
10688 return expand_and (mode, exp, mask, target);
10690 else
10692 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
10693 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
10694 exp, count, target, 0);
10695 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
10696 exp, count, target, 0);
10700 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10701 when applied to the address of EXP produces an address known to be
10702 aligned more than BIGGEST_ALIGNMENT. */
10704 static int
10705 is_aligning_offset (const_tree offset, const_tree exp)
10707 /* Strip off any conversions. */
10708 while (CONVERT_EXPR_P (offset))
10709 offset = TREE_OPERAND (offset, 0);
10711 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10712 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10713 if (TREE_CODE (offset) != BIT_AND_EXPR
10714 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
10715 || compare_tree_int (TREE_OPERAND (offset, 1),
10716 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
10717 || exact_log2 (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1) < 0)
10718 return 0;
10720 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10721 It must be NEGATE_EXPR. Then strip any more conversions. */
10722 offset = TREE_OPERAND (offset, 0);
10723 while (CONVERT_EXPR_P (offset))
10724 offset = TREE_OPERAND (offset, 0);
10726 if (TREE_CODE (offset) != NEGATE_EXPR)
10727 return 0;
10729 offset = TREE_OPERAND (offset, 0);
10730 while (CONVERT_EXPR_P (offset))
10731 offset = TREE_OPERAND (offset, 0);
10733 /* This must now be the address of EXP. */
10734 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
10737 /* Return the tree node if an ARG corresponds to a string constant or zero
10738 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10739 in bytes within the string that ARG is accessing. The type of the
10740 offset will be `sizetype'. */
10742 tree
10743 string_constant (tree arg, tree *ptr_offset)
10745 tree array, offset, lower_bound;
10746 STRIP_NOPS (arg);
10748 if (TREE_CODE (arg) == ADDR_EXPR)
10750 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
10752 *ptr_offset = size_zero_node;
10753 return TREE_OPERAND (arg, 0);
10755 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
10757 array = TREE_OPERAND (arg, 0);
10758 offset = size_zero_node;
10760 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
10762 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10763 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10764 if (TREE_CODE (array) != STRING_CST
10765 && TREE_CODE (array) != VAR_DECL)
10766 return 0;
10768 /* Check if the array has a nonzero lower bound. */
10769 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
10770 if (!integer_zerop (lower_bound))
10772 /* If the offset and base aren't both constants, return 0. */
10773 if (TREE_CODE (lower_bound) != INTEGER_CST)
10774 return 0;
10775 if (TREE_CODE (offset) != INTEGER_CST)
10776 return 0;
10777 /* Adjust offset by the lower bound. */
10778 offset = size_diffop (fold_convert (sizetype, offset),
10779 fold_convert (sizetype, lower_bound));
10782 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
10784 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10785 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10786 if (TREE_CODE (array) != ADDR_EXPR)
10787 return 0;
10788 array = TREE_OPERAND (array, 0);
10789 if (TREE_CODE (array) != STRING_CST
10790 && TREE_CODE (array) != VAR_DECL)
10791 return 0;
10793 else
10794 return 0;
10796 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
10798 tree arg0 = TREE_OPERAND (arg, 0);
10799 tree arg1 = TREE_OPERAND (arg, 1);
10801 STRIP_NOPS (arg0);
10802 STRIP_NOPS (arg1);
10804 if (TREE_CODE (arg0) == ADDR_EXPR
10805 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
10806 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
10808 array = TREE_OPERAND (arg0, 0);
10809 offset = arg1;
10811 else if (TREE_CODE (arg1) == ADDR_EXPR
10812 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
10813 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
10815 array = TREE_OPERAND (arg1, 0);
10816 offset = arg0;
10818 else
10819 return 0;
10821 else
10822 return 0;
10824 if (TREE_CODE (array) == STRING_CST)
10826 *ptr_offset = fold_convert (sizetype, offset);
10827 return array;
10829 else if (TREE_CODE (array) == VAR_DECL
10830 || TREE_CODE (array) == CONST_DECL)
10832 int length;
10833 tree init = ctor_for_folding (array);
10835 /* Variables initialized to string literals can be handled too. */
10836 if (init == error_mark_node
10837 || !init
10838 || TREE_CODE (init) != STRING_CST)
10839 return 0;
10841 /* Avoid const char foo[4] = "abcde"; */
10842 if (DECL_SIZE_UNIT (array) == NULL_TREE
10843 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
10844 || (length = TREE_STRING_LENGTH (init)) <= 0
10845 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
10846 return 0;
10848 /* If variable is bigger than the string literal, OFFSET must be constant
10849 and inside of the bounds of the string literal. */
10850 offset = fold_convert (sizetype, offset);
10851 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
10852 && (! tree_fits_uhwi_p (offset)
10853 || compare_tree_int (offset, length) >= 0))
10854 return 0;
10856 *ptr_offset = offset;
10857 return init;
10860 return 0;
10863 /* Generate code to calculate OPS, and exploded expression
10864 using a store-flag instruction and return an rtx for the result.
10865 OPS reflects a comparison.
10867 If TARGET is nonzero, store the result there if convenient.
10869 Return zero if there is no suitable set-flag instruction
10870 available on this machine.
10872 Once expand_expr has been called on the arguments of the comparison,
10873 we are committed to doing the store flag, since it is not safe to
10874 re-evaluate the expression. We emit the store-flag insn by calling
10875 emit_store_flag, but only expand the arguments if we have a reason
10876 to believe that emit_store_flag will be successful. If we think that
10877 it will, but it isn't, we have to simulate the store-flag with a
10878 set/jump/set sequence. */
10880 static rtx
10881 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
10883 enum rtx_code code;
10884 tree arg0, arg1, type;
10885 tree tem;
10886 enum machine_mode operand_mode;
10887 int unsignedp;
10888 rtx op0, op1;
10889 rtx subtarget = target;
10890 location_t loc = ops->location;
10892 arg0 = ops->op0;
10893 arg1 = ops->op1;
10895 /* Don't crash if the comparison was erroneous. */
10896 if (arg0 == error_mark_node || arg1 == error_mark_node)
10897 return const0_rtx;
10899 type = TREE_TYPE (arg0);
10900 operand_mode = TYPE_MODE (type);
10901 unsignedp = TYPE_UNSIGNED (type);
10903 /* We won't bother with BLKmode store-flag operations because it would mean
10904 passing a lot of information to emit_store_flag. */
10905 if (operand_mode == BLKmode)
10906 return 0;
10908 /* We won't bother with store-flag operations involving function pointers
10909 when function pointers must be canonicalized before comparisons. */
10910 #ifdef HAVE_canonicalize_funcptr_for_compare
10911 if (HAVE_canonicalize_funcptr_for_compare
10912 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
10913 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
10914 == FUNCTION_TYPE))
10915 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
10916 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
10917 == FUNCTION_TYPE))))
10918 return 0;
10919 #endif
10921 STRIP_NOPS (arg0);
10922 STRIP_NOPS (arg1);
10924 /* For vector typed comparisons emit code to generate the desired
10925 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10926 expander for this. */
10927 if (TREE_CODE (ops->type) == VECTOR_TYPE)
10929 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
10930 tree if_true = constant_boolean_node (true, ops->type);
10931 tree if_false = constant_boolean_node (false, ops->type);
10932 return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target);
10935 /* Get the rtx comparison code to use. We know that EXP is a comparison
10936 operation of some type. Some comparisons against 1 and -1 can be
10937 converted to comparisons with zero. Do so here so that the tests
10938 below will be aware that we have a comparison with zero. These
10939 tests will not catch constants in the first operand, but constants
10940 are rarely passed as the first operand. */
10942 switch (ops->code)
10944 case EQ_EXPR:
10945 code = EQ;
10946 break;
10947 case NE_EXPR:
10948 code = NE;
10949 break;
10950 case LT_EXPR:
10951 if (integer_onep (arg1))
10952 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
10953 else
10954 code = unsignedp ? LTU : LT;
10955 break;
10956 case LE_EXPR:
10957 if (! unsignedp && integer_all_onesp (arg1))
10958 arg1 = integer_zero_node, code = LT;
10959 else
10960 code = unsignedp ? LEU : LE;
10961 break;
10962 case GT_EXPR:
10963 if (! unsignedp && integer_all_onesp (arg1))
10964 arg1 = integer_zero_node, code = GE;
10965 else
10966 code = unsignedp ? GTU : GT;
10967 break;
10968 case GE_EXPR:
10969 if (integer_onep (arg1))
10970 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10971 else
10972 code = unsignedp ? GEU : GE;
10973 break;
10975 case UNORDERED_EXPR:
10976 code = UNORDERED;
10977 break;
10978 case ORDERED_EXPR:
10979 code = ORDERED;
10980 break;
10981 case UNLT_EXPR:
10982 code = UNLT;
10983 break;
10984 case UNLE_EXPR:
10985 code = UNLE;
10986 break;
10987 case UNGT_EXPR:
10988 code = UNGT;
10989 break;
10990 case UNGE_EXPR:
10991 code = UNGE;
10992 break;
10993 case UNEQ_EXPR:
10994 code = UNEQ;
10995 break;
10996 case LTGT_EXPR:
10997 code = LTGT;
10998 break;
11000 default:
11001 gcc_unreachable ();
11004 /* Put a constant second. */
11005 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
11006 || TREE_CODE (arg0) == FIXED_CST)
11008 tem = arg0; arg0 = arg1; arg1 = tem;
11009 code = swap_condition (code);
11012 /* If this is an equality or inequality test of a single bit, we can
11013 do this by shifting the bit being tested to the low-order bit and
11014 masking the result with the constant 1. If the condition was EQ,
11015 we xor it with 1. This does not require an scc insn and is faster
11016 than an scc insn even if we have it.
11018 The code to make this transformation was moved into fold_single_bit_test,
11019 so we just call into the folder and expand its result. */
11021 if ((code == NE || code == EQ)
11022 && integer_zerop (arg1)
11023 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
11025 gimple srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
11026 if (srcstmt
11027 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
11029 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
11030 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11031 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
11032 gimple_assign_rhs1 (srcstmt),
11033 gimple_assign_rhs2 (srcstmt));
11034 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
11035 if (temp)
11036 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
11040 if (! get_subtarget (target)
11041 || GET_MODE (subtarget) != operand_mode)
11042 subtarget = 0;
11044 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
11046 if (target == 0)
11047 target = gen_reg_rtx (mode);
11049 /* Try a cstore if possible. */
11050 return emit_store_flag_force (target, code, op0, op1,
11051 operand_mode, unsignedp,
11052 (TYPE_PRECISION (ops->type) == 1
11053 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
11057 /* Stubs in case we haven't got a casesi insn. */
11058 #ifndef HAVE_casesi
11059 # define HAVE_casesi 0
11060 # define gen_casesi(a, b, c, d, e) (0)
11061 # define CODE_FOR_casesi CODE_FOR_nothing
11062 #endif
11064 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11065 0 otherwise (i.e. if there is no casesi instruction).
11067 DEFAULT_PROBABILITY is the probability of jumping to the default
11068 label. */
11070 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
11071 rtx table_label, rtx default_label, rtx fallback_label,
11072 int default_probability)
11074 struct expand_operand ops[5];
11075 enum machine_mode index_mode = SImode;
11076 rtx op1, op2, index;
11078 if (! HAVE_casesi)
11079 return 0;
11081 /* Convert the index to SImode. */
11082 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
11084 enum machine_mode omode = TYPE_MODE (index_type);
11085 rtx rangertx = expand_normal (range);
11087 /* We must handle the endpoints in the original mode. */
11088 index_expr = build2 (MINUS_EXPR, index_type,
11089 index_expr, minval);
11090 minval = integer_zero_node;
11091 index = expand_normal (index_expr);
11092 if (default_label)
11093 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11094 omode, 1, default_label,
11095 default_probability);
11096 /* Now we can safely truncate. */
11097 index = convert_to_mode (index_mode, index, 0);
11099 else
11101 if (TYPE_MODE (index_type) != index_mode)
11103 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11104 index_expr = fold_convert (index_type, index_expr);
11107 index = expand_normal (index_expr);
11110 do_pending_stack_adjust ();
11112 op1 = expand_normal (minval);
11113 op2 = expand_normal (range);
11115 create_input_operand (&ops[0], index, index_mode);
11116 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11117 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11118 create_fixed_operand (&ops[3], table_label);
11119 create_fixed_operand (&ops[4], (default_label
11120 ? default_label
11121 : fallback_label));
11122 expand_jump_insn (CODE_FOR_casesi, 5, ops);
11123 return 1;
11126 /* Attempt to generate a tablejump instruction; same concept. */
11127 #ifndef HAVE_tablejump
11128 #define HAVE_tablejump 0
11129 #define gen_tablejump(x, y) (0)
11130 #endif
11132 /* Subroutine of the next function.
11134 INDEX is the value being switched on, with the lowest value
11135 in the table already subtracted.
11136 MODE is its expected mode (needed if INDEX is constant).
11137 RANGE is the length of the jump table.
11138 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11140 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11141 index value is out of range.
11142 DEFAULT_PROBABILITY is the probability of jumping to
11143 the default label. */
11145 static void
11146 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
11147 rtx default_label, int default_probability)
11149 rtx temp, vector;
11151 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11152 cfun->cfg->max_jumptable_ents = INTVAL (range);
11154 /* Do an unsigned comparison (in the proper mode) between the index
11155 expression and the value which represents the length of the range.
11156 Since we just finished subtracting the lower bound of the range
11157 from the index expression, this comparison allows us to simultaneously
11158 check that the original index expression value is both greater than
11159 or equal to the minimum value of the range and less than or equal to
11160 the maximum value of the range. */
11162 if (default_label)
11163 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11164 default_label, default_probability);
11167 /* If index is in range, it must fit in Pmode.
11168 Convert to Pmode so we can index with it. */
11169 if (mode != Pmode)
11170 index = convert_to_mode (Pmode, index, 1);
11172 /* Don't let a MEM slip through, because then INDEX that comes
11173 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11174 and break_out_memory_refs will go to work on it and mess it up. */
11175 #ifdef PIC_CASE_VECTOR_ADDRESS
11176 if (flag_pic && !REG_P (index))
11177 index = copy_to_mode_reg (Pmode, index);
11178 #endif
11180 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11181 GET_MODE_SIZE, because this indicates how large insns are. The other
11182 uses should all be Pmode, because they are addresses. This code
11183 could fail if addresses and insns are not the same size. */
11184 index = simplify_gen_binary (MULT, Pmode, index,
11185 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
11186 Pmode));
11187 index = simplify_gen_binary (PLUS, Pmode, index,
11188 gen_rtx_LABEL_REF (Pmode, table_label));
11190 #ifdef PIC_CASE_VECTOR_ADDRESS
11191 if (flag_pic)
11192 index = PIC_CASE_VECTOR_ADDRESS (index);
11193 else
11194 #endif
11195 index = memory_address (CASE_VECTOR_MODE, index);
11196 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11197 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11198 convert_move (temp, vector, 0);
11200 emit_jump_insn (gen_tablejump (temp, table_label));
11202 /* If we are generating PIC code or if the table is PC-relative, the
11203 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11204 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11205 emit_barrier ();
11209 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11210 rtx table_label, rtx default_label, int default_probability)
11212 rtx index;
11214 if (! HAVE_tablejump)
11215 return 0;
11217 index_expr = fold_build2 (MINUS_EXPR, index_type,
11218 fold_convert (index_type, index_expr),
11219 fold_convert (index_type, minval));
11220 index = expand_normal (index_expr);
11221 do_pending_stack_adjust ();
11223 do_tablejump (index, TYPE_MODE (index_type),
11224 convert_modes (TYPE_MODE (index_type),
11225 TYPE_MODE (TREE_TYPE (range)),
11226 expand_normal (range),
11227 TYPE_UNSIGNED (TREE_TYPE (range))),
11228 table_label, default_label, default_probability);
11229 return 1;
11232 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11233 static rtx
11234 const_vector_from_tree (tree exp)
11236 rtvec v;
11237 unsigned i;
11238 int units;
11239 tree elt;
11240 enum machine_mode inner, mode;
11242 mode = TYPE_MODE (TREE_TYPE (exp));
11244 if (initializer_zerop (exp))
11245 return CONST0_RTX (mode);
11247 units = GET_MODE_NUNITS (mode);
11248 inner = GET_MODE_INNER (mode);
11250 v = rtvec_alloc (units);
11252 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11254 elt = VECTOR_CST_ELT (exp, i);
11256 if (TREE_CODE (elt) == REAL_CST)
11257 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
11258 inner);
11259 else if (TREE_CODE (elt) == FIXED_CST)
11260 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11261 inner);
11262 else
11263 RTVEC_ELT (v, i) = immed_wide_int_const (elt, inner);
11266 return gen_rtx_CONST_VECTOR (mode, v);
11269 /* Build a decl for a personality function given a language prefix. */
11271 tree
11272 build_personality_function (const char *lang)
11274 const char *unwind_and_version;
11275 tree decl, type;
11276 char *name;
11278 switch (targetm_common.except_unwind_info (&global_options))
11280 case UI_NONE:
11281 return NULL;
11282 case UI_SJLJ:
11283 unwind_and_version = "_sj0";
11284 break;
11285 case UI_DWARF2:
11286 case UI_TARGET:
11287 unwind_and_version = "_v0";
11288 break;
11289 case UI_SEH:
11290 unwind_and_version = "_seh0";
11291 break;
11292 default:
11293 gcc_unreachable ();
11296 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11298 type = build_function_type_list (integer_type_node, integer_type_node,
11299 long_long_unsigned_type_node,
11300 ptr_type_node, ptr_type_node, NULL_TREE);
11301 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11302 get_identifier (name), type);
11303 DECL_ARTIFICIAL (decl) = 1;
11304 DECL_EXTERNAL (decl) = 1;
11305 TREE_PUBLIC (decl) = 1;
11307 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11308 are the flags assigned by targetm.encode_section_info. */
11309 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11311 return decl;
11314 /* Extracts the personality function of DECL and returns the corresponding
11315 libfunc. */
11318 get_personality_function (tree decl)
11320 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11321 enum eh_personality_kind pk;
11323 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11324 if (pk == eh_personality_none)
11325 return NULL;
11327 if (!personality
11328 && pk == eh_personality_any)
11329 personality = lang_hooks.eh_personality ();
11331 if (pk == eh_personality_lang)
11332 gcc_assert (personality != NULL_TREE);
11334 return XEXP (DECL_RTL (personality), 0);
11337 #include "gt-expr.h"