3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2002 Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Eval_Fat
; use Eval_Fat
;
34 with Exp_Util
; use Exp_Util
;
35 with Nmake
; use Nmake
;
36 with Nlists
; use Nlists
;
39 with Sem_Cat
; use Sem_Cat
;
40 with Sem_Ch8
; use Sem_Ch8
;
41 with Sem_Res
; use Sem_Res
;
42 with Sem_Util
; use Sem_Util
;
43 with Sem_Type
; use Sem_Type
;
44 with Sem_Warn
; use Sem_Warn
;
45 with Sinfo
; use Sinfo
;
46 with Snames
; use Snames
;
47 with Stand
; use Stand
;
48 with Stringt
; use Stringt
;
49 with Tbuild
; use Tbuild
;
51 package body Sem_Eval
is
53 -----------------------------------------
54 -- Handling of Compile Time Evaluation --
55 -----------------------------------------
57 -- The compile time evaluation of expressions is distributed over several
58 -- Eval_xxx procedures. These procedures are called immediatedly after
59 -- a subexpression is resolved and is therefore accomplished in a bottom
60 -- up fashion. The flags are synthesized using the following approach.
62 -- Is_Static_Expression is determined by following the detailed rules
63 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
64 -- flag of the operands in many cases.
66 -- Raises_Constraint_Error is set if any of the operands have the flag
67 -- set or if an attempt to compute the value of the current expression
68 -- results in detection of a runtime constraint error.
70 -- As described in the spec, the requirement is that Is_Static_Expression
71 -- be accurately set, and in addition for nodes for which this flag is set,
72 -- Raises_Constraint_Error must also be set. Furthermore a node which has
73 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
74 -- requirement is that the expression value must be precomputed, and the
75 -- node is either a literal, or the name of a constant entity whose value
76 -- is a static expression.
78 -- The general approach is as follows. First compute Is_Static_Expression.
79 -- If the node is not static, then the flag is left off in the node and
80 -- we are all done. Otherwise for a static node, we test if any of the
81 -- operands will raise constraint error, and if so, propagate the flag
82 -- Raises_Constraint_Error to the result node and we are done (since the
83 -- error was already posted at a lower level).
85 -- For the case of a static node whose operands do not raise constraint
86 -- error, we attempt to evaluate the node. If this evaluation succeeds,
87 -- then the node is replaced by the result of this computation. If the
88 -- evaluation raises constraint error, then we rewrite the node with
89 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
90 -- to post appropriate error messages.
96 type Bits
is array (Nat
range <>) of Boolean;
97 -- Used to convert unsigned (modular) values for folding logical ops
99 -- The following definitions are used to maintain a cache of nodes that
100 -- have compile time known values. The cache is maintained only for
101 -- discrete types (the most common case), and is populated by calls to
102 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
103 -- since it is possible for the status to change (in particular it is
104 -- possible for a node to get replaced by a constraint error node).
106 CV_Bits
: constant := 5;
107 -- Number of low order bits of Node_Id value used to reference entries
108 -- in the cache table.
110 CV_Cache_Size
: constant Nat
:= 2 ** CV_Bits
;
111 -- Size of cache for compile time values
113 subtype CV_Range
is Nat
range 0 .. CV_Cache_Size
;
115 type CV_Entry
is record
120 type CV_Cache_Array
is array (CV_Range
) of CV_Entry
;
122 CV_Cache
: CV_Cache_Array
:= (others => (Node_High_Bound
, Uint_0
));
123 -- This is the actual cache, with entries consisting of node/value pairs,
124 -- and the impossible value Node_High_Bound used for unset entries.
126 -----------------------
127 -- Local Subprograms --
128 -----------------------
130 function From_Bits
(B
: Bits
; T
: Entity_Id
) return Uint
;
131 -- Converts a bit string of length B'Length to a Uint value to be used
132 -- for a target of type T, which is a modular type. This procedure
133 -- includes the necessary reduction by the modulus in the case of a
134 -- non-binary modulus (for a binary modulus, the bit string is the
135 -- right length any way so all is well).
137 function Get_String_Val
(N
: Node_Id
) return Node_Id
;
138 -- Given a tree node for a folded string or character value, returns
139 -- the corresponding string literal or character literal (one of the
140 -- two must be available, or the operand would not have been marked
141 -- as foldable in the earlier analysis of the operation).
143 function OK_Bits
(N
: Node_Id
; Bits
: Uint
) return Boolean;
144 -- Bits represents the number of bits in an integer value to be computed
145 -- (but the value has not been computed yet). If this value in Bits is
146 -- reasonable, a result of True is returned, with the implication that
147 -- the caller should go ahead and complete the calculation. If the value
148 -- in Bits is unreasonably large, then an error is posted on node N, and
149 -- False is returned (and the caller skips the proposed calculation).
151 procedure Out_Of_Range
(N
: Node_Id
);
152 -- This procedure is called if it is determined that node N, which
153 -- appears in a non-static context, is a compile time known value
154 -- which is outside its range, i.e. the range of Etype. This is used
155 -- in contexts where this is an illegality if N is static, and should
156 -- generate a warning otherwise.
158 procedure Rewrite_In_Raise_CE
(N
: Node_Id
; Exp
: Node_Id
);
159 -- N and Exp are nodes representing an expression, Exp is known
160 -- to raise CE. N is rewritten in term of Exp in the optimal way.
162 function String_Type_Len
(Stype
: Entity_Id
) return Uint
;
163 -- Given a string type, determines the length of the index type, or,
164 -- if this index type is non-static, the length of the base type of
165 -- this index type. Note that if the string type is itself static,
166 -- then the index type is static, so the second case applies only
167 -- if the string type passed is non-static.
169 function Test
(Cond
: Boolean) return Uint
;
170 pragma Inline
(Test
);
171 -- This function simply returns the appropriate Boolean'Pos value
172 -- corresponding to the value of Cond as a universal integer. It is
173 -- used for producing the result of the static evaluation of the
176 procedure Test_Expression_Is_Foldable
181 -- Tests to see if expression N whose single operand is Op1 is foldable,
182 -- i.e. the operand value is known at compile time. If the operation is
183 -- foldable, then Fold is True on return, and Stat indicates whether
184 -- the result is static (i.e. both operands were static). Note that it
185 -- is quite possible for Fold to be True, and Stat to be False, since
186 -- there are cases in which we know the value of an operand even though
187 -- it is not technically static (e.g. the static lower bound of a range
188 -- whose upper bound is non-static).
190 -- If Stat is set False on return, then Expression_Is_Foldable makes a
191 -- call to Check_Non_Static_Context on the operand. If Fold is False on
192 -- return, then all processing is complete, and the caller should
193 -- return, since there is nothing else to do.
195 procedure Test_Expression_Is_Foldable
201 -- Same processing, except applies to an expression N with two operands
204 procedure To_Bits
(U
: Uint
; B
: out Bits
);
205 -- Converts a Uint value to a bit string of length B'Length
207 ------------------------------
208 -- Check_Non_Static_Context --
209 ------------------------------
211 procedure Check_Non_Static_Context
(N
: Node_Id
) is
212 T
: Entity_Id
:= Etype
(N
);
213 Checks_On
: constant Boolean :=
214 not Index_Checks_Suppressed
(T
)
215 and not Range_Checks_Suppressed
(T
);
218 -- We need the check only for static expressions not raising CE
219 -- We can also ignore cases in which the type is Any_Type
221 if not Is_OK_Static_Expression
(N
)
222 or else Etype
(N
) = Any_Type
226 -- Skip this check for non-scalar expressions
228 elsif not Is_Scalar_Type
(T
) then
232 -- Here we have the case of outer level static expression of
233 -- scalar type, where the processing of this procedure is needed.
235 -- For real types, this is where we convert the value to a machine
236 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should
237 -- only need to do this if the parent is a constant declaration,
238 -- since in other cases, gigi should do the necessary conversion
239 -- correctly, but experimentation shows that this is not the case
240 -- on all machines, in particular if we do not convert all literals
241 -- to machine values in non-static contexts, then ACVC test C490001
242 -- fails on Sparc/Solaris and SGI/Irix.
244 if Nkind
(N
) = N_Real_Literal
245 and then not Is_Machine_Number
(N
)
246 and then not Is_Generic_Type
(Etype
(N
))
247 and then Etype
(N
) /= Universal_Real
249 -- Check that value is in bounds before converting to machine
250 -- number, so as not to lose case where value overflows in the
251 -- least significant bit or less. See B490001.
253 if Is_Out_Of_Range
(N
, Base_Type
(T
)) then
258 -- Note: we have to copy the node, to avoid problems with conformance
259 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
261 Rewrite
(N
, New_Copy
(N
));
263 if not Is_Floating_Point_Type
(T
) then
265 (N
, Corresponding_Integer_Value
(N
) * Small_Value
(T
));
267 elsif not UR_Is_Zero
(Realval
(N
)) then
269 RT
: constant Entity_Id
:= Base_Type
(T
);
270 X
: constant Ureal
:= Machine
(RT
, Realval
(N
), Round
);
273 -- Warn if result of static rounding actually differs from
274 -- runtime evaluation, which uses round to even.
276 if Warn_On_Biased_Rounding
and Rounding_Was_Biased
then
277 Error_Msg_N
("static expression does not round to even"
278 & " ('R'M 4.9(38))?", N
);
285 Set_Is_Machine_Number
(N
);
288 -- Check for out of range universal integer. This is a non-static
289 -- context, so the integer value must be in range of the runtime
290 -- representation of universal integers.
292 -- We do this only within an expression, because that is the only
293 -- case in which non-static universal integer values can occur, and
294 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
295 -- called in contexts like the expression of a number declaration where
296 -- we certainly want to allow out of range values.
298 if Etype
(N
) = Universal_Integer
299 and then Nkind
(N
) = N_Integer_Literal
300 and then Nkind
(Parent
(N
)) in N_Subexpr
302 (Intval
(N
) < Expr_Value
(Type_Low_Bound
(Universal_Integer
))
304 Intval
(N
) > Expr_Value
(Type_High_Bound
(Universal_Integer
)))
306 Apply_Compile_Time_Constraint_Error
307 (N
, "non-static universal integer value out of range?",
308 CE_Range_Check_Failed
);
310 -- Check out of range of base type
312 elsif Is_Out_Of_Range
(N
, Base_Type
(T
)) then
315 -- Give warning if outside subtype (where one or both of the
316 -- bounds of the subtype is static). This warning is omitted
317 -- if the expression appears in a range that could be null
318 -- (warnings are handled elsewhere for this case).
320 elsif T
/= Base_Type
(T
)
321 and then Nkind
(Parent
(N
)) /= N_Range
323 if Is_In_Range
(N
, T
) then
326 elsif Is_Out_Of_Range
(N
, T
) then
327 Apply_Compile_Time_Constraint_Error
328 (N
, "value not in range of}?", CE_Range_Check_Failed
);
331 Enable_Range_Check
(N
);
334 Set_Do_Range_Check
(N
, False);
337 end Check_Non_Static_Context
;
339 ---------------------------------
340 -- Check_String_Literal_Length --
341 ---------------------------------
343 procedure Check_String_Literal_Length
(N
: Node_Id
; Ttype
: Entity_Id
) is
345 if not Raises_Constraint_Error
(N
)
346 and then Is_Constrained
(Ttype
)
349 UI_From_Int
(String_Length
(Strval
(N
))) /= String_Type_Len
(Ttype
)
351 Apply_Compile_Time_Constraint_Error
352 (N
, "string length wrong for}?",
353 CE_Length_Check_Failed
,
358 end Check_String_Literal_Length
;
360 --------------------------
361 -- Compile_Time_Compare --
362 --------------------------
364 function Compile_Time_Compare
(L
, R
: Node_Id
) return Compare_Result
is
365 Ltyp
: constant Entity_Id
:= Etype
(L
);
366 Rtyp
: constant Entity_Id
:= Etype
(R
);
368 procedure Compare_Decompose
372 -- This procedure decomposes the node N into an expression node
373 -- and a signed offset, so that the value of N is equal to the
374 -- value of R plus the value V (which may be negative). If no
375 -- such decomposition is possible, then on return R is a copy
376 -- of N, and V is set to zero.
378 function Compare_Fixup
(N
: Node_Id
) return Node_Id
;
379 -- This function deals with replacing 'Last and 'First references
380 -- with their corresponding type bounds, which we then can compare.
381 -- The argument is the original node, the result is the identity,
382 -- unless we have a 'Last/'First reference in which case the value
383 -- returned is the appropriate type bound.
385 function Is_Same_Value
(L
, R
: Node_Id
) return Boolean;
386 -- Returns True iff L and R represent expressions that definitely
387 -- have identical (but not necessarily compile time known) values
388 -- Indeed the caller is expected to have already dealt with the
389 -- cases of compile time known values, so these are not tested here.
391 -----------------------
392 -- Compare_Decompose --
393 -----------------------
395 procedure Compare_Decompose
401 if Nkind
(N
) = N_Op_Add
402 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
405 V
:= Intval
(Right_Opnd
(N
));
408 elsif Nkind
(N
) = N_Op_Subtract
409 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
412 V
:= UI_Negate
(Intval
(Right_Opnd
(N
)));
415 elsif Nkind
(N
) = N_Attribute_Reference
then
417 if Attribute_Name
(N
) = Name_Succ
then
418 R
:= First
(Expressions
(N
));
422 elsif Attribute_Name
(N
) = Name_Pred
then
423 R
:= First
(Expressions
(N
));
431 end Compare_Decompose
;
437 function Compare_Fixup
(N
: Node_Id
) return Node_Id
is
443 if Nkind
(N
) = N_Attribute_Reference
444 and then (Attribute_Name
(N
) = Name_First
446 Attribute_Name
(N
) = Name_Last
)
448 Xtyp
:= Etype
(Prefix
(N
));
450 -- If we have no type, then just abandon the attempt to do
451 -- a fixup, this is probably the result of some other error.
457 -- Dereference an access type
459 if Is_Access_Type
(Xtyp
) then
460 Xtyp
:= Designated_Type
(Xtyp
);
463 -- If we don't have an array type at this stage, something
464 -- is peculiar, e.g. another error, and we abandon the attempt
467 if not Is_Array_Type
(Xtyp
) then
471 -- Ignore unconstrained array, since bounds are not meaningful
473 if not Is_Constrained
(Xtyp
) then
477 if Ekind
(Xtyp
) = E_String_Literal_Subtype
then
478 if Attribute_Name
(N
) = Name_First
then
479 return String_Literal_Low_Bound
(Xtyp
);
481 else -- Attribute_Name (N) = Name_Last
482 return Make_Integer_Literal
(Sloc
(N
),
483 Intval
=> Intval
(String_Literal_Low_Bound
(Xtyp
))
484 + String_Literal_Length
(Xtyp
));
488 -- Find correct index type
490 Indx
:= First_Index
(Xtyp
);
492 if Present
(Expressions
(N
)) then
493 Subs
:= UI_To_Int
(Expr_Value
(First
(Expressions
(N
))));
495 for J
in 2 .. Subs
loop
496 Indx
:= Next_Index
(Indx
);
500 Xtyp
:= Etype
(Indx
);
502 if Attribute_Name
(N
) = Name_First
then
503 return Type_Low_Bound
(Xtyp
);
505 else -- Attribute_Name (N) = Name_Last
506 return Type_High_Bound
(Xtyp
);
517 function Is_Same_Value
(L
, R
: Node_Id
) return Boolean is
518 Lf
: constant Node_Id
:= Compare_Fixup
(L
);
519 Rf
: constant Node_Id
:= Compare_Fixup
(R
);
522 -- Values are the same if they are the same identifier and the
523 -- identifier refers to a constant object (E_Constant)
525 if Nkind
(Lf
) = N_Identifier
and then Nkind
(Rf
) = N_Identifier
526 and then Entity
(Lf
) = Entity
(Rf
)
527 and then (Ekind
(Entity
(Lf
)) = E_Constant
or else
528 Ekind
(Entity
(Lf
)) = E_In_Parameter
or else
529 Ekind
(Entity
(Lf
)) = E_Loop_Parameter
)
533 -- Or if they are compile time known and identical
535 elsif Compile_Time_Known_Value
(Lf
)
537 Compile_Time_Known_Value
(Rf
)
538 and then Expr_Value
(Lf
) = Expr_Value
(Rf
)
542 -- Or if they are both 'First or 'Last values applying to the
543 -- same entity (first and last don't change even if value does)
545 elsif Nkind
(Lf
) = N_Attribute_Reference
547 Nkind
(Rf
) = N_Attribute_Reference
548 and then Attribute_Name
(Lf
) = Attribute_Name
(Rf
)
549 and then (Attribute_Name
(Lf
) = Name_First
551 Attribute_Name
(Lf
) = Name_Last
)
552 and then Is_Entity_Name
(Prefix
(Lf
))
553 and then Is_Entity_Name
(Prefix
(Rf
))
554 and then Entity
(Prefix
(Lf
)) = Entity
(Prefix
(Rf
))
558 -- All other cases, we can't tell
565 -- Start of processing for Compile_Time_Compare
568 -- If either operand could raise constraint error, then we cannot
569 -- know the result at compile time (since CE may be raised!)
571 if not (Cannot_Raise_Constraint_Error
(L
)
573 Cannot_Raise_Constraint_Error
(R
))
578 -- Identical operands are most certainly equal
583 -- If expressions have no types, then do not attempt to determine
584 -- if they are the same, since something funny is going on. One
585 -- case in which this happens is during generic template analysis,
586 -- when bounds are not fully analyzed.
588 elsif No
(Ltyp
) or else No
(Rtyp
) then
591 -- We only attempt compile time analysis for scalar values
593 elsif not Is_Scalar_Type
(Ltyp
)
594 or else Is_Packed_Array_Type
(Ltyp
)
598 -- Case where comparison involves two compile time known values
600 elsif Compile_Time_Known_Value
(L
)
601 and then Compile_Time_Known_Value
(R
)
603 -- For the floating-point case, we have to be a little careful, since
604 -- at compile time we are dealing with universal exact values, but at
605 -- runtime, these will be in non-exact target form. That's why the
606 -- returned results are LE and GE below instead of LT and GT.
608 if Is_Floating_Point_Type
(Ltyp
)
610 Is_Floating_Point_Type
(Rtyp
)
613 Lo
: constant Ureal
:= Expr_Value_R
(L
);
614 Hi
: constant Ureal
:= Expr_Value_R
(R
);
626 -- For the integer case we know exactly (note that this includes the
627 -- fixed-point case, where we know the run time integer values now)
631 Lo
: constant Uint
:= Expr_Value
(L
);
632 Hi
: constant Uint
:= Expr_Value
(R
);
645 -- Cases where at least one operand is not known at compile time
648 -- Here is where we check for comparisons against maximum bounds of
649 -- types, where we know that no value can be outside the bounds of
650 -- the subtype. Note that this routine is allowed to assume that all
651 -- expressions are within their subtype bounds. Callers wishing to
652 -- deal with possibly invalid values must in any case take special
653 -- steps (e.g. conversions to larger types) to avoid this kind of
654 -- optimization, which is always considered to be valid. We do not
655 -- attempt this optimization with generic types, since the type
656 -- bounds may not be meaningful in this case.
658 if Is_Discrete_Type
(Ltyp
)
659 and then not Is_Generic_Type
(Ltyp
)
660 and then not Is_Generic_Type
(Rtyp
)
662 if Is_Same_Value
(R
, Type_High_Bound
(Ltyp
)) then
665 elsif Is_Same_Value
(R
, Type_Low_Bound
(Ltyp
)) then
668 elsif Is_Same_Value
(L
, Type_High_Bound
(Rtyp
)) then
671 elsif Is_Same_Value
(L
, Type_Low_Bound
(Ltyp
)) then
676 -- Next attempt is to decompose the expressions to extract
677 -- a constant offset resulting from the use of any of the forms:
684 -- Then we see if the two expressions are the same value, and if so
685 -- the result is obtained by comparing the offsets.
694 Compare_Decompose
(L
, Lnode
, Loffs
);
695 Compare_Decompose
(R
, Rnode
, Roffs
);
697 if Is_Same_Value
(Lnode
, Rnode
) then
698 if Loffs
= Roffs
then
701 elsif Loffs
< Roffs
then
708 -- If the expressions are different, we cannot say at compile
709 -- time how they compare, so we return the Unknown indication.
716 end Compile_Time_Compare
;
718 ------------------------------
719 -- Compile_Time_Known_Value --
720 ------------------------------
722 function Compile_Time_Known_Value
(Op
: Node_Id
) return Boolean is
723 K
: constant Node_Kind
:= Nkind
(Op
);
724 CV_Ent
: CV_Entry
renames CV_Cache
(Nat
(Op
) mod CV_Cache_Size
);
727 -- Never known at compile time if bad type or raises constraint error
728 -- or empty (latter case occurs only as a result of a previous error)
732 or else Etype
(Op
) = Any_Type
733 or else Raises_Constraint_Error
(Op
)
738 -- If we have an entity name, then see if it is the name of a constant
739 -- and if so, test the corresponding constant value, or the name of
740 -- an enumeration literal, which is always a constant.
742 if Present
(Etype
(Op
)) and then Is_Entity_Name
(Op
) then
744 E
: constant Entity_Id
:= Entity
(Op
);
748 -- Never known at compile time if it is a packed array value.
749 -- We might want to try to evaluate these at compile time one
750 -- day, but we do not make that attempt now.
752 if Is_Packed_Array_Type
(Etype
(Op
)) then
756 if Ekind
(E
) = E_Enumeration_Literal
then
759 elsif Ekind
(E
) = E_Constant
then
760 V
:= Constant_Value
(E
);
761 return Present
(V
) and then Compile_Time_Known_Value
(V
);
765 -- We have a value, see if it is compile time known
768 -- Integer literals are worth storing in the cache
770 if K
= N_Integer_Literal
then
772 CV_Ent
.V
:= Intval
(Op
);
775 -- Other literals and NULL are known at compile time
778 K
= N_Character_Literal
788 -- Any reference to Null_Parameter is known at compile time. No
789 -- other attribute references (that have not already been folded)
790 -- are known at compile time.
792 elsif K
= N_Attribute_Reference
then
793 return Attribute_Name
(Op
) = Name_Null_Parameter
;
797 -- If we fall through, not known at compile time
801 -- If we get an exception while trying to do this test, then some error
802 -- has occurred, and we simply say that the value is not known after all
807 end Compile_Time_Known_Value
;
809 --------------------------------------
810 -- Compile_Time_Known_Value_Or_Aggr --
811 --------------------------------------
813 function Compile_Time_Known_Value_Or_Aggr
(Op
: Node_Id
) return Boolean is
815 -- If we have an entity name, then see if it is the name of a constant
816 -- and if so, test the corresponding constant value, or the name of
817 -- an enumeration literal, which is always a constant.
819 if Is_Entity_Name
(Op
) then
821 E
: constant Entity_Id
:= Entity
(Op
);
825 if Ekind
(E
) = E_Enumeration_Literal
then
828 elsif Ekind
(E
) /= E_Constant
then
832 V
:= Constant_Value
(E
);
834 and then Compile_Time_Known_Value_Or_Aggr
(V
);
838 -- We have a value, see if it is compile time known
841 if Compile_Time_Known_Value
(Op
) then
844 elsif Nkind
(Op
) = N_Aggregate
then
846 if Present
(Expressions
(Op
)) then
851 Expr
:= First
(Expressions
(Op
));
852 while Present
(Expr
) loop
853 if not Compile_Time_Known_Value_Or_Aggr
(Expr
) then
862 if Present
(Component_Associations
(Op
)) then
867 Cass
:= First
(Component_Associations
(Op
));
868 while Present
(Cass
) loop
870 Compile_Time_Known_Value_Or_Aggr
(Expression
(Cass
))
882 -- All other types of values are not known at compile time
889 end Compile_Time_Known_Value_Or_Aggr
;
895 -- This is only called for actuals of functions that are not predefined
896 -- operators (which have already been rewritten as operators at this
897 -- stage), so the call can never be folded, and all that needs doing for
898 -- the actual is to do the check for a non-static context.
900 procedure Eval_Actual
(N
: Node_Id
) is
902 Check_Non_Static_Context
(N
);
909 -- Allocators are never static, so all we have to do is to do the
910 -- check for a non-static context if an expression is present.
912 procedure Eval_Allocator
(N
: Node_Id
) is
913 Expr
: constant Node_Id
:= Expression
(N
);
916 if Nkind
(Expr
) = N_Qualified_Expression
then
917 Check_Non_Static_Context
(Expression
(Expr
));
921 ------------------------
922 -- Eval_Arithmetic_Op --
923 ------------------------
925 -- Arithmetic operations are static functions, so the result is static
926 -- if both operands are static (RM 4.9(7), 4.9(20)).
928 procedure Eval_Arithmetic_Op
(N
: Node_Id
) is
929 Left
: constant Node_Id
:= Left_Opnd
(N
);
930 Right
: constant Node_Id
:= Right_Opnd
(N
);
931 Ltype
: constant Entity_Id
:= Etype
(Left
);
932 Rtype
: constant Entity_Id
:= Etype
(Right
);
937 -- If not foldable we are done
939 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
945 -- Fold for cases where both operands are of integer type
947 if Is_Integer_Type
(Ltype
) and then Is_Integer_Type
(Rtype
) then
949 Left_Int
: constant Uint
:= Expr_Value
(Left
);
950 Right_Int
: constant Uint
:= Expr_Value
(Right
);
957 Result
:= Left_Int
+ Right_Int
;
959 when N_Op_Subtract
=>
960 Result
:= Left_Int
- Right_Int
;
962 when N_Op_Multiply
=>
965 (Num_Bits
(Left_Int
) + Num_Bits
(Right_Int
)))
967 Result
:= Left_Int
* Right_Int
;
974 -- The exception Constraint_Error is raised by integer
975 -- division, rem and mod if the right operand is zero.
977 if Right_Int
= 0 then
978 Apply_Compile_Time_Constraint_Error
979 (N
, "division by zero", CE_Divide_By_Zero
);
982 Result
:= Left_Int
/ Right_Int
;
987 -- The exception Constraint_Error is raised by integer
988 -- division, rem and mod if the right operand is zero.
990 if Right_Int
= 0 then
991 Apply_Compile_Time_Constraint_Error
992 (N
, "mod with zero divisor", CE_Divide_By_Zero
);
995 Result
:= Left_Int
mod Right_Int
;
1000 -- The exception Constraint_Error is raised by integer
1001 -- division, rem and mod if the right operand is zero.
1003 if Right_Int
= 0 then
1004 Apply_Compile_Time_Constraint_Error
1005 (N
, "rem with zero divisor", CE_Divide_By_Zero
);
1008 Result
:= Left_Int
rem Right_Int
;
1012 raise Program_Error
;
1015 -- Adjust the result by the modulus if the type is a modular type
1017 if Is_Modular_Integer_Type
(Ltype
) then
1018 Result
:= Result
mod Modulus
(Ltype
);
1021 Fold_Uint
(N
, Result
);
1024 -- Cases where at least one operand is a real. We handle the cases
1025 -- of both reals, or mixed/real integer cases (the latter happen
1026 -- only for divide and multiply, and the result is always real).
1028 elsif Is_Real_Type
(Ltype
) or else Is_Real_Type
(Rtype
) then
1035 if Is_Real_Type
(Ltype
) then
1036 Left_Real
:= Expr_Value_R
(Left
);
1038 Left_Real
:= UR_From_Uint
(Expr_Value
(Left
));
1041 if Is_Real_Type
(Rtype
) then
1042 Right_Real
:= Expr_Value_R
(Right
);
1044 Right_Real
:= UR_From_Uint
(Expr_Value
(Right
));
1047 if Nkind
(N
) = N_Op_Add
then
1048 Result
:= Left_Real
+ Right_Real
;
1050 elsif Nkind
(N
) = N_Op_Subtract
then
1051 Result
:= Left_Real
- Right_Real
;
1053 elsif Nkind
(N
) = N_Op_Multiply
then
1054 Result
:= Left_Real
* Right_Real
;
1056 else pragma Assert
(Nkind
(N
) = N_Op_Divide
);
1057 if UR_Is_Zero
(Right_Real
) then
1058 Apply_Compile_Time_Constraint_Error
1059 (N
, "division by zero", CE_Divide_By_Zero
);
1063 Result
:= Left_Real
/ Right_Real
;
1066 Fold_Ureal
(N
, Result
);
1070 Set_Is_Static_Expression
(N
, Stat
);
1071 end Eval_Arithmetic_Op
;
1073 ----------------------------
1074 -- Eval_Character_Literal --
1075 ----------------------------
1077 -- Nothing to be done!
1079 procedure Eval_Character_Literal
(N
: Node_Id
) is
1080 pragma Warnings
(Off
, N
);
1084 end Eval_Character_Literal
;
1086 ------------------------
1087 -- Eval_Concatenation --
1088 ------------------------
1090 -- Concatenation is a static function, so the result is static if
1091 -- both operands are static (RM 4.9(7), 4.9(21)).
1093 procedure Eval_Concatenation
(N
: Node_Id
) is
1094 Left
: constant Node_Id
:= Left_Opnd
(N
);
1095 Right
: constant Node_Id
:= Right_Opnd
(N
);
1096 C_Typ
: constant Entity_Id
:= Root_Type
(Component_Type
(Etype
(N
)));
1101 -- Concatenation is never static in Ada 83, so if Ada 83
1102 -- check operand non-static context
1105 and then Comes_From_Source
(N
)
1107 Check_Non_Static_Context
(Left
);
1108 Check_Non_Static_Context
(Right
);
1112 -- If not foldable we are done. In principle concatenation that yields
1113 -- any string type is static (i.e. an array type of character types).
1114 -- However, character types can include enumeration literals, and
1115 -- concatenation in that case cannot be described by a literal, so we
1116 -- only consider the operation static if the result is an array of
1117 -- (a descendant of) a predefined character type.
1119 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
1121 if (C_Typ
= Standard_Character
1122 or else C_Typ
= Standard_Wide_Character
)
1127 Set_Is_Static_Expression
(N
, False);
1131 -- Compile time string concatenation.
1133 -- ??? Note that operands that are aggregates can be marked as
1134 -- static, so we should attempt at a later stage to fold
1135 -- concatenations with such aggregates.
1138 Left_Str
: constant Node_Id
:= Get_String_Val
(Left
);
1140 Right_Str
: constant Node_Id
:= Get_String_Val
(Right
);
1143 -- Establish new string literal, and store left operand. We make
1144 -- sure to use the special Start_String that takes an operand if
1145 -- the left operand is a string literal. Since this is optimized
1146 -- in the case where that is the most recently created string
1147 -- literal, we ensure efficient time/space behavior for the
1148 -- case of a concatenation of a series of string literals.
1150 if Nkind
(Left_Str
) = N_String_Literal
then
1151 Left_Len
:= String_Length
(Strval
(Left_Str
));
1152 Start_String
(Strval
(Left_Str
));
1155 Store_String_Char
(Char_Literal_Value
(Left_Str
));
1159 -- Now append the characters of the right operand
1161 if Nkind
(Right_Str
) = N_String_Literal
then
1163 S
: constant String_Id
:= Strval
(Right_Str
);
1166 for J
in 1 .. String_Length
(S
) loop
1167 Store_String_Char
(Get_String_Char
(S
, J
));
1171 Store_String_Char
(Char_Literal_Value
(Right_Str
));
1174 Set_Is_Static_Expression
(N
, Stat
);
1178 -- If left operand is the empty string, the result is the
1179 -- right operand, including its bounds if anomalous.
1182 and then Is_Array_Type
(Etype
(Right
))
1183 and then Etype
(Right
) /= Any_String
1185 Set_Etype
(N
, Etype
(Right
));
1188 Fold_Str
(N
, End_String
);
1191 end Eval_Concatenation
;
1193 ---------------------------------
1194 -- Eval_Conditional_Expression --
1195 ---------------------------------
1197 -- This GNAT internal construct can never be statically folded, so the
1198 -- only required processing is to do the check for non-static context
1199 -- for the two expression operands.
1201 procedure Eval_Conditional_Expression
(N
: Node_Id
) is
1202 Condition
: constant Node_Id
:= First
(Expressions
(N
));
1203 Then_Expr
: constant Node_Id
:= Next
(Condition
);
1204 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
1207 Check_Non_Static_Context
(Then_Expr
);
1208 Check_Non_Static_Context
(Else_Expr
);
1209 end Eval_Conditional_Expression
;
1211 ----------------------
1212 -- Eval_Entity_Name --
1213 ----------------------
1215 -- This procedure is used for identifiers and expanded names other than
1216 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1217 -- static if they denote a static constant (RM 4.9(6)) or if the name
1218 -- denotes an enumeration literal (RM 4.9(22)).
1220 procedure Eval_Entity_Name
(N
: Node_Id
) is
1221 Def_Id
: constant Entity_Id
:= Entity
(N
);
1225 -- Enumeration literals are always considered to be constants
1226 -- and cannot raise constraint error (RM 4.9(22)).
1228 if Ekind
(Def_Id
) = E_Enumeration_Literal
then
1229 Set_Is_Static_Expression
(N
);
1232 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1233 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1234 -- it does not violate 10.2.1(8) here, since this is not a variable.
1236 elsif Ekind
(Def_Id
) = E_Constant
then
1238 -- Deferred constants must always be treated as nonstatic
1239 -- outside the scope of their full view.
1241 if Present
(Full_View
(Def_Id
))
1242 and then not In_Open_Scopes
(Scope
(Def_Id
))
1246 Val
:= Constant_Value
(Def_Id
);
1249 if Present
(Val
) then
1250 Set_Is_Static_Expression
1251 (N
, Is_Static_Expression
(Val
)
1252 and then Is_Static_Subtype
(Etype
(Def_Id
)));
1253 Set_Raises_Constraint_Error
(N
, Raises_Constraint_Error
(Val
));
1255 if not Is_Static_Expression
(N
)
1256 and then not Is_Generic_Type
(Etype
(N
))
1258 Validate_Static_Object_Name
(N
);
1265 -- Fall through if the name is not static.
1267 Validate_Static_Object_Name
(N
);
1268 end Eval_Entity_Name
;
1270 ----------------------------
1271 -- Eval_Indexed_Component --
1272 ----------------------------
1274 -- Indexed components are never static, so we need to perform the check
1275 -- for non-static context on the index values. Then, we check if the
1276 -- value can be obtained at compile time, even though it is non-static.
1278 procedure Eval_Indexed_Component
(N
: Node_Id
) is
1282 Expr
:= First
(Expressions
(N
));
1283 while Present
(Expr
) loop
1284 Check_Non_Static_Context
(Expr
);
1288 -- See if this is a constant array reference
1290 if List_Length
(Expressions
(N
)) = 1
1291 and then Is_Entity_Name
(Prefix
(N
))
1292 and then Ekind
(Entity
(Prefix
(N
))) = E_Constant
1293 and then Present
(Constant_Value
(Entity
(Prefix
(N
))))
1296 Loc
: constant Source_Ptr
:= Sloc
(N
);
1297 Arr
: constant Node_Id
:= Constant_Value
(Entity
(Prefix
(N
)));
1298 Sub
: constant Node_Id
:= First
(Expressions
(N
));
1304 -- Linear one's origin subscript value for array reference
1307 -- Lower bound of the first array index
1310 -- Value from constant array
1313 Atyp
:= Etype
(Arr
);
1315 if Is_Access_Type
(Atyp
) then
1316 Atyp
:= Designated_Type
(Atyp
);
1319 -- If we have an array type (we should have but perhaps there
1320 -- are error cases where this is not the case), then see if we
1321 -- can do a constant evaluation of the array reference.
1323 if Is_Array_Type
(Atyp
) then
1324 if Ekind
(Atyp
) = E_String_Literal_Subtype
then
1325 Lbd
:= String_Literal_Low_Bound
(Atyp
);
1327 Lbd
:= Type_Low_Bound
(Etype
(First_Index
(Atyp
)));
1330 if Compile_Time_Known_Value
(Sub
)
1331 and then Nkind
(Arr
) = N_Aggregate
1332 and then Compile_Time_Known_Value
(Lbd
)
1333 and then Is_Discrete_Type
(Component_Type
(Atyp
))
1335 Lin
:= UI_To_Int
(Expr_Value
(Sub
) - Expr_Value
(Lbd
)) + 1;
1337 if List_Length
(Expressions
(Arr
)) >= Lin
then
1338 Elm
:= Pick
(Expressions
(Arr
), Lin
);
1340 -- If the resulting expression is compile time known,
1341 -- then we can rewrite the indexed component with this
1342 -- value, being sure to mark the result as non-static.
1343 -- We also reset the Sloc, in case this generates an
1344 -- error later on (e.g. 136'Access).
1346 if Compile_Time_Known_Value
(Elm
) then
1347 Rewrite
(N
, Duplicate_Subexpr_No_Checks
(Elm
));
1348 Set_Is_Static_Expression
(N
, False);
1356 end Eval_Indexed_Component
;
1358 --------------------------
1359 -- Eval_Integer_Literal --
1360 --------------------------
1362 -- Numeric literals are static (RM 4.9(1)), and have already been marked
1363 -- as static by the analyzer. The reason we did it that early is to allow
1364 -- the possibility of turning off the Is_Static_Expression flag after
1365 -- analysis, but before resolution, when integer literals are generated
1366 -- in the expander that do not correspond to static expressions.
1368 procedure Eval_Integer_Literal
(N
: Node_Id
) is
1369 T
: constant Entity_Id
:= Etype
(N
);
1372 -- If the literal appears in a non-expression context, then it is
1373 -- certainly appearing in a non-static context, so check it. This
1374 -- is actually a redundant check, since Check_Non_Static_Context
1375 -- would check it, but it seems worth while avoiding the call.
1377 if Nkind
(Parent
(N
)) not in N_Subexpr
then
1378 Check_Non_Static_Context
(N
);
1381 -- Modular integer literals must be in their base range
1383 if Is_Modular_Integer_Type
(T
)
1384 and then Is_Out_Of_Range
(N
, Base_Type
(T
))
1388 end Eval_Integer_Literal
;
1390 ---------------------
1391 -- Eval_Logical_Op --
1392 ---------------------
1394 -- Logical operations are static functions, so the result is potentially
1395 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
1397 procedure Eval_Logical_Op
(N
: Node_Id
) is
1398 Left
: constant Node_Id
:= Left_Opnd
(N
);
1399 Right
: constant Node_Id
:= Right_Opnd
(N
);
1404 -- If not foldable we are done
1406 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
1412 -- Compile time evaluation of logical operation
1415 Left_Int
: constant Uint
:= Expr_Value
(Left
);
1416 Right_Int
: constant Uint
:= Expr_Value
(Right
);
1419 if Is_Modular_Integer_Type
(Etype
(N
)) then
1421 Left_Bits
: Bits
(0 .. UI_To_Int
(Esize
(Etype
(N
))) - 1);
1422 Right_Bits
: Bits
(0 .. UI_To_Int
(Esize
(Etype
(N
))) - 1);
1425 To_Bits
(Left_Int
, Left_Bits
);
1426 To_Bits
(Right_Int
, Right_Bits
);
1428 -- Note: should really be able to use array ops instead of
1429 -- these loops, but they weren't working at the time ???
1431 if Nkind
(N
) = N_Op_And
then
1432 for J
in Left_Bits
'Range loop
1433 Left_Bits
(J
) := Left_Bits
(J
) and Right_Bits
(J
);
1436 elsif Nkind
(N
) = N_Op_Or
then
1437 for J
in Left_Bits
'Range loop
1438 Left_Bits
(J
) := Left_Bits
(J
) or Right_Bits
(J
);
1442 pragma Assert
(Nkind
(N
) = N_Op_Xor
);
1444 for J
in Left_Bits
'Range loop
1445 Left_Bits
(J
) := Left_Bits
(J
) xor Right_Bits
(J
);
1449 Fold_Uint
(N
, From_Bits
(Left_Bits
, Etype
(N
)));
1453 pragma Assert
(Is_Boolean_Type
(Etype
(N
)));
1455 if Nkind
(N
) = N_Op_And
then
1457 Test
(Is_True
(Left_Int
) and then Is_True
(Right_Int
)));
1459 elsif Nkind
(N
) = N_Op_Or
then
1461 Test
(Is_True
(Left_Int
) or else Is_True
(Right_Int
)));
1464 pragma Assert
(Nkind
(N
) = N_Op_Xor
);
1466 Test
(Is_True
(Left_Int
) xor Is_True
(Right_Int
)));
1470 Set_Is_Static_Expression
(N
, Stat
);
1472 end Eval_Logical_Op
;
1474 ------------------------
1475 -- Eval_Membership_Op --
1476 ------------------------
1478 -- A membership test is potentially static if the expression is static,
1479 -- and the range is a potentially static range, or is a subtype mark
1480 -- denoting a static subtype (RM 4.9(12)).
1482 procedure Eval_Membership_Op
(N
: Node_Id
) is
1483 Left
: constant Node_Id
:= Left_Opnd
(N
);
1484 Right
: constant Node_Id
:= Right_Opnd
(N
);
1493 -- Ignore if error in either operand, except to make sure that
1494 -- Any_Type is properly propagated to avoid junk cascaded errors.
1496 if Etype
(Left
) = Any_Type
1497 or else Etype
(Right
) = Any_Type
1499 Set_Etype
(N
, Any_Type
);
1503 -- Case of right operand is a subtype name
1505 if Is_Entity_Name
(Right
) then
1506 Def_Id
:= Entity
(Right
);
1508 if (Is_Scalar_Type
(Def_Id
) or else Is_String_Type
(Def_Id
))
1509 and then Is_OK_Static_Subtype
(Def_Id
)
1511 Test_Expression_Is_Foldable
(N
, Left
, Stat
, Fold
);
1513 if not Fold
or else not Stat
then
1517 Check_Non_Static_Context
(Left
);
1521 -- For string membership tests we will check the length
1524 if not Is_String_Type
(Def_Id
) then
1525 Lo
:= Type_Low_Bound
(Def_Id
);
1526 Hi
:= Type_High_Bound
(Def_Id
);
1533 -- Case of right operand is a range
1536 if Is_Static_Range
(Right
) then
1537 Test_Expression_Is_Foldable
(N
, Left
, Stat
, Fold
);
1539 if not Fold
or else not Stat
then
1542 -- If one bound of range raises CE, then don't try to fold
1544 elsif not Is_OK_Static_Range
(Right
) then
1545 Check_Non_Static_Context
(Left
);
1550 Check_Non_Static_Context
(Left
);
1554 -- Here we know range is an OK static range
1556 Lo
:= Low_Bound
(Right
);
1557 Hi
:= High_Bound
(Right
);
1560 -- For strings we check that the length of the string expression is
1561 -- compatible with the string subtype if the subtype is constrained,
1562 -- or if unconstrained then the test is always true.
1564 if Is_String_Type
(Etype
(Right
)) then
1565 if not Is_Constrained
(Etype
(Right
)) then
1570 Typlen
: constant Uint
:= String_Type_Len
(Etype
(Right
));
1571 Strlen
: constant Uint
:=
1572 UI_From_Int
(String_Length
(Strval
(Get_String_Val
(Left
))));
1574 Result
:= (Typlen
= Strlen
);
1578 -- Fold the membership test. We know we have a static range and Lo
1579 -- and Hi are set to the expressions for the end points of this range.
1581 elsif Is_Real_Type
(Etype
(Right
)) then
1583 Leftval
: constant Ureal
:= Expr_Value_R
(Left
);
1586 Result
:= Expr_Value_R
(Lo
) <= Leftval
1587 and then Leftval
<= Expr_Value_R
(Hi
);
1592 Leftval
: constant Uint
:= Expr_Value
(Left
);
1595 Result
:= Expr_Value
(Lo
) <= Leftval
1596 and then Leftval
<= Expr_Value
(Hi
);
1600 if Nkind
(N
) = N_Not_In
then
1601 Result
:= not Result
;
1604 Fold_Uint
(N
, Test
(Result
));
1605 Warn_On_Known_Condition
(N
);
1607 end Eval_Membership_Op
;
1609 ------------------------
1610 -- Eval_Named_Integer --
1611 ------------------------
1613 procedure Eval_Named_Integer
(N
: Node_Id
) is
1616 Expr_Value
(Expression
(Declaration_Node
(Entity
(N
)))));
1617 end Eval_Named_Integer
;
1619 ---------------------
1620 -- Eval_Named_Real --
1621 ---------------------
1623 procedure Eval_Named_Real
(N
: Node_Id
) is
1626 Expr_Value_R
(Expression
(Declaration_Node
(Entity
(N
)))));
1627 end Eval_Named_Real
;
1633 -- Exponentiation is a static functions, so the result is potentially
1634 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
1636 procedure Eval_Op_Expon
(N
: Node_Id
) is
1637 Left
: constant Node_Id
:= Left_Opnd
(N
);
1638 Right
: constant Node_Id
:= Right_Opnd
(N
);
1643 -- If not foldable we are done
1645 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
1651 -- Fold exponentiation operation
1654 Right_Int
: constant Uint
:= Expr_Value
(Right
);
1659 if Is_Integer_Type
(Etype
(Left
)) then
1661 Left_Int
: constant Uint
:= Expr_Value
(Left
);
1665 -- Exponentiation of an integer raises the exception
1666 -- Constraint_Error for a negative exponent (RM 4.5.6)
1668 if Right_Int
< 0 then
1669 Apply_Compile_Time_Constraint_Error
1670 (N
, "integer exponent negative", CE_Range_Check_Failed
);
1674 if OK_Bits
(N
, Num_Bits
(Left_Int
) * Right_Int
) then
1675 Result
:= Left_Int
** Right_Int
;
1680 if Is_Modular_Integer_Type
(Etype
(N
)) then
1681 Result
:= Result
mod Modulus
(Etype
(N
));
1684 Fold_Uint
(N
, Result
);
1692 Left_Real
: constant Ureal
:= Expr_Value_R
(Left
);
1695 -- Cannot have a zero base with a negative exponent
1697 if UR_Is_Zero
(Left_Real
) then
1699 if Right_Int
< 0 then
1700 Apply_Compile_Time_Constraint_Error
1701 (N
, "zero ** negative integer", CE_Range_Check_Failed
);
1704 Fold_Ureal
(N
, Ureal_0
);
1708 Fold_Ureal
(N
, Left_Real
** Right_Int
);
1713 Set_Is_Static_Expression
(N
, Stat
);
1721 -- The not operation is a static functions, so the result is potentially
1722 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
1724 procedure Eval_Op_Not
(N
: Node_Id
) is
1725 Right
: constant Node_Id
:= Right_Opnd
(N
);
1730 -- If not foldable we are done
1732 Test_Expression_Is_Foldable
(N
, Right
, Stat
, Fold
);
1738 -- Fold not operation
1741 Rint
: constant Uint
:= Expr_Value
(Right
);
1742 Typ
: constant Entity_Id
:= Etype
(N
);
1745 -- Negation is equivalent to subtracting from the modulus minus
1746 -- one. For a binary modulus this is equivalent to the ones-
1747 -- component of the original value. For non-binary modulus this
1748 -- is an arbitrary but consistent definition.
1750 if Is_Modular_Integer_Type
(Typ
) then
1751 Fold_Uint
(N
, Modulus
(Typ
) - 1 - Rint
);
1754 pragma Assert
(Is_Boolean_Type
(Typ
));
1755 Fold_Uint
(N
, Test
(not Is_True
(Rint
)));
1758 Set_Is_Static_Expression
(N
, Stat
);
1762 -------------------------------
1763 -- Eval_Qualified_Expression --
1764 -------------------------------
1766 -- A qualified expression is potentially static if its subtype mark denotes
1767 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
1769 procedure Eval_Qualified_Expression
(N
: Node_Id
) is
1770 Operand
: constant Node_Id
:= Expression
(N
);
1771 Target_Type
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
1778 -- Can only fold if target is string or scalar and subtype is static
1779 -- Also, do not fold if our parent is an allocator (this is because
1780 -- the qualified expression is really part of the syntactic structure
1781 -- of an allocator, and we do not want to end up with something that
1782 -- corresponds to "new 1" where the 1 is the result of folding a
1783 -- qualified expression).
1785 if not Is_Static_Subtype
(Target_Type
)
1786 or else Nkind
(Parent
(N
)) = N_Allocator
1788 Check_Non_Static_Context
(Operand
);
1792 -- If not foldable we are done
1794 Test_Expression_Is_Foldable
(N
, Operand
, Stat
, Fold
);
1799 -- Don't try fold if target type has constraint error bounds
1801 elsif not Is_OK_Static_Subtype
(Target_Type
) then
1802 Set_Raises_Constraint_Error
(N
);
1806 -- Here we will fold, save Print_In_Hex indication
1808 Hex
:= Nkind
(Operand
) = N_Integer_Literal
1809 and then Print_In_Hex
(Operand
);
1811 -- Fold the result of qualification
1813 if Is_Discrete_Type
(Target_Type
) then
1814 Fold_Uint
(N
, Expr_Value
(Operand
));
1815 Set_Is_Static_Expression
(N
, Stat
);
1817 -- Preserve Print_In_Hex indication
1819 if Hex
and then Nkind
(N
) = N_Integer_Literal
then
1820 Set_Print_In_Hex
(N
);
1823 elsif Is_Real_Type
(Target_Type
) then
1824 Fold_Ureal
(N
, Expr_Value_R
(Operand
));
1825 Set_Is_Static_Expression
(N
, Stat
);
1828 Fold_Str
(N
, Strval
(Get_String_Val
(Operand
)));
1831 Set_Is_Static_Expression
(N
, False);
1833 Check_String_Literal_Length
(N
, Target_Type
);
1839 if Is_Out_Of_Range
(N
, Etype
(N
)) then
1843 end Eval_Qualified_Expression
;
1845 -----------------------
1846 -- Eval_Real_Literal --
1847 -----------------------
1849 -- Numeric literals are static (RM 4.9(1)), and have already been marked
1850 -- as static by the analyzer. The reason we did it that early is to allow
1851 -- the possibility of turning off the Is_Static_Expression flag after
1852 -- analysis, but before resolution, when integer literals are generated
1853 -- in the expander that do not correspond to static expressions.
1855 procedure Eval_Real_Literal
(N
: Node_Id
) is
1857 -- If the literal appears in a non-expression context, then it is
1858 -- certainly appearing in a non-static context, so check it.
1860 if Nkind
(Parent
(N
)) not in N_Subexpr
then
1861 Check_Non_Static_Context
(N
);
1864 end Eval_Real_Literal
;
1866 ------------------------
1867 -- Eval_Relational_Op --
1868 ------------------------
1870 -- Relational operations are static functions, so the result is static
1871 -- if both operands are static (RM 4.9(7), 4.9(20)).
1873 procedure Eval_Relational_Op
(N
: Node_Id
) is
1874 Left
: constant Node_Id
:= Left_Opnd
(N
);
1875 Right
: constant Node_Id
:= Right_Opnd
(N
);
1876 Typ
: constant Entity_Id
:= Etype
(Left
);
1882 -- One special case to deal with first. If we can tell that
1883 -- the result will be false because the lengths of one or
1884 -- more index subtypes are compile time known and different,
1885 -- then we can replace the entire result by False. We only
1886 -- do this for one dimensional arrays, because the case of
1887 -- multi-dimensional arrays is rare and too much trouble!
1889 if Is_Array_Type
(Typ
)
1890 and then Number_Dimensions
(Typ
) = 1
1891 and then (Nkind
(N
) = N_Op_Eq
1892 or else Nkind
(N
) = N_Op_Ne
)
1894 if Raises_Constraint_Error
(Left
)
1895 or else Raises_Constraint_Error
(Right
)
1901 procedure Get_Static_Length
(Op
: Node_Id
; Len
: out Uint
);
1902 -- If Op is an expression for a constrained array with a
1903 -- known at compile time length, then Len is set to this
1904 -- (non-negative length). Otherwise Len is set to minus 1.
1906 procedure Get_Static_Length
(Op
: Node_Id
; Len
: out Uint
) is
1910 if Nkind
(Op
) = N_String_Literal
then
1911 Len
:= UI_From_Int
(String_Length
(Strval
(Op
)));
1913 elsif not Is_Constrained
(Etype
(Op
)) then
1914 Len
:= Uint_Minus_1
;
1917 T
:= Etype
(First_Index
(Etype
(Op
)));
1919 if Is_Discrete_Type
(T
)
1921 Compile_Time_Known_Value
(Type_Low_Bound
(T
))
1923 Compile_Time_Known_Value
(Type_High_Bound
(T
))
1925 Len
:= UI_Max
(Uint_0
,
1926 Expr_Value
(Type_High_Bound
(T
)) -
1927 Expr_Value
(Type_Low_Bound
(T
)) + 1);
1929 Len
:= Uint_Minus_1
;
1932 end Get_Static_Length
;
1938 Get_Static_Length
(Left
, Len_L
);
1939 Get_Static_Length
(Right
, Len_R
);
1941 if Len_L
/= Uint_Minus_1
1942 and then Len_R
/= Uint_Minus_1
1943 and then Len_L
/= Len_R
1945 Fold_Uint
(N
, Test
(Nkind
(N
) = N_Op_Ne
));
1946 Set_Is_Static_Expression
(N
, False);
1947 Warn_On_Known_Condition
(N
);
1953 -- Can only fold if type is scalar (don't fold string ops)
1955 if not Is_Scalar_Type
(Typ
) then
1956 Check_Non_Static_Context
(Left
);
1957 Check_Non_Static_Context
(Right
);
1961 -- If not foldable we are done
1963 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
1969 -- Integer and Enumeration (discrete) type cases
1971 if Is_Discrete_Type
(Typ
) then
1973 Left_Int
: constant Uint
:= Expr_Value
(Left
);
1974 Right_Int
: constant Uint
:= Expr_Value
(Right
);
1978 when N_Op_Eq
=> Result
:= Left_Int
= Right_Int
;
1979 when N_Op_Ne
=> Result
:= Left_Int
/= Right_Int
;
1980 when N_Op_Lt
=> Result
:= Left_Int
< Right_Int
;
1981 when N_Op_Le
=> Result
:= Left_Int
<= Right_Int
;
1982 when N_Op_Gt
=> Result
:= Left_Int
> Right_Int
;
1983 when N_Op_Ge
=> Result
:= Left_Int
>= Right_Int
;
1986 raise Program_Error
;
1989 Fold_Uint
(N
, Test
(Result
));
1995 pragma Assert
(Is_Real_Type
(Typ
));
1998 Left_Real
: constant Ureal
:= Expr_Value_R
(Left
);
1999 Right_Real
: constant Ureal
:= Expr_Value_R
(Right
);
2003 when N_Op_Eq
=> Result
:= (Left_Real
= Right_Real
);
2004 when N_Op_Ne
=> Result
:= (Left_Real
/= Right_Real
);
2005 when N_Op_Lt
=> Result
:= (Left_Real
< Right_Real
);
2006 when N_Op_Le
=> Result
:= (Left_Real
<= Right_Real
);
2007 when N_Op_Gt
=> Result
:= (Left_Real
> Right_Real
);
2008 when N_Op_Ge
=> Result
:= (Left_Real
>= Right_Real
);
2011 raise Program_Error
;
2014 Fold_Uint
(N
, Test
(Result
));
2018 Set_Is_Static_Expression
(N
, Stat
);
2019 Warn_On_Known_Condition
(N
);
2020 end Eval_Relational_Op
;
2026 -- Shift operations are intrinsic operations that can never be static,
2027 -- so the only processing required is to perform the required check for
2028 -- a non static context for the two operands.
2030 -- Actually we could do some compile time evaluation here some time ???
2032 procedure Eval_Shift
(N
: Node_Id
) is
2034 Check_Non_Static_Context
(Left_Opnd
(N
));
2035 Check_Non_Static_Context
(Right_Opnd
(N
));
2038 ------------------------
2039 -- Eval_Short_Circuit --
2040 ------------------------
2042 -- A short circuit operation is potentially static if both operands
2043 -- are potentially static (RM 4.9 (13))
2045 procedure Eval_Short_Circuit
(N
: Node_Id
) is
2046 Kind
: constant Node_Kind
:= Nkind
(N
);
2047 Left
: constant Node_Id
:= Left_Opnd
(N
);
2048 Right
: constant Node_Id
:= Right_Opnd
(N
);
2050 Rstat
: constant Boolean :=
2051 Is_Static_Expression
(Left
)
2052 and then Is_Static_Expression
(Right
);
2055 -- Short circuit operations are never static in Ada 83
2058 and then Comes_From_Source
(N
)
2060 Check_Non_Static_Context
(Left
);
2061 Check_Non_Static_Context
(Right
);
2065 -- Now look at the operands, we can't quite use the normal call to
2066 -- Test_Expression_Is_Foldable here because short circuit operations
2067 -- are a special case, they can still be foldable, even if the right
2068 -- operand raises constraint error.
2070 -- If either operand is Any_Type, just propagate to result and
2071 -- do not try to fold, this prevents cascaded errors.
2073 if Etype
(Left
) = Any_Type
or else Etype
(Right
) = Any_Type
then
2074 Set_Etype
(N
, Any_Type
);
2077 -- If left operand raises constraint error, then replace node N with
2078 -- the raise constraint error node, and we are obviously not foldable.
2079 -- Is_Static_Expression is set from the two operands in the normal way,
2080 -- and we check the right operand if it is in a non-static context.
2082 elsif Raises_Constraint_Error
(Left
) then
2084 Check_Non_Static_Context
(Right
);
2087 Rewrite_In_Raise_CE
(N
, Left
);
2088 Set_Is_Static_Expression
(N
, Rstat
);
2091 -- If the result is not static, then we won't in any case fold
2093 elsif not Rstat
then
2094 Check_Non_Static_Context
(Left
);
2095 Check_Non_Static_Context
(Right
);
2099 -- Here the result is static, note that, unlike the normal processing
2100 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
2101 -- the right operand raises constraint error, that's because it is not
2102 -- significant if the left operand is decisive.
2104 Set_Is_Static_Expression
(N
);
2106 -- It does not matter if the right operand raises constraint error if
2107 -- it will not be evaluated. So deal specially with the cases where
2108 -- the right operand is not evaluated. Note that we will fold these
2109 -- cases even if the right operand is non-static, which is fine, but
2110 -- of course in these cases the result is not potentially static.
2112 Left_Int
:= Expr_Value
(Left
);
2114 if (Kind
= N_And_Then
and then Is_False
(Left_Int
))
2115 or else (Kind
= N_Or_Else
and Is_True
(Left_Int
))
2117 Fold_Uint
(N
, Left_Int
);
2121 -- If first operand not decisive, then it does matter if the right
2122 -- operand raises constraint error, since it will be evaluated, so
2123 -- we simply replace the node with the right operand. Note that this
2124 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
2125 -- (both are set to True in Right).
2127 if Raises_Constraint_Error
(Right
) then
2128 Rewrite_In_Raise_CE
(N
, Right
);
2129 Check_Non_Static_Context
(Left
);
2133 -- Otherwise the result depends on the right operand
2135 Fold_Uint
(N
, Expr_Value
(Right
));
2138 end Eval_Short_Circuit
;
2144 -- Slices can never be static, so the only processing required is to
2145 -- check for non-static context if an explicit range is given.
2147 procedure Eval_Slice
(N
: Node_Id
) is
2148 Drange
: constant Node_Id
:= Discrete_Range
(N
);
2151 if Nkind
(Drange
) = N_Range
then
2152 Check_Non_Static_Context
(Low_Bound
(Drange
));
2153 Check_Non_Static_Context
(High_Bound
(Drange
));
2157 -------------------------
2158 -- Eval_String_Literal --
2159 -------------------------
2161 procedure Eval_String_Literal
(N
: Node_Id
) is
2162 T
: constant Entity_Id
:= Etype
(N
);
2163 B
: constant Entity_Id
:= Base_Type
(T
);
2167 -- Nothing to do if error type (handles cases like default expressions
2168 -- or generics where we have not yet fully resolved the type)
2170 if B
= Any_Type
or else B
= Any_String
then
2173 -- String literals are static if the subtype is static (RM 4.9(2)), so
2174 -- reset the static expression flag (it was set unconditionally in
2175 -- Analyze_String_Literal) if the subtype is non-static. We tell if
2176 -- the subtype is static by looking at the lower bound.
2178 elsif not Is_OK_Static_Expression
(String_Literal_Low_Bound
(T
)) then
2179 Set_Is_Static_Expression
(N
, False);
2181 elsif Nkind
(Original_Node
(N
)) = N_Type_Conversion
then
2182 Set_Is_Static_Expression
(N
, False);
2184 -- Test for illegal Ada 95 cases. A string literal is illegal in
2185 -- Ada 95 if its bounds are outside the index base type and this
2186 -- index type is static. This can hapen in only two ways. Either
2187 -- the string literal is too long, or it is null, and the lower
2188 -- bound is type'First. In either case it is the upper bound that
2189 -- is out of range of the index type.
2192 if Root_Type
(B
) = Standard_String
2193 or else Root_Type
(B
) = Standard_Wide_String
2195 I
:= Standard_Positive
;
2197 I
:= Etype
(First_Index
(B
));
2200 if String_Literal_Length
(T
) > String_Type_Len
(B
) then
2201 Apply_Compile_Time_Constraint_Error
2202 (N
, "string literal too long for}", CE_Length_Check_Failed
,
2204 Typ
=> First_Subtype
(B
));
2206 elsif String_Literal_Length
(T
) = 0
2207 and then not Is_Generic_Type
(I
)
2208 and then Expr_Value
(String_Literal_Low_Bound
(T
)) =
2209 Expr_Value
(Type_Low_Bound
(Base_Type
(I
)))
2211 Apply_Compile_Time_Constraint_Error
2212 (N
, "null string literal not allowed for}",
2213 CE_Length_Check_Failed
,
2215 Typ
=> First_Subtype
(B
));
2219 end Eval_String_Literal
;
2221 --------------------------
2222 -- Eval_Type_Conversion --
2223 --------------------------
2225 -- A type conversion is potentially static if its subtype mark is for a
2226 -- static scalar subtype, and its operand expression is potentially static
2229 procedure Eval_Type_Conversion
(N
: Node_Id
) is
2230 Operand
: constant Node_Id
:= Expression
(N
);
2231 Source_Type
: constant Entity_Id
:= Etype
(Operand
);
2232 Target_Type
: constant Entity_Id
:= Etype
(N
);
2237 function To_Be_Treated_As_Integer
(T
: Entity_Id
) return Boolean;
2238 -- Returns true if type T is an integer type, or if it is a
2239 -- fixed-point type to be treated as an integer (i.e. the flag
2240 -- Conversion_OK is set on the conversion node).
2242 function To_Be_Treated_As_Real
(T
: Entity_Id
) return Boolean;
2243 -- Returns true if type T is a floating-point type, or if it is a
2244 -- fixed-point type that is not to be treated as an integer (i.e. the
2245 -- flag Conversion_OK is not set on the conversion node).
2247 function To_Be_Treated_As_Integer
(T
: Entity_Id
) return Boolean is
2251 or else (Is_Fixed_Point_Type
(T
) and then Conversion_OK
(N
));
2252 end To_Be_Treated_As_Integer
;
2254 function To_Be_Treated_As_Real
(T
: Entity_Id
) return Boolean is
2257 Is_Floating_Point_Type
(T
)
2258 or else (Is_Fixed_Point_Type
(T
) and then not Conversion_OK
(N
));
2259 end To_Be_Treated_As_Real
;
2261 -- Start of processing for Eval_Type_Conversion
2264 -- Cannot fold if target type is non-static or if semantic error.
2266 if not Is_Static_Subtype
(Target_Type
) then
2267 Check_Non_Static_Context
(Operand
);
2270 elsif Error_Posted
(N
) then
2274 -- If not foldable we are done
2276 Test_Expression_Is_Foldable
(N
, Operand
, Stat
, Fold
);
2281 -- Don't try fold if target type has constraint error bounds
2283 elsif not Is_OK_Static_Subtype
(Target_Type
) then
2284 Set_Raises_Constraint_Error
(N
);
2288 -- Remaining processing depends on operand types. Note that in the
2289 -- following type test, fixed-point counts as real unless the flag
2290 -- Conversion_OK is set, in which case it counts as integer.
2292 -- Fold conversion, case of string type. The result is not static.
2294 if Is_String_Type
(Target_Type
) then
2295 Fold_Str
(N
, Strval
(Get_String_Val
(Operand
)));
2296 Set_Is_Static_Expression
(N
, False);
2300 -- Fold conversion, case of integer target type
2302 elsif To_Be_Treated_As_Integer
(Target_Type
) then
2307 -- Integer to integer conversion
2309 if To_Be_Treated_As_Integer
(Source_Type
) then
2310 Result
:= Expr_Value
(Operand
);
2312 -- Real to integer conversion
2315 Result
:= UR_To_Uint
(Expr_Value_R
(Operand
));
2318 -- If fixed-point type (Conversion_OK must be set), then the
2319 -- result is logically an integer, but we must replace the
2320 -- conversion with the corresponding real literal, since the
2321 -- type from a semantic point of view is still fixed-point.
2323 if Is_Fixed_Point_Type
(Target_Type
) then
2325 (N
, UR_From_Uint
(Result
) * Small_Value
(Target_Type
));
2327 -- Otherwise result is integer literal
2330 Fold_Uint
(N
, Result
);
2334 -- Fold conversion, case of real target type
2336 elsif To_Be_Treated_As_Real
(Target_Type
) then
2341 if To_Be_Treated_As_Real
(Source_Type
) then
2342 Result
:= Expr_Value_R
(Operand
);
2344 Result
:= UR_From_Uint
(Expr_Value
(Operand
));
2347 Fold_Ureal
(N
, Result
);
2350 -- Enumeration types
2353 Fold_Uint
(N
, Expr_Value
(Operand
));
2356 Set_Is_Static_Expression
(N
, Stat
);
2358 if Is_Out_Of_Range
(N
, Etype
(N
)) then
2362 end Eval_Type_Conversion
;
2368 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
2369 -- are potentially static if the operand is potentially static (RM 4.9(7))
2371 procedure Eval_Unary_Op
(N
: Node_Id
) is
2372 Right
: constant Node_Id
:= Right_Opnd
(N
);
2377 -- If not foldable we are done
2379 Test_Expression_Is_Foldable
(N
, Right
, Stat
, Fold
);
2385 -- Fold for integer case
2387 if Is_Integer_Type
(Etype
(N
)) then
2389 Rint
: constant Uint
:= Expr_Value
(Right
);
2393 -- In the case of modular unary plus and abs there is no need
2394 -- to adjust the result of the operation since if the original
2395 -- operand was in bounds the result will be in the bounds of the
2396 -- modular type. However, in the case of modular unary minus the
2397 -- result may go out of the bounds of the modular type and needs
2400 if Nkind
(N
) = N_Op_Plus
then
2403 elsif Nkind
(N
) = N_Op_Minus
then
2404 if Is_Modular_Integer_Type
(Etype
(N
)) then
2405 Result
:= (-Rint
) mod Modulus
(Etype
(N
));
2411 pragma Assert
(Nkind
(N
) = N_Op_Abs
);
2415 Fold_Uint
(N
, Result
);
2418 -- Fold for real case
2420 elsif Is_Real_Type
(Etype
(N
)) then
2422 Rreal
: constant Ureal
:= Expr_Value_R
(Right
);
2426 if Nkind
(N
) = N_Op_Plus
then
2429 elsif Nkind
(N
) = N_Op_Minus
then
2430 Result
:= UR_Negate
(Rreal
);
2433 pragma Assert
(Nkind
(N
) = N_Op_Abs
);
2434 Result
:= abs Rreal
;
2437 Fold_Ureal
(N
, Result
);
2441 Set_Is_Static_Expression
(N
, Stat
);
2445 -------------------------------
2446 -- Eval_Unchecked_Conversion --
2447 -------------------------------
2449 -- Unchecked conversions can never be static, so the only required
2450 -- processing is to check for a non-static context for the operand.
2452 procedure Eval_Unchecked_Conversion
(N
: Node_Id
) is
2454 Check_Non_Static_Context
(Expression
(N
));
2455 end Eval_Unchecked_Conversion
;
2457 --------------------
2458 -- Expr_Rep_Value --
2459 --------------------
2461 function Expr_Rep_Value
(N
: Node_Id
) return Uint
is
2462 Kind
: constant Node_Kind
:= Nkind
(N
);
2466 if Is_Entity_Name
(N
) then
2469 -- An enumeration literal that was either in the source or
2470 -- created as a result of static evaluation.
2472 if Ekind
(Ent
) = E_Enumeration_Literal
then
2473 return Enumeration_Rep
(Ent
);
2475 -- A user defined static constant
2478 pragma Assert
(Ekind
(Ent
) = E_Constant
);
2479 return Expr_Rep_Value
(Constant_Value
(Ent
));
2482 -- An integer literal that was either in the source or created
2483 -- as a result of static evaluation.
2485 elsif Kind
= N_Integer_Literal
then
2488 -- A real literal for a fixed-point type. This must be the fixed-point
2489 -- case, either the literal is of a fixed-point type, or it is a bound
2490 -- of a fixed-point type, with type universal real. In either case we
2491 -- obtain the desired value from Corresponding_Integer_Value.
2493 elsif Kind
= N_Real_Literal
then
2494 pragma Assert
(Is_Fixed_Point_Type
(Underlying_Type
(Etype
(N
))));
2495 return Corresponding_Integer_Value
(N
);
2497 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
2499 elsif Kind
= N_Attribute_Reference
2500 and then Attribute_Name
(N
) = Name_Null_Parameter
2504 -- Otherwise must be character literal
2507 pragma Assert
(Kind
= N_Character_Literal
);
2510 -- Since Character literals of type Standard.Character don't
2511 -- have any defining character literals built for them, they
2512 -- do not have their Entity set, so just use their Char
2513 -- code. Otherwise for user-defined character literals use
2514 -- their Pos value as usual which is the same as the Rep value.
2517 return UI_From_Int
(Int
(Char_Literal_Value
(N
)));
2519 return Enumeration_Rep
(Ent
);
2528 function Expr_Value
(N
: Node_Id
) return Uint
is
2529 Kind
: constant Node_Kind
:= Nkind
(N
);
2530 CV_Ent
: CV_Entry
renames CV_Cache
(Nat
(N
) mod CV_Cache_Size
);
2535 -- If already in cache, then we know it's compile time known and
2536 -- we can return the value that was previously stored in the cache
2537 -- since compile time known values cannot change :-)
2539 if CV_Ent
.N
= N
then
2543 -- Otherwise proceed to test value
2545 if Is_Entity_Name
(N
) then
2548 -- An enumeration literal that was either in the source or
2549 -- created as a result of static evaluation.
2551 if Ekind
(Ent
) = E_Enumeration_Literal
then
2552 Val
:= Enumeration_Pos
(Ent
);
2554 -- A user defined static constant
2557 pragma Assert
(Ekind
(Ent
) = E_Constant
);
2558 Val
:= Expr_Value
(Constant_Value
(Ent
));
2561 -- An integer literal that was either in the source or created
2562 -- as a result of static evaluation.
2564 elsif Kind
= N_Integer_Literal
then
2567 -- A real literal for a fixed-point type. This must be the fixed-point
2568 -- case, either the literal is of a fixed-point type, or it is a bound
2569 -- of a fixed-point type, with type universal real. In either case we
2570 -- obtain the desired value from Corresponding_Integer_Value.
2572 elsif Kind
= N_Real_Literal
then
2574 pragma Assert
(Is_Fixed_Point_Type
(Underlying_Type
(Etype
(N
))));
2575 Val
:= Corresponding_Integer_Value
(N
);
2577 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
2579 elsif Kind
= N_Attribute_Reference
2580 and then Attribute_Name
(N
) = Name_Null_Parameter
2584 -- Otherwise must be character literal
2587 pragma Assert
(Kind
= N_Character_Literal
);
2590 -- Since Character literals of type Standard.Character don't
2591 -- have any defining character literals built for them, they
2592 -- do not have their Entity set, so just use their Char
2593 -- code. Otherwise for user-defined character literals use
2594 -- their Pos value as usual.
2597 Val
:= UI_From_Int
(Int
(Char_Literal_Value
(N
)));
2599 Val
:= Enumeration_Pos
(Ent
);
2603 -- Come here with Val set to value to be returned, set cache
2614 function Expr_Value_E
(N
: Node_Id
) return Entity_Id
is
2615 Ent
: constant Entity_Id
:= Entity
(N
);
2618 if Ekind
(Ent
) = E_Enumeration_Literal
then
2621 pragma Assert
(Ekind
(Ent
) = E_Constant
);
2622 return Expr_Value_E
(Constant_Value
(Ent
));
2630 function Expr_Value_R
(N
: Node_Id
) return Ureal
is
2631 Kind
: constant Node_Kind
:= Nkind
(N
);
2636 if Kind
= N_Real_Literal
then
2639 elsif Kind
= N_Identifier
or else Kind
= N_Expanded_Name
then
2641 pragma Assert
(Ekind
(Ent
) = E_Constant
);
2642 return Expr_Value_R
(Constant_Value
(Ent
));
2644 elsif Kind
= N_Integer_Literal
then
2645 return UR_From_Uint
(Expr_Value
(N
));
2647 -- Strange case of VAX literals, which are at this stage transformed
2648 -- into Vax_Type!x_To_y(IEEE_Literal). See Expand_N_Real_Literal in
2649 -- Exp_Vfpt for further details.
2651 elsif Vax_Float
(Etype
(N
))
2652 and then Nkind
(N
) = N_Unchecked_Type_Conversion
2654 Expr
:= Expression
(N
);
2656 if Nkind
(Expr
) = N_Function_Call
2657 and then Present
(Parameter_Associations
(Expr
))
2659 Expr
:= First
(Parameter_Associations
(Expr
));
2661 if Nkind
(Expr
) = N_Real_Literal
then
2662 return Realval
(Expr
);
2666 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
2668 elsif Kind
= N_Attribute_Reference
2669 and then Attribute_Name
(N
) = Name_Null_Parameter
2674 -- If we fall through, we have a node that cannot be interepreted
2675 -- as a compile time constant. That is definitely an error.
2677 raise Program_Error
;
2684 function Expr_Value_S
(N
: Node_Id
) return Node_Id
is
2686 if Nkind
(N
) = N_String_Literal
then
2689 pragma Assert
(Ekind
(Entity
(N
)) = E_Constant
);
2690 return Expr_Value_S
(Constant_Value
(Entity
(N
)));
2698 procedure Fold_Str
(N
: Node_Id
; Val
: String_Id
) is
2699 Loc
: constant Source_Ptr
:= Sloc
(N
);
2700 Typ
: constant Entity_Id
:= Etype
(N
);
2703 Rewrite
(N
, Make_String_Literal
(Loc
, Strval
=> Val
));
2704 Analyze_And_Resolve
(N
, Typ
);
2711 procedure Fold_Uint
(N
: Node_Id
; Val
: Uint
) is
2712 Loc
: constant Source_Ptr
:= Sloc
(N
);
2713 Typ
: constant Entity_Id
:= Etype
(N
);
2716 -- For a result of type integer, subsitute an N_Integer_Literal node
2717 -- for the result of the compile time evaluation of the expression.
2719 if Is_Integer_Type
(Etype
(N
)) then
2720 Rewrite
(N
, Make_Integer_Literal
(Loc
, Val
));
2722 -- Otherwise we have an enumeration type, and we substitute either
2723 -- an N_Identifier or N_Character_Literal to represent the enumeration
2724 -- literal corresponding to the given value, which must always be in
2725 -- range, because appropriate tests have already been made for this.
2727 else pragma Assert
(Is_Enumeration_Type
(Etype
(N
)));
2728 Rewrite
(N
, Get_Enum_Lit_From_Pos
(Etype
(N
), Val
, Loc
));
2731 -- We now have the literal with the right value, both the actual type
2732 -- and the expected type of this literal are taken from the expression
2733 -- that was evaluated.
2744 procedure Fold_Ureal
(N
: Node_Id
; Val
: Ureal
) is
2745 Loc
: constant Source_Ptr
:= Sloc
(N
);
2746 Typ
: constant Entity_Id
:= Etype
(N
);
2749 Rewrite
(N
, Make_Real_Literal
(Loc
, Realval
=> Val
));
2752 -- Both the actual and expected type comes from the original expression
2762 function From_Bits
(B
: Bits
; T
: Entity_Id
) return Uint
is
2766 for J
in 0 .. B
'Last loop
2772 if Non_Binary_Modulus
(T
) then
2773 V
:= V
mod Modulus
(T
);
2779 --------------------
2780 -- Get_String_Val --
2781 --------------------
2783 function Get_String_Val
(N
: Node_Id
) return Node_Id
is
2785 if Nkind
(N
) = N_String_Literal
then
2788 elsif Nkind
(N
) = N_Character_Literal
then
2792 pragma Assert
(Is_Entity_Name
(N
));
2793 return Get_String_Val
(Constant_Value
(Entity
(N
)));
2797 --------------------
2798 -- In_Subrange_Of --
2799 --------------------
2801 function In_Subrange_Of
2804 Fixed_Int
: Boolean := False)
2814 if T1
= T2
or else Is_Subtype_Of
(T1
, T2
) then
2817 -- Never in range if both types are not scalar. Don't know if this can
2818 -- actually happen, but just in case.
2820 elsif not Is_Scalar_Type
(T1
) or else not Is_Scalar_Type
(T1
) then
2824 L1
:= Type_Low_Bound
(T1
);
2825 H1
:= Type_High_Bound
(T1
);
2827 L2
:= Type_Low_Bound
(T2
);
2828 H2
:= Type_High_Bound
(T2
);
2830 -- Check bounds to see if comparison possible at compile time
2832 if Compile_Time_Compare
(L1
, L2
) in Compare_GE
2834 Compile_Time_Compare
(H1
, H2
) in Compare_LE
2839 -- If bounds not comparable at compile time, then the bounds of T2
2840 -- must be compile time known or we cannot answer the query.
2842 if not Compile_Time_Known_Value
(L2
)
2843 or else not Compile_Time_Known_Value
(H2
)
2848 -- If the bounds of T1 are know at compile time then use these
2849 -- ones, otherwise use the bounds of the base type (which are of
2850 -- course always static).
2852 if not Compile_Time_Known_Value
(L1
) then
2853 L1
:= Type_Low_Bound
(Base_Type
(T1
));
2856 if not Compile_Time_Known_Value
(H1
) then
2857 H1
:= Type_High_Bound
(Base_Type
(T1
));
2860 -- Fixed point types should be considered as such only if
2861 -- flag Fixed_Int is set to False.
2863 if Is_Floating_Point_Type
(T1
) or else Is_Floating_Point_Type
(T2
)
2864 or else (Is_Fixed_Point_Type
(T1
) and then not Fixed_Int
)
2865 or else (Is_Fixed_Point_Type
(T2
) and then not Fixed_Int
)
2868 Expr_Value_R
(L2
) <= Expr_Value_R
(L1
)
2870 Expr_Value_R
(H2
) >= Expr_Value_R
(H1
);
2874 Expr_Value
(L2
) <= Expr_Value
(L1
)
2876 Expr_Value
(H2
) >= Expr_Value
(H1
);
2881 -- If any exception occurs, it means that we have some bug in the compiler
2882 -- possibly triggered by a previous error, or by some unforseen peculiar
2883 -- occurrence. However, this is only an optimization attempt, so there is
2884 -- really no point in crashing the compiler. Instead we just decide, too
2885 -- bad, we can't figure out the answer in this case after all.
2890 -- Debug flag K disables this behavior (useful for debugging)
2892 if Debug_Flag_K
then
2903 function Is_In_Range
2906 Fixed_Int
: Boolean := False;
2907 Int_Real
: Boolean := False)
2914 -- Universal types have no range limits, so always in range.
2916 if Typ
= Universal_Integer
or else Typ
= Universal_Real
then
2919 -- Never in range if not scalar type. Don't know if this can
2920 -- actually happen, but our spec allows it, so we must check!
2922 elsif not Is_Scalar_Type
(Typ
) then
2925 -- Never in range unless we have a compile time known value.
2927 elsif not Compile_Time_Known_Value
(N
) then
2932 Lo
: constant Node_Id
:= Type_Low_Bound
(Typ
);
2933 Hi
: constant Node_Id
:= Type_High_Bound
(Typ
);
2934 LB_Known
: constant Boolean := Compile_Time_Known_Value
(Lo
);
2935 UB_Known
: constant Boolean := Compile_Time_Known_Value
(Hi
);
2938 -- Fixed point types should be considered as such only in
2939 -- flag Fixed_Int is set to False.
2941 if Is_Floating_Point_Type
(Typ
)
2942 or else (Is_Fixed_Point_Type
(Typ
) and then not Fixed_Int
)
2945 Valr
:= Expr_Value_R
(N
);
2947 if LB_Known
and then Valr
>= Expr_Value_R
(Lo
)
2948 and then UB_Known
and then Valr
<= Expr_Value_R
(Hi
)
2956 Val
:= Expr_Value
(N
);
2958 if LB_Known
and then Val
>= Expr_Value
(Lo
)
2959 and then UB_Known
and then Val
<= Expr_Value
(Hi
)
2974 function Is_Null_Range
(Lo
: Node_Id
; Hi
: Node_Id
) return Boolean is
2975 Typ
: constant Entity_Id
:= Etype
(Lo
);
2978 if not Compile_Time_Known_Value
(Lo
)
2979 or else not Compile_Time_Known_Value
(Hi
)
2984 if Is_Discrete_Type
(Typ
) then
2985 return Expr_Value
(Lo
) > Expr_Value
(Hi
);
2988 pragma Assert
(Is_Real_Type
(Typ
));
2989 return Expr_Value_R
(Lo
) > Expr_Value_R
(Hi
);
2993 -----------------------------
2994 -- Is_OK_Static_Expression --
2995 -----------------------------
2997 function Is_OK_Static_Expression
(N
: Node_Id
) return Boolean is
2999 return Is_Static_Expression
(N
)
3000 and then not Raises_Constraint_Error
(N
);
3001 end Is_OK_Static_Expression
;
3003 ------------------------
3004 -- Is_OK_Static_Range --
3005 ------------------------
3007 -- A static range is a range whose bounds are static expressions, or a
3008 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
3009 -- We have already converted range attribute references, so we get the
3010 -- "or" part of this rule without needing a special test.
3012 function Is_OK_Static_Range
(N
: Node_Id
) return Boolean is
3014 return Is_OK_Static_Expression
(Low_Bound
(N
))
3015 and then Is_OK_Static_Expression
(High_Bound
(N
));
3016 end Is_OK_Static_Range
;
3018 --------------------------
3019 -- Is_OK_Static_Subtype --
3020 --------------------------
3022 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
3023 -- where neither bound raises constraint error when evaluated.
3025 function Is_OK_Static_Subtype
(Typ
: Entity_Id
) return Boolean is
3026 Base_T
: constant Entity_Id
:= Base_Type
(Typ
);
3027 Anc_Subt
: Entity_Id
;
3030 -- First a quick check on the non static subtype flag. As described
3031 -- in further detail in Einfo, this flag is not decisive in all cases,
3032 -- but if it is set, then the subtype is definitely non-static.
3034 if Is_Non_Static_Subtype
(Typ
) then
3038 Anc_Subt
:= Ancestor_Subtype
(Typ
);
3040 if Anc_Subt
= Empty
then
3044 if Is_Generic_Type
(Root_Type
(Base_T
))
3045 or else Is_Generic_Actual_Type
(Base_T
)
3051 elsif Is_String_Type
(Typ
) then
3053 Ekind
(Typ
) = E_String_Literal_Subtype
3055 (Is_OK_Static_Subtype
(Component_Type
(Typ
))
3056 and then Is_OK_Static_Subtype
(Etype
(First_Index
(Typ
))));
3060 elsif Is_Scalar_Type
(Typ
) then
3061 if Base_T
= Typ
then
3065 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so
3066 -- use Get_Type_Low,High_Bound.
3068 return Is_OK_Static_Subtype
(Anc_Subt
)
3069 and then Is_OK_Static_Expression
(Type_Low_Bound
(Typ
))
3070 and then Is_OK_Static_Expression
(Type_High_Bound
(Typ
));
3073 -- Types other than string and scalar types are never static
3078 end Is_OK_Static_Subtype
;
3080 ---------------------
3081 -- Is_Out_Of_Range --
3082 ---------------------
3084 function Is_Out_Of_Range
3087 Fixed_Int
: Boolean := False;
3088 Int_Real
: Boolean := False)
3095 -- Universal types have no range limits, so always in range.
3097 if Typ
= Universal_Integer
or else Typ
= Universal_Real
then
3100 -- Never out of range if not scalar type. Don't know if this can
3101 -- actually happen, but our spec allows it, so we must check!
3103 elsif not Is_Scalar_Type
(Typ
) then
3106 -- Never out of range if this is a generic type, since the bounds
3107 -- of generic types are junk. Note that if we only checked for
3108 -- static expressions (instead of compile time known values) below,
3109 -- we would not need this check, because values of a generic type
3110 -- can never be static, but they can be known at compile time.
3112 elsif Is_Generic_Type
(Typ
) then
3115 -- Never out of range unless we have a compile time known value.
3117 elsif not Compile_Time_Known_Value
(N
) then
3122 Lo
: constant Node_Id
:= Type_Low_Bound
(Typ
);
3123 Hi
: constant Node_Id
:= Type_High_Bound
(Typ
);
3124 LB_Known
: constant Boolean := Compile_Time_Known_Value
(Lo
);
3125 UB_Known
: constant Boolean := Compile_Time_Known_Value
(Hi
);
3128 -- Real types (note that fixed-point types are not treated
3129 -- as being of a real type if the flag Fixed_Int is set,
3130 -- since in that case they are regarded as integer types).
3132 if Is_Floating_Point_Type
(Typ
)
3133 or else (Is_Fixed_Point_Type
(Typ
) and then not Fixed_Int
)
3136 Valr
:= Expr_Value_R
(N
);
3138 if LB_Known
and then Valr
< Expr_Value_R
(Lo
) then
3141 elsif UB_Known
and then Expr_Value_R
(Hi
) < Valr
then
3149 Val
:= Expr_Value
(N
);
3151 if LB_Known
and then Val
< Expr_Value
(Lo
) then
3154 elsif UB_Known
and then Expr_Value
(Hi
) < Val
then
3163 end Is_Out_Of_Range
;
3165 ---------------------
3166 -- Is_Static_Range --
3167 ---------------------
3169 -- A static range is a range whose bounds are static expressions, or a
3170 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
3171 -- We have already converted range attribute references, so we get the
3172 -- "or" part of this rule without needing a special test.
3174 function Is_Static_Range
(N
: Node_Id
) return Boolean is
3176 return Is_Static_Expression
(Low_Bound
(N
))
3177 and then Is_Static_Expression
(High_Bound
(N
));
3178 end Is_Static_Range
;
3180 -----------------------
3181 -- Is_Static_Subtype --
3182 -----------------------
3184 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)).
3186 function Is_Static_Subtype
(Typ
: Entity_Id
) return Boolean is
3187 Base_T
: constant Entity_Id
:= Base_Type
(Typ
);
3188 Anc_Subt
: Entity_Id
;
3191 -- First a quick check on the non static subtype flag. As described
3192 -- in further detail in Einfo, this flag is not decisive in all cases,
3193 -- but if it is set, then the subtype is definitely non-static.
3195 if Is_Non_Static_Subtype
(Typ
) then
3199 Anc_Subt
:= Ancestor_Subtype
(Typ
);
3201 if Anc_Subt
= Empty
then
3205 if Is_Generic_Type
(Root_Type
(Base_T
))
3206 or else Is_Generic_Actual_Type
(Base_T
)
3212 elsif Is_String_Type
(Typ
) then
3214 Ekind
(Typ
) = E_String_Literal_Subtype
3216 (Is_Static_Subtype
(Component_Type
(Typ
))
3217 and then Is_Static_Subtype
(Etype
(First_Index
(Typ
))));
3221 elsif Is_Scalar_Type
(Typ
) then
3222 if Base_T
= Typ
then
3226 return Is_Static_Subtype
(Anc_Subt
)
3227 and then Is_Static_Expression
(Type_Low_Bound
(Typ
))
3228 and then Is_Static_Expression
(Type_High_Bound
(Typ
));
3231 -- Types other than string and scalar types are never static
3236 end Is_Static_Subtype
;
3238 --------------------
3239 -- Not_Null_Range --
3240 --------------------
3242 function Not_Null_Range
(Lo
: Node_Id
; Hi
: Node_Id
) return Boolean is
3243 Typ
: constant Entity_Id
:= Etype
(Lo
);
3246 if not Compile_Time_Known_Value
(Lo
)
3247 or else not Compile_Time_Known_Value
(Hi
)
3252 if Is_Discrete_Type
(Typ
) then
3253 return Expr_Value
(Lo
) <= Expr_Value
(Hi
);
3256 pragma Assert
(Is_Real_Type
(Typ
));
3258 return Expr_Value_R
(Lo
) <= Expr_Value_R
(Hi
);
3266 function OK_Bits
(N
: Node_Id
; Bits
: Uint
) return Boolean is
3268 -- We allow a maximum of 500,000 bits which seems a reasonable limit
3270 if Bits
< 500_000
then
3274 Error_Msg_N
("static value too large, capacity exceeded", N
);
3283 procedure Out_Of_Range
(N
: Node_Id
) is
3285 -- If we have the static expression case, then this is an illegality
3286 -- in Ada 95 mode, except that in an instance, we never generate an
3287 -- error (if the error is legitimate, it was already diagnosed in
3288 -- the template). The expression to compute the length of a packed
3289 -- array is attached to the array type itself, and deserves a separate
3292 if Is_Static_Expression
(N
)
3293 and then not In_Instance
3297 if Nkind
(Parent
(N
)) = N_Defining_Identifier
3298 and then Is_Array_Type
(Parent
(N
))
3299 and then Present
(Packed_Array_Type
(Parent
(N
)))
3300 and then Present
(First_Rep_Item
(Parent
(N
)))
3303 ("length of packed array must not exceed Integer''Last",
3304 First_Rep_Item
(Parent
(N
)));
3305 Rewrite
(N
, Make_Integer_Literal
(Sloc
(N
), Uint_1
));
3308 Apply_Compile_Time_Constraint_Error
3309 (N
, "value not in range of}", CE_Range_Check_Failed
);
3312 -- Here we generate a warning for the Ada 83 case, or when we are
3313 -- in an instance, or when we have a non-static expression case.
3316 Warn_On_Instance
:= True;
3317 Apply_Compile_Time_Constraint_Error
3318 (N
, "value not in range of}?", CE_Range_Check_Failed
);
3319 Warn_On_Instance
:= False;
3323 -------------------------
3324 -- Rewrite_In_Raise_CE --
3325 -------------------------
3327 procedure Rewrite_In_Raise_CE
(N
: Node_Id
; Exp
: Node_Id
) is
3328 Typ
: constant Entity_Id
:= Etype
(N
);
3331 -- If we want to raise CE in the condition of a raise_CE node
3332 -- we may as well get rid of the condition
3334 if Present
(Parent
(N
))
3335 and then Nkind
(Parent
(N
)) = N_Raise_Constraint_Error
3337 Set_Condition
(Parent
(N
), Empty
);
3339 -- If the expression raising CE is a N_Raise_CE node, we can use
3340 -- that one. We just preserve the type of the context
3342 elsif Nkind
(Exp
) = N_Raise_Constraint_Error
then
3346 -- We have to build an explicit raise_ce node
3350 Make_Raise_Constraint_Error
(Sloc
(Exp
),
3351 Reason
=> CE_Range_Check_Failed
));
3352 Set_Raises_Constraint_Error
(N
);
3355 end Rewrite_In_Raise_CE
;
3357 ---------------------
3358 -- String_Type_Len --
3359 ---------------------
3361 function String_Type_Len
(Stype
: Entity_Id
) return Uint
is
3362 NT
: constant Entity_Id
:= Etype
(First_Index
(Stype
));
3366 if Is_OK_Static_Subtype
(NT
) then
3369 T
:= Base_Type
(NT
);
3372 return Expr_Value
(Type_High_Bound
(T
)) -
3373 Expr_Value
(Type_Low_Bound
(T
)) + 1;
3374 end String_Type_Len
;
3376 ------------------------------------
3377 -- Subtypes_Statically_Compatible --
3378 ------------------------------------
3380 function Subtypes_Statically_Compatible
3386 if Is_Scalar_Type
(T1
) then
3388 -- Definitely compatible if we match
3390 if Subtypes_Statically_Match
(T1
, T2
) then
3393 -- If either subtype is nonstatic then they're not compatible
3395 elsif not Is_Static_Subtype
(T1
)
3396 or else not Is_Static_Subtype
(T2
)
3400 -- If either type has constraint error bounds, then consider that
3401 -- they match to avoid junk cascaded errors here.
3403 elsif not Is_OK_Static_Subtype
(T1
)
3404 or else not Is_OK_Static_Subtype
(T2
)
3408 -- Base types must match, but we don't check that (should
3409 -- we???) but we do at least check that both types are
3410 -- real, or both types are not real.
3412 elsif (Is_Real_Type
(T1
) /= Is_Real_Type
(T2
)) then
3415 -- Here we check the bounds
3419 LB1
: constant Node_Id
:= Type_Low_Bound
(T1
);
3420 HB1
: constant Node_Id
:= Type_High_Bound
(T1
);
3421 LB2
: constant Node_Id
:= Type_Low_Bound
(T2
);
3422 HB2
: constant Node_Id
:= Type_High_Bound
(T2
);
3425 if Is_Real_Type
(T1
) then
3427 (Expr_Value_R
(LB1
) > Expr_Value_R
(HB1
))
3429 (Expr_Value_R
(LB2
) <= Expr_Value_R
(LB1
)
3431 Expr_Value_R
(HB1
) <= Expr_Value_R
(HB2
));
3435 (Expr_Value
(LB1
) > Expr_Value
(HB1
))
3437 (Expr_Value
(LB2
) <= Expr_Value
(LB1
)
3439 Expr_Value
(HB1
) <= Expr_Value
(HB2
));
3444 elsif Is_Access_Type
(T1
) then
3445 return not Is_Constrained
(T2
)
3446 or else Subtypes_Statically_Match
3447 (Designated_Type
(T1
), Designated_Type
(T2
));
3450 return (Is_Composite_Type
(T1
) and then not Is_Constrained
(T2
))
3451 or else Subtypes_Statically_Match
(T1
, T2
);
3453 end Subtypes_Statically_Compatible
;
3455 -------------------------------
3456 -- Subtypes_Statically_Match --
3457 -------------------------------
3459 -- Subtypes statically match if they have statically matching constraints
3460 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
3461 -- they are the same identical constraint, or if they are static and the
3462 -- values match (RM 4.9.1(1)).
3464 function Subtypes_Statically_Match
(T1
, T2
: Entity_Id
) return Boolean is
3466 -- A type always statically matches itself
3473 elsif Is_Scalar_Type
(T1
) then
3475 -- Base types must be the same
3477 if Base_Type
(T1
) /= Base_Type
(T2
) then
3481 -- A constrained numeric subtype never matches an unconstrained
3482 -- subtype, i.e. both types must be constrained or unconstrained.
3484 -- To understand the requirement for this test, see RM 4.9.1(1).
3485 -- As is made clear in RM 3.5.4(11), type Integer, for example
3486 -- is a constrained subtype with constraint bounds matching the
3487 -- bounds of its corresponding uncontrained base type. In this
3488 -- situation, Integer and Integer'Base do not statically match,
3489 -- even though they have the same bounds.
3491 -- We only apply this test to types in Standard and types that
3492 -- appear in user programs. That way, we do not have to be
3493 -- too careful about setting Is_Constrained right for itypes.
3495 if Is_Numeric_Type
(T1
)
3496 and then (Is_Constrained
(T1
) /= Is_Constrained
(T2
))
3497 and then (Scope
(T1
) = Standard_Standard
3498 or else Comes_From_Source
(T1
))
3499 and then (Scope
(T2
) = Standard_Standard
3500 or else Comes_From_Source
(T2
))
3505 -- If there was an error in either range, then just assume
3506 -- the types statically match to avoid further junk errors
3508 if Error_Posted
(Scalar_Range
(T1
))
3510 Error_Posted
(Scalar_Range
(T2
))
3515 -- Otherwise both types have bound that can be compared
3518 LB1
: constant Node_Id
:= Type_Low_Bound
(T1
);
3519 HB1
: constant Node_Id
:= Type_High_Bound
(T1
);
3520 LB2
: constant Node_Id
:= Type_Low_Bound
(T2
);
3521 HB2
: constant Node_Id
:= Type_High_Bound
(T2
);
3524 -- If the bounds are the same tree node, then match
3526 if LB1
= LB2
and then HB1
= HB2
then
3529 -- Otherwise bounds must be static and identical value
3532 if not Is_Static_Subtype
(T1
)
3533 or else not Is_Static_Subtype
(T2
)
3537 -- If either type has constraint error bounds, then say
3538 -- that they match to avoid junk cascaded errors here.
3540 elsif not Is_OK_Static_Subtype
(T1
)
3541 or else not Is_OK_Static_Subtype
(T2
)
3545 elsif Is_Real_Type
(T1
) then
3547 (Expr_Value_R
(LB1
) = Expr_Value_R
(LB2
))
3549 (Expr_Value_R
(HB1
) = Expr_Value_R
(HB2
));
3553 Expr_Value
(LB1
) = Expr_Value
(LB2
)
3555 Expr_Value
(HB1
) = Expr_Value
(HB2
);
3560 -- Type with discriminants
3562 elsif Has_Discriminants
(T1
) or else Has_Discriminants
(T2
) then
3563 if Has_Discriminants
(T1
) /= Has_Discriminants
(T2
) then
3568 DL1
: constant Elist_Id
:= Discriminant_Constraint
(T1
);
3569 DL2
: constant Elist_Id
:= Discriminant_Constraint
(T2
);
3571 DA1
: Elmt_Id
:= First_Elmt
(DL1
);
3572 DA2
: Elmt_Id
:= First_Elmt
(DL2
);
3578 elsif Is_Constrained
(T1
) /= Is_Constrained
(T2
) then
3582 while Present
(DA1
) loop
3584 Expr1
: constant Node_Id
:= Node
(DA1
);
3585 Expr2
: constant Node_Id
:= Node
(DA2
);
3588 if not Is_Static_Expression
(Expr1
)
3589 or else not Is_Static_Expression
(Expr2
)
3593 -- If either expression raised a constraint error,
3594 -- consider the expressions as matching, since this
3595 -- helps to prevent cascading errors.
3597 elsif Raises_Constraint_Error
(Expr1
)
3598 or else Raises_Constraint_Error
(Expr2
)
3602 elsif Expr_Value
(Expr1
) /= Expr_Value
(Expr2
) then
3614 -- A definite type does not match an indefinite or classwide type.
3617 Has_Unknown_Discriminants
(T1
) /= Has_Unknown_Discriminants
(T2
)
3623 elsif Is_Array_Type
(T1
) then
3625 -- If either subtype is unconstrained then both must be,
3626 -- and if both are unconstrained then no further checking
3629 if not Is_Constrained
(T1
) or else not Is_Constrained
(T2
) then
3630 return not (Is_Constrained
(T1
) or else Is_Constrained
(T2
));
3633 -- Both subtypes are constrained, so check that the index
3634 -- subtypes statically match.
3637 Index1
: Node_Id
:= First_Index
(T1
);
3638 Index2
: Node_Id
:= First_Index
(T2
);
3641 while Present
(Index1
) loop
3643 Subtypes_Statically_Match
(Etype
(Index1
), Etype
(Index2
))
3648 Next_Index
(Index1
);
3649 Next_Index
(Index2
);
3655 elsif Is_Access_Type
(T1
) then
3656 return Subtypes_Statically_Match
3657 (Designated_Type
(T1
),
3658 Designated_Type
(T2
));
3660 -- All other types definitely match
3665 end Subtypes_Statically_Match
;
3671 function Test
(Cond
: Boolean) return Uint
is
3680 ---------------------------------
3681 -- Test_Expression_Is_Foldable --
3682 ---------------------------------
3686 procedure Test_Expression_Is_Foldable
3695 -- If operand is Any_Type, just propagate to result and do not
3696 -- try to fold, this prevents cascaded errors.
3698 if Etype
(Op1
) = Any_Type
then
3699 Set_Etype
(N
, Any_Type
);
3703 -- If operand raises constraint error, then replace node N with the
3704 -- raise constraint error node, and we are obviously not foldable.
3705 -- Note that this replacement inherits the Is_Static_Expression flag
3706 -- from the operand.
3708 elsif Raises_Constraint_Error
(Op1
) then
3709 Rewrite_In_Raise_CE
(N
, Op1
);
3713 -- If the operand is not static, then the result is not static, and
3714 -- all we have to do is to check the operand since it is now known
3715 -- to appear in a non-static context.
3717 elsif not Is_Static_Expression
(Op1
) then
3718 Check_Non_Static_Context
(Op1
);
3719 Fold
:= Compile_Time_Known_Value
(Op1
);
3722 -- An expression of a formal modular type is not foldable because
3723 -- the modulus is unknown.
3725 elsif Is_Modular_Integer_Type
(Etype
(Op1
))
3726 and then Is_Generic_Type
(Etype
(Op1
))
3728 Check_Non_Static_Context
(Op1
);
3732 -- Here we have the case of an operand whose type is OK, which is
3733 -- static, and which does not raise constraint error, we can fold.
3736 Set_Is_Static_Expression
(N
);
3740 end Test_Expression_Is_Foldable
;
3744 procedure Test_Expression_Is_Foldable
3751 Rstat
: constant Boolean := Is_Static_Expression
(Op1
)
3752 and then Is_Static_Expression
(Op2
);
3757 -- If either operand is Any_Type, just propagate to result and
3758 -- do not try to fold, this prevents cascaded errors.
3760 if Etype
(Op1
) = Any_Type
or else Etype
(Op2
) = Any_Type
then
3761 Set_Etype
(N
, Any_Type
);
3765 -- If left operand raises constraint error, then replace node N with
3766 -- the raise constraint error node, and we are obviously not foldable.
3767 -- Is_Static_Expression is set from the two operands in the normal way,
3768 -- and we check the right operand if it is in a non-static context.
3770 elsif Raises_Constraint_Error
(Op1
) then
3772 Check_Non_Static_Context
(Op2
);
3775 Rewrite_In_Raise_CE
(N
, Op1
);
3776 Set_Is_Static_Expression
(N
, Rstat
);
3780 -- Similar processing for the case of the right operand. Note that
3781 -- we don't use this routine for the short-circuit case, so we do
3782 -- not have to worry about that special case here.
3784 elsif Raises_Constraint_Error
(Op2
) then
3786 Check_Non_Static_Context
(Op1
);
3789 Rewrite_In_Raise_CE
(N
, Op2
);
3790 Set_Is_Static_Expression
(N
, Rstat
);
3794 -- Exclude expressions of a generic modular type, as above.
3796 elsif Is_Modular_Integer_Type
(Etype
(Op1
))
3797 and then Is_Generic_Type
(Etype
(Op1
))
3799 Check_Non_Static_Context
(Op1
);
3803 -- If result is not static, then check non-static contexts on operands
3804 -- since one of them may be static and the other one may not be static
3806 elsif not Rstat
then
3807 Check_Non_Static_Context
(Op1
);
3808 Check_Non_Static_Context
(Op2
);
3809 Fold
:= Compile_Time_Known_Value
(Op1
)
3810 and then Compile_Time_Known_Value
(Op2
);
3813 -- Else result is static and foldable. Both operands are static,
3814 -- and neither raises constraint error, so we can definitely fold.
3817 Set_Is_Static_Expression
(N
);
3822 end Test_Expression_Is_Foldable
;
3828 procedure To_Bits
(U
: Uint
; B
: out Bits
) is
3830 for J
in 0 .. B
'Last loop
3831 B
(J
) := (U
/ (2 ** J
)) mod 2 /= 0;