include/ChangeLog:
[official-gcc.git] / gcc / ada / s-expgen.adb
blobdea4340be409acc6d87bf903c0023697f29cd122
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUNTIME COMPONENTS --
4 -- --
5 -- S Y S T E M . E X P _ G E N --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 package body System.Exp_Gen is
36 --------------------
37 -- Exp_Float_Type --
38 --------------------
40 function Exp_Float_Type
41 (Left : Type_Of_Base;
42 Right : Integer)
43 return Type_Of_Base
45 Result : Type_Of_Base := 1.0;
46 Factor : Type_Of_Base := Left;
47 Exp : Integer := Right;
49 begin
50 -- We use the standard logarithmic approach, Exp gets shifted right
51 -- testing successive low order bits and Factor is the value of the
52 -- base raised to the next power of 2. For positive exponents we
53 -- multiply the result by this factor, for negative exponents, we
54 -- divide by this factor.
56 if Exp >= 0 then
58 -- For a positive exponent, if we get a constraint error during
59 -- this loop, it is an overflow, and the constraint error will
60 -- simply be passed on to the caller.
62 loop
63 if Exp rem 2 /= 0 then
64 declare
65 pragma Unsuppress (All_Checks);
66 begin
67 Result := Result * Factor;
68 end;
69 end if;
71 Exp := Exp / 2;
72 exit when Exp = 0;
74 declare
75 pragma Unsuppress (All_Checks);
76 begin
77 Factor := Factor * Factor;
78 end;
79 end loop;
81 return Result;
83 -- Now we know that the exponent is negative, check for case of
84 -- base of 0.0 which always generates a constraint error.
86 elsif Factor = 0.0 then
87 raise Constraint_Error;
89 -- Here we have a negative exponent with a non-zero base
91 else
93 -- For the negative exponent case, a constraint error during this
94 -- calculation happens if Factor gets too large, and the proper
95 -- response is to return 0.0, since what we essenmtially have is
96 -- 1.0 / infinity, and the closest model number will be zero.
98 begin
99 loop
100 if Exp rem 2 /= 0 then
101 declare
102 pragma Unsuppress (All_Checks);
103 begin
104 Result := Result * Factor;
105 end;
106 end if;
108 Exp := Exp / 2;
109 exit when Exp = 0;
111 declare
112 pragma Unsuppress (All_Checks);
113 begin
114 Factor := Factor * Factor;
115 end;
116 end loop;
118 declare
119 pragma Unsuppress (All_Checks);
120 begin
121 return 1.0 / Result;
122 end;
124 exception
126 when Constraint_Error =>
127 return 0.0;
128 end;
129 end if;
130 end Exp_Float_Type;
132 ----------------------
133 -- Exp_Integer_Type --
134 ----------------------
136 -- Note that negative exponents get a constraint error because the
137 -- subtype of the Right argument (the exponent) is Natural.
139 function Exp_Integer_Type
140 (Left : Type_Of_Base;
141 Right : Natural)
142 return Type_Of_Base
144 Result : Type_Of_Base := 1;
145 Factor : Type_Of_Base := Left;
146 Exp : Natural := Right;
148 begin
149 -- We use the standard logarithmic approach, Exp gets shifted right
150 -- testing successive low order bits and Factor is the value of the
151 -- base raised to the next power of 2.
153 -- Note: it is not worth special casing the cases of base values -1,0,+1
154 -- since the expander does this when the base is a literal, and other
155 -- cases will be extremely rare.
157 if Exp /= 0 then
158 loop
159 if Exp rem 2 /= 0 then
160 declare
161 pragma Unsuppress (All_Checks);
162 begin
163 Result := Result * Factor;
164 end;
165 end if;
167 Exp := Exp / 2;
168 exit when Exp = 0;
170 declare
171 pragma Unsuppress (All_Checks);
172 begin
173 Factor := Factor * Factor;
174 end;
175 end loop;
176 end if;
178 return Result;
179 end Exp_Integer_Type;
181 end System.Exp_Gen;