1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 In addition to the permissions in the GNU General Public License, the
14 Free Software Foundation gives you unlimited permission to link the
15 compiled version of this file into combinations with other programs,
16 and to distribute those combinations without any restriction coming
17 from the use of this file. (The General Public License restrictions
18 do apply in other respects; for example, they cover modification of
19 the file, and distribution when not linked into a combine
22 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
23 WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
27 You should have received a copy of the GNU General Public License
28 along with GCC; see the file COPYING. If not, write to the Free
29 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
34 #include "coretypes.h"
37 #ifdef HAVE_GAS_HIDDEN
38 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
40 #define ATTRIBUTE_HIDDEN
45 #ifdef DECLARE_LIBRARY_RENAMES
46 DECLARE_LIBRARY_RENAMES
49 #if defined (L_negdi2)
53 const DWunion uu
= {.ll
= u
};
54 const DWunion w
= { {.low
= -uu
.s
.low
,
55 .high
= -uu
.s
.high
- ((UWtype
) -uu
.s
.low
> 0) } };
63 __addvSI3 (Wtype a
, Wtype b
)
65 const Wtype w
= a
+ b
;
67 if (b
>= 0 ? w
< a
: w
> a
)
72 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
74 __addvsi3 (SItype a
, SItype b
)
76 const SItype w
= a
+ b
;
78 if (b
>= 0 ? w
< a
: w
> a
)
83 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
88 __addvDI3 (DWtype a
, DWtype b
)
90 const DWtype w
= a
+ b
;
92 if (b
>= 0 ? w
< a
: w
> a
)
101 __subvSI3 (Wtype a
, Wtype b
)
103 const Wtype w
= a
- b
;
105 if (b
>= 0 ? w
> a
: w
< a
)
110 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
112 __subvsi3 (SItype a
, SItype b
)
114 const SItype w
= a
- b
;
116 if (b
>= 0 ? w
> a
: w
< a
)
121 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
126 __subvDI3 (DWtype a
, DWtype b
)
128 const DWtype w
= a
- b
;
130 if (b
>= 0 ? w
> a
: w
< a
)
139 __mulvSI3 (Wtype a
, Wtype b
)
141 const DWtype w
= (DWtype
) a
* (DWtype
) b
;
143 if ((Wtype
) (w
>> W_TYPE_SIZE
) != (Wtype
) w
>> (W_TYPE_SIZE
- 1))
148 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
150 #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
152 __mulvsi3 (SItype a
, SItype b
)
154 const DItype w
= (DItype
) a
* (DItype
) b
;
156 if ((SItype
) (w
>> WORD_SIZE
) != (SItype
) w
>> (WORD_SIZE
-1))
161 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
170 if (a
>= 0 ? w
> 0 : w
< 0)
175 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
181 if (a
>= 0 ? w
> 0 : w
< 0)
186 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
195 if (a
>= 0 ? w
> 0 : w
< 0)
220 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
238 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
263 __mulvDI3 (DWtype u
, DWtype v
)
265 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
266 but the checked multiplication needs only two. */
267 const DWunion uu
= {.ll
= u
};
268 const DWunion vv
= {.ll
= v
};
270 if (__builtin_expect (uu
.s
.high
== uu
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
272 /* u fits in a single Wtype. */
273 if (__builtin_expect (vv
.s
.high
== vv
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
275 /* v fits in a single Wtype as well. */
276 /* A single multiplication. No overflow risk. */
277 return (DWtype
) uu
.s
.low
* (DWtype
) vv
.s
.low
;
281 /* Two multiplications. */
282 DWunion w0
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
283 * (UDWtype
) (UWtype
) vv
.s
.low
};
284 DWunion w1
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
285 * (UDWtype
) (UWtype
) vv
.s
.high
};
288 w1
.s
.high
-= uu
.s
.low
;
291 w1
.ll
+= (UWtype
) w0
.s
.high
;
292 if (__builtin_expect (w1
.s
.high
== w1
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
294 w0
.s
.high
= w1
.s
.low
;
301 if (__builtin_expect (vv
.s
.high
== vv
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
303 /* v fits into a single Wtype. */
304 /* Two multiplications. */
305 DWunion w0
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
306 * (UDWtype
) (UWtype
) vv
.s
.low
};
307 DWunion w1
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.high
308 * (UDWtype
) (UWtype
) vv
.s
.low
};
311 w1
.s
.high
-= vv
.s
.low
;
314 w1
.ll
+= (UWtype
) w0
.s
.high
;
315 if (__builtin_expect (w1
.s
.high
== w1
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
317 w0
.s
.high
= w1
.s
.low
;
323 /* A few sign checks and a single multiplication. */
328 if (uu
.s
.high
== 0 && vv
.s
.high
== 0)
330 const DWtype w
= (UDWtype
) (UWtype
) uu
.s
.low
331 * (UDWtype
) (UWtype
) vv
.s
.low
;
332 if (__builtin_expect (w
>= 0, 1))
338 if (uu
.s
.high
== 0 && vv
.s
.high
== (Wtype
) -1)
340 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
341 * (UDWtype
) (UWtype
) vv
.s
.low
};
343 ww
.s
.high
-= uu
.s
.low
;
344 if (__builtin_expect (ww
.s
.high
< 0, 1))
353 if (uu
.s
.high
== (Wtype
) -1 && vv
.s
.high
== 0)
355 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
356 * (UDWtype
) (UWtype
) vv
.s
.low
};
358 ww
.s
.high
-= vv
.s
.low
;
359 if (__builtin_expect (ww
.s
.high
< 0, 1))
365 if (uu
.s
.high
== (Wtype
) -1 && vv
.s
.high
== (Wtype
) - 1)
367 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
368 * (UDWtype
) (UWtype
) vv
.s
.low
};
370 ww
.s
.high
-= uu
.s
.low
;
371 ww
.s
.high
-= vv
.s
.low
;
372 if (__builtin_expect (ww
.s
.high
>= 0, 1))
386 /* Unless shift functions are defined with full ANSI prototypes,
387 parameter b will be promoted to int if word_type is smaller than an int. */
390 __lshrdi3 (DWtype u
, word_type b
)
395 const DWunion uu
= {.ll
= u
};
396 const word_type bm
= (sizeof (Wtype
) * BITS_PER_UNIT
) - b
;
402 w
.s
.low
= (UWtype
) uu
.s
.high
>> -bm
;
406 const UWtype carries
= (UWtype
) uu
.s
.high
<< bm
;
408 w
.s
.high
= (UWtype
) uu
.s
.high
>> b
;
409 w
.s
.low
= ((UWtype
) uu
.s
.low
>> b
) | carries
;
418 __ashldi3 (DWtype u
, word_type b
)
423 const DWunion uu
= {.ll
= u
};
424 const word_type bm
= (sizeof (Wtype
) * BITS_PER_UNIT
) - b
;
430 w
.s
.high
= (UWtype
) uu
.s
.low
<< -bm
;
434 const UWtype carries
= (UWtype
) uu
.s
.low
>> bm
;
436 w
.s
.low
= (UWtype
) uu
.s
.low
<< b
;
437 w
.s
.high
= ((UWtype
) uu
.s
.high
<< b
) | carries
;
446 __ashrdi3 (DWtype u
, word_type b
)
451 const DWunion uu
= {.ll
= u
};
452 const word_type bm
= (sizeof (Wtype
) * BITS_PER_UNIT
) - b
;
457 /* w.s.high = 1..1 or 0..0 */
458 w
.s
.high
= uu
.s
.high
>> (sizeof (Wtype
) * BITS_PER_UNIT
- 1);
459 w
.s
.low
= uu
.s
.high
>> -bm
;
463 const UWtype carries
= (UWtype
) uu
.s
.high
<< bm
;
465 w
.s
.high
= uu
.s
.high
>> b
;
466 w
.s
.low
= ((UWtype
) uu
.s
.low
>> b
) | carries
;
483 count_trailing_zeros (count
, u
);
493 const DWunion uu
= {.ll
= u
};
494 UWtype word
, count
, add
;
497 word
= uu
.s
.low
, add
= 0;
498 else if (uu
.s
.high
!= 0)
499 word
= uu
.s
.high
, add
= BITS_PER_UNIT
* sizeof (Wtype
);
503 count_trailing_zeros (count
, word
);
504 return count
+ add
+ 1;
510 __muldi3 (DWtype u
, DWtype v
)
512 const DWunion uu
= {.ll
= u
};
513 const DWunion vv
= {.ll
= v
};
514 DWunion w
= {.ll
= __umulsidi3 (uu
.s
.low
, vv
.s
.low
)};
516 w
.s
.high
+= ((UWtype
) uu
.s
.low
* (UWtype
) vv
.s
.high
517 + (UWtype
) uu
.s
.high
* (UWtype
) vv
.s
.low
);
523 #if (defined (L_udivdi3) || defined (L_divdi3) || \
524 defined (L_umoddi3) || defined (L_moddi3))
525 #if defined (sdiv_qrnnd)
526 #define L_udiv_w_sdiv
531 #if defined (sdiv_qrnnd)
532 #if (defined (L_udivdi3) || defined (L_divdi3) || \
533 defined (L_umoddi3) || defined (L_moddi3))
534 static inline __attribute__ ((__always_inline__
))
537 __udiv_w_sdiv (UWtype
*rp
, UWtype a1
, UWtype a0
, UWtype d
)
544 if (a1
< d
- a1
- (a0
>> (W_TYPE_SIZE
- 1)))
546 /* Dividend, divisor, and quotient are nonnegative. */
547 sdiv_qrnnd (q
, r
, a1
, a0
, d
);
551 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
552 sub_ddmmss (c1
, c0
, a1
, a0
, d
>> 1, d
<< (W_TYPE_SIZE
- 1));
553 /* Divide (c1*2^32 + c0) by d. */
554 sdiv_qrnnd (q
, r
, c1
, c0
, d
);
555 /* Add 2^31 to quotient. */
556 q
+= (UWtype
) 1 << (W_TYPE_SIZE
- 1);
561 b1
= d
>> 1; /* d/2, between 2^30 and 2^31 - 1 */
562 c1
= a1
>> 1; /* A/2 */
563 c0
= (a1
<< (W_TYPE_SIZE
- 1)) + (a0
>> 1);
565 if (a1
< b1
) /* A < 2^32*b1, so A/2 < 2^31*b1 */
567 sdiv_qrnnd (q
, r
, c1
, c0
, b1
); /* (A/2) / (d/2) */
569 r
= 2*r
+ (a0
& 1); /* Remainder from A/(2*b1) */
586 else if (c1
< b1
) /* So 2^31 <= (A/2)/b1 < 2^32 */
589 c0
= ~c0
; /* logical NOT */
591 sdiv_qrnnd (q
, r
, c1
, c0
, b1
); /* (A/2) / (d/2) */
593 q
= ~q
; /* (A/2)/b1 */
596 r
= 2*r
+ (a0
& 1); /* A/(2*b1) */
614 else /* Implies c1 = b1 */
615 { /* Hence a1 = d - 1 = 2*b1 - 1 */
633 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
635 __udiv_w_sdiv (UWtype
*rp
__attribute__ ((__unused__
)),
636 UWtype a1
__attribute__ ((__unused__
)),
637 UWtype a0
__attribute__ ((__unused__
)),
638 UWtype d
__attribute__ ((__unused__
)))
645 #if (defined (L_udivdi3) || defined (L_divdi3) || \
646 defined (L_umoddi3) || defined (L_moddi3))
651 const UQItype __clz_tab
[256] =
653 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
654 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
655 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
656 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
657 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
658 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
659 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
660 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
671 count_leading_zeros (ret
, x
);
682 const DWunion uu
= {.ll
= x
};
687 word
= uu
.s
.high
, add
= 0;
689 word
= uu
.s
.low
, add
= W_TYPE_SIZE
;
691 count_leading_zeros (ret
, word
);
703 count_trailing_zeros (ret
, x
);
714 const DWunion uu
= {.ll
= x
};
719 word
= uu
.s
.low
, add
= 0;
721 word
= uu
.s
.high
, add
= W_TYPE_SIZE
;
723 count_trailing_zeros (ret
, word
);
728 #ifdef L_popcount_tab
729 const UQItype __popcount_tab
[256] =
731 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
732 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
733 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
734 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
735 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
736 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
737 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
738 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
745 __popcountSI2 (UWtype x
)
749 for (i
= 0; i
< W_TYPE_SIZE
; i
+= 8)
750 ret
+= __popcount_tab
[(x
>> i
) & 0xff];
759 __popcountDI2 (UDWtype x
)
763 for (i
= 0; i
< 2*W_TYPE_SIZE
; i
+= 8)
764 ret
+= __popcount_tab
[(x
>> i
) & 0xff];
773 __paritySI2 (UWtype x
)
776 # error "fill out the table"
787 return (0x6996 >> x
) & 1;
794 __parityDI2 (UDWtype x
)
796 const DWunion uu
= {.ll
= x
};
797 UWtype nx
= uu
.s
.low
^ uu
.s
.high
;
800 # error "fill out the table"
811 return (0x6996 >> nx
) & 1;
817 #if (defined (L_udivdi3) || defined (L_divdi3) || \
818 defined (L_umoddi3) || defined (L_moddi3))
819 static inline __attribute__ ((__always_inline__
))
822 __udivmoddi4 (UDWtype n
, UDWtype d
, UDWtype
*rp
)
824 const DWunion nn
= {.ll
= n
};
825 const DWunion dd
= {.ll
= d
};
827 UWtype d0
, d1
, n0
, n1
, n2
;
836 #if !UDIV_NEEDS_NORMALIZATION
843 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
846 /* Remainder in n0. */
853 d0
= 1 / d0
; /* Divide intentionally by zero. */
855 udiv_qrnnd (q1
, n1
, 0, n1
, d0
);
856 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
858 /* Remainder in n0. */
869 #else /* UDIV_NEEDS_NORMALIZATION */
877 count_leading_zeros (bm
, d0
);
881 /* Normalize, i.e. make the most significant bit of the
885 n1
= (n1
<< bm
) | (n0
>> (W_TYPE_SIZE
- bm
));
889 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
892 /* Remainder in n0 >> bm. */
899 d0
= 1 / d0
; /* Divide intentionally by zero. */
901 count_leading_zeros (bm
, d0
);
905 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
906 conclude (the most significant bit of n1 is set) /\ (the
907 leading quotient digit q1 = 1).
909 This special case is necessary, not an optimization.
910 (Shifts counts of W_TYPE_SIZE are undefined.) */
919 b
= W_TYPE_SIZE
- bm
;
923 n1
= (n1
<< bm
) | (n0
>> b
);
926 udiv_qrnnd (q1
, n1
, n2
, n1
, d0
);
931 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
933 /* Remainder in n0 >> bm. */
943 #endif /* UDIV_NEEDS_NORMALIZATION */
954 /* Remainder in n1n0. */
966 count_leading_zeros (bm
, d1
);
969 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
970 conclude (the most significant bit of n1 is set) /\ (the
971 quotient digit q0 = 0 or 1).
973 This special case is necessary, not an optimization. */
975 /* The condition on the next line takes advantage of that
976 n1 >= d1 (true due to program flow). */
977 if (n1
> d1
|| n0
>= d0
)
980 sub_ddmmss (n1
, n0
, n1
, n0
, d1
, d0
);
999 b
= W_TYPE_SIZE
- bm
;
1001 d1
= (d1
<< bm
) | (d0
>> b
);
1004 n1
= (n1
<< bm
) | (n0
>> b
);
1007 udiv_qrnnd (q0
, n1
, n2
, n1
, d1
);
1008 umul_ppmm (m1
, m0
, q0
, d0
);
1010 if (m1
> n1
|| (m1
== n1
&& m0
> n0
))
1013 sub_ddmmss (m1
, m0
, m1
, m0
, d1
, d0
);
1018 /* Remainder in (n1n0 - m1m0) >> bm. */
1021 sub_ddmmss (n1
, n0
, n1
, n0
, m1
, m0
);
1022 rr
.s
.low
= (n1
<< b
) | (n0
>> bm
);
1023 rr
.s
.high
= n1
>> bm
;
1030 const DWunion ww
= {{.low
= q0
, .high
= q1
}};
1037 __divdi3 (DWtype u
, DWtype v
)
1040 DWunion uu
= {.ll
= u
};
1041 DWunion vv
= {.ll
= v
};
1051 w
= __udivmoddi4 (uu
.ll
, vv
.ll
, (UDWtype
*) 0);
1061 __moddi3 (DWtype u
, DWtype v
)
1064 DWunion uu
= {.ll
= u
};
1065 DWunion vv
= {.ll
= v
};
1074 (void) __udivmoddi4 (uu
.ll
, vv
.ll
, (UDWtype
*)&w
);
1084 __umoddi3 (UDWtype u
, UDWtype v
)
1088 (void) __udivmoddi4 (u
, v
, &w
);
1096 __udivdi3 (UDWtype n
, UDWtype d
)
1098 return __udivmoddi4 (n
, d
, (UDWtype
*) 0);
1104 __cmpdi2 (DWtype a
, DWtype b
)
1106 const DWunion au
= {.ll
= a
};
1107 const DWunion bu
= {.ll
= b
};
1109 if (au
.s
.high
< bu
.s
.high
)
1111 else if (au
.s
.high
> bu
.s
.high
)
1113 if ((UWtype
) au
.s
.low
< (UWtype
) bu
.s
.low
)
1115 else if ((UWtype
) au
.s
.low
> (UWtype
) bu
.s
.low
)
1123 __ucmpdi2 (DWtype a
, DWtype b
)
1125 const DWunion au
= {.ll
= a
};
1126 const DWunion bu
= {.ll
= b
};
1128 if ((UWtype
) au
.s
.high
< (UWtype
) bu
.s
.high
)
1130 else if ((UWtype
) au
.s
.high
> (UWtype
) bu
.s
.high
)
1132 if ((UWtype
) au
.s
.low
< (UWtype
) bu
.s
.low
)
1134 else if ((UWtype
) au
.s
.low
> (UWtype
) bu
.s
.low
)
1140 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1142 __fixunstfDI (TFtype a
)
1147 /* Compute high word of result, as a flonum. */
1148 const TFtype b
= (a
/ Wtype_MAXp1_F
);
1149 /* Convert that to fixed (but not to DWtype!),
1150 and shift it into the high word. */
1151 UDWtype v
= (UWtype
) b
;
1153 /* Remove high part from the TFtype, leaving the low part as flonum. */
1155 /* Convert that to fixed (but not to DWtype!) and add it in.
1156 Sometimes A comes out negative. This is significant, since
1157 A has more bits than a long int does. */
1159 v
-= (UWtype
) (- a
);
1166 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1168 __fixtfdi (TFtype a
)
1171 return - __fixunstfDI (-a
);
1172 return __fixunstfDI (a
);
1176 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1178 __fixunsxfDI (XFtype a
)
1183 /* Compute high word of result, as a flonum. */
1184 const XFtype b
= (a
/ Wtype_MAXp1_F
);
1185 /* Convert that to fixed (but not to DWtype!),
1186 and shift it into the high word. */
1187 UDWtype v
= (UWtype
) b
;
1189 /* Remove high part from the XFtype, leaving the low part as flonum. */
1191 /* Convert that to fixed (but not to DWtype!) and add it in.
1192 Sometimes A comes out negative. This is significant, since
1193 A has more bits than a long int does. */
1195 v
-= (UWtype
) (- a
);
1202 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1204 __fixxfdi (XFtype a
)
1207 return - __fixunsxfDI (-a
);
1208 return __fixunsxfDI (a
);
1212 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1214 __fixunsdfDI (DFtype a
)
1216 /* Get high part of result. The division here will just moves the radix
1217 point and will not cause any rounding. Then the conversion to integral
1218 type chops result as desired. */
1219 const UWtype hi
= a
/ Wtype_MAXp1_F
;
1221 /* Get low part of result. Convert `hi' to floating type and scale it back,
1222 then subtract this from the number being converted. This leaves the low
1223 part. Convert that to integral type. */
1224 const UWtype lo
= a
- (DFtype
) hi
* Wtype_MAXp1_F
;
1226 /* Assemble result from the two parts. */
1227 return ((UDWtype
) hi
<< W_TYPE_SIZE
) | lo
;
1231 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1233 __fixdfdi (DFtype a
)
1236 return - __fixunsdfDI (-a
);
1237 return __fixunsdfDI (a
);
1241 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1243 __fixunssfDI (SFtype a
)
1245 #if LIBGCC2_HAS_DF_MODE
1246 /* Convert the SFtype to a DFtype, because that is surely not going
1247 to lose any bits. Some day someone else can write a faster version
1248 that avoids converting to DFtype, and verify it really works right. */
1249 const DFtype dfa
= a
;
1251 /* Get high part of result. The division here will just moves the radix
1252 point and will not cause any rounding. Then the conversion to integral
1253 type chops result as desired. */
1254 const UWtype hi
= dfa
/ Wtype_MAXp1_F
;
1256 /* Get low part of result. Convert `hi' to floating type and scale it back,
1257 then subtract this from the number being converted. This leaves the low
1258 part. Convert that to integral type. */
1259 const UWtype lo
= dfa
- (DFtype
) hi
* Wtype_MAXp1_F
;
1261 /* Assemble result from the two parts. */
1262 return ((UDWtype
) hi
<< W_TYPE_SIZE
) | lo
;
1263 #elif FLT_MANT_DIG < W_TYPE_SIZE
1266 if (a
< Wtype_MAXp1_F
)
1268 if (a
< Wtype_MAXp1_F
* Wtype_MAXp1_F
)
1270 /* Since we know that there are fewer significant bits in the SFmode
1271 quantity than in a word, we know that we can convert out all the
1272 significant bits in one step, and thus avoid losing bits. */
1274 /* ??? This following loop essentially performs frexpf. If we could
1275 use the real libm function, or poke at the actual bits of the fp
1276 format, it would be significantly faster. */
1278 UWtype shift
= 0, counter
;
1282 for (counter
= W_TYPE_SIZE
/ 2; counter
!= 0; counter
>>= 1)
1284 SFtype counterf
= (UWtype
)1 << counter
;
1292 /* Rescale into the range of one word, extract the bits of that
1293 one word, and shift the result into position. */
1296 return (DWtype
)counter
<< shift
;
1305 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1307 __fixsfdi (SFtype a
)
1310 return - __fixunssfDI (-a
);
1311 return __fixunssfDI (a
);
1315 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1317 __floatdixf (DWtype u
)
1319 #if W_TYPE_SIZE > XF_SIZE
1322 XFtype d
= (Wtype
) (u
>> W_TYPE_SIZE
);
1329 #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1331 __floatundixf (UDWtype u
)
1333 #if W_TYPE_SIZE > XF_SIZE
1336 XFtype d
= (UWtype
) (u
>> W_TYPE_SIZE
);
1343 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1345 __floatditf (DWtype u
)
1347 #if W_TYPE_SIZE > TF_SIZE
1350 TFtype d
= (Wtype
) (u
>> W_TYPE_SIZE
);
1357 #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1359 __floatunditf (UDWtype u
)
1361 #if W_TYPE_SIZE > TF_SIZE
1364 TFtype d
= (UWtype
) (u
>> W_TYPE_SIZE
);
1371 #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
1372 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1373 #define DI_SIZE (W_TYPE_SIZE * 2)
1374 #define F_MODE_OK(SIZE) \
1376 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1377 /* Don't use IBM Extended Double TFmode for TI->SF calculations. \
1378 The conversion from long double to float suffers from double \
1379 rounding, because we convert via double. In any case, the \
1380 fallback code is faster. */ \
1381 && !IS_IBM_EXTENDED (SIZE))
1382 #if defined(L_floatdisf)
1383 #define FUNC __floatdisf
1384 #define FSTYPE SFtype
1385 #define FSSIZE SF_SIZE
1387 #define FUNC __floatdidf
1388 #define FSTYPE DFtype
1389 #define FSSIZE DF_SIZE
1395 #if FSSIZE >= W_TYPE_SIZE
1396 /* When the word size is small, we never get any rounding error. */
1397 FSTYPE f
= (Wtype
) (u
>> W_TYPE_SIZE
);
1401 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1402 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1403 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1405 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1406 # define FSIZE DF_SIZE
1407 # define FTYPE DFtype
1408 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1409 # define FSIZE XF_SIZE
1410 # define FTYPE XFtype
1411 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1412 # define FSIZE TF_SIZE
1413 # define FTYPE TFtype
1418 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1420 /* Protect against double-rounding error.
1421 Represent any low-order bits, that might be truncated by a bit that
1422 won't be lost. The bit can go in anywhere below the rounding position
1423 of the FSTYPE. A fixed mask and bit position handles all usual
1425 if (! (- ((DWtype
) 1 << FSIZE
) < u
1426 && u
< ((DWtype
) 1 << FSIZE
)))
1428 if ((UDWtype
) u
& (REP_BIT
- 1))
1430 u
&= ~ (REP_BIT
- 1);
1435 /* Do the calculation in a wider type so that we don't lose any of
1436 the precision of the high word while multiplying it. */
1437 FTYPE f
= (Wtype
) (u
>> W_TYPE_SIZE
);
1442 #if FSSIZE >= W_TYPE_SIZE - 2
1445 /* Finally, the word size is larger than the number of bits in the
1446 required FSTYPE, and we've got no suitable wider type. The only
1447 way to avoid double rounding is to special case the
1450 /* If there are no high bits set, fall back to one conversion. */
1452 return (FSTYPE
)(Wtype
)u
;
1454 /* Otherwise, find the power of two. */
1455 Wtype hi
= u
>> W_TYPE_SIZE
;
1459 UWtype count
, shift
;
1460 count_leading_zeros (count
, hi
);
1462 /* No leading bits means u == minimum. */
1464 return -(Wtype_MAXp1_F
* (Wtype_MAXp1_F
/ 2));
1466 shift
= 1 + W_TYPE_SIZE
- count
;
1468 /* Shift down the most significant bits. */
1471 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1472 if (u
& (((DWtype
)1 << shift
) - 1))
1475 /* Convert the one word of data, and rescale. */
1477 f
*= (UDWtype
)1 << shift
;
1483 #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
1484 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1485 #define DI_SIZE (W_TYPE_SIZE * 2)
1486 #define F_MODE_OK(SIZE) \
1488 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1489 /* Don't use IBM Extended Double TFmode for TI->SF calculations. \
1490 The conversion from long double to float suffers from double \
1491 rounding, because we convert via double. In any case, the \
1492 fallback code is faster. */ \
1493 && !IS_IBM_EXTENDED (SIZE))
1494 #if defined(L_floatundisf)
1495 #define FUNC __floatundisf
1496 #define FSTYPE SFtype
1497 #define FSSIZE SF_SIZE
1499 #define FUNC __floatundidf
1500 #define FSTYPE DFtype
1501 #define FSSIZE DF_SIZE
1507 #if FSSIZE >= W_TYPE_SIZE
1508 /* When the word size is small, we never get any rounding error. */
1509 FSTYPE f
= (UWtype
) (u
>> W_TYPE_SIZE
);
1513 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1514 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1515 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1517 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1518 # define FSIZE DF_SIZE
1519 # define FTYPE DFtype
1520 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1521 # define FSIZE XF_SIZE
1522 # define FTYPE XFtype
1523 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1524 # define FSIZE TF_SIZE
1525 # define FTYPE TFtype
1530 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1532 /* Protect against double-rounding error.
1533 Represent any low-order bits, that might be truncated by a bit that
1534 won't be lost. The bit can go in anywhere below the rounding position
1535 of the FSTYPE. A fixed mask and bit position handles all usual
1537 if (u
>= ((UDWtype
) 1 << FSIZE
))
1539 if ((UDWtype
) u
& (REP_BIT
- 1))
1541 u
&= ~ (REP_BIT
- 1);
1546 /* Do the calculation in a wider type so that we don't lose any of
1547 the precision of the high word while multiplying it. */
1548 FTYPE f
= (UWtype
) (u
>> W_TYPE_SIZE
);
1553 #if FSSIZE == W_TYPE_SIZE - 1
1556 /* Finally, the word size is larger than the number of bits in the
1557 required FSTYPE, and we've got no suitable wider type. The only
1558 way to avoid double rounding is to special case the
1561 /* If there are no high bits set, fall back to one conversion. */
1563 return (FSTYPE
)(UWtype
)u
;
1565 /* Otherwise, find the power of two. */
1566 UWtype hi
= u
>> W_TYPE_SIZE
;
1568 UWtype count
, shift
;
1569 count_leading_zeros (count
, hi
);
1571 shift
= W_TYPE_SIZE
- count
;
1573 /* Shift down the most significant bits. */
1576 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1577 if (u
& (((UDWtype
)1 << shift
) - 1))
1580 /* Convert the one word of data, and rescale. */
1582 f
*= (UDWtype
)1 << shift
;
1588 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1589 /* Reenable the normal types, in case limits.h needs them. */
1602 __fixunsxfSI (XFtype a
)
1604 if (a
>= - (DFtype
) Wtype_MIN
)
1605 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1610 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1611 /* Reenable the normal types, in case limits.h needs them. */
1624 __fixunsdfSI (DFtype a
)
1626 if (a
>= - (DFtype
) Wtype_MIN
)
1627 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1632 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1633 /* Reenable the normal types, in case limits.h needs them. */
1646 __fixunssfSI (SFtype a
)
1648 if (a
>= - (SFtype
) Wtype_MIN
)
1649 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1654 /* Integer power helper used from __builtin_powi for non-constant
1657 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1658 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1659 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1660 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1661 # if defined(L_powisf2)
1662 # define TYPE SFtype
1663 # define NAME __powisf2
1664 # elif defined(L_powidf2)
1665 # define TYPE DFtype
1666 # define NAME __powidf2
1667 # elif defined(L_powixf2)
1668 # define TYPE XFtype
1669 # define NAME __powixf2
1670 # elif defined(L_powitf2)
1671 # define TYPE TFtype
1672 # define NAME __powitf2
1678 NAME (TYPE x
, int m
)
1680 unsigned int n
= m
< 0 ? -m
: m
;
1681 TYPE y
= n
% 2 ? x
: 1;
1688 return m
< 0 ? 1/y
: y
;
1693 #if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1694 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1695 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1696 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1702 #if defined(L_mulsc3) || defined(L_divsc3)
1703 # define MTYPE SFtype
1704 # define CTYPE SCtype
1707 # define NOTRUNC __FLT_EVAL_METHOD__ == 0
1708 #elif defined(L_muldc3) || defined(L_divdc3)
1709 # define MTYPE DFtype
1710 # define CTYPE DCtype
1712 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1717 # define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
1719 #elif defined(L_mulxc3) || defined(L_divxc3)
1720 # define MTYPE XFtype
1721 # define CTYPE XCtype
1725 #elif defined(L_multc3) || defined(L_divtc3)
1726 # define MTYPE TFtype
1727 # define CTYPE TCtype
1735 #define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1736 #define _CONCAT3(A,B,C) A##B##C
1738 #define CONCAT2(A,B) _CONCAT2(A,B)
1739 #define _CONCAT2(A,B) A##B
1741 /* All of these would be present in a full C99 implementation of <math.h>
1742 and <complex.h>. Our problem is that only a few systems have such full
1743 implementations. Further, libgcc_s.so isn't currently linked against
1744 libm.so, and even for systems that do provide full C99, the extra overhead
1745 of all programs using libgcc having to link against libm. So avoid it. */
1747 #define isnan(x) __builtin_expect ((x) != (x), 0)
1748 #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1)
1749 #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0)
1751 #define INFINITY CONCAT2(__builtin_inf, CEXT) ()
1754 /* Helpers to make the following code slightly less gross. */
1755 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1756 #define FABS CONCAT2(__builtin_fabs, CEXT)
1758 /* Verify that MTYPE matches up with CEXT. */
1759 extern void *compile_type_assert
[sizeof(INFINITY
) == sizeof(MTYPE
) ? 1 : -1];
1761 /* Ensure that we've lost any extra precision. */
1765 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1768 #if defined(L_mulsc3) || defined(L_muldc3) \
1769 || defined(L_mulxc3) || defined(L_multc3)
1772 CONCAT3(__mul
,MODE
,3) (MTYPE a
, MTYPE b
, MTYPE c
, MTYPE d
)
1774 MTYPE ac
, bd
, ad
, bc
, x
, y
;
1789 if (isnan (x
) && isnan (y
))
1791 /* Recover infinities that computed as NaN + iNaN. */
1793 if (isinf (a
) || isinf (b
))
1795 /* z is infinite. "Box" the infinity and change NaNs in
1796 the other factor to 0. */
1797 a
= COPYSIGN (isinf (a
) ? 1 : 0, a
);
1798 b
= COPYSIGN (isinf (b
) ? 1 : 0, b
);
1799 if (isnan (c
)) c
= COPYSIGN (0, c
);
1800 if (isnan (d
)) d
= COPYSIGN (0, d
);
1803 if (isinf (c
) || isinf (d
))
1805 /* w is infinite. "Box" the infinity and change NaNs in
1806 the other factor to 0. */
1807 c
= COPYSIGN (isinf (c
) ? 1 : 0, c
);
1808 d
= COPYSIGN (isinf (d
) ? 1 : 0, d
);
1809 if (isnan (a
)) a
= COPYSIGN (0, a
);
1810 if (isnan (b
)) b
= COPYSIGN (0, b
);
1814 && (isinf (ac
) || isinf (bd
)
1815 || isinf (ad
) || isinf (bc
)))
1817 /* Recover infinities from overflow by changing NaNs to 0. */
1818 if (isnan (a
)) a
= COPYSIGN (0, a
);
1819 if (isnan (b
)) b
= COPYSIGN (0, b
);
1820 if (isnan (c
)) c
= COPYSIGN (0, c
);
1821 if (isnan (d
)) d
= COPYSIGN (0, d
);
1826 x
= INFINITY
* (a
* c
- b
* d
);
1827 y
= INFINITY
* (a
* d
+ b
* c
);
1833 #endif /* complex multiply */
1835 #if defined(L_divsc3) || defined(L_divdc3) \
1836 || defined(L_divxc3) || defined(L_divtc3)
1839 CONCAT3(__div
,MODE
,3) (MTYPE a
, MTYPE b
, MTYPE c
, MTYPE d
)
1841 MTYPE denom
, ratio
, x
, y
;
1843 /* ??? We can get better behavior from logarithmic scaling instead of
1844 the division. But that would mean starting to link libgcc against
1845 libm. We could implement something akin to ldexp/frexp as gcc builtins
1847 if (FABS (c
) < FABS (d
))
1850 denom
= (c
* ratio
) + d
;
1851 x
= ((a
* ratio
) + b
) / denom
;
1852 y
= ((b
* ratio
) - a
) / denom
;
1857 denom
= (d
* ratio
) + c
;
1858 x
= ((b
* ratio
) + a
) / denom
;
1859 y
= (b
- (a
* ratio
)) / denom
;
1862 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1863 are nonzero/zero, infinite/finite, and finite/infinite. */
1864 if (isnan (x
) && isnan (y
))
1866 if (denom
== 0.0 && (!isnan (a
) || !isnan (b
)))
1868 x
= COPYSIGN (INFINITY
, c
) * a
;
1869 y
= COPYSIGN (INFINITY
, c
) * b
;
1871 else if ((isinf (a
) || isinf (b
)) && isfinite (c
) && isfinite (d
))
1873 a
= COPYSIGN (isinf (a
) ? 1 : 0, a
);
1874 b
= COPYSIGN (isinf (b
) ? 1 : 0, b
);
1875 x
= INFINITY
* (a
* c
+ b
* d
);
1876 y
= INFINITY
* (b
* c
- a
* d
);
1878 else if ((isinf (c
) || isinf (d
)) && isfinite (a
) && isfinite (b
))
1880 c
= COPYSIGN (isinf (c
) ? 1 : 0, c
);
1881 d
= COPYSIGN (isinf (d
) ? 1 : 0, d
);
1882 x
= 0.0 * (a
* c
+ b
* d
);
1883 y
= 0.0 * (b
* c
- a
* d
);
1889 #endif /* complex divide */
1891 #endif /* all complex float routines */
1893 /* From here on down, the routines use normal data types. */
1895 #define SItype bogus_type
1896 #define USItype bogus_type
1897 #define DItype bogus_type
1898 #define UDItype bogus_type
1899 #define SFtype bogus_type
1900 #define DFtype bogus_type
1918 /* Like bcmp except the sign is meaningful.
1919 Result is negative if S1 is less than S2,
1920 positive if S1 is greater, 0 if S1 and S2 are equal. */
1923 __gcc_bcmp (const unsigned char *s1
, const unsigned char *s2
, size_t size
)
1927 const unsigned char c1
= *s1
++, c2
= *s2
++;
1937 /* __eprintf used to be used by GCC's private version of <assert.h>.
1938 We no longer provide that header, but this routine remains in libgcc.a
1939 for binary backward compatibility. Note that it is not included in
1940 the shared version of libgcc. */
1942 #ifndef inhibit_libc
1944 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1948 __eprintf (const char *string
, const char *expression
,
1949 unsigned int line
, const char *filename
)
1951 fprintf (stderr
, string
, expression
, line
, filename
);
1960 #ifdef L_clear_cache
1961 /* Clear part of an instruction cache. */
1964 __clear_cache (char *beg
__attribute__((__unused__
)),
1965 char *end
__attribute__((__unused__
)))
1967 #ifdef CLEAR_INSN_CACHE
1968 CLEAR_INSN_CACHE (beg
, end
);
1969 #endif /* CLEAR_INSN_CACHE */
1972 #endif /* L_clear_cache */
1974 #ifdef L_enable_execute_stack
1975 /* Attempt to turn on execute permission for the stack. */
1977 #ifdef ENABLE_EXECUTE_STACK
1978 ENABLE_EXECUTE_STACK
1981 __enable_execute_stack (void *addr
__attribute__((__unused__
)))
1983 #endif /* ENABLE_EXECUTE_STACK */
1985 #endif /* L_enable_execute_stack */
1989 /* Jump to a trampoline, loading the static chain address. */
1991 #if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN)
2004 extern int VirtualProtect (char *, int, int, int *) __attribute__((stdcall));
2008 mprotect (char *addr
, int len
, int prot
)
2025 if (VirtualProtect (addr
, len
, np
, &op
))
2031 #endif /* WINNT && ! __CYGWIN__ && ! _UWIN */
2033 #ifdef TRANSFER_FROM_TRAMPOLINE
2034 TRANSFER_FROM_TRAMPOLINE
2036 #endif /* L_trampoline */
2041 #include "gbl-ctors.h"
2043 /* Some systems use __main in a way incompatible with its use in gcc, in these
2044 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2045 give the same symbol without quotes for an alternative entry point. You
2046 must define both, or neither. */
2048 #define NAME__MAIN "__main"
2049 #define SYMBOL__MAIN __main
2052 #if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
2053 #undef HAS_INIT_SECTION
2054 #define HAS_INIT_SECTION
2057 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2059 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2060 code to run constructors. In that case, we need to handle EH here, too. */
2062 #ifdef EH_FRAME_SECTION_NAME
2063 #include "unwind-dw2-fde.h"
2064 extern unsigned char __EH_FRAME_BEGIN__
[];
2067 /* Run all the global destructors on exit from the program. */
2070 __do_global_dtors (void)
2072 #ifdef DO_GLOBAL_DTORS_BODY
2073 DO_GLOBAL_DTORS_BODY
;
2075 static func_ptr
*p
= __DTOR_LIST__
+ 1;
2082 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
2084 static int completed
= 0;
2088 __deregister_frame_info (__EH_FRAME_BEGIN__
);
2095 #ifndef HAS_INIT_SECTION
2096 /* Run all the global constructors on entry to the program. */
2099 __do_global_ctors (void)
2101 #ifdef EH_FRAME_SECTION_NAME
2103 static struct object object
;
2104 __register_frame_info (__EH_FRAME_BEGIN__
, &object
);
2107 DO_GLOBAL_CTORS_BODY
;
2108 atexit (__do_global_dtors
);
2110 #endif /* no HAS_INIT_SECTION */
2112 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2113 /* Subroutine called automatically by `main'.
2114 Compiling a global function named `main'
2115 produces an automatic call to this function at the beginning.
2117 For many systems, this routine calls __do_global_ctors.
2118 For systems which support a .init section we use the .init section
2119 to run __do_global_ctors, so we need not do anything here. */
2121 extern void SYMBOL__MAIN (void);
2125 /* Support recursive calls to `main': run initializers just once. */
2126 static int initialized
;
2130 __do_global_ctors ();
2133 #endif /* no HAS_INIT_SECTION or INVOKE__main */
2135 #endif /* L__main */
2136 #endif /* __CYGWIN__ */
2140 #include "gbl-ctors.h"
2142 /* Provide default definitions for the lists of constructors and
2143 destructors, so that we don't get linker errors. These symbols are
2144 intentionally bss symbols, so that gld and/or collect will provide
2145 the right values. */
2147 /* We declare the lists here with two elements each,
2148 so that they are valid empty lists if no other definition is loaded.
2150 If we are using the old "set" extensions to have the gnu linker
2151 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2152 must be in the bss/common section.
2154 Long term no port should use those extensions. But many still do. */
2155 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2156 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2157 func_ptr __CTOR_LIST__
[2] = {0, 0};
2158 func_ptr __DTOR_LIST__
[2] = {0, 0};
2160 func_ptr __CTOR_LIST__
[2];
2161 func_ptr __DTOR_LIST__
[2];
2163 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2164 #endif /* L_ctors */