PR middle-end/20297
[official-gcc.git] / gcc / expr.c
blob2d5c359e13926cdcfaf714af8e0ec780c1976730
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "machmode.h"
28 #include "real.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "except.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "output.h"
45 #include "typeclass.h"
46 #include "toplev.h"
47 #include "ggc.h"
48 #include "langhooks.h"
49 #include "intl.h"
50 #include "tm_p.h"
51 #include "tree-iterator.h"
52 #include "tree-pass.h"
53 #include "tree-flow.h"
54 #include "target.h"
55 #include "timevar.h"
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
63 #ifdef PUSH_ROUNDING
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
68 #endif
69 #endif
71 #endif
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
76 #else
77 #define STACK_PUSH_CODE PRE_INC
78 #endif
79 #endif
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
88 int cse_not_expected;
90 /* This structure is used by move_by_pieces to describe the move to
91 be performed. */
92 struct move_by_pieces
94 rtx to;
95 rtx to_addr;
96 int autinc_to;
97 int explicit_inc_to;
98 rtx from;
99 rtx from_addr;
100 int autinc_from;
101 int explicit_inc_from;
102 unsigned HOST_WIDE_INT len;
103 HOST_WIDE_INT offset;
104 int reverse;
107 /* This structure is used by store_by_pieces to describe the clear to
108 be performed. */
110 struct store_by_pieces
112 rtx to;
113 rtx to_addr;
114 int autinc_to;
115 int explicit_inc_to;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
119 void *constfundata;
120 int reverse;
123 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
124 unsigned int,
125 unsigned int);
126 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
130 static rtx emit_block_move_via_libcall (rtx, rtx, rtx, bool);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces *);
138 static rtx clear_storage_via_libcall (rtx, rtx, bool);
139 static tree clear_storage_libcall_fn (int);
140 static rtx compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, tree, int, int);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147 tree, tree, int);
149 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
151 static int is_aligning_offset (tree, tree);
152 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
153 enum expand_modifier);
154 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
155 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
156 #ifdef PUSH_ROUNDING
157 static void emit_single_push_insn (enum machine_mode, rtx, tree);
158 #endif
159 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
160 static rtx const_vector_from_tree (tree);
161 static void write_complex_part (rtx, rtx, bool);
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
167 static char direct_load[NUM_MACHINE_MODES];
168 static char direct_store[NUM_MACHINE_MODES];
170 /* Record for each mode whether we can float-extend from memory. */
172 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO)
180 #endif
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO)
188 #endif
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero, or
192 to "memcpy" storage when the source is a constant string. */
193 #ifndef STORE_BY_PIECES_P
194 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) MOVE_RATIO)
197 #endif
199 /* This array records the insn_code of insns to perform block moves. */
200 enum insn_code movmem_optab[NUM_MACHINE_MODES];
202 /* This array records the insn_code of insns to perform block sets. */
203 enum insn_code setmem_optab[NUM_MACHINE_MODES];
205 /* These arrays record the insn_code of three different kinds of insns
206 to perform block compares. */
207 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
208 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
209 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
211 /* Synchronization primitives. */
212 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
213 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
214 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
215 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
216 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
217 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
218 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
231 enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
232 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
233 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
235 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
237 #ifndef SLOW_UNALIGNED_ACCESS
238 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
239 #endif
241 /* This is run once per compilation to set up which modes can be used
242 directly in memory and to initialize the block move optab. */
244 void
245 init_expr_once (void)
247 rtx insn, pat;
248 enum machine_mode mode;
249 int num_clobbers;
250 rtx mem, mem1;
251 rtx reg;
253 /* Try indexing by frame ptr and try by stack ptr.
254 It is known that on the Convex the stack ptr isn't a valid index.
255 With luck, one or the other is valid on any machine. */
256 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
257 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
259 /* A scratch register we can modify in-place below to avoid
260 useless RTL allocations. */
261 reg = gen_rtx_REG (VOIDmode, -1);
263 insn = rtx_alloc (INSN);
264 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
265 PATTERN (insn) = pat;
267 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
268 mode = (enum machine_mode) ((int) mode + 1))
270 int regno;
272 direct_load[(int) mode] = direct_store[(int) mode] = 0;
273 PUT_MODE (mem, mode);
274 PUT_MODE (mem1, mode);
275 PUT_MODE (reg, mode);
277 /* See if there is some register that can be used in this mode and
278 directly loaded or stored from memory. */
280 if (mode != VOIDmode && mode != BLKmode)
281 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
282 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
283 regno++)
285 if (! HARD_REGNO_MODE_OK (regno, mode))
286 continue;
288 REGNO (reg) = regno;
290 SET_SRC (pat) = mem;
291 SET_DEST (pat) = reg;
292 if (recog (pat, insn, &num_clobbers) >= 0)
293 direct_load[(int) mode] = 1;
295 SET_SRC (pat) = mem1;
296 SET_DEST (pat) = reg;
297 if (recog (pat, insn, &num_clobbers) >= 0)
298 direct_load[(int) mode] = 1;
300 SET_SRC (pat) = reg;
301 SET_DEST (pat) = mem;
302 if (recog (pat, insn, &num_clobbers) >= 0)
303 direct_store[(int) mode] = 1;
305 SET_SRC (pat) = reg;
306 SET_DEST (pat) = mem1;
307 if (recog (pat, insn, &num_clobbers) >= 0)
308 direct_store[(int) mode] = 1;
312 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
314 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
315 mode = GET_MODE_WIDER_MODE (mode))
317 enum machine_mode srcmode;
318 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
319 srcmode = GET_MODE_WIDER_MODE (srcmode))
321 enum insn_code ic;
323 ic = can_extend_p (mode, srcmode, 0);
324 if (ic == CODE_FOR_nothing)
325 continue;
327 PUT_MODE (mem, srcmode);
329 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
330 float_extend_from_mem[mode][srcmode] = true;
335 /* This is run at the start of compiling a function. */
337 void
338 init_expr (void)
340 cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
343 /* Copy data from FROM to TO, where the machine modes are not the same.
344 Both modes may be integer, or both may be floating.
345 UNSIGNEDP should be nonzero if FROM is an unsigned type.
346 This causes zero-extension instead of sign-extension. */
348 void
349 convert_move (rtx to, rtx from, int unsignedp)
351 enum machine_mode to_mode = GET_MODE (to);
352 enum machine_mode from_mode = GET_MODE (from);
353 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
354 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
355 enum insn_code code;
356 rtx libcall;
358 /* rtx code for making an equivalent value. */
359 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
360 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
363 gcc_assert (to_real == from_real);
365 /* If the source and destination are already the same, then there's
366 nothing to do. */
367 if (to == from)
368 return;
370 /* If FROM is a SUBREG that indicates that we have already done at least
371 the required extension, strip it. We don't handle such SUBREGs as
372 TO here. */
374 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
375 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
376 >= GET_MODE_SIZE (to_mode))
377 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
378 from = gen_lowpart (to_mode, from), from_mode = to_mode;
380 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
382 if (to_mode == from_mode
383 || (from_mode == VOIDmode && CONSTANT_P (from)))
385 emit_move_insn (to, from);
386 return;
389 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
391 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
393 if (VECTOR_MODE_P (to_mode))
394 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
395 else
396 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
398 emit_move_insn (to, from);
399 return;
402 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
404 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
405 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
406 return;
409 if (to_real)
411 rtx value, insns;
412 convert_optab tab;
414 gcc_assert ((GET_MODE_PRECISION (from_mode)
415 != GET_MODE_PRECISION (to_mode))
416 || (DECIMAL_FLOAT_MODE_P (from_mode)
417 != DECIMAL_FLOAT_MODE_P (to_mode)));
419 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
420 /* Conversion between decimal float and binary float, same size. */
421 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
422 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
423 tab = sext_optab;
424 else
425 tab = trunc_optab;
427 /* Try converting directly if the insn is supported. */
429 code = tab->handlers[to_mode][from_mode].insn_code;
430 if (code != CODE_FOR_nothing)
432 emit_unop_insn (code, to, from,
433 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
434 return;
437 /* Otherwise use a libcall. */
438 libcall = tab->handlers[to_mode][from_mode].libfunc;
440 /* Is this conversion implemented yet? */
441 gcc_assert (libcall);
443 start_sequence ();
444 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
445 1, from, from_mode);
446 insns = get_insns ();
447 end_sequence ();
448 emit_libcall_block (insns, to, value,
449 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
450 from)
451 : gen_rtx_FLOAT_EXTEND (to_mode, from));
452 return;
455 /* Handle pointer conversion. */ /* SPEE 900220. */
456 /* Targets are expected to provide conversion insns between PxImode and
457 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
458 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
460 enum machine_mode full_mode
461 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
463 gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
464 != CODE_FOR_nothing);
466 if (full_mode != from_mode)
467 from = convert_to_mode (full_mode, from, unsignedp);
468 emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
469 to, from, UNKNOWN);
470 return;
472 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
474 rtx new_from;
475 enum machine_mode full_mode
476 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
478 gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
479 != CODE_FOR_nothing);
481 if (to_mode == full_mode)
483 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
484 to, from, UNKNOWN);
485 return;
488 new_from = gen_reg_rtx (full_mode);
489 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
490 new_from, from, UNKNOWN);
492 /* else proceed to integer conversions below. */
493 from_mode = full_mode;
494 from = new_from;
497 /* Now both modes are integers. */
499 /* Handle expanding beyond a word. */
500 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
501 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
503 rtx insns;
504 rtx lowpart;
505 rtx fill_value;
506 rtx lowfrom;
507 int i;
508 enum machine_mode lowpart_mode;
509 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
511 /* Try converting directly if the insn is supported. */
512 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
513 != CODE_FOR_nothing)
515 /* If FROM is a SUBREG, put it into a register. Do this
516 so that we always generate the same set of insns for
517 better cse'ing; if an intermediate assignment occurred,
518 we won't be doing the operation directly on the SUBREG. */
519 if (optimize > 0 && GET_CODE (from) == SUBREG)
520 from = force_reg (from_mode, from);
521 emit_unop_insn (code, to, from, equiv_code);
522 return;
524 /* Next, try converting via full word. */
525 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
526 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
527 != CODE_FOR_nothing))
529 if (REG_P (to))
531 if (reg_overlap_mentioned_p (to, from))
532 from = force_reg (from_mode, from);
533 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
535 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
536 emit_unop_insn (code, to,
537 gen_lowpart (word_mode, to), equiv_code);
538 return;
541 /* No special multiword conversion insn; do it by hand. */
542 start_sequence ();
544 /* Since we will turn this into a no conflict block, we must ensure
545 that the source does not overlap the target. */
547 if (reg_overlap_mentioned_p (to, from))
548 from = force_reg (from_mode, from);
550 /* Get a copy of FROM widened to a word, if necessary. */
551 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
552 lowpart_mode = word_mode;
553 else
554 lowpart_mode = from_mode;
556 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
558 lowpart = gen_lowpart (lowpart_mode, to);
559 emit_move_insn (lowpart, lowfrom);
561 /* Compute the value to put in each remaining word. */
562 if (unsignedp)
563 fill_value = const0_rtx;
564 else
566 #ifdef HAVE_slt
567 if (HAVE_slt
568 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
569 && STORE_FLAG_VALUE == -1)
571 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
572 lowpart_mode, 0);
573 fill_value = gen_reg_rtx (word_mode);
574 emit_insn (gen_slt (fill_value));
576 else
577 #endif
579 fill_value
580 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
581 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
582 NULL_RTX, 0);
583 fill_value = convert_to_mode (word_mode, fill_value, 1);
587 /* Fill the remaining words. */
588 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
590 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
591 rtx subword = operand_subword (to, index, 1, to_mode);
593 gcc_assert (subword);
595 if (fill_value != subword)
596 emit_move_insn (subword, fill_value);
599 insns = get_insns ();
600 end_sequence ();
602 emit_no_conflict_block (insns, to, from, NULL_RTX,
603 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
604 return;
607 /* Truncating multi-word to a word or less. */
608 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
609 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
611 if (!((MEM_P (from)
612 && ! MEM_VOLATILE_P (from)
613 && direct_load[(int) to_mode]
614 && ! mode_dependent_address_p (XEXP (from, 0)))
615 || REG_P (from)
616 || GET_CODE (from) == SUBREG))
617 from = force_reg (from_mode, from);
618 convert_move (to, gen_lowpart (word_mode, from), 0);
619 return;
622 /* Now follow all the conversions between integers
623 no more than a word long. */
625 /* For truncation, usually we can just refer to FROM in a narrower mode. */
626 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (from_mode)))
630 if (!((MEM_P (from)
631 && ! MEM_VOLATILE_P (from)
632 && direct_load[(int) to_mode]
633 && ! mode_dependent_address_p (XEXP (from, 0)))
634 || REG_P (from)
635 || GET_CODE (from) == SUBREG))
636 from = force_reg (from_mode, from);
637 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
638 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
639 from = copy_to_reg (from);
640 emit_move_insn (to, gen_lowpart (to_mode, from));
641 return;
644 /* Handle extension. */
645 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
647 /* Convert directly if that works. */
648 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
649 != CODE_FOR_nothing)
651 emit_unop_insn (code, to, from, equiv_code);
652 return;
654 else
656 enum machine_mode intermediate;
657 rtx tmp;
658 tree shift_amount;
660 /* Search for a mode to convert via. */
661 for (intermediate = from_mode; intermediate != VOIDmode;
662 intermediate = GET_MODE_WIDER_MODE (intermediate))
663 if (((can_extend_p (to_mode, intermediate, unsignedp)
664 != CODE_FOR_nothing)
665 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
666 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
667 GET_MODE_BITSIZE (intermediate))))
668 && (can_extend_p (intermediate, from_mode, unsignedp)
669 != CODE_FOR_nothing))
671 convert_move (to, convert_to_mode (intermediate, from,
672 unsignedp), unsignedp);
673 return;
676 /* No suitable intermediate mode.
677 Generate what we need with shifts. */
678 shift_amount = build_int_cst (NULL_TREE,
679 GET_MODE_BITSIZE (to_mode)
680 - GET_MODE_BITSIZE (from_mode));
681 from = gen_lowpart (to_mode, force_reg (from_mode, from));
682 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
683 to, unsignedp);
684 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
685 to, unsignedp);
686 if (tmp != to)
687 emit_move_insn (to, tmp);
688 return;
692 /* Support special truncate insns for certain modes. */
693 if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
695 emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
696 to, from, UNKNOWN);
697 return;
700 /* Handle truncation of volatile memrefs, and so on;
701 the things that couldn't be truncated directly,
702 and for which there was no special instruction.
704 ??? Code above formerly short-circuited this, for most integer
705 mode pairs, with a force_reg in from_mode followed by a recursive
706 call to this routine. Appears always to have been wrong. */
707 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
709 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
710 emit_move_insn (to, temp);
711 return;
714 /* Mode combination is not recognized. */
715 gcc_unreachable ();
718 /* Return an rtx for a value that would result
719 from converting X to mode MODE.
720 Both X and MODE may be floating, or both integer.
721 UNSIGNEDP is nonzero if X is an unsigned value.
722 This can be done by referring to a part of X in place
723 or by copying to a new temporary with conversion. */
726 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
728 return convert_modes (mode, VOIDmode, x, unsignedp);
731 /* Return an rtx for a value that would result
732 from converting X from mode OLDMODE to mode MODE.
733 Both modes may be floating, or both integer.
734 UNSIGNEDP is nonzero if X is an unsigned value.
736 This can be done by referring to a part of X in place
737 or by copying to a new temporary with conversion.
739 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
742 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
744 rtx temp;
746 /* If FROM is a SUBREG that indicates that we have already done at least
747 the required extension, strip it. */
749 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
750 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
751 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
752 x = gen_lowpart (mode, x);
754 if (GET_MODE (x) != VOIDmode)
755 oldmode = GET_MODE (x);
757 if (mode == oldmode)
758 return x;
760 /* There is one case that we must handle specially: If we are converting
761 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
762 we are to interpret the constant as unsigned, gen_lowpart will do
763 the wrong if the constant appears negative. What we want to do is
764 make the high-order word of the constant zero, not all ones. */
766 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
767 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
768 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
770 HOST_WIDE_INT val = INTVAL (x);
772 if (oldmode != VOIDmode
773 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
775 int width = GET_MODE_BITSIZE (oldmode);
777 /* We need to zero extend VAL. */
778 val &= ((HOST_WIDE_INT) 1 << width) - 1;
781 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
784 /* We can do this with a gen_lowpart if both desired and current modes
785 are integer, and this is either a constant integer, a register, or a
786 non-volatile MEM. Except for the constant case where MODE is no
787 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
789 if ((GET_CODE (x) == CONST_INT
790 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
791 || (GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_CLASS (oldmode) == MODE_INT
793 && (GET_CODE (x) == CONST_DOUBLE
794 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
795 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
796 && direct_load[(int) mode])
797 || (REG_P (x)
798 && (! HARD_REGISTER_P (x)
799 || HARD_REGNO_MODE_OK (REGNO (x), mode))
800 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
801 GET_MODE_BITSIZE (GET_MODE (x)))))))))
803 /* ?? If we don't know OLDMODE, we have to assume here that
804 X does not need sign- or zero-extension. This may not be
805 the case, but it's the best we can do. */
806 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
807 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
809 HOST_WIDE_INT val = INTVAL (x);
810 int width = GET_MODE_BITSIZE (oldmode);
812 /* We must sign or zero-extend in this case. Start by
813 zero-extending, then sign extend if we need to. */
814 val &= ((HOST_WIDE_INT) 1 << width) - 1;
815 if (! unsignedp
816 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
817 val |= (HOST_WIDE_INT) (-1) << width;
819 return gen_int_mode (val, mode);
822 return gen_lowpart (mode, x);
825 /* Converting from integer constant into mode is always equivalent to an
826 subreg operation. */
827 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
829 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
830 return simplify_gen_subreg (mode, x, oldmode, 0);
833 temp = gen_reg_rtx (mode);
834 convert_move (temp, x, unsignedp);
835 return temp;
838 /* STORE_MAX_PIECES is the number of bytes at a time that we can
839 store efficiently. Due to internal GCC limitations, this is
840 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
841 for an immediate constant. */
843 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845 /* Determine whether the LEN bytes can be moved by using several move
846 instructions. Return nonzero if a call to move_by_pieces should
847 succeed. */
850 can_move_by_pieces (unsigned HOST_WIDE_INT len,
851 unsigned int align ATTRIBUTE_UNUSED)
853 return MOVE_BY_PIECES_P (len, align);
856 /* Generate several move instructions to copy LEN bytes from block FROM to
857 block TO. (These are MEM rtx's with BLKmode).
859 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
860 used to push FROM to the stack.
862 ALIGN is maximum stack alignment we can assume.
864 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
865 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
866 stpcpy. */
869 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
870 unsigned int align, int endp)
872 struct move_by_pieces data;
873 rtx to_addr, from_addr = XEXP (from, 0);
874 unsigned int max_size = MOVE_MAX_PIECES + 1;
875 enum machine_mode mode = VOIDmode, tmode;
876 enum insn_code icode;
878 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
880 data.offset = 0;
881 data.from_addr = from_addr;
882 if (to)
884 to_addr = XEXP (to, 0);
885 data.to = to;
886 data.autinc_to
887 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
888 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
889 data.reverse
890 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
892 else
894 to_addr = NULL_RTX;
895 data.to = NULL_RTX;
896 data.autinc_to = 1;
897 #ifdef STACK_GROWS_DOWNWARD
898 data.reverse = 1;
899 #else
900 data.reverse = 0;
901 #endif
903 data.to_addr = to_addr;
904 data.from = from;
905 data.autinc_from
906 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
907 || GET_CODE (from_addr) == POST_INC
908 || GET_CODE (from_addr) == POST_DEC);
910 data.explicit_inc_from = 0;
911 data.explicit_inc_to = 0;
912 if (data.reverse) data.offset = len;
913 data.len = len;
915 /* If copying requires more than two move insns,
916 copy addresses to registers (to make displacements shorter)
917 and use post-increment if available. */
918 if (!(data.autinc_from && data.autinc_to)
919 && move_by_pieces_ninsns (len, align, max_size) > 2)
921 /* Find the mode of the largest move... */
922 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
923 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
924 if (GET_MODE_SIZE (tmode) < max_size)
925 mode = tmode;
927 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
929 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
930 data.autinc_from = 1;
931 data.explicit_inc_from = -1;
933 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
935 data.from_addr = copy_addr_to_reg (from_addr);
936 data.autinc_from = 1;
937 data.explicit_inc_from = 1;
939 if (!data.autinc_from && CONSTANT_P (from_addr))
940 data.from_addr = copy_addr_to_reg (from_addr);
941 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
943 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
944 data.autinc_to = 1;
945 data.explicit_inc_to = -1;
947 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
949 data.to_addr = copy_addr_to_reg (to_addr);
950 data.autinc_to = 1;
951 data.explicit_inc_to = 1;
953 if (!data.autinc_to && CONSTANT_P (to_addr))
954 data.to_addr = copy_addr_to_reg (to_addr);
957 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
958 if (align >= GET_MODE_ALIGNMENT (tmode))
959 align = GET_MODE_ALIGNMENT (tmode);
960 else
962 enum machine_mode xmode;
964 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
965 tmode != VOIDmode;
966 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
967 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
968 || SLOW_UNALIGNED_ACCESS (tmode, align))
969 break;
971 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
974 /* First move what we can in the largest integer mode, then go to
975 successively smaller modes. */
977 while (max_size > 1)
979 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
980 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
981 if (GET_MODE_SIZE (tmode) < max_size)
982 mode = tmode;
984 if (mode == VOIDmode)
985 break;
987 icode = mov_optab->handlers[(int) mode].insn_code;
988 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
989 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
991 max_size = GET_MODE_SIZE (mode);
994 /* The code above should have handled everything. */
995 gcc_assert (!data.len);
997 if (endp)
999 rtx to1;
1001 gcc_assert (!data.reverse);
1002 if (data.autinc_to)
1004 if (endp == 2)
1006 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1007 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1008 else
1009 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1010 -1));
1012 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1013 data.offset);
1015 else
1017 if (endp == 2)
1018 --data.offset;
1019 to1 = adjust_address (data.to, QImode, data.offset);
1021 return to1;
1023 else
1024 return data.to;
1027 /* Return number of insns required to move L bytes by pieces.
1028 ALIGN (in bits) is maximum alignment we can assume. */
1030 static unsigned HOST_WIDE_INT
1031 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1032 unsigned int max_size)
1034 unsigned HOST_WIDE_INT n_insns = 0;
1035 enum machine_mode tmode;
1037 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1038 if (align >= GET_MODE_ALIGNMENT (tmode))
1039 align = GET_MODE_ALIGNMENT (tmode);
1040 else
1042 enum machine_mode tmode, xmode;
1044 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1045 tmode != VOIDmode;
1046 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1047 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1048 || SLOW_UNALIGNED_ACCESS (tmode, align))
1049 break;
1051 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1054 while (max_size > 1)
1056 enum machine_mode mode = VOIDmode;
1057 enum insn_code icode;
1059 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1060 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1061 if (GET_MODE_SIZE (tmode) < max_size)
1062 mode = tmode;
1064 if (mode == VOIDmode)
1065 break;
1067 icode = mov_optab->handlers[(int) mode].insn_code;
1068 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1069 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1071 max_size = GET_MODE_SIZE (mode);
1074 gcc_assert (!l);
1075 return n_insns;
1078 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1079 with move instructions for mode MODE. GENFUN is the gen_... function
1080 to make a move insn for that mode. DATA has all the other info. */
1082 static void
1083 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1084 struct move_by_pieces *data)
1086 unsigned int size = GET_MODE_SIZE (mode);
1087 rtx to1 = NULL_RTX, from1;
1089 while (data->len >= size)
1091 if (data->reverse)
1092 data->offset -= size;
1094 if (data->to)
1096 if (data->autinc_to)
1097 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1098 data->offset);
1099 else
1100 to1 = adjust_address (data->to, mode, data->offset);
1103 if (data->autinc_from)
1104 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1105 data->offset);
1106 else
1107 from1 = adjust_address (data->from, mode, data->offset);
1109 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1110 emit_insn (gen_add2_insn (data->to_addr,
1111 GEN_INT (-(HOST_WIDE_INT)size)));
1112 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1113 emit_insn (gen_add2_insn (data->from_addr,
1114 GEN_INT (-(HOST_WIDE_INT)size)));
1116 if (data->to)
1117 emit_insn ((*genfun) (to1, from1));
1118 else
1120 #ifdef PUSH_ROUNDING
1121 emit_single_push_insn (mode, from1, NULL);
1122 #else
1123 gcc_unreachable ();
1124 #endif
1127 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1128 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1129 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1130 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1132 if (! data->reverse)
1133 data->offset += size;
1135 data->len -= size;
1139 /* Emit code to move a block Y to a block X. This may be done with
1140 string-move instructions, with multiple scalar move instructions,
1141 or with a library call.
1143 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1144 SIZE is an rtx that says how long they are.
1145 ALIGN is the maximum alignment we can assume they have.
1146 METHOD describes what kind of copy this is, and what mechanisms may be used.
1148 Return the address of the new block, if memcpy is called and returns it,
1149 0 otherwise. */
1152 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1154 bool may_use_call;
1155 rtx retval = 0;
1156 unsigned int align;
1158 switch (method)
1160 case BLOCK_OP_NORMAL:
1161 case BLOCK_OP_TAILCALL:
1162 may_use_call = true;
1163 break;
1165 case BLOCK_OP_CALL_PARM:
1166 may_use_call = block_move_libcall_safe_for_call_parm ();
1168 /* Make inhibit_defer_pop nonzero around the library call
1169 to force it to pop the arguments right away. */
1170 NO_DEFER_POP;
1171 break;
1173 case BLOCK_OP_NO_LIBCALL:
1174 may_use_call = false;
1175 break;
1177 default:
1178 gcc_unreachable ();
1181 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1183 gcc_assert (MEM_P (x));
1184 gcc_assert (MEM_P (y));
1185 gcc_assert (size);
1187 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1188 block copy is more efficient for other large modes, e.g. DCmode. */
1189 x = adjust_address (x, BLKmode, 0);
1190 y = adjust_address (y, BLKmode, 0);
1192 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1193 can be incorrect is coming from __builtin_memcpy. */
1194 if (GET_CODE (size) == CONST_INT)
1196 if (INTVAL (size) == 0)
1197 return 0;
1199 x = shallow_copy_rtx (x);
1200 y = shallow_copy_rtx (y);
1201 set_mem_size (x, size);
1202 set_mem_size (y, size);
1205 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1206 move_by_pieces (x, y, INTVAL (size), align, 0);
1207 else if (emit_block_move_via_movmem (x, y, size, align))
1209 else if (may_use_call)
1210 retval = emit_block_move_via_libcall (x, y, size,
1211 method == BLOCK_OP_TAILCALL);
1212 else
1213 emit_block_move_via_loop (x, y, size, align);
1215 if (method == BLOCK_OP_CALL_PARM)
1216 OK_DEFER_POP;
1218 return retval;
1221 /* A subroutine of emit_block_move. Returns true if calling the
1222 block move libcall will not clobber any parameters which may have
1223 already been placed on the stack. */
1225 static bool
1226 block_move_libcall_safe_for_call_parm (void)
1228 /* If arguments are pushed on the stack, then they're safe. */
1229 if (PUSH_ARGS)
1230 return true;
1232 /* If registers go on the stack anyway, any argument is sure to clobber
1233 an outgoing argument. */
1234 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1236 tree fn = emit_block_move_libcall_fn (false);
1237 (void) fn;
1238 if (REG_PARM_STACK_SPACE (fn) != 0)
1239 return false;
1241 #endif
1243 /* If any argument goes in memory, then it might clobber an outgoing
1244 argument. */
1246 CUMULATIVE_ARGS args_so_far;
1247 tree fn, arg;
1249 fn = emit_block_move_libcall_fn (false);
1250 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1252 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1253 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1255 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1256 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1257 if (!tmp || !REG_P (tmp))
1258 return false;
1259 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1260 return false;
1261 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1264 return true;
1267 /* A subroutine of emit_block_move. Expand a movmem pattern;
1268 return true if successful. */
1270 static bool
1271 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
1273 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1274 int save_volatile_ok = volatile_ok;
1275 enum machine_mode mode;
1277 /* Since this is a move insn, we don't care about volatility. */
1278 volatile_ok = 1;
1280 /* Try the most limited insn first, because there's no point
1281 including more than one in the machine description unless
1282 the more limited one has some advantage. */
1284 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1285 mode = GET_MODE_WIDER_MODE (mode))
1287 enum insn_code code = movmem_optab[(int) mode];
1288 insn_operand_predicate_fn pred;
1290 if (code != CODE_FOR_nothing
1291 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1292 here because if SIZE is less than the mode mask, as it is
1293 returned by the macro, it will definitely be less than the
1294 actual mode mask. */
1295 && ((GET_CODE (size) == CONST_INT
1296 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1297 <= (GET_MODE_MASK (mode) >> 1)))
1298 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1299 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1300 || (*pred) (x, BLKmode))
1301 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1302 || (*pred) (y, BLKmode))
1303 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1304 || (*pred) (opalign, VOIDmode)))
1306 rtx op2;
1307 rtx last = get_last_insn ();
1308 rtx pat;
1310 op2 = convert_to_mode (mode, size, 1);
1311 pred = insn_data[(int) code].operand[2].predicate;
1312 if (pred != 0 && ! (*pred) (op2, mode))
1313 op2 = copy_to_mode_reg (mode, op2);
1315 /* ??? When called via emit_block_move_for_call, it'd be
1316 nice if there were some way to inform the backend, so
1317 that it doesn't fail the expansion because it thinks
1318 emitting the libcall would be more efficient. */
1320 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1321 if (pat)
1323 emit_insn (pat);
1324 volatile_ok = save_volatile_ok;
1325 return true;
1327 else
1328 delete_insns_since (last);
1332 volatile_ok = save_volatile_ok;
1333 return false;
1336 /* A subroutine of emit_block_move. Expand a call to memcpy.
1337 Return the return value from memcpy, 0 otherwise. */
1339 static rtx
1340 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1342 rtx dst_addr, src_addr;
1343 tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
1344 enum machine_mode size_mode;
1345 rtx retval;
1347 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1348 pseudos. We can then place those new pseudos into a VAR_DECL and
1349 use them later. */
1351 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1352 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1354 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1355 src_addr = convert_memory_address (ptr_mode, src_addr);
1357 dst_tree = make_tree (ptr_type_node, dst_addr);
1358 src_tree = make_tree (ptr_type_node, src_addr);
1360 size_mode = TYPE_MODE (sizetype);
1362 size = convert_to_mode (size_mode, size, 1);
1363 size = copy_to_mode_reg (size_mode, size);
1365 /* It is incorrect to use the libcall calling conventions to call
1366 memcpy in this context. This could be a user call to memcpy and
1367 the user may wish to examine the return value from memcpy. For
1368 targets where libcalls and normal calls have different conventions
1369 for returning pointers, we could end up generating incorrect code. */
1371 size_tree = make_tree (sizetype, size);
1373 fn = emit_block_move_libcall_fn (true);
1374 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
1375 arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
1376 arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
1378 /* Now we have to build up the CALL_EXPR itself. */
1379 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1380 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1381 call_expr, arg_list, NULL_TREE);
1382 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1384 retval = expand_normal (call_expr);
1386 return retval;
1389 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1390 for the function we use for block copies. The first time FOR_CALL
1391 is true, we call assemble_external. */
1393 static GTY(()) tree block_move_fn;
1395 void
1396 init_block_move_fn (const char *asmspec)
1398 if (!block_move_fn)
1400 tree args, fn;
1402 fn = get_identifier ("memcpy");
1403 args = build_function_type_list (ptr_type_node, ptr_type_node,
1404 const_ptr_type_node, sizetype,
1405 NULL_TREE);
1407 fn = build_decl (FUNCTION_DECL, fn, args);
1408 DECL_EXTERNAL (fn) = 1;
1409 TREE_PUBLIC (fn) = 1;
1410 DECL_ARTIFICIAL (fn) = 1;
1411 TREE_NOTHROW (fn) = 1;
1412 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1413 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1415 block_move_fn = fn;
1418 if (asmspec)
1419 set_user_assembler_name (block_move_fn, asmspec);
1422 static tree
1423 emit_block_move_libcall_fn (int for_call)
1425 static bool emitted_extern;
1427 if (!block_move_fn)
1428 init_block_move_fn (NULL);
1430 if (for_call && !emitted_extern)
1432 emitted_extern = true;
1433 make_decl_rtl (block_move_fn);
1434 assemble_external (block_move_fn);
1437 return block_move_fn;
1440 /* A subroutine of emit_block_move. Copy the data via an explicit
1441 loop. This is used only when libcalls are forbidden. */
1442 /* ??? It'd be nice to copy in hunks larger than QImode. */
1444 static void
1445 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1446 unsigned int align ATTRIBUTE_UNUSED)
1448 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1449 enum machine_mode iter_mode;
1451 iter_mode = GET_MODE (size);
1452 if (iter_mode == VOIDmode)
1453 iter_mode = word_mode;
1455 top_label = gen_label_rtx ();
1456 cmp_label = gen_label_rtx ();
1457 iter = gen_reg_rtx (iter_mode);
1459 emit_move_insn (iter, const0_rtx);
1461 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1462 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1463 do_pending_stack_adjust ();
1465 emit_jump (cmp_label);
1466 emit_label (top_label);
1468 tmp = convert_modes (Pmode, iter_mode, iter, true);
1469 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1470 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1471 x = change_address (x, QImode, x_addr);
1472 y = change_address (y, QImode, y_addr);
1474 emit_move_insn (x, y);
1476 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1477 true, OPTAB_LIB_WIDEN);
1478 if (tmp != iter)
1479 emit_move_insn (iter, tmp);
1481 emit_label (cmp_label);
1483 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1484 true, top_label);
1487 /* Copy all or part of a value X into registers starting at REGNO.
1488 The number of registers to be filled is NREGS. */
1490 void
1491 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1493 int i;
1494 #ifdef HAVE_load_multiple
1495 rtx pat;
1496 rtx last;
1497 #endif
1499 if (nregs == 0)
1500 return;
1502 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1503 x = validize_mem (force_const_mem (mode, x));
1505 /* See if the machine can do this with a load multiple insn. */
1506 #ifdef HAVE_load_multiple
1507 if (HAVE_load_multiple)
1509 last = get_last_insn ();
1510 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1511 GEN_INT (nregs));
1512 if (pat)
1514 emit_insn (pat);
1515 return;
1517 else
1518 delete_insns_since (last);
1520 #endif
1522 for (i = 0; i < nregs; i++)
1523 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1524 operand_subword_force (x, i, mode));
1527 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1528 The number of registers to be filled is NREGS. */
1530 void
1531 move_block_from_reg (int regno, rtx x, int nregs)
1533 int i;
1535 if (nregs == 0)
1536 return;
1538 /* See if the machine can do this with a store multiple insn. */
1539 #ifdef HAVE_store_multiple
1540 if (HAVE_store_multiple)
1542 rtx last = get_last_insn ();
1543 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1544 GEN_INT (nregs));
1545 if (pat)
1547 emit_insn (pat);
1548 return;
1550 else
1551 delete_insns_since (last);
1553 #endif
1555 for (i = 0; i < nregs; i++)
1557 rtx tem = operand_subword (x, i, 1, BLKmode);
1559 gcc_assert (tem);
1561 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1565 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1566 ORIG, where ORIG is a non-consecutive group of registers represented by
1567 a PARALLEL. The clone is identical to the original except in that the
1568 original set of registers is replaced by a new set of pseudo registers.
1569 The new set has the same modes as the original set. */
1572 gen_group_rtx (rtx orig)
1574 int i, length;
1575 rtx *tmps;
1577 gcc_assert (GET_CODE (orig) == PARALLEL);
1579 length = XVECLEN (orig, 0);
1580 tmps = alloca (sizeof (rtx) * length);
1582 /* Skip a NULL entry in first slot. */
1583 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1585 if (i)
1586 tmps[0] = 0;
1588 for (; i < length; i++)
1590 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1591 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1593 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1596 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1599 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1600 except that values are placed in TMPS[i], and must later be moved
1601 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1603 static void
1604 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1606 rtx src;
1607 int start, i;
1608 enum machine_mode m = GET_MODE (orig_src);
1610 gcc_assert (GET_CODE (dst) == PARALLEL);
1612 if (m != VOIDmode
1613 && !SCALAR_INT_MODE_P (m)
1614 && !MEM_P (orig_src)
1615 && GET_CODE (orig_src) != CONCAT)
1617 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1618 if (imode == BLKmode)
1619 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1620 else
1621 src = gen_reg_rtx (imode);
1622 if (imode != BLKmode)
1623 src = gen_lowpart (GET_MODE (orig_src), src);
1624 emit_move_insn (src, orig_src);
1625 /* ...and back again. */
1626 if (imode != BLKmode)
1627 src = gen_lowpart (imode, src);
1628 emit_group_load_1 (tmps, dst, src, type, ssize);
1629 return;
1632 /* Check for a NULL entry, used to indicate that the parameter goes
1633 both on the stack and in registers. */
1634 if (XEXP (XVECEXP (dst, 0, 0), 0))
1635 start = 0;
1636 else
1637 start = 1;
1639 /* Process the pieces. */
1640 for (i = start; i < XVECLEN (dst, 0); i++)
1642 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1643 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1644 unsigned int bytelen = GET_MODE_SIZE (mode);
1645 int shift = 0;
1647 /* Handle trailing fragments that run over the size of the struct. */
1648 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1650 /* Arrange to shift the fragment to where it belongs.
1651 extract_bit_field loads to the lsb of the reg. */
1652 if (
1653 #ifdef BLOCK_REG_PADDING
1654 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1655 == (BYTES_BIG_ENDIAN ? upward : downward)
1656 #else
1657 BYTES_BIG_ENDIAN
1658 #endif
1660 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1661 bytelen = ssize - bytepos;
1662 gcc_assert (bytelen > 0);
1665 /* If we won't be loading directly from memory, protect the real source
1666 from strange tricks we might play; but make sure that the source can
1667 be loaded directly into the destination. */
1668 src = orig_src;
1669 if (!MEM_P (orig_src)
1670 && (!CONSTANT_P (orig_src)
1671 || (GET_MODE (orig_src) != mode
1672 && GET_MODE (orig_src) != VOIDmode)))
1674 if (GET_MODE (orig_src) == VOIDmode)
1675 src = gen_reg_rtx (mode);
1676 else
1677 src = gen_reg_rtx (GET_MODE (orig_src));
1679 emit_move_insn (src, orig_src);
1682 /* Optimize the access just a bit. */
1683 if (MEM_P (src)
1684 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1685 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1686 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1687 && bytelen == GET_MODE_SIZE (mode))
1689 tmps[i] = gen_reg_rtx (mode);
1690 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1692 else if (COMPLEX_MODE_P (mode)
1693 && GET_MODE (src) == mode
1694 && bytelen == GET_MODE_SIZE (mode))
1695 /* Let emit_move_complex do the bulk of the work. */
1696 tmps[i] = src;
1697 else if (GET_CODE (src) == CONCAT)
1699 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1700 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1702 if ((bytepos == 0 && bytelen == slen0)
1703 || (bytepos != 0 && bytepos + bytelen <= slen))
1705 /* The following assumes that the concatenated objects all
1706 have the same size. In this case, a simple calculation
1707 can be used to determine the object and the bit field
1708 to be extracted. */
1709 tmps[i] = XEXP (src, bytepos / slen0);
1710 if (! CONSTANT_P (tmps[i])
1711 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1712 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1713 (bytepos % slen0) * BITS_PER_UNIT,
1714 1, NULL_RTX, mode, mode);
1716 else
1718 rtx mem;
1720 gcc_assert (!bytepos);
1721 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1722 emit_move_insn (mem, src);
1723 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1724 0, 1, NULL_RTX, mode, mode);
1727 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1728 SIMD register, which is currently broken. While we get GCC
1729 to emit proper RTL for these cases, let's dump to memory. */
1730 else if (VECTOR_MODE_P (GET_MODE (dst))
1731 && REG_P (src))
1733 int slen = GET_MODE_SIZE (GET_MODE (src));
1734 rtx mem;
1736 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1737 emit_move_insn (mem, src);
1738 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1740 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1741 && XVECLEN (dst, 0) > 1)
1742 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1743 else if (CONSTANT_P (src)
1744 || (REG_P (src) && GET_MODE (src) == mode))
1745 tmps[i] = src;
1746 else
1747 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1748 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1749 mode, mode);
1751 if (shift)
1752 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1753 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1757 /* Emit code to move a block SRC of type TYPE to a block DST,
1758 where DST is non-consecutive registers represented by a PARALLEL.
1759 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1760 if not known. */
1762 void
1763 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1765 rtx *tmps;
1766 int i;
1768 tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
1769 emit_group_load_1 (tmps, dst, src, type, ssize);
1771 /* Copy the extracted pieces into the proper (probable) hard regs. */
1772 for (i = 0; i < XVECLEN (dst, 0); i++)
1774 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1775 if (d == NULL)
1776 continue;
1777 emit_move_insn (d, tmps[i]);
1781 /* Similar, but load SRC into new pseudos in a format that looks like
1782 PARALLEL. This can later be fed to emit_group_move to get things
1783 in the right place. */
1786 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1788 rtvec vec;
1789 int i;
1791 vec = rtvec_alloc (XVECLEN (parallel, 0));
1792 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1794 /* Convert the vector to look just like the original PARALLEL, except
1795 with the computed values. */
1796 for (i = 0; i < XVECLEN (parallel, 0); i++)
1798 rtx e = XVECEXP (parallel, 0, i);
1799 rtx d = XEXP (e, 0);
1801 if (d)
1803 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1804 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1806 RTVEC_ELT (vec, i) = e;
1809 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1812 /* Emit code to move a block SRC to block DST, where SRC and DST are
1813 non-consecutive groups of registers, each represented by a PARALLEL. */
1815 void
1816 emit_group_move (rtx dst, rtx src)
1818 int i;
1820 gcc_assert (GET_CODE (src) == PARALLEL
1821 && GET_CODE (dst) == PARALLEL
1822 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1824 /* Skip first entry if NULL. */
1825 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1826 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1827 XEXP (XVECEXP (src, 0, i), 0));
1830 /* Move a group of registers represented by a PARALLEL into pseudos. */
1833 emit_group_move_into_temps (rtx src)
1835 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1836 int i;
1838 for (i = 0; i < XVECLEN (src, 0); i++)
1840 rtx e = XVECEXP (src, 0, i);
1841 rtx d = XEXP (e, 0);
1843 if (d)
1844 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1845 RTVEC_ELT (vec, i) = e;
1848 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1851 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1852 where SRC is non-consecutive registers represented by a PARALLEL.
1853 SSIZE represents the total size of block ORIG_DST, or -1 if not
1854 known. */
1856 void
1857 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1859 rtx *tmps, dst;
1860 int start, i;
1861 enum machine_mode m = GET_MODE (orig_dst);
1863 gcc_assert (GET_CODE (src) == PARALLEL);
1865 if (!SCALAR_INT_MODE_P (m)
1866 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1868 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1869 if (imode == BLKmode)
1870 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1871 else
1872 dst = gen_reg_rtx (imode);
1873 emit_group_store (dst, src, type, ssize);
1874 if (imode != BLKmode)
1875 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1876 emit_move_insn (orig_dst, dst);
1877 return;
1880 /* Check for a NULL entry, used to indicate that the parameter goes
1881 both on the stack and in registers. */
1882 if (XEXP (XVECEXP (src, 0, 0), 0))
1883 start = 0;
1884 else
1885 start = 1;
1887 tmps = alloca (sizeof (rtx) * XVECLEN (src, 0));
1889 /* Copy the (probable) hard regs into pseudos. */
1890 for (i = start; i < XVECLEN (src, 0); i++)
1892 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1893 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1894 emit_move_insn (tmps[i], reg);
1897 /* If we won't be storing directly into memory, protect the real destination
1898 from strange tricks we might play. */
1899 dst = orig_dst;
1900 if (GET_CODE (dst) == PARALLEL)
1902 rtx temp;
1904 /* We can get a PARALLEL dst if there is a conditional expression in
1905 a return statement. In that case, the dst and src are the same,
1906 so no action is necessary. */
1907 if (rtx_equal_p (dst, src))
1908 return;
1910 /* It is unclear if we can ever reach here, but we may as well handle
1911 it. Allocate a temporary, and split this into a store/load to/from
1912 the temporary. */
1914 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1915 emit_group_store (temp, src, type, ssize);
1916 emit_group_load (dst, temp, type, ssize);
1917 return;
1919 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1921 dst = gen_reg_rtx (GET_MODE (orig_dst));
1922 /* Make life a bit easier for combine. */
1923 emit_move_insn (dst, CONST0_RTX (GET_MODE (orig_dst)));
1926 /* Process the pieces. */
1927 for (i = start; i < XVECLEN (src, 0); i++)
1929 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1930 enum machine_mode mode = GET_MODE (tmps[i]);
1931 unsigned int bytelen = GET_MODE_SIZE (mode);
1932 rtx dest = dst;
1934 /* Handle trailing fragments that run over the size of the struct. */
1935 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1937 /* store_bit_field always takes its value from the lsb.
1938 Move the fragment to the lsb if it's not already there. */
1939 if (
1940 #ifdef BLOCK_REG_PADDING
1941 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
1942 == (BYTES_BIG_ENDIAN ? upward : downward)
1943 #else
1944 BYTES_BIG_ENDIAN
1945 #endif
1948 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1949 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
1950 build_int_cst (NULL_TREE, shift),
1951 tmps[i], 0);
1953 bytelen = ssize - bytepos;
1956 if (GET_CODE (dst) == CONCAT)
1958 if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1959 dest = XEXP (dst, 0);
1960 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1962 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
1963 dest = XEXP (dst, 1);
1965 else
1967 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
1968 dest = assign_stack_temp (GET_MODE (dest),
1969 GET_MODE_SIZE (GET_MODE (dest)), 0);
1970 emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
1971 tmps[i]);
1972 dst = dest;
1973 break;
1977 /* Optimize the access just a bit. */
1978 if (MEM_P (dest)
1979 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
1980 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
1981 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1982 && bytelen == GET_MODE_SIZE (mode))
1983 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
1984 else
1985 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
1986 mode, tmps[i]);
1989 /* Copy from the pseudo into the (probable) hard reg. */
1990 if (orig_dst != dst)
1991 emit_move_insn (orig_dst, dst);
1994 /* Generate code to copy a BLKmode object of TYPE out of a
1995 set of registers starting with SRCREG into TGTBLK. If TGTBLK
1996 is null, a stack temporary is created. TGTBLK is returned.
1998 The purpose of this routine is to handle functions that return
1999 BLKmode structures in registers. Some machines (the PA for example)
2000 want to return all small structures in registers regardless of the
2001 structure's alignment. */
2004 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2006 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2007 rtx src = NULL, dst = NULL;
2008 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2009 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2011 if (tgtblk == 0)
2013 tgtblk = assign_temp (build_qualified_type (type,
2014 (TYPE_QUALS (type)
2015 | TYPE_QUAL_CONST)),
2016 0, 1, 1);
2017 preserve_temp_slots (tgtblk);
2020 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2021 into a new pseudo which is a full word. */
2023 if (GET_MODE (srcreg) != BLKmode
2024 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2025 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2027 /* If the structure doesn't take up a whole number of words, see whether
2028 SRCREG is padded on the left or on the right. If it's on the left,
2029 set PADDING_CORRECTION to the number of bits to skip.
2031 In most ABIs, the structure will be returned at the least end of
2032 the register, which translates to right padding on little-endian
2033 targets and left padding on big-endian targets. The opposite
2034 holds if the structure is returned at the most significant
2035 end of the register. */
2036 if (bytes % UNITS_PER_WORD != 0
2037 && (targetm.calls.return_in_msb (type)
2038 ? !BYTES_BIG_ENDIAN
2039 : BYTES_BIG_ENDIAN))
2040 padding_correction
2041 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2043 /* Copy the structure BITSIZE bites at a time.
2045 We could probably emit more efficient code for machines which do not use
2046 strict alignment, but it doesn't seem worth the effort at the current
2047 time. */
2048 for (bitpos = 0, xbitpos = padding_correction;
2049 bitpos < bytes * BITS_PER_UNIT;
2050 bitpos += bitsize, xbitpos += bitsize)
2052 /* We need a new source operand each time xbitpos is on a
2053 word boundary and when xbitpos == padding_correction
2054 (the first time through). */
2055 if (xbitpos % BITS_PER_WORD == 0
2056 || xbitpos == padding_correction)
2057 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2058 GET_MODE (srcreg));
2060 /* We need a new destination operand each time bitpos is on
2061 a word boundary. */
2062 if (bitpos % BITS_PER_WORD == 0)
2063 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2065 /* Use xbitpos for the source extraction (right justified) and
2066 xbitpos for the destination store (left justified). */
2067 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2068 extract_bit_field (src, bitsize,
2069 xbitpos % BITS_PER_WORD, 1,
2070 NULL_RTX, word_mode, word_mode));
2073 return tgtblk;
2076 /* Add a USE expression for REG to the (possibly empty) list pointed
2077 to by CALL_FUSAGE. REG must denote a hard register. */
2079 void
2080 use_reg (rtx *call_fusage, rtx reg)
2082 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2084 *call_fusage
2085 = gen_rtx_EXPR_LIST (VOIDmode,
2086 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2089 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2090 starting at REGNO. All of these registers must be hard registers. */
2092 void
2093 use_regs (rtx *call_fusage, int regno, int nregs)
2095 int i;
2097 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2099 for (i = 0; i < nregs; i++)
2100 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2103 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2104 PARALLEL REGS. This is for calls that pass values in multiple
2105 non-contiguous locations. The Irix 6 ABI has examples of this. */
2107 void
2108 use_group_regs (rtx *call_fusage, rtx regs)
2110 int i;
2112 for (i = 0; i < XVECLEN (regs, 0); i++)
2114 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2116 /* A NULL entry means the parameter goes both on the stack and in
2117 registers. This can also be a MEM for targets that pass values
2118 partially on the stack and partially in registers. */
2119 if (reg != 0 && REG_P (reg))
2120 use_reg (call_fusage, reg);
2125 /* Determine whether the LEN bytes generated by CONSTFUN can be
2126 stored to memory using several move instructions. CONSTFUNDATA is
2127 a pointer which will be passed as argument in every CONSTFUN call.
2128 ALIGN is maximum alignment we can assume. Return nonzero if a
2129 call to store_by_pieces should succeed. */
2132 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2133 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2134 void *constfundata, unsigned int align)
2136 unsigned HOST_WIDE_INT l;
2137 unsigned int max_size;
2138 HOST_WIDE_INT offset = 0;
2139 enum machine_mode mode, tmode;
2140 enum insn_code icode;
2141 int reverse;
2142 rtx cst;
2144 if (len == 0)
2145 return 1;
2147 if (! STORE_BY_PIECES_P (len, align))
2148 return 0;
2150 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2151 if (align >= GET_MODE_ALIGNMENT (tmode))
2152 align = GET_MODE_ALIGNMENT (tmode);
2153 else
2155 enum machine_mode xmode;
2157 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2158 tmode != VOIDmode;
2159 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2160 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2161 || SLOW_UNALIGNED_ACCESS (tmode, align))
2162 break;
2164 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2167 /* We would first store what we can in the largest integer mode, then go to
2168 successively smaller modes. */
2170 for (reverse = 0;
2171 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2172 reverse++)
2174 l = len;
2175 mode = VOIDmode;
2176 max_size = STORE_MAX_PIECES + 1;
2177 while (max_size > 1)
2179 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2180 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2181 if (GET_MODE_SIZE (tmode) < max_size)
2182 mode = tmode;
2184 if (mode == VOIDmode)
2185 break;
2187 icode = mov_optab->handlers[(int) mode].insn_code;
2188 if (icode != CODE_FOR_nothing
2189 && align >= GET_MODE_ALIGNMENT (mode))
2191 unsigned int size = GET_MODE_SIZE (mode);
2193 while (l >= size)
2195 if (reverse)
2196 offset -= size;
2198 cst = (*constfun) (constfundata, offset, mode);
2199 if (!LEGITIMATE_CONSTANT_P (cst))
2200 return 0;
2202 if (!reverse)
2203 offset += size;
2205 l -= size;
2209 max_size = GET_MODE_SIZE (mode);
2212 /* The code above should have handled everything. */
2213 gcc_assert (!l);
2216 return 1;
2219 /* Generate several move instructions to store LEN bytes generated by
2220 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2221 pointer which will be passed as argument in every CONSTFUN call.
2222 ALIGN is maximum alignment we can assume.
2223 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2224 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2225 stpcpy. */
2228 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2229 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2230 void *constfundata, unsigned int align, int endp)
2232 struct store_by_pieces data;
2234 if (len == 0)
2236 gcc_assert (endp != 2);
2237 return to;
2240 gcc_assert (STORE_BY_PIECES_P (len, align));
2241 data.constfun = constfun;
2242 data.constfundata = constfundata;
2243 data.len = len;
2244 data.to = to;
2245 store_by_pieces_1 (&data, align);
2246 if (endp)
2248 rtx to1;
2250 gcc_assert (!data.reverse);
2251 if (data.autinc_to)
2253 if (endp == 2)
2255 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2256 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2257 else
2258 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2259 -1));
2261 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2262 data.offset);
2264 else
2266 if (endp == 2)
2267 --data.offset;
2268 to1 = adjust_address (data.to, QImode, data.offset);
2270 return to1;
2272 else
2273 return data.to;
2276 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2277 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2279 static void
2280 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2282 struct store_by_pieces data;
2284 if (len == 0)
2285 return;
2287 data.constfun = clear_by_pieces_1;
2288 data.constfundata = NULL;
2289 data.len = len;
2290 data.to = to;
2291 store_by_pieces_1 (&data, align);
2294 /* Callback routine for clear_by_pieces.
2295 Return const0_rtx unconditionally. */
2297 static rtx
2298 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2299 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2300 enum machine_mode mode ATTRIBUTE_UNUSED)
2302 return const0_rtx;
2305 /* Subroutine of clear_by_pieces and store_by_pieces.
2306 Generate several move instructions to store LEN bytes of block TO. (A MEM
2307 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2309 static void
2310 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2311 unsigned int align ATTRIBUTE_UNUSED)
2313 rtx to_addr = XEXP (data->to, 0);
2314 unsigned int max_size = STORE_MAX_PIECES + 1;
2315 enum machine_mode mode = VOIDmode, tmode;
2316 enum insn_code icode;
2318 data->offset = 0;
2319 data->to_addr = to_addr;
2320 data->autinc_to
2321 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2322 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2324 data->explicit_inc_to = 0;
2325 data->reverse
2326 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2327 if (data->reverse)
2328 data->offset = data->len;
2330 /* If storing requires more than two move insns,
2331 copy addresses to registers (to make displacements shorter)
2332 and use post-increment if available. */
2333 if (!data->autinc_to
2334 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2336 /* Determine the main mode we'll be using. */
2337 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2338 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2339 if (GET_MODE_SIZE (tmode) < max_size)
2340 mode = tmode;
2342 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2344 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2345 data->autinc_to = 1;
2346 data->explicit_inc_to = -1;
2349 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2350 && ! data->autinc_to)
2352 data->to_addr = copy_addr_to_reg (to_addr);
2353 data->autinc_to = 1;
2354 data->explicit_inc_to = 1;
2357 if ( !data->autinc_to && CONSTANT_P (to_addr))
2358 data->to_addr = copy_addr_to_reg (to_addr);
2361 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2362 if (align >= GET_MODE_ALIGNMENT (tmode))
2363 align = GET_MODE_ALIGNMENT (tmode);
2364 else
2366 enum machine_mode xmode;
2368 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2369 tmode != VOIDmode;
2370 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2371 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2372 || SLOW_UNALIGNED_ACCESS (tmode, align))
2373 break;
2375 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2378 /* First store what we can in the largest integer mode, then go to
2379 successively smaller modes. */
2381 while (max_size > 1)
2383 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2384 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2385 if (GET_MODE_SIZE (tmode) < max_size)
2386 mode = tmode;
2388 if (mode == VOIDmode)
2389 break;
2391 icode = mov_optab->handlers[(int) mode].insn_code;
2392 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2393 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2395 max_size = GET_MODE_SIZE (mode);
2398 /* The code above should have handled everything. */
2399 gcc_assert (!data->len);
2402 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2403 with move instructions for mode MODE. GENFUN is the gen_... function
2404 to make a move insn for that mode. DATA has all the other info. */
2406 static void
2407 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2408 struct store_by_pieces *data)
2410 unsigned int size = GET_MODE_SIZE (mode);
2411 rtx to1, cst;
2413 while (data->len >= size)
2415 if (data->reverse)
2416 data->offset -= size;
2418 if (data->autinc_to)
2419 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2420 data->offset);
2421 else
2422 to1 = adjust_address (data->to, mode, data->offset);
2424 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2425 emit_insn (gen_add2_insn (data->to_addr,
2426 GEN_INT (-(HOST_WIDE_INT) size)));
2428 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2429 emit_insn ((*genfun) (to1, cst));
2431 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2432 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2434 if (! data->reverse)
2435 data->offset += size;
2437 data->len -= size;
2441 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2442 its length in bytes. */
2445 clear_storage (rtx object, rtx size, enum block_op_methods method)
2447 enum machine_mode mode = GET_MODE (object);
2448 unsigned int align;
2450 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2452 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2453 just move a zero. Otherwise, do this a piece at a time. */
2454 if (mode != BLKmode
2455 && GET_CODE (size) == CONST_INT
2456 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2458 rtx zero = CONST0_RTX (mode);
2459 if (zero != NULL)
2461 emit_move_insn (object, zero);
2462 return NULL;
2465 if (COMPLEX_MODE_P (mode))
2467 zero = CONST0_RTX (GET_MODE_INNER (mode));
2468 if (zero != NULL)
2470 write_complex_part (object, zero, 0);
2471 write_complex_part (object, zero, 1);
2472 return NULL;
2477 if (size == const0_rtx)
2478 return NULL;
2480 align = MEM_ALIGN (object);
2482 if (GET_CODE (size) == CONST_INT
2483 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2484 clear_by_pieces (object, INTVAL (size), align);
2485 else if (set_storage_via_setmem (object, size, const0_rtx, align))
2487 else
2488 return clear_storage_via_libcall (object, size,
2489 method == BLOCK_OP_TAILCALL);
2491 return NULL;
2494 /* A subroutine of clear_storage. Expand a call to memset.
2495 Return the return value of memset, 0 otherwise. */
2497 static rtx
2498 clear_storage_via_libcall (rtx object, rtx size, bool tailcall)
2500 tree call_expr, arg_list, fn, object_tree, size_tree;
2501 enum machine_mode size_mode;
2502 rtx retval;
2504 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2505 place those into new pseudos into a VAR_DECL and use them later. */
2507 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2509 size_mode = TYPE_MODE (sizetype);
2510 size = convert_to_mode (size_mode, size, 1);
2511 size = copy_to_mode_reg (size_mode, size);
2513 /* It is incorrect to use the libcall calling conventions to call
2514 memset in this context. This could be a user call to memset and
2515 the user may wish to examine the return value from memset. For
2516 targets where libcalls and normal calls have different conventions
2517 for returning pointers, we could end up generating incorrect code. */
2519 object_tree = make_tree (ptr_type_node, object);
2520 size_tree = make_tree (sizetype, size);
2522 fn = clear_storage_libcall_fn (true);
2523 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
2524 arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
2525 arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
2527 /* Now we have to build up the CALL_EXPR itself. */
2528 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
2529 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
2530 call_expr, arg_list, NULL_TREE);
2531 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2533 retval = expand_normal (call_expr);
2535 return retval;
2538 /* A subroutine of clear_storage_via_libcall. Create the tree node
2539 for the function we use for block clears. The first time FOR_CALL
2540 is true, we call assemble_external. */
2542 static GTY(()) tree block_clear_fn;
2544 void
2545 init_block_clear_fn (const char *asmspec)
2547 if (!block_clear_fn)
2549 tree fn, args;
2551 fn = get_identifier ("memset");
2552 args = build_function_type_list (ptr_type_node, ptr_type_node,
2553 integer_type_node, sizetype,
2554 NULL_TREE);
2556 fn = build_decl (FUNCTION_DECL, fn, args);
2557 DECL_EXTERNAL (fn) = 1;
2558 TREE_PUBLIC (fn) = 1;
2559 DECL_ARTIFICIAL (fn) = 1;
2560 TREE_NOTHROW (fn) = 1;
2561 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2562 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2564 block_clear_fn = fn;
2567 if (asmspec)
2568 set_user_assembler_name (block_clear_fn, asmspec);
2571 static tree
2572 clear_storage_libcall_fn (int for_call)
2574 static bool emitted_extern;
2576 if (!block_clear_fn)
2577 init_block_clear_fn (NULL);
2579 if (for_call && !emitted_extern)
2581 emitted_extern = true;
2582 make_decl_rtl (block_clear_fn);
2583 assemble_external (block_clear_fn);
2586 return block_clear_fn;
2589 /* Expand a setmem pattern; return true if successful. */
2591 bool
2592 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align)
2594 /* Try the most limited insn first, because there's no point
2595 including more than one in the machine description unless
2596 the more limited one has some advantage. */
2598 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2599 enum machine_mode mode;
2601 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2602 mode = GET_MODE_WIDER_MODE (mode))
2604 enum insn_code code = setmem_optab[(int) mode];
2605 insn_operand_predicate_fn pred;
2607 if (code != CODE_FOR_nothing
2608 /* We don't need MODE to be narrower than
2609 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2610 the mode mask, as it is returned by the macro, it will
2611 definitely be less than the actual mode mask. */
2612 && ((GET_CODE (size) == CONST_INT
2613 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2614 <= (GET_MODE_MASK (mode) >> 1)))
2615 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2616 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2617 || (*pred) (object, BLKmode))
2618 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2619 || (*pred) (opalign, VOIDmode)))
2621 rtx opsize, opchar;
2622 enum machine_mode char_mode;
2623 rtx last = get_last_insn ();
2624 rtx pat;
2626 opsize = convert_to_mode (mode, size, 1);
2627 pred = insn_data[(int) code].operand[1].predicate;
2628 if (pred != 0 && ! (*pred) (opsize, mode))
2629 opsize = copy_to_mode_reg (mode, opsize);
2631 opchar = val;
2632 char_mode = insn_data[(int) code].operand[2].mode;
2633 if (char_mode != VOIDmode)
2635 opchar = convert_to_mode (char_mode, opchar, 1);
2636 pred = insn_data[(int) code].operand[2].predicate;
2637 if (pred != 0 && ! (*pred) (opchar, char_mode))
2638 opchar = copy_to_mode_reg (char_mode, opchar);
2641 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2642 if (pat)
2644 emit_insn (pat);
2645 return true;
2647 else
2648 delete_insns_since (last);
2652 return false;
2656 /* Write to one of the components of the complex value CPLX. Write VAL to
2657 the real part if IMAG_P is false, and the imaginary part if its true. */
2659 static void
2660 write_complex_part (rtx cplx, rtx val, bool imag_p)
2662 enum machine_mode cmode;
2663 enum machine_mode imode;
2664 unsigned ibitsize;
2666 if (GET_CODE (cplx) == CONCAT)
2668 emit_move_insn (XEXP (cplx, imag_p), val);
2669 return;
2672 cmode = GET_MODE (cplx);
2673 imode = GET_MODE_INNER (cmode);
2674 ibitsize = GET_MODE_BITSIZE (imode);
2676 /* For MEMs simplify_gen_subreg may generate an invalid new address
2677 because, e.g., the original address is considered mode-dependent
2678 by the target, which restricts simplify_subreg from invoking
2679 adjust_address_nv. Instead of preparing fallback support for an
2680 invalid address, we call adjust_address_nv directly. */
2681 if (MEM_P (cplx))
2683 emit_move_insn (adjust_address_nv (cplx, imode,
2684 imag_p ? GET_MODE_SIZE (imode) : 0),
2685 val);
2686 return;
2689 /* If the sub-object is at least word sized, then we know that subregging
2690 will work. This special case is important, since store_bit_field
2691 wants to operate on integer modes, and there's rarely an OImode to
2692 correspond to TCmode. */
2693 if (ibitsize >= BITS_PER_WORD
2694 /* For hard regs we have exact predicates. Assume we can split
2695 the original object if it spans an even number of hard regs.
2696 This special case is important for SCmode on 64-bit platforms
2697 where the natural size of floating-point regs is 32-bit. */
2698 || (REG_P (cplx)
2699 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2700 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2702 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2703 imag_p ? GET_MODE_SIZE (imode) : 0);
2704 if (part)
2706 emit_move_insn (part, val);
2707 return;
2709 else
2710 /* simplify_gen_subreg may fail for sub-word MEMs. */
2711 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2714 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2717 /* Extract one of the components of the complex value CPLX. Extract the
2718 real part if IMAG_P is false, and the imaginary part if it's true. */
2720 static rtx
2721 read_complex_part (rtx cplx, bool imag_p)
2723 enum machine_mode cmode, imode;
2724 unsigned ibitsize;
2726 if (GET_CODE (cplx) == CONCAT)
2727 return XEXP (cplx, imag_p);
2729 cmode = GET_MODE (cplx);
2730 imode = GET_MODE_INNER (cmode);
2731 ibitsize = GET_MODE_BITSIZE (imode);
2733 /* Special case reads from complex constants that got spilled to memory. */
2734 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2736 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2737 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2739 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2740 if (CONSTANT_CLASS_P (part))
2741 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2745 /* For MEMs simplify_gen_subreg may generate an invalid new address
2746 because, e.g., the original address is considered mode-dependent
2747 by the target, which restricts simplify_subreg from invoking
2748 adjust_address_nv. Instead of preparing fallback support for an
2749 invalid address, we call adjust_address_nv directly. */
2750 if (MEM_P (cplx))
2751 return adjust_address_nv (cplx, imode,
2752 imag_p ? GET_MODE_SIZE (imode) : 0);
2754 /* If the sub-object is at least word sized, then we know that subregging
2755 will work. This special case is important, since extract_bit_field
2756 wants to operate on integer modes, and there's rarely an OImode to
2757 correspond to TCmode. */
2758 if (ibitsize >= BITS_PER_WORD
2759 /* For hard regs we have exact predicates. Assume we can split
2760 the original object if it spans an even number of hard regs.
2761 This special case is important for SCmode on 64-bit platforms
2762 where the natural size of floating-point regs is 32-bit. */
2763 || (REG_P (cplx)
2764 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2765 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2767 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2768 imag_p ? GET_MODE_SIZE (imode) : 0);
2769 if (ret)
2770 return ret;
2771 else
2772 /* simplify_gen_subreg may fail for sub-word MEMs. */
2773 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2776 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2777 true, NULL_RTX, imode, imode);
2780 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2781 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2782 represented in NEW_MODE. If FORCE is true, this will never happen, as
2783 we'll force-create a SUBREG if needed. */
2785 static rtx
2786 emit_move_change_mode (enum machine_mode new_mode,
2787 enum machine_mode old_mode, rtx x, bool force)
2789 rtx ret;
2791 if (MEM_P (x))
2793 /* We don't have to worry about changing the address since the
2794 size in bytes is supposed to be the same. */
2795 if (reload_in_progress)
2797 /* Copy the MEM to change the mode and move any
2798 substitutions from the old MEM to the new one. */
2799 ret = adjust_address_nv (x, new_mode, 0);
2800 copy_replacements (x, ret);
2802 else
2803 ret = adjust_address (x, new_mode, 0);
2805 else
2807 /* Note that we do want simplify_subreg's behavior of validating
2808 that the new mode is ok for a hard register. If we were to use
2809 simplify_gen_subreg, we would create the subreg, but would
2810 probably run into the target not being able to implement it. */
2811 /* Except, of course, when FORCE is true, when this is exactly what
2812 we want. Which is needed for CCmodes on some targets. */
2813 if (force)
2814 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2815 else
2816 ret = simplify_subreg (new_mode, x, old_mode, 0);
2819 return ret;
2822 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2823 an integer mode of the same size as MODE. Returns the instruction
2824 emitted, or NULL if such a move could not be generated. */
2826 static rtx
2827 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2829 enum machine_mode imode;
2830 enum insn_code code;
2832 /* There must exist a mode of the exact size we require. */
2833 imode = int_mode_for_mode (mode);
2834 if (imode == BLKmode)
2835 return NULL_RTX;
2837 /* The target must support moves in this mode. */
2838 code = mov_optab->handlers[imode].insn_code;
2839 if (code == CODE_FOR_nothing)
2840 return NULL_RTX;
2842 x = emit_move_change_mode (imode, mode, x, force);
2843 if (x == NULL_RTX)
2844 return NULL_RTX;
2845 y = emit_move_change_mode (imode, mode, y, force);
2846 if (y == NULL_RTX)
2847 return NULL_RTX;
2848 return emit_insn (GEN_FCN (code) (x, y));
2851 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2852 Return an equivalent MEM that does not use an auto-increment. */
2854 static rtx
2855 emit_move_resolve_push (enum machine_mode mode, rtx x)
2857 enum rtx_code code = GET_CODE (XEXP (x, 0));
2858 HOST_WIDE_INT adjust;
2859 rtx temp;
2861 adjust = GET_MODE_SIZE (mode);
2862 #ifdef PUSH_ROUNDING
2863 adjust = PUSH_ROUNDING (adjust);
2864 #endif
2865 if (code == PRE_DEC || code == POST_DEC)
2866 adjust = -adjust;
2867 else if (code == PRE_MODIFY || code == POST_MODIFY)
2869 rtx expr = XEXP (XEXP (x, 0), 1);
2870 HOST_WIDE_INT val;
2872 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2873 gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
2874 val = INTVAL (XEXP (expr, 1));
2875 if (GET_CODE (expr) == MINUS)
2876 val = -val;
2877 gcc_assert (adjust == val || adjust == -val);
2878 adjust = val;
2881 /* Do not use anti_adjust_stack, since we don't want to update
2882 stack_pointer_delta. */
2883 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2884 GEN_INT (adjust), stack_pointer_rtx,
2885 0, OPTAB_LIB_WIDEN);
2886 if (temp != stack_pointer_rtx)
2887 emit_move_insn (stack_pointer_rtx, temp);
2889 switch (code)
2891 case PRE_INC:
2892 case PRE_DEC:
2893 case PRE_MODIFY:
2894 temp = stack_pointer_rtx;
2895 break;
2896 case POST_INC:
2897 case POST_DEC:
2898 case POST_MODIFY:
2899 temp = plus_constant (stack_pointer_rtx, -adjust);
2900 break;
2901 default:
2902 gcc_unreachable ();
2905 return replace_equiv_address (x, temp);
2908 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2909 X is known to satisfy push_operand, and MODE is known to be complex.
2910 Returns the last instruction emitted. */
2912 static rtx
2913 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
2915 enum machine_mode submode = GET_MODE_INNER (mode);
2916 bool imag_first;
2918 #ifdef PUSH_ROUNDING
2919 unsigned int submodesize = GET_MODE_SIZE (submode);
2921 /* In case we output to the stack, but the size is smaller than the
2922 machine can push exactly, we need to use move instructions. */
2923 if (PUSH_ROUNDING (submodesize) != submodesize)
2925 x = emit_move_resolve_push (mode, x);
2926 return emit_move_insn (x, y);
2928 #endif
2930 /* Note that the real part always precedes the imag part in memory
2931 regardless of machine's endianness. */
2932 switch (GET_CODE (XEXP (x, 0)))
2934 case PRE_DEC:
2935 case POST_DEC:
2936 imag_first = true;
2937 break;
2938 case PRE_INC:
2939 case POST_INC:
2940 imag_first = false;
2941 break;
2942 default:
2943 gcc_unreachable ();
2946 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2947 read_complex_part (y, imag_first));
2948 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2949 read_complex_part (y, !imag_first));
2952 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2953 MODE is known to be complex. Returns the last instruction emitted. */
2955 static rtx
2956 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
2958 bool try_int;
2960 /* Need to take special care for pushes, to maintain proper ordering
2961 of the data, and possibly extra padding. */
2962 if (push_operand (x, mode))
2963 return emit_move_complex_push (mode, x, y);
2965 /* See if we can coerce the target into moving both values at once. */
2967 /* Move floating point as parts. */
2968 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
2969 && mov_optab->handlers[GET_MODE_INNER (mode)].insn_code != CODE_FOR_nothing)
2970 try_int = false;
2971 /* Not possible if the values are inherently not adjacent. */
2972 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
2973 try_int = false;
2974 /* Is possible if both are registers (or subregs of registers). */
2975 else if (register_operand (x, mode) && register_operand (y, mode))
2976 try_int = true;
2977 /* If one of the operands is a memory, and alignment constraints
2978 are friendly enough, we may be able to do combined memory operations.
2979 We do not attempt this if Y is a constant because that combination is
2980 usually better with the by-parts thing below. */
2981 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
2982 && (!STRICT_ALIGNMENT
2983 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
2984 try_int = true;
2985 else
2986 try_int = false;
2988 if (try_int)
2990 rtx ret;
2992 /* For memory to memory moves, optimal behavior can be had with the
2993 existing block move logic. */
2994 if (MEM_P (x) && MEM_P (y))
2996 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
2997 BLOCK_OP_NO_LIBCALL);
2998 return get_last_insn ();
3001 ret = emit_move_via_integer (mode, x, y, true);
3002 if (ret)
3003 return ret;
3006 /* Show the output dies here. This is necessary for SUBREGs
3007 of pseudos since we cannot track their lifetimes correctly;
3008 hard regs shouldn't appear here except as return values. */
3009 if (!reload_completed && !reload_in_progress
3010 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3011 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3013 write_complex_part (x, read_complex_part (y, false), false);
3014 write_complex_part (x, read_complex_part (y, true), true);
3015 return get_last_insn ();
3018 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3019 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3021 static rtx
3022 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3024 rtx ret;
3026 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3027 if (mode != CCmode)
3029 enum insn_code code = mov_optab->handlers[CCmode].insn_code;
3030 if (code != CODE_FOR_nothing)
3032 x = emit_move_change_mode (CCmode, mode, x, true);
3033 y = emit_move_change_mode (CCmode, mode, y, true);
3034 return emit_insn (GEN_FCN (code) (x, y));
3038 /* Otherwise, find the MODE_INT mode of the same width. */
3039 ret = emit_move_via_integer (mode, x, y, false);
3040 gcc_assert (ret != NULL);
3041 return ret;
3044 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3045 MODE is any multi-word or full-word mode that lacks a move_insn
3046 pattern. Note that you will get better code if you define such
3047 patterns, even if they must turn into multiple assembler instructions. */
3049 static rtx
3050 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3052 rtx last_insn = 0;
3053 rtx seq, inner;
3054 bool need_clobber;
3055 int i;
3057 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3059 /* If X is a push on the stack, do the push now and replace
3060 X with a reference to the stack pointer. */
3061 if (push_operand (x, mode))
3062 x = emit_move_resolve_push (mode, x);
3064 /* If we are in reload, see if either operand is a MEM whose address
3065 is scheduled for replacement. */
3066 if (reload_in_progress && MEM_P (x)
3067 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3068 x = replace_equiv_address_nv (x, inner);
3069 if (reload_in_progress && MEM_P (y)
3070 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3071 y = replace_equiv_address_nv (y, inner);
3073 start_sequence ();
3075 need_clobber = false;
3076 for (i = 0;
3077 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3078 i++)
3080 rtx xpart = operand_subword (x, i, 1, mode);
3081 rtx ypart = operand_subword (y, i, 1, mode);
3083 /* If we can't get a part of Y, put Y into memory if it is a
3084 constant. Otherwise, force it into a register. Then we must
3085 be able to get a part of Y. */
3086 if (ypart == 0 && CONSTANT_P (y))
3088 y = use_anchored_address (force_const_mem (mode, y));
3089 ypart = operand_subword (y, i, 1, mode);
3091 else if (ypart == 0)
3092 ypart = operand_subword_force (y, i, mode);
3094 gcc_assert (xpart && ypart);
3096 need_clobber |= (GET_CODE (xpart) == SUBREG);
3098 last_insn = emit_move_insn (xpart, ypart);
3101 seq = get_insns ();
3102 end_sequence ();
3104 /* Show the output dies here. This is necessary for SUBREGs
3105 of pseudos since we cannot track their lifetimes correctly;
3106 hard regs shouldn't appear here except as return values.
3107 We never want to emit such a clobber after reload. */
3108 if (x != y
3109 && ! (reload_in_progress || reload_completed)
3110 && need_clobber != 0)
3111 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3113 emit_insn (seq);
3115 return last_insn;
3118 /* Low level part of emit_move_insn.
3119 Called just like emit_move_insn, but assumes X and Y
3120 are basically valid. */
3123 emit_move_insn_1 (rtx x, rtx y)
3125 enum machine_mode mode = GET_MODE (x);
3126 enum insn_code code;
3128 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3130 code = mov_optab->handlers[mode].insn_code;
3131 if (code != CODE_FOR_nothing)
3132 return emit_insn (GEN_FCN (code) (x, y));
3134 /* Expand complex moves by moving real part and imag part. */
3135 if (COMPLEX_MODE_P (mode))
3136 return emit_move_complex (mode, x, y);
3138 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT)
3140 rtx result = emit_move_via_integer (mode, x, y, true);
3142 /* If we can't find an integer mode, use multi words. */
3143 if (result)
3144 return result;
3145 else
3146 return emit_move_multi_word (mode, x, y);
3149 if (GET_MODE_CLASS (mode) == MODE_CC)
3150 return emit_move_ccmode (mode, x, y);
3152 /* Try using a move pattern for the corresponding integer mode. This is
3153 only safe when simplify_subreg can convert MODE constants into integer
3154 constants. At present, it can only do this reliably if the value
3155 fits within a HOST_WIDE_INT. */
3156 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3158 rtx ret = emit_move_via_integer (mode, x, y, false);
3159 if (ret)
3160 return ret;
3163 return emit_move_multi_word (mode, x, y);
3166 /* Generate code to copy Y into X.
3167 Both Y and X must have the same mode, except that
3168 Y can be a constant with VOIDmode.
3169 This mode cannot be BLKmode; use emit_block_move for that.
3171 Return the last instruction emitted. */
3174 emit_move_insn (rtx x, rtx y)
3176 enum machine_mode mode = GET_MODE (x);
3177 rtx y_cst = NULL_RTX;
3178 rtx last_insn, set;
3180 gcc_assert (mode != BLKmode
3181 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3183 if (CONSTANT_P (y))
3185 if (optimize
3186 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3187 && (last_insn = compress_float_constant (x, y)))
3188 return last_insn;
3190 y_cst = y;
3192 if (!LEGITIMATE_CONSTANT_P (y))
3194 y = force_const_mem (mode, y);
3196 /* If the target's cannot_force_const_mem prevented the spill,
3197 assume that the target's move expanders will also take care
3198 of the non-legitimate constant. */
3199 if (!y)
3200 y = y_cst;
3201 else
3202 y = use_anchored_address (y);
3206 /* If X or Y are memory references, verify that their addresses are valid
3207 for the machine. */
3208 if (MEM_P (x)
3209 && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
3210 && ! push_operand (x, GET_MODE (x)))
3211 || (flag_force_addr
3212 && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
3213 x = validize_mem (x);
3215 if (MEM_P (y)
3216 && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
3217 || (flag_force_addr
3218 && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
3219 y = validize_mem (y);
3221 gcc_assert (mode != BLKmode);
3223 last_insn = emit_move_insn_1 (x, y);
3225 if (y_cst && REG_P (x)
3226 && (set = single_set (last_insn)) != NULL_RTX
3227 && SET_DEST (set) == x
3228 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3229 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3231 return last_insn;
3234 /* If Y is representable exactly in a narrower mode, and the target can
3235 perform the extension directly from constant or memory, then emit the
3236 move as an extension. */
3238 static rtx
3239 compress_float_constant (rtx x, rtx y)
3241 enum machine_mode dstmode = GET_MODE (x);
3242 enum machine_mode orig_srcmode = GET_MODE (y);
3243 enum machine_mode srcmode;
3244 REAL_VALUE_TYPE r;
3245 int oldcost, newcost;
3247 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3249 if (LEGITIMATE_CONSTANT_P (y))
3250 oldcost = rtx_cost (y, SET);
3251 else
3252 oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
3254 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3255 srcmode != orig_srcmode;
3256 srcmode = GET_MODE_WIDER_MODE (srcmode))
3258 enum insn_code ic;
3259 rtx trunc_y, last_insn;
3261 /* Skip if the target can't extend this way. */
3262 ic = can_extend_p (dstmode, srcmode, 0);
3263 if (ic == CODE_FOR_nothing)
3264 continue;
3266 /* Skip if the narrowed value isn't exact. */
3267 if (! exact_real_truncate (srcmode, &r))
3268 continue;
3270 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3272 if (LEGITIMATE_CONSTANT_P (trunc_y))
3274 /* Skip if the target needs extra instructions to perform
3275 the extension. */
3276 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3277 continue;
3278 /* This is valid, but may not be cheaper than the original. */
3279 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3280 if (oldcost < newcost)
3281 continue;
3283 else if (float_extend_from_mem[dstmode][srcmode])
3285 trunc_y = force_const_mem (srcmode, trunc_y);
3286 /* This is valid, but may not be cheaper than the original. */
3287 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3288 if (oldcost < newcost)
3289 continue;
3290 trunc_y = validize_mem (trunc_y);
3292 else
3293 continue;
3295 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3296 last_insn = get_last_insn ();
3298 if (REG_P (x))
3299 set_unique_reg_note (last_insn, REG_EQUAL, y);
3301 return last_insn;
3304 return NULL_RTX;
3307 /* Pushing data onto the stack. */
3309 /* Push a block of length SIZE (perhaps variable)
3310 and return an rtx to address the beginning of the block.
3311 The value may be virtual_outgoing_args_rtx.
3313 EXTRA is the number of bytes of padding to push in addition to SIZE.
3314 BELOW nonzero means this padding comes at low addresses;
3315 otherwise, the padding comes at high addresses. */
3318 push_block (rtx size, int extra, int below)
3320 rtx temp;
3322 size = convert_modes (Pmode, ptr_mode, size, 1);
3323 if (CONSTANT_P (size))
3324 anti_adjust_stack (plus_constant (size, extra));
3325 else if (REG_P (size) && extra == 0)
3326 anti_adjust_stack (size);
3327 else
3329 temp = copy_to_mode_reg (Pmode, size);
3330 if (extra != 0)
3331 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3332 temp, 0, OPTAB_LIB_WIDEN);
3333 anti_adjust_stack (temp);
3336 #ifndef STACK_GROWS_DOWNWARD
3337 if (0)
3338 #else
3339 if (1)
3340 #endif
3342 temp = virtual_outgoing_args_rtx;
3343 if (extra != 0 && below)
3344 temp = plus_constant (temp, extra);
3346 else
3348 if (GET_CODE (size) == CONST_INT)
3349 temp = plus_constant (virtual_outgoing_args_rtx,
3350 -INTVAL (size) - (below ? 0 : extra));
3351 else if (extra != 0 && !below)
3352 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3353 negate_rtx (Pmode, plus_constant (size, extra)));
3354 else
3355 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3356 negate_rtx (Pmode, size));
3359 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3362 #ifdef PUSH_ROUNDING
3364 /* Emit single push insn. */
3366 static void
3367 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3369 rtx dest_addr;
3370 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3371 rtx dest;
3372 enum insn_code icode;
3373 insn_operand_predicate_fn pred;
3375 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3376 /* If there is push pattern, use it. Otherwise try old way of throwing
3377 MEM representing push operation to move expander. */
3378 icode = push_optab->handlers[(int) mode].insn_code;
3379 if (icode != CODE_FOR_nothing)
3381 if (((pred = insn_data[(int) icode].operand[0].predicate)
3382 && !((*pred) (x, mode))))
3383 x = force_reg (mode, x);
3384 emit_insn (GEN_FCN (icode) (x));
3385 return;
3387 if (GET_MODE_SIZE (mode) == rounded_size)
3388 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3389 /* If we are to pad downward, adjust the stack pointer first and
3390 then store X into the stack location using an offset. This is
3391 because emit_move_insn does not know how to pad; it does not have
3392 access to type. */
3393 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3395 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3396 HOST_WIDE_INT offset;
3398 emit_move_insn (stack_pointer_rtx,
3399 expand_binop (Pmode,
3400 #ifdef STACK_GROWS_DOWNWARD
3401 sub_optab,
3402 #else
3403 add_optab,
3404 #endif
3405 stack_pointer_rtx,
3406 GEN_INT (rounded_size),
3407 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3409 offset = (HOST_WIDE_INT) padding_size;
3410 #ifdef STACK_GROWS_DOWNWARD
3411 if (STACK_PUSH_CODE == POST_DEC)
3412 /* We have already decremented the stack pointer, so get the
3413 previous value. */
3414 offset += (HOST_WIDE_INT) rounded_size;
3415 #else
3416 if (STACK_PUSH_CODE == POST_INC)
3417 /* We have already incremented the stack pointer, so get the
3418 previous value. */
3419 offset -= (HOST_WIDE_INT) rounded_size;
3420 #endif
3421 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3423 else
3425 #ifdef STACK_GROWS_DOWNWARD
3426 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3427 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3428 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3429 #else
3430 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3431 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3432 GEN_INT (rounded_size));
3433 #endif
3434 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3437 dest = gen_rtx_MEM (mode, dest_addr);
3439 if (type != 0)
3441 set_mem_attributes (dest, type, 1);
3443 if (flag_optimize_sibling_calls)
3444 /* Function incoming arguments may overlap with sibling call
3445 outgoing arguments and we cannot allow reordering of reads
3446 from function arguments with stores to outgoing arguments
3447 of sibling calls. */
3448 set_mem_alias_set (dest, 0);
3450 emit_move_insn (dest, x);
3452 #endif
3454 /* Generate code to push X onto the stack, assuming it has mode MODE and
3455 type TYPE.
3456 MODE is redundant except when X is a CONST_INT (since they don't
3457 carry mode info).
3458 SIZE is an rtx for the size of data to be copied (in bytes),
3459 needed only if X is BLKmode.
3461 ALIGN (in bits) is maximum alignment we can assume.
3463 If PARTIAL and REG are both nonzero, then copy that many of the first
3464 bytes of X into registers starting with REG, and push the rest of X.
3465 The amount of space pushed is decreased by PARTIAL bytes.
3466 REG must be a hard register in this case.
3467 If REG is zero but PARTIAL is not, take any all others actions for an
3468 argument partially in registers, but do not actually load any
3469 registers.
3471 EXTRA is the amount in bytes of extra space to leave next to this arg.
3472 This is ignored if an argument block has already been allocated.
3474 On a machine that lacks real push insns, ARGS_ADDR is the address of
3475 the bottom of the argument block for this call. We use indexing off there
3476 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3477 argument block has not been preallocated.
3479 ARGS_SO_FAR is the size of args previously pushed for this call.
3481 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3482 for arguments passed in registers. If nonzero, it will be the number
3483 of bytes required. */
3485 void
3486 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3487 unsigned int align, int partial, rtx reg, int extra,
3488 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3489 rtx alignment_pad)
3491 rtx xinner;
3492 enum direction stack_direction
3493 #ifdef STACK_GROWS_DOWNWARD
3494 = downward;
3495 #else
3496 = upward;
3497 #endif
3499 /* Decide where to pad the argument: `downward' for below,
3500 `upward' for above, or `none' for don't pad it.
3501 Default is below for small data on big-endian machines; else above. */
3502 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3504 /* Invert direction if stack is post-decrement.
3505 FIXME: why? */
3506 if (STACK_PUSH_CODE == POST_DEC)
3507 if (where_pad != none)
3508 where_pad = (where_pad == downward ? upward : downward);
3510 xinner = x;
3512 if (mode == BLKmode)
3514 /* Copy a block into the stack, entirely or partially. */
3516 rtx temp;
3517 int used;
3518 int offset;
3519 int skip;
3521 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3522 used = partial - offset;
3524 gcc_assert (size);
3526 /* USED is now the # of bytes we need not copy to the stack
3527 because registers will take care of them. */
3529 if (partial != 0)
3530 xinner = adjust_address (xinner, BLKmode, used);
3532 /* If the partial register-part of the arg counts in its stack size,
3533 skip the part of stack space corresponding to the registers.
3534 Otherwise, start copying to the beginning of the stack space,
3535 by setting SKIP to 0. */
3536 skip = (reg_parm_stack_space == 0) ? 0 : used;
3538 #ifdef PUSH_ROUNDING
3539 /* Do it with several push insns if that doesn't take lots of insns
3540 and if there is no difficulty with push insns that skip bytes
3541 on the stack for alignment purposes. */
3542 if (args_addr == 0
3543 && PUSH_ARGS
3544 && GET_CODE (size) == CONST_INT
3545 && skip == 0
3546 && MEM_ALIGN (xinner) >= align
3547 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3548 /* Here we avoid the case of a structure whose weak alignment
3549 forces many pushes of a small amount of data,
3550 and such small pushes do rounding that causes trouble. */
3551 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3552 || align >= BIGGEST_ALIGNMENT
3553 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3554 == (align / BITS_PER_UNIT)))
3555 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3557 /* Push padding now if padding above and stack grows down,
3558 or if padding below and stack grows up.
3559 But if space already allocated, this has already been done. */
3560 if (extra && args_addr == 0
3561 && where_pad != none && where_pad != stack_direction)
3562 anti_adjust_stack (GEN_INT (extra));
3564 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3566 else
3567 #endif /* PUSH_ROUNDING */
3569 rtx target;
3571 /* Otherwise make space on the stack and copy the data
3572 to the address of that space. */
3574 /* Deduct words put into registers from the size we must copy. */
3575 if (partial != 0)
3577 if (GET_CODE (size) == CONST_INT)
3578 size = GEN_INT (INTVAL (size) - used);
3579 else
3580 size = expand_binop (GET_MODE (size), sub_optab, size,
3581 GEN_INT (used), NULL_RTX, 0,
3582 OPTAB_LIB_WIDEN);
3585 /* Get the address of the stack space.
3586 In this case, we do not deal with EXTRA separately.
3587 A single stack adjust will do. */
3588 if (! args_addr)
3590 temp = push_block (size, extra, where_pad == downward);
3591 extra = 0;
3593 else if (GET_CODE (args_so_far) == CONST_INT)
3594 temp = memory_address (BLKmode,
3595 plus_constant (args_addr,
3596 skip + INTVAL (args_so_far)));
3597 else
3598 temp = memory_address (BLKmode,
3599 plus_constant (gen_rtx_PLUS (Pmode,
3600 args_addr,
3601 args_so_far),
3602 skip));
3604 if (!ACCUMULATE_OUTGOING_ARGS)
3606 /* If the source is referenced relative to the stack pointer,
3607 copy it to another register to stabilize it. We do not need
3608 to do this if we know that we won't be changing sp. */
3610 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3611 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3612 temp = copy_to_reg (temp);
3615 target = gen_rtx_MEM (BLKmode, temp);
3617 /* We do *not* set_mem_attributes here, because incoming arguments
3618 may overlap with sibling call outgoing arguments and we cannot
3619 allow reordering of reads from function arguments with stores
3620 to outgoing arguments of sibling calls. We do, however, want
3621 to record the alignment of the stack slot. */
3622 /* ALIGN may well be better aligned than TYPE, e.g. due to
3623 PARM_BOUNDARY. Assume the caller isn't lying. */
3624 set_mem_align (target, align);
3626 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3629 else if (partial > 0)
3631 /* Scalar partly in registers. */
3633 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3634 int i;
3635 int not_stack;
3636 /* # bytes of start of argument
3637 that we must make space for but need not store. */
3638 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3639 int args_offset = INTVAL (args_so_far);
3640 int skip;
3642 /* Push padding now if padding above and stack grows down,
3643 or if padding below and stack grows up.
3644 But if space already allocated, this has already been done. */
3645 if (extra && args_addr == 0
3646 && where_pad != none && where_pad != stack_direction)
3647 anti_adjust_stack (GEN_INT (extra));
3649 /* If we make space by pushing it, we might as well push
3650 the real data. Otherwise, we can leave OFFSET nonzero
3651 and leave the space uninitialized. */
3652 if (args_addr == 0)
3653 offset = 0;
3655 /* Now NOT_STACK gets the number of words that we don't need to
3656 allocate on the stack. Convert OFFSET to words too. */
3657 not_stack = (partial - offset) / UNITS_PER_WORD;
3658 offset /= UNITS_PER_WORD;
3660 /* If the partial register-part of the arg counts in its stack size,
3661 skip the part of stack space corresponding to the registers.
3662 Otherwise, start copying to the beginning of the stack space,
3663 by setting SKIP to 0. */
3664 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3666 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3667 x = validize_mem (force_const_mem (mode, x));
3669 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3670 SUBREGs of such registers are not allowed. */
3671 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3672 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3673 x = copy_to_reg (x);
3675 /* Loop over all the words allocated on the stack for this arg. */
3676 /* We can do it by words, because any scalar bigger than a word
3677 has a size a multiple of a word. */
3678 #ifndef PUSH_ARGS_REVERSED
3679 for (i = not_stack; i < size; i++)
3680 #else
3681 for (i = size - 1; i >= not_stack; i--)
3682 #endif
3683 if (i >= not_stack + offset)
3684 emit_push_insn (operand_subword_force (x, i, mode),
3685 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3686 0, args_addr,
3687 GEN_INT (args_offset + ((i - not_stack + skip)
3688 * UNITS_PER_WORD)),
3689 reg_parm_stack_space, alignment_pad);
3691 else
3693 rtx addr;
3694 rtx dest;
3696 /* Push padding now if padding above and stack grows down,
3697 or if padding below and stack grows up.
3698 But if space already allocated, this has already been done. */
3699 if (extra && args_addr == 0
3700 && where_pad != none && where_pad != stack_direction)
3701 anti_adjust_stack (GEN_INT (extra));
3703 #ifdef PUSH_ROUNDING
3704 if (args_addr == 0 && PUSH_ARGS)
3705 emit_single_push_insn (mode, x, type);
3706 else
3707 #endif
3709 if (GET_CODE (args_so_far) == CONST_INT)
3710 addr
3711 = memory_address (mode,
3712 plus_constant (args_addr,
3713 INTVAL (args_so_far)));
3714 else
3715 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3716 args_so_far));
3717 dest = gen_rtx_MEM (mode, addr);
3719 /* We do *not* set_mem_attributes here, because incoming arguments
3720 may overlap with sibling call outgoing arguments and we cannot
3721 allow reordering of reads from function arguments with stores
3722 to outgoing arguments of sibling calls. We do, however, want
3723 to record the alignment of the stack slot. */
3724 /* ALIGN may well be better aligned than TYPE, e.g. due to
3725 PARM_BOUNDARY. Assume the caller isn't lying. */
3726 set_mem_align (dest, align);
3728 emit_move_insn (dest, x);
3732 /* If part should go in registers, copy that part
3733 into the appropriate registers. Do this now, at the end,
3734 since mem-to-mem copies above may do function calls. */
3735 if (partial > 0 && reg != 0)
3737 /* Handle calls that pass values in multiple non-contiguous locations.
3738 The Irix 6 ABI has examples of this. */
3739 if (GET_CODE (reg) == PARALLEL)
3740 emit_group_load (reg, x, type, -1);
3741 else
3743 gcc_assert (partial % UNITS_PER_WORD == 0);
3744 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3748 if (extra && args_addr == 0 && where_pad == stack_direction)
3749 anti_adjust_stack (GEN_INT (extra));
3751 if (alignment_pad && args_addr == 0)
3752 anti_adjust_stack (alignment_pad);
3755 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3756 operations. */
3758 static rtx
3759 get_subtarget (rtx x)
3761 return (optimize
3762 || x == 0
3763 /* Only registers can be subtargets. */
3764 || !REG_P (x)
3765 /* Don't use hard regs to avoid extending their life. */
3766 || REGNO (x) < FIRST_PSEUDO_REGISTER
3767 ? 0 : x);
3770 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3771 FIELD is a bitfield. Returns true if the optimization was successful,
3772 and there's nothing else to do. */
3774 static bool
3775 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3776 unsigned HOST_WIDE_INT bitpos,
3777 enum machine_mode mode1, rtx str_rtx,
3778 tree to, tree src)
3780 enum machine_mode str_mode = GET_MODE (str_rtx);
3781 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3782 tree op0, op1;
3783 rtx value, result;
3784 optab binop;
3786 if (mode1 != VOIDmode
3787 || bitsize >= BITS_PER_WORD
3788 || str_bitsize > BITS_PER_WORD
3789 || TREE_SIDE_EFFECTS (to)
3790 || TREE_THIS_VOLATILE (to))
3791 return false;
3793 STRIP_NOPS (src);
3794 if (!BINARY_CLASS_P (src)
3795 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3796 return false;
3798 op0 = TREE_OPERAND (src, 0);
3799 op1 = TREE_OPERAND (src, 1);
3800 STRIP_NOPS (op0);
3802 if (!operand_equal_p (to, op0, 0))
3803 return false;
3805 if (MEM_P (str_rtx))
3807 unsigned HOST_WIDE_INT offset1;
3809 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
3810 str_mode = word_mode;
3811 str_mode = get_best_mode (bitsize, bitpos,
3812 MEM_ALIGN (str_rtx), str_mode, 0);
3813 if (str_mode == VOIDmode)
3814 return false;
3815 str_bitsize = GET_MODE_BITSIZE (str_mode);
3817 offset1 = bitpos;
3818 bitpos %= str_bitsize;
3819 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
3820 str_rtx = adjust_address (str_rtx, str_mode, offset1);
3822 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
3823 return false;
3825 /* If the bit field covers the whole REG/MEM, store_field
3826 will likely generate better code. */
3827 if (bitsize >= str_bitsize)
3828 return false;
3830 /* We can't handle fields split across multiple entities. */
3831 if (bitpos + bitsize > str_bitsize)
3832 return false;
3834 if (BYTES_BIG_ENDIAN)
3835 bitpos = str_bitsize - bitpos - bitsize;
3837 switch (TREE_CODE (src))
3839 case PLUS_EXPR:
3840 case MINUS_EXPR:
3841 /* For now, just optimize the case of the topmost bitfield
3842 where we don't need to do any masking and also
3843 1 bit bitfields where xor can be used.
3844 We might win by one instruction for the other bitfields
3845 too if insv/extv instructions aren't used, so that
3846 can be added later. */
3847 if (bitpos + bitsize != str_bitsize
3848 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
3849 break;
3851 value = expand_expr (op1, NULL_RTX, str_mode, 0);
3852 value = convert_modes (str_mode,
3853 TYPE_MODE (TREE_TYPE (op1)), value,
3854 TYPE_UNSIGNED (TREE_TYPE (op1)));
3856 /* We may be accessing data outside the field, which means
3857 we can alias adjacent data. */
3858 if (MEM_P (str_rtx))
3860 str_rtx = shallow_copy_rtx (str_rtx);
3861 set_mem_alias_set (str_rtx, 0);
3862 set_mem_expr (str_rtx, 0);
3865 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
3866 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
3868 value = expand_and (str_mode, value, const1_rtx, NULL);
3869 binop = xor_optab;
3871 value = expand_shift (LSHIFT_EXPR, str_mode, value,
3872 build_int_cst (NULL_TREE, bitpos),
3873 NULL_RTX, 1);
3874 result = expand_binop (str_mode, binop, str_rtx,
3875 value, str_rtx, 1, OPTAB_WIDEN);
3876 if (result != str_rtx)
3877 emit_move_insn (str_rtx, result);
3878 return true;
3880 case BIT_IOR_EXPR:
3881 case BIT_XOR_EXPR:
3882 if (TREE_CODE (op1) != INTEGER_CST)
3883 break;
3884 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), 0);
3885 value = convert_modes (GET_MODE (str_rtx),
3886 TYPE_MODE (TREE_TYPE (op1)), value,
3887 TYPE_UNSIGNED (TREE_TYPE (op1)));
3889 /* We may be accessing data outside the field, which means
3890 we can alias adjacent data. */
3891 if (MEM_P (str_rtx))
3893 str_rtx = shallow_copy_rtx (str_rtx);
3894 set_mem_alias_set (str_rtx, 0);
3895 set_mem_expr (str_rtx, 0);
3898 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
3899 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
3901 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
3902 - 1);
3903 value = expand_and (GET_MODE (str_rtx), value, mask,
3904 NULL_RTX);
3906 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
3907 build_int_cst (NULL_TREE, bitpos),
3908 NULL_RTX, 1);
3909 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
3910 value, str_rtx, 1, OPTAB_WIDEN);
3911 if (result != str_rtx)
3912 emit_move_insn (str_rtx, result);
3913 return true;
3915 default:
3916 break;
3919 return false;
3923 /* Expand an assignment that stores the value of FROM into TO. */
3925 void
3926 expand_assignment (tree to, tree from)
3928 rtx to_rtx = 0;
3929 rtx result;
3931 /* Don't crash if the lhs of the assignment was erroneous. */
3933 if (TREE_CODE (to) == ERROR_MARK)
3935 result = expand_normal (from);
3936 return;
3939 /* Assignment of a structure component needs special treatment
3940 if the structure component's rtx is not simply a MEM.
3941 Assignment of an array element at a constant index, and assignment of
3942 an array element in an unaligned packed structure field, has the same
3943 problem. */
3944 if (handled_component_p (to)
3945 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
3947 enum machine_mode mode1;
3948 HOST_WIDE_INT bitsize, bitpos;
3949 tree offset;
3950 int unsignedp;
3951 int volatilep = 0;
3952 tree tem;
3954 push_temp_slots ();
3955 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
3956 &unsignedp, &volatilep, true);
3958 /* If we are going to use store_bit_field and extract_bit_field,
3959 make sure to_rtx will be safe for multiple use. */
3961 to_rtx = expand_normal (tem);
3963 if (offset != 0)
3965 rtx offset_rtx;
3967 if (!MEM_P (to_rtx))
3969 /* We can get constant negative offsets into arrays with broken
3970 user code. Translate this to a trap instead of ICEing. */
3971 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
3972 expand_builtin_trap ();
3973 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
3976 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
3977 #ifdef POINTERS_EXTEND_UNSIGNED
3978 if (GET_MODE (offset_rtx) != Pmode)
3979 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
3980 #else
3981 if (GET_MODE (offset_rtx) != ptr_mode)
3982 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
3983 #endif
3985 /* A constant address in TO_RTX can have VOIDmode, we must not try
3986 to call force_reg for that case. Avoid that case. */
3987 if (MEM_P (to_rtx)
3988 && GET_MODE (to_rtx) == BLKmode
3989 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
3990 && bitsize > 0
3991 && (bitpos % bitsize) == 0
3992 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
3993 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
3995 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
3996 bitpos = 0;
3999 to_rtx = offset_address (to_rtx, offset_rtx,
4000 highest_pow2_factor_for_target (to,
4001 offset));
4004 /* Handle expand_expr of a complex value returning a CONCAT. */
4005 if (GET_CODE (to_rtx) == CONCAT)
4007 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
4009 gcc_assert (bitpos == 0);
4010 result = store_expr (from, to_rtx, false);
4012 else
4014 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4015 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false);
4018 else
4020 if (MEM_P (to_rtx))
4022 /* If the field is at offset zero, we could have been given the
4023 DECL_RTX of the parent struct. Don't munge it. */
4024 to_rtx = shallow_copy_rtx (to_rtx);
4026 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4028 /* Deal with volatile and readonly fields. The former is only
4029 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4030 if (volatilep)
4031 MEM_VOLATILE_P (to_rtx) = 1;
4032 if (component_uses_parent_alias_set (to))
4033 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4036 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4037 to_rtx, to, from))
4038 result = NULL;
4039 else
4040 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4041 TREE_TYPE (tem), get_alias_set (to));
4044 if (result)
4045 preserve_temp_slots (result);
4046 free_temp_slots ();
4047 pop_temp_slots ();
4048 return;
4051 /* If the rhs is a function call and its value is not an aggregate,
4052 call the function before we start to compute the lhs.
4053 This is needed for correct code for cases such as
4054 val = setjmp (buf) on machines where reference to val
4055 requires loading up part of an address in a separate insn.
4057 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4058 since it might be a promoted variable where the zero- or sign- extension
4059 needs to be done. Handling this in the normal way is safe because no
4060 computation is done before the call. */
4061 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4062 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4063 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4064 && REG_P (DECL_RTL (to))))
4066 rtx value;
4068 push_temp_slots ();
4069 value = expand_normal (from);
4070 if (to_rtx == 0)
4071 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4073 /* Handle calls that return values in multiple non-contiguous locations.
4074 The Irix 6 ABI has examples of this. */
4075 if (GET_CODE (to_rtx) == PARALLEL)
4076 emit_group_load (to_rtx, value, TREE_TYPE (from),
4077 int_size_in_bytes (TREE_TYPE (from)));
4078 else if (GET_MODE (to_rtx) == BLKmode)
4079 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4080 else
4082 if (POINTER_TYPE_P (TREE_TYPE (to)))
4083 value = convert_memory_address (GET_MODE (to_rtx), value);
4084 emit_move_insn (to_rtx, value);
4086 preserve_temp_slots (to_rtx);
4087 free_temp_slots ();
4088 pop_temp_slots ();
4089 return;
4092 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4093 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4095 if (to_rtx == 0)
4096 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4098 /* Don't move directly into a return register. */
4099 if (TREE_CODE (to) == RESULT_DECL
4100 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4102 rtx temp;
4104 push_temp_slots ();
4105 temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
4107 if (GET_CODE (to_rtx) == PARALLEL)
4108 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4109 int_size_in_bytes (TREE_TYPE (from)));
4110 else
4111 emit_move_insn (to_rtx, temp);
4113 preserve_temp_slots (to_rtx);
4114 free_temp_slots ();
4115 pop_temp_slots ();
4116 return;
4119 /* In case we are returning the contents of an object which overlaps
4120 the place the value is being stored, use a safe function when copying
4121 a value through a pointer into a structure value return block. */
4122 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4123 && current_function_returns_struct
4124 && !current_function_returns_pcc_struct)
4126 rtx from_rtx, size;
4128 push_temp_slots ();
4129 size = expr_size (from);
4130 from_rtx = expand_normal (from);
4132 emit_library_call (memmove_libfunc, LCT_NORMAL,
4133 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4134 XEXP (from_rtx, 0), Pmode,
4135 convert_to_mode (TYPE_MODE (sizetype),
4136 size, TYPE_UNSIGNED (sizetype)),
4137 TYPE_MODE (sizetype));
4139 preserve_temp_slots (to_rtx);
4140 free_temp_slots ();
4141 pop_temp_slots ();
4142 return;
4145 /* Compute FROM and store the value in the rtx we got. */
4147 push_temp_slots ();
4148 result = store_expr (from, to_rtx, 0);
4149 preserve_temp_slots (result);
4150 free_temp_slots ();
4151 pop_temp_slots ();
4152 return;
4155 /* Generate code for computing expression EXP,
4156 and storing the value into TARGET.
4158 If the mode is BLKmode then we may return TARGET itself.
4159 It turns out that in BLKmode it doesn't cause a problem.
4160 because C has no operators that could combine two different
4161 assignments into the same BLKmode object with different values
4162 with no sequence point. Will other languages need this to
4163 be more thorough?
4165 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4166 stack, and block moves may need to be treated specially. */
4169 store_expr (tree exp, rtx target, int call_param_p)
4171 rtx temp;
4172 rtx alt_rtl = NULL_RTX;
4173 int dont_return_target = 0;
4175 if (VOID_TYPE_P (TREE_TYPE (exp)))
4177 /* C++ can generate ?: expressions with a throw expression in one
4178 branch and an rvalue in the other. Here, we resolve attempts to
4179 store the throw expression's nonexistent result. */
4180 gcc_assert (!call_param_p);
4181 expand_expr (exp, const0_rtx, VOIDmode, 0);
4182 return NULL_RTX;
4184 if (TREE_CODE (exp) == COMPOUND_EXPR)
4186 /* Perform first part of compound expression, then assign from second
4187 part. */
4188 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4189 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4190 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4192 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4194 /* For conditional expression, get safe form of the target. Then
4195 test the condition, doing the appropriate assignment on either
4196 side. This avoids the creation of unnecessary temporaries.
4197 For non-BLKmode, it is more efficient not to do this. */
4199 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4201 do_pending_stack_adjust ();
4202 NO_DEFER_POP;
4203 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4204 store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4205 emit_jump_insn (gen_jump (lab2));
4206 emit_barrier ();
4207 emit_label (lab1);
4208 store_expr (TREE_OPERAND (exp, 2), target, call_param_p);
4209 emit_label (lab2);
4210 OK_DEFER_POP;
4212 return NULL_RTX;
4214 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4215 /* If this is a scalar in a register that is stored in a wider mode
4216 than the declared mode, compute the result into its declared mode
4217 and then convert to the wider mode. Our value is the computed
4218 expression. */
4220 rtx inner_target = 0;
4222 /* We can do the conversion inside EXP, which will often result
4223 in some optimizations. Do the conversion in two steps: first
4224 change the signedness, if needed, then the extend. But don't
4225 do this if the type of EXP is a subtype of something else
4226 since then the conversion might involve more than just
4227 converting modes. */
4228 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4229 && TREE_TYPE (TREE_TYPE (exp)) == 0
4230 && (!lang_hooks.reduce_bit_field_operations
4231 || (GET_MODE_PRECISION (GET_MODE (target))
4232 == TYPE_PRECISION (TREE_TYPE (exp)))))
4234 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4235 != SUBREG_PROMOTED_UNSIGNED_P (target))
4236 exp = convert
4237 (lang_hooks.types.signed_or_unsigned_type
4238 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
4240 exp = convert (lang_hooks.types.type_for_mode
4241 (GET_MODE (SUBREG_REG (target)),
4242 SUBREG_PROMOTED_UNSIGNED_P (target)),
4243 exp);
4245 inner_target = SUBREG_REG (target);
4248 temp = expand_expr (exp, inner_target, VOIDmode,
4249 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4251 /* If TEMP is a VOIDmode constant, use convert_modes to make
4252 sure that we properly convert it. */
4253 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4255 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4256 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4257 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4258 GET_MODE (target), temp,
4259 SUBREG_PROMOTED_UNSIGNED_P (target));
4262 convert_move (SUBREG_REG (target), temp,
4263 SUBREG_PROMOTED_UNSIGNED_P (target));
4265 return NULL_RTX;
4267 else
4269 temp = expand_expr_real (exp, target, GET_MODE (target),
4270 (call_param_p
4271 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4272 &alt_rtl);
4273 /* Return TARGET if it's a specified hardware register.
4274 If TARGET is a volatile mem ref, either return TARGET
4275 or return a reg copied *from* TARGET; ANSI requires this.
4277 Otherwise, if TEMP is not TARGET, return TEMP
4278 if it is constant (for efficiency),
4279 or if we really want the correct value. */
4280 if (!(target && REG_P (target)
4281 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4282 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4283 && ! rtx_equal_p (temp, target)
4284 && CONSTANT_P (temp))
4285 dont_return_target = 1;
4288 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4289 the same as that of TARGET, adjust the constant. This is needed, for
4290 example, in case it is a CONST_DOUBLE and we want only a word-sized
4291 value. */
4292 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4293 && TREE_CODE (exp) != ERROR_MARK
4294 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4295 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4296 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4298 /* If value was not generated in the target, store it there.
4299 Convert the value to TARGET's type first if necessary and emit the
4300 pending incrementations that have been queued when expanding EXP.
4301 Note that we cannot emit the whole queue blindly because this will
4302 effectively disable the POST_INC optimization later.
4304 If TEMP and TARGET compare equal according to rtx_equal_p, but
4305 one or both of them are volatile memory refs, we have to distinguish
4306 two cases:
4307 - expand_expr has used TARGET. In this case, we must not generate
4308 another copy. This can be detected by TARGET being equal according
4309 to == .
4310 - expand_expr has not used TARGET - that means that the source just
4311 happens to have the same RTX form. Since temp will have been created
4312 by expand_expr, it will compare unequal according to == .
4313 We must generate a copy in this case, to reach the correct number
4314 of volatile memory references. */
4316 if ((! rtx_equal_p (temp, target)
4317 || (temp != target && (side_effects_p (temp)
4318 || side_effects_p (target))))
4319 && TREE_CODE (exp) != ERROR_MARK
4320 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4321 but TARGET is not valid memory reference, TEMP will differ
4322 from TARGET although it is really the same location. */
4323 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4324 /* If there's nothing to copy, don't bother. Don't call
4325 expr_size unless necessary, because some front-ends (C++)
4326 expr_size-hook must not be given objects that are not
4327 supposed to be bit-copied or bit-initialized. */
4328 && expr_size (exp) != const0_rtx)
4330 if (GET_MODE (temp) != GET_MODE (target)
4331 && GET_MODE (temp) != VOIDmode)
4333 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4334 if (dont_return_target)
4336 /* In this case, we will return TEMP,
4337 so make sure it has the proper mode.
4338 But don't forget to store the value into TARGET. */
4339 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4340 emit_move_insn (target, temp);
4342 else
4343 convert_move (target, temp, unsignedp);
4346 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4348 /* Handle copying a string constant into an array. The string
4349 constant may be shorter than the array. So copy just the string's
4350 actual length, and clear the rest. First get the size of the data
4351 type of the string, which is actually the size of the target. */
4352 rtx size = expr_size (exp);
4354 if (GET_CODE (size) == CONST_INT
4355 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4356 emit_block_move (target, temp, size,
4357 (call_param_p
4358 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4359 else
4361 /* Compute the size of the data to copy from the string. */
4362 tree copy_size
4363 = size_binop (MIN_EXPR,
4364 make_tree (sizetype, size),
4365 size_int (TREE_STRING_LENGTH (exp)));
4366 rtx copy_size_rtx
4367 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4368 (call_param_p
4369 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4370 rtx label = 0;
4372 /* Copy that much. */
4373 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4374 TYPE_UNSIGNED (sizetype));
4375 emit_block_move (target, temp, copy_size_rtx,
4376 (call_param_p
4377 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4379 /* Figure out how much is left in TARGET that we have to clear.
4380 Do all calculations in ptr_mode. */
4381 if (GET_CODE (copy_size_rtx) == CONST_INT)
4383 size = plus_constant (size, -INTVAL (copy_size_rtx));
4384 target = adjust_address (target, BLKmode,
4385 INTVAL (copy_size_rtx));
4387 else
4389 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4390 copy_size_rtx, NULL_RTX, 0,
4391 OPTAB_LIB_WIDEN);
4393 #ifdef POINTERS_EXTEND_UNSIGNED
4394 if (GET_MODE (copy_size_rtx) != Pmode)
4395 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4396 TYPE_UNSIGNED (sizetype));
4397 #endif
4399 target = offset_address (target, copy_size_rtx,
4400 highest_pow2_factor (copy_size));
4401 label = gen_label_rtx ();
4402 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4403 GET_MODE (size), 0, label);
4406 if (size != const0_rtx)
4407 clear_storage (target, size, BLOCK_OP_NORMAL);
4409 if (label)
4410 emit_label (label);
4413 /* Handle calls that return values in multiple non-contiguous locations.
4414 The Irix 6 ABI has examples of this. */
4415 else if (GET_CODE (target) == PARALLEL)
4416 emit_group_load (target, temp, TREE_TYPE (exp),
4417 int_size_in_bytes (TREE_TYPE (exp)));
4418 else if (GET_MODE (temp) == BLKmode)
4419 emit_block_move (target, temp, expr_size (exp),
4420 (call_param_p
4421 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4422 else
4424 temp = force_operand (temp, target);
4425 if (temp != target)
4426 emit_move_insn (target, temp);
4430 return NULL_RTX;
4433 /* Examine CTOR to discover:
4434 * how many scalar fields are set to nonzero values,
4435 and place it in *P_NZ_ELTS;
4436 * how many scalar fields are set to non-constant values,
4437 and place it in *P_NC_ELTS; and
4438 * how many scalar fields in total are in CTOR,
4439 and place it in *P_ELT_COUNT.
4440 * if a type is a union, and the initializer from the constructor
4441 is not the largest element in the union, then set *p_must_clear. */
4443 static void
4444 categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
4445 HOST_WIDE_INT *p_nc_elts,
4446 HOST_WIDE_INT *p_elt_count,
4447 bool *p_must_clear)
4449 unsigned HOST_WIDE_INT idx;
4450 HOST_WIDE_INT nz_elts, nc_elts, elt_count;
4451 tree value, purpose;
4453 nz_elts = 0;
4454 nc_elts = 0;
4455 elt_count = 0;
4457 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4459 HOST_WIDE_INT mult;
4461 mult = 1;
4462 if (TREE_CODE (purpose) == RANGE_EXPR)
4464 tree lo_index = TREE_OPERAND (purpose, 0);
4465 tree hi_index = TREE_OPERAND (purpose, 1);
4467 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4468 mult = (tree_low_cst (hi_index, 1)
4469 - tree_low_cst (lo_index, 1) + 1);
4472 switch (TREE_CODE (value))
4474 case CONSTRUCTOR:
4476 HOST_WIDE_INT nz = 0, nc = 0, ic = 0;
4477 categorize_ctor_elements_1 (value, &nz, &nc, &ic, p_must_clear);
4478 nz_elts += mult * nz;
4479 nc_elts += mult * nc;
4480 elt_count += mult * ic;
4482 break;
4484 case INTEGER_CST:
4485 case REAL_CST:
4486 if (!initializer_zerop (value))
4487 nz_elts += mult;
4488 elt_count += mult;
4489 break;
4491 case STRING_CST:
4492 nz_elts += mult * TREE_STRING_LENGTH (value);
4493 elt_count += mult * TREE_STRING_LENGTH (value);
4494 break;
4496 case COMPLEX_CST:
4497 if (!initializer_zerop (TREE_REALPART (value)))
4498 nz_elts += mult;
4499 if (!initializer_zerop (TREE_IMAGPART (value)))
4500 nz_elts += mult;
4501 elt_count += mult;
4502 break;
4504 case VECTOR_CST:
4506 tree v;
4507 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4509 if (!initializer_zerop (TREE_VALUE (v)))
4510 nz_elts += mult;
4511 elt_count += mult;
4514 break;
4516 default:
4517 nz_elts += mult;
4518 elt_count += mult;
4519 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
4520 nc_elts += mult;
4521 break;
4525 if (!*p_must_clear
4526 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4527 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4529 tree init_sub_type;
4530 bool clear_this = true;
4532 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4534 /* We don't expect more than one element of the union to be
4535 initialized. Not sure what we should do otherwise... */
4536 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4537 == 1);
4539 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4540 CONSTRUCTOR_ELTS (ctor),
4541 0)->value);
4543 /* ??? We could look at each element of the union, and find the
4544 largest element. Which would avoid comparing the size of the
4545 initialized element against any tail padding in the union.
4546 Doesn't seem worth the effort... */
4547 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4548 TYPE_SIZE (init_sub_type)) == 1)
4550 /* And now we have to find out if the element itself is fully
4551 constructed. E.g. for union { struct { int a, b; } s; } u
4552 = { .s = { .a = 1 } }. */
4553 if (elt_count == count_type_elements (init_sub_type, false))
4554 clear_this = false;
4558 *p_must_clear = clear_this;
4561 *p_nz_elts += nz_elts;
4562 *p_nc_elts += nc_elts;
4563 *p_elt_count += elt_count;
4566 void
4567 categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
4568 HOST_WIDE_INT *p_nc_elts,
4569 HOST_WIDE_INT *p_elt_count,
4570 bool *p_must_clear)
4572 *p_nz_elts = 0;
4573 *p_nc_elts = 0;
4574 *p_elt_count = 0;
4575 *p_must_clear = false;
4576 categorize_ctor_elements_1 (ctor, p_nz_elts, p_nc_elts, p_elt_count,
4577 p_must_clear);
4580 /* Count the number of scalars in TYPE. Return -1 on overflow or
4581 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4582 array member at the end of the structure. */
4584 HOST_WIDE_INT
4585 count_type_elements (tree type, bool allow_flexarr)
4587 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4588 switch (TREE_CODE (type))
4590 case ARRAY_TYPE:
4592 tree telts = array_type_nelts (type);
4593 if (telts && host_integerp (telts, 1))
4595 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4596 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4597 if (n == 0)
4598 return 0;
4599 else if (max / n > m)
4600 return n * m;
4602 return -1;
4605 case RECORD_TYPE:
4607 HOST_WIDE_INT n = 0, t;
4608 tree f;
4610 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4611 if (TREE_CODE (f) == FIELD_DECL)
4613 t = count_type_elements (TREE_TYPE (f), false);
4614 if (t < 0)
4616 /* Check for structures with flexible array member. */
4617 tree tf = TREE_TYPE (f);
4618 if (allow_flexarr
4619 && TREE_CHAIN (f) == NULL
4620 && TREE_CODE (tf) == ARRAY_TYPE
4621 && TYPE_DOMAIN (tf)
4622 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
4623 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
4624 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
4625 && int_size_in_bytes (type) >= 0)
4626 break;
4628 return -1;
4630 n += t;
4633 return n;
4636 case UNION_TYPE:
4637 case QUAL_UNION_TYPE:
4639 /* Ho hum. How in the world do we guess here? Clearly it isn't
4640 right to count the fields. Guess based on the number of words. */
4641 HOST_WIDE_INT n = int_size_in_bytes (type);
4642 if (n < 0)
4643 return -1;
4644 return n / UNITS_PER_WORD;
4647 case COMPLEX_TYPE:
4648 return 2;
4650 case VECTOR_TYPE:
4651 return TYPE_VECTOR_SUBPARTS (type);
4653 case INTEGER_TYPE:
4654 case REAL_TYPE:
4655 case ENUMERAL_TYPE:
4656 case BOOLEAN_TYPE:
4657 case POINTER_TYPE:
4658 case OFFSET_TYPE:
4659 case REFERENCE_TYPE:
4660 return 1;
4662 case VOID_TYPE:
4663 case METHOD_TYPE:
4664 case FUNCTION_TYPE:
4665 case LANG_TYPE:
4666 default:
4667 gcc_unreachable ();
4671 /* Return 1 if EXP contains mostly (3/4) zeros. */
4673 static int
4674 mostly_zeros_p (tree exp)
4676 if (TREE_CODE (exp) == CONSTRUCTOR)
4679 HOST_WIDE_INT nz_elts, nc_elts, count, elts;
4680 bool must_clear;
4682 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count, &must_clear);
4683 if (must_clear)
4684 return 1;
4686 elts = count_type_elements (TREE_TYPE (exp), false);
4688 return nz_elts < elts / 4;
4691 return initializer_zerop (exp);
4694 /* Return 1 if EXP contains all zeros. */
4696 static int
4697 all_zeros_p (tree exp)
4699 if (TREE_CODE (exp) == CONSTRUCTOR)
4702 HOST_WIDE_INT nz_elts, nc_elts, count;
4703 bool must_clear;
4705 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count, &must_clear);
4706 return nz_elts == 0;
4709 return initializer_zerop (exp);
4712 /* Helper function for store_constructor.
4713 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4714 TYPE is the type of the CONSTRUCTOR, not the element type.
4715 CLEARED is as for store_constructor.
4716 ALIAS_SET is the alias set to use for any stores.
4718 This provides a recursive shortcut back to store_constructor when it isn't
4719 necessary to go through store_field. This is so that we can pass through
4720 the cleared field to let store_constructor know that we may not have to
4721 clear a substructure if the outer structure has already been cleared. */
4723 static void
4724 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
4725 HOST_WIDE_INT bitpos, enum machine_mode mode,
4726 tree exp, tree type, int cleared, int alias_set)
4728 if (TREE_CODE (exp) == CONSTRUCTOR
4729 /* We can only call store_constructor recursively if the size and
4730 bit position are on a byte boundary. */
4731 && bitpos % BITS_PER_UNIT == 0
4732 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
4733 /* If we have a nonzero bitpos for a register target, then we just
4734 let store_field do the bitfield handling. This is unlikely to
4735 generate unnecessary clear instructions anyways. */
4736 && (bitpos == 0 || MEM_P (target)))
4738 if (MEM_P (target))
4739 target
4740 = adjust_address (target,
4741 GET_MODE (target) == BLKmode
4742 || 0 != (bitpos
4743 % GET_MODE_ALIGNMENT (GET_MODE (target)))
4744 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
4747 /* Update the alias set, if required. */
4748 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
4749 && MEM_ALIAS_SET (target) != 0)
4751 target = copy_rtx (target);
4752 set_mem_alias_set (target, alias_set);
4755 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
4757 else
4758 store_field (target, bitsize, bitpos, mode, exp, type, alias_set);
4761 /* Store the value of constructor EXP into the rtx TARGET.
4762 TARGET is either a REG or a MEM; we know it cannot conflict, since
4763 safe_from_p has been called.
4764 CLEARED is true if TARGET is known to have been zero'd.
4765 SIZE is the number of bytes of TARGET we are allowed to modify: this
4766 may not be the same as the size of EXP if we are assigning to a field
4767 which has been packed to exclude padding bits. */
4769 static void
4770 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
4772 tree type = TREE_TYPE (exp);
4773 #ifdef WORD_REGISTER_OPERATIONS
4774 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
4775 #endif
4777 switch (TREE_CODE (type))
4779 case RECORD_TYPE:
4780 case UNION_TYPE:
4781 case QUAL_UNION_TYPE:
4783 unsigned HOST_WIDE_INT idx;
4784 tree field, value;
4786 /* If size is zero or the target is already cleared, do nothing. */
4787 if (size == 0 || cleared)
4788 cleared = 1;
4789 /* We either clear the aggregate or indicate the value is dead. */
4790 else if ((TREE_CODE (type) == UNION_TYPE
4791 || TREE_CODE (type) == QUAL_UNION_TYPE)
4792 && ! CONSTRUCTOR_ELTS (exp))
4793 /* If the constructor is empty, clear the union. */
4795 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
4796 cleared = 1;
4799 /* If we are building a static constructor into a register,
4800 set the initial value as zero so we can fold the value into
4801 a constant. But if more than one register is involved,
4802 this probably loses. */
4803 else if (REG_P (target) && TREE_STATIC (exp)
4804 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
4806 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4807 cleared = 1;
4810 /* If the constructor has fewer fields than the structure or
4811 if we are initializing the structure to mostly zeros, clear
4812 the whole structure first. Don't do this if TARGET is a
4813 register whose mode size isn't equal to SIZE since
4814 clear_storage can't handle this case. */
4815 else if (size > 0
4816 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
4817 != fields_length (type))
4818 || mostly_zeros_p (exp))
4819 && (!REG_P (target)
4820 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
4821 == size)))
4823 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
4824 cleared = 1;
4827 if (! cleared)
4828 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4830 /* Store each element of the constructor into the
4831 corresponding field of TARGET. */
4832 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
4834 enum machine_mode mode;
4835 HOST_WIDE_INT bitsize;
4836 HOST_WIDE_INT bitpos = 0;
4837 tree offset;
4838 rtx to_rtx = target;
4840 /* Just ignore missing fields. We cleared the whole
4841 structure, above, if any fields are missing. */
4842 if (field == 0)
4843 continue;
4845 if (cleared && initializer_zerop (value))
4846 continue;
4848 if (host_integerp (DECL_SIZE (field), 1))
4849 bitsize = tree_low_cst (DECL_SIZE (field), 1);
4850 else
4851 bitsize = -1;
4853 mode = DECL_MODE (field);
4854 if (DECL_BIT_FIELD (field))
4855 mode = VOIDmode;
4857 offset = DECL_FIELD_OFFSET (field);
4858 if (host_integerp (offset, 0)
4859 && host_integerp (bit_position (field), 0))
4861 bitpos = int_bit_position (field);
4862 offset = 0;
4864 else
4865 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
4867 if (offset)
4869 rtx offset_rtx;
4871 offset
4872 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
4873 make_tree (TREE_TYPE (exp),
4874 target));
4876 offset_rtx = expand_normal (offset);
4877 gcc_assert (MEM_P (to_rtx));
4879 #ifdef POINTERS_EXTEND_UNSIGNED
4880 if (GET_MODE (offset_rtx) != Pmode)
4881 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4882 #else
4883 if (GET_MODE (offset_rtx) != ptr_mode)
4884 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4885 #endif
4887 to_rtx = offset_address (to_rtx, offset_rtx,
4888 highest_pow2_factor (offset));
4891 #ifdef WORD_REGISTER_OPERATIONS
4892 /* If this initializes a field that is smaller than a
4893 word, at the start of a word, try to widen it to a full
4894 word. This special case allows us to output C++ member
4895 function initializations in a form that the optimizers
4896 can understand. */
4897 if (REG_P (target)
4898 && bitsize < BITS_PER_WORD
4899 && bitpos % BITS_PER_WORD == 0
4900 && GET_MODE_CLASS (mode) == MODE_INT
4901 && TREE_CODE (value) == INTEGER_CST
4902 && exp_size >= 0
4903 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
4905 tree type = TREE_TYPE (value);
4907 if (TYPE_PRECISION (type) < BITS_PER_WORD)
4909 type = lang_hooks.types.type_for_size
4910 (BITS_PER_WORD, TYPE_UNSIGNED (type));
4911 value = convert (type, value);
4914 if (BYTES_BIG_ENDIAN)
4915 value
4916 = fold_build2 (LSHIFT_EXPR, type, value,
4917 build_int_cst (NULL_TREE,
4918 BITS_PER_WORD - bitsize));
4919 bitsize = BITS_PER_WORD;
4920 mode = word_mode;
4922 #endif
4924 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
4925 && DECL_NONADDRESSABLE_P (field))
4927 to_rtx = copy_rtx (to_rtx);
4928 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4931 store_constructor_field (to_rtx, bitsize, bitpos, mode,
4932 value, type, cleared,
4933 get_alias_set (TREE_TYPE (field)));
4935 break;
4937 case ARRAY_TYPE:
4939 tree value, index;
4940 unsigned HOST_WIDE_INT i;
4941 int need_to_clear;
4942 tree domain;
4943 tree elttype = TREE_TYPE (type);
4944 int const_bounds_p;
4945 HOST_WIDE_INT minelt = 0;
4946 HOST_WIDE_INT maxelt = 0;
4948 domain = TYPE_DOMAIN (type);
4949 const_bounds_p = (TYPE_MIN_VALUE (domain)
4950 && TYPE_MAX_VALUE (domain)
4951 && host_integerp (TYPE_MIN_VALUE (domain), 0)
4952 && host_integerp (TYPE_MAX_VALUE (domain), 0));
4954 /* If we have constant bounds for the range of the type, get them. */
4955 if (const_bounds_p)
4957 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
4958 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
4961 /* If the constructor has fewer elements than the array, clear
4962 the whole array first. Similarly if this is static
4963 constructor of a non-BLKmode object. */
4964 if (cleared)
4965 need_to_clear = 0;
4966 else if (REG_P (target) && TREE_STATIC (exp))
4967 need_to_clear = 1;
4968 else
4970 unsigned HOST_WIDE_INT idx;
4971 tree index, value;
4972 HOST_WIDE_INT count = 0, zero_count = 0;
4973 need_to_clear = ! const_bounds_p;
4975 /* This loop is a more accurate version of the loop in
4976 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4977 is also needed to check for missing elements. */
4978 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
4980 HOST_WIDE_INT this_node_count;
4982 if (need_to_clear)
4983 break;
4985 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4987 tree lo_index = TREE_OPERAND (index, 0);
4988 tree hi_index = TREE_OPERAND (index, 1);
4990 if (! host_integerp (lo_index, 1)
4991 || ! host_integerp (hi_index, 1))
4993 need_to_clear = 1;
4994 break;
4997 this_node_count = (tree_low_cst (hi_index, 1)
4998 - tree_low_cst (lo_index, 1) + 1);
5000 else
5001 this_node_count = 1;
5003 count += this_node_count;
5004 if (mostly_zeros_p (value))
5005 zero_count += this_node_count;
5008 /* Clear the entire array first if there are any missing
5009 elements, or if the incidence of zero elements is >=
5010 75%. */
5011 if (! need_to_clear
5012 && (count < maxelt - minelt + 1
5013 || 4 * zero_count >= 3 * count))
5014 need_to_clear = 1;
5017 if (need_to_clear && size > 0)
5019 if (REG_P (target))
5020 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5021 else
5022 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5023 cleared = 1;
5026 if (!cleared && REG_P (target))
5027 /* Inform later passes that the old value is dead. */
5028 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5030 /* Store each element of the constructor into the
5031 corresponding element of TARGET, determined by counting the
5032 elements. */
5033 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5035 enum machine_mode mode;
5036 HOST_WIDE_INT bitsize;
5037 HOST_WIDE_INT bitpos;
5038 int unsignedp;
5039 rtx xtarget = target;
5041 if (cleared && initializer_zerop (value))
5042 continue;
5044 unsignedp = TYPE_UNSIGNED (elttype);
5045 mode = TYPE_MODE (elttype);
5046 if (mode == BLKmode)
5047 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5048 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5049 : -1);
5050 else
5051 bitsize = GET_MODE_BITSIZE (mode);
5053 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5055 tree lo_index = TREE_OPERAND (index, 0);
5056 tree hi_index = TREE_OPERAND (index, 1);
5057 rtx index_r, pos_rtx;
5058 HOST_WIDE_INT lo, hi, count;
5059 tree position;
5061 /* If the range is constant and "small", unroll the loop. */
5062 if (const_bounds_p
5063 && host_integerp (lo_index, 0)
5064 && host_integerp (hi_index, 0)
5065 && (lo = tree_low_cst (lo_index, 0),
5066 hi = tree_low_cst (hi_index, 0),
5067 count = hi - lo + 1,
5068 (!MEM_P (target)
5069 || count <= 2
5070 || (host_integerp (TYPE_SIZE (elttype), 1)
5071 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5072 <= 40 * 8)))))
5074 lo -= minelt; hi -= minelt;
5075 for (; lo <= hi; lo++)
5077 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5079 if (MEM_P (target)
5080 && !MEM_KEEP_ALIAS_SET_P (target)
5081 && TREE_CODE (type) == ARRAY_TYPE
5082 && TYPE_NONALIASED_COMPONENT (type))
5084 target = copy_rtx (target);
5085 MEM_KEEP_ALIAS_SET_P (target) = 1;
5088 store_constructor_field
5089 (target, bitsize, bitpos, mode, value, type, cleared,
5090 get_alias_set (elttype));
5093 else
5095 rtx loop_start = gen_label_rtx ();
5096 rtx loop_end = gen_label_rtx ();
5097 tree exit_cond;
5099 expand_normal (hi_index);
5100 unsignedp = TYPE_UNSIGNED (domain);
5102 index = build_decl (VAR_DECL, NULL_TREE, domain);
5104 index_r
5105 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5106 &unsignedp, 0));
5107 SET_DECL_RTL (index, index_r);
5108 store_expr (lo_index, index_r, 0);
5110 /* Build the head of the loop. */
5111 do_pending_stack_adjust ();
5112 emit_label (loop_start);
5114 /* Assign value to element index. */
5115 position
5116 = convert (ssizetype,
5117 fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5118 index, TYPE_MIN_VALUE (domain)));
5119 position = size_binop (MULT_EXPR, position,
5120 convert (ssizetype,
5121 TYPE_SIZE_UNIT (elttype)));
5123 pos_rtx = expand_normal (position);
5124 xtarget = offset_address (target, pos_rtx,
5125 highest_pow2_factor (position));
5126 xtarget = adjust_address (xtarget, mode, 0);
5127 if (TREE_CODE (value) == CONSTRUCTOR)
5128 store_constructor (value, xtarget, cleared,
5129 bitsize / BITS_PER_UNIT);
5130 else
5131 store_expr (value, xtarget, 0);
5133 /* Generate a conditional jump to exit the loop. */
5134 exit_cond = build2 (LT_EXPR, integer_type_node,
5135 index, hi_index);
5136 jumpif (exit_cond, loop_end);
5138 /* Update the loop counter, and jump to the head of
5139 the loop. */
5140 expand_assignment (index,
5141 build2 (PLUS_EXPR, TREE_TYPE (index),
5142 index, integer_one_node));
5144 emit_jump (loop_start);
5146 /* Build the end of the loop. */
5147 emit_label (loop_end);
5150 else if ((index != 0 && ! host_integerp (index, 0))
5151 || ! host_integerp (TYPE_SIZE (elttype), 1))
5153 tree position;
5155 if (index == 0)
5156 index = ssize_int (1);
5158 if (minelt)
5159 index = fold_convert (ssizetype,
5160 fold_build2 (MINUS_EXPR,
5161 TREE_TYPE (index),
5162 index,
5163 TYPE_MIN_VALUE (domain)));
5165 position = size_binop (MULT_EXPR, index,
5166 convert (ssizetype,
5167 TYPE_SIZE_UNIT (elttype)));
5168 xtarget = offset_address (target,
5169 expand_normal (position),
5170 highest_pow2_factor (position));
5171 xtarget = adjust_address (xtarget, mode, 0);
5172 store_expr (value, xtarget, 0);
5174 else
5176 if (index != 0)
5177 bitpos = ((tree_low_cst (index, 0) - minelt)
5178 * tree_low_cst (TYPE_SIZE (elttype), 1));
5179 else
5180 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5182 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5183 && TREE_CODE (type) == ARRAY_TYPE
5184 && TYPE_NONALIASED_COMPONENT (type))
5186 target = copy_rtx (target);
5187 MEM_KEEP_ALIAS_SET_P (target) = 1;
5189 store_constructor_field (target, bitsize, bitpos, mode, value,
5190 type, cleared, get_alias_set (elttype));
5193 break;
5196 case VECTOR_TYPE:
5198 unsigned HOST_WIDE_INT idx;
5199 constructor_elt *ce;
5200 int i;
5201 int need_to_clear;
5202 int icode = 0;
5203 tree elttype = TREE_TYPE (type);
5204 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5205 enum machine_mode eltmode = TYPE_MODE (elttype);
5206 HOST_WIDE_INT bitsize;
5207 HOST_WIDE_INT bitpos;
5208 rtvec vector = NULL;
5209 unsigned n_elts;
5211 gcc_assert (eltmode != BLKmode);
5213 n_elts = TYPE_VECTOR_SUBPARTS (type);
5214 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5216 enum machine_mode mode = GET_MODE (target);
5218 icode = (int) vec_init_optab->handlers[mode].insn_code;
5219 if (icode != CODE_FOR_nothing)
5221 unsigned int i;
5223 vector = rtvec_alloc (n_elts);
5224 for (i = 0; i < n_elts; i++)
5225 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5229 /* If the constructor has fewer elements than the vector,
5230 clear the whole array first. Similarly if this is static
5231 constructor of a non-BLKmode object. */
5232 if (cleared)
5233 need_to_clear = 0;
5234 else if (REG_P (target) && TREE_STATIC (exp))
5235 need_to_clear = 1;
5236 else
5238 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5239 tree value;
5241 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5243 int n_elts_here = tree_low_cst
5244 (int_const_binop (TRUNC_DIV_EXPR,
5245 TYPE_SIZE (TREE_TYPE (value)),
5246 TYPE_SIZE (elttype), 0), 1);
5248 count += n_elts_here;
5249 if (mostly_zeros_p (value))
5250 zero_count += n_elts_here;
5253 /* Clear the entire vector first if there are any missing elements,
5254 or if the incidence of zero elements is >= 75%. */
5255 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5258 if (need_to_clear && size > 0 && !vector)
5260 if (REG_P (target))
5261 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5262 else
5263 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5264 cleared = 1;
5267 /* Inform later passes that the old value is dead. */
5268 if (!cleared && REG_P (target))
5269 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5271 /* Store each element of the constructor into the corresponding
5272 element of TARGET, determined by counting the elements. */
5273 for (idx = 0, i = 0;
5274 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5275 idx++, i += bitsize / elt_size)
5277 HOST_WIDE_INT eltpos;
5278 tree value = ce->value;
5280 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5281 if (cleared && initializer_zerop (value))
5282 continue;
5284 if (ce->index)
5285 eltpos = tree_low_cst (ce->index, 1);
5286 else
5287 eltpos = i;
5289 if (vector)
5291 /* Vector CONSTRUCTORs should only be built from smaller
5292 vectors in the case of BLKmode vectors. */
5293 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5294 RTVEC_ELT (vector, eltpos)
5295 = expand_normal (value);
5297 else
5299 enum machine_mode value_mode =
5300 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5301 ? TYPE_MODE (TREE_TYPE (value))
5302 : eltmode;
5303 bitpos = eltpos * elt_size;
5304 store_constructor_field (target, bitsize, bitpos,
5305 value_mode, value, type,
5306 cleared, get_alias_set (elttype));
5310 if (vector)
5311 emit_insn (GEN_FCN (icode)
5312 (target,
5313 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5314 break;
5317 default:
5318 gcc_unreachable ();
5322 /* Store the value of EXP (an expression tree)
5323 into a subfield of TARGET which has mode MODE and occupies
5324 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5325 If MODE is VOIDmode, it means that we are storing into a bit-field.
5327 Always return const0_rtx unless we have something particular to
5328 return.
5330 TYPE is the type of the underlying object,
5332 ALIAS_SET is the alias set for the destination. This value will
5333 (in general) be different from that for TARGET, since TARGET is a
5334 reference to the containing structure. */
5336 static rtx
5337 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5338 enum machine_mode mode, tree exp, tree type, int alias_set)
5340 HOST_WIDE_INT width_mask = 0;
5342 if (TREE_CODE (exp) == ERROR_MARK)
5343 return const0_rtx;
5345 /* If we have nothing to store, do nothing unless the expression has
5346 side-effects. */
5347 if (bitsize == 0)
5348 return expand_expr (exp, const0_rtx, VOIDmode, 0);
5349 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5350 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5352 /* If we are storing into an unaligned field of an aligned union that is
5353 in a register, we may have the mode of TARGET being an integer mode but
5354 MODE == BLKmode. In that case, get an aligned object whose size and
5355 alignment are the same as TARGET and store TARGET into it (we can avoid
5356 the store if the field being stored is the entire width of TARGET). Then
5357 call ourselves recursively to store the field into a BLKmode version of
5358 that object. Finally, load from the object into TARGET. This is not
5359 very efficient in general, but should only be slightly more expensive
5360 than the otherwise-required unaligned accesses. Perhaps this can be
5361 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5362 twice, once with emit_move_insn and once via store_field. */
5364 if (mode == BLKmode
5365 && (REG_P (target) || GET_CODE (target) == SUBREG))
5367 rtx object = assign_temp (type, 0, 1, 1);
5368 rtx blk_object = adjust_address (object, BLKmode, 0);
5370 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5371 emit_move_insn (object, target);
5373 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set);
5375 emit_move_insn (target, object);
5377 /* We want to return the BLKmode version of the data. */
5378 return blk_object;
5381 if (GET_CODE (target) == CONCAT)
5383 /* We're storing into a struct containing a single __complex. */
5385 gcc_assert (!bitpos);
5386 return store_expr (exp, target, 0);
5389 /* If the structure is in a register or if the component
5390 is a bit field, we cannot use addressing to access it.
5391 Use bit-field techniques or SUBREG to store in it. */
5393 if (mode == VOIDmode
5394 || (mode != BLKmode && ! direct_store[(int) mode]
5395 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5396 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5397 || REG_P (target)
5398 || GET_CODE (target) == SUBREG
5399 /* If the field isn't aligned enough to store as an ordinary memref,
5400 store it as a bit field. */
5401 || (mode != BLKmode
5402 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5403 || bitpos % GET_MODE_ALIGNMENT (mode))
5404 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5405 || (bitpos % BITS_PER_UNIT != 0)))
5406 /* If the RHS and field are a constant size and the size of the
5407 RHS isn't the same size as the bitfield, we must use bitfield
5408 operations. */
5409 || (bitsize >= 0
5410 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5411 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5413 rtx temp;
5415 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5416 implies a mask operation. If the precision is the same size as
5417 the field we're storing into, that mask is redundant. This is
5418 particularly common with bit field assignments generated by the
5419 C front end. */
5420 if (TREE_CODE (exp) == NOP_EXPR)
5422 tree type = TREE_TYPE (exp);
5423 if (INTEGRAL_TYPE_P (type)
5424 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5425 && bitsize == TYPE_PRECISION (type))
5427 type = TREE_TYPE (TREE_OPERAND (exp, 0));
5428 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5429 exp = TREE_OPERAND (exp, 0);
5433 temp = expand_normal (exp);
5435 /* If BITSIZE is narrower than the size of the type of EXP
5436 we will be narrowing TEMP. Normally, what's wanted are the
5437 low-order bits. However, if EXP's type is a record and this is
5438 big-endian machine, we want the upper BITSIZE bits. */
5439 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5440 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5441 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5442 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5443 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5444 - bitsize),
5445 NULL_RTX, 1);
5447 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5448 MODE. */
5449 if (mode != VOIDmode && mode != BLKmode
5450 && mode != TYPE_MODE (TREE_TYPE (exp)))
5451 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5453 /* If the modes of TARGET and TEMP are both BLKmode, both
5454 must be in memory and BITPOS must be aligned on a byte
5455 boundary. If so, we simply do a block copy. */
5456 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5458 gcc_assert (MEM_P (target) && MEM_P (temp)
5459 && !(bitpos % BITS_PER_UNIT));
5461 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5462 emit_block_move (target, temp,
5463 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5464 / BITS_PER_UNIT),
5465 BLOCK_OP_NORMAL);
5467 return const0_rtx;
5470 /* Store the value in the bitfield. */
5471 store_bit_field (target, bitsize, bitpos, mode, temp);
5473 return const0_rtx;
5475 else
5477 /* Now build a reference to just the desired component. */
5478 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5480 if (to_rtx == target)
5481 to_rtx = copy_rtx (to_rtx);
5483 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5484 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5485 set_mem_alias_set (to_rtx, alias_set);
5487 return store_expr (exp, to_rtx, 0);
5491 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5492 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5493 codes and find the ultimate containing object, which we return.
5495 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5496 bit position, and *PUNSIGNEDP to the signedness of the field.
5497 If the position of the field is variable, we store a tree
5498 giving the variable offset (in units) in *POFFSET.
5499 This offset is in addition to the bit position.
5500 If the position is not variable, we store 0 in *POFFSET.
5502 If any of the extraction expressions is volatile,
5503 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5505 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5506 is a mode that can be used to access the field. In that case, *PBITSIZE
5507 is redundant.
5509 If the field describes a variable-sized object, *PMODE is set to
5510 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5511 this case, but the address of the object can be found.
5513 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5514 look through nodes that serve as markers of a greater alignment than
5515 the one that can be deduced from the expression. These nodes make it
5516 possible for front-ends to prevent temporaries from being created by
5517 the middle-end on alignment considerations. For that purpose, the
5518 normal operating mode at high-level is to always pass FALSE so that
5519 the ultimate containing object is really returned; moreover, the
5520 associated predicate handled_component_p will always return TRUE
5521 on these nodes, thus indicating that they are essentially handled
5522 by get_inner_reference. TRUE should only be passed when the caller
5523 is scanning the expression in order to build another representation
5524 and specifically knows how to handle these nodes; as such, this is
5525 the normal operating mode in the RTL expanders. */
5527 tree
5528 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5529 HOST_WIDE_INT *pbitpos, tree *poffset,
5530 enum machine_mode *pmode, int *punsignedp,
5531 int *pvolatilep, bool keep_aligning)
5533 tree size_tree = 0;
5534 enum machine_mode mode = VOIDmode;
5535 tree offset = size_zero_node;
5536 tree bit_offset = bitsize_zero_node;
5537 tree tem;
5539 /* First get the mode, signedness, and size. We do this from just the
5540 outermost expression. */
5541 if (TREE_CODE (exp) == COMPONENT_REF)
5543 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5544 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5545 mode = DECL_MODE (TREE_OPERAND (exp, 1));
5547 *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
5549 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5551 size_tree = TREE_OPERAND (exp, 1);
5552 *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
5554 else
5556 mode = TYPE_MODE (TREE_TYPE (exp));
5557 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5559 if (mode == BLKmode)
5560 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5561 else
5562 *pbitsize = GET_MODE_BITSIZE (mode);
5565 if (size_tree != 0)
5567 if (! host_integerp (size_tree, 1))
5568 mode = BLKmode, *pbitsize = -1;
5569 else
5570 *pbitsize = tree_low_cst (size_tree, 1);
5573 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5574 and find the ultimate containing object. */
5575 while (1)
5577 switch (TREE_CODE (exp))
5579 case BIT_FIELD_REF:
5580 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5581 TREE_OPERAND (exp, 2));
5582 break;
5584 case COMPONENT_REF:
5586 tree field = TREE_OPERAND (exp, 1);
5587 tree this_offset = component_ref_field_offset (exp);
5589 /* If this field hasn't been filled in yet, don't go past it.
5590 This should only happen when folding expressions made during
5591 type construction. */
5592 if (this_offset == 0)
5593 break;
5595 offset = size_binop (PLUS_EXPR, offset, this_offset);
5596 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5597 DECL_FIELD_BIT_OFFSET (field));
5599 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5601 break;
5603 case ARRAY_REF:
5604 case ARRAY_RANGE_REF:
5606 tree index = TREE_OPERAND (exp, 1);
5607 tree low_bound = array_ref_low_bound (exp);
5608 tree unit_size = array_ref_element_size (exp);
5610 /* We assume all arrays have sizes that are a multiple of a byte.
5611 First subtract the lower bound, if any, in the type of the
5612 index, then convert to sizetype and multiply by the size of
5613 the array element. */
5614 if (! integer_zerop (low_bound))
5615 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5616 index, low_bound);
5618 offset = size_binop (PLUS_EXPR, offset,
5619 size_binop (MULT_EXPR,
5620 convert (sizetype, index),
5621 unit_size));
5623 break;
5625 case REALPART_EXPR:
5626 break;
5628 case IMAGPART_EXPR:
5629 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5630 bitsize_int (*pbitsize));
5631 break;
5633 case VIEW_CONVERT_EXPR:
5634 if (keep_aligning && STRICT_ALIGNMENT
5635 && (TYPE_ALIGN (TREE_TYPE (exp))
5636 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
5637 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
5638 < BIGGEST_ALIGNMENT)
5639 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
5640 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
5641 goto done;
5642 break;
5644 default:
5645 goto done;
5648 /* If any reference in the chain is volatile, the effect is volatile. */
5649 if (TREE_THIS_VOLATILE (exp))
5650 *pvolatilep = 1;
5652 exp = TREE_OPERAND (exp, 0);
5654 done:
5656 /* If OFFSET is constant, see if we can return the whole thing as a
5657 constant bit position. Otherwise, split it up. */
5658 if (host_integerp (offset, 0)
5659 && 0 != (tem = size_binop (MULT_EXPR, convert (bitsizetype, offset),
5660 bitsize_unit_node))
5661 && 0 != (tem = size_binop (PLUS_EXPR, tem, bit_offset))
5662 && host_integerp (tem, 0))
5663 *pbitpos = tree_low_cst (tem, 0), *poffset = 0;
5664 else
5665 *pbitpos = tree_low_cst (bit_offset, 0), *poffset = offset;
5667 *pmode = mode;
5668 return exp;
5671 /* Return a tree of sizetype representing the size, in bytes, of the element
5672 of EXP, an ARRAY_REF. */
5674 tree
5675 array_ref_element_size (tree exp)
5677 tree aligned_size = TREE_OPERAND (exp, 3);
5678 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5680 /* If a size was specified in the ARRAY_REF, it's the size measured
5681 in alignment units of the element type. So multiply by that value. */
5682 if (aligned_size)
5684 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5685 sizetype from another type of the same width and signedness. */
5686 if (TREE_TYPE (aligned_size) != sizetype)
5687 aligned_size = fold_convert (sizetype, aligned_size);
5688 return size_binop (MULT_EXPR, aligned_size,
5689 size_int (TYPE_ALIGN_UNIT (elmt_type)));
5692 /* Otherwise, take the size from that of the element type. Substitute
5693 any PLACEHOLDER_EXPR that we have. */
5694 else
5695 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
5698 /* Return a tree representing the lower bound of the array mentioned in
5699 EXP, an ARRAY_REF. */
5701 tree
5702 array_ref_low_bound (tree exp)
5704 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5706 /* If a lower bound is specified in EXP, use it. */
5707 if (TREE_OPERAND (exp, 2))
5708 return TREE_OPERAND (exp, 2);
5710 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5711 substituting for a PLACEHOLDER_EXPR as needed. */
5712 if (domain_type && TYPE_MIN_VALUE (domain_type))
5713 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
5715 /* Otherwise, return a zero of the appropriate type. */
5716 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
5719 /* Return a tree representing the upper bound of the array mentioned in
5720 EXP, an ARRAY_REF. */
5722 tree
5723 array_ref_up_bound (tree exp)
5725 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5727 /* If there is a domain type and it has an upper bound, use it, substituting
5728 for a PLACEHOLDER_EXPR as needed. */
5729 if (domain_type && TYPE_MAX_VALUE (domain_type))
5730 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
5732 /* Otherwise fail. */
5733 return NULL_TREE;
5736 /* Return a tree representing the offset, in bytes, of the field referenced
5737 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5739 tree
5740 component_ref_field_offset (tree exp)
5742 tree aligned_offset = TREE_OPERAND (exp, 2);
5743 tree field = TREE_OPERAND (exp, 1);
5745 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5746 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5747 value. */
5748 if (aligned_offset)
5750 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5751 sizetype from another type of the same width and signedness. */
5752 if (TREE_TYPE (aligned_offset) != sizetype)
5753 aligned_offset = fold_convert (sizetype, aligned_offset);
5754 return size_binop (MULT_EXPR, aligned_offset,
5755 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
5758 /* Otherwise, take the offset from that of the field. Substitute
5759 any PLACEHOLDER_EXPR that we have. */
5760 else
5761 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
5764 /* Return 1 if T is an expression that get_inner_reference handles. */
5767 handled_component_p (tree t)
5769 switch (TREE_CODE (t))
5771 case BIT_FIELD_REF:
5772 case COMPONENT_REF:
5773 case ARRAY_REF:
5774 case ARRAY_RANGE_REF:
5775 case VIEW_CONVERT_EXPR:
5776 case REALPART_EXPR:
5777 case IMAGPART_EXPR:
5778 return 1;
5780 default:
5781 return 0;
5785 /* Given an rtx VALUE that may contain additions and multiplications, return
5786 an equivalent value that just refers to a register, memory, or constant.
5787 This is done by generating instructions to perform the arithmetic and
5788 returning a pseudo-register containing the value.
5790 The returned value may be a REG, SUBREG, MEM or constant. */
5793 force_operand (rtx value, rtx target)
5795 rtx op1, op2;
5796 /* Use subtarget as the target for operand 0 of a binary operation. */
5797 rtx subtarget = get_subtarget (target);
5798 enum rtx_code code = GET_CODE (value);
5800 /* Check for subreg applied to an expression produced by loop optimizer. */
5801 if (code == SUBREG
5802 && !REG_P (SUBREG_REG (value))
5803 && !MEM_P (SUBREG_REG (value)))
5805 value = simplify_gen_subreg (GET_MODE (value),
5806 force_reg (GET_MODE (SUBREG_REG (value)),
5807 force_operand (SUBREG_REG (value),
5808 NULL_RTX)),
5809 GET_MODE (SUBREG_REG (value)),
5810 SUBREG_BYTE (value));
5811 code = GET_CODE (value);
5814 /* Check for a PIC address load. */
5815 if ((code == PLUS || code == MINUS)
5816 && XEXP (value, 0) == pic_offset_table_rtx
5817 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
5818 || GET_CODE (XEXP (value, 1)) == LABEL_REF
5819 || GET_CODE (XEXP (value, 1)) == CONST))
5821 if (!subtarget)
5822 subtarget = gen_reg_rtx (GET_MODE (value));
5823 emit_move_insn (subtarget, value);
5824 return subtarget;
5827 if (ARITHMETIC_P (value))
5829 op2 = XEXP (value, 1);
5830 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
5831 subtarget = 0;
5832 if (code == MINUS && GET_CODE (op2) == CONST_INT)
5834 code = PLUS;
5835 op2 = negate_rtx (GET_MODE (value), op2);
5838 /* Check for an addition with OP2 a constant integer and our first
5839 operand a PLUS of a virtual register and something else. In that
5840 case, we want to emit the sum of the virtual register and the
5841 constant first and then add the other value. This allows virtual
5842 register instantiation to simply modify the constant rather than
5843 creating another one around this addition. */
5844 if (code == PLUS && GET_CODE (op2) == CONST_INT
5845 && GET_CODE (XEXP (value, 0)) == PLUS
5846 && REG_P (XEXP (XEXP (value, 0), 0))
5847 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5848 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
5850 rtx temp = expand_simple_binop (GET_MODE (value), code,
5851 XEXP (XEXP (value, 0), 0), op2,
5852 subtarget, 0, OPTAB_LIB_WIDEN);
5853 return expand_simple_binop (GET_MODE (value), code, temp,
5854 force_operand (XEXP (XEXP (value,
5855 0), 1), 0),
5856 target, 0, OPTAB_LIB_WIDEN);
5859 op1 = force_operand (XEXP (value, 0), subtarget);
5860 op2 = force_operand (op2, NULL_RTX);
5861 switch (code)
5863 case MULT:
5864 return expand_mult (GET_MODE (value), op1, op2, target, 1);
5865 case DIV:
5866 if (!INTEGRAL_MODE_P (GET_MODE (value)))
5867 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5868 target, 1, OPTAB_LIB_WIDEN);
5869 else
5870 return expand_divmod (0,
5871 FLOAT_MODE_P (GET_MODE (value))
5872 ? RDIV_EXPR : TRUNC_DIV_EXPR,
5873 GET_MODE (value), op1, op2, target, 0);
5874 break;
5875 case MOD:
5876 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5877 target, 0);
5878 break;
5879 case UDIV:
5880 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
5881 target, 1);
5882 break;
5883 case UMOD:
5884 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5885 target, 1);
5886 break;
5887 case ASHIFTRT:
5888 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5889 target, 0, OPTAB_LIB_WIDEN);
5890 break;
5891 default:
5892 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5893 target, 1, OPTAB_LIB_WIDEN);
5896 if (UNARY_P (value))
5898 if (!target)
5899 target = gen_reg_rtx (GET_MODE (value));
5900 op1 = force_operand (XEXP (value, 0), NULL_RTX);
5901 switch (code)
5903 case ZERO_EXTEND:
5904 case SIGN_EXTEND:
5905 case TRUNCATE:
5906 convert_move (target, op1, code == ZERO_EXTEND);
5907 return target;
5909 case FIX:
5910 case UNSIGNED_FIX:
5911 expand_fix (target, op1, code == UNSIGNED_FIX);
5912 return target;
5914 case FLOAT:
5915 case UNSIGNED_FLOAT:
5916 expand_float (target, op1, code == UNSIGNED_FLOAT);
5917 return target;
5919 default:
5920 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
5924 #ifdef INSN_SCHEDULING
5925 /* On machines that have insn scheduling, we want all memory reference to be
5926 explicit, so we need to deal with such paradoxical SUBREGs. */
5927 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
5928 && (GET_MODE_SIZE (GET_MODE (value))
5929 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
5930 value
5931 = simplify_gen_subreg (GET_MODE (value),
5932 force_reg (GET_MODE (SUBREG_REG (value)),
5933 force_operand (SUBREG_REG (value),
5934 NULL_RTX)),
5935 GET_MODE (SUBREG_REG (value)),
5936 SUBREG_BYTE (value));
5937 #endif
5939 return value;
5942 /* Subroutine of expand_expr: return nonzero iff there is no way that
5943 EXP can reference X, which is being modified. TOP_P is nonzero if this
5944 call is going to be used to determine whether we need a temporary
5945 for EXP, as opposed to a recursive call to this function.
5947 It is always safe for this routine to return zero since it merely
5948 searches for optimization opportunities. */
5951 safe_from_p (rtx x, tree exp, int top_p)
5953 rtx exp_rtl = 0;
5954 int i, nops;
5956 if (x == 0
5957 /* If EXP has varying size, we MUST use a target since we currently
5958 have no way of allocating temporaries of variable size
5959 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5960 So we assume here that something at a higher level has prevented a
5961 clash. This is somewhat bogus, but the best we can do. Only
5962 do this when X is BLKmode and when we are at the top level. */
5963 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
5964 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
5965 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
5966 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
5967 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
5968 != INTEGER_CST)
5969 && GET_MODE (x) == BLKmode)
5970 /* If X is in the outgoing argument area, it is always safe. */
5971 || (MEM_P (x)
5972 && (XEXP (x, 0) == virtual_outgoing_args_rtx
5973 || (GET_CODE (XEXP (x, 0)) == PLUS
5974 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
5975 return 1;
5977 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5978 find the underlying pseudo. */
5979 if (GET_CODE (x) == SUBREG)
5981 x = SUBREG_REG (x);
5982 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5983 return 0;
5986 /* Now look at our tree code and possibly recurse. */
5987 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
5989 case tcc_declaration:
5990 exp_rtl = DECL_RTL_IF_SET (exp);
5991 break;
5993 case tcc_constant:
5994 return 1;
5996 case tcc_exceptional:
5997 if (TREE_CODE (exp) == TREE_LIST)
5999 while (1)
6001 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6002 return 0;
6003 exp = TREE_CHAIN (exp);
6004 if (!exp)
6005 return 1;
6006 if (TREE_CODE (exp) != TREE_LIST)
6007 return safe_from_p (x, exp, 0);
6010 else if (TREE_CODE (exp) == ERROR_MARK)
6011 return 1; /* An already-visited SAVE_EXPR? */
6012 else
6013 return 0;
6015 case tcc_statement:
6016 /* The only case we look at here is the DECL_INITIAL inside a
6017 DECL_EXPR. */
6018 return (TREE_CODE (exp) != DECL_EXPR
6019 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6020 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6021 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6023 case tcc_binary:
6024 case tcc_comparison:
6025 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6026 return 0;
6027 /* Fall through. */
6029 case tcc_unary:
6030 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6032 case tcc_expression:
6033 case tcc_reference:
6034 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6035 the expression. If it is set, we conflict iff we are that rtx or
6036 both are in memory. Otherwise, we check all operands of the
6037 expression recursively. */
6039 switch (TREE_CODE (exp))
6041 case ADDR_EXPR:
6042 /* If the operand is static or we are static, we can't conflict.
6043 Likewise if we don't conflict with the operand at all. */
6044 if (staticp (TREE_OPERAND (exp, 0))
6045 || TREE_STATIC (exp)
6046 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6047 return 1;
6049 /* Otherwise, the only way this can conflict is if we are taking
6050 the address of a DECL a that address if part of X, which is
6051 very rare. */
6052 exp = TREE_OPERAND (exp, 0);
6053 if (DECL_P (exp))
6055 if (!DECL_RTL_SET_P (exp)
6056 || !MEM_P (DECL_RTL (exp)))
6057 return 0;
6058 else
6059 exp_rtl = XEXP (DECL_RTL (exp), 0);
6061 break;
6063 case MISALIGNED_INDIRECT_REF:
6064 case ALIGN_INDIRECT_REF:
6065 case INDIRECT_REF:
6066 if (MEM_P (x)
6067 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6068 get_alias_set (exp)))
6069 return 0;
6070 break;
6072 case CALL_EXPR:
6073 /* Assume that the call will clobber all hard registers and
6074 all of memory. */
6075 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6076 || MEM_P (x))
6077 return 0;
6078 break;
6080 case WITH_CLEANUP_EXPR:
6081 case CLEANUP_POINT_EXPR:
6082 /* Lowered by gimplify.c. */
6083 gcc_unreachable ();
6085 case SAVE_EXPR:
6086 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6088 default:
6089 break;
6092 /* If we have an rtx, we do not need to scan our operands. */
6093 if (exp_rtl)
6094 break;
6096 nops = TREE_CODE_LENGTH (TREE_CODE (exp));
6097 for (i = 0; i < nops; i++)
6098 if (TREE_OPERAND (exp, i) != 0
6099 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6100 return 0;
6102 /* If this is a language-specific tree code, it may require
6103 special handling. */
6104 if ((unsigned int) TREE_CODE (exp)
6105 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
6106 && !lang_hooks.safe_from_p (x, exp))
6107 return 0;
6108 break;
6110 case tcc_type:
6111 /* Should never get a type here. */
6112 gcc_unreachable ();
6115 /* If we have an rtl, find any enclosed object. Then see if we conflict
6116 with it. */
6117 if (exp_rtl)
6119 if (GET_CODE (exp_rtl) == SUBREG)
6121 exp_rtl = SUBREG_REG (exp_rtl);
6122 if (REG_P (exp_rtl)
6123 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6124 return 0;
6127 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6128 are memory and they conflict. */
6129 return ! (rtx_equal_p (x, exp_rtl)
6130 || (MEM_P (x) && MEM_P (exp_rtl)
6131 && true_dependence (exp_rtl, VOIDmode, x,
6132 rtx_addr_varies_p)));
6135 /* If we reach here, it is safe. */
6136 return 1;
6140 /* Return the highest power of two that EXP is known to be a multiple of.
6141 This is used in updating alignment of MEMs in array references. */
6143 unsigned HOST_WIDE_INT
6144 highest_pow2_factor (tree exp)
6146 unsigned HOST_WIDE_INT c0, c1;
6148 switch (TREE_CODE (exp))
6150 case INTEGER_CST:
6151 /* We can find the lowest bit that's a one. If the low
6152 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6153 We need to handle this case since we can find it in a COND_EXPR,
6154 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6155 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6156 later ICE. */
6157 if (TREE_CONSTANT_OVERFLOW (exp))
6158 return BIGGEST_ALIGNMENT;
6159 else
6161 /* Note: tree_low_cst is intentionally not used here,
6162 we don't care about the upper bits. */
6163 c0 = TREE_INT_CST_LOW (exp);
6164 c0 &= -c0;
6165 return c0 ? c0 : BIGGEST_ALIGNMENT;
6167 break;
6169 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6170 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6171 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6172 return MIN (c0, c1);
6174 case MULT_EXPR:
6175 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6176 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6177 return c0 * c1;
6179 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6180 case CEIL_DIV_EXPR:
6181 if (integer_pow2p (TREE_OPERAND (exp, 1))
6182 && host_integerp (TREE_OPERAND (exp, 1), 1))
6184 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6185 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6186 return MAX (1, c0 / c1);
6188 break;
6190 case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
6191 case SAVE_EXPR:
6192 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6194 case COMPOUND_EXPR:
6195 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6197 case COND_EXPR:
6198 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6199 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6200 return MIN (c0, c1);
6202 default:
6203 break;
6206 return 1;
6209 /* Similar, except that the alignment requirements of TARGET are
6210 taken into account. Assume it is at least as aligned as its
6211 type, unless it is a COMPONENT_REF in which case the layout of
6212 the structure gives the alignment. */
6214 static unsigned HOST_WIDE_INT
6215 highest_pow2_factor_for_target (tree target, tree exp)
6217 unsigned HOST_WIDE_INT target_align, factor;
6219 factor = highest_pow2_factor (exp);
6220 if (TREE_CODE (target) == COMPONENT_REF)
6221 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
6222 else
6223 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
6224 return MAX (factor, target_align);
6227 /* Expands variable VAR. */
6229 void
6230 expand_var (tree var)
6232 if (DECL_EXTERNAL (var))
6233 return;
6235 if (TREE_STATIC (var))
6236 /* If this is an inlined copy of a static local variable,
6237 look up the original decl. */
6238 var = DECL_ORIGIN (var);
6240 if (TREE_STATIC (var)
6241 ? !TREE_ASM_WRITTEN (var)
6242 : !DECL_RTL_SET_P (var))
6244 if (TREE_CODE (var) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (var))
6245 /* Should be ignored. */;
6246 else if (lang_hooks.expand_decl (var))
6247 /* OK. */;
6248 else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
6249 expand_decl (var);
6250 else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
6251 rest_of_decl_compilation (var, 0, 0);
6252 else
6253 /* No expansion needed. */
6254 gcc_assert (TREE_CODE (var) == TYPE_DECL
6255 || TREE_CODE (var) == CONST_DECL
6256 || TREE_CODE (var) == FUNCTION_DECL
6257 || TREE_CODE (var) == LABEL_DECL);
6261 /* Subroutine of expand_expr. Expand the two operands of a binary
6262 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6263 The value may be stored in TARGET if TARGET is nonzero. The
6264 MODIFIER argument is as documented by expand_expr. */
6266 static void
6267 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6268 enum expand_modifier modifier)
6270 if (! safe_from_p (target, exp1, 1))
6271 target = 0;
6272 if (operand_equal_p (exp0, exp1, 0))
6274 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6275 *op1 = copy_rtx (*op0);
6277 else
6279 /* If we need to preserve evaluation order, copy exp0 into its own
6280 temporary variable so that it can't be clobbered by exp1. */
6281 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6282 exp0 = save_expr (exp0);
6283 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6284 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6289 /* Return a MEM that contains constant EXP. DEFER is as for
6290 output_constant_def and MODIFIER is as for expand_expr. */
6292 static rtx
6293 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6295 rtx mem;
6297 mem = output_constant_def (exp, defer);
6298 if (modifier != EXPAND_INITIALIZER)
6299 mem = use_anchored_address (mem);
6300 return mem;
6303 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6304 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6306 static rtx
6307 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6308 enum expand_modifier modifier)
6310 rtx result, subtarget;
6311 tree inner, offset;
6312 HOST_WIDE_INT bitsize, bitpos;
6313 int volatilep, unsignedp;
6314 enum machine_mode mode1;
6316 /* If we are taking the address of a constant and are at the top level,
6317 we have to use output_constant_def since we can't call force_const_mem
6318 at top level. */
6319 /* ??? This should be considered a front-end bug. We should not be
6320 generating ADDR_EXPR of something that isn't an LVALUE. The only
6321 exception here is STRING_CST. */
6322 if (TREE_CODE (exp) == CONSTRUCTOR
6323 || CONSTANT_CLASS_P (exp))
6324 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6326 /* Everything must be something allowed by is_gimple_addressable. */
6327 switch (TREE_CODE (exp))
6329 case INDIRECT_REF:
6330 /* This case will happen via recursion for &a->b. */
6331 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6333 case CONST_DECL:
6334 /* Recurse and make the output_constant_def clause above handle this. */
6335 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6336 tmode, modifier);
6338 case REALPART_EXPR:
6339 /* The real part of the complex number is always first, therefore
6340 the address is the same as the address of the parent object. */
6341 offset = 0;
6342 bitpos = 0;
6343 inner = TREE_OPERAND (exp, 0);
6344 break;
6346 case IMAGPART_EXPR:
6347 /* The imaginary part of the complex number is always second.
6348 The expression is therefore always offset by the size of the
6349 scalar type. */
6350 offset = 0;
6351 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6352 inner = TREE_OPERAND (exp, 0);
6353 break;
6355 default:
6356 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6357 expand_expr, as that can have various side effects; LABEL_DECLs for
6358 example, may not have their DECL_RTL set yet. Assume language
6359 specific tree nodes can be expanded in some interesting way. */
6360 if (DECL_P (exp)
6361 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6363 result = expand_expr (exp, target, tmode,
6364 modifier == EXPAND_INITIALIZER
6365 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6367 /* If the DECL isn't in memory, then the DECL wasn't properly
6368 marked TREE_ADDRESSABLE, which will be either a front-end
6369 or a tree optimizer bug. */
6370 gcc_assert (MEM_P (result));
6371 result = XEXP (result, 0);
6373 /* ??? Is this needed anymore? */
6374 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6376 assemble_external (exp);
6377 TREE_USED (exp) = 1;
6380 if (modifier != EXPAND_INITIALIZER
6381 && modifier != EXPAND_CONST_ADDRESS)
6382 result = force_operand (result, target);
6383 return result;
6386 /* Pass FALSE as the last argument to get_inner_reference although
6387 we are expanding to RTL. The rationale is that we know how to
6388 handle "aligning nodes" here: we can just bypass them because
6389 they won't change the final object whose address will be returned
6390 (they actually exist only for that purpose). */
6391 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6392 &mode1, &unsignedp, &volatilep, false);
6393 break;
6396 /* We must have made progress. */
6397 gcc_assert (inner != exp);
6399 subtarget = offset || bitpos ? NULL_RTX : target;
6400 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6402 if (offset)
6404 rtx tmp;
6406 if (modifier != EXPAND_NORMAL)
6407 result = force_operand (result, NULL);
6408 tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
6410 result = convert_memory_address (tmode, result);
6411 tmp = convert_memory_address (tmode, tmp);
6413 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6414 result = gen_rtx_PLUS (tmode, result, tmp);
6415 else
6417 subtarget = bitpos ? NULL_RTX : target;
6418 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6419 1, OPTAB_LIB_WIDEN);
6423 if (bitpos)
6425 /* Someone beforehand should have rejected taking the address
6426 of such an object. */
6427 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6429 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6430 if (modifier < EXPAND_SUM)
6431 result = force_operand (result, target);
6434 return result;
6437 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6438 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6440 static rtx
6441 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6442 enum expand_modifier modifier)
6444 enum machine_mode rmode;
6445 rtx result;
6447 /* Target mode of VOIDmode says "whatever's natural". */
6448 if (tmode == VOIDmode)
6449 tmode = TYPE_MODE (TREE_TYPE (exp));
6451 /* We can get called with some Weird Things if the user does silliness
6452 like "(short) &a". In that case, convert_memory_address won't do
6453 the right thing, so ignore the given target mode. */
6454 if (tmode != Pmode && tmode != ptr_mode)
6455 tmode = Pmode;
6457 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6458 tmode, modifier);
6460 /* Despite expand_expr claims concerning ignoring TMODE when not
6461 strictly convenient, stuff breaks if we don't honor it. Note
6462 that combined with the above, we only do this for pointer modes. */
6463 rmode = GET_MODE (result);
6464 if (rmode == VOIDmode)
6465 rmode = tmode;
6466 if (rmode != tmode)
6467 result = convert_memory_address (tmode, result);
6469 return result;
6473 /* expand_expr: generate code for computing expression EXP.
6474 An rtx for the computed value is returned. The value is never null.
6475 In the case of a void EXP, const0_rtx is returned.
6477 The value may be stored in TARGET if TARGET is nonzero.
6478 TARGET is just a suggestion; callers must assume that
6479 the rtx returned may not be the same as TARGET.
6481 If TARGET is CONST0_RTX, it means that the value will be ignored.
6483 If TMODE is not VOIDmode, it suggests generating the
6484 result in mode TMODE. But this is done only when convenient.
6485 Otherwise, TMODE is ignored and the value generated in its natural mode.
6486 TMODE is just a suggestion; callers must assume that
6487 the rtx returned may not have mode TMODE.
6489 Note that TARGET may have neither TMODE nor MODE. In that case, it
6490 probably will not be used.
6492 If MODIFIER is EXPAND_SUM then when EXP is an addition
6493 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6494 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6495 products as above, or REG or MEM, or constant.
6496 Ordinarily in such cases we would output mul or add instructions
6497 and then return a pseudo reg containing the sum.
6499 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6500 it also marks a label as absolutely required (it can't be dead).
6501 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6502 This is used for outputting expressions used in initializers.
6504 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6505 with a constant address even if that address is not normally legitimate.
6506 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6508 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6509 a call parameter. Such targets require special care as we haven't yet
6510 marked TARGET so that it's safe from being trashed by libcalls. We
6511 don't want to use TARGET for anything but the final result;
6512 Intermediate values must go elsewhere. Additionally, calls to
6513 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6515 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6516 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6517 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6518 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6519 recursively. */
6521 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
6522 enum expand_modifier, rtx *);
6525 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
6526 enum expand_modifier modifier, rtx *alt_rtl)
6528 int rn = -1;
6529 rtx ret, last = NULL;
6531 /* Handle ERROR_MARK before anybody tries to access its type. */
6532 if (TREE_CODE (exp) == ERROR_MARK
6533 || TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
6535 ret = CONST0_RTX (tmode);
6536 return ret ? ret : const0_rtx;
6539 if (flag_non_call_exceptions)
6541 rn = lookup_stmt_eh_region (exp);
6542 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6543 if (rn >= 0)
6544 last = get_last_insn ();
6547 /* If this is an expression of some kind and it has an associated line
6548 number, then emit the line number before expanding the expression.
6550 We need to save and restore the file and line information so that
6551 errors discovered during expansion are emitted with the right
6552 information. It would be better of the diagnostic routines
6553 used the file/line information embedded in the tree nodes rather
6554 than globals. */
6555 if (cfun && cfun->ib_boundaries_block && EXPR_HAS_LOCATION (exp))
6557 location_t saved_location = input_location;
6558 input_location = EXPR_LOCATION (exp);
6559 emit_line_note (input_location);
6561 /* Record where the insns produced belong. */
6562 record_block_change (TREE_BLOCK (exp));
6564 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6566 input_location = saved_location;
6568 else
6570 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6573 /* If using non-call exceptions, mark all insns that may trap.
6574 expand_call() will mark CALL_INSNs before we get to this code,
6575 but it doesn't handle libcalls, and these may trap. */
6576 if (rn >= 0)
6578 rtx insn;
6579 for (insn = next_real_insn (last); insn;
6580 insn = next_real_insn (insn))
6582 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
6583 /* If we want exceptions for non-call insns, any
6584 may_trap_p instruction may throw. */
6585 && GET_CODE (PATTERN (insn)) != CLOBBER
6586 && GET_CODE (PATTERN (insn)) != USE
6587 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
6589 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
6590 REG_NOTES (insn));
6595 return ret;
6598 static rtx
6599 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
6600 enum expand_modifier modifier, rtx *alt_rtl)
6602 rtx op0, op1, temp, decl_rtl;
6603 tree type = TREE_TYPE (exp);
6604 int unsignedp;
6605 enum machine_mode mode;
6606 enum tree_code code = TREE_CODE (exp);
6607 optab this_optab;
6608 rtx subtarget, original_target;
6609 int ignore;
6610 tree context, subexp0, subexp1;
6611 bool reduce_bit_field = false;
6612 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6613 ? reduce_to_bit_field_precision ((expr), \
6614 target, \
6615 type) \
6616 : (expr))
6618 mode = TYPE_MODE (type);
6619 unsignedp = TYPE_UNSIGNED (type);
6620 if (lang_hooks.reduce_bit_field_operations
6621 && TREE_CODE (type) == INTEGER_TYPE
6622 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
6624 /* An operation in what may be a bit-field type needs the
6625 result to be reduced to the precision of the bit-field type,
6626 which is narrower than that of the type's mode. */
6627 reduce_bit_field = true;
6628 if (modifier == EXPAND_STACK_PARM)
6629 target = 0;
6632 /* Use subtarget as the target for operand 0 of a binary operation. */
6633 subtarget = get_subtarget (target);
6634 original_target = target;
6635 ignore = (target == const0_rtx
6636 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
6637 || code == CONVERT_EXPR || code == COND_EXPR
6638 || code == VIEW_CONVERT_EXPR)
6639 && TREE_CODE (type) == VOID_TYPE));
6641 /* If we are going to ignore this result, we need only do something
6642 if there is a side-effect somewhere in the expression. If there
6643 is, short-circuit the most common cases here. Note that we must
6644 not call expand_expr with anything but const0_rtx in case this
6645 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6647 if (ignore)
6649 if (! TREE_SIDE_EFFECTS (exp))
6650 return const0_rtx;
6652 /* Ensure we reference a volatile object even if value is ignored, but
6653 don't do this if all we are doing is taking its address. */
6654 if (TREE_THIS_VOLATILE (exp)
6655 && TREE_CODE (exp) != FUNCTION_DECL
6656 && mode != VOIDmode && mode != BLKmode
6657 && modifier != EXPAND_CONST_ADDRESS)
6659 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
6660 if (MEM_P (temp))
6661 temp = copy_to_reg (temp);
6662 return const0_rtx;
6665 if (TREE_CODE_CLASS (code) == tcc_unary
6666 || code == COMPONENT_REF || code == INDIRECT_REF)
6667 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6668 modifier);
6670 else if (TREE_CODE_CLASS (code) == tcc_binary
6671 || TREE_CODE_CLASS (code) == tcc_comparison
6672 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
6674 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6675 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6676 return const0_rtx;
6678 else if (code == BIT_FIELD_REF)
6680 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6681 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6682 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
6683 return const0_rtx;
6686 target = 0;
6690 switch (code)
6692 case LABEL_DECL:
6694 tree function = decl_function_context (exp);
6696 temp = label_rtx (exp);
6697 temp = gen_rtx_LABEL_REF (Pmode, temp);
6699 if (function != current_function_decl
6700 && function != 0)
6701 LABEL_REF_NONLOCAL_P (temp) = 1;
6703 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
6704 return temp;
6707 case SSA_NAME:
6708 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
6709 NULL);
6711 case PARM_DECL:
6712 case VAR_DECL:
6713 /* If a static var's type was incomplete when the decl was written,
6714 but the type is complete now, lay out the decl now. */
6715 if (DECL_SIZE (exp) == 0
6716 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
6717 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
6718 layout_decl (exp, 0);
6720 /* ... fall through ... */
6722 case FUNCTION_DECL:
6723 case RESULT_DECL:
6724 decl_rtl = DECL_RTL (exp);
6725 gcc_assert (decl_rtl);
6727 /* Ensure variable marked as used even if it doesn't go through
6728 a parser. If it hasn't be used yet, write out an external
6729 definition. */
6730 if (! TREE_USED (exp))
6732 assemble_external (exp);
6733 TREE_USED (exp) = 1;
6736 /* Show we haven't gotten RTL for this yet. */
6737 temp = 0;
6739 /* Variables inherited from containing functions should have
6740 been lowered by this point. */
6741 context = decl_function_context (exp);
6742 gcc_assert (!context
6743 || context == current_function_decl
6744 || TREE_STATIC (exp)
6745 /* ??? C++ creates functions that are not TREE_STATIC. */
6746 || TREE_CODE (exp) == FUNCTION_DECL);
6748 /* This is the case of an array whose size is to be determined
6749 from its initializer, while the initializer is still being parsed.
6750 See expand_decl. */
6752 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
6753 temp = validize_mem (decl_rtl);
6755 /* If DECL_RTL is memory, we are in the normal case and either
6756 the address is not valid or it is not a register and -fforce-addr
6757 is specified, get the address into a register. */
6759 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
6761 if (alt_rtl)
6762 *alt_rtl = decl_rtl;
6763 decl_rtl = use_anchored_address (decl_rtl);
6764 if (modifier != EXPAND_CONST_ADDRESS
6765 && modifier != EXPAND_SUM
6766 && (!memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0))
6767 || (flag_force_addr && !REG_P (XEXP (decl_rtl, 0)))))
6768 temp = replace_equiv_address (decl_rtl,
6769 copy_rtx (XEXP (decl_rtl, 0)));
6772 /* If we got something, return it. But first, set the alignment
6773 if the address is a register. */
6774 if (temp != 0)
6776 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
6777 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
6779 return temp;
6782 /* If the mode of DECL_RTL does not match that of the decl, it
6783 must be a promoted value. We return a SUBREG of the wanted mode,
6784 but mark it so that we know that it was already extended. */
6786 if (REG_P (decl_rtl)
6787 && GET_MODE (decl_rtl) != DECL_MODE (exp))
6789 enum machine_mode pmode;
6791 /* Get the signedness used for this variable. Ensure we get the
6792 same mode we got when the variable was declared. */
6793 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
6794 (TREE_CODE (exp) == RESULT_DECL
6795 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
6796 gcc_assert (GET_MODE (decl_rtl) == pmode);
6798 temp = gen_lowpart_SUBREG (mode, decl_rtl);
6799 SUBREG_PROMOTED_VAR_P (temp) = 1;
6800 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
6801 return temp;
6804 return decl_rtl;
6806 case INTEGER_CST:
6807 temp = immed_double_const (TREE_INT_CST_LOW (exp),
6808 TREE_INT_CST_HIGH (exp), mode);
6810 /* ??? If overflow is set, fold will have done an incomplete job,
6811 which can result in (plus xx (const_int 0)), which can get
6812 simplified by validate_replace_rtx during virtual register
6813 instantiation, which can result in unrecognizable insns.
6814 Avoid this by forcing all overflows into registers. */
6815 if (TREE_CONSTANT_OVERFLOW (exp)
6816 && modifier != EXPAND_INITIALIZER)
6817 temp = force_reg (mode, temp);
6819 return temp;
6821 case VECTOR_CST:
6822 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_INT
6823 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_FLOAT)
6824 return const_vector_from_tree (exp);
6825 else
6826 return expand_expr (build_constructor_from_list
6827 (TREE_TYPE (exp),
6828 TREE_VECTOR_CST_ELTS (exp)),
6829 ignore ? const0_rtx : target, tmode, modifier);
6831 case CONST_DECL:
6832 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
6834 case REAL_CST:
6835 /* If optimized, generate immediate CONST_DOUBLE
6836 which will be turned into memory by reload if necessary.
6838 We used to force a register so that loop.c could see it. But
6839 this does not allow gen_* patterns to perform optimizations with
6840 the constants. It also produces two insns in cases like "x = 1.0;".
6841 On most machines, floating-point constants are not permitted in
6842 many insns, so we'd end up copying it to a register in any case.
6844 Now, we do the copying in expand_binop, if appropriate. */
6845 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
6846 TYPE_MODE (TREE_TYPE (exp)));
6848 case COMPLEX_CST:
6849 /* Handle evaluating a complex constant in a CONCAT target. */
6850 if (original_target && GET_CODE (original_target) == CONCAT)
6852 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
6853 rtx rtarg, itarg;
6855 rtarg = XEXP (original_target, 0);
6856 itarg = XEXP (original_target, 1);
6858 /* Move the real and imaginary parts separately. */
6859 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
6860 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
6862 if (op0 != rtarg)
6863 emit_move_insn (rtarg, op0);
6864 if (op1 != itarg)
6865 emit_move_insn (itarg, op1);
6867 return original_target;
6870 /* ... fall through ... */
6872 case STRING_CST:
6873 temp = expand_expr_constant (exp, 1, modifier);
6875 /* temp contains a constant address.
6876 On RISC machines where a constant address isn't valid,
6877 make some insns to get that address into a register. */
6878 if (modifier != EXPAND_CONST_ADDRESS
6879 && modifier != EXPAND_INITIALIZER
6880 && modifier != EXPAND_SUM
6881 && (! memory_address_p (mode, XEXP (temp, 0))
6882 || flag_force_addr))
6883 return replace_equiv_address (temp,
6884 copy_rtx (XEXP (temp, 0)));
6885 return temp;
6887 case SAVE_EXPR:
6889 tree val = TREE_OPERAND (exp, 0);
6890 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
6892 if (!SAVE_EXPR_RESOLVED_P (exp))
6894 /* We can indeed still hit this case, typically via builtin
6895 expanders calling save_expr immediately before expanding
6896 something. Assume this means that we only have to deal
6897 with non-BLKmode values. */
6898 gcc_assert (GET_MODE (ret) != BLKmode);
6900 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
6901 DECL_ARTIFICIAL (val) = 1;
6902 DECL_IGNORED_P (val) = 1;
6903 TREE_OPERAND (exp, 0) = val;
6904 SAVE_EXPR_RESOLVED_P (exp) = 1;
6906 if (!CONSTANT_P (ret))
6907 ret = copy_to_reg (ret);
6908 SET_DECL_RTL (val, ret);
6911 return ret;
6914 case GOTO_EXPR:
6915 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
6916 expand_goto (TREE_OPERAND (exp, 0));
6917 else
6918 expand_computed_goto (TREE_OPERAND (exp, 0));
6919 return const0_rtx;
6921 case CONSTRUCTOR:
6922 /* If we don't need the result, just ensure we evaluate any
6923 subexpressions. */
6924 if (ignore)
6926 unsigned HOST_WIDE_INT idx;
6927 tree value;
6929 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6930 expand_expr (value, const0_rtx, VOIDmode, 0);
6932 return const0_rtx;
6935 /* Try to avoid creating a temporary at all. This is possible
6936 if all of the initializer is zero.
6937 FIXME: try to handle all [0..255] initializers we can handle
6938 with memset. */
6939 else if (TREE_STATIC (exp)
6940 && !TREE_ADDRESSABLE (exp)
6941 && target != 0 && mode == BLKmode
6942 && all_zeros_p (exp))
6944 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6945 return target;
6948 /* All elts simple constants => refer to a constant in memory. But
6949 if this is a non-BLKmode mode, let it store a field at a time
6950 since that should make a CONST_INT or CONST_DOUBLE when we
6951 fold. Likewise, if we have a target we can use, it is best to
6952 store directly into the target unless the type is large enough
6953 that memcpy will be used. If we are making an initializer and
6954 all operands are constant, put it in memory as well.
6956 FIXME: Avoid trying to fill vector constructors piece-meal.
6957 Output them with output_constant_def below unless we're sure
6958 they're zeros. This should go away when vector initializers
6959 are treated like VECTOR_CST instead of arrays.
6961 else if ((TREE_STATIC (exp)
6962 && ((mode == BLKmode
6963 && ! (target != 0 && safe_from_p (target, exp, 1)))
6964 || TREE_ADDRESSABLE (exp)
6965 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6966 && (! MOVE_BY_PIECES_P
6967 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6968 TYPE_ALIGN (type)))
6969 && ! mostly_zeros_p (exp))))
6970 || ((modifier == EXPAND_INITIALIZER
6971 || modifier == EXPAND_CONST_ADDRESS)
6972 && TREE_CONSTANT (exp)))
6974 rtx constructor = expand_expr_constant (exp, 1, modifier);
6976 if (modifier != EXPAND_CONST_ADDRESS
6977 && modifier != EXPAND_INITIALIZER
6978 && modifier != EXPAND_SUM)
6979 constructor = validize_mem (constructor);
6981 return constructor;
6983 else
6985 /* Handle calls that pass values in multiple non-contiguous
6986 locations. The Irix 6 ABI has examples of this. */
6987 if (target == 0 || ! safe_from_p (target, exp, 1)
6988 || GET_CODE (target) == PARALLEL
6989 || modifier == EXPAND_STACK_PARM)
6990 target
6991 = assign_temp (build_qualified_type (type,
6992 (TYPE_QUALS (type)
6993 | (TREE_READONLY (exp)
6994 * TYPE_QUAL_CONST))),
6995 0, TREE_ADDRESSABLE (exp), 1);
6997 store_constructor (exp, target, 0, int_expr_size (exp));
6998 return target;
7001 case MISALIGNED_INDIRECT_REF:
7002 case ALIGN_INDIRECT_REF:
7003 case INDIRECT_REF:
7005 tree exp1 = TREE_OPERAND (exp, 0);
7007 if (modifier != EXPAND_WRITE)
7009 tree t;
7011 t = fold_read_from_constant_string (exp);
7012 if (t)
7013 return expand_expr (t, target, tmode, modifier);
7016 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
7017 op0 = memory_address (mode, op0);
7019 if (code == ALIGN_INDIRECT_REF)
7021 int align = TYPE_ALIGN_UNIT (type);
7022 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7023 op0 = memory_address (mode, op0);
7026 temp = gen_rtx_MEM (mode, op0);
7028 set_mem_attributes (temp, exp, 0);
7030 /* Resolve the misalignment now, so that we don't have to remember
7031 to resolve it later. Of course, this only works for reads. */
7032 /* ??? When we get around to supporting writes, we'll have to handle
7033 this in store_expr directly. The vectorizer isn't generating
7034 those yet, however. */
7035 if (code == MISALIGNED_INDIRECT_REF)
7037 int icode;
7038 rtx reg, insn;
7040 gcc_assert (modifier == EXPAND_NORMAL
7041 || modifier == EXPAND_STACK_PARM);
7043 /* The vectorizer should have already checked the mode. */
7044 icode = movmisalign_optab->handlers[mode].insn_code;
7045 gcc_assert (icode != CODE_FOR_nothing);
7047 /* We've already validated the memory, and we're creating a
7048 new pseudo destination. The predicates really can't fail. */
7049 reg = gen_reg_rtx (mode);
7051 /* Nor can the insn generator. */
7052 insn = GEN_FCN (icode) (reg, temp);
7053 emit_insn (insn);
7055 return reg;
7058 return temp;
7061 case TARGET_MEM_REF:
7063 struct mem_address addr;
7065 get_address_description (exp, &addr);
7066 op0 = addr_for_mem_ref (&addr, true);
7067 op0 = memory_address (mode, op0);
7068 temp = gen_rtx_MEM (mode, op0);
7069 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7071 return temp;
7073 case ARRAY_REF:
7076 tree array = TREE_OPERAND (exp, 0);
7077 tree index = TREE_OPERAND (exp, 1);
7079 /* Fold an expression like: "foo"[2].
7080 This is not done in fold so it won't happen inside &.
7081 Don't fold if this is for wide characters since it's too
7082 difficult to do correctly and this is a very rare case. */
7084 if (modifier != EXPAND_CONST_ADDRESS
7085 && modifier != EXPAND_INITIALIZER
7086 && modifier != EXPAND_MEMORY)
7088 tree t = fold_read_from_constant_string (exp);
7090 if (t)
7091 return expand_expr (t, target, tmode, modifier);
7094 /* If this is a constant index into a constant array,
7095 just get the value from the array. Handle both the cases when
7096 we have an explicit constructor and when our operand is a variable
7097 that was declared const. */
7099 if (modifier != EXPAND_CONST_ADDRESS
7100 && modifier != EXPAND_INITIALIZER
7101 && modifier != EXPAND_MEMORY
7102 && TREE_CODE (array) == CONSTRUCTOR
7103 && ! TREE_SIDE_EFFECTS (array)
7104 && TREE_CODE (index) == INTEGER_CST)
7106 unsigned HOST_WIDE_INT ix;
7107 tree field, value;
7109 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7110 field, value)
7111 if (tree_int_cst_equal (field, index))
7113 if (!TREE_SIDE_EFFECTS (value))
7114 return expand_expr (fold (value), target, tmode, modifier);
7115 break;
7119 else if (optimize >= 1
7120 && modifier != EXPAND_CONST_ADDRESS
7121 && modifier != EXPAND_INITIALIZER
7122 && modifier != EXPAND_MEMORY
7123 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7124 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7125 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7126 && targetm.binds_local_p (array))
7128 if (TREE_CODE (index) == INTEGER_CST)
7130 tree init = DECL_INITIAL (array);
7132 if (TREE_CODE (init) == CONSTRUCTOR)
7134 unsigned HOST_WIDE_INT ix;
7135 tree field, value;
7137 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7138 field, value)
7139 if (tree_int_cst_equal (field, index))
7141 if (!TREE_SIDE_EFFECTS (value))
7142 return expand_expr (fold (value), target, tmode,
7143 modifier);
7144 break;
7147 else if(TREE_CODE (init) == STRING_CST)
7149 tree index1 = index;
7150 tree low_bound = array_ref_low_bound (exp);
7151 index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
7153 /* Optimize the special-case of a zero lower bound.
7155 We convert the low_bound to sizetype to avoid some problems
7156 with constant folding. (E.g. suppose the lower bound is 1,
7157 and its mode is QI. Without the conversion,l (ARRAY
7158 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7159 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7161 if (! integer_zerop (low_bound))
7162 index1 = size_diffop (index1, fold_convert (sizetype,
7163 low_bound));
7165 if (0 > compare_tree_int (index1,
7166 TREE_STRING_LENGTH (init)))
7168 tree type = TREE_TYPE (TREE_TYPE (init));
7169 enum machine_mode mode = TYPE_MODE (type);
7171 if (GET_MODE_CLASS (mode) == MODE_INT
7172 && GET_MODE_SIZE (mode) == 1)
7173 return gen_int_mode (TREE_STRING_POINTER (init)
7174 [TREE_INT_CST_LOW (index1)],
7175 mode);
7181 goto normal_inner_ref;
7183 case COMPONENT_REF:
7184 /* If the operand is a CONSTRUCTOR, we can just extract the
7185 appropriate field if it is present. */
7186 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7188 unsigned HOST_WIDE_INT idx;
7189 tree field, value;
7191 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7192 idx, field, value)
7193 if (field == TREE_OPERAND (exp, 1)
7194 /* We can normally use the value of the field in the
7195 CONSTRUCTOR. However, if this is a bitfield in
7196 an integral mode that we can fit in a HOST_WIDE_INT,
7197 we must mask only the number of bits in the bitfield,
7198 since this is done implicitly by the constructor. If
7199 the bitfield does not meet either of those conditions,
7200 we can't do this optimization. */
7201 && (! DECL_BIT_FIELD (field)
7202 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7203 && (GET_MODE_BITSIZE (DECL_MODE (field))
7204 <= HOST_BITS_PER_WIDE_INT))))
7206 if (DECL_BIT_FIELD (field)
7207 && modifier == EXPAND_STACK_PARM)
7208 target = 0;
7209 op0 = expand_expr (value, target, tmode, modifier);
7210 if (DECL_BIT_FIELD (field))
7212 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7213 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7215 if (TYPE_UNSIGNED (TREE_TYPE (field)))
7217 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7218 op0 = expand_and (imode, op0, op1, target);
7220 else
7222 tree count
7223 = build_int_cst (NULL_TREE,
7224 GET_MODE_BITSIZE (imode) - bitsize);
7226 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7227 target, 0);
7228 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7229 target, 0);
7233 return op0;
7236 goto normal_inner_ref;
7238 case BIT_FIELD_REF:
7239 case ARRAY_RANGE_REF:
7240 normal_inner_ref:
7242 enum machine_mode mode1;
7243 HOST_WIDE_INT bitsize, bitpos;
7244 tree offset;
7245 int volatilep = 0;
7246 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7247 &mode1, &unsignedp, &volatilep, true);
7248 rtx orig_op0;
7250 /* If we got back the original object, something is wrong. Perhaps
7251 we are evaluating an expression too early. In any event, don't
7252 infinitely recurse. */
7253 gcc_assert (tem != exp);
7255 /* If TEM's type is a union of variable size, pass TARGET to the inner
7256 computation, since it will need a temporary and TARGET is known
7257 to have to do. This occurs in unchecked conversion in Ada. */
7259 orig_op0 = op0
7260 = expand_expr (tem,
7261 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7262 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7263 != INTEGER_CST)
7264 && modifier != EXPAND_STACK_PARM
7265 ? target : NULL_RTX),
7266 VOIDmode,
7267 (modifier == EXPAND_INITIALIZER
7268 || modifier == EXPAND_CONST_ADDRESS
7269 || modifier == EXPAND_STACK_PARM)
7270 ? modifier : EXPAND_NORMAL);
7272 /* If this is a constant, put it into a register if it is a legitimate
7273 constant, OFFSET is 0, and we won't try to extract outside the
7274 register (in case we were passed a partially uninitialized object
7275 or a view_conversion to a larger size). Force the constant to
7276 memory otherwise. */
7277 if (CONSTANT_P (op0))
7279 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
7280 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
7281 && offset == 0
7282 && bitpos + bitsize <= GET_MODE_BITSIZE (mode))
7283 op0 = force_reg (mode, op0);
7284 else
7285 op0 = validize_mem (force_const_mem (mode, op0));
7288 /* Otherwise, if this object not in memory and we either have an
7289 offset, a BLKmode result, or a reference outside the object, put it
7290 there. Such cases can occur in Ada if we have unchecked conversion
7291 of an expression from a scalar type to an array or record type or
7292 for an ARRAY_RANGE_REF whose type is BLKmode. */
7293 else if (!MEM_P (op0)
7294 && (offset != 0
7295 || (bitpos + bitsize > GET_MODE_BITSIZE (GET_MODE (op0)))
7296 || (code == ARRAY_RANGE_REF && mode == BLKmode)))
7298 tree nt = build_qualified_type (TREE_TYPE (tem),
7299 (TYPE_QUALS (TREE_TYPE (tem))
7300 | TYPE_QUAL_CONST));
7301 rtx memloc = assign_temp (nt, 1, 1, 1);
7303 emit_move_insn (memloc, op0);
7304 op0 = memloc;
7307 if (offset != 0)
7309 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7310 EXPAND_SUM);
7312 gcc_assert (MEM_P (op0));
7314 #ifdef POINTERS_EXTEND_UNSIGNED
7315 if (GET_MODE (offset_rtx) != Pmode)
7316 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7317 #else
7318 if (GET_MODE (offset_rtx) != ptr_mode)
7319 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7320 #endif
7322 if (GET_MODE (op0) == BLKmode
7323 /* A constant address in OP0 can have VOIDmode, we must
7324 not try to call force_reg in that case. */
7325 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7326 && bitsize != 0
7327 && (bitpos % bitsize) == 0
7328 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7329 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7331 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7332 bitpos = 0;
7335 op0 = offset_address (op0, offset_rtx,
7336 highest_pow2_factor (offset));
7339 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7340 record its alignment as BIGGEST_ALIGNMENT. */
7341 if (MEM_P (op0) && bitpos == 0 && offset != 0
7342 && is_aligning_offset (offset, tem))
7343 set_mem_align (op0, BIGGEST_ALIGNMENT);
7345 /* Don't forget about volatility even if this is a bitfield. */
7346 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7348 if (op0 == orig_op0)
7349 op0 = copy_rtx (op0);
7351 MEM_VOLATILE_P (op0) = 1;
7354 /* The following code doesn't handle CONCAT.
7355 Assume only bitpos == 0 can be used for CONCAT, due to
7356 one element arrays having the same mode as its element. */
7357 if (GET_CODE (op0) == CONCAT)
7359 gcc_assert (bitpos == 0
7360 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7361 return op0;
7364 /* In cases where an aligned union has an unaligned object
7365 as a field, we might be extracting a BLKmode value from
7366 an integer-mode (e.g., SImode) object. Handle this case
7367 by doing the extract into an object as wide as the field
7368 (which we know to be the width of a basic mode), then
7369 storing into memory, and changing the mode to BLKmode. */
7370 if (mode1 == VOIDmode
7371 || REG_P (op0) || GET_CODE (op0) == SUBREG
7372 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7373 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7374 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7375 && modifier != EXPAND_CONST_ADDRESS
7376 && modifier != EXPAND_INITIALIZER)
7377 /* If the field isn't aligned enough to fetch as a memref,
7378 fetch it as a bit field. */
7379 || (mode1 != BLKmode
7380 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7381 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7382 || (MEM_P (op0)
7383 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7384 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7385 && ((modifier == EXPAND_CONST_ADDRESS
7386 || modifier == EXPAND_INITIALIZER)
7387 ? STRICT_ALIGNMENT
7388 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7389 || (bitpos % BITS_PER_UNIT != 0)))
7390 /* If the type and the field are a constant size and the
7391 size of the type isn't the same size as the bitfield,
7392 we must use bitfield operations. */
7393 || (bitsize >= 0
7394 && TYPE_SIZE (TREE_TYPE (exp))
7395 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7396 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7397 bitsize)))
7399 enum machine_mode ext_mode = mode;
7401 if (ext_mode == BLKmode
7402 && ! (target != 0 && MEM_P (op0)
7403 && MEM_P (target)
7404 && bitpos % BITS_PER_UNIT == 0))
7405 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7407 if (ext_mode == BLKmode)
7409 if (target == 0)
7410 target = assign_temp (type, 0, 1, 1);
7412 if (bitsize == 0)
7413 return target;
7415 /* In this case, BITPOS must start at a byte boundary and
7416 TARGET, if specified, must be a MEM. */
7417 gcc_assert (MEM_P (op0)
7418 && (!target || MEM_P (target))
7419 && !(bitpos % BITS_PER_UNIT));
7421 emit_block_move (target,
7422 adjust_address (op0, VOIDmode,
7423 bitpos / BITS_PER_UNIT),
7424 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7425 / BITS_PER_UNIT),
7426 (modifier == EXPAND_STACK_PARM
7427 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7429 return target;
7432 op0 = validize_mem (op0);
7434 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7435 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7437 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7438 (modifier == EXPAND_STACK_PARM
7439 ? NULL_RTX : target),
7440 ext_mode, ext_mode);
7442 /* If the result is a record type and BITSIZE is narrower than
7443 the mode of OP0, an integral mode, and this is a big endian
7444 machine, we must put the field into the high-order bits. */
7445 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7446 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7447 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7448 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7449 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7450 - bitsize),
7451 op0, 1);
7453 /* If the result type is BLKmode, store the data into a temporary
7454 of the appropriate type, but with the mode corresponding to the
7455 mode for the data we have (op0's mode). It's tempting to make
7456 this a constant type, since we know it's only being stored once,
7457 but that can cause problems if we are taking the address of this
7458 COMPONENT_REF because the MEM of any reference via that address
7459 will have flags corresponding to the type, which will not
7460 necessarily be constant. */
7461 if (mode == BLKmode)
7463 rtx new
7464 = assign_stack_temp_for_type
7465 (ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
7467 emit_move_insn (new, op0);
7468 op0 = copy_rtx (new);
7469 PUT_MODE (op0, BLKmode);
7470 set_mem_attributes (op0, exp, 1);
7473 return op0;
7476 /* If the result is BLKmode, use that to access the object
7477 now as well. */
7478 if (mode == BLKmode)
7479 mode1 = BLKmode;
7481 /* Get a reference to just this component. */
7482 if (modifier == EXPAND_CONST_ADDRESS
7483 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7484 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7485 else
7486 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7488 if (op0 == orig_op0)
7489 op0 = copy_rtx (op0);
7491 set_mem_attributes (op0, exp, 0);
7492 if (REG_P (XEXP (op0, 0)))
7493 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7495 MEM_VOLATILE_P (op0) |= volatilep;
7496 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
7497 || modifier == EXPAND_CONST_ADDRESS
7498 || modifier == EXPAND_INITIALIZER)
7499 return op0;
7500 else if (target == 0)
7501 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7503 convert_move (target, op0, unsignedp);
7504 return target;
7507 case OBJ_TYPE_REF:
7508 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
7510 case CALL_EXPR:
7511 /* Check for a built-in function. */
7512 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7513 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7514 == FUNCTION_DECL)
7515 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7517 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7518 == BUILT_IN_FRONTEND)
7519 return lang_hooks.expand_expr (exp, original_target,
7520 tmode, modifier,
7521 alt_rtl);
7522 else
7523 return expand_builtin (exp, target, subtarget, tmode, ignore);
7526 return expand_call (exp, target, ignore);
7528 case NON_LVALUE_EXPR:
7529 case NOP_EXPR:
7530 case CONVERT_EXPR:
7531 if (TREE_OPERAND (exp, 0) == error_mark_node)
7532 return const0_rtx;
7534 if (TREE_CODE (type) == UNION_TYPE)
7536 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
7538 /* If both input and output are BLKmode, this conversion isn't doing
7539 anything except possibly changing memory attribute. */
7540 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7542 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
7543 modifier);
7545 result = copy_rtx (result);
7546 set_mem_attributes (result, exp, 0);
7547 return result;
7550 if (target == 0)
7552 if (TYPE_MODE (type) != BLKmode)
7553 target = gen_reg_rtx (TYPE_MODE (type));
7554 else
7555 target = assign_temp (type, 0, 1, 1);
7558 if (MEM_P (target))
7559 /* Store data into beginning of memory target. */
7560 store_expr (TREE_OPERAND (exp, 0),
7561 adjust_address (target, TYPE_MODE (valtype), 0),
7562 modifier == EXPAND_STACK_PARM);
7564 else
7566 gcc_assert (REG_P (target));
7568 /* Store this field into a union of the proper type. */
7569 store_field (target,
7570 MIN ((int_size_in_bytes (TREE_TYPE
7571 (TREE_OPERAND (exp, 0)))
7572 * BITS_PER_UNIT),
7573 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7574 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
7575 type, 0);
7578 /* Return the entire union. */
7579 return target;
7582 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
7584 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
7585 modifier);
7587 /* If the signedness of the conversion differs and OP0 is
7588 a promoted SUBREG, clear that indication since we now
7589 have to do the proper extension. */
7590 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
7591 && GET_CODE (op0) == SUBREG)
7592 SUBREG_PROMOTED_VAR_P (op0) = 0;
7594 return REDUCE_BIT_FIELD (op0);
7597 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7598 if (GET_MODE (op0) == mode)
7601 /* If OP0 is a constant, just convert it into the proper mode. */
7602 else if (CONSTANT_P (op0))
7604 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7605 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7607 if (modifier == EXPAND_INITIALIZER)
7608 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7609 subreg_lowpart_offset (mode,
7610 inner_mode));
7611 else
7612 op0= convert_modes (mode, inner_mode, op0,
7613 TYPE_UNSIGNED (inner_type));
7616 else if (modifier == EXPAND_INITIALIZER)
7617 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7619 else if (target == 0)
7620 op0 = convert_to_mode (mode, op0,
7621 TYPE_UNSIGNED (TREE_TYPE
7622 (TREE_OPERAND (exp, 0))));
7623 else
7625 convert_move (target, op0,
7626 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7627 op0 = target;
7630 return REDUCE_BIT_FIELD (op0);
7632 case VIEW_CONVERT_EXPR:
7633 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7635 /* If the input and output modes are both the same, we are done. */
7636 if (TYPE_MODE (type) == GET_MODE (op0))
7638 /* If neither mode is BLKmode, and both modes are the same size
7639 then we can use gen_lowpart. */
7640 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
7641 && GET_MODE_SIZE (TYPE_MODE (type))
7642 == GET_MODE_SIZE (GET_MODE (op0)))
7644 if (GET_CODE (op0) == SUBREG)
7645 op0 = force_reg (GET_MODE (op0), op0);
7646 op0 = gen_lowpart (TYPE_MODE (type), op0);
7648 /* If both modes are integral, then we can convert from one to the
7649 other. */
7650 else if (SCALAR_INT_MODE_P (GET_MODE (op0))
7651 && SCALAR_INT_MODE_P (TYPE_MODE (type)))
7652 op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
7653 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7654 /* As a last resort, spill op0 to memory, and reload it in a
7655 different mode. */
7656 else if (!MEM_P (op0))
7658 /* If the operand is not a MEM, force it into memory. Since we
7659 are going to be be changing the mode of the MEM, don't call
7660 force_const_mem for constants because we don't allow pool
7661 constants to change mode. */
7662 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7664 gcc_assert (!TREE_ADDRESSABLE (exp));
7666 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
7667 target
7668 = assign_stack_temp_for_type
7669 (TYPE_MODE (inner_type),
7670 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
7672 emit_move_insn (target, op0);
7673 op0 = target;
7676 /* At this point, OP0 is in the correct mode. If the output type is such
7677 that the operand is known to be aligned, indicate that it is.
7678 Otherwise, we need only be concerned about alignment for non-BLKmode
7679 results. */
7680 if (MEM_P (op0))
7682 op0 = copy_rtx (op0);
7684 if (TYPE_ALIGN_OK (type))
7685 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
7686 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
7687 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
7689 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7690 HOST_WIDE_INT temp_size
7691 = MAX (int_size_in_bytes (inner_type),
7692 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
7693 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
7694 temp_size, 0, type);
7695 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
7697 gcc_assert (!TREE_ADDRESSABLE (exp));
7699 if (GET_MODE (op0) == BLKmode)
7700 emit_block_move (new_with_op0_mode, op0,
7701 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
7702 (modifier == EXPAND_STACK_PARM
7703 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7704 else
7705 emit_move_insn (new_with_op0_mode, op0);
7707 op0 = new;
7710 op0 = adjust_address (op0, TYPE_MODE (type), 0);
7713 return op0;
7715 case PLUS_EXPR:
7716 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7717 something else, make sure we add the register to the constant and
7718 then to the other thing. This case can occur during strength
7719 reduction and doing it this way will produce better code if the
7720 frame pointer or argument pointer is eliminated.
7722 fold-const.c will ensure that the constant is always in the inner
7723 PLUS_EXPR, so the only case we need to do anything about is if
7724 sp, ap, or fp is our second argument, in which case we must swap
7725 the innermost first argument and our second argument. */
7727 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
7728 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
7729 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
7730 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
7731 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
7732 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
7734 tree t = TREE_OPERAND (exp, 1);
7736 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7737 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
7740 /* If the result is to be ptr_mode and we are adding an integer to
7741 something, we might be forming a constant. So try to use
7742 plus_constant. If it produces a sum and we can't accept it,
7743 use force_operand. This allows P = &ARR[const] to generate
7744 efficient code on machines where a SYMBOL_REF is not a valid
7745 address.
7747 If this is an EXPAND_SUM call, always return the sum. */
7748 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7749 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7751 if (modifier == EXPAND_STACK_PARM)
7752 target = 0;
7753 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
7754 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7755 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
7757 rtx constant_part;
7759 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
7760 EXPAND_SUM);
7761 /* Use immed_double_const to ensure that the constant is
7762 truncated according to the mode of OP1, then sign extended
7763 to a HOST_WIDE_INT. Using the constant directly can result
7764 in non-canonical RTL in a 64x32 cross compile. */
7765 constant_part
7766 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
7767 (HOST_WIDE_INT) 0,
7768 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
7769 op1 = plus_constant (op1, INTVAL (constant_part));
7770 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7771 op1 = force_operand (op1, target);
7772 return REDUCE_BIT_FIELD (op1);
7775 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7776 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7777 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
7779 rtx constant_part;
7781 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7782 (modifier == EXPAND_INITIALIZER
7783 ? EXPAND_INITIALIZER : EXPAND_SUM));
7784 if (! CONSTANT_P (op0))
7786 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7787 VOIDmode, modifier);
7788 /* Return a PLUS if modifier says it's OK. */
7789 if (modifier == EXPAND_SUM
7790 || modifier == EXPAND_INITIALIZER)
7791 return simplify_gen_binary (PLUS, mode, op0, op1);
7792 goto binop2;
7794 /* Use immed_double_const to ensure that the constant is
7795 truncated according to the mode of OP1, then sign extended
7796 to a HOST_WIDE_INT. Using the constant directly can result
7797 in non-canonical RTL in a 64x32 cross compile. */
7798 constant_part
7799 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
7800 (HOST_WIDE_INT) 0,
7801 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
7802 op0 = plus_constant (op0, INTVAL (constant_part));
7803 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7804 op0 = force_operand (op0, target);
7805 return REDUCE_BIT_FIELD (op0);
7809 /* No sense saving up arithmetic to be done
7810 if it's all in the wrong mode to form part of an address.
7811 And force_operand won't know whether to sign-extend or
7812 zero-extend. */
7813 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7814 || mode != ptr_mode)
7816 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7817 subtarget, &op0, &op1, 0);
7818 if (op0 == const0_rtx)
7819 return op1;
7820 if (op1 == const0_rtx)
7821 return op0;
7822 goto binop2;
7825 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7826 subtarget, &op0, &op1, modifier);
7827 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7829 case MINUS_EXPR:
7830 /* For initializers, we are allowed to return a MINUS of two
7831 symbolic constants. Here we handle all cases when both operands
7832 are constant. */
7833 /* Handle difference of two symbolic constants,
7834 for the sake of an initializer. */
7835 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7836 && really_constant_p (TREE_OPERAND (exp, 0))
7837 && really_constant_p (TREE_OPERAND (exp, 1)))
7839 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7840 NULL_RTX, &op0, &op1, modifier);
7842 /* If the last operand is a CONST_INT, use plus_constant of
7843 the negated constant. Else make the MINUS. */
7844 if (GET_CODE (op1) == CONST_INT)
7845 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7846 else
7847 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7850 /* No sense saving up arithmetic to be done
7851 if it's all in the wrong mode to form part of an address.
7852 And force_operand won't know whether to sign-extend or
7853 zero-extend. */
7854 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7855 || mode != ptr_mode)
7856 goto binop;
7858 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7859 subtarget, &op0, &op1, modifier);
7861 /* Convert A - const to A + (-const). */
7862 if (GET_CODE (op1) == CONST_INT)
7864 op1 = negate_rtx (mode, op1);
7865 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7868 goto binop2;
7870 case MULT_EXPR:
7871 /* If first operand is constant, swap them.
7872 Thus the following special case checks need only
7873 check the second operand. */
7874 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
7876 tree t1 = TREE_OPERAND (exp, 0);
7877 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
7878 TREE_OPERAND (exp, 1) = t1;
7881 /* Attempt to return something suitable for generating an
7882 indexed address, for machines that support that. */
7884 if (modifier == EXPAND_SUM && mode == ptr_mode
7885 && host_integerp (TREE_OPERAND (exp, 1), 0))
7887 tree exp1 = TREE_OPERAND (exp, 1);
7889 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7890 EXPAND_SUM);
7892 if (!REG_P (op0))
7893 op0 = force_operand (op0, NULL_RTX);
7894 if (!REG_P (op0))
7895 op0 = copy_to_mode_reg (mode, op0);
7897 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7898 gen_int_mode (tree_low_cst (exp1, 0),
7899 TYPE_MODE (TREE_TYPE (exp1)))));
7902 if (modifier == EXPAND_STACK_PARM)
7903 target = 0;
7905 /* Check for multiplying things that have been extended
7906 from a narrower type. If this machine supports multiplying
7907 in that narrower type with a result in the desired type,
7908 do it that way, and avoid the explicit type-conversion. */
7910 subexp0 = TREE_OPERAND (exp, 0);
7911 subexp1 = TREE_OPERAND (exp, 1);
7912 /* First, check if we have a multiplication of one signed and one
7913 unsigned operand. */
7914 if (TREE_CODE (subexp0) == NOP_EXPR
7915 && TREE_CODE (subexp1) == NOP_EXPR
7916 && TREE_CODE (type) == INTEGER_TYPE
7917 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
7918 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7919 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
7920 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
7921 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
7922 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
7924 enum machine_mode innermode
7925 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
7926 this_optab = usmul_widen_optab;
7927 if (mode == GET_MODE_WIDER_MODE (innermode))
7929 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7931 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
7932 expand_operands (TREE_OPERAND (subexp0, 0),
7933 TREE_OPERAND (subexp1, 0),
7934 NULL_RTX, &op0, &op1, 0);
7935 else
7936 expand_operands (TREE_OPERAND (subexp0, 0),
7937 TREE_OPERAND (subexp1, 0),
7938 NULL_RTX, &op1, &op0, 0);
7940 goto binop3;
7944 /* Check for a multiplication with matching signedness. */
7945 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
7946 && TREE_CODE (type) == INTEGER_TYPE
7947 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7948 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7949 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7950 && int_fits_type_p (TREE_OPERAND (exp, 1),
7951 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7952 /* Don't use a widening multiply if a shift will do. */
7953 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
7954 > HOST_BITS_PER_WIDE_INT)
7955 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
7957 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
7958 && (TYPE_PRECISION (TREE_TYPE
7959 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7960 == TYPE_PRECISION (TREE_TYPE
7961 (TREE_OPERAND
7962 (TREE_OPERAND (exp, 0), 0))))
7963 /* If both operands are extended, they must either both
7964 be zero-extended or both be sign-extended. */
7965 && (TYPE_UNSIGNED (TREE_TYPE
7966 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7967 == TYPE_UNSIGNED (TREE_TYPE
7968 (TREE_OPERAND
7969 (TREE_OPERAND (exp, 0), 0)))))))
7971 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
7972 enum machine_mode innermode = TYPE_MODE (op0type);
7973 bool zextend_p = TYPE_UNSIGNED (op0type);
7974 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7975 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7977 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7979 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7981 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7982 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7983 TREE_OPERAND (exp, 1),
7984 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7985 else
7986 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7987 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7988 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7989 goto binop3;
7991 else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
7992 && innermode == word_mode)
7994 rtx htem, hipart;
7995 op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
7996 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7997 op1 = convert_modes (innermode, mode,
7998 expand_normal (TREE_OPERAND (exp, 1)),
7999 unsignedp);
8000 else
8001 op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
8002 temp = expand_binop (mode, other_optab, op0, op1, target,
8003 unsignedp, OPTAB_LIB_WIDEN);
8004 hipart = gen_highpart (innermode, temp);
8005 htem = expand_mult_highpart_adjust (innermode, hipart,
8006 op0, op1, hipart,
8007 zextend_p);
8008 if (htem != hipart)
8009 emit_move_insn (hipart, htem);
8010 return REDUCE_BIT_FIELD (temp);
8014 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8015 subtarget, &op0, &op1, 0);
8016 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8018 case TRUNC_DIV_EXPR:
8019 case FLOOR_DIV_EXPR:
8020 case CEIL_DIV_EXPR:
8021 case ROUND_DIV_EXPR:
8022 case EXACT_DIV_EXPR:
8023 if (modifier == EXPAND_STACK_PARM)
8024 target = 0;
8025 /* Possible optimization: compute the dividend with EXPAND_SUM
8026 then if the divisor is constant can optimize the case
8027 where some terms of the dividend have coeffs divisible by it. */
8028 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8029 subtarget, &op0, &op1, 0);
8030 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8032 case RDIV_EXPR:
8033 goto binop;
8035 case TRUNC_MOD_EXPR:
8036 case FLOOR_MOD_EXPR:
8037 case CEIL_MOD_EXPR:
8038 case ROUND_MOD_EXPR:
8039 if (modifier == EXPAND_STACK_PARM)
8040 target = 0;
8041 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8042 subtarget, &op0, &op1, 0);
8043 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8045 case FIX_ROUND_EXPR:
8046 case FIX_FLOOR_EXPR:
8047 case FIX_CEIL_EXPR:
8048 gcc_unreachable (); /* Not used for C. */
8050 case FIX_TRUNC_EXPR:
8051 op0 = expand_normal (TREE_OPERAND (exp, 0));
8052 if (target == 0 || modifier == EXPAND_STACK_PARM)
8053 target = gen_reg_rtx (mode);
8054 expand_fix (target, op0, unsignedp);
8055 return target;
8057 case FLOAT_EXPR:
8058 op0 = expand_normal (TREE_OPERAND (exp, 0));
8059 if (target == 0 || modifier == EXPAND_STACK_PARM)
8060 target = gen_reg_rtx (mode);
8061 /* expand_float can't figure out what to do if FROM has VOIDmode.
8062 So give it the correct mode. With -O, cse will optimize this. */
8063 if (GET_MODE (op0) == VOIDmode)
8064 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8065 op0);
8066 expand_float (target, op0,
8067 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8068 return target;
8070 case NEGATE_EXPR:
8071 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8072 if (modifier == EXPAND_STACK_PARM)
8073 target = 0;
8074 temp = expand_unop (mode,
8075 optab_for_tree_code (NEGATE_EXPR, type),
8076 op0, target, 0);
8077 gcc_assert (temp);
8078 return REDUCE_BIT_FIELD (temp);
8080 case ABS_EXPR:
8081 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8082 if (modifier == EXPAND_STACK_PARM)
8083 target = 0;
8085 /* ABS_EXPR is not valid for complex arguments. */
8086 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8087 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8089 /* Unsigned abs is simply the operand. Testing here means we don't
8090 risk generating incorrect code below. */
8091 if (TYPE_UNSIGNED (type))
8092 return op0;
8094 return expand_abs (mode, op0, target, unsignedp,
8095 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8097 case MAX_EXPR:
8098 case MIN_EXPR:
8099 target = original_target;
8100 if (target == 0
8101 || modifier == EXPAND_STACK_PARM
8102 || (MEM_P (target) && MEM_VOLATILE_P (target))
8103 || GET_MODE (target) != mode
8104 || (REG_P (target)
8105 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8106 target = gen_reg_rtx (mode);
8107 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8108 target, &op0, &op1, 0);
8110 /* First try to do it with a special MIN or MAX instruction.
8111 If that does not win, use a conditional jump to select the proper
8112 value. */
8113 this_optab = optab_for_tree_code (code, type);
8114 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8115 OPTAB_WIDEN);
8116 if (temp != 0)
8117 return temp;
8119 /* At this point, a MEM target is no longer useful; we will get better
8120 code without it. */
8122 if (! REG_P (target))
8123 target = gen_reg_rtx (mode);
8125 /* If op1 was placed in target, swap op0 and op1. */
8126 if (target != op0 && target == op1)
8128 temp = op0;
8129 op0 = op1;
8130 op1 = temp;
8133 /* We generate better code and avoid problems with op1 mentioning
8134 target by forcing op1 into a pseudo if it isn't a constant. */
8135 if (! CONSTANT_P (op1))
8136 op1 = force_reg (mode, op1);
8139 enum rtx_code comparison_code;
8140 rtx cmpop1 = op1;
8142 if (code == MAX_EXPR)
8143 comparison_code = unsignedp ? GEU : GE;
8144 else
8145 comparison_code = unsignedp ? LEU : LE;
8147 /* Canonicalize to comparisons against 0. */
8148 if (op1 == const1_rtx)
8150 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8151 or (a != 0 ? a : 1) for unsigned.
8152 For MIN we are safe converting (a <= 1 ? a : 1)
8153 into (a <= 0 ? a : 1) */
8154 cmpop1 = const0_rtx;
8155 if (code == MAX_EXPR)
8156 comparison_code = unsignedp ? NE : GT;
8158 if (op1 == constm1_rtx && !unsignedp)
8160 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8161 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8162 cmpop1 = const0_rtx;
8163 if (code == MIN_EXPR)
8164 comparison_code = LT;
8166 #ifdef HAVE_conditional_move
8167 /* Use a conditional move if possible. */
8168 if (can_conditionally_move_p (mode))
8170 rtx insn;
8172 /* ??? Same problem as in expmed.c: emit_conditional_move
8173 forces a stack adjustment via compare_from_rtx, and we
8174 lose the stack adjustment if the sequence we are about
8175 to create is discarded. */
8176 do_pending_stack_adjust ();
8178 start_sequence ();
8180 /* Try to emit the conditional move. */
8181 insn = emit_conditional_move (target, comparison_code,
8182 op0, cmpop1, mode,
8183 op0, op1, mode,
8184 unsignedp);
8186 /* If we could do the conditional move, emit the sequence,
8187 and return. */
8188 if (insn)
8190 rtx seq = get_insns ();
8191 end_sequence ();
8192 emit_insn (seq);
8193 return target;
8196 /* Otherwise discard the sequence and fall back to code with
8197 branches. */
8198 end_sequence ();
8200 #endif
8201 if (target != op0)
8202 emit_move_insn (target, op0);
8204 temp = gen_label_rtx ();
8205 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8206 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8208 emit_move_insn (target, op1);
8209 emit_label (temp);
8210 return target;
8212 case BIT_NOT_EXPR:
8213 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8214 if (modifier == EXPAND_STACK_PARM)
8215 target = 0;
8216 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8217 gcc_assert (temp);
8218 return temp;
8220 /* ??? Can optimize bitwise operations with one arg constant.
8221 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8222 and (a bitwise1 b) bitwise2 b (etc)
8223 but that is probably not worth while. */
8225 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8226 boolean values when we want in all cases to compute both of them. In
8227 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8228 as actual zero-or-1 values and then bitwise anding. In cases where
8229 there cannot be any side effects, better code would be made by
8230 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8231 how to recognize those cases. */
8233 case TRUTH_AND_EXPR:
8234 code = BIT_AND_EXPR;
8235 case BIT_AND_EXPR:
8236 goto binop;
8238 case TRUTH_OR_EXPR:
8239 code = BIT_IOR_EXPR;
8240 case BIT_IOR_EXPR:
8241 goto binop;
8243 case TRUTH_XOR_EXPR:
8244 code = BIT_XOR_EXPR;
8245 case BIT_XOR_EXPR:
8246 goto binop;
8248 case LSHIFT_EXPR:
8249 case RSHIFT_EXPR:
8250 case LROTATE_EXPR:
8251 case RROTATE_EXPR:
8252 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8253 subtarget = 0;
8254 if (modifier == EXPAND_STACK_PARM)
8255 target = 0;
8256 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8257 return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
8258 unsignedp);
8260 /* Could determine the answer when only additive constants differ. Also,
8261 the addition of one can be handled by changing the condition. */
8262 case LT_EXPR:
8263 case LE_EXPR:
8264 case GT_EXPR:
8265 case GE_EXPR:
8266 case EQ_EXPR:
8267 case NE_EXPR:
8268 case UNORDERED_EXPR:
8269 case ORDERED_EXPR:
8270 case UNLT_EXPR:
8271 case UNLE_EXPR:
8272 case UNGT_EXPR:
8273 case UNGE_EXPR:
8274 case UNEQ_EXPR:
8275 case LTGT_EXPR:
8276 temp = do_store_flag (exp,
8277 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8278 tmode != VOIDmode ? tmode : mode, 0);
8279 if (temp != 0)
8280 return temp;
8282 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8283 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
8284 && original_target
8285 && REG_P (original_target)
8286 && (GET_MODE (original_target)
8287 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
8289 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
8290 VOIDmode, 0);
8292 /* If temp is constant, we can just compute the result. */
8293 if (GET_CODE (temp) == CONST_INT)
8295 if (INTVAL (temp) != 0)
8296 emit_move_insn (target, const1_rtx);
8297 else
8298 emit_move_insn (target, const0_rtx);
8300 return target;
8303 if (temp != original_target)
8305 enum machine_mode mode1 = GET_MODE (temp);
8306 if (mode1 == VOIDmode)
8307 mode1 = tmode != VOIDmode ? tmode : mode;
8309 temp = copy_to_mode_reg (mode1, temp);
8312 op1 = gen_label_rtx ();
8313 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
8314 GET_MODE (temp), unsignedp, op1);
8315 emit_move_insn (temp, const1_rtx);
8316 emit_label (op1);
8317 return temp;
8320 /* If no set-flag instruction, must generate a conditional store
8321 into a temporary variable. Drop through and handle this
8322 like && and ||. */
8324 if (! ignore
8325 && (target == 0
8326 || modifier == EXPAND_STACK_PARM
8327 || ! safe_from_p (target, exp, 1)
8328 /* Make sure we don't have a hard reg (such as function's return
8329 value) live across basic blocks, if not optimizing. */
8330 || (!optimize && REG_P (target)
8331 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8332 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8334 if (target)
8335 emit_move_insn (target, const0_rtx);
8337 op1 = gen_label_rtx ();
8338 jumpifnot (exp, op1);
8340 if (target)
8341 emit_move_insn (target, const1_rtx);
8343 emit_label (op1);
8344 return ignore ? const0_rtx : target;
8346 case TRUTH_NOT_EXPR:
8347 if (modifier == EXPAND_STACK_PARM)
8348 target = 0;
8349 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
8350 /* The parser is careful to generate TRUTH_NOT_EXPR
8351 only with operands that are always zero or one. */
8352 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8353 target, 1, OPTAB_LIB_WIDEN);
8354 gcc_assert (temp);
8355 return temp;
8357 case STATEMENT_LIST:
8359 tree_stmt_iterator iter;
8361 gcc_assert (ignore);
8363 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
8364 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
8366 return const0_rtx;
8368 case COND_EXPR:
8369 /* A COND_EXPR with its type being VOID_TYPE represents a
8370 conditional jump and is handled in
8371 expand_gimple_cond_expr. */
8372 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
8374 /* Note that COND_EXPRs whose type is a structure or union
8375 are required to be constructed to contain assignments of
8376 a temporary variable, so that we can evaluate them here
8377 for side effect only. If type is void, we must do likewise. */
8379 gcc_assert (!TREE_ADDRESSABLE (type)
8380 && !ignore
8381 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
8382 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
8384 /* If we are not to produce a result, we have no target. Otherwise,
8385 if a target was specified use it; it will not be used as an
8386 intermediate target unless it is safe. If no target, use a
8387 temporary. */
8389 if (modifier != EXPAND_STACK_PARM
8390 && original_target
8391 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
8392 && GET_MODE (original_target) == mode
8393 #ifdef HAVE_conditional_move
8394 && (! can_conditionally_move_p (mode)
8395 || REG_P (original_target))
8396 #endif
8397 && !MEM_P (original_target))
8398 temp = original_target;
8399 else
8400 temp = assign_temp (type, 0, 0, 1);
8402 do_pending_stack_adjust ();
8403 NO_DEFER_POP;
8404 op0 = gen_label_rtx ();
8405 op1 = gen_label_rtx ();
8406 jumpifnot (TREE_OPERAND (exp, 0), op0);
8407 store_expr (TREE_OPERAND (exp, 1), temp,
8408 modifier == EXPAND_STACK_PARM);
8410 emit_jump_insn (gen_jump (op1));
8411 emit_barrier ();
8412 emit_label (op0);
8413 store_expr (TREE_OPERAND (exp, 2), temp,
8414 modifier == EXPAND_STACK_PARM);
8416 emit_label (op1);
8417 OK_DEFER_POP;
8418 return temp;
8420 case VEC_COND_EXPR:
8421 target = expand_vec_cond_expr (exp, target);
8422 return target;
8424 case MODIFY_EXPR:
8426 tree lhs = TREE_OPERAND (exp, 0);
8427 tree rhs = TREE_OPERAND (exp, 1);
8429 gcc_assert (ignore);
8431 /* Check for |= or &= of a bitfield of size one into another bitfield
8432 of size 1. In this case, (unless we need the result of the
8433 assignment) we can do this more efficiently with a
8434 test followed by an assignment, if necessary.
8436 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8437 things change so we do, this code should be enhanced to
8438 support it. */
8439 if (TREE_CODE (lhs) == COMPONENT_REF
8440 && (TREE_CODE (rhs) == BIT_IOR_EXPR
8441 || TREE_CODE (rhs) == BIT_AND_EXPR)
8442 && TREE_OPERAND (rhs, 0) == lhs
8443 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
8444 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
8445 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
8447 rtx label = gen_label_rtx ();
8449 do_jump (TREE_OPERAND (rhs, 1),
8450 TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0,
8451 TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0);
8452 expand_assignment (lhs, convert (TREE_TYPE (rhs),
8453 (TREE_CODE (rhs) == BIT_IOR_EXPR
8454 ? integer_one_node
8455 : integer_zero_node)));
8456 do_pending_stack_adjust ();
8457 emit_label (label);
8458 return const0_rtx;
8461 expand_assignment (lhs, rhs);
8463 return const0_rtx;
8466 case RETURN_EXPR:
8467 if (!TREE_OPERAND (exp, 0))
8468 expand_null_return ();
8469 else
8470 expand_return (TREE_OPERAND (exp, 0));
8471 return const0_rtx;
8473 case ADDR_EXPR:
8474 return expand_expr_addr_expr (exp, target, tmode, modifier);
8476 case COMPLEX_EXPR:
8477 /* Get the rtx code of the operands. */
8478 op0 = expand_normal (TREE_OPERAND (exp, 0));
8479 op1 = expand_normal (TREE_OPERAND (exp, 1));
8481 if (!target)
8482 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
8484 /* Move the real (op0) and imaginary (op1) parts to their location. */
8485 write_complex_part (target, op0, false);
8486 write_complex_part (target, op1, true);
8488 return target;
8490 case REALPART_EXPR:
8491 op0 = expand_normal (TREE_OPERAND (exp, 0));
8492 return read_complex_part (op0, false);
8494 case IMAGPART_EXPR:
8495 op0 = expand_normal (TREE_OPERAND (exp, 0));
8496 return read_complex_part (op0, true);
8498 case RESX_EXPR:
8499 expand_resx_expr (exp);
8500 return const0_rtx;
8502 case TRY_CATCH_EXPR:
8503 case CATCH_EXPR:
8504 case EH_FILTER_EXPR:
8505 case TRY_FINALLY_EXPR:
8506 /* Lowered by tree-eh.c. */
8507 gcc_unreachable ();
8509 case WITH_CLEANUP_EXPR:
8510 case CLEANUP_POINT_EXPR:
8511 case TARGET_EXPR:
8512 case CASE_LABEL_EXPR:
8513 case VA_ARG_EXPR:
8514 case BIND_EXPR:
8515 case INIT_EXPR:
8516 case CONJ_EXPR:
8517 case COMPOUND_EXPR:
8518 case PREINCREMENT_EXPR:
8519 case PREDECREMENT_EXPR:
8520 case POSTINCREMENT_EXPR:
8521 case POSTDECREMENT_EXPR:
8522 case LOOP_EXPR:
8523 case EXIT_EXPR:
8524 case TRUTH_ANDIF_EXPR:
8525 case TRUTH_ORIF_EXPR:
8526 /* Lowered by gimplify.c. */
8527 gcc_unreachable ();
8529 case EXC_PTR_EXPR:
8530 return get_exception_pointer (cfun);
8532 case FILTER_EXPR:
8533 return get_exception_filter (cfun);
8535 case FDESC_EXPR:
8536 /* Function descriptors are not valid except for as
8537 initialization constants, and should not be expanded. */
8538 gcc_unreachable ();
8540 case SWITCH_EXPR:
8541 expand_case (exp);
8542 return const0_rtx;
8544 case LABEL_EXPR:
8545 expand_label (TREE_OPERAND (exp, 0));
8546 return const0_rtx;
8548 case ASM_EXPR:
8549 expand_asm_expr (exp);
8550 return const0_rtx;
8552 case WITH_SIZE_EXPR:
8553 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8554 have pulled out the size to use in whatever context it needed. */
8555 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
8556 modifier, alt_rtl);
8558 case REALIGN_LOAD_EXPR:
8560 tree oprnd0 = TREE_OPERAND (exp, 0);
8561 tree oprnd1 = TREE_OPERAND (exp, 1);
8562 tree oprnd2 = TREE_OPERAND (exp, 2);
8563 rtx op2;
8565 this_optab = optab_for_tree_code (code, type);
8566 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8567 op2 = expand_normal (oprnd2);
8568 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8569 target, unsignedp);
8570 gcc_assert (temp);
8571 return temp;
8574 case DOT_PROD_EXPR:
8576 tree oprnd0 = TREE_OPERAND (exp, 0);
8577 tree oprnd1 = TREE_OPERAND (exp, 1);
8578 tree oprnd2 = TREE_OPERAND (exp, 2);
8579 rtx op2;
8581 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8582 op2 = expand_normal (oprnd2);
8583 target = expand_widen_pattern_expr (exp, op0, op1, op2,
8584 target, unsignedp);
8585 return target;
8588 case WIDEN_SUM_EXPR:
8590 tree oprnd0 = TREE_OPERAND (exp, 0);
8591 tree oprnd1 = TREE_OPERAND (exp, 1);
8593 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
8594 target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
8595 target, unsignedp);
8596 return target;
8599 case REDUC_MAX_EXPR:
8600 case REDUC_MIN_EXPR:
8601 case REDUC_PLUS_EXPR:
8603 op0 = expand_normal (TREE_OPERAND (exp, 0));
8604 this_optab = optab_for_tree_code (code, type);
8605 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8606 gcc_assert (temp);
8607 return temp;
8610 case VEC_LSHIFT_EXPR:
8611 case VEC_RSHIFT_EXPR:
8613 target = expand_vec_shift_expr (exp, target);
8614 return target;
8617 default:
8618 return lang_hooks.expand_expr (exp, original_target, tmode,
8619 modifier, alt_rtl);
8622 /* Here to do an ordinary binary operator. */
8623 binop:
8624 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8625 subtarget, &op0, &op1, 0);
8626 binop2:
8627 this_optab = optab_for_tree_code (code, type);
8628 binop3:
8629 if (modifier == EXPAND_STACK_PARM)
8630 target = 0;
8631 temp = expand_binop (mode, this_optab, op0, op1, target,
8632 unsignedp, OPTAB_LIB_WIDEN);
8633 gcc_assert (temp);
8634 return REDUCE_BIT_FIELD (temp);
8636 #undef REDUCE_BIT_FIELD
8638 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8639 signedness of TYPE), possibly returning the result in TARGET. */
8640 static rtx
8641 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
8643 HOST_WIDE_INT prec = TYPE_PRECISION (type);
8644 if (target && GET_MODE (target) != GET_MODE (exp))
8645 target = 0;
8646 if (TYPE_UNSIGNED (type))
8648 rtx mask;
8649 if (prec < HOST_BITS_PER_WIDE_INT)
8650 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
8651 GET_MODE (exp));
8652 else
8653 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
8654 ((unsigned HOST_WIDE_INT) 1
8655 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
8656 GET_MODE (exp));
8657 return expand_and (GET_MODE (exp), exp, mask, target);
8659 else
8661 tree count = build_int_cst (NULL_TREE,
8662 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
8663 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8664 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8668 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8669 when applied to the address of EXP produces an address known to be
8670 aligned more than BIGGEST_ALIGNMENT. */
8672 static int
8673 is_aligning_offset (tree offset, tree exp)
8675 /* Strip off any conversions. */
8676 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8677 || TREE_CODE (offset) == NOP_EXPR
8678 || TREE_CODE (offset) == CONVERT_EXPR)
8679 offset = TREE_OPERAND (offset, 0);
8681 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8682 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8683 if (TREE_CODE (offset) != BIT_AND_EXPR
8684 || !host_integerp (TREE_OPERAND (offset, 1), 1)
8685 || compare_tree_int (TREE_OPERAND (offset, 1),
8686 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
8687 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
8688 return 0;
8690 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8691 It must be NEGATE_EXPR. Then strip any more conversions. */
8692 offset = TREE_OPERAND (offset, 0);
8693 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8694 || TREE_CODE (offset) == NOP_EXPR
8695 || TREE_CODE (offset) == CONVERT_EXPR)
8696 offset = TREE_OPERAND (offset, 0);
8698 if (TREE_CODE (offset) != NEGATE_EXPR)
8699 return 0;
8701 offset = TREE_OPERAND (offset, 0);
8702 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8703 || TREE_CODE (offset) == NOP_EXPR
8704 || TREE_CODE (offset) == CONVERT_EXPR)
8705 offset = TREE_OPERAND (offset, 0);
8707 /* This must now be the address of EXP. */
8708 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
8711 /* Return the tree node if an ARG corresponds to a string constant or zero
8712 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8713 in bytes within the string that ARG is accessing. The type of the
8714 offset will be `sizetype'. */
8716 tree
8717 string_constant (tree arg, tree *ptr_offset)
8719 tree array, offset;
8720 STRIP_NOPS (arg);
8722 if (TREE_CODE (arg) == ADDR_EXPR)
8724 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
8726 *ptr_offset = size_zero_node;
8727 return TREE_OPERAND (arg, 0);
8729 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
8731 array = TREE_OPERAND (arg, 0);
8732 offset = size_zero_node;
8734 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
8736 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
8737 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
8738 if (TREE_CODE (array) != STRING_CST
8739 && TREE_CODE (array) != VAR_DECL)
8740 return 0;
8742 else
8743 return 0;
8745 else if (TREE_CODE (arg) == PLUS_EXPR)
8747 tree arg0 = TREE_OPERAND (arg, 0);
8748 tree arg1 = TREE_OPERAND (arg, 1);
8750 STRIP_NOPS (arg0);
8751 STRIP_NOPS (arg1);
8753 if (TREE_CODE (arg0) == ADDR_EXPR
8754 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
8755 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
8757 array = TREE_OPERAND (arg0, 0);
8758 offset = arg1;
8760 else if (TREE_CODE (arg1) == ADDR_EXPR
8761 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
8762 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
8764 array = TREE_OPERAND (arg1, 0);
8765 offset = arg0;
8767 else
8768 return 0;
8770 else
8771 return 0;
8773 if (TREE_CODE (array) == STRING_CST)
8775 *ptr_offset = convert (sizetype, offset);
8776 return array;
8778 else if (TREE_CODE (array) == VAR_DECL)
8780 int length;
8782 /* Variables initialized to string literals can be handled too. */
8783 if (DECL_INITIAL (array) == NULL_TREE
8784 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
8785 return 0;
8787 /* If they are read-only, non-volatile and bind locally. */
8788 if (! TREE_READONLY (array)
8789 || TREE_SIDE_EFFECTS (array)
8790 || ! targetm.binds_local_p (array))
8791 return 0;
8793 /* Avoid const char foo[4] = "abcde"; */
8794 if (DECL_SIZE_UNIT (array) == NULL_TREE
8795 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
8796 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
8797 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
8798 return 0;
8800 /* If variable is bigger than the string literal, OFFSET must be constant
8801 and inside of the bounds of the string literal. */
8802 offset = convert (sizetype, offset);
8803 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
8804 && (! host_integerp (offset, 1)
8805 || compare_tree_int (offset, length) >= 0))
8806 return 0;
8808 *ptr_offset = offset;
8809 return DECL_INITIAL (array);
8812 return 0;
8815 /* Generate code to calculate EXP using a store-flag instruction
8816 and return an rtx for the result. EXP is either a comparison
8817 or a TRUTH_NOT_EXPR whose operand is a comparison.
8819 If TARGET is nonzero, store the result there if convenient.
8821 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8822 cheap.
8824 Return zero if there is no suitable set-flag instruction
8825 available on this machine.
8827 Once expand_expr has been called on the arguments of the comparison,
8828 we are committed to doing the store flag, since it is not safe to
8829 re-evaluate the expression. We emit the store-flag insn by calling
8830 emit_store_flag, but only expand the arguments if we have a reason
8831 to believe that emit_store_flag will be successful. If we think that
8832 it will, but it isn't, we have to simulate the store-flag with a
8833 set/jump/set sequence. */
8835 static rtx
8836 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
8838 enum rtx_code code;
8839 tree arg0, arg1, type;
8840 tree tem;
8841 enum machine_mode operand_mode;
8842 int invert = 0;
8843 int unsignedp;
8844 rtx op0, op1;
8845 enum insn_code icode;
8846 rtx subtarget = target;
8847 rtx result, label;
8849 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8850 result at the end. We can't simply invert the test since it would
8851 have already been inverted if it were valid. This case occurs for
8852 some floating-point comparisons. */
8854 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
8855 invert = 1, exp = TREE_OPERAND (exp, 0);
8857 arg0 = TREE_OPERAND (exp, 0);
8858 arg1 = TREE_OPERAND (exp, 1);
8860 /* Don't crash if the comparison was erroneous. */
8861 if (arg0 == error_mark_node || arg1 == error_mark_node)
8862 return const0_rtx;
8864 type = TREE_TYPE (arg0);
8865 operand_mode = TYPE_MODE (type);
8866 unsignedp = TYPE_UNSIGNED (type);
8868 /* We won't bother with BLKmode store-flag operations because it would mean
8869 passing a lot of information to emit_store_flag. */
8870 if (operand_mode == BLKmode)
8871 return 0;
8873 /* We won't bother with store-flag operations involving function pointers
8874 when function pointers must be canonicalized before comparisons. */
8875 #ifdef HAVE_canonicalize_funcptr_for_compare
8876 if (HAVE_canonicalize_funcptr_for_compare
8877 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
8878 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8879 == FUNCTION_TYPE))
8880 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
8881 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8882 == FUNCTION_TYPE))))
8883 return 0;
8884 #endif
8886 STRIP_NOPS (arg0);
8887 STRIP_NOPS (arg1);
8889 /* Get the rtx comparison code to use. We know that EXP is a comparison
8890 operation of some type. Some comparisons against 1 and -1 can be
8891 converted to comparisons with zero. Do so here so that the tests
8892 below will be aware that we have a comparison with zero. These
8893 tests will not catch constants in the first operand, but constants
8894 are rarely passed as the first operand. */
8896 switch (TREE_CODE (exp))
8898 case EQ_EXPR:
8899 code = EQ;
8900 break;
8901 case NE_EXPR:
8902 code = NE;
8903 break;
8904 case LT_EXPR:
8905 if (integer_onep (arg1))
8906 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
8907 else
8908 code = unsignedp ? LTU : LT;
8909 break;
8910 case LE_EXPR:
8911 if (! unsignedp && integer_all_onesp (arg1))
8912 arg1 = integer_zero_node, code = LT;
8913 else
8914 code = unsignedp ? LEU : LE;
8915 break;
8916 case GT_EXPR:
8917 if (! unsignedp && integer_all_onesp (arg1))
8918 arg1 = integer_zero_node, code = GE;
8919 else
8920 code = unsignedp ? GTU : GT;
8921 break;
8922 case GE_EXPR:
8923 if (integer_onep (arg1))
8924 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
8925 else
8926 code = unsignedp ? GEU : GE;
8927 break;
8929 case UNORDERED_EXPR:
8930 code = UNORDERED;
8931 break;
8932 case ORDERED_EXPR:
8933 code = ORDERED;
8934 break;
8935 case UNLT_EXPR:
8936 code = UNLT;
8937 break;
8938 case UNLE_EXPR:
8939 code = UNLE;
8940 break;
8941 case UNGT_EXPR:
8942 code = UNGT;
8943 break;
8944 case UNGE_EXPR:
8945 code = UNGE;
8946 break;
8947 case UNEQ_EXPR:
8948 code = UNEQ;
8949 break;
8950 case LTGT_EXPR:
8951 code = LTGT;
8952 break;
8954 default:
8955 gcc_unreachable ();
8958 /* Put a constant second. */
8959 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
8961 tem = arg0; arg0 = arg1; arg1 = tem;
8962 code = swap_condition (code);
8965 /* If this is an equality or inequality test of a single bit, we can
8966 do this by shifting the bit being tested to the low-order bit and
8967 masking the result with the constant 1. If the condition was EQ,
8968 we xor it with 1. This does not require an scc insn and is faster
8969 than an scc insn even if we have it.
8971 The code to make this transformation was moved into fold_single_bit_test,
8972 so we just call into the folder and expand its result. */
8974 if ((code == NE || code == EQ)
8975 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
8976 && integer_pow2p (TREE_OPERAND (arg0, 1)))
8978 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
8979 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
8980 arg0, arg1, type),
8981 target, VOIDmode, EXPAND_NORMAL);
8984 /* Now see if we are likely to be able to do this. Return if not. */
8985 if (! can_compare_p (code, operand_mode, ccp_store_flag))
8986 return 0;
8988 icode = setcc_gen_code[(int) code];
8989 if (icode == CODE_FOR_nothing
8990 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
8992 /* We can only do this if it is one of the special cases that
8993 can be handled without an scc insn. */
8994 if ((code == LT && integer_zerop (arg1))
8995 || (! only_cheap && code == GE && integer_zerop (arg1)))
8997 else if (! only_cheap && (code == NE || code == EQ)
8998 && TREE_CODE (type) != REAL_TYPE
8999 && ((abs_optab->handlers[(int) operand_mode].insn_code
9000 != CODE_FOR_nothing)
9001 || (ffs_optab->handlers[(int) operand_mode].insn_code
9002 != CODE_FOR_nothing)))
9004 else
9005 return 0;
9008 if (! get_subtarget (target)
9009 || GET_MODE (subtarget) != operand_mode)
9010 subtarget = 0;
9012 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
9014 if (target == 0)
9015 target = gen_reg_rtx (mode);
9017 result = emit_store_flag (target, code, op0, op1,
9018 operand_mode, unsignedp, 1);
9020 if (result)
9022 if (invert)
9023 result = expand_binop (mode, xor_optab, result, const1_rtx,
9024 result, 0, OPTAB_LIB_WIDEN);
9025 return result;
9028 /* If this failed, we have to do this with set/compare/jump/set code. */
9029 if (!REG_P (target)
9030 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
9031 target = gen_reg_rtx (GET_MODE (target));
9033 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
9034 result = compare_from_rtx (op0, op1, code, unsignedp,
9035 operand_mode, NULL_RTX);
9036 if (GET_CODE (result) == CONST_INT)
9037 return (((result == const0_rtx && ! invert)
9038 || (result != const0_rtx && invert))
9039 ? const0_rtx : const1_rtx);
9041 /* The code of RESULT may not match CODE if compare_from_rtx
9042 decided to swap its operands and reverse the original code.
9044 We know that compare_from_rtx returns either a CONST_INT or
9045 a new comparison code, so it is safe to just extract the
9046 code from RESULT. */
9047 code = GET_CODE (result);
9049 label = gen_label_rtx ();
9050 gcc_assert (bcc_gen_fctn[(int) code]);
9052 emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
9053 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9054 emit_label (label);
9056 return target;
9060 /* Stubs in case we haven't got a casesi insn. */
9061 #ifndef HAVE_casesi
9062 # define HAVE_casesi 0
9063 # define gen_casesi(a, b, c, d, e) (0)
9064 # define CODE_FOR_casesi CODE_FOR_nothing
9065 #endif
9067 /* If the machine does not have a case insn that compares the bounds,
9068 this means extra overhead for dispatch tables, which raises the
9069 threshold for using them. */
9070 #ifndef CASE_VALUES_THRESHOLD
9071 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9072 #endif /* CASE_VALUES_THRESHOLD */
9074 unsigned int
9075 case_values_threshold (void)
9077 return CASE_VALUES_THRESHOLD;
9080 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9081 0 otherwise (i.e. if there is no casesi instruction). */
9083 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9084 rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
9086 enum machine_mode index_mode = SImode;
9087 int index_bits = GET_MODE_BITSIZE (index_mode);
9088 rtx op1, op2, index;
9089 enum machine_mode op_mode;
9091 if (! HAVE_casesi)
9092 return 0;
9094 /* Convert the index to SImode. */
9095 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9097 enum machine_mode omode = TYPE_MODE (index_type);
9098 rtx rangertx = expand_normal (range);
9100 /* We must handle the endpoints in the original mode. */
9101 index_expr = build2 (MINUS_EXPR, index_type,
9102 index_expr, minval);
9103 minval = integer_zero_node;
9104 index = expand_normal (index_expr);
9105 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9106 omode, 1, default_label);
9107 /* Now we can safely truncate. */
9108 index = convert_to_mode (index_mode, index, 0);
9110 else
9112 if (TYPE_MODE (index_type) != index_mode)
9114 index_expr = convert (lang_hooks.types.type_for_size
9115 (index_bits, 0), index_expr);
9116 index_type = TREE_TYPE (index_expr);
9119 index = expand_normal (index_expr);
9122 do_pending_stack_adjust ();
9124 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
9125 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
9126 (index, op_mode))
9127 index = copy_to_mode_reg (op_mode, index);
9129 op1 = expand_normal (minval);
9131 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
9132 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
9133 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
9134 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
9135 (op1, op_mode))
9136 op1 = copy_to_mode_reg (op_mode, op1);
9138 op2 = expand_normal (range);
9140 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
9141 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
9142 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
9143 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
9144 (op2, op_mode))
9145 op2 = copy_to_mode_reg (op_mode, op2);
9147 emit_jump_insn (gen_casesi (index, op1, op2,
9148 table_label, default_label));
9149 return 1;
9152 /* Attempt to generate a tablejump instruction; same concept. */
9153 #ifndef HAVE_tablejump
9154 #define HAVE_tablejump 0
9155 #define gen_tablejump(x, y) (0)
9156 #endif
9158 /* Subroutine of the next function.
9160 INDEX is the value being switched on, with the lowest value
9161 in the table already subtracted.
9162 MODE is its expected mode (needed if INDEX is constant).
9163 RANGE is the length of the jump table.
9164 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9166 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9167 index value is out of range. */
9169 static void
9170 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
9171 rtx default_label)
9173 rtx temp, vector;
9175 if (INTVAL (range) > cfun->max_jumptable_ents)
9176 cfun->max_jumptable_ents = INTVAL (range);
9178 /* Do an unsigned comparison (in the proper mode) between the index
9179 expression and the value which represents the length of the range.
9180 Since we just finished subtracting the lower bound of the range
9181 from the index expression, this comparison allows us to simultaneously
9182 check that the original index expression value is both greater than
9183 or equal to the minimum value of the range and less than or equal to
9184 the maximum value of the range. */
9186 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
9187 default_label);
9189 /* If index is in range, it must fit in Pmode.
9190 Convert to Pmode so we can index with it. */
9191 if (mode != Pmode)
9192 index = convert_to_mode (Pmode, index, 1);
9194 /* Don't let a MEM slip through, because then INDEX that comes
9195 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9196 and break_out_memory_refs will go to work on it and mess it up. */
9197 #ifdef PIC_CASE_VECTOR_ADDRESS
9198 if (flag_pic && !REG_P (index))
9199 index = copy_to_mode_reg (Pmode, index);
9200 #endif
9202 /* If flag_force_addr were to affect this address
9203 it could interfere with the tricky assumptions made
9204 about addresses that contain label-refs,
9205 which may be valid only very near the tablejump itself. */
9206 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9207 GET_MODE_SIZE, because this indicates how large insns are. The other
9208 uses should all be Pmode, because they are addresses. This code
9209 could fail if addresses and insns are not the same size. */
9210 index = gen_rtx_PLUS (Pmode,
9211 gen_rtx_MULT (Pmode, index,
9212 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
9213 gen_rtx_LABEL_REF (Pmode, table_label));
9214 #ifdef PIC_CASE_VECTOR_ADDRESS
9215 if (flag_pic)
9216 index = PIC_CASE_VECTOR_ADDRESS (index);
9217 else
9218 #endif
9219 index = memory_address_noforce (CASE_VECTOR_MODE, index);
9220 temp = gen_reg_rtx (CASE_VECTOR_MODE);
9221 vector = gen_const_mem (CASE_VECTOR_MODE, index);
9222 convert_move (temp, vector, 0);
9224 emit_jump_insn (gen_tablejump (temp, table_label));
9226 /* If we are generating PIC code or if the table is PC-relative, the
9227 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
9228 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
9229 emit_barrier ();
9233 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
9234 rtx table_label, rtx default_label)
9236 rtx index;
9238 if (! HAVE_tablejump)
9239 return 0;
9241 index_expr = fold_build2 (MINUS_EXPR, index_type,
9242 convert (index_type, index_expr),
9243 convert (index_type, minval));
9244 index = expand_normal (index_expr);
9245 do_pending_stack_adjust ();
9247 do_tablejump (index, TYPE_MODE (index_type),
9248 convert_modes (TYPE_MODE (index_type),
9249 TYPE_MODE (TREE_TYPE (range)),
9250 expand_normal (range),
9251 TYPE_UNSIGNED (TREE_TYPE (range))),
9252 table_label, default_label);
9253 return 1;
9256 /* Nonzero if the mode is a valid vector mode for this architecture.
9257 This returns nonzero even if there is no hardware support for the
9258 vector mode, but we can emulate with narrower modes. */
9261 vector_mode_valid_p (enum machine_mode mode)
9263 enum mode_class class = GET_MODE_CLASS (mode);
9264 enum machine_mode innermode;
9266 /* Doh! What's going on? */
9267 if (class != MODE_VECTOR_INT
9268 && class != MODE_VECTOR_FLOAT)
9269 return 0;
9271 /* Hardware support. Woo hoo! */
9272 if (targetm.vector_mode_supported_p (mode))
9273 return 1;
9275 innermode = GET_MODE_INNER (mode);
9277 /* We should probably return 1 if requesting V4DI and we have no DI,
9278 but we have V2DI, but this is probably very unlikely. */
9280 /* If we have support for the inner mode, we can safely emulate it.
9281 We may not have V2DI, but me can emulate with a pair of DIs. */
9282 return targetm.scalar_mode_supported_p (innermode);
9285 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
9286 static rtx
9287 const_vector_from_tree (tree exp)
9289 rtvec v;
9290 int units, i;
9291 tree link, elt;
9292 enum machine_mode inner, mode;
9294 mode = TYPE_MODE (TREE_TYPE (exp));
9296 if (initializer_zerop (exp))
9297 return CONST0_RTX (mode);
9299 units = GET_MODE_NUNITS (mode);
9300 inner = GET_MODE_INNER (mode);
9302 v = rtvec_alloc (units);
9304 link = TREE_VECTOR_CST_ELTS (exp);
9305 for (i = 0; link; link = TREE_CHAIN (link), ++i)
9307 elt = TREE_VALUE (link);
9309 if (TREE_CODE (elt) == REAL_CST)
9310 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
9311 inner);
9312 else
9313 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
9314 TREE_INT_CST_HIGH (elt),
9315 inner);
9318 /* Initialize remaining elements to 0. */
9319 for (; i < units; ++i)
9320 RTVEC_ELT (v, i) = CONST0_RTX (inner);
9322 return gen_rtx_CONST_VECTOR (mode, v);
9324 #include "gt-expr.h"