1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
32 ------------------------------------------------------------------------------
34 with Output
; use Output
;
35 with Tree_IO
; use Tree_IO
;
37 with GNAT
.HTable
; use GNAT
.HTable
;
41 ------------------------
42 -- Local Declarations --
43 ------------------------
45 Uint_Int_First
: Uint
:= Uint_0
;
46 -- Uint value containing Int'First value, set by Initialize. The initial
47 -- value of Uint_0 is used for an assertion check that ensures that this
48 -- value is not used before it is initialized. This value is used in the
49 -- UI_Is_In_Int_Range predicate, and it is right that this is a host
50 -- value, since the issue is host representation of integer values.
53 -- Uint value containing Int'Last value set by Initialize
55 UI_Power_2
: array (Int
range 0 .. 64) of Uint
;
56 -- This table is used to memoize exponentiations by powers of 2. The Nth
57 -- entry, if set, contains the Uint value 2 ** N. Initially UI_Power_2_Set
58 -- is zero and only the 0'th entry is set, the invariant being that all
59 -- entries in the range 0 .. UI_Power_2_Set are initialized.
62 -- Number of entries set in UI_Power_2;
64 UI_Power_10
: array (Int
range 0 .. 64) of Uint
;
65 -- This table is used to memoize exponentiations by powers of 10 in the
66 -- same manner as described above for UI_Power_2.
68 UI_Power_10_Set
: Nat
;
69 -- Number of entries set in UI_Power_10;
73 -- These values are used to make sure that the mark/release mechanism
74 -- does not destroy values saved in the U_Power tables or in the hash
75 -- table used by UI_From_Int. Whenever an entry is made in either of
76 -- these tabls, Uints_Min and Udigits_Min are updated to protect the
77 -- entry, and Release never cuts back beyond these minimum values.
79 Int_0
: constant Int
:= 0;
80 Int_1
: constant Int
:= 1;
81 Int_2
: constant Int
:= 2;
82 -- These values are used in some cases where the use of numeric literals
83 -- would cause ambiguities (integer vs Uint).
85 ----------------------------
86 -- UI_From_Int Hash Table --
87 ----------------------------
89 -- UI_From_Int uses a hash table to avoid duplicating entries and
90 -- wasting storage. This is particularly important for complex cases
91 -- of back annotation.
93 subtype Hnum
is Nat
range 0 .. 1022;
95 function Hash_Num
(F
: Int
) return Hnum
;
98 package UI_Ints
is new Simple_HTable
(
101 No_Element
=> No_Uint
,
106 -----------------------
107 -- Local Subprograms --
108 -----------------------
110 function Direct
(U
: Uint
) return Boolean;
111 pragma Inline
(Direct
);
112 -- Returns True if U is represented directly
114 function Direct_Val
(U
: Uint
) return Int
;
115 -- U is a Uint for is represented directly. The returned result
116 -- is the value represented.
118 function GCD
(Jin
, Kin
: Int
) return Int
;
119 -- Compute GCD of two integers. Assumes that Jin >= Kin >= 0
125 -- Common processing for UI_Image and UI_Write, To_Buffer is set
126 -- True for UI_Image, and false for UI_Write, and Format is copied
127 -- from the Format parameter to UI_Image or UI_Write.
129 procedure Init_Operand
(UI
: Uint
; Vec
: out UI_Vector
);
130 pragma Inline
(Init_Operand
);
131 -- This procedure puts the value of UI into the vector in canonical
132 -- multiple precision format. The parameter should be of the correct
133 -- size as determined by a previous call to N_Digits (UI). The first
134 -- digit of Vec contains the sign, all other digits are always non-
135 -- negative. Note that the input may be directly represented, and in
136 -- this case Vec will contain the corresponding one or two digit value.
138 function Least_Sig_Digit
(Arg
: Uint
) return Int
;
139 pragma Inline
(Least_Sig_Digit
);
140 -- Returns the Least Significant Digit of Arg quickly. When the given
141 -- Uint is less than 2**15, the value returned is the input value, in
142 -- this case the result may be negative. It is expected that any use
143 -- will mask off unnecessary bits. This is used for finding Arg mod B
144 -- where B is a power of two. Hence the actual base is irrelevent as
145 -- long as it is a power of two.
147 procedure Most_Sig_2_Digits
151 Right_Hat
: out Int
);
152 -- Returns leading two significant digits from the given pair of Uint's.
153 -- Mathematically: returns Left / (Base ** K) and Right / (Base ** K)
154 -- where K is as small as possible S.T. Right_Hat < Base * Base.
155 -- It is required that Left > Right for the algorithm to work.
157 function N_Digits
(Input
: Uint
) return Int
;
158 pragma Inline
(N_Digits
);
159 -- Returns number of "digits" in a Uint
161 function Sum_Digits
(Left
: Uint
; Sign
: Int
) return Int
;
162 -- If Sign = 1 return the sum of the "digits" of Abs (Left). If the
163 -- total has more then one digit then return Sum_Digits of total.
165 function Sum_Double_Digits
(Left
: Uint
; Sign
: Int
) return Int
;
166 -- Same as above but work in New_Base = Base * Base
168 function Vector_To_Uint
172 -- Functions that calculate values in UI_Vectors, call this function
173 -- to create and return the Uint value. In_Vec contains the multiple
174 -- precision (Base) representation of a non-negative value. Leading
175 -- zeroes are permitted. Negative is set if the desired result is
176 -- the negative of the given value. The result will be either the
177 -- appropriate directly represented value, or a table entry in the
178 -- proper canonical format is created and returned.
180 -- Note that Init_Operand puts a signed value in the result vector,
181 -- but Vector_To_Uint is always presented with a non-negative value.
182 -- The processing of signs is something that is done by the caller
183 -- before calling Vector_To_Uint.
189 function Direct
(U
: Uint
) return Boolean is
191 return Int
(U
) <= Int
(Uint_Direct_Last
);
198 function Direct_Val
(U
: Uint
) return Int
is
200 pragma Assert
(Direct
(U
));
201 return Int
(U
) - Int
(Uint_Direct_Bias
);
208 function GCD
(Jin
, Kin
: Int
) return Int
is
212 pragma Assert
(Jin
>= Kin
);
213 pragma Assert
(Kin
>= Int_0
);
218 while K
/= Uint_0
loop
231 function Hash_Num
(F
: Int
) return Hnum
is
233 return Standard
."mod" (F
, Hnum
'Range_Length);
245 Marks
: constant Uintp
.Save_Mark
:= Uintp
.Mark
;
249 Digs_Output
: Natural := 0;
250 -- Counts digits output. In hex mode, but not in decimal mode, we
251 -- put an underline after every four hex digits that are output.
253 Exponent
: Natural := 0;
254 -- If the number is too long to fit in the buffer, we switch to an
255 -- approximate output format with an exponent. This variable records
256 -- the exponent value.
258 function Better_In_Hex
return Boolean;
259 -- Determines if it is better to generate digits in base 16 (result
260 -- is true) or base 10 (result is false). The choice is purely a
261 -- matter of convenience and aesthetics, so it does not matter which
262 -- value is returned from a correctness point of view.
264 procedure Image_Char
(C
: Character);
265 -- Internal procedure to output one character
267 procedure Image_Exponent
(N
: Natural);
268 -- Output non-zero exponent. Note that we only use the exponent
269 -- form in the buffer case, so we know that To_Buffer is true.
271 procedure Image_Uint
(U
: Uint
);
272 -- Internal procedure to output characters of non-negative Uint
278 function Better_In_Hex
return Boolean is
279 T16
: constant Uint
:= Uint_2
** Int
'(16);
285 -- Small values up to 2**16 can always be in decimal
291 -- Otherwise, see if we are a power of 2 or one less than a power
292 -- of 2. For the moment these are the only cases printed in hex.
294 if A mod Uint_2 = Uint_1 then
299 if A mod T16 /= Uint_0 then
309 while A > Uint_2 loop
310 if A mod Uint_2 /= Uint_0 then
325 procedure Image_Char (C : Character) is
328 if UI_Image_Length + 6 > UI_Image_Max then
329 Exponent := Exponent + 1;
331 UI_Image_Length := UI_Image_Length + 1;
332 UI_Image_Buffer (UI_Image_Length) := C;
343 procedure Image_Exponent (N : Natural) is
346 Image_Exponent (N / 10);
349 UI_Image_Length := UI_Image_Length + 1;
350 UI_Image_Buffer (UI_Image_Length) :=
351 Character'Val (Character'Pos ('0') + N mod 10);
358 procedure Image_Uint (U : Uint) is
359 H : constant array (Int range 0 .. 15) of Character :=
364 Image_Uint (U / Base);
367 if Digs_Output = 4 and then Base = Uint_16 then
372 Image_Char (H (UI_To_Int (U rem Base)));
374 Digs_Output := Digs_Output + 1;
377 -- Start of processing for Image_Out
380 if Input = No_Uint then
385 UI_Image_Length := 0;
387 if Input < Uint_0 then
395 or else (Format = Auto and then Better_In_Hex)
409 if Exponent /= 0 then
410 UI_Image_Length := UI_Image_Length + 1;
411 UI_Image_Buffer (UI_Image_Length) := 'E
';
412 Image_Exponent (Exponent);
415 Uintp.Release (Marks);
422 procedure Init_Operand (UI : Uint; Vec : out UI_Vector) is
427 Vec (1) := Direct_Val (UI);
429 if Vec (1) >= Base then
430 Vec (2) := Vec (1) rem Base;
431 Vec (1) := Vec (1) / Base;
435 Loc := Uints.Table (UI).Loc;
437 for J in 1 .. Uints.Table (UI).Length loop
438 Vec (J) := Udigits.Table (Loc + J - 1);
447 procedure Initialize is
452 Uint_Int_First := UI_From_Int (Int'First);
453 Uint_Int_Last := UI_From_Int (Int'Last);
455 UI_Power_2 (0) := Uint_1;
458 UI_Power_10 (0) := Uint_1;
459 UI_Power_10_Set := 0;
461 Uints_Min := Uints.Last;
462 Udigits_Min := Udigits.Last;
467 ---------------------
468 -- Least_Sig_Digit --
469 ---------------------
471 function Least_Sig_Digit (Arg : Uint) return Int is
476 V := Direct_Val (Arg);
482 -- Note that this result may be negative
489 (Uints.Table (Arg).Loc + Uints.Table (Arg).Length - 1);
497 function Mark return Save_Mark is
499 return (Save_Uint => Uints.Last, Save_Udigit => Udigits.Last);
502 -----------------------
503 -- Most_Sig_2_Digits --
504 -----------------------
506 procedure Most_Sig_2_Digits
513 pragma Assert (Left >= Right);
515 if Direct (Left) then
516 Left_Hat := Direct_Val (Left);
517 Right_Hat := Direct_Val (Right);
523 Udigits.Table (Uints.Table (Left).Loc);
525 Udigits.Table (Uints.Table (Left).Loc + 1);
528 -- It is not so clear what to return when Arg is negative???
530 Left_Hat := abs (L1) * Base + L2;
535 Length_L : constant Int := Uints.Table (Left).Length;
542 if Direct (Right) then
543 T := Direct_Val (Left);
544 R1 := abs (T / Base);
549 R1 := abs (Udigits.Table (Uints.Table (Right).Loc));
550 R2 := Udigits.Table (Uints.Table (Right).Loc + 1);
551 Length_R := Uints.Table (Right).Length;
554 if Length_L = Length_R then
555 Right_Hat := R1 * Base + R2;
556 elsif Length_L = Length_R + Int_1 then
562 end Most_Sig_2_Digits;
568 -- Note: N_Digits returns 1 for No_Uint
570 function N_Digits (Input : Uint) return Int is
572 if Direct (Input) then
573 if Direct_Val (Input) >= Base then
580 return Uints.Table (Input).Length;
588 function Num_Bits (Input : Uint) return Nat is
593 if Input = Uint_Int_First then
596 elsif UI_Is_In_Int_Range (Input) then
597 Num := abs (UI_To_Int (Input));
601 Bits := Base_Bits * (Uints.Table (Input).Length - 1);
602 Num := abs (Udigits.Table (Uints.Table (Input).Loc));
605 while Types.">" (Num, 0) loop
617 procedure pid (Input : Uint) is
619 UI_Write (Input, Decimal);
627 procedure pih (Input : Uint) is
629 UI_Write (Input, Hex);
637 procedure Release (M : Save_Mark) is
639 Uints.Set_Last (Uint'Max (M.Save_Uint, Uints_Min));
640 Udigits.Set_Last (Int'Max (M.Save_Udigit, Udigits_Min));
643 ----------------------
644 -- Release_And_Save --
645 ----------------------
647 procedure Release_And_Save (M : Save_Mark; UI : in out Uint) is
654 UE_Len : constant Pos := Uints.Table (UI).Length;
655 UE_Loc : constant Int := Uints.Table (UI).Loc;
657 UD : constant Udigits.Table_Type (1 .. UE_Len) :=
658 Udigits.Table (UE_Loc .. UE_Loc + UE_Len - 1);
663 Uints.Increment_Last;
666 Uints.Table (UI) := (UE_Len, Udigits.Last + 1);
668 for J in 1 .. UE_Len loop
669 Udigits.Increment_Last;
670 Udigits.Table (Udigits.Last) := UD (J);
674 end Release_And_Save;
676 procedure Release_And_Save (M : Save_Mark; UI1, UI2 : in out Uint) is
679 Release_And_Save (M, UI2);
681 elsif Direct (UI2) then
682 Release_And_Save (M, UI1);
686 UE1_Len : constant Pos := Uints.Table (UI1).Length;
687 UE1_Loc : constant Int := Uints.Table (UI1).Loc;
689 UD1 : constant Udigits.Table_Type (1 .. UE1_Len) :=
690 Udigits.Table (UE1_Loc .. UE1_Loc + UE1_Len - 1);
692 UE2_Len : constant Pos := Uints.Table (UI2).Length;
693 UE2_Loc : constant Int := Uints.Table (UI2).Loc;
695 UD2 : constant Udigits.Table_Type (1 .. UE2_Len) :=
696 Udigits.Table (UE2_Loc .. UE2_Loc + UE2_Len - 1);
701 Uints.Increment_Last;
704 Uints.Table (UI1) := (UE1_Len, Udigits.Last + 1);
706 for J in 1 .. UE1_Len loop
707 Udigits.Increment_Last;
708 Udigits.Table (Udigits.Last) := UD1 (J);
711 Uints.Increment_Last;
714 Uints.Table (UI2) := (UE2_Len, Udigits.Last + 1);
716 for J in 1 .. UE2_Len loop
717 Udigits.Increment_Last;
718 Udigits.Table (Udigits.Last) := UD2 (J);
722 end Release_And_Save;
728 -- This is done in one pass
730 -- Mathematically: assume base congruent to 1 and compute an equivelent
733 -- If Sign = -1 return the alternating sum of the "digits"
735 -- D1 - D2 + D3 - D4 + D5 ...
737 -- (where D1 is Least Significant Digit)
739 -- Mathematically: assume base congruent to -1 and compute an equivelent
742 -- This is used in Rem and Base is assumed to be 2 ** 15
744 -- Note: The next two functions are very similar, any style changes made
745 -- to one should be reflected in both. These would be simpler if we
746 -- worked base 2 ** 32.
748 function Sum_Digits (Left : Uint; Sign : Int) return Int is
750 pragma Assert (Sign = Int_1 or Sign = Int (-1));
752 -- First try simple case;
754 if Direct (Left) then
756 Tmp_Int : Int := Direct_Val (Left);
759 if Tmp_Int >= Base then
760 Tmp_Int := (Tmp_Int / Base) +
761 Sign * (Tmp_Int rem Base);
763 -- Now Tmp_Int is in [-(Base - 1) .. 2 * (Base - 1)]
765 if Tmp_Int >= Base then
769 Tmp_Int := (Tmp_Int / Base) + 1;
773 -- Now Tmp_Int is in [-(Base - 1) .. (Base - 1)]
780 -- Otherwise full circuit is needed
784 L_Length : constant Int := N_Digits (Left);
785 L_Vec : UI_Vector (1 .. L_Length);
791 Init_Operand (Left, L_Vec);
792 L_Vec (1) := abs L_Vec (1);
797 for J in reverse 1 .. L_Length loop
798 Tmp_Int := Tmp_Int + Alt * (L_Vec (J) + Carry);
800 -- Tmp_Int is now between [-2 * Base + 1 .. 2 * Base - 1],
801 -- since old Tmp_Int is between [-(Base - 1) .. Base - 1]
802 -- and L_Vec is in [0 .. Base - 1] and Carry in [-1 .. 1]
804 if Tmp_Int >= Base then
805 Tmp_Int := Tmp_Int - Base;
808 elsif Tmp_Int <= -Base then
809 Tmp_Int := Tmp_Int + Base;
816 -- Tmp_Int is now between [-Base + 1 .. Base - 1]
821 Tmp_Int := Tmp_Int + Alt * Carry;
823 -- Tmp_Int is now between [-Base .. Base]
825 if Tmp_Int >= Base then
826 Tmp_Int := Tmp_Int - Base + Alt * Sign * 1;
828 elsif Tmp_Int <= -Base then
829 Tmp_Int := Tmp_Int + Base + Alt * Sign * (-1);
832 -- Now Tmp_Int is in [-(Base - 1) .. (Base - 1)]
839 -----------------------
840 -- Sum_Double_Digits --
841 -----------------------
843 -- Note: This is used in Rem, Base is assumed to be 2 ** 15
845 function Sum_Double_Digits (Left : Uint; Sign : Int) return Int is
847 -- First try simple case;
849 pragma Assert (Sign = Int_1 or Sign = Int (-1));
851 if Direct (Left) then
852 return Direct_Val (Left);
854 -- Otherwise full circuit is needed
858 L_Length : constant Int := N_Digits (Left);
859 L_Vec : UI_Vector (1 .. L_Length);
867 Init_Operand (Left, L_Vec);
868 L_Vec (1) := abs L_Vec (1);
876 Least_Sig_Int := Least_Sig_Int + Alt * (L_Vec (J) + Carry);
878 -- Least is in [-2 Base + 1 .. 2 * Base - 1]
879 -- Since L_Vec in [0 .. Base - 1] and Carry in [-1 .. 1]
880 -- and old Least in [-Base + 1 .. Base - 1]
882 if Least_Sig_Int >= Base then
883 Least_Sig_Int := Least_Sig_Int - Base;
886 elsif Least_Sig_Int <= -Base then
887 Least_Sig_Int := Least_Sig_Int + Base;
894 -- Least is now in [-Base + 1 .. Base - 1]
896 Most_Sig_Int := Most_Sig_Int + Alt * (L_Vec (J - 1) + Carry);
898 -- Most is in [-2 Base + 1 .. 2 * Base - 1]
899 -- Since L_Vec in [0 .. Base - 1] and Carry in [-1 .. 1]
900 -- and old Most in [-Base + 1 .. Base - 1]
902 if Most_Sig_Int >= Base then
903 Most_Sig_Int := Most_Sig_Int - Base;
906 elsif Most_Sig_Int <= -Base then
907 Most_Sig_Int := Most_Sig_Int + Base;
913 -- Most is now in [-Base + 1 .. Base - 1]
920 Least_Sig_Int := Least_Sig_Int + Alt * (L_Vec (J) + Carry);
922 Least_Sig_Int := Least_Sig_Int + Alt * Carry;
925 if Least_Sig_Int >= Base then
926 Least_Sig_Int := Least_Sig_Int - Base;
927 Most_Sig_Int := Most_Sig_Int + Alt * 1;
929 elsif Least_Sig_Int <= -Base then
930 Least_Sig_Int := Least_Sig_Int + Base;
931 Most_Sig_Int := Most_Sig_Int + Alt * (-1);
934 if Most_Sig_Int >= Base then
935 Most_Sig_Int := Most_Sig_Int - Base;
938 Least_Sig_Int + Alt * 1; -- cannot overflow again
940 elsif Most_Sig_Int <= -Base then
941 Most_Sig_Int := Most_Sig_Int + Base;
944 Least_Sig_Int + Alt * (-1); -- cannot overflow again.
947 return Most_Sig_Int * Base + Least_Sig_Int;
950 end Sum_Double_Digits;
956 procedure Tree_Read is
961 Tree_Read_Int (Int (Uint_Int_First));
962 Tree_Read_Int (Int (Uint_Int_Last));
963 Tree_Read_Int (UI_Power_2_Set);
964 Tree_Read_Int (UI_Power_10_Set);
965 Tree_Read_Int (Int (Uints_Min));
966 Tree_Read_Int (Udigits_Min);
968 for J in 0 .. UI_Power_2_Set loop
969 Tree_Read_Int (Int (UI_Power_2 (J)));
972 for J in 0 .. UI_Power_10_Set loop
973 Tree_Read_Int (Int (UI_Power_10 (J)));
982 procedure Tree_Write is
987 Tree_Write_Int (Int (Uint_Int_First));
988 Tree_Write_Int (Int (Uint_Int_Last));
989 Tree_Write_Int (UI_Power_2_Set);
990 Tree_Write_Int (UI_Power_10_Set);
991 Tree_Write_Int (Int (Uints_Min));
992 Tree_Write_Int (Udigits_Min);
994 for J in 0 .. UI_Power_2_Set loop
995 Tree_Write_Int (Int (UI_Power_2 (J)));
998 for J in 0 .. UI_Power_10_Set loop
999 Tree_Write_Int (Int (UI_Power_10 (J)));
1008 function UI_Abs (Right : Uint) return Uint is
1010 if Right < Uint_0 then
1021 function UI_Add (Left : Int; Right : Uint) return Uint is
1023 return UI_Add (UI_From_Int (Left), Right);
1026 function UI_Add (Left : Uint; Right : Int) return Uint is
1028 return UI_Add (Left, UI_From_Int (Right));
1031 function UI_Add (Left : Uint; Right : Uint) return Uint is
1033 -- Simple cases of direct operands and addition of zero
1035 if Direct (Left) then
1036 if Direct (Right) then
1037 return UI_From_Int (Direct_Val (Left) + Direct_Val (Right));
1039 elsif Int (Left) = Int (Uint_0) then
1043 elsif Direct (Right) and then Int (Right) = Int (Uint_0) then
1047 -- Otherwise full circuit is needed
1050 L_Length : constant Int := N_Digits (Left);
1051 R_Length : constant Int := N_Digits (Right);
1052 L_Vec : UI_Vector (1 .. L_Length);
1053 R_Vec : UI_Vector (1 .. R_Length);
1058 X_Bigger : Boolean := False;
1059 Y_Bigger : Boolean := False;
1060 Result_Neg : Boolean := False;
1063 Init_Operand (Left, L_Vec);
1064 Init_Operand (Right, R_Vec);
1066 -- At least one of the two operands is in multi-digit form.
1067 -- Calculate the number of digits sufficient to hold result.
1069 if L_Length > R_Length then
1070 Sum_Length := L_Length + 1;
1073 Sum_Length := R_Length + 1;
1074 if R_Length > L_Length then Y_Bigger := True; end if;
1077 -- Make copies of the absolute values of L_Vec and R_Vec into
1078 -- X and Y both with lengths equal to the maximum possibly
1079 -- needed. This makes looping over the digits much simpler.
1082 X : UI_Vector (1 .. Sum_Length);
1083 Y : UI_Vector (1 .. Sum_Length);
1084 Tmp_UI : UI_Vector (1 .. Sum_Length);
1087 for J in 1 .. Sum_Length - L_Length loop
1091 X (Sum_Length - L_Length + 1) := abs L_Vec (1);
1093 for J in 2 .. L_Length loop
1094 X (J + (Sum_Length - L_Length)) := L_Vec (J);
1097 for J in 1 .. Sum_Length - R_Length loop
1101 Y (Sum_Length - R_Length + 1) := abs R_Vec (1);
1103 for J in 2 .. R_Length loop
1104 Y (J + (Sum_Length - R_Length)) := R_Vec (J);
1107 if (L_Vec (1) < Int_0) = (R_Vec (1) < Int_0) then
1109 -- Same sign so just add
1112 for J in reverse 1 .. Sum_Length loop
1113 Tmp_Int := X (J) + Y (J) + Carry;
1115 if Tmp_Int >= Base then
1116 Tmp_Int := Tmp_Int - Base;
1125 return Vector_To_Uint (X, L_Vec (1) < Int_0);
1128 -- Find which one has bigger magnitude
1130 if not (X_Bigger or Y_Bigger) then
1131 for J in L_Vec'Range loop
1132 if abs L_Vec (J) > abs R_Vec (J) then
1135 elsif abs R_Vec (J) > abs L_Vec (J) then
1142 -- If they have identical magnitude, just return 0, else
1143 -- swap if necessary so that X had the bigger magnitude.
1144 -- Determine if result is negative at this time.
1146 Result_Neg := False;
1148 if not (X_Bigger or Y_Bigger) then
1152 if R_Vec (1) < Int_0 then
1161 if L_Vec (1) < Int_0 then
1166 -- Subtract Y from the bigger X
1170 for J in reverse 1 .. Sum_Length loop
1171 Tmp_Int := X (J) - Y (J) + Borrow;
1173 if Tmp_Int < Int_0 then
1174 Tmp_Int := Tmp_Int + Base;
1183 return Vector_To_Uint (X, Result_Neg);
1190 --------------------------
1191 -- UI_Decimal_Digits_Hi --
1192 --------------------------
1194 function UI_Decimal_Digits_Hi (U : Uint) return Nat is
1196 -- The maximum value of a "digit" is 32767, which is 5 decimal
1197 -- digits, so an N_Digit number could take up to 5 times this
1198 -- number of digits. This is certainly too high for large
1199 -- numbers but it is not worth worrying about.
1201 return 5 * N_Digits (U);
1202 end UI_Decimal_Digits_Hi;
1204 --------------------------
1205 -- UI_Decimal_Digits_Lo --
1206 --------------------------
1208 function UI_Decimal_Digits_Lo (U : Uint) return Nat is
1210 -- The maximum value of a "digit" is 32767, which is more than four
1211 -- decimal digits, but not a full five digits. The easily computed
1212 -- minimum number of decimal digits is thus 1 + 4 * the number of
1213 -- digits. This is certainly too low for large numbers but it is
1214 -- not worth worrying about.
1216 return 1 + 4 * (N_Digits (U) - 1);
1217 end UI_Decimal_Digits_Lo;
1223 function UI_Div (Left : Int; Right : Uint) return Uint is
1225 return UI_Div (UI_From_Int (Left), Right);
1228 function UI_Div (Left : Uint; Right : Int) return Uint is
1230 return UI_Div (Left, UI_From_Int (Right));
1233 function UI_Div (Left, Right : Uint) return Uint is
1235 pragma Assert (Right /= Uint_0);
1237 -- Cases where both operands are represented directly
1239 if Direct (Left) and then Direct (Right) then
1240 return UI_From_Int (Direct_Val (Left) / Direct_Val (Right));
1244 L_Length : constant Int := N_Digits (Left);
1245 R_Length : constant Int := N_Digits (Right);
1246 Q_Length : constant Int := L_Length - R_Length + 1;
1247 L_Vec : UI_Vector (1 .. L_Length);
1248 R_Vec : UI_Vector (1 .. R_Length);
1257 -- Result is zero if left operand is shorter than right
1259 if L_Length < R_Length then
1263 Init_Operand (Left, L_Vec);
1264 Init_Operand (Right, R_Vec);
1266 -- Case of right operand is single digit. Here we can simply divide
1267 -- each digit of the left operand by the divisor, from most to least
1268 -- significant, carrying the remainder to the next digit (just like
1269 -- ordinary long division by hand).
1271 if R_Length = Int_1 then
1273 Tmp_Divisor := abs R_Vec (1);
1276 Quotient : UI_Vector (1 .. L_Length);
1279 for J in L_Vec'Range loop
1280 Tmp_Int := Remainder * Base + abs L_Vec (J);
1281 Quotient (J) := Tmp_Int / Tmp_Divisor;
1282 Remainder := Tmp_Int rem Tmp_Divisor;
1287 (Quotient, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
1291 -- The possible simple cases have been exhausted. Now turn to the
1292 -- algorithm D from the section of Knuth mentioned at the top of
1295 Algorithm_D : declare
1296 Dividend : UI_Vector (1 .. L_Length + 1);
1297 Divisor : UI_Vector (1 .. R_Length);
1298 Quotient : UI_Vector (1 .. Q_Length);
1304 -- [ NORMALIZE ] (step D1 in the algorithm). First calculate the
1305 -- scale d, and then multiply Left and Right (u and v in the book)
1306 -- by d to get the dividend and divisor to work with.
1308 D := Base / (abs R_Vec (1) + 1);
1311 Dividend (2) := abs L_Vec (1);
1313 for J in 3 .. L_Length + Int_1 loop
1314 Dividend (J) := L_Vec (J - 1);
1317 Divisor (1) := abs R_Vec (1);
1319 for J in Int_2 .. R_Length loop
1320 Divisor (J) := R_Vec (J);
1325 -- Multiply Dividend by D
1328 for J in reverse Dividend'Range loop
1329 Tmp_Int := Dividend (J) * D + Carry;
1330 Dividend (J) := Tmp_Int rem Base;
1331 Carry := Tmp_Int / Base;
1334 -- Multiply Divisor by d
1337 for J in reverse Divisor'Range loop
1338 Tmp_Int := Divisor (J) * D + Carry;
1339 Divisor (J) := Tmp_Int rem Base;
1340 Carry := Tmp_Int / Base;
1344 -- Main loop of long division algorithm
1346 Divisor_Dig1 := Divisor (1);
1347 Divisor_Dig2 := Divisor (2);
1349 for J in Quotient'Range loop
1351 -- [ CALCULATE Q (hat) ] (step D3 in the algorithm)
1353 Tmp_Int := Dividend (J) * Base + Dividend (J + 1);
1357 if Dividend (J) = Divisor_Dig1 then
1358 Q_Guess := Base - 1;
1360 Q_Guess := Tmp_Int / Divisor_Dig1;
1365 while Divisor_Dig2 * Q_Guess >
1366 (Tmp_Int - Q_Guess * Divisor_Dig1) * Base +
1369 Q_Guess := Q_Guess - 1;
1372 -- [ MULTIPLY & SUBTRACT] (step D4). Q_Guess * Divisor is
1373 -- subtracted from the remaining dividend.
1376 for K in reverse Divisor'Range loop
1377 Tmp_Int := Dividend (J + K) - Q_Guess * Divisor (K) + Carry;
1378 Tmp_Dig := Tmp_Int rem Base;
1379 Carry := Tmp_Int / Base;
1381 if Tmp_Dig < Int_0 then
1382 Tmp_Dig := Tmp_Dig + Base;
1386 Dividend (J + K) := Tmp_Dig;
1389 Dividend (J) := Dividend (J) + Carry;
1391 -- [ TEST REMAINDER ] & [ ADD BACK ] (steps D5 and D6)
1392 -- Here there is a slight difference from the book: the last
1393 -- carry is always added in above and below (cancelling each
1394 -- other). In fact the dividend going negative is used as
1397 -- If the Dividend went negative, then Q_Guess was off by
1398 -- one, so it is decremented, and the divisor is added back
1399 -- into the relevant portion of the dividend.
1401 if Dividend (J) < Int_0 then
1402 Q_Guess := Q_Guess - 1;
1405 for K in reverse Divisor'Range loop
1406 Tmp_Int := Dividend (J + K) + Divisor (K) + Carry;
1408 if Tmp_Int >= Base then
1409 Tmp_Int := Tmp_Int - Base;
1415 Dividend (J + K) := Tmp_Int;
1418 Dividend (J) := Dividend (J) + Carry;
1421 -- Finally we can get the next quotient digit
1423 Quotient (J) := Q_Guess;
1426 return Vector_To_Uint
1427 (Quotient, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
1437 function UI_Eq (Left : Int; Right : Uint) return Boolean is
1439 return not UI_Ne (UI_From_Int (Left), Right);
1442 function UI_Eq (Left : Uint; Right : Int) return Boolean is
1444 return not UI_Ne (Left, UI_From_Int (Right));
1447 function UI_Eq (Left : Uint; Right : Uint) return Boolean is
1449 return not UI_Ne (Left, Right);
1456 function UI_Expon (Left : Int; Right : Uint) return Uint is
1458 return UI_Expon (UI_From_Int (Left), Right);
1461 function UI_Expon (Left : Uint; Right : Int) return Uint is
1463 return UI_Expon (Left, UI_From_Int (Right));
1466 function UI_Expon (Left : Int; Right : Int) return Uint is
1468 return UI_Expon (UI_From_Int (Left), UI_From_Int (Right));
1471 function UI_Expon (Left : Uint; Right : Uint) return Uint is
1473 pragma Assert (Right >= Uint_0);
1475 -- Any value raised to power of 0 is 1
1477 if Right = Uint_0 then
1480 -- 0 to any positive power is 0
1482 elsif Left = Uint_0 then
1485 -- 1 to any power is 1
1487 elsif Left = Uint_1 then
1490 -- Any value raised to power of 1 is that value
1492 elsif Right = Uint_1 then
1495 -- Cases which can be done by table lookup
1497 elsif Right <= Uint_64 then
1499 -- 2 ** N for N in 2 .. 64
1501 if Left = Uint_2 then
1503 Right_Int : constant Int := Direct_Val (Right);
1506 if Right_Int > UI_Power_2_Set then
1507 for J in UI_Power_2_Set + Int_1 .. Right_Int loop
1508 UI_Power_2 (J) := UI_Power_2 (J - Int_1) * Int_2;
1509 Uints_Min := Uints.Last;
1510 Udigits_Min := Udigits.Last;
1513 UI_Power_2_Set := Right_Int;
1516 return UI_Power_2 (Right_Int);
1519 -- 10 ** N for N in 2 .. 64
1521 elsif Left = Uint_10 then
1523 Right_Int : constant Int := Direct_Val (Right);
1526 if Right_Int > UI_Power_10_Set then
1527 for J in UI_Power_10_Set + Int_1 .. Right_Int loop
1528 UI_Power_10 (J) := UI_Power_10 (J - Int_1) * Int (10);
1529 Uints_Min := Uints.Last;
1530 Udigits_Min := Udigits.Last;
1533 UI_Power_10_Set := Right_Int;
1536 return UI_Power_10 (Right_Int);
1541 -- If we fall through, then we have the general case (see Knuth 4.6.3)
1545 Squares : Uint := Left;
1546 Result : Uint := Uint_1;
1547 M : constant Uintp.Save_Mark := Uintp.Mark;
1551 if (Least_Sig_Digit (N) mod Int_2) = Int_1 then
1552 Result := Result * Squares;
1556 exit when N = Uint_0;
1557 Squares := Squares * Squares;
1560 Uintp.Release_And_Save (M, Result);
1569 function UI_From_CC (Input : Char_Code) return Uint is
1571 return UI_From_Dint (Dint (Input));
1578 function UI_From_Dint (Input : Dint) return Uint is
1581 if Dint (Min_Direct) <= Input and then Input <= Dint (Max_Direct) then
1582 return Uint (Dint (Uint_Direct_Bias) + Input);
1584 -- For values of larger magnitude, compute digits into a vector and
1585 -- call Vector_To_Uint.
1589 Max_For_Dint : constant := 5;
1590 -- Base is defined so that 5 Uint digits is sufficient
1591 -- to hold the largest possible Dint value.
1593 V : UI_Vector (1 .. Max_For_Dint);
1595 Temp_Integer : Dint;
1598 for J in V'Range loop
1602 Temp_Integer := Input;
1604 for J in reverse V'Range loop
1605 V (J) := Int (abs (Temp_Integer rem Dint (Base)));
1606 Temp_Integer := Temp_Integer / Dint (Base);
1609 return Vector_To_Uint (V, Input < Dint'(0));
1618 function UI_From_Int
(Input
: Int
) return Uint
is
1622 if Min_Direct
<= Input
and then Input
<= Max_Direct
then
1623 return Uint
(Int
(Uint_Direct_Bias
) + Input
);
1626 -- If already in the hash table, return entry
1628 U
:= UI_Ints
.Get
(Input
);
1630 if U
/= No_Uint
then
1634 -- For values of larger magnitude, compute digits into a vector and
1635 -- call Vector_To_Uint.
1638 Max_For_Int
: constant := 3;
1639 -- Base is defined so that 3 Uint digits is sufficient
1640 -- to hold the largest possible Int value.
1642 V
: UI_Vector
(1 .. Max_For_Int
);
1647 for J
in V
'Range loop
1651 Temp_Integer
:= Input
;
1653 for J
in reverse V
'Range loop
1654 V
(J
) := abs (Temp_Integer
rem Base
);
1655 Temp_Integer
:= Temp_Integer
/ Base
;
1658 U
:= Vector_To_Uint
(V
, Input
< Int_0
);
1659 UI_Ints
.Set
(Input
, U
);
1660 Uints_Min
:= Uints
.Last
;
1661 Udigits_Min
:= Udigits
.Last
;
1670 -- Lehmer's algorithm for GCD
1672 -- The idea is to avoid using multiple precision arithmetic wherever
1673 -- possible, substituting Int arithmetic instead. See Knuth volume II,
1674 -- Algorithm L (page 329).
1676 -- We use the same notation as Knuth (U_Hat standing for the obvious!)
1678 function UI_GCD
(Uin
, Vin
: Uint
) return Uint
is
1680 -- Copies of Uin and Vin
1683 -- The most Significant digits of U,V
1685 A
, B
, C
, D
, T
, Q
, Den1
, Den2
: Int
;
1688 Marks
: constant Uintp
.Save_Mark
:= Uintp
.Mark
;
1689 Iterations
: Integer := 0;
1692 pragma Assert
(Uin
>= Vin
);
1693 pragma Assert
(Vin
>= Uint_0
);
1699 Iterations
:= Iterations
+ 1;
1706 UI_From_Int
(GCD
(Direct_Val
(V
), UI_To_Int
(U
rem V
)));
1710 Most_Sig_2_Digits
(U
, V
, U_Hat
, V_Hat
);
1717 -- We might overflow and get division by zero here. This just
1718 -- means we cannot take the single precision step
1722 exit when (Den1
* Den2
) = Int_0
;
1724 -- Compute Q, the trial quotient
1726 Q
:= (U_Hat
+ A
) / Den1
;
1728 exit when Q
/= ((U_Hat
+ B
) / Den2
);
1730 -- A single precision step Euclid step will give same answer as
1731 -- a multiprecision one.
1741 T
:= U_Hat
- (Q
* V_Hat
);
1747 -- Take a multiprecision Euclid step
1751 -- No single precision steps take a regular Euclid step
1758 -- Use prior single precision steps to compute this Euclid step
1760 -- Fixed bug 1415-008 spends 80% of its time working on this
1761 -- step. Perhaps we need a special case Int / Uint dot
1762 -- product to speed things up. ???
1764 -- Alternatively we could increase the single precision
1765 -- iterations to handle Uint's of some small size ( <5
1766 -- digits?). Then we would have more iterations on small Uint.
1767 -- Fixed bug 1415-008 only gets 5 (on average) single
1768 -- precision iterations per large iteration. ???
1770 Tmp_UI
:= (UI_From_Int
(A
) * U
) + (UI_From_Int
(B
) * V
);
1771 V
:= (UI_From_Int
(C
) * U
) + (UI_From_Int
(D
) * V
);
1775 -- If the operands are very different in magnitude, the loop
1776 -- will generate large amounts of short-lived data, which it is
1777 -- worth removing periodically.
1779 if Iterations
> 100 then
1780 Release_And_Save
(Marks
, U
, V
);
1790 function UI_Ge
(Left
: Int
; Right
: Uint
) return Boolean is
1792 return not UI_Lt
(UI_From_Int
(Left
), Right
);
1795 function UI_Ge
(Left
: Uint
; Right
: Int
) return Boolean is
1797 return not UI_Lt
(Left
, UI_From_Int
(Right
));
1800 function UI_Ge
(Left
: Uint
; Right
: Uint
) return Boolean is
1802 return not UI_Lt
(Left
, Right
);
1809 function UI_Gt
(Left
: Int
; Right
: Uint
) return Boolean is
1811 return UI_Lt
(Right
, UI_From_Int
(Left
));
1814 function UI_Gt
(Left
: Uint
; Right
: Int
) return Boolean is
1816 return UI_Lt
(UI_From_Int
(Right
), Left
);
1819 function UI_Gt
(Left
: Uint
; Right
: Uint
) return Boolean is
1821 return UI_Lt
(Right
, Left
);
1828 procedure UI_Image
(Input
: Uint
; Format
: UI_Format
:= Auto
) is
1830 Image_Out
(Input
, True, Format
);
1833 -------------------------
1834 -- UI_Is_In_Int_Range --
1835 -------------------------
1837 function UI_Is_In_Int_Range
(Input
: Uint
) return Boolean is
1839 -- Make sure we don't get called before Initialize
1841 pragma Assert
(Uint_Int_First
/= Uint_0
);
1843 if Direct
(Input
) then
1846 return Input
>= Uint_Int_First
1847 and then Input
<= Uint_Int_Last
;
1849 end UI_Is_In_Int_Range
;
1855 function UI_Le
(Left
: Int
; Right
: Uint
) return Boolean is
1857 return not UI_Lt
(Right
, UI_From_Int
(Left
));
1860 function UI_Le
(Left
: Uint
; Right
: Int
) return Boolean is
1862 return not UI_Lt
(UI_From_Int
(Right
), Left
);
1865 function UI_Le
(Left
: Uint
; Right
: Uint
) return Boolean is
1867 return not UI_Lt
(Right
, Left
);
1874 function UI_Lt
(Left
: Int
; Right
: Uint
) return Boolean is
1876 return UI_Lt
(UI_From_Int
(Left
), Right
);
1879 function UI_Lt
(Left
: Uint
; Right
: Int
) return Boolean is
1881 return UI_Lt
(Left
, UI_From_Int
(Right
));
1884 function UI_Lt
(Left
: Uint
; Right
: Uint
) return Boolean is
1886 -- Quick processing for identical arguments
1888 if Int
(Left
) = Int
(Right
) then
1891 -- Quick processing for both arguments directly represented
1893 elsif Direct
(Left
) and then Direct
(Right
) then
1894 return Int
(Left
) < Int
(Right
);
1896 -- At least one argument is more than one digit long
1900 L_Length
: constant Int
:= N_Digits
(Left
);
1901 R_Length
: constant Int
:= N_Digits
(Right
);
1903 L_Vec
: UI_Vector
(1 .. L_Length
);
1904 R_Vec
: UI_Vector
(1 .. R_Length
);
1907 Init_Operand
(Left
, L_Vec
);
1908 Init_Operand
(Right
, R_Vec
);
1910 if L_Vec
(1) < Int_0
then
1912 -- First argument negative, second argument non-negative
1914 if R_Vec
(1) >= Int_0
then
1917 -- Both arguments negative
1920 if L_Length
/= R_Length
then
1921 return L_Length
> R_Length
;
1923 elsif L_Vec
(1) /= R_Vec
(1) then
1924 return L_Vec
(1) < R_Vec
(1);
1927 for J
in 2 .. L_Vec
'Last loop
1928 if L_Vec
(J
) /= R_Vec
(J
) then
1929 return L_Vec
(J
) > R_Vec
(J
);
1938 -- First argument non-negative, second argument negative
1940 if R_Vec
(1) < Int_0
then
1943 -- Both arguments non-negative
1946 if L_Length
/= R_Length
then
1947 return L_Length
< R_Length
;
1949 for J
in L_Vec
'Range loop
1950 if L_Vec
(J
) /= R_Vec
(J
) then
1951 return L_Vec
(J
) < R_Vec
(J
);
1967 function UI_Max
(Left
: Int
; Right
: Uint
) return Uint
is
1969 return UI_Max
(UI_From_Int
(Left
), Right
);
1972 function UI_Max
(Left
: Uint
; Right
: Int
) return Uint
is
1974 return UI_Max
(Left
, UI_From_Int
(Right
));
1977 function UI_Max
(Left
: Uint
; Right
: Uint
) return Uint
is
1979 if Left
>= Right
then
1990 function UI_Min
(Left
: Int
; Right
: Uint
) return Uint
is
1992 return UI_Min
(UI_From_Int
(Left
), Right
);
1995 function UI_Min
(Left
: Uint
; Right
: Int
) return Uint
is
1997 return UI_Min
(Left
, UI_From_Int
(Right
));
2000 function UI_Min
(Left
: Uint
; Right
: Uint
) return Uint
is
2002 if Left
<= Right
then
2013 function UI_Mod
(Left
: Int
; Right
: Uint
) return Uint
is
2015 return UI_Mod
(UI_From_Int
(Left
), Right
);
2018 function UI_Mod
(Left
: Uint
; Right
: Int
) return Uint
is
2020 return UI_Mod
(Left
, UI_From_Int
(Right
));
2023 function UI_Mod
(Left
: Uint
; Right
: Uint
) return Uint
is
2024 Urem
: constant Uint
:= Left
rem Right
;
2027 if (Left
< Uint_0
) = (Right
< Uint_0
)
2028 or else Urem
= Uint_0
2032 return Right
+ Urem
;
2040 function UI_Mul
(Left
: Int
; Right
: Uint
) return Uint
is
2042 return UI_Mul
(UI_From_Int
(Left
), Right
);
2045 function UI_Mul
(Left
: Uint
; Right
: Int
) return Uint
is
2047 return UI_Mul
(Left
, UI_From_Int
(Right
));
2050 function UI_Mul
(Left
: Uint
; Right
: Uint
) return Uint
is
2052 -- Simple case of single length operands
2054 if Direct
(Left
) and then Direct
(Right
) then
2057 (Dint
(Direct_Val
(Left
)) * Dint
(Direct_Val
(Right
)));
2060 -- Otherwise we have the general case (Algorithm M in Knuth)
2063 L_Length
: constant Int
:= N_Digits
(Left
);
2064 R_Length
: constant Int
:= N_Digits
(Right
);
2065 L_Vec
: UI_Vector
(1 .. L_Length
);
2066 R_Vec
: UI_Vector
(1 .. R_Length
);
2070 Init_Operand
(Left
, L_Vec
);
2071 Init_Operand
(Right
, R_Vec
);
2072 Neg
:= (L_Vec
(1) < Int_0
) xor (R_Vec
(1) < Int_0
);
2073 L_Vec
(1) := abs (L_Vec
(1));
2074 R_Vec
(1) := abs (R_Vec
(1));
2076 Algorithm_M
: declare
2077 Product
: UI_Vector
(1 .. L_Length
+ R_Length
);
2082 for J
in Product
'Range loop
2086 for J
in reverse R_Vec
'Range loop
2088 for K
in reverse L_Vec
'Range loop
2090 L_Vec
(K
) * R_Vec
(J
) + Product
(J
+ K
) + Carry
;
2091 Product
(J
+ K
) := Tmp_Sum
rem Base
;
2092 Carry
:= Tmp_Sum
/ Base
;
2095 Product
(J
) := Carry
;
2098 return Vector_To_Uint
(Product
, Neg
);
2107 function UI_Ne
(Left
: Int
; Right
: Uint
) return Boolean is
2109 return UI_Ne
(UI_From_Int
(Left
), Right
);
2112 function UI_Ne
(Left
: Uint
; Right
: Int
) return Boolean is
2114 return UI_Ne
(Left
, UI_From_Int
(Right
));
2117 function UI_Ne
(Left
: Uint
; Right
: Uint
) return Boolean is
2119 -- Quick processing for identical arguments. Note that this takes
2120 -- care of the case of two No_Uint arguments.
2122 if Int
(Left
) = Int
(Right
) then
2126 -- See if left operand directly represented
2128 if Direct
(Left
) then
2130 -- If right operand directly represented then compare
2132 if Direct
(Right
) then
2133 return Int
(Left
) /= Int
(Right
);
2135 -- Left operand directly represented, right not, must be unequal
2141 -- Right operand directly represented, left not, must be unequal
2143 elsif Direct
(Right
) then
2147 -- Otherwise both multi-word, do comparison
2150 Size
: constant Int
:= N_Digits
(Left
);
2155 if Size
/= N_Digits
(Right
) then
2159 Left_Loc
:= Uints
.Table
(Left
).Loc
;
2160 Right_Loc
:= Uints
.Table
(Right
).Loc
;
2162 for J
in Int_0
.. Size
- Int_1
loop
2163 if Udigits
.Table
(Left_Loc
+ J
) /=
2164 Udigits
.Table
(Right_Loc
+ J
)
2178 function UI_Negate
(Right
: Uint
) return Uint
is
2180 -- Case where input is directly represented. Note that since the
2181 -- range of Direct values is non-symmetrical, the result may not
2182 -- be directly represented, this is taken care of in UI_From_Int.
2184 if Direct
(Right
) then
2185 return UI_From_Int
(-Direct_Val
(Right
));
2187 -- Full processing for multi-digit case. Note that we cannot just
2188 -- copy the value to the end of the table negating the first digit,
2189 -- since the range of Direct values is non-symmetrical, so we can
2190 -- have a negative value that is not Direct whose negation can be
2191 -- represented directly.
2195 R_Length
: constant Int
:= N_Digits
(Right
);
2196 R_Vec
: UI_Vector
(1 .. R_Length
);
2200 Init_Operand
(Right
, R_Vec
);
2201 Neg
:= R_Vec
(1) > Int_0
;
2202 R_Vec
(1) := abs R_Vec
(1);
2203 return Vector_To_Uint
(R_Vec
, Neg
);
2212 function UI_Rem
(Left
: Int
; Right
: Uint
) return Uint
is
2214 return UI_Rem
(UI_From_Int
(Left
), Right
);
2217 function UI_Rem
(Left
: Uint
; Right
: Int
) return Uint
is
2219 return UI_Rem
(Left
, UI_From_Int
(Right
));
2222 function UI_Rem
(Left
, Right
: Uint
) return Uint
is
2226 subtype Int1_12
is Integer range 1 .. 12;
2229 pragma Assert
(Right
/= Uint_0
);
2231 if Direct
(Right
) then
2232 if Direct
(Left
) then
2233 return UI_From_Int
(Direct_Val
(Left
) rem Direct_Val
(Right
));
2236 -- Special cases when Right is less than 13 and Left is larger
2237 -- larger than one digit. All of these algorithms depend on the
2238 -- base being 2 ** 15 We work with Abs (Left) and Abs(Right)
2239 -- then multiply result by Sign (Left)
2241 if (Right
<= Uint_12
) and then (Right
>= Uint_Minus_12
) then
2243 if Left
< Uint_0
then
2249 -- All cases are listed, grouped by mathematical method
2250 -- It is not inefficient to do have this case list out
2251 -- of order since GCC sorts the cases we list.
2253 case Int1_12
(abs (Direct_Val
(Right
))) is
2258 -- Powers of two are simple AND's with LS Left Digit
2259 -- GCC will recognise these constants as powers of 2
2260 -- and replace the rem with simpler operations where
2263 -- Least_Sig_Digit might return Negative numbers
2266 return UI_From_Int
(
2267 Sign
* (Least_Sig_Digit
(Left
) mod 2));
2270 return UI_From_Int
(
2271 Sign
* (Least_Sig_Digit
(Left
) mod 4));
2274 return UI_From_Int
(
2275 Sign
* (Least_Sig_Digit
(Left
) mod 8));
2277 -- Some number theoretical tricks:
2279 -- If B Rem Right = 1 then
2280 -- Left Rem Right = Sum_Of_Digits_Base_B (Left) Rem Right
2282 -- Note: 2^32 mod 3 = 1
2285 return UI_From_Int
(
2286 Sign
* (Sum_Double_Digits
(Left
, 1) rem Int
(3)));
2288 -- Note: 2^15 mod 7 = 1
2291 return UI_From_Int
(
2292 Sign
* (Sum_Digits
(Left
, 1) rem Int
(7)));
2294 -- Note: 2^32 mod 5 = -1
2295 -- Alternating sums might be negative, but rem is always
2296 -- positive hence we must use mod here.
2299 Tmp
:= Sum_Double_Digits
(Left
, -1) mod Int
(5);
2300 return UI_From_Int
(Sign
* Tmp
);
2302 -- Note: 2^15 mod 9 = -1
2303 -- Alternating sums might be negative, but rem is always
2304 -- positive hence we must use mod here.
2307 Tmp
:= Sum_Digits
(Left
, -1) mod Int
(9);
2308 return UI_From_Int
(Sign
* Tmp
);
2310 -- Note: 2^15 mod 11 = -1
2311 -- Alternating sums might be negative, but rem is always
2312 -- positive hence we must use mod here.
2315 Tmp
:= Sum_Digits
(Left
, -1) mod Int
(11);
2316 return UI_From_Int
(Sign
* Tmp
);
2318 -- Now resort to Chinese Remainder theorem
2319 -- to reduce 6, 10, 12 to previous special cases
2321 -- There is no reason we could not add more cases
2322 -- like these if it proves useful.
2324 -- Perhaps we should go up to 16, however
2325 -- I have no "trick" for 13.
2327 -- To find u mod m we:
2329 -- GCD(m1, m2) = 1 AND m = (m1 * m2).
2330 -- Next we pick (Basis) M1, M2 small S.T.
2331 -- (M1 mod m1) = (M2 mod m2) = 1 AND
2332 -- (M1 mod m2) = (M2 mod m1) = 0
2334 -- So u mod m = (u1 * M1 + u2 * M2) mod m
2335 -- Where u1 = (u mod m1) AND u2 = (u mod m2);
2336 -- Under typical circumstances the last mod m
2337 -- can be done with a (possible) single subtraction.
2339 -- m1 = 2; m2 = 3; M1 = 3; M2 = 4;
2342 Tmp
:= 3 * (Least_Sig_Digit
(Left
) rem 2) +
2343 4 * (Sum_Double_Digits
(Left
, 1) rem 3);
2344 return UI_From_Int
(Sign
* (Tmp
rem 6));
2346 -- m1 = 2; m2 = 5; M1 = 5; M2 = 6;
2349 Tmp
:= 5 * (Least_Sig_Digit
(Left
) rem 2) +
2350 6 * (Sum_Double_Digits
(Left
, -1) mod 5);
2351 return UI_From_Int
(Sign
* (Tmp
rem 10));
2353 -- m1 = 3; m2 = 4; M1 = 4; M2 = 9;
2356 Tmp
:= 4 * (Sum_Double_Digits
(Left
, 1) rem 3) +
2357 9 * (Least_Sig_Digit
(Left
) rem 4);
2358 return UI_From_Int
(Sign
* (Tmp
rem 12));
2363 -- Else fall through to general case
2365 -- ???This needs to be improved. We have the Rem when we do the
2366 -- Div. Div throws it away!
2368 -- The special case Length (Left) = Length(right) = 1 in Div
2369 -- looks slow. It uses UI_To_Int when Int should suffice. ???
2373 return Left
- (Left
/ Right
) * Right
;
2380 function UI_Sub
(Left
: Int
; Right
: Uint
) return Uint
is
2382 return UI_Add
(Left
, -Right
);
2385 function UI_Sub
(Left
: Uint
; Right
: Int
) return Uint
is
2387 return UI_Add
(Left
, -Right
);
2390 function UI_Sub
(Left
: Uint
; Right
: Uint
) return Uint
is
2392 if Direct
(Left
) and then Direct
(Right
) then
2393 return UI_From_Int
(Direct_Val
(Left
) - Direct_Val
(Right
));
2395 return UI_Add
(Left
, -Right
);
2403 function UI_To_CC
(Input
: Uint
) return Char_Code
is
2405 if Direct
(Input
) then
2406 return Char_Code
(Direct_Val
(Input
));
2408 -- Case of input is more than one digit
2412 In_Length
: constant Int
:= N_Digits
(Input
);
2413 In_Vec
: UI_Vector
(1 .. In_Length
);
2417 Init_Operand
(Input
, In_Vec
);
2419 -- We assume value is positive
2422 for Idx
in In_Vec
'Range loop
2423 Ret_CC
:= Ret_CC
* Char_Code
(Base
) +
2424 Char_Code
(abs In_Vec
(Idx
));
2436 function UI_To_Int
(Input
: Uint
) return Int
is
2438 if Direct
(Input
) then
2439 return Direct_Val
(Input
);
2441 -- Case of input is more than one digit
2445 In_Length
: constant Int
:= N_Digits
(Input
);
2446 In_Vec
: UI_Vector
(1 .. In_Length
);
2450 -- Uints of more than one digit could be outside the range for
2451 -- Ints. Caller should have checked for this if not certain.
2452 -- Fatal error to attempt to convert from value outside Int'Range.
2454 pragma Assert
(UI_Is_In_Int_Range
(Input
));
2456 -- Otherwise, proceed ahead, we are OK
2458 Init_Operand
(Input
, In_Vec
);
2461 -- Calculate -|Input| and then negates if value is positive.
2462 -- This handles our current definition of Int (based on
2463 -- 2s complement). Is it secure enough?
2465 for Idx
in In_Vec
'Range loop
2466 Ret_Int
:= Ret_Int
* Base
- abs In_Vec
(Idx
);
2469 if In_Vec
(1) < Int_0
then
2482 procedure UI_Write
(Input
: Uint
; Format
: UI_Format
:= Auto
) is
2484 Image_Out
(Input
, False, Format
);
2487 ---------------------
2488 -- Vector_To_Uint --
2489 ---------------------
2491 function Vector_To_Uint
2492 (In_Vec
: UI_Vector
;
2500 -- The vector can contain leading zeros. These are not stored in the
2501 -- table, so loop through the vector looking for first non-zero digit
2503 for J
in In_Vec
'Range loop
2504 if In_Vec
(J
) /= Int_0
then
2506 -- The length of the value is the length of the rest of the vector
2508 Size
:= In_Vec
'Last - J
+ 1;
2510 -- One digit value can always be represented directly
2512 if Size
= Int_1
then
2514 return Uint
(Int
(Uint_Direct_Bias
) - In_Vec
(J
));
2516 return Uint
(Int
(Uint_Direct_Bias
) + In_Vec
(J
));
2519 -- Positive two digit values may be in direct representation range
2521 elsif Size
= Int_2
and then not Negative
then
2522 Val
:= In_Vec
(J
) * Base
+ In_Vec
(J
+ 1);
2524 if Val
<= Max_Direct
then
2525 return Uint
(Int
(Uint_Direct_Bias
) + Val
);
2529 -- The value is outside the direct representation range and
2530 -- must therefore be stored in the table. Expand the table
2531 -- to contain the count and tigis. The index of the new table
2532 -- entry will be returned as the result.
2534 Uints
.Increment_Last
;
2535 Uints
.Table
(Uints
.Last
).Length
:= Size
;
2536 Uints
.Table
(Uints
.Last
).Loc
:= Udigits
.Last
+ 1;
2538 Udigits
.Increment_Last
;
2541 Udigits
.Table
(Udigits
.Last
) := -In_Vec
(J
);
2543 Udigits
.Table
(Udigits
.Last
) := +In_Vec
(J
);
2546 for K
in 2 .. Size
loop
2547 Udigits
.Increment_Last
;
2548 Udigits
.Table
(Udigits
.Last
) := In_Vec
(J
+ K
- 1);
2555 -- Dropped through loop only if vector contained all zeros