rebase
[official-gcc.git] / gcc / tree-vrp.c
blob2eeb3790984ea39e498b624c275cdcd5daa20d23
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
37 #include "intl.h"
38 #include "cfgloop.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
42 #include "gimple-fold.h"
43 #include "expr.h"
44 #include "optabs.h"
47 /* Type of value ranges. See value_range_d for a description of these
48 types. */
49 enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
51 /* Range of values that can be associated with an SSA_NAME after VRP
52 has executed. */
53 struct value_range_d
55 /* Lattice value represented by this range. */
56 enum value_range_type type;
58 /* Minimum and maximum values represented by this range. These
59 values should be interpreted as follows:
61 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
62 be NULL.
64 - If TYPE == VR_RANGE then MIN holds the minimum value and
65 MAX holds the maximum value of the range [MIN, MAX].
67 - If TYPE == ANTI_RANGE the variable is known to NOT
68 take any values in the range [MIN, MAX]. */
69 tree min;
70 tree max;
72 /* Set of SSA names whose value ranges are equivalent to this one.
73 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
74 bitmap equiv;
77 typedef struct value_range_d value_range_t;
79 /* Set of SSA names found live during the RPO traversal of the function
80 for still active basic-blocks. */
81 static sbitmap *live;
83 /* Return true if the SSA name NAME is live on the edge E. */
85 static bool
86 live_on_edge (edge e, tree name)
88 return (live[e->dest->index]
89 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
92 /* Local functions. */
93 static int compare_values (tree val1, tree val2);
94 static int compare_values_warnv (tree val1, tree val2, bool *);
95 static void vrp_meet (value_range_t *, value_range_t *);
96 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
97 tree, tree, bool, bool *,
98 bool *);
100 /* Location information for ASSERT_EXPRs. Each instance of this
101 structure describes an ASSERT_EXPR for an SSA name. Since a single
102 SSA name may have more than one assertion associated with it, these
103 locations are kept in a linked list attached to the corresponding
104 SSA name. */
105 struct assert_locus_d
107 /* Basic block where the assertion would be inserted. */
108 basic_block bb;
110 /* Some assertions need to be inserted on an edge (e.g., assertions
111 generated by COND_EXPRs). In those cases, BB will be NULL. */
112 edge e;
114 /* Pointer to the statement that generated this assertion. */
115 gimple_stmt_iterator si;
117 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
118 enum tree_code comp_code;
120 /* Value being compared against. */
121 tree val;
123 /* Expression to compare. */
124 tree expr;
126 /* Next node in the linked list. */
127 struct assert_locus_d *next;
130 typedef struct assert_locus_d *assert_locus_t;
132 /* If bit I is present, it means that SSA name N_i has a list of
133 assertions that should be inserted in the IL. */
134 static bitmap need_assert_for;
136 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
137 holds a list of ASSERT_LOCUS_T nodes that describe where
138 ASSERT_EXPRs for SSA name N_I should be inserted. */
139 static assert_locus_t *asserts_for;
141 /* Value range array. After propagation, VR_VALUE[I] holds the range
142 of values that SSA name N_I may take. */
143 static unsigned num_vr_values;
144 static value_range_t **vr_value;
145 static bool values_propagated;
147 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
148 number of executable edges we saw the last time we visited the
149 node. */
150 static int *vr_phi_edge_counts;
152 typedef struct {
153 gimple stmt;
154 tree vec;
155 } switch_update;
157 static VEC (edge, heap) *to_remove_edges;
158 DEF_VEC_O(switch_update);
159 DEF_VEC_ALLOC_O(switch_update, heap);
160 static VEC (switch_update, heap) *to_update_switch_stmts;
163 /* Return the maximum value for TYPE. */
165 static inline tree
166 vrp_val_max (const_tree type)
168 if (!INTEGRAL_TYPE_P (type))
169 return NULL_TREE;
171 return TYPE_MAX_VALUE (type);
174 /* Return the minimum value for TYPE. */
176 static inline tree
177 vrp_val_min (const_tree type)
179 if (!INTEGRAL_TYPE_P (type))
180 return NULL_TREE;
182 return TYPE_MIN_VALUE (type);
185 /* Return whether VAL is equal to the maximum value of its type. This
186 will be true for a positive overflow infinity. We can't do a
187 simple equality comparison with TYPE_MAX_VALUE because C typedefs
188 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
189 to the integer constant with the same value in the type. */
191 static inline bool
192 vrp_val_is_max (const_tree val)
194 tree type_max = vrp_val_max (TREE_TYPE (val));
195 return (val == type_max
196 || (type_max != NULL_TREE
197 && operand_equal_p (val, type_max, 0)));
200 /* Return whether VAL is equal to the minimum value of its type. This
201 will be true for a negative overflow infinity. */
203 static inline bool
204 vrp_val_is_min (const_tree val)
206 tree type_min = vrp_val_min (TREE_TYPE (val));
207 return (val == type_min
208 || (type_min != NULL_TREE
209 && operand_equal_p (val, type_min, 0)));
213 /* Return whether TYPE should use an overflow infinity distinct from
214 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
215 represent a signed overflow during VRP computations. An infinity
216 is distinct from a half-range, which will go from some number to
217 TYPE_{MIN,MAX}_VALUE. */
219 static inline bool
220 needs_overflow_infinity (const_tree type)
222 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
225 /* Return whether TYPE can support our overflow infinity
226 representation: we use the TREE_OVERFLOW flag, which only exists
227 for constants. If TYPE doesn't support this, we don't optimize
228 cases which would require signed overflow--we drop them to
229 VARYING. */
231 static inline bool
232 supports_overflow_infinity (const_tree type)
234 tree min = vrp_val_min (type), max = vrp_val_max (type);
235 #ifdef ENABLE_CHECKING
236 gcc_assert (needs_overflow_infinity (type));
237 #endif
238 return (min != NULL_TREE
239 && CONSTANT_CLASS_P (min)
240 && max != NULL_TREE
241 && CONSTANT_CLASS_P (max));
244 /* VAL is the maximum or minimum value of a type. Return a
245 corresponding overflow infinity. */
247 static inline tree
248 make_overflow_infinity (tree val)
250 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
251 val = copy_node (val);
252 TREE_OVERFLOW (val) = 1;
253 return val;
256 /* Return a negative overflow infinity for TYPE. */
258 static inline tree
259 negative_overflow_infinity (tree type)
261 gcc_checking_assert (supports_overflow_infinity (type));
262 return make_overflow_infinity (vrp_val_min (type));
265 /* Return a positive overflow infinity for TYPE. */
267 static inline tree
268 positive_overflow_infinity (tree type)
270 gcc_checking_assert (supports_overflow_infinity (type));
271 return make_overflow_infinity (vrp_val_max (type));
274 /* Return whether VAL is a negative overflow infinity. */
276 static inline bool
277 is_negative_overflow_infinity (const_tree val)
279 return (needs_overflow_infinity (TREE_TYPE (val))
280 && CONSTANT_CLASS_P (val)
281 && TREE_OVERFLOW (val)
282 && vrp_val_is_min (val));
285 /* Return whether VAL is a positive overflow infinity. */
287 static inline bool
288 is_positive_overflow_infinity (const_tree val)
290 return (needs_overflow_infinity (TREE_TYPE (val))
291 && CONSTANT_CLASS_P (val)
292 && TREE_OVERFLOW (val)
293 && vrp_val_is_max (val));
296 /* Return whether VAL is a positive or negative overflow infinity. */
298 static inline bool
299 is_overflow_infinity (const_tree val)
301 return (needs_overflow_infinity (TREE_TYPE (val))
302 && CONSTANT_CLASS_P (val)
303 && TREE_OVERFLOW (val)
304 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
307 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
309 static inline bool
310 stmt_overflow_infinity (gimple stmt)
312 if (is_gimple_assign (stmt)
313 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
314 GIMPLE_SINGLE_RHS)
315 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
316 return false;
319 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
320 the same value with TREE_OVERFLOW clear. This can be used to avoid
321 confusing a regular value with an overflow value. */
323 static inline tree
324 avoid_overflow_infinity (tree val)
326 if (!is_overflow_infinity (val))
327 return val;
329 if (vrp_val_is_max (val))
330 return vrp_val_max (TREE_TYPE (val));
331 else
333 gcc_checking_assert (vrp_val_is_min (val));
334 return vrp_val_min (TREE_TYPE (val));
339 /* Return true if ARG is marked with the nonnull attribute in the
340 current function signature. */
342 static bool
343 nonnull_arg_p (const_tree arg)
345 tree t, attrs, fntype;
346 unsigned HOST_WIDE_INT arg_num;
348 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
350 /* The static chain decl is always non null. */
351 if (arg == cfun->static_chain_decl)
352 return true;
354 fntype = TREE_TYPE (current_function_decl);
355 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
357 /* If "nonnull" wasn't specified, we know nothing about the argument. */
358 if (attrs == NULL_TREE)
359 return false;
361 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
362 if (TREE_VALUE (attrs) == NULL_TREE)
363 return true;
365 /* Get the position number for ARG in the function signature. */
366 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
368 t = DECL_CHAIN (t), arg_num++)
370 if (t == arg)
371 break;
374 gcc_assert (t == arg);
376 /* Now see if ARG_NUM is mentioned in the nonnull list. */
377 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
379 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
380 return true;
383 return false;
387 /* Set value range VR to VR_VARYING. */
389 static inline void
390 set_value_range_to_varying (value_range_t *vr)
392 vr->type = VR_VARYING;
393 vr->min = vr->max = NULL_TREE;
394 if (vr->equiv)
395 bitmap_clear (vr->equiv);
399 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
401 static void
402 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
403 tree max, bitmap equiv)
405 #if defined ENABLE_CHECKING
406 /* Check the validity of the range. */
407 if (t == VR_RANGE || t == VR_ANTI_RANGE)
409 int cmp;
411 gcc_assert (min && max);
413 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
414 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
416 cmp = compare_values (min, max);
417 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
419 if (needs_overflow_infinity (TREE_TYPE (min)))
420 gcc_assert (!is_overflow_infinity (min)
421 || !is_overflow_infinity (max));
424 if (t == VR_UNDEFINED || t == VR_VARYING)
425 gcc_assert (min == NULL_TREE && max == NULL_TREE);
427 if (t == VR_UNDEFINED || t == VR_VARYING)
428 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
429 #endif
431 vr->type = t;
432 vr->min = min;
433 vr->max = max;
435 /* Since updating the equivalence set involves deep copying the
436 bitmaps, only do it if absolutely necessary. */
437 if (vr->equiv == NULL
438 && equiv != NULL)
439 vr->equiv = BITMAP_ALLOC (NULL);
441 if (equiv != vr->equiv)
443 if (equiv && !bitmap_empty_p (equiv))
444 bitmap_copy (vr->equiv, equiv);
445 else
446 bitmap_clear (vr->equiv);
451 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
452 This means adjusting T, MIN and MAX representing the case of a
453 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
454 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
455 In corner cases where MAX+1 or MIN-1 wraps this will fall back
456 to varying.
457 This routine exists to ease canonicalization in the case where we
458 extract ranges from var + CST op limit. */
460 static void
461 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
462 tree min, tree max, bitmap equiv)
464 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
465 if ((t != VR_RANGE
466 && t != VR_ANTI_RANGE)
467 || TREE_CODE (min) != INTEGER_CST
468 || TREE_CODE (max) != INTEGER_CST)
470 set_value_range (vr, t, min, max, equiv);
471 return;
474 /* Wrong order for min and max, to swap them and the VR type we need
475 to adjust them. */
476 if (tree_int_cst_lt (max, min))
478 tree one = build_int_cst (TREE_TYPE (min), 1);
479 tree tmp = int_const_binop (PLUS_EXPR, max, one);
480 max = int_const_binop (MINUS_EXPR, min, one);
481 min = tmp;
483 /* There's one corner case, if we had [C+1, C] before we now have
484 that again. But this represents an empty value range, so drop
485 to varying in this case. */
486 if (tree_int_cst_lt (max, min))
488 set_value_range_to_varying (vr);
489 return;
492 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
495 /* Anti-ranges that can be represented as ranges should be so. */
496 if (t == VR_ANTI_RANGE)
498 bool is_min = vrp_val_is_min (min);
499 bool is_max = vrp_val_is_max (max);
501 if (is_min && is_max)
503 /* We cannot deal with empty ranges, drop to varying. */
504 set_value_range_to_varying (vr);
505 return;
507 else if (is_min
508 /* As a special exception preserve non-null ranges. */
509 && !(TYPE_UNSIGNED (TREE_TYPE (min))
510 && integer_zerop (max)))
512 tree one = build_int_cst (TREE_TYPE (max), 1);
513 min = int_const_binop (PLUS_EXPR, max, one);
514 max = vrp_val_max (TREE_TYPE (max));
515 t = VR_RANGE;
517 else if (is_max)
519 tree one = build_int_cst (TREE_TYPE (min), 1);
520 max = int_const_binop (MINUS_EXPR, min, one);
521 min = vrp_val_min (TREE_TYPE (min));
522 t = VR_RANGE;
526 set_value_range (vr, t, min, max, equiv);
529 /* Copy value range FROM into value range TO. */
531 static inline void
532 copy_value_range (value_range_t *to, value_range_t *from)
534 set_value_range (to, from->type, from->min, from->max, from->equiv);
537 /* Set value range VR to a single value. This function is only called
538 with values we get from statements, and exists to clear the
539 TREE_OVERFLOW flag so that we don't think we have an overflow
540 infinity when we shouldn't. */
542 static inline void
543 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
545 gcc_assert (is_gimple_min_invariant (val));
546 val = avoid_overflow_infinity (val);
547 set_value_range (vr, VR_RANGE, val, val, equiv);
550 /* Set value range VR to a non-negative range of type TYPE.
551 OVERFLOW_INFINITY indicates whether to use an overflow infinity
552 rather than TYPE_MAX_VALUE; this should be true if we determine
553 that the range is nonnegative based on the assumption that signed
554 overflow does not occur. */
556 static inline void
557 set_value_range_to_nonnegative (value_range_t *vr, tree type,
558 bool overflow_infinity)
560 tree zero;
562 if (overflow_infinity && !supports_overflow_infinity (type))
564 set_value_range_to_varying (vr);
565 return;
568 zero = build_int_cst (type, 0);
569 set_value_range (vr, VR_RANGE, zero,
570 (overflow_infinity
571 ? positive_overflow_infinity (type)
572 : TYPE_MAX_VALUE (type)),
573 vr->equiv);
576 /* Set value range VR to a non-NULL range of type TYPE. */
578 static inline void
579 set_value_range_to_nonnull (value_range_t *vr, tree type)
581 tree zero = build_int_cst (type, 0);
582 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
586 /* Set value range VR to a NULL range of type TYPE. */
588 static inline void
589 set_value_range_to_null (value_range_t *vr, tree type)
591 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
595 /* Set value range VR to a range of a truthvalue of type TYPE. */
597 static inline void
598 set_value_range_to_truthvalue (value_range_t *vr, tree type)
600 if (TYPE_PRECISION (type) == 1)
601 set_value_range_to_varying (vr);
602 else
603 set_value_range (vr, VR_RANGE,
604 build_int_cst (type, 0), build_int_cst (type, 1),
605 vr->equiv);
609 /* Set value range VR to VR_UNDEFINED. */
611 static inline void
612 set_value_range_to_undefined (value_range_t *vr)
614 vr->type = VR_UNDEFINED;
615 vr->min = vr->max = NULL_TREE;
616 if (vr->equiv)
617 bitmap_clear (vr->equiv);
621 /* If abs (min) < abs (max), set VR to [-max, max], if
622 abs (min) >= abs (max), set VR to [-min, min]. */
624 static void
625 abs_extent_range (value_range_t *vr, tree min, tree max)
627 int cmp;
629 gcc_assert (TREE_CODE (min) == INTEGER_CST);
630 gcc_assert (TREE_CODE (max) == INTEGER_CST);
631 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
632 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
633 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
634 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
635 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
637 set_value_range_to_varying (vr);
638 return;
640 cmp = compare_values (min, max);
641 if (cmp == -1)
642 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
643 else if (cmp == 0 || cmp == 1)
645 max = min;
646 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
648 else
650 set_value_range_to_varying (vr);
651 return;
653 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
657 /* Return value range information for VAR.
659 If we have no values ranges recorded (ie, VRP is not running), then
660 return NULL. Otherwise create an empty range if none existed for VAR. */
662 static value_range_t *
663 get_value_range (const_tree var)
665 static const struct value_range_d vr_const_varying
666 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
667 value_range_t *vr;
668 tree sym;
669 unsigned ver = SSA_NAME_VERSION (var);
671 /* If we have no recorded ranges, then return NULL. */
672 if (! vr_value)
673 return NULL;
675 /* If we query the range for a new SSA name return an unmodifiable VARYING.
676 We should get here at most from the substitute-and-fold stage which
677 will never try to change values. */
678 if (ver >= num_vr_values)
679 return CONST_CAST (value_range_t *, &vr_const_varying);
681 vr = vr_value[ver];
682 if (vr)
683 return vr;
685 /* After propagation finished do not allocate new value-ranges. */
686 if (values_propagated)
687 return CONST_CAST (value_range_t *, &vr_const_varying);
689 /* Create a default value range. */
690 vr_value[ver] = vr = XCNEW (value_range_t);
692 /* Defer allocating the equivalence set. */
693 vr->equiv = NULL;
695 /* If VAR is a default definition of a parameter, the variable can
696 take any value in VAR's type. */
697 sym = SSA_NAME_VAR (var);
698 if (SSA_NAME_IS_DEFAULT_DEF (var)
699 && TREE_CODE (sym) == PARM_DECL)
701 /* Try to use the "nonnull" attribute to create ~[0, 0]
702 anti-ranges for pointers. Note that this is only valid with
703 default definitions of PARM_DECLs. */
704 if (POINTER_TYPE_P (TREE_TYPE (sym))
705 && nonnull_arg_p (sym))
706 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
707 else
708 set_value_range_to_varying (vr);
711 return vr;
714 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
716 static inline bool
717 vrp_operand_equal_p (const_tree val1, const_tree val2)
719 if (val1 == val2)
720 return true;
721 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
722 return false;
723 if (is_overflow_infinity (val1))
724 return is_overflow_infinity (val2);
725 return true;
728 /* Return true, if the bitmaps B1 and B2 are equal. */
730 static inline bool
731 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
733 return (b1 == b2
734 || ((!b1 || bitmap_empty_p (b1))
735 && (!b2 || bitmap_empty_p (b2)))
736 || (b1 && b2
737 && bitmap_equal_p (b1, b2)));
740 /* Update the value range and equivalence set for variable VAR to
741 NEW_VR. Return true if NEW_VR is different from VAR's previous
742 value.
744 NOTE: This function assumes that NEW_VR is a temporary value range
745 object created for the sole purpose of updating VAR's range. The
746 storage used by the equivalence set from NEW_VR will be freed by
747 this function. Do not call update_value_range when NEW_VR
748 is the range object associated with another SSA name. */
750 static inline bool
751 update_value_range (const_tree var, value_range_t *new_vr)
753 value_range_t *old_vr;
754 bool is_new;
756 /* Update the value range, if necessary. */
757 old_vr = get_value_range (var);
758 is_new = old_vr->type != new_vr->type
759 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
760 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
761 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
763 if (is_new)
764 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
765 new_vr->equiv);
767 BITMAP_FREE (new_vr->equiv);
769 return is_new;
773 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
774 point where equivalence processing can be turned on/off. */
776 static void
777 add_equivalence (bitmap *equiv, const_tree var)
779 unsigned ver = SSA_NAME_VERSION (var);
780 value_range_t *vr = vr_value[ver];
782 if (*equiv == NULL)
783 *equiv = BITMAP_ALLOC (NULL);
784 bitmap_set_bit (*equiv, ver);
785 if (vr && vr->equiv)
786 bitmap_ior_into (*equiv, vr->equiv);
790 /* Return true if VR is ~[0, 0]. */
792 static inline bool
793 range_is_nonnull (value_range_t *vr)
795 return vr->type == VR_ANTI_RANGE
796 && integer_zerop (vr->min)
797 && integer_zerop (vr->max);
801 /* Return true if VR is [0, 0]. */
803 static inline bool
804 range_is_null (value_range_t *vr)
806 return vr->type == VR_RANGE
807 && integer_zerop (vr->min)
808 && integer_zerop (vr->max);
811 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
812 a singleton. */
814 static inline bool
815 range_int_cst_p (value_range_t *vr)
817 return (vr->type == VR_RANGE
818 && TREE_CODE (vr->max) == INTEGER_CST
819 && TREE_CODE (vr->min) == INTEGER_CST
820 && !TREE_OVERFLOW (vr->max)
821 && !TREE_OVERFLOW (vr->min));
824 /* Return true if VR is a INTEGER_CST singleton. */
826 static inline bool
827 range_int_cst_singleton_p (value_range_t *vr)
829 return (range_int_cst_p (vr)
830 && tree_int_cst_equal (vr->min, vr->max));
833 /* Return true if value range VR involves at least one symbol. */
835 static inline bool
836 symbolic_range_p (value_range_t *vr)
838 return (!is_gimple_min_invariant (vr->min)
839 || !is_gimple_min_invariant (vr->max));
842 /* Return true if value range VR uses an overflow infinity. */
844 static inline bool
845 overflow_infinity_range_p (value_range_t *vr)
847 return (vr->type == VR_RANGE
848 && (is_overflow_infinity (vr->min)
849 || is_overflow_infinity (vr->max)));
852 /* Return false if we can not make a valid comparison based on VR;
853 this will be the case if it uses an overflow infinity and overflow
854 is not undefined (i.e., -fno-strict-overflow is in effect).
855 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
856 uses an overflow infinity. */
858 static bool
859 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
861 gcc_assert (vr->type == VR_RANGE);
862 if (is_overflow_infinity (vr->min))
864 *strict_overflow_p = true;
865 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
866 return false;
868 if (is_overflow_infinity (vr->max))
870 *strict_overflow_p = true;
871 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
872 return false;
874 return true;
878 /* Return true if the result of assignment STMT is know to be non-negative.
879 If the return value is based on the assumption that signed overflow is
880 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
881 *STRICT_OVERFLOW_P.*/
883 static bool
884 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
886 enum tree_code code = gimple_assign_rhs_code (stmt);
887 switch (get_gimple_rhs_class (code))
889 case GIMPLE_UNARY_RHS:
890 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
891 gimple_expr_type (stmt),
892 gimple_assign_rhs1 (stmt),
893 strict_overflow_p);
894 case GIMPLE_BINARY_RHS:
895 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
896 gimple_expr_type (stmt),
897 gimple_assign_rhs1 (stmt),
898 gimple_assign_rhs2 (stmt),
899 strict_overflow_p);
900 case GIMPLE_TERNARY_RHS:
901 return false;
902 case GIMPLE_SINGLE_RHS:
903 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
904 strict_overflow_p);
905 case GIMPLE_INVALID_RHS:
906 gcc_unreachable ();
907 default:
908 gcc_unreachable ();
912 /* Return true if return value of call STMT is know to be non-negative.
913 If the return value is based on the assumption that signed overflow is
914 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
915 *STRICT_OVERFLOW_P.*/
917 static bool
918 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
920 tree arg0 = gimple_call_num_args (stmt) > 0 ?
921 gimple_call_arg (stmt, 0) : NULL_TREE;
922 tree arg1 = gimple_call_num_args (stmt) > 1 ?
923 gimple_call_arg (stmt, 1) : NULL_TREE;
925 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
926 gimple_call_fndecl (stmt),
927 arg0,
928 arg1,
929 strict_overflow_p);
932 /* Return true if STMT is know to to compute a non-negative value.
933 If the return value is based on the assumption that signed overflow is
934 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
935 *STRICT_OVERFLOW_P.*/
937 static bool
938 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
940 switch (gimple_code (stmt))
942 case GIMPLE_ASSIGN:
943 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
944 case GIMPLE_CALL:
945 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
946 default:
947 gcc_unreachable ();
951 /* Return true if the result of assignment STMT is know to be non-zero.
952 If the return value is based on the assumption that signed overflow is
953 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
954 *STRICT_OVERFLOW_P.*/
956 static bool
957 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
959 enum tree_code code = gimple_assign_rhs_code (stmt);
960 switch (get_gimple_rhs_class (code))
962 case GIMPLE_UNARY_RHS:
963 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
964 gimple_expr_type (stmt),
965 gimple_assign_rhs1 (stmt),
966 strict_overflow_p);
967 case GIMPLE_BINARY_RHS:
968 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
969 gimple_expr_type (stmt),
970 gimple_assign_rhs1 (stmt),
971 gimple_assign_rhs2 (stmt),
972 strict_overflow_p);
973 case GIMPLE_TERNARY_RHS:
974 return false;
975 case GIMPLE_SINGLE_RHS:
976 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
977 strict_overflow_p);
978 case GIMPLE_INVALID_RHS:
979 gcc_unreachable ();
980 default:
981 gcc_unreachable ();
985 /* Return true if STMT is know to to compute a non-zero value.
986 If the return value is based on the assumption that signed overflow is
987 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
988 *STRICT_OVERFLOW_P.*/
990 static bool
991 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
993 switch (gimple_code (stmt))
995 case GIMPLE_ASSIGN:
996 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
997 case GIMPLE_CALL:
998 return gimple_alloca_call_p (stmt);
999 default:
1000 gcc_unreachable ();
1004 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1005 obtained so far. */
1007 static bool
1008 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1010 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1011 return true;
1013 /* If we have an expression of the form &X->a, then the expression
1014 is nonnull if X is nonnull. */
1015 if (is_gimple_assign (stmt)
1016 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1018 tree expr = gimple_assign_rhs1 (stmt);
1019 tree base = get_base_address (TREE_OPERAND (expr, 0));
1021 if (base != NULL_TREE
1022 && TREE_CODE (base) == MEM_REF
1023 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1025 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1026 if (range_is_nonnull (vr))
1027 return true;
1031 return false;
1034 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1035 a gimple invariant, or SSA_NAME +- CST. */
1037 static bool
1038 valid_value_p (tree expr)
1040 if (TREE_CODE (expr) == SSA_NAME)
1041 return true;
1043 if (TREE_CODE (expr) == PLUS_EXPR
1044 || TREE_CODE (expr) == MINUS_EXPR)
1045 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1046 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1048 return is_gimple_min_invariant (expr);
1051 /* Return
1052 1 if VAL < VAL2
1053 0 if !(VAL < VAL2)
1054 -2 if those are incomparable. */
1055 static inline int
1056 operand_less_p (tree val, tree val2)
1058 /* LT is folded faster than GE and others. Inline the common case. */
1059 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1061 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1062 return INT_CST_LT_UNSIGNED (val, val2);
1063 else
1065 if (INT_CST_LT (val, val2))
1066 return 1;
1069 else
1071 tree tcmp;
1073 fold_defer_overflow_warnings ();
1075 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1077 fold_undefer_and_ignore_overflow_warnings ();
1079 if (!tcmp
1080 || TREE_CODE (tcmp) != INTEGER_CST)
1081 return -2;
1083 if (!integer_zerop (tcmp))
1084 return 1;
1087 /* val >= val2, not considering overflow infinity. */
1088 if (is_negative_overflow_infinity (val))
1089 return is_negative_overflow_infinity (val2) ? 0 : 1;
1090 else if (is_positive_overflow_infinity (val2))
1091 return is_positive_overflow_infinity (val) ? 0 : 1;
1093 return 0;
1096 /* Compare two values VAL1 and VAL2. Return
1098 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1099 -1 if VAL1 < VAL2,
1100 0 if VAL1 == VAL2,
1101 +1 if VAL1 > VAL2, and
1102 +2 if VAL1 != VAL2
1104 This is similar to tree_int_cst_compare but supports pointer values
1105 and values that cannot be compared at compile time.
1107 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1108 true if the return value is only valid if we assume that signed
1109 overflow is undefined. */
1111 static int
1112 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1114 if (val1 == val2)
1115 return 0;
1117 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1118 both integers. */
1119 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1120 == POINTER_TYPE_P (TREE_TYPE (val2)));
1121 /* Convert the two values into the same type. This is needed because
1122 sizetype causes sign extension even for unsigned types. */
1123 val2 = fold_convert (TREE_TYPE (val1), val2);
1124 STRIP_USELESS_TYPE_CONVERSION (val2);
1126 if ((TREE_CODE (val1) == SSA_NAME
1127 || TREE_CODE (val1) == PLUS_EXPR
1128 || TREE_CODE (val1) == MINUS_EXPR)
1129 && (TREE_CODE (val2) == SSA_NAME
1130 || TREE_CODE (val2) == PLUS_EXPR
1131 || TREE_CODE (val2) == MINUS_EXPR))
1133 tree n1, c1, n2, c2;
1134 enum tree_code code1, code2;
1136 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1137 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1138 same name, return -2. */
1139 if (TREE_CODE (val1) == SSA_NAME)
1141 code1 = SSA_NAME;
1142 n1 = val1;
1143 c1 = NULL_TREE;
1145 else
1147 code1 = TREE_CODE (val1);
1148 n1 = TREE_OPERAND (val1, 0);
1149 c1 = TREE_OPERAND (val1, 1);
1150 if (tree_int_cst_sgn (c1) == -1)
1152 if (is_negative_overflow_infinity (c1))
1153 return -2;
1154 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1155 if (!c1)
1156 return -2;
1157 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1161 if (TREE_CODE (val2) == SSA_NAME)
1163 code2 = SSA_NAME;
1164 n2 = val2;
1165 c2 = NULL_TREE;
1167 else
1169 code2 = TREE_CODE (val2);
1170 n2 = TREE_OPERAND (val2, 0);
1171 c2 = TREE_OPERAND (val2, 1);
1172 if (tree_int_cst_sgn (c2) == -1)
1174 if (is_negative_overflow_infinity (c2))
1175 return -2;
1176 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1177 if (!c2)
1178 return -2;
1179 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1183 /* Both values must use the same name. */
1184 if (n1 != n2)
1185 return -2;
1187 if (code1 == SSA_NAME
1188 && code2 == SSA_NAME)
1189 /* NAME == NAME */
1190 return 0;
1192 /* If overflow is defined we cannot simplify more. */
1193 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1194 return -2;
1196 if (strict_overflow_p != NULL
1197 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1198 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1199 *strict_overflow_p = true;
1201 if (code1 == SSA_NAME)
1203 if (code2 == PLUS_EXPR)
1204 /* NAME < NAME + CST */
1205 return -1;
1206 else if (code2 == MINUS_EXPR)
1207 /* NAME > NAME - CST */
1208 return 1;
1210 else if (code1 == PLUS_EXPR)
1212 if (code2 == SSA_NAME)
1213 /* NAME + CST > NAME */
1214 return 1;
1215 else if (code2 == PLUS_EXPR)
1216 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1217 return compare_values_warnv (c1, c2, strict_overflow_p);
1218 else if (code2 == MINUS_EXPR)
1219 /* NAME + CST1 > NAME - CST2 */
1220 return 1;
1222 else if (code1 == MINUS_EXPR)
1224 if (code2 == SSA_NAME)
1225 /* NAME - CST < NAME */
1226 return -1;
1227 else if (code2 == PLUS_EXPR)
1228 /* NAME - CST1 < NAME + CST2 */
1229 return -1;
1230 else if (code2 == MINUS_EXPR)
1231 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1232 C1 and C2 are swapped in the call to compare_values. */
1233 return compare_values_warnv (c2, c1, strict_overflow_p);
1236 gcc_unreachable ();
1239 /* We cannot compare non-constants. */
1240 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1241 return -2;
1243 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1245 /* We cannot compare overflowed values, except for overflow
1246 infinities. */
1247 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1249 if (strict_overflow_p != NULL)
1250 *strict_overflow_p = true;
1251 if (is_negative_overflow_infinity (val1))
1252 return is_negative_overflow_infinity (val2) ? 0 : -1;
1253 else if (is_negative_overflow_infinity (val2))
1254 return 1;
1255 else if (is_positive_overflow_infinity (val1))
1256 return is_positive_overflow_infinity (val2) ? 0 : 1;
1257 else if (is_positive_overflow_infinity (val2))
1258 return -1;
1259 return -2;
1262 return tree_int_cst_compare (val1, val2);
1264 else
1266 tree t;
1268 /* First see if VAL1 and VAL2 are not the same. */
1269 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1270 return 0;
1272 /* If VAL1 is a lower address than VAL2, return -1. */
1273 if (operand_less_p (val1, val2) == 1)
1274 return -1;
1276 /* If VAL1 is a higher address than VAL2, return +1. */
1277 if (operand_less_p (val2, val1) == 1)
1278 return 1;
1280 /* If VAL1 is different than VAL2, return +2.
1281 For integer constants we either have already returned -1 or 1
1282 or they are equivalent. We still might succeed in proving
1283 something about non-trivial operands. */
1284 if (TREE_CODE (val1) != INTEGER_CST
1285 || TREE_CODE (val2) != INTEGER_CST)
1287 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1288 if (t && integer_onep (t))
1289 return 2;
1292 return -2;
1296 /* Compare values like compare_values_warnv, but treat comparisons of
1297 nonconstants which rely on undefined overflow as incomparable. */
1299 static int
1300 compare_values (tree val1, tree val2)
1302 bool sop;
1303 int ret;
1305 sop = false;
1306 ret = compare_values_warnv (val1, val2, &sop);
1307 if (sop
1308 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1309 ret = -2;
1310 return ret;
1314 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1315 0 if VAL is not inside VR,
1316 -2 if we cannot tell either way.
1318 FIXME, the current semantics of this functions are a bit quirky
1319 when taken in the context of VRP. In here we do not care
1320 about VR's type. If VR is the anti-range ~[3, 5] the call
1321 value_inside_range (4, VR) will return 1.
1323 This is counter-intuitive in a strict sense, but the callers
1324 currently expect this. They are calling the function
1325 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1326 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1327 themselves.
1329 This also applies to value_ranges_intersect_p and
1330 range_includes_zero_p. The semantics of VR_RANGE and
1331 VR_ANTI_RANGE should be encoded here, but that also means
1332 adapting the users of these functions to the new semantics.
1334 Benchmark compile/20001226-1.c compilation time after changing this
1335 function. */
1337 static inline int
1338 value_inside_range (tree val, value_range_t * vr)
1340 int cmp1, cmp2;
1342 cmp1 = operand_less_p (val, vr->min);
1343 if (cmp1 == -2)
1344 return -2;
1345 if (cmp1 == 1)
1346 return 0;
1348 cmp2 = operand_less_p (vr->max, val);
1349 if (cmp2 == -2)
1350 return -2;
1352 return !cmp2;
1356 /* Return true if value ranges VR0 and VR1 have a non-empty
1357 intersection.
1359 Benchmark compile/20001226-1.c compilation time after changing this
1360 function.
1363 static inline bool
1364 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1366 /* The value ranges do not intersect if the maximum of the first range is
1367 less than the minimum of the second range or vice versa.
1368 When those relations are unknown, we can't do any better. */
1369 if (operand_less_p (vr0->max, vr1->min) != 0)
1370 return false;
1371 if (operand_less_p (vr1->max, vr0->min) != 0)
1372 return false;
1373 return true;
1377 /* Return true if VR includes the value zero, false otherwise. FIXME,
1378 currently this will return false for an anti-range like ~[-4, 3].
1379 This will be wrong when the semantics of value_inside_range are
1380 modified (currently the users of this function expect these
1381 semantics). */
1383 static inline bool
1384 range_includes_zero_p (value_range_t *vr)
1386 tree zero;
1388 gcc_assert (vr->type != VR_UNDEFINED
1389 && vr->type != VR_VARYING
1390 && !symbolic_range_p (vr));
1392 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1393 return (value_inside_range (zero, vr) == 1);
1396 /* Return true if *VR is know to only contain nonnegative values. */
1398 static inline bool
1399 value_range_nonnegative_p (value_range_t *vr)
1401 if (vr->type == VR_RANGE)
1403 int result = compare_values (vr->min, integer_zero_node);
1404 return (result == 0 || result == 1);
1406 else if (vr->type == VR_ANTI_RANGE)
1408 int result = compare_values (vr->max, integer_zero_node);
1409 return result == -1;
1412 return false;
1415 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1416 false otherwise or if no value range information is available. */
1418 bool
1419 ssa_name_nonnegative_p (const_tree t)
1421 value_range_t *vr = get_value_range (t);
1423 if (INTEGRAL_TYPE_P (t)
1424 && TYPE_UNSIGNED (t))
1425 return true;
1427 if (!vr)
1428 return false;
1430 return value_range_nonnegative_p (vr);
1433 /* If *VR has a value rante that is a single constant value return that,
1434 otherwise return NULL_TREE. */
1436 static tree
1437 value_range_constant_singleton (value_range_t *vr)
1439 if (vr->type == VR_RANGE
1440 && operand_equal_p (vr->min, vr->max, 0)
1441 && is_gimple_min_invariant (vr->min))
1442 return vr->min;
1444 return NULL_TREE;
1447 /* If OP has a value range with a single constant value return that,
1448 otherwise return NULL_TREE. This returns OP itself if OP is a
1449 constant. */
1451 static tree
1452 op_with_constant_singleton_value_range (tree op)
1454 if (is_gimple_min_invariant (op))
1455 return op;
1457 if (TREE_CODE (op) != SSA_NAME)
1458 return NULL_TREE;
1460 return value_range_constant_singleton (get_value_range (op));
1463 /* Return true if op is in a boolean [0, 1] value-range. */
1465 static bool
1466 op_with_boolean_value_range_p (tree op)
1468 value_range_t *vr;
1470 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1471 return true;
1473 if (integer_zerop (op)
1474 || integer_onep (op))
1475 return true;
1477 if (TREE_CODE (op) != SSA_NAME)
1478 return false;
1480 vr = get_value_range (op);
1481 return (vr->type == VR_RANGE
1482 && integer_zerop (vr->min)
1483 && integer_onep (vr->max));
1486 /* Extract value range information from an ASSERT_EXPR EXPR and store
1487 it in *VR_P. */
1489 static void
1490 extract_range_from_assert (value_range_t *vr_p, tree expr)
1492 tree var, cond, limit, min, max, type;
1493 value_range_t *var_vr, *limit_vr;
1494 enum tree_code cond_code;
1496 var = ASSERT_EXPR_VAR (expr);
1497 cond = ASSERT_EXPR_COND (expr);
1499 gcc_assert (COMPARISON_CLASS_P (cond));
1501 /* Find VAR in the ASSERT_EXPR conditional. */
1502 if (var == TREE_OPERAND (cond, 0)
1503 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1504 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1506 /* If the predicate is of the form VAR COMP LIMIT, then we just
1507 take LIMIT from the RHS and use the same comparison code. */
1508 cond_code = TREE_CODE (cond);
1509 limit = TREE_OPERAND (cond, 1);
1510 cond = TREE_OPERAND (cond, 0);
1512 else
1514 /* If the predicate is of the form LIMIT COMP VAR, then we need
1515 to flip around the comparison code to create the proper range
1516 for VAR. */
1517 cond_code = swap_tree_comparison (TREE_CODE (cond));
1518 limit = TREE_OPERAND (cond, 0);
1519 cond = TREE_OPERAND (cond, 1);
1522 limit = avoid_overflow_infinity (limit);
1524 type = TREE_TYPE (limit);
1525 gcc_assert (limit != var);
1527 /* For pointer arithmetic, we only keep track of pointer equality
1528 and inequality. */
1529 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1531 set_value_range_to_varying (vr_p);
1532 return;
1535 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1536 try to use LIMIT's range to avoid creating symbolic ranges
1537 unnecessarily. */
1538 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1540 /* LIMIT's range is only interesting if it has any useful information. */
1541 if (limit_vr
1542 && (limit_vr->type == VR_UNDEFINED
1543 || limit_vr->type == VR_VARYING
1544 || symbolic_range_p (limit_vr)))
1545 limit_vr = NULL;
1547 /* Initially, the new range has the same set of equivalences of
1548 VAR's range. This will be revised before returning the final
1549 value. Since assertions may be chained via mutually exclusive
1550 predicates, we will need to trim the set of equivalences before
1551 we are done. */
1552 gcc_assert (vr_p->equiv == NULL);
1553 add_equivalence (&vr_p->equiv, var);
1555 /* Extract a new range based on the asserted comparison for VAR and
1556 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1557 will only use it for equality comparisons (EQ_EXPR). For any
1558 other kind of assertion, we cannot derive a range from LIMIT's
1559 anti-range that can be used to describe the new range. For
1560 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1561 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1562 no single range for x_2 that could describe LE_EXPR, so we might
1563 as well build the range [b_4, +INF] for it.
1564 One special case we handle is extracting a range from a
1565 range test encoded as (unsigned)var + CST <= limit. */
1566 if (TREE_CODE (cond) == NOP_EXPR
1567 || TREE_CODE (cond) == PLUS_EXPR)
1569 if (TREE_CODE (cond) == PLUS_EXPR)
1571 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1572 TREE_OPERAND (cond, 1));
1573 max = int_const_binop (PLUS_EXPR, limit, min);
1574 cond = TREE_OPERAND (cond, 0);
1576 else
1578 min = build_int_cst (TREE_TYPE (var), 0);
1579 max = limit;
1582 /* Make sure to not set TREE_OVERFLOW on the final type
1583 conversion. We are willingly interpreting large positive
1584 unsigned values as negative singed values here. */
1585 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1586 0, false);
1587 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1588 0, false);
1590 /* We can transform a max, min range to an anti-range or
1591 vice-versa. Use set_and_canonicalize_value_range which does
1592 this for us. */
1593 if (cond_code == LE_EXPR)
1594 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1595 min, max, vr_p->equiv);
1596 else if (cond_code == GT_EXPR)
1597 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1598 min, max, vr_p->equiv);
1599 else
1600 gcc_unreachable ();
1602 else if (cond_code == EQ_EXPR)
1604 enum value_range_type range_type;
1606 if (limit_vr)
1608 range_type = limit_vr->type;
1609 min = limit_vr->min;
1610 max = limit_vr->max;
1612 else
1614 range_type = VR_RANGE;
1615 min = limit;
1616 max = limit;
1619 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1621 /* When asserting the equality VAR == LIMIT and LIMIT is another
1622 SSA name, the new range will also inherit the equivalence set
1623 from LIMIT. */
1624 if (TREE_CODE (limit) == SSA_NAME)
1625 add_equivalence (&vr_p->equiv, limit);
1627 else if (cond_code == NE_EXPR)
1629 /* As described above, when LIMIT's range is an anti-range and
1630 this assertion is an inequality (NE_EXPR), then we cannot
1631 derive anything from the anti-range. For instance, if
1632 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1633 not imply that VAR's range is [0, 0]. So, in the case of
1634 anti-ranges, we just assert the inequality using LIMIT and
1635 not its anti-range.
1637 If LIMIT_VR is a range, we can only use it to build a new
1638 anti-range if LIMIT_VR is a single-valued range. For
1639 instance, if LIMIT_VR is [0, 1], the predicate
1640 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1641 Rather, it means that for value 0 VAR should be ~[0, 0]
1642 and for value 1, VAR should be ~[1, 1]. We cannot
1643 represent these ranges.
1645 The only situation in which we can build a valid
1646 anti-range is when LIMIT_VR is a single-valued range
1647 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1648 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1649 if (limit_vr
1650 && limit_vr->type == VR_RANGE
1651 && compare_values (limit_vr->min, limit_vr->max) == 0)
1653 min = limit_vr->min;
1654 max = limit_vr->max;
1656 else
1658 /* In any other case, we cannot use LIMIT's range to build a
1659 valid anti-range. */
1660 min = max = limit;
1663 /* If MIN and MAX cover the whole range for their type, then
1664 just use the original LIMIT. */
1665 if (INTEGRAL_TYPE_P (type)
1666 && vrp_val_is_min (min)
1667 && vrp_val_is_max (max))
1668 min = max = limit;
1670 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1672 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1674 min = TYPE_MIN_VALUE (type);
1676 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1677 max = limit;
1678 else
1680 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1681 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1682 LT_EXPR. */
1683 max = limit_vr->max;
1686 /* If the maximum value forces us to be out of bounds, simply punt.
1687 It would be pointless to try and do anything more since this
1688 all should be optimized away above us. */
1689 if ((cond_code == LT_EXPR
1690 && compare_values (max, min) == 0)
1691 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1692 set_value_range_to_varying (vr_p);
1693 else
1695 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1696 if (cond_code == LT_EXPR)
1698 tree one = build_int_cst (type, 1);
1699 max = fold_build2 (MINUS_EXPR, type, max, one);
1700 if (EXPR_P (max))
1701 TREE_NO_WARNING (max) = 1;
1704 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1707 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1709 max = TYPE_MAX_VALUE (type);
1711 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1712 min = limit;
1713 else
1715 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1716 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1717 GT_EXPR. */
1718 min = limit_vr->min;
1721 /* If the minimum value forces us to be out of bounds, simply punt.
1722 It would be pointless to try and do anything more since this
1723 all should be optimized away above us. */
1724 if ((cond_code == GT_EXPR
1725 && compare_values (min, max) == 0)
1726 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1727 set_value_range_to_varying (vr_p);
1728 else
1730 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1731 if (cond_code == GT_EXPR)
1733 tree one = build_int_cst (type, 1);
1734 min = fold_build2 (PLUS_EXPR, type, min, one);
1735 if (EXPR_P (min))
1736 TREE_NO_WARNING (min) = 1;
1739 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1742 else
1743 gcc_unreachable ();
1745 /* If VAR already had a known range, it may happen that the new
1746 range we have computed and VAR's range are not compatible. For
1747 instance,
1749 if (p_5 == NULL)
1750 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1751 x_7 = p_6->fld;
1752 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1754 While the above comes from a faulty program, it will cause an ICE
1755 later because p_8 and p_6 will have incompatible ranges and at
1756 the same time will be considered equivalent. A similar situation
1757 would arise from
1759 if (i_5 > 10)
1760 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1761 if (i_5 < 5)
1762 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1764 Again i_6 and i_7 will have incompatible ranges. It would be
1765 pointless to try and do anything with i_7's range because
1766 anything dominated by 'if (i_5 < 5)' will be optimized away.
1767 Note, due to the wa in which simulation proceeds, the statement
1768 i_7 = ASSERT_EXPR <...> we would never be visited because the
1769 conditional 'if (i_5 < 5)' always evaluates to false. However,
1770 this extra check does not hurt and may protect against future
1771 changes to VRP that may get into a situation similar to the
1772 NULL pointer dereference example.
1774 Note that these compatibility tests are only needed when dealing
1775 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1776 are both anti-ranges, they will always be compatible, because two
1777 anti-ranges will always have a non-empty intersection. */
1779 var_vr = get_value_range (var);
1781 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1782 ranges or anti-ranges. */
1783 if (vr_p->type == VR_VARYING
1784 || vr_p->type == VR_UNDEFINED
1785 || var_vr->type == VR_VARYING
1786 || var_vr->type == VR_UNDEFINED
1787 || symbolic_range_p (vr_p)
1788 || symbolic_range_p (var_vr))
1789 return;
1791 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1793 /* If the two ranges have a non-empty intersection, we can
1794 refine the resulting range. Since the assert expression
1795 creates an equivalency and at the same time it asserts a
1796 predicate, we can take the intersection of the two ranges to
1797 get better precision. */
1798 if (value_ranges_intersect_p (var_vr, vr_p))
1800 /* Use the larger of the two minimums. */
1801 if (compare_values (vr_p->min, var_vr->min) == -1)
1802 min = var_vr->min;
1803 else
1804 min = vr_p->min;
1806 /* Use the smaller of the two maximums. */
1807 if (compare_values (vr_p->max, var_vr->max) == 1)
1808 max = var_vr->max;
1809 else
1810 max = vr_p->max;
1812 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1814 else
1816 /* The two ranges do not intersect, set the new range to
1817 VARYING, because we will not be able to do anything
1818 meaningful with it. */
1819 set_value_range_to_varying (vr_p);
1822 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1823 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1825 /* A range and an anti-range will cancel each other only if
1826 their ends are the same. For instance, in the example above,
1827 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1828 so VR_P should be set to VR_VARYING. */
1829 if (compare_values (var_vr->min, vr_p->min) == 0
1830 && compare_values (var_vr->max, vr_p->max) == 0)
1831 set_value_range_to_varying (vr_p);
1832 else
1834 tree min, max, anti_min, anti_max, real_min, real_max;
1835 int cmp;
1837 /* We want to compute the logical AND of the two ranges;
1838 there are three cases to consider.
1841 1. The VR_ANTI_RANGE range is completely within the
1842 VR_RANGE and the endpoints of the ranges are
1843 different. In that case the resulting range
1844 should be whichever range is more precise.
1845 Typically that will be the VR_RANGE.
1847 2. The VR_ANTI_RANGE is completely disjoint from
1848 the VR_RANGE. In this case the resulting range
1849 should be the VR_RANGE.
1851 3. There is some overlap between the VR_ANTI_RANGE
1852 and the VR_RANGE.
1854 3a. If the high limit of the VR_ANTI_RANGE resides
1855 within the VR_RANGE, then the result is a new
1856 VR_RANGE starting at the high limit of the
1857 VR_ANTI_RANGE + 1 and extending to the
1858 high limit of the original VR_RANGE.
1860 3b. If the low limit of the VR_ANTI_RANGE resides
1861 within the VR_RANGE, then the result is a new
1862 VR_RANGE starting at the low limit of the original
1863 VR_RANGE and extending to the low limit of the
1864 VR_ANTI_RANGE - 1. */
1865 if (vr_p->type == VR_ANTI_RANGE)
1867 anti_min = vr_p->min;
1868 anti_max = vr_p->max;
1869 real_min = var_vr->min;
1870 real_max = var_vr->max;
1872 else
1874 anti_min = var_vr->min;
1875 anti_max = var_vr->max;
1876 real_min = vr_p->min;
1877 real_max = vr_p->max;
1881 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1882 not including any endpoints. */
1883 if (compare_values (anti_max, real_max) == -1
1884 && compare_values (anti_min, real_min) == 1)
1886 /* If the range is covering the whole valid range of
1887 the type keep the anti-range. */
1888 if (!vrp_val_is_min (real_min)
1889 || !vrp_val_is_max (real_max))
1890 set_value_range (vr_p, VR_RANGE, real_min,
1891 real_max, vr_p->equiv);
1893 /* Case 2, VR_ANTI_RANGE completely disjoint from
1894 VR_RANGE. */
1895 else if (compare_values (anti_min, real_max) == 1
1896 || compare_values (anti_max, real_min) == -1)
1898 set_value_range (vr_p, VR_RANGE, real_min,
1899 real_max, vr_p->equiv);
1901 /* Case 3a, the anti-range extends into the low
1902 part of the real range. Thus creating a new
1903 low for the real range. */
1904 else if (((cmp = compare_values (anti_max, real_min)) == 1
1905 || cmp == 0)
1906 && compare_values (anti_max, real_max) == -1)
1908 gcc_assert (!is_positive_overflow_infinity (anti_max));
1909 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1910 && vrp_val_is_max (anti_max))
1912 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1914 set_value_range_to_varying (vr_p);
1915 return;
1917 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1919 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1920 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1921 anti_max,
1922 build_int_cst (TREE_TYPE (var_vr->min), 1));
1923 else
1924 min = fold_build_pointer_plus_hwi (anti_max, 1);
1925 max = real_max;
1926 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1928 /* Case 3b, the anti-range extends into the high
1929 part of the real range. Thus creating a new
1930 higher for the real range. */
1931 else if (compare_values (anti_min, real_min) == 1
1932 && ((cmp = compare_values (anti_min, real_max)) == -1
1933 || cmp == 0))
1935 gcc_assert (!is_negative_overflow_infinity (anti_min));
1936 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1937 && vrp_val_is_min (anti_min))
1939 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1941 set_value_range_to_varying (vr_p);
1942 return;
1944 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1946 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1947 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1948 anti_min,
1949 build_int_cst (TREE_TYPE (var_vr->min), 1));
1950 else
1951 max = fold_build_pointer_plus_hwi (anti_min, -1);
1952 min = real_min;
1953 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1960 /* Extract range information from SSA name VAR and store it in VR. If
1961 VAR has an interesting range, use it. Otherwise, create the
1962 range [VAR, VAR] and return it. This is useful in situations where
1963 we may have conditionals testing values of VARYING names. For
1964 instance,
1966 x_3 = y_5;
1967 if (x_3 > y_5)
1970 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1971 always false. */
1973 static void
1974 extract_range_from_ssa_name (value_range_t *vr, tree var)
1976 value_range_t *var_vr = get_value_range (var);
1978 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1979 copy_value_range (vr, var_vr);
1980 else
1981 set_value_range (vr, VR_RANGE, var, var, NULL);
1983 add_equivalence (&vr->equiv, var);
1987 /* Wrapper around int_const_binop. If the operation overflows and we
1988 are not using wrapping arithmetic, then adjust the result to be
1989 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1990 NULL_TREE if we need to use an overflow infinity representation but
1991 the type does not support it. */
1993 static tree
1994 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1996 tree res;
1998 res = int_const_binop (code, val1, val2);
2000 /* If we are using unsigned arithmetic, operate symbolically
2001 on -INF and +INF as int_const_binop only handles signed overflow. */
2002 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
2004 int checkz = compare_values (res, val1);
2005 bool overflow = false;
2007 /* Ensure that res = val1 [+*] val2 >= val1
2008 or that res = val1 - val2 <= val1. */
2009 if ((code == PLUS_EXPR
2010 && !(checkz == 1 || checkz == 0))
2011 || (code == MINUS_EXPR
2012 && !(checkz == 0 || checkz == -1)))
2014 overflow = true;
2016 /* Checking for multiplication overflow is done by dividing the
2017 output of the multiplication by the first input of the
2018 multiplication. If the result of that division operation is
2019 not equal to the second input of the multiplication, then the
2020 multiplication overflowed. */
2021 else if (code == MULT_EXPR && !integer_zerop (val1))
2023 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
2024 res,
2025 val1);
2026 int check = compare_values (tmp, val2);
2028 if (check != 0)
2029 overflow = true;
2032 if (overflow)
2034 res = copy_node (res);
2035 TREE_OVERFLOW (res) = 1;
2039 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
2040 /* If the singed operation wraps then int_const_binop has done
2041 everything we want. */
2043 else if ((TREE_OVERFLOW (res)
2044 && !TREE_OVERFLOW (val1)
2045 && !TREE_OVERFLOW (val2))
2046 || is_overflow_infinity (val1)
2047 || is_overflow_infinity (val2))
2049 /* If the operation overflowed but neither VAL1 nor VAL2 are
2050 overflown, return -INF or +INF depending on the operation
2051 and the combination of signs of the operands. */
2052 int sgn1 = tree_int_cst_sgn (val1);
2053 int sgn2 = tree_int_cst_sgn (val2);
2055 if (needs_overflow_infinity (TREE_TYPE (res))
2056 && !supports_overflow_infinity (TREE_TYPE (res)))
2057 return NULL_TREE;
2059 /* We have to punt on adding infinities of different signs,
2060 since we can't tell what the sign of the result should be.
2061 Likewise for subtracting infinities of the same sign. */
2062 if (((code == PLUS_EXPR && sgn1 != sgn2)
2063 || (code == MINUS_EXPR && sgn1 == sgn2))
2064 && is_overflow_infinity (val1)
2065 && is_overflow_infinity (val2))
2066 return NULL_TREE;
2068 /* Don't try to handle division or shifting of infinities. */
2069 if ((code == TRUNC_DIV_EXPR
2070 || code == FLOOR_DIV_EXPR
2071 || code == CEIL_DIV_EXPR
2072 || code == EXACT_DIV_EXPR
2073 || code == ROUND_DIV_EXPR
2074 || code == RSHIFT_EXPR)
2075 && (is_overflow_infinity (val1)
2076 || is_overflow_infinity (val2)))
2077 return NULL_TREE;
2079 /* Notice that we only need to handle the restricted set of
2080 operations handled by extract_range_from_binary_expr.
2081 Among them, only multiplication, addition and subtraction
2082 can yield overflow without overflown operands because we
2083 are working with integral types only... except in the
2084 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2085 for division too. */
2087 /* For multiplication, the sign of the overflow is given
2088 by the comparison of the signs of the operands. */
2089 if ((code == MULT_EXPR && sgn1 == sgn2)
2090 /* For addition, the operands must be of the same sign
2091 to yield an overflow. Its sign is therefore that
2092 of one of the operands, for example the first. For
2093 infinite operands X + -INF is negative, not positive. */
2094 || (code == PLUS_EXPR
2095 && (sgn1 >= 0
2096 ? !is_negative_overflow_infinity (val2)
2097 : is_positive_overflow_infinity (val2)))
2098 /* For subtraction, non-infinite operands must be of
2099 different signs to yield an overflow. Its sign is
2100 therefore that of the first operand or the opposite of
2101 that of the second operand. A first operand of 0 counts
2102 as positive here, for the corner case 0 - (-INF), which
2103 overflows, but must yield +INF. For infinite operands 0
2104 - INF is negative, not positive. */
2105 || (code == MINUS_EXPR
2106 && (sgn1 >= 0
2107 ? !is_positive_overflow_infinity (val2)
2108 : is_negative_overflow_infinity (val2)))
2109 /* We only get in here with positive shift count, so the
2110 overflow direction is the same as the sign of val1.
2111 Actually rshift does not overflow at all, but we only
2112 handle the case of shifting overflowed -INF and +INF. */
2113 || (code == RSHIFT_EXPR
2114 && sgn1 >= 0)
2115 /* For division, the only case is -INF / -1 = +INF. */
2116 || code == TRUNC_DIV_EXPR
2117 || code == FLOOR_DIV_EXPR
2118 || code == CEIL_DIV_EXPR
2119 || code == EXACT_DIV_EXPR
2120 || code == ROUND_DIV_EXPR)
2121 return (needs_overflow_infinity (TREE_TYPE (res))
2122 ? positive_overflow_infinity (TREE_TYPE (res))
2123 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2124 else
2125 return (needs_overflow_infinity (TREE_TYPE (res))
2126 ? negative_overflow_infinity (TREE_TYPE (res))
2127 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2130 return res;
2134 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2135 bitmask if some bit is unset, it means for all numbers in the range
2136 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2137 bitmask if some bit is set, it means for all numbers in the range
2138 the bit is 1, otherwise it might be 0 or 1. */
2140 static bool
2141 zero_nonzero_bits_from_vr (value_range_t *vr, double_int *may_be_nonzero,
2142 double_int *must_be_nonzero)
2144 may_be_nonzero->low = ALL_ONES;
2145 may_be_nonzero->high = ALL_ONES;
2146 must_be_nonzero->low = 0;
2147 must_be_nonzero->high = 0;
2148 if (range_int_cst_p (vr))
2150 if (range_int_cst_singleton_p (vr))
2152 *may_be_nonzero = tree_to_double_int (vr->min);
2153 *must_be_nonzero = *may_be_nonzero;
2155 else if (tree_int_cst_sgn (vr->min) >= 0)
2157 double_int dmin = tree_to_double_int (vr->min);
2158 double_int dmax = tree_to_double_int (vr->max);
2159 double_int xor_mask = double_int_xor (dmin, dmax);
2160 *may_be_nonzero = double_int_ior (dmin, dmax);
2161 *must_be_nonzero = double_int_and (dmin, dmax);
2162 if (xor_mask.high != 0)
2164 unsigned HOST_WIDE_INT mask
2165 = ((unsigned HOST_WIDE_INT) 1
2166 << floor_log2 (xor_mask.high)) - 1;
2167 may_be_nonzero->low = ALL_ONES;
2168 may_be_nonzero->high |= mask;
2169 must_be_nonzero->low = 0;
2170 must_be_nonzero->high &= ~mask;
2172 else if (xor_mask.low != 0)
2174 unsigned HOST_WIDE_INT mask
2175 = ((unsigned HOST_WIDE_INT) 1
2176 << floor_log2 (xor_mask.low)) - 1;
2177 may_be_nonzero->low |= mask;
2178 must_be_nonzero->low &= ~mask;
2181 return true;
2183 return false;
2187 /* Extract range information from a binary operation CODE based on
2188 the ranges of each of its operands, *VR0 and *VR1 with resulting
2189 type EXPR_TYPE. The resulting range is stored in *VR. */
2191 static void
2192 extract_range_from_binary_expr_1 (value_range_t *vr,
2193 enum tree_code code, tree expr_type,
2194 value_range_t *vr0_, value_range_t *vr1_)
2196 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2197 enum value_range_type type;
2198 tree min, max;
2199 int cmp;
2201 /* Not all binary expressions can be applied to ranges in a
2202 meaningful way. Handle only arithmetic operations. */
2203 if (code != PLUS_EXPR
2204 && code != MINUS_EXPR
2205 && code != POINTER_PLUS_EXPR
2206 && code != MULT_EXPR
2207 && code != TRUNC_DIV_EXPR
2208 && code != FLOOR_DIV_EXPR
2209 && code != CEIL_DIV_EXPR
2210 && code != EXACT_DIV_EXPR
2211 && code != ROUND_DIV_EXPR
2212 && code != TRUNC_MOD_EXPR
2213 && code != RSHIFT_EXPR
2214 && code != MIN_EXPR
2215 && code != MAX_EXPR
2216 && code != BIT_AND_EXPR
2217 && code != BIT_IOR_EXPR
2218 && code != BIT_XOR_EXPR)
2220 set_value_range_to_varying (vr);
2221 return;
2224 /* If both ranges are UNDEFINED, so is the result. */
2225 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2227 set_value_range_to_undefined (vr);
2228 return;
2230 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2231 code. At some point we may want to special-case operations that
2232 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2233 operand. */
2234 else if (vr0.type == VR_UNDEFINED)
2235 set_value_range_to_varying (&vr0);
2236 else if (vr1.type == VR_UNDEFINED)
2237 set_value_range_to_varying (&vr1);
2239 /* The type of the resulting value range defaults to VR0.TYPE. */
2240 type = vr0.type;
2242 /* Refuse to operate on VARYING ranges, ranges of different kinds
2243 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2244 because we may be able to derive a useful range even if one of
2245 the operands is VR_VARYING or symbolic range. Similarly for
2246 divisions. TODO, we may be able to derive anti-ranges in
2247 some cases. */
2248 if (code != BIT_AND_EXPR
2249 && code != BIT_IOR_EXPR
2250 && code != TRUNC_DIV_EXPR
2251 && code != FLOOR_DIV_EXPR
2252 && code != CEIL_DIV_EXPR
2253 && code != EXACT_DIV_EXPR
2254 && code != ROUND_DIV_EXPR
2255 && code != TRUNC_MOD_EXPR
2256 && (vr0.type == VR_VARYING
2257 || vr1.type == VR_VARYING
2258 || vr0.type != vr1.type
2259 || symbolic_range_p (&vr0)
2260 || symbolic_range_p (&vr1)))
2262 set_value_range_to_varying (vr);
2263 return;
2266 /* Now evaluate the expression to determine the new range. */
2267 if (POINTER_TYPE_P (expr_type))
2269 if (code == MIN_EXPR || code == MAX_EXPR)
2271 /* For MIN/MAX expressions with pointers, we only care about
2272 nullness, if both are non null, then the result is nonnull.
2273 If both are null, then the result is null. Otherwise they
2274 are varying. */
2275 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2276 set_value_range_to_nonnull (vr, expr_type);
2277 else if (range_is_null (&vr0) && range_is_null (&vr1))
2278 set_value_range_to_null (vr, expr_type);
2279 else
2280 set_value_range_to_varying (vr);
2282 else if (code == POINTER_PLUS_EXPR)
2284 /* For pointer types, we are really only interested in asserting
2285 whether the expression evaluates to non-NULL. */
2286 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2287 set_value_range_to_nonnull (vr, expr_type);
2288 else if (range_is_null (&vr0) && range_is_null (&vr1))
2289 set_value_range_to_null (vr, expr_type);
2290 else
2291 set_value_range_to_varying (vr);
2293 else if (code == BIT_AND_EXPR)
2295 /* For pointer types, we are really only interested in asserting
2296 whether the expression evaluates to non-NULL. */
2297 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2298 set_value_range_to_nonnull (vr, expr_type);
2299 else if (range_is_null (&vr0) || range_is_null (&vr1))
2300 set_value_range_to_null (vr, expr_type);
2301 else
2302 set_value_range_to_varying (vr);
2304 else
2305 set_value_range_to_varying (vr);
2307 return;
2310 /* For integer ranges, apply the operation to each end of the
2311 range and see what we end up with. */
2312 if (code == PLUS_EXPR
2313 || code == MIN_EXPR
2314 || code == MAX_EXPR)
2316 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2317 VR_VARYING. It would take more effort to compute a precise
2318 range for such a case. For example, if we have op0 == 1 and
2319 op1 == -1 with their ranges both being ~[0,0], we would have
2320 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2321 Note that we are guaranteed to have vr0.type == vr1.type at
2322 this point. */
2323 if (vr0.type == VR_ANTI_RANGE)
2325 if (code == PLUS_EXPR)
2327 set_value_range_to_varying (vr);
2328 return;
2330 /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2331 the resulting VR_ANTI_RANGE is the same - intersection
2332 of the two ranges. */
2333 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2334 max = vrp_int_const_binop (MIN_EXPR, vr0.max, vr1.max);
2336 else
2338 /* For operations that make the resulting range directly
2339 proportional to the original ranges, apply the operation to
2340 the same end of each range. */
2341 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2342 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2345 /* If both additions overflowed the range kind is still correct.
2346 This happens regularly with subtracting something in unsigned
2347 arithmetic.
2348 ??? See PR30318 for all the cases we do not handle. */
2349 if (code == PLUS_EXPR
2350 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2351 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2353 min = build_int_cst_wide (TREE_TYPE (min),
2354 TREE_INT_CST_LOW (min),
2355 TREE_INT_CST_HIGH (min));
2356 max = build_int_cst_wide (TREE_TYPE (max),
2357 TREE_INT_CST_LOW (max),
2358 TREE_INT_CST_HIGH (max));
2361 else if (code == MULT_EXPR
2362 || code == TRUNC_DIV_EXPR
2363 || code == FLOOR_DIV_EXPR
2364 || code == CEIL_DIV_EXPR
2365 || code == EXACT_DIV_EXPR
2366 || code == ROUND_DIV_EXPR
2367 || code == RSHIFT_EXPR)
2369 tree val[4];
2370 size_t i;
2371 bool sop;
2373 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2374 drop to VR_VARYING. It would take more effort to compute a
2375 precise range for such a case. For example, if we have
2376 op0 == 65536 and op1 == 65536 with their ranges both being
2377 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2378 we cannot claim that the product is in ~[0,0]. Note that we
2379 are guaranteed to have vr0.type == vr1.type at this
2380 point. */
2381 if (code == MULT_EXPR
2382 && vr0.type == VR_ANTI_RANGE
2383 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2385 set_value_range_to_varying (vr);
2386 return;
2389 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2390 then drop to VR_VARYING. Outside of this range we get undefined
2391 behavior from the shift operation. We cannot even trust
2392 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2393 shifts, and the operation at the tree level may be widened. */
2394 if (code == RSHIFT_EXPR)
2396 if (vr1.type != VR_RANGE
2397 || !value_range_nonnegative_p (&vr1)
2398 || TREE_CODE (vr1.max) != INTEGER_CST
2399 || compare_tree_int (vr1.max,
2400 TYPE_PRECISION (expr_type) - 1) == 1)
2402 set_value_range_to_varying (vr);
2403 return;
2407 else if ((code == TRUNC_DIV_EXPR
2408 || code == FLOOR_DIV_EXPR
2409 || code == CEIL_DIV_EXPR
2410 || code == EXACT_DIV_EXPR
2411 || code == ROUND_DIV_EXPR)
2412 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2414 /* For division, if op1 has VR_RANGE but op0 does not, something
2415 can be deduced just from that range. Say [min, max] / [4, max]
2416 gives [min / 4, max / 4] range. */
2417 if (vr1.type == VR_RANGE
2418 && !symbolic_range_p (&vr1)
2419 && !range_includes_zero_p (&vr1))
2421 vr0.type = type = VR_RANGE;
2422 vr0.min = vrp_val_min (expr_type);
2423 vr0.max = vrp_val_max (expr_type);
2425 else
2427 set_value_range_to_varying (vr);
2428 return;
2432 /* For divisions, if flag_non_call_exceptions is true, we must
2433 not eliminate a division by zero. */
2434 if ((code == TRUNC_DIV_EXPR
2435 || code == FLOOR_DIV_EXPR
2436 || code == CEIL_DIV_EXPR
2437 || code == EXACT_DIV_EXPR
2438 || code == ROUND_DIV_EXPR)
2439 && cfun->can_throw_non_call_exceptions
2440 && (vr1.type != VR_RANGE
2441 || symbolic_range_p (&vr1)
2442 || range_includes_zero_p (&vr1)))
2444 set_value_range_to_varying (vr);
2445 return;
2448 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2449 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2450 include 0. */
2451 if ((code == TRUNC_DIV_EXPR
2452 || code == FLOOR_DIV_EXPR
2453 || code == CEIL_DIV_EXPR
2454 || code == EXACT_DIV_EXPR
2455 || code == ROUND_DIV_EXPR)
2456 && vr0.type == VR_RANGE
2457 && (vr1.type != VR_RANGE
2458 || symbolic_range_p (&vr1)
2459 || range_includes_zero_p (&vr1)))
2461 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2462 int cmp;
2464 sop = false;
2465 min = NULL_TREE;
2466 max = NULL_TREE;
2467 if (TYPE_UNSIGNED (expr_type)
2468 || value_range_nonnegative_p (&vr1))
2470 /* For unsigned division or when divisor is known
2471 to be non-negative, the range has to cover
2472 all numbers from 0 to max for positive max
2473 and all numbers from min to 0 for negative min. */
2474 cmp = compare_values (vr0.max, zero);
2475 if (cmp == -1)
2476 max = zero;
2477 else if (cmp == 0 || cmp == 1)
2478 max = vr0.max;
2479 else
2480 type = VR_VARYING;
2481 cmp = compare_values (vr0.min, zero);
2482 if (cmp == 1)
2483 min = zero;
2484 else if (cmp == 0 || cmp == -1)
2485 min = vr0.min;
2486 else
2487 type = VR_VARYING;
2489 else
2491 /* Otherwise the range is -max .. max or min .. -min
2492 depending on which bound is bigger in absolute value,
2493 as the division can change the sign. */
2494 abs_extent_range (vr, vr0.min, vr0.max);
2495 return;
2497 if (type == VR_VARYING)
2499 set_value_range_to_varying (vr);
2500 return;
2504 /* Multiplications and divisions are a bit tricky to handle,
2505 depending on the mix of signs we have in the two ranges, we
2506 need to operate on different values to get the minimum and
2507 maximum values for the new range. One approach is to figure
2508 out all the variations of range combinations and do the
2509 operations.
2511 However, this involves several calls to compare_values and it
2512 is pretty convoluted. It's simpler to do the 4 operations
2513 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2514 MAX1) and then figure the smallest and largest values to form
2515 the new range. */
2516 else
2518 gcc_assert ((vr0.type == VR_RANGE
2519 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2520 && vr0.type == vr1.type);
2522 /* Compute the 4 cross operations. */
2523 sop = false;
2524 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2525 if (val[0] == NULL_TREE)
2526 sop = true;
2528 if (vr1.max == vr1.min)
2529 val[1] = NULL_TREE;
2530 else
2532 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2533 if (val[1] == NULL_TREE)
2534 sop = true;
2537 if (vr0.max == vr0.min)
2538 val[2] = NULL_TREE;
2539 else
2541 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2542 if (val[2] == NULL_TREE)
2543 sop = true;
2546 if (vr0.min == vr0.max || vr1.min == vr1.max)
2547 val[3] = NULL_TREE;
2548 else
2550 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2551 if (val[3] == NULL_TREE)
2552 sop = true;
2555 if (sop)
2557 set_value_range_to_varying (vr);
2558 return;
2561 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2562 of VAL[i]. */
2563 min = val[0];
2564 max = val[0];
2565 for (i = 1; i < 4; i++)
2567 if (!is_gimple_min_invariant (min)
2568 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2569 || !is_gimple_min_invariant (max)
2570 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2571 break;
2573 if (val[i])
2575 if (!is_gimple_min_invariant (val[i])
2576 || (TREE_OVERFLOW (val[i])
2577 && !is_overflow_infinity (val[i])))
2579 /* If we found an overflowed value, set MIN and MAX
2580 to it so that we set the resulting range to
2581 VARYING. */
2582 min = max = val[i];
2583 break;
2586 if (compare_values (val[i], min) == -1)
2587 min = val[i];
2589 if (compare_values (val[i], max) == 1)
2590 max = val[i];
2595 else if (code == TRUNC_MOD_EXPR)
2597 if (vr1.type != VR_RANGE
2598 || symbolic_range_p (&vr1)
2599 || range_includes_zero_p (&vr1)
2600 || vrp_val_is_min (vr1.min))
2602 set_value_range_to_varying (vr);
2603 return;
2605 type = VR_RANGE;
2606 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2607 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
2608 if (tree_int_cst_lt (max, vr1.max))
2609 max = vr1.max;
2610 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
2611 /* If the dividend is non-negative the modulus will be
2612 non-negative as well. */
2613 if (TYPE_UNSIGNED (expr_type)
2614 || value_range_nonnegative_p (&vr0))
2615 min = build_int_cst (TREE_TYPE (max), 0);
2616 else
2617 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
2619 else if (code == MINUS_EXPR)
2621 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2622 VR_VARYING. It would take more effort to compute a precise
2623 range for such a case. For example, if we have op0 == 1 and
2624 op1 == 1 with their ranges both being ~[0,0], we would have
2625 op0 - op1 == 0, so we cannot claim that the difference is in
2626 ~[0,0]. Note that we are guaranteed to have
2627 vr0.type == vr1.type at this point. */
2628 if (vr0.type == VR_ANTI_RANGE)
2630 set_value_range_to_varying (vr);
2631 return;
2634 /* For MINUS_EXPR, apply the operation to the opposite ends of
2635 each range. */
2636 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2637 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2639 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
2641 bool int_cst_range0, int_cst_range1;
2642 double_int may_be_nonzero0, may_be_nonzero1;
2643 double_int must_be_nonzero0, must_be_nonzero1;
2645 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
2646 &must_be_nonzero0);
2647 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
2648 &must_be_nonzero1);
2650 type = VR_RANGE;
2651 if (code == BIT_AND_EXPR)
2653 min = double_int_to_tree (expr_type,
2654 double_int_and (must_be_nonzero0,
2655 must_be_nonzero1));
2656 max = double_int_to_tree (expr_type,
2657 double_int_and (may_be_nonzero0,
2658 may_be_nonzero1));
2659 if (tree_int_cst_sgn (min) < 0)
2660 min = NULL_TREE;
2661 if (tree_int_cst_sgn (max) < 0)
2662 max = NULL_TREE;
2663 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2665 if (min == NULL_TREE)
2666 min = build_int_cst (expr_type, 0);
2667 if (max == NULL_TREE || tree_int_cst_lt (vr0.max, max))
2668 max = vr0.max;
2670 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2672 if (min == NULL_TREE)
2673 min = build_int_cst (expr_type, 0);
2674 if (max == NULL_TREE || tree_int_cst_lt (vr1.max, max))
2675 max = vr1.max;
2678 else if (code == BIT_IOR_EXPR)
2680 min = double_int_to_tree (expr_type,
2681 double_int_ior (must_be_nonzero0,
2682 must_be_nonzero1));
2683 max = double_int_to_tree (expr_type,
2684 double_int_ior (may_be_nonzero0,
2685 may_be_nonzero1));
2686 if (tree_int_cst_sgn (max) < 0)
2687 max = NULL_TREE;
2688 if (int_cst_range0)
2690 if (tree_int_cst_sgn (min) < 0)
2691 min = vr0.min;
2692 else
2693 min = vrp_int_const_binop (MAX_EXPR, min, vr0.min);
2695 if (int_cst_range1)
2696 min = vrp_int_const_binop (MAX_EXPR, min, vr1.min);
2698 else if (code == BIT_XOR_EXPR)
2700 double_int result_zero_bits, result_one_bits;
2701 result_zero_bits
2702 = double_int_ior (double_int_and (must_be_nonzero0,
2703 must_be_nonzero1),
2704 double_int_not
2705 (double_int_ior (may_be_nonzero0,
2706 may_be_nonzero1)));
2707 result_one_bits
2708 = double_int_ior (double_int_and
2709 (must_be_nonzero0,
2710 double_int_not (may_be_nonzero1)),
2711 double_int_and
2712 (must_be_nonzero1,
2713 double_int_not (may_be_nonzero0)));
2714 max = double_int_to_tree (expr_type,
2715 double_int_not (result_zero_bits));
2716 min = double_int_to_tree (expr_type, result_one_bits);
2717 /* Return a [min, max] range if we know the
2718 result range is either positive or negative. */
2719 if (tree_int_cst_sgn (max) >= 0)
2720 /* The range is bound by a lower value of 0. */;
2721 else if (tree_int_cst_sgn (min) < 0)
2722 /* The range is bound by an upper value of -1. */;
2723 else
2724 /* We don't know whether the sign bit is set or not. */
2725 max = min = NULL_TREE;
2727 else
2729 set_value_range_to_varying (vr);
2730 return;
2733 else
2734 gcc_unreachable ();
2736 /* If either MIN or MAX overflowed, then set the resulting range to
2737 VARYING. But we do accept an overflow infinity
2738 representation. */
2739 if (min == NULL_TREE
2740 || !is_gimple_min_invariant (min)
2741 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2742 || max == NULL_TREE
2743 || !is_gimple_min_invariant (max)
2744 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2746 set_value_range_to_varying (vr);
2747 return;
2750 /* We punt if:
2751 1) [-INF, +INF]
2752 2) [-INF, +-INF(OVF)]
2753 3) [+-INF(OVF), +INF]
2754 4) [+-INF(OVF), +-INF(OVF)]
2755 We learn nothing when we have INF and INF(OVF) on both sides.
2756 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2757 overflow. */
2758 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2759 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2761 set_value_range_to_varying (vr);
2762 return;
2765 cmp = compare_values (min, max);
2766 if (cmp == -2 || cmp == 1)
2768 /* If the new range has its limits swapped around (MIN > MAX),
2769 then the operation caused one of them to wrap around, mark
2770 the new range VARYING. */
2771 set_value_range_to_varying (vr);
2773 else
2774 set_value_range (vr, type, min, max, NULL);
2777 /* Extract range information from a binary expression OP0 CODE OP1 based on
2778 the ranges of each of its operands with resulting type EXPR_TYPE.
2779 The resulting range is stored in *VR. */
2781 static void
2782 extract_range_from_binary_expr (value_range_t *vr,
2783 enum tree_code code,
2784 tree expr_type, tree op0, tree op1)
2786 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2787 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2789 /* Get value ranges for each operand. For constant operands, create
2790 a new value range with the operand to simplify processing. */
2791 if (TREE_CODE (op0) == SSA_NAME)
2792 vr0 = *(get_value_range (op0));
2793 else if (is_gimple_min_invariant (op0))
2794 set_value_range_to_value (&vr0, op0, NULL);
2795 else
2796 set_value_range_to_varying (&vr0);
2798 if (TREE_CODE (op1) == SSA_NAME)
2799 vr1 = *(get_value_range (op1));
2800 else if (is_gimple_min_invariant (op1))
2801 set_value_range_to_value (&vr1, op1, NULL);
2802 else
2803 set_value_range_to_varying (&vr1);
2805 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
2808 /* Extract range information from a unary operation CODE based on
2809 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2810 The The resulting range is stored in *VR. */
2812 static void
2813 extract_range_from_unary_expr_1 (value_range_t *vr,
2814 enum tree_code code, tree type,
2815 value_range_t *vr0_, tree op0_type)
2817 value_range_t vr0 = *vr0_;
2818 tree min, max;
2819 int cmp;
2821 /* If VR0 is UNDEFINED, so is the result. */
2822 if (vr0.type == VR_UNDEFINED)
2824 set_value_range_to_undefined (vr);
2825 return;
2828 /* Refuse to operate on certain unary expressions for which we
2829 cannot easily determine a resulting range. */
2830 if (code == FIX_TRUNC_EXPR
2831 || code == FLOAT_EXPR
2832 || code == CONJ_EXPR)
2834 set_value_range_to_varying (vr);
2835 return;
2838 /* Refuse to operate on symbolic ranges, or if neither operand is
2839 a pointer or integral type. */
2840 if ((!INTEGRAL_TYPE_P (op0_type)
2841 && !POINTER_TYPE_P (op0_type))
2842 || (vr0.type != VR_VARYING
2843 && symbolic_range_p (&vr0)))
2845 set_value_range_to_varying (vr);
2846 return;
2849 /* If the expression involves pointers, we are only interested in
2850 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2851 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (op0_type))
2853 if (range_is_nonnull (&vr0))
2854 set_value_range_to_nonnull (vr, type);
2855 else if (range_is_null (&vr0))
2856 set_value_range_to_null (vr, type);
2857 else
2858 set_value_range_to_varying (vr);
2859 return;
2862 /* Handle unary expressions on integer ranges. */
2863 if (CONVERT_EXPR_CODE_P (code)
2864 && INTEGRAL_TYPE_P (type)
2865 && INTEGRAL_TYPE_P (op0_type))
2867 tree inner_type = op0_type;
2868 tree outer_type = type;
2870 /* If VR0 is varying and we increase the type precision, assume
2871 a full range for the following transformation. */
2872 if (vr0.type == VR_VARYING
2873 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2875 vr0.type = VR_RANGE;
2876 vr0.min = TYPE_MIN_VALUE (inner_type);
2877 vr0.max = TYPE_MAX_VALUE (inner_type);
2880 /* If VR0 is a constant range or anti-range and the conversion is
2881 not truncating we can convert the min and max values and
2882 canonicalize the resulting range. Otherwise we can do the
2883 conversion if the size of the range is less than what the
2884 precision of the target type can represent and the range is
2885 not an anti-range. */
2886 if ((vr0.type == VR_RANGE
2887 || vr0.type == VR_ANTI_RANGE)
2888 && TREE_CODE (vr0.min) == INTEGER_CST
2889 && TREE_CODE (vr0.max) == INTEGER_CST
2890 && (!is_overflow_infinity (vr0.min)
2891 || (vr0.type == VR_RANGE
2892 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2893 && needs_overflow_infinity (outer_type)
2894 && supports_overflow_infinity (outer_type)))
2895 && (!is_overflow_infinity (vr0.max)
2896 || (vr0.type == VR_RANGE
2897 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2898 && needs_overflow_infinity (outer_type)
2899 && supports_overflow_infinity (outer_type)))
2900 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2901 || (vr0.type == VR_RANGE
2902 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2903 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
2904 size_int (TYPE_PRECISION (outer_type)))))))
2906 tree new_min, new_max;
2907 new_min = force_fit_type_double (outer_type,
2908 tree_to_double_int (vr0.min),
2909 0, false);
2910 new_max = force_fit_type_double (outer_type,
2911 tree_to_double_int (vr0.max),
2912 0, false);
2913 if (is_overflow_infinity (vr0.min))
2914 new_min = negative_overflow_infinity (outer_type);
2915 if (is_overflow_infinity (vr0.max))
2916 new_max = positive_overflow_infinity (outer_type);
2917 set_and_canonicalize_value_range (vr, vr0.type,
2918 new_min, new_max, NULL);
2919 return;
2922 set_value_range_to_varying (vr);
2923 return;
2926 /* Conversion of a VR_VARYING value to a wider type can result
2927 in a usable range. So wait until after we've handled conversions
2928 before dropping the result to VR_VARYING if we had a source
2929 operand that is VR_VARYING. */
2930 if (vr0.type == VR_VARYING)
2932 set_value_range_to_varying (vr);
2933 return;
2936 /* Apply the operation to each end of the range and see what we end
2937 up with. */
2938 if (code == NEGATE_EXPR
2939 && !TYPE_UNSIGNED (type))
2941 /* NEGATE_EXPR flips the range around. We need to treat
2942 TYPE_MIN_VALUE specially. */
2943 if (is_positive_overflow_infinity (vr0.max))
2944 min = negative_overflow_infinity (type);
2945 else if (is_negative_overflow_infinity (vr0.max))
2946 min = positive_overflow_infinity (type);
2947 else if (!vrp_val_is_min (vr0.max))
2948 min = fold_unary_to_constant (code, type, vr0.max);
2949 else if (needs_overflow_infinity (type))
2951 if (supports_overflow_infinity (type)
2952 && !is_overflow_infinity (vr0.min)
2953 && !vrp_val_is_min (vr0.min))
2954 min = positive_overflow_infinity (type);
2955 else
2957 set_value_range_to_varying (vr);
2958 return;
2961 else
2962 min = TYPE_MIN_VALUE (type);
2964 if (is_positive_overflow_infinity (vr0.min))
2965 max = negative_overflow_infinity (type);
2966 else if (is_negative_overflow_infinity (vr0.min))
2967 max = positive_overflow_infinity (type);
2968 else if (!vrp_val_is_min (vr0.min))
2969 max = fold_unary_to_constant (code, type, vr0.min);
2970 else if (needs_overflow_infinity (type))
2972 if (supports_overflow_infinity (type))
2973 max = positive_overflow_infinity (type);
2974 else
2976 set_value_range_to_varying (vr);
2977 return;
2980 else
2981 max = TYPE_MIN_VALUE (type);
2983 else if (code == NEGATE_EXPR
2984 && TYPE_UNSIGNED (type))
2986 if (!range_includes_zero_p (&vr0))
2988 max = fold_unary_to_constant (code, type, vr0.min);
2989 min = fold_unary_to_constant (code, type, vr0.max);
2991 else
2993 if (range_is_null (&vr0))
2994 set_value_range_to_null (vr, type);
2995 else
2996 set_value_range_to_varying (vr);
2997 return;
3000 else if (code == ABS_EXPR
3001 && !TYPE_UNSIGNED (type))
3003 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3004 useful range. */
3005 if (!TYPE_OVERFLOW_UNDEFINED (type)
3006 && ((vr0.type == VR_RANGE
3007 && vrp_val_is_min (vr0.min))
3008 || (vr0.type == VR_ANTI_RANGE
3009 && !vrp_val_is_min (vr0.min)
3010 && !range_includes_zero_p (&vr0))))
3012 set_value_range_to_varying (vr);
3013 return;
3016 /* ABS_EXPR may flip the range around, if the original range
3017 included negative values. */
3018 if (is_overflow_infinity (vr0.min))
3019 min = positive_overflow_infinity (type);
3020 else if (!vrp_val_is_min (vr0.min))
3021 min = fold_unary_to_constant (code, type, vr0.min);
3022 else if (!needs_overflow_infinity (type))
3023 min = TYPE_MAX_VALUE (type);
3024 else if (supports_overflow_infinity (type))
3025 min = positive_overflow_infinity (type);
3026 else
3028 set_value_range_to_varying (vr);
3029 return;
3032 if (is_overflow_infinity (vr0.max))
3033 max = positive_overflow_infinity (type);
3034 else if (!vrp_val_is_min (vr0.max))
3035 max = fold_unary_to_constant (code, type, vr0.max);
3036 else if (!needs_overflow_infinity (type))
3037 max = TYPE_MAX_VALUE (type);
3038 else if (supports_overflow_infinity (type)
3039 /* We shouldn't generate [+INF, +INF] as set_value_range
3040 doesn't like this and ICEs. */
3041 && !is_positive_overflow_infinity (min))
3042 max = positive_overflow_infinity (type);
3043 else
3045 set_value_range_to_varying (vr);
3046 return;
3049 cmp = compare_values (min, max);
3051 /* If a VR_ANTI_RANGEs contains zero, then we have
3052 ~[-INF, min(MIN, MAX)]. */
3053 if (vr0.type == VR_ANTI_RANGE)
3055 if (range_includes_zero_p (&vr0))
3057 /* Take the lower of the two values. */
3058 if (cmp != 1)
3059 max = min;
3061 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3062 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3063 flag_wrapv is set and the original anti-range doesn't include
3064 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3065 if (TYPE_OVERFLOW_WRAPS (type))
3067 tree type_min_value = TYPE_MIN_VALUE (type);
3069 min = (vr0.min != type_min_value
3070 ? int_const_binop (PLUS_EXPR, type_min_value,
3071 integer_one_node)
3072 : type_min_value);
3074 else
3076 if (overflow_infinity_range_p (&vr0))
3077 min = negative_overflow_infinity (type);
3078 else
3079 min = TYPE_MIN_VALUE (type);
3082 else
3084 /* All else has failed, so create the range [0, INF], even for
3085 flag_wrapv since TYPE_MIN_VALUE is in the original
3086 anti-range. */
3087 vr0.type = VR_RANGE;
3088 min = build_int_cst (type, 0);
3089 if (needs_overflow_infinity (type))
3091 if (supports_overflow_infinity (type))
3092 max = positive_overflow_infinity (type);
3093 else
3095 set_value_range_to_varying (vr);
3096 return;
3099 else
3100 max = TYPE_MAX_VALUE (type);
3104 /* If the range contains zero then we know that the minimum value in the
3105 range will be zero. */
3106 else if (range_includes_zero_p (&vr0))
3108 if (cmp == 1)
3109 max = min;
3110 min = build_int_cst (type, 0);
3112 else
3114 /* If the range was reversed, swap MIN and MAX. */
3115 if (cmp == 1)
3117 tree t = min;
3118 min = max;
3119 max = t;
3123 else if (code == BIT_NOT_EXPR)
3125 /* ~X is simply -1 - X, so re-use existing code that also handles
3126 anti-ranges fine. */
3127 value_range_t minusone = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3128 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3129 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3130 type, &minusone, &vr0);
3131 return;
3133 else
3135 /* Otherwise, operate on each end of the range. */
3136 min = fold_unary_to_constant (code, type, vr0.min);
3137 max = fold_unary_to_constant (code, type, vr0.max);
3139 if (needs_overflow_infinity (type))
3141 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
3143 /* If both sides have overflowed, we don't know
3144 anything. */
3145 if ((is_overflow_infinity (vr0.min)
3146 || TREE_OVERFLOW (min))
3147 && (is_overflow_infinity (vr0.max)
3148 || TREE_OVERFLOW (max)))
3150 set_value_range_to_varying (vr);
3151 return;
3154 if (is_overflow_infinity (vr0.min))
3155 min = vr0.min;
3156 else if (TREE_OVERFLOW (min))
3158 if (supports_overflow_infinity (type))
3159 min = (tree_int_cst_sgn (min) >= 0
3160 ? positive_overflow_infinity (TREE_TYPE (min))
3161 : negative_overflow_infinity (TREE_TYPE (min)));
3162 else
3164 set_value_range_to_varying (vr);
3165 return;
3169 if (is_overflow_infinity (vr0.max))
3170 max = vr0.max;
3171 else if (TREE_OVERFLOW (max))
3173 if (supports_overflow_infinity (type))
3174 max = (tree_int_cst_sgn (max) >= 0
3175 ? positive_overflow_infinity (TREE_TYPE (max))
3176 : negative_overflow_infinity (TREE_TYPE (max)));
3177 else
3179 set_value_range_to_varying (vr);
3180 return;
3186 cmp = compare_values (min, max);
3187 if (cmp == -2 || cmp == 1)
3189 /* If the new range has its limits swapped around (MIN > MAX),
3190 then the operation caused one of them to wrap around, mark
3191 the new range VARYING. */
3192 set_value_range_to_varying (vr);
3194 else
3195 set_value_range (vr, vr0.type, min, max, NULL);
3199 /* Extract range information from a unary expression CODE OP0 based on
3200 the range of its operand with resulting type TYPE.
3201 The resulting range is stored in *VR. */
3203 static void
3204 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3205 tree type, tree op0)
3207 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3209 /* Get value ranges for the operand. For constant operands, create
3210 a new value range with the operand to simplify processing. */
3211 if (TREE_CODE (op0) == SSA_NAME)
3212 vr0 = *(get_value_range (op0));
3213 else if (is_gimple_min_invariant (op0))
3214 set_value_range_to_value (&vr0, op0, NULL);
3215 else
3216 set_value_range_to_varying (&vr0);
3218 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3222 /* Extract range information from a conditional expression EXPR based on
3223 the ranges of each of its operands and the expression code. */
3225 static void
3226 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3228 tree op0, op1;
3229 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3230 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3232 /* Get value ranges for each operand. For constant operands, create
3233 a new value range with the operand to simplify processing. */
3234 op0 = COND_EXPR_THEN (expr);
3235 if (TREE_CODE (op0) == SSA_NAME)
3236 vr0 = *(get_value_range (op0));
3237 else if (is_gimple_min_invariant (op0))
3238 set_value_range_to_value (&vr0, op0, NULL);
3239 else
3240 set_value_range_to_varying (&vr0);
3242 op1 = COND_EXPR_ELSE (expr);
3243 if (TREE_CODE (op1) == SSA_NAME)
3244 vr1 = *(get_value_range (op1));
3245 else if (is_gimple_min_invariant (op1))
3246 set_value_range_to_value (&vr1, op1, NULL);
3247 else
3248 set_value_range_to_varying (&vr1);
3250 /* The resulting value range is the union of the operand ranges */
3251 vrp_meet (&vr0, &vr1);
3252 copy_value_range (vr, &vr0);
3256 /* Extract range information from a comparison expression EXPR based
3257 on the range of its operand and the expression code. */
3259 static void
3260 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3261 tree type, tree op0, tree op1)
3263 bool sop = false;
3264 tree val;
3266 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3267 NULL);
3269 /* A disadvantage of using a special infinity as an overflow
3270 representation is that we lose the ability to record overflow
3271 when we don't have an infinity. So we have to ignore a result
3272 which relies on overflow. */
3274 if (val && !is_overflow_infinity (val) && !sop)
3276 /* Since this expression was found on the RHS of an assignment,
3277 its type may be different from _Bool. Convert VAL to EXPR's
3278 type. */
3279 val = fold_convert (type, val);
3280 if (is_gimple_min_invariant (val))
3281 set_value_range_to_value (vr, val, vr->equiv);
3282 else
3283 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3285 else
3286 /* The result of a comparison is always true or false. */
3287 set_value_range_to_truthvalue (vr, type);
3290 /* Try to derive a nonnegative or nonzero range out of STMT relying
3291 primarily on generic routines in fold in conjunction with range data.
3292 Store the result in *VR */
3294 static void
3295 extract_range_basic (value_range_t *vr, gimple stmt)
3297 bool sop = false;
3298 tree type = gimple_expr_type (stmt);
3300 if (INTEGRAL_TYPE_P (type)
3301 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3302 set_value_range_to_nonnegative (vr, type,
3303 sop || stmt_overflow_infinity (stmt));
3304 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3305 && !sop)
3306 set_value_range_to_nonnull (vr, type);
3307 else
3308 set_value_range_to_varying (vr);
3312 /* Try to compute a useful range out of assignment STMT and store it
3313 in *VR. */
3315 static void
3316 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3318 enum tree_code code = gimple_assign_rhs_code (stmt);
3320 if (code == ASSERT_EXPR)
3321 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3322 else if (code == SSA_NAME)
3323 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3324 else if (TREE_CODE_CLASS (code) == tcc_binary)
3325 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3326 gimple_expr_type (stmt),
3327 gimple_assign_rhs1 (stmt),
3328 gimple_assign_rhs2 (stmt));
3329 else if (TREE_CODE_CLASS (code) == tcc_unary)
3330 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3331 gimple_expr_type (stmt),
3332 gimple_assign_rhs1 (stmt));
3333 else if (code == COND_EXPR)
3334 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3335 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3336 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3337 gimple_expr_type (stmt),
3338 gimple_assign_rhs1 (stmt),
3339 gimple_assign_rhs2 (stmt));
3340 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3341 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3342 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3343 else
3344 set_value_range_to_varying (vr);
3346 if (vr->type == VR_VARYING)
3347 extract_range_basic (vr, stmt);
3350 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3351 would be profitable to adjust VR using scalar evolution information
3352 for VAR. If so, update VR with the new limits. */
3354 static void
3355 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3356 gimple stmt, tree var)
3358 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3359 enum ev_direction dir;
3361 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3362 better opportunities than a regular range, but I'm not sure. */
3363 if (vr->type == VR_ANTI_RANGE)
3364 return;
3366 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3368 /* Like in PR19590, scev can return a constant function. */
3369 if (is_gimple_min_invariant (chrec))
3371 set_value_range_to_value (vr, chrec, vr->equiv);
3372 return;
3375 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3376 return;
3378 init = initial_condition_in_loop_num (chrec, loop->num);
3379 tem = op_with_constant_singleton_value_range (init);
3380 if (tem)
3381 init = tem;
3382 step = evolution_part_in_loop_num (chrec, loop->num);
3383 tem = op_with_constant_singleton_value_range (step);
3384 if (tem)
3385 step = tem;
3387 /* If STEP is symbolic, we can't know whether INIT will be the
3388 minimum or maximum value in the range. Also, unless INIT is
3389 a simple expression, compare_values and possibly other functions
3390 in tree-vrp won't be able to handle it. */
3391 if (step == NULL_TREE
3392 || !is_gimple_min_invariant (step)
3393 || !valid_value_p (init))
3394 return;
3396 dir = scev_direction (chrec);
3397 if (/* Do not adjust ranges if we do not know whether the iv increases
3398 or decreases, ... */
3399 dir == EV_DIR_UNKNOWN
3400 /* ... or if it may wrap. */
3401 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3402 true))
3403 return;
3405 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3406 negative_overflow_infinity and positive_overflow_infinity,
3407 because we have concluded that the loop probably does not
3408 wrap. */
3410 type = TREE_TYPE (var);
3411 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3412 tmin = lower_bound_in_type (type, type);
3413 else
3414 tmin = TYPE_MIN_VALUE (type);
3415 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3416 tmax = upper_bound_in_type (type, type);
3417 else
3418 tmax = TYPE_MAX_VALUE (type);
3420 /* Try to use estimated number of iterations for the loop to constrain the
3421 final value in the evolution. */
3422 if (TREE_CODE (step) == INTEGER_CST
3423 && is_gimple_val (init)
3424 && (TREE_CODE (init) != SSA_NAME
3425 || get_value_range (init)->type == VR_RANGE))
3427 double_int nit;
3429 if (estimated_loop_iterations (loop, true, &nit))
3431 value_range_t maxvr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3432 double_int dtmp;
3433 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3434 int overflow = 0;
3436 dtmp = double_int_mul_with_sign (tree_to_double_int (step), nit,
3437 unsigned_p, &overflow);
3438 /* If the multiplication overflowed we can't do a meaningful
3439 adjustment. Likewise if the result doesn't fit in the type
3440 of the induction variable. For a signed type we have to
3441 check whether the result has the expected signedness which
3442 is that of the step as number of iterations is unsigned. */
3443 if (!overflow
3444 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3445 && (unsigned_p
3446 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3448 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3449 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3450 TREE_TYPE (init), init, tem);
3451 /* Likewise if the addition did. */
3452 if (maxvr.type == VR_RANGE)
3454 tmin = maxvr.min;
3455 tmax = maxvr.max;
3461 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3463 min = tmin;
3464 max = tmax;
3466 /* For VARYING or UNDEFINED ranges, just about anything we get
3467 from scalar evolutions should be better. */
3469 if (dir == EV_DIR_DECREASES)
3470 max = init;
3471 else
3472 min = init;
3474 /* If we would create an invalid range, then just assume we
3475 know absolutely nothing. This may be over-conservative,
3476 but it's clearly safe, and should happen only in unreachable
3477 parts of code, or for invalid programs. */
3478 if (compare_values (min, max) == 1)
3479 return;
3481 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3483 else if (vr->type == VR_RANGE)
3485 min = vr->min;
3486 max = vr->max;
3488 if (dir == EV_DIR_DECREASES)
3490 /* INIT is the maximum value. If INIT is lower than VR->MAX
3491 but no smaller than VR->MIN, set VR->MAX to INIT. */
3492 if (compare_values (init, max) == -1)
3493 max = init;
3495 /* According to the loop information, the variable does not
3496 overflow. If we think it does, probably because of an
3497 overflow due to arithmetic on a different INF value,
3498 reset now. */
3499 if (is_negative_overflow_infinity (min)
3500 || compare_values (min, tmin) == -1)
3501 min = tmin;
3504 else
3506 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3507 if (compare_values (init, min) == 1)
3508 min = init;
3510 if (is_positive_overflow_infinity (max)
3511 || compare_values (tmax, max) == -1)
3512 max = tmax;
3515 /* If we just created an invalid range with the minimum
3516 greater than the maximum, we fail conservatively.
3517 This should happen only in unreachable
3518 parts of code, or for invalid programs. */
3519 if (compare_values (min, max) == 1)
3520 return;
3522 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3526 /* Return true if VAR may overflow at STMT. This checks any available
3527 loop information to see if we can determine that VAR does not
3528 overflow. */
3530 static bool
3531 vrp_var_may_overflow (tree var, gimple stmt)
3533 struct loop *l;
3534 tree chrec, init, step;
3536 if (current_loops == NULL)
3537 return true;
3539 l = loop_containing_stmt (stmt);
3540 if (l == NULL
3541 || !loop_outer (l))
3542 return true;
3544 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3545 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3546 return true;
3548 init = initial_condition_in_loop_num (chrec, l->num);
3549 step = evolution_part_in_loop_num (chrec, l->num);
3551 if (step == NULL_TREE
3552 || !is_gimple_min_invariant (step)
3553 || !valid_value_p (init))
3554 return true;
3556 /* If we get here, we know something useful about VAR based on the
3557 loop information. If it wraps, it may overflow. */
3559 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3560 true))
3561 return true;
3563 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3565 print_generic_expr (dump_file, var, 0);
3566 fprintf (dump_file, ": loop information indicates does not overflow\n");
3569 return false;
3573 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3575 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3576 all the values in the ranges.
3578 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3580 - Return NULL_TREE if it is not always possible to determine the
3581 value of the comparison.
3583 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3584 overflow infinity was used in the test. */
3587 static tree
3588 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3589 bool *strict_overflow_p)
3591 /* VARYING or UNDEFINED ranges cannot be compared. */
3592 if (vr0->type == VR_VARYING
3593 || vr0->type == VR_UNDEFINED
3594 || vr1->type == VR_VARYING
3595 || vr1->type == VR_UNDEFINED)
3596 return NULL_TREE;
3598 /* Anti-ranges need to be handled separately. */
3599 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3601 /* If both are anti-ranges, then we cannot compute any
3602 comparison. */
3603 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3604 return NULL_TREE;
3606 /* These comparisons are never statically computable. */
3607 if (comp == GT_EXPR
3608 || comp == GE_EXPR
3609 || comp == LT_EXPR
3610 || comp == LE_EXPR)
3611 return NULL_TREE;
3613 /* Equality can be computed only between a range and an
3614 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3615 if (vr0->type == VR_RANGE)
3617 /* To simplify processing, make VR0 the anti-range. */
3618 value_range_t *tmp = vr0;
3619 vr0 = vr1;
3620 vr1 = tmp;
3623 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3625 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3626 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3627 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3629 return NULL_TREE;
3632 if (!usable_range_p (vr0, strict_overflow_p)
3633 || !usable_range_p (vr1, strict_overflow_p))
3634 return NULL_TREE;
3636 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3637 operands around and change the comparison code. */
3638 if (comp == GT_EXPR || comp == GE_EXPR)
3640 value_range_t *tmp;
3641 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3642 tmp = vr0;
3643 vr0 = vr1;
3644 vr1 = tmp;
3647 if (comp == EQ_EXPR)
3649 /* Equality may only be computed if both ranges represent
3650 exactly one value. */
3651 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3652 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3654 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3655 strict_overflow_p);
3656 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3657 strict_overflow_p);
3658 if (cmp_min == 0 && cmp_max == 0)
3659 return boolean_true_node;
3660 else if (cmp_min != -2 && cmp_max != -2)
3661 return boolean_false_node;
3663 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3664 else if (compare_values_warnv (vr0->min, vr1->max,
3665 strict_overflow_p) == 1
3666 || compare_values_warnv (vr1->min, vr0->max,
3667 strict_overflow_p) == 1)
3668 return boolean_false_node;
3670 return NULL_TREE;
3672 else if (comp == NE_EXPR)
3674 int cmp1, cmp2;
3676 /* If VR0 is completely to the left or completely to the right
3677 of VR1, they are always different. Notice that we need to
3678 make sure that both comparisons yield similar results to
3679 avoid comparing values that cannot be compared at
3680 compile-time. */
3681 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3682 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3683 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3684 return boolean_true_node;
3686 /* If VR0 and VR1 represent a single value and are identical,
3687 return false. */
3688 else if (compare_values_warnv (vr0->min, vr0->max,
3689 strict_overflow_p) == 0
3690 && compare_values_warnv (vr1->min, vr1->max,
3691 strict_overflow_p) == 0
3692 && compare_values_warnv (vr0->min, vr1->min,
3693 strict_overflow_p) == 0
3694 && compare_values_warnv (vr0->max, vr1->max,
3695 strict_overflow_p) == 0)
3696 return boolean_false_node;
3698 /* Otherwise, they may or may not be different. */
3699 else
3700 return NULL_TREE;
3702 else if (comp == LT_EXPR || comp == LE_EXPR)
3704 int tst;
3706 /* If VR0 is to the left of VR1, return true. */
3707 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3708 if ((comp == LT_EXPR && tst == -1)
3709 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3711 if (overflow_infinity_range_p (vr0)
3712 || overflow_infinity_range_p (vr1))
3713 *strict_overflow_p = true;
3714 return boolean_true_node;
3717 /* If VR0 is to the right of VR1, return false. */
3718 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3719 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3720 || (comp == LE_EXPR && tst == 1))
3722 if (overflow_infinity_range_p (vr0)
3723 || overflow_infinity_range_p (vr1))
3724 *strict_overflow_p = true;
3725 return boolean_false_node;
3728 /* Otherwise, we don't know. */
3729 return NULL_TREE;
3732 gcc_unreachable ();
3736 /* Given a value range VR, a value VAL and a comparison code COMP, return
3737 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3738 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3739 always returns false. Return NULL_TREE if it is not always
3740 possible to determine the value of the comparison. Also set
3741 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3742 infinity was used in the test. */
3744 static tree
3745 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3746 bool *strict_overflow_p)
3748 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3749 return NULL_TREE;
3751 /* Anti-ranges need to be handled separately. */
3752 if (vr->type == VR_ANTI_RANGE)
3754 /* For anti-ranges, the only predicates that we can compute at
3755 compile time are equality and inequality. */
3756 if (comp == GT_EXPR
3757 || comp == GE_EXPR
3758 || comp == LT_EXPR
3759 || comp == LE_EXPR)
3760 return NULL_TREE;
3762 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3763 if (value_inside_range (val, vr) == 1)
3764 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3766 return NULL_TREE;
3769 if (!usable_range_p (vr, strict_overflow_p))
3770 return NULL_TREE;
3772 if (comp == EQ_EXPR)
3774 /* EQ_EXPR may only be computed if VR represents exactly
3775 one value. */
3776 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3778 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3779 if (cmp == 0)
3780 return boolean_true_node;
3781 else if (cmp == -1 || cmp == 1 || cmp == 2)
3782 return boolean_false_node;
3784 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3785 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3786 return boolean_false_node;
3788 return NULL_TREE;
3790 else if (comp == NE_EXPR)
3792 /* If VAL is not inside VR, then they are always different. */
3793 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3794 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3795 return boolean_true_node;
3797 /* If VR represents exactly one value equal to VAL, then return
3798 false. */
3799 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3800 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3801 return boolean_false_node;
3803 /* Otherwise, they may or may not be different. */
3804 return NULL_TREE;
3806 else if (comp == LT_EXPR || comp == LE_EXPR)
3808 int tst;
3810 /* If VR is to the left of VAL, return true. */
3811 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3812 if ((comp == LT_EXPR && tst == -1)
3813 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3815 if (overflow_infinity_range_p (vr))
3816 *strict_overflow_p = true;
3817 return boolean_true_node;
3820 /* If VR is to the right of VAL, return false. */
3821 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3822 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3823 || (comp == LE_EXPR && tst == 1))
3825 if (overflow_infinity_range_p (vr))
3826 *strict_overflow_p = true;
3827 return boolean_false_node;
3830 /* Otherwise, we don't know. */
3831 return NULL_TREE;
3833 else if (comp == GT_EXPR || comp == GE_EXPR)
3835 int tst;
3837 /* If VR is to the right of VAL, return true. */
3838 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3839 if ((comp == GT_EXPR && tst == 1)
3840 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3842 if (overflow_infinity_range_p (vr))
3843 *strict_overflow_p = true;
3844 return boolean_true_node;
3847 /* If VR is to the left of VAL, return false. */
3848 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3849 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3850 || (comp == GE_EXPR && tst == -1))
3852 if (overflow_infinity_range_p (vr))
3853 *strict_overflow_p = true;
3854 return boolean_false_node;
3857 /* Otherwise, we don't know. */
3858 return NULL_TREE;
3861 gcc_unreachable ();
3865 /* Debugging dumps. */
3867 void dump_value_range (FILE *, value_range_t *);
3868 void debug_value_range (value_range_t *);
3869 void dump_all_value_ranges (FILE *);
3870 void debug_all_value_ranges (void);
3871 void dump_vr_equiv (FILE *, bitmap);
3872 void debug_vr_equiv (bitmap);
3875 /* Dump value range VR to FILE. */
3877 void
3878 dump_value_range (FILE *file, value_range_t *vr)
3880 if (vr == NULL)
3881 fprintf (file, "[]");
3882 else if (vr->type == VR_UNDEFINED)
3883 fprintf (file, "UNDEFINED");
3884 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3886 tree type = TREE_TYPE (vr->min);
3888 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3890 if (is_negative_overflow_infinity (vr->min))
3891 fprintf (file, "-INF(OVF)");
3892 else if (INTEGRAL_TYPE_P (type)
3893 && !TYPE_UNSIGNED (type)
3894 && vrp_val_is_min (vr->min))
3895 fprintf (file, "-INF");
3896 else
3897 print_generic_expr (file, vr->min, 0);
3899 fprintf (file, ", ");
3901 if (is_positive_overflow_infinity (vr->max))
3902 fprintf (file, "+INF(OVF)");
3903 else if (INTEGRAL_TYPE_P (type)
3904 && vrp_val_is_max (vr->max))
3905 fprintf (file, "+INF");
3906 else
3907 print_generic_expr (file, vr->max, 0);
3909 fprintf (file, "]");
3911 if (vr->equiv)
3913 bitmap_iterator bi;
3914 unsigned i, c = 0;
3916 fprintf (file, " EQUIVALENCES: { ");
3918 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3920 print_generic_expr (file, ssa_name (i), 0);
3921 fprintf (file, " ");
3922 c++;
3925 fprintf (file, "} (%u elements)", c);
3928 else if (vr->type == VR_VARYING)
3929 fprintf (file, "VARYING");
3930 else
3931 fprintf (file, "INVALID RANGE");
3935 /* Dump value range VR to stderr. */
3937 DEBUG_FUNCTION void
3938 debug_value_range (value_range_t *vr)
3940 dump_value_range (stderr, vr);
3941 fprintf (stderr, "\n");
3945 /* Dump value ranges of all SSA_NAMEs to FILE. */
3947 void
3948 dump_all_value_ranges (FILE *file)
3950 size_t i;
3952 for (i = 0; i < num_vr_values; i++)
3954 if (vr_value[i])
3956 print_generic_expr (file, ssa_name (i), 0);
3957 fprintf (file, ": ");
3958 dump_value_range (file, vr_value[i]);
3959 fprintf (file, "\n");
3963 fprintf (file, "\n");
3967 /* Dump all value ranges to stderr. */
3969 DEBUG_FUNCTION void
3970 debug_all_value_ranges (void)
3972 dump_all_value_ranges (stderr);
3976 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3977 create a new SSA name N and return the assertion assignment
3978 'V = ASSERT_EXPR <V, V OP W>'. */
3980 static gimple
3981 build_assert_expr_for (tree cond, tree v)
3983 tree n;
3984 gimple assertion;
3986 gcc_assert (TREE_CODE (v) == SSA_NAME);
3987 n = duplicate_ssa_name (v, NULL);
3989 if (COMPARISON_CLASS_P (cond))
3991 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3992 assertion = gimple_build_assign (n, a);
3994 else if (TREE_CODE (cond) == SSA_NAME)
3996 /* Given V, build the assignment N = true. */
3997 gcc_assert (v == cond);
3998 assertion = gimple_build_assign (n, boolean_true_node);
4000 else
4001 gcc_unreachable ();
4003 SSA_NAME_DEF_STMT (n) = assertion;
4005 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4006 operand of the ASSERT_EXPR. Register the new name and the old one
4007 in the replacement table so that we can fix the SSA web after
4008 adding all the ASSERT_EXPRs. */
4009 register_new_name_mapping (n, v);
4011 return assertion;
4015 /* Return false if EXPR is a predicate expression involving floating
4016 point values. */
4018 static inline bool
4019 fp_predicate (gimple stmt)
4021 GIMPLE_CHECK (stmt, GIMPLE_COND);
4023 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4027 /* If the range of values taken by OP can be inferred after STMT executes,
4028 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4029 describes the inferred range. Return true if a range could be
4030 inferred. */
4032 static bool
4033 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4035 *val_p = NULL_TREE;
4036 *comp_code_p = ERROR_MARK;
4038 /* Do not attempt to infer anything in names that flow through
4039 abnormal edges. */
4040 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4041 return false;
4043 /* Similarly, don't infer anything from statements that may throw
4044 exceptions. */
4045 if (stmt_could_throw_p (stmt))
4046 return false;
4048 /* If STMT is the last statement of a basic block with no
4049 successors, there is no point inferring anything about any of its
4050 operands. We would not be able to find a proper insertion point
4051 for the assertion, anyway. */
4052 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4053 return false;
4055 /* We can only assume that a pointer dereference will yield
4056 non-NULL if -fdelete-null-pointer-checks is enabled. */
4057 if (flag_delete_null_pointer_checks
4058 && POINTER_TYPE_P (TREE_TYPE (op))
4059 && gimple_code (stmt) != GIMPLE_ASM)
4061 unsigned num_uses, num_loads, num_stores;
4063 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4064 if (num_loads + num_stores > 0)
4066 *val_p = build_int_cst (TREE_TYPE (op), 0);
4067 *comp_code_p = NE_EXPR;
4068 return true;
4072 return false;
4076 void dump_asserts_for (FILE *, tree);
4077 void debug_asserts_for (tree);
4078 void dump_all_asserts (FILE *);
4079 void debug_all_asserts (void);
4081 /* Dump all the registered assertions for NAME to FILE. */
4083 void
4084 dump_asserts_for (FILE *file, tree name)
4086 assert_locus_t loc;
4088 fprintf (file, "Assertions to be inserted for ");
4089 print_generic_expr (file, name, 0);
4090 fprintf (file, "\n");
4092 loc = asserts_for[SSA_NAME_VERSION (name)];
4093 while (loc)
4095 fprintf (file, "\t");
4096 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4097 fprintf (file, "\n\tBB #%d", loc->bb->index);
4098 if (loc->e)
4100 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4101 loc->e->dest->index);
4102 dump_edge_info (file, loc->e, 0);
4104 fprintf (file, "\n\tPREDICATE: ");
4105 print_generic_expr (file, name, 0);
4106 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
4107 print_generic_expr (file, loc->val, 0);
4108 fprintf (file, "\n\n");
4109 loc = loc->next;
4112 fprintf (file, "\n");
4116 /* Dump all the registered assertions for NAME to stderr. */
4118 DEBUG_FUNCTION void
4119 debug_asserts_for (tree name)
4121 dump_asserts_for (stderr, name);
4125 /* Dump all the registered assertions for all the names to FILE. */
4127 void
4128 dump_all_asserts (FILE *file)
4130 unsigned i;
4131 bitmap_iterator bi;
4133 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4134 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4135 dump_asserts_for (file, ssa_name (i));
4136 fprintf (file, "\n");
4140 /* Dump all the registered assertions for all the names to stderr. */
4142 DEBUG_FUNCTION void
4143 debug_all_asserts (void)
4145 dump_all_asserts (stderr);
4149 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4150 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4151 E->DEST, then register this location as a possible insertion point
4152 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4154 BB, E and SI provide the exact insertion point for the new
4155 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4156 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4157 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4158 must not be NULL. */
4160 static void
4161 register_new_assert_for (tree name, tree expr,
4162 enum tree_code comp_code,
4163 tree val,
4164 basic_block bb,
4165 edge e,
4166 gimple_stmt_iterator si)
4168 assert_locus_t n, loc, last_loc;
4169 basic_block dest_bb;
4171 gcc_checking_assert (bb == NULL || e == NULL);
4173 if (e == NULL)
4174 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4175 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4177 /* Never build an assert comparing against an integer constant with
4178 TREE_OVERFLOW set. This confuses our undefined overflow warning
4179 machinery. */
4180 if (TREE_CODE (val) == INTEGER_CST
4181 && TREE_OVERFLOW (val))
4182 val = build_int_cst_wide (TREE_TYPE (val),
4183 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4185 /* The new assertion A will be inserted at BB or E. We need to
4186 determine if the new location is dominated by a previously
4187 registered location for A. If we are doing an edge insertion,
4188 assume that A will be inserted at E->DEST. Note that this is not
4189 necessarily true.
4191 If E is a critical edge, it will be split. But even if E is
4192 split, the new block will dominate the same set of blocks that
4193 E->DEST dominates.
4195 The reverse, however, is not true, blocks dominated by E->DEST
4196 will not be dominated by the new block created to split E. So,
4197 if the insertion location is on a critical edge, we will not use
4198 the new location to move another assertion previously registered
4199 at a block dominated by E->DEST. */
4200 dest_bb = (bb) ? bb : e->dest;
4202 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4203 VAL at a block dominating DEST_BB, then we don't need to insert a new
4204 one. Similarly, if the same assertion already exists at a block
4205 dominated by DEST_BB and the new location is not on a critical
4206 edge, then update the existing location for the assertion (i.e.,
4207 move the assertion up in the dominance tree).
4209 Note, this is implemented as a simple linked list because there
4210 should not be more than a handful of assertions registered per
4211 name. If this becomes a performance problem, a table hashed by
4212 COMP_CODE and VAL could be implemented. */
4213 loc = asserts_for[SSA_NAME_VERSION (name)];
4214 last_loc = loc;
4215 while (loc)
4217 if (loc->comp_code == comp_code
4218 && (loc->val == val
4219 || operand_equal_p (loc->val, val, 0))
4220 && (loc->expr == expr
4221 || operand_equal_p (loc->expr, expr, 0)))
4223 /* If the assertion NAME COMP_CODE VAL has already been
4224 registered at a basic block that dominates DEST_BB, then
4225 we don't need to insert the same assertion again. Note
4226 that we don't check strict dominance here to avoid
4227 replicating the same assertion inside the same basic
4228 block more than once (e.g., when a pointer is
4229 dereferenced several times inside a block).
4231 An exception to this rule are edge insertions. If the
4232 new assertion is to be inserted on edge E, then it will
4233 dominate all the other insertions that we may want to
4234 insert in DEST_BB. So, if we are doing an edge
4235 insertion, don't do this dominance check. */
4236 if (e == NULL
4237 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4238 return;
4240 /* Otherwise, if E is not a critical edge and DEST_BB
4241 dominates the existing location for the assertion, move
4242 the assertion up in the dominance tree by updating its
4243 location information. */
4244 if ((e == NULL || !EDGE_CRITICAL_P (e))
4245 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4247 loc->bb = dest_bb;
4248 loc->e = e;
4249 loc->si = si;
4250 return;
4254 /* Update the last node of the list and move to the next one. */
4255 last_loc = loc;
4256 loc = loc->next;
4259 /* If we didn't find an assertion already registered for
4260 NAME COMP_CODE VAL, add a new one at the end of the list of
4261 assertions associated with NAME. */
4262 n = XNEW (struct assert_locus_d);
4263 n->bb = dest_bb;
4264 n->e = e;
4265 n->si = si;
4266 n->comp_code = comp_code;
4267 n->val = val;
4268 n->expr = expr;
4269 n->next = NULL;
4271 if (last_loc)
4272 last_loc->next = n;
4273 else
4274 asserts_for[SSA_NAME_VERSION (name)] = n;
4276 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4279 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4280 Extract a suitable test code and value and store them into *CODE_P and
4281 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4283 If no extraction was possible, return FALSE, otherwise return TRUE.
4285 If INVERT is true, then we invert the result stored into *CODE_P. */
4287 static bool
4288 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4289 tree cond_op0, tree cond_op1,
4290 bool invert, enum tree_code *code_p,
4291 tree *val_p)
4293 enum tree_code comp_code;
4294 tree val;
4296 /* Otherwise, we have a comparison of the form NAME COMP VAL
4297 or VAL COMP NAME. */
4298 if (name == cond_op1)
4300 /* If the predicate is of the form VAL COMP NAME, flip
4301 COMP around because we need to register NAME as the
4302 first operand in the predicate. */
4303 comp_code = swap_tree_comparison (cond_code);
4304 val = cond_op0;
4306 else
4308 /* The comparison is of the form NAME COMP VAL, so the
4309 comparison code remains unchanged. */
4310 comp_code = cond_code;
4311 val = cond_op1;
4314 /* Invert the comparison code as necessary. */
4315 if (invert)
4316 comp_code = invert_tree_comparison (comp_code, 0);
4318 /* VRP does not handle float types. */
4319 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4320 return false;
4322 /* Do not register always-false predicates.
4323 FIXME: this works around a limitation in fold() when dealing with
4324 enumerations. Given 'enum { N1, N2 } x;', fold will not
4325 fold 'if (x > N2)' to 'if (0)'. */
4326 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4327 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4329 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4330 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4332 if (comp_code == GT_EXPR
4333 && (!max
4334 || compare_values (val, max) == 0))
4335 return false;
4337 if (comp_code == LT_EXPR
4338 && (!min
4339 || compare_values (val, min) == 0))
4340 return false;
4342 *code_p = comp_code;
4343 *val_p = val;
4344 return true;
4347 /* Try to register an edge assertion for SSA name NAME on edge E for
4348 the condition COND contributing to the conditional jump pointed to by BSI.
4349 Invert the condition COND if INVERT is true.
4350 Return true if an assertion for NAME could be registered. */
4352 static bool
4353 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4354 enum tree_code cond_code,
4355 tree cond_op0, tree cond_op1, bool invert)
4357 tree val;
4358 enum tree_code comp_code;
4359 bool retval = false;
4361 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4362 cond_op0,
4363 cond_op1,
4364 invert, &comp_code, &val))
4365 return false;
4367 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4368 reachable from E. */
4369 if (live_on_edge (e, name)
4370 && !has_single_use (name))
4372 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4373 retval = true;
4376 /* In the case of NAME <= CST and NAME being defined as
4377 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4378 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4379 This catches range and anti-range tests. */
4380 if ((comp_code == LE_EXPR
4381 || comp_code == GT_EXPR)
4382 && TREE_CODE (val) == INTEGER_CST
4383 && TYPE_UNSIGNED (TREE_TYPE (val)))
4385 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4386 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4388 /* Extract CST2 from the (optional) addition. */
4389 if (is_gimple_assign (def_stmt)
4390 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4392 name2 = gimple_assign_rhs1 (def_stmt);
4393 cst2 = gimple_assign_rhs2 (def_stmt);
4394 if (TREE_CODE (name2) == SSA_NAME
4395 && TREE_CODE (cst2) == INTEGER_CST)
4396 def_stmt = SSA_NAME_DEF_STMT (name2);
4399 /* Extract NAME2 from the (optional) sign-changing cast. */
4400 if (gimple_assign_cast_p (def_stmt))
4402 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4403 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4404 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4405 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4406 name3 = gimple_assign_rhs1 (def_stmt);
4409 /* If name3 is used later, create an ASSERT_EXPR for it. */
4410 if (name3 != NULL_TREE
4411 && TREE_CODE (name3) == SSA_NAME
4412 && (cst2 == NULL_TREE
4413 || TREE_CODE (cst2) == INTEGER_CST)
4414 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4415 && live_on_edge (e, name3)
4416 && !has_single_use (name3))
4418 tree tmp;
4420 /* Build an expression for the range test. */
4421 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4422 if (cst2 != NULL_TREE)
4423 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4425 if (dump_file)
4427 fprintf (dump_file, "Adding assert for ");
4428 print_generic_expr (dump_file, name3, 0);
4429 fprintf (dump_file, " from ");
4430 print_generic_expr (dump_file, tmp, 0);
4431 fprintf (dump_file, "\n");
4434 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4436 retval = true;
4439 /* If name2 is used later, create an ASSERT_EXPR for it. */
4440 if (name2 != NULL_TREE
4441 && TREE_CODE (name2) == SSA_NAME
4442 && TREE_CODE (cst2) == INTEGER_CST
4443 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4444 && live_on_edge (e, name2)
4445 && !has_single_use (name2))
4447 tree tmp;
4449 /* Build an expression for the range test. */
4450 tmp = name2;
4451 if (TREE_TYPE (name) != TREE_TYPE (name2))
4452 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4453 if (cst2 != NULL_TREE)
4454 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4456 if (dump_file)
4458 fprintf (dump_file, "Adding assert for ");
4459 print_generic_expr (dump_file, name2, 0);
4460 fprintf (dump_file, " from ");
4461 print_generic_expr (dump_file, tmp, 0);
4462 fprintf (dump_file, "\n");
4465 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4467 retval = true;
4471 return retval;
4474 /* OP is an operand of a truth value expression which is known to have
4475 a particular value. Register any asserts for OP and for any
4476 operands in OP's defining statement.
4478 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4479 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4481 static bool
4482 register_edge_assert_for_1 (tree op, enum tree_code code,
4483 edge e, gimple_stmt_iterator bsi)
4485 bool retval = false;
4486 gimple op_def;
4487 tree val;
4488 enum tree_code rhs_code;
4490 /* We only care about SSA_NAMEs. */
4491 if (TREE_CODE (op) != SSA_NAME)
4492 return false;
4494 /* We know that OP will have a zero or nonzero value. If OP is used
4495 more than once go ahead and register an assert for OP.
4497 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4498 it will always be set for OP (because OP is used in a COND_EXPR in
4499 the subgraph). */
4500 if (!has_single_use (op))
4502 val = build_int_cst (TREE_TYPE (op), 0);
4503 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4504 retval = true;
4507 /* Now look at how OP is set. If it's set from a comparison,
4508 a truth operation or some bit operations, then we may be able
4509 to register information about the operands of that assignment. */
4510 op_def = SSA_NAME_DEF_STMT (op);
4511 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4512 return retval;
4514 rhs_code = gimple_assign_rhs_code (op_def);
4516 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4518 bool invert = (code == EQ_EXPR ? true : false);
4519 tree op0 = gimple_assign_rhs1 (op_def);
4520 tree op1 = gimple_assign_rhs2 (op_def);
4522 if (TREE_CODE (op0) == SSA_NAME)
4523 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4524 invert);
4525 if (TREE_CODE (op1) == SSA_NAME)
4526 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4527 invert);
4529 else if ((code == NE_EXPR
4530 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
4531 || (code == EQ_EXPR
4532 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
4534 /* Recurse on each operand. */
4535 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4536 code, e, bsi);
4537 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4538 code, e, bsi);
4540 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
4541 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
4543 /* Recurse, flipping CODE. */
4544 code = invert_tree_comparison (code, false);
4545 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4546 code, e, bsi);
4548 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4550 /* Recurse through the copy. */
4551 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4552 code, e, bsi);
4554 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4556 /* Recurse through the type conversion. */
4557 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4558 code, e, bsi);
4561 return retval;
4564 /* Try to register an edge assertion for SSA name NAME on edge E for
4565 the condition COND contributing to the conditional jump pointed to by SI.
4566 Return true if an assertion for NAME could be registered. */
4568 static bool
4569 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4570 enum tree_code cond_code, tree cond_op0,
4571 tree cond_op1)
4573 tree val;
4574 enum tree_code comp_code;
4575 bool retval = false;
4576 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4578 /* Do not attempt to infer anything in names that flow through
4579 abnormal edges. */
4580 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4581 return false;
4583 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4584 cond_op0, cond_op1,
4585 is_else_edge,
4586 &comp_code, &val))
4587 return false;
4589 /* Register ASSERT_EXPRs for name. */
4590 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4591 cond_op1, is_else_edge);
4594 /* If COND is effectively an equality test of an SSA_NAME against
4595 the value zero or one, then we may be able to assert values
4596 for SSA_NAMEs which flow into COND. */
4598 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
4599 statement of NAME we can assert both operands of the BIT_AND_EXPR
4600 have nonzero value. */
4601 if (((comp_code == EQ_EXPR && integer_onep (val))
4602 || (comp_code == NE_EXPR && integer_zerop (val))))
4604 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4606 if (is_gimple_assign (def_stmt)
4607 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
4609 tree op0 = gimple_assign_rhs1 (def_stmt);
4610 tree op1 = gimple_assign_rhs2 (def_stmt);
4611 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4612 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4616 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
4617 statement of NAME we can assert both operands of the BIT_IOR_EXPR
4618 have zero value. */
4619 if (((comp_code == EQ_EXPR && integer_zerop (val))
4620 || (comp_code == NE_EXPR && integer_onep (val))))
4622 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4624 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4625 necessarily zero value, or if type-precision is one. */
4626 if (is_gimple_assign (def_stmt)
4627 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
4628 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
4629 || comp_code == EQ_EXPR)))
4631 tree op0 = gimple_assign_rhs1 (def_stmt);
4632 tree op1 = gimple_assign_rhs2 (def_stmt);
4633 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4634 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4638 return retval;
4642 /* Determine whether the outgoing edges of BB should receive an
4643 ASSERT_EXPR for each of the operands of BB's LAST statement.
4644 The last statement of BB must be a COND_EXPR.
4646 If any of the sub-graphs rooted at BB have an interesting use of
4647 the predicate operands, an assert location node is added to the
4648 list of assertions for the corresponding operands. */
4650 static bool
4651 find_conditional_asserts (basic_block bb, gimple last)
4653 bool need_assert;
4654 gimple_stmt_iterator bsi;
4655 tree op;
4656 edge_iterator ei;
4657 edge e;
4658 ssa_op_iter iter;
4660 need_assert = false;
4661 bsi = gsi_for_stmt (last);
4663 /* Look for uses of the operands in each of the sub-graphs
4664 rooted at BB. We need to check each of the outgoing edges
4665 separately, so that we know what kind of ASSERT_EXPR to
4666 insert. */
4667 FOR_EACH_EDGE (e, ei, bb->succs)
4669 if (e->dest == bb)
4670 continue;
4672 /* Register the necessary assertions for each operand in the
4673 conditional predicate. */
4674 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4676 need_assert |= register_edge_assert_for (op, e, bsi,
4677 gimple_cond_code (last),
4678 gimple_cond_lhs (last),
4679 gimple_cond_rhs (last));
4683 return need_assert;
4686 struct case_info
4688 tree expr;
4689 basic_block bb;
4692 /* Compare two case labels sorting first by the destination bb index
4693 and then by the case value. */
4695 static int
4696 compare_case_labels (const void *p1, const void *p2)
4698 const struct case_info *ci1 = (const struct case_info *) p1;
4699 const struct case_info *ci2 = (const struct case_info *) p2;
4700 int idx1 = ci1->bb->index;
4701 int idx2 = ci2->bb->index;
4703 if (idx1 < idx2)
4704 return -1;
4705 else if (idx1 == idx2)
4707 /* Make sure the default label is first in a group. */
4708 if (!CASE_LOW (ci1->expr))
4709 return -1;
4710 else if (!CASE_LOW (ci2->expr))
4711 return 1;
4712 else
4713 return tree_int_cst_compare (CASE_LOW (ci1->expr),
4714 CASE_LOW (ci2->expr));
4716 else
4717 return 1;
4720 /* Determine whether the outgoing edges of BB should receive an
4721 ASSERT_EXPR for each of the operands of BB's LAST statement.
4722 The last statement of BB must be a SWITCH_EXPR.
4724 If any of the sub-graphs rooted at BB have an interesting use of
4725 the predicate operands, an assert location node is added to the
4726 list of assertions for the corresponding operands. */
4728 static bool
4729 find_switch_asserts (basic_block bb, gimple last)
4731 bool need_assert;
4732 gimple_stmt_iterator bsi;
4733 tree op;
4734 edge e;
4735 struct case_info *ci;
4736 size_t n = gimple_switch_num_labels (last);
4737 #if GCC_VERSION >= 4000
4738 unsigned int idx;
4739 #else
4740 /* Work around GCC 3.4 bug (PR 37086). */
4741 volatile unsigned int idx;
4742 #endif
4744 need_assert = false;
4745 bsi = gsi_for_stmt (last);
4746 op = gimple_switch_index (last);
4747 if (TREE_CODE (op) != SSA_NAME)
4748 return false;
4750 /* Build a vector of case labels sorted by destination label. */
4751 ci = XNEWVEC (struct case_info, n);
4752 for (idx = 0; idx < n; ++idx)
4754 ci[idx].expr = gimple_switch_label (last, idx);
4755 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
4757 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
4759 for (idx = 0; idx < n; ++idx)
4761 tree min, max;
4762 tree cl = ci[idx].expr;
4763 basic_block cbb = ci[idx].bb;
4765 min = CASE_LOW (cl);
4766 max = CASE_HIGH (cl);
4768 /* If there are multiple case labels with the same destination
4769 we need to combine them to a single value range for the edge. */
4770 if (idx + 1 < n && cbb == ci[idx + 1].bb)
4772 /* Skip labels until the last of the group. */
4773 do {
4774 ++idx;
4775 } while (idx < n && cbb == ci[idx].bb);
4776 --idx;
4778 /* Pick up the maximum of the case label range. */
4779 if (CASE_HIGH (ci[idx].expr))
4780 max = CASE_HIGH (ci[idx].expr);
4781 else
4782 max = CASE_LOW (ci[idx].expr);
4785 /* Nothing to do if the range includes the default label until we
4786 can register anti-ranges. */
4787 if (min == NULL_TREE)
4788 continue;
4790 /* Find the edge to register the assert expr on. */
4791 e = find_edge (bb, cbb);
4793 /* Register the necessary assertions for the operand in the
4794 SWITCH_EXPR. */
4795 need_assert |= register_edge_assert_for (op, e, bsi,
4796 max ? GE_EXPR : EQ_EXPR,
4798 fold_convert (TREE_TYPE (op),
4799 min));
4800 if (max)
4802 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4804 fold_convert (TREE_TYPE (op),
4805 max));
4809 XDELETEVEC (ci);
4810 return need_assert;
4814 /* Traverse all the statements in block BB looking for statements that
4815 may generate useful assertions for the SSA names in their operand.
4816 If a statement produces a useful assertion A for name N_i, then the
4817 list of assertions already generated for N_i is scanned to
4818 determine if A is actually needed.
4820 If N_i already had the assertion A at a location dominating the
4821 current location, then nothing needs to be done. Otherwise, the
4822 new location for A is recorded instead.
4824 1- For every statement S in BB, all the variables used by S are
4825 added to bitmap FOUND_IN_SUBGRAPH.
4827 2- If statement S uses an operand N in a way that exposes a known
4828 value range for N, then if N was not already generated by an
4829 ASSERT_EXPR, create a new assert location for N. For instance,
4830 if N is a pointer and the statement dereferences it, we can
4831 assume that N is not NULL.
4833 3- COND_EXPRs are a special case of #2. We can derive range
4834 information from the predicate but need to insert different
4835 ASSERT_EXPRs for each of the sub-graphs rooted at the
4836 conditional block. If the last statement of BB is a conditional
4837 expression of the form 'X op Y', then
4839 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4841 b) If the conditional is the only entry point to the sub-graph
4842 corresponding to the THEN_CLAUSE, recurse into it. On
4843 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4844 an ASSERT_EXPR is added for the corresponding variable.
4846 c) Repeat step (b) on the ELSE_CLAUSE.
4848 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4850 For instance,
4852 if (a == 9)
4853 b = a;
4854 else
4855 b = c + 1;
4857 In this case, an assertion on the THEN clause is useful to
4858 determine that 'a' is always 9 on that edge. However, an assertion
4859 on the ELSE clause would be unnecessary.
4861 4- If BB does not end in a conditional expression, then we recurse
4862 into BB's dominator children.
4864 At the end of the recursive traversal, every SSA name will have a
4865 list of locations where ASSERT_EXPRs should be added. When a new
4866 location for name N is found, it is registered by calling
4867 register_new_assert_for. That function keeps track of all the
4868 registered assertions to prevent adding unnecessary assertions.
4869 For instance, if a pointer P_4 is dereferenced more than once in a
4870 dominator tree, only the location dominating all the dereference of
4871 P_4 will receive an ASSERT_EXPR.
4873 If this function returns true, then it means that there are names
4874 for which we need to generate ASSERT_EXPRs. Those assertions are
4875 inserted by process_assert_insertions. */
4877 static bool
4878 find_assert_locations_1 (basic_block bb, sbitmap live)
4880 gimple_stmt_iterator si;
4881 gimple last;
4882 gimple phi;
4883 bool need_assert;
4885 need_assert = false;
4886 last = last_stmt (bb);
4888 /* If BB's last statement is a conditional statement involving integer
4889 operands, determine if we need to add ASSERT_EXPRs. */
4890 if (last
4891 && gimple_code (last) == GIMPLE_COND
4892 && !fp_predicate (last)
4893 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4894 need_assert |= find_conditional_asserts (bb, last);
4896 /* If BB's last statement is a switch statement involving integer
4897 operands, determine if we need to add ASSERT_EXPRs. */
4898 if (last
4899 && gimple_code (last) == GIMPLE_SWITCH
4900 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4901 need_assert |= find_switch_asserts (bb, last);
4903 /* Traverse all the statements in BB marking used names and looking
4904 for statements that may infer assertions for their used operands. */
4905 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4907 gimple stmt;
4908 tree op;
4909 ssa_op_iter i;
4911 stmt = gsi_stmt (si);
4913 if (is_gimple_debug (stmt))
4914 continue;
4916 /* See if we can derive an assertion for any of STMT's operands. */
4917 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4919 tree value;
4920 enum tree_code comp_code;
4922 /* Mark OP in our live bitmap. */
4923 SET_BIT (live, SSA_NAME_VERSION (op));
4925 /* If OP is used in such a way that we can infer a value
4926 range for it, and we don't find a previous assertion for
4927 it, create a new assertion location node for OP. */
4928 if (infer_value_range (stmt, op, &comp_code, &value))
4930 /* If we are able to infer a nonzero value range for OP,
4931 then walk backwards through the use-def chain to see if OP
4932 was set via a typecast.
4934 If so, then we can also infer a nonzero value range
4935 for the operand of the NOP_EXPR. */
4936 if (comp_code == NE_EXPR && integer_zerop (value))
4938 tree t = op;
4939 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4941 while (is_gimple_assign (def_stmt)
4942 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4943 && TREE_CODE
4944 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4945 && POINTER_TYPE_P
4946 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4948 t = gimple_assign_rhs1 (def_stmt);
4949 def_stmt = SSA_NAME_DEF_STMT (t);
4951 /* Note we want to register the assert for the
4952 operand of the NOP_EXPR after SI, not after the
4953 conversion. */
4954 if (! has_single_use (t))
4956 register_new_assert_for (t, t, comp_code, value,
4957 bb, NULL, si);
4958 need_assert = true;
4963 /* If OP is used only once, namely in this STMT, don't
4964 bother creating an ASSERT_EXPR for it. Such an
4965 ASSERT_EXPR would do nothing but increase compile time. */
4966 if (!has_single_use (op))
4968 register_new_assert_for (op, op, comp_code, value,
4969 bb, NULL, si);
4970 need_assert = true;
4976 /* Traverse all PHI nodes in BB marking used operands. */
4977 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4979 use_operand_p arg_p;
4980 ssa_op_iter i;
4981 phi = gsi_stmt (si);
4983 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4985 tree arg = USE_FROM_PTR (arg_p);
4986 if (TREE_CODE (arg) == SSA_NAME)
4987 SET_BIT (live, SSA_NAME_VERSION (arg));
4991 return need_assert;
4994 /* Do an RPO walk over the function computing SSA name liveness
4995 on-the-fly and deciding on assert expressions to insert.
4996 Returns true if there are assert expressions to be inserted. */
4998 static bool
4999 find_assert_locations (void)
5001 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
5002 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
5003 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
5004 int rpo_cnt, i;
5005 bool need_asserts;
5007 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
5008 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
5009 for (i = 0; i < rpo_cnt; ++i)
5010 bb_rpo[rpo[i]] = i;
5012 need_asserts = false;
5013 for (i = rpo_cnt-1; i >= 0; --i)
5015 basic_block bb = BASIC_BLOCK (rpo[i]);
5016 edge e;
5017 edge_iterator ei;
5019 if (!live[rpo[i]])
5021 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5022 sbitmap_zero (live[rpo[i]]);
5025 /* Process BB and update the live information with uses in
5026 this block. */
5027 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5029 /* Merge liveness into the predecessor blocks and free it. */
5030 if (!sbitmap_empty_p (live[rpo[i]]))
5032 int pred_rpo = i;
5033 FOR_EACH_EDGE (e, ei, bb->preds)
5035 int pred = e->src->index;
5036 if (e->flags & EDGE_DFS_BACK)
5037 continue;
5039 if (!live[pred])
5041 live[pred] = sbitmap_alloc (num_ssa_names);
5042 sbitmap_zero (live[pred]);
5044 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
5046 if (bb_rpo[pred] < pred_rpo)
5047 pred_rpo = bb_rpo[pred];
5050 /* Record the RPO number of the last visited block that needs
5051 live information from this block. */
5052 last_rpo[rpo[i]] = pred_rpo;
5054 else
5056 sbitmap_free (live[rpo[i]]);
5057 live[rpo[i]] = NULL;
5060 /* We can free all successors live bitmaps if all their
5061 predecessors have been visited already. */
5062 FOR_EACH_EDGE (e, ei, bb->succs)
5063 if (last_rpo[e->dest->index] == i
5064 && live[e->dest->index])
5066 sbitmap_free (live[e->dest->index]);
5067 live[e->dest->index] = NULL;
5071 XDELETEVEC (rpo);
5072 XDELETEVEC (bb_rpo);
5073 XDELETEVEC (last_rpo);
5074 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
5075 if (live[i])
5076 sbitmap_free (live[i]);
5077 XDELETEVEC (live);
5079 return need_asserts;
5082 /* Create an ASSERT_EXPR for NAME and insert it in the location
5083 indicated by LOC. Return true if we made any edge insertions. */
5085 static bool
5086 process_assert_insertions_for (tree name, assert_locus_t loc)
5088 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5089 gimple stmt;
5090 tree cond;
5091 gimple assert_stmt;
5092 edge_iterator ei;
5093 edge e;
5095 /* If we have X <=> X do not insert an assert expr for that. */
5096 if (loc->expr == loc->val)
5097 return false;
5099 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5100 assert_stmt = build_assert_expr_for (cond, name);
5101 if (loc->e)
5103 /* We have been asked to insert the assertion on an edge. This
5104 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5105 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5106 || (gimple_code (gsi_stmt (loc->si))
5107 == GIMPLE_SWITCH));
5109 gsi_insert_on_edge (loc->e, assert_stmt);
5110 return true;
5113 /* Otherwise, we can insert right after LOC->SI iff the
5114 statement must not be the last statement in the block. */
5115 stmt = gsi_stmt (loc->si);
5116 if (!stmt_ends_bb_p (stmt))
5118 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
5119 return false;
5122 /* If STMT must be the last statement in BB, we can only insert new
5123 assertions on the non-abnormal edge out of BB. Note that since
5124 STMT is not control flow, there may only be one non-abnormal edge
5125 out of BB. */
5126 FOR_EACH_EDGE (e, ei, loc->bb->succs)
5127 if (!(e->flags & EDGE_ABNORMAL))
5129 gsi_insert_on_edge (e, assert_stmt);
5130 return true;
5133 gcc_unreachable ();
5137 /* Process all the insertions registered for every name N_i registered
5138 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5139 found in ASSERTS_FOR[i]. */
5141 static void
5142 process_assert_insertions (void)
5144 unsigned i;
5145 bitmap_iterator bi;
5146 bool update_edges_p = false;
5147 int num_asserts = 0;
5149 if (dump_file && (dump_flags & TDF_DETAILS))
5150 dump_all_asserts (dump_file);
5152 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5154 assert_locus_t loc = asserts_for[i];
5155 gcc_assert (loc);
5157 while (loc)
5159 assert_locus_t next = loc->next;
5160 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
5161 free (loc);
5162 loc = next;
5163 num_asserts++;
5167 if (update_edges_p)
5168 gsi_commit_edge_inserts ();
5170 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
5171 num_asserts);
5175 /* Traverse the flowgraph looking for conditional jumps to insert range
5176 expressions. These range expressions are meant to provide information
5177 to optimizations that need to reason in terms of value ranges. They
5178 will not be expanded into RTL. For instance, given:
5180 x = ...
5181 y = ...
5182 if (x < y)
5183 y = x - 2;
5184 else
5185 x = y + 3;
5187 this pass will transform the code into:
5189 x = ...
5190 y = ...
5191 if (x < y)
5193 x = ASSERT_EXPR <x, x < y>
5194 y = x - 2
5196 else
5198 y = ASSERT_EXPR <y, x <= y>
5199 x = y + 3
5202 The idea is that once copy and constant propagation have run, other
5203 optimizations will be able to determine what ranges of values can 'x'
5204 take in different paths of the code, simply by checking the reaching
5205 definition of 'x'. */
5207 static void
5208 insert_range_assertions (void)
5210 need_assert_for = BITMAP_ALLOC (NULL);
5211 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
5213 calculate_dominance_info (CDI_DOMINATORS);
5215 if (find_assert_locations ())
5217 process_assert_insertions ();
5218 update_ssa (TODO_update_ssa_no_phi);
5221 if (dump_file && (dump_flags & TDF_DETAILS))
5223 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
5224 dump_function_to_file (current_function_decl, dump_file, dump_flags);
5227 free (asserts_for);
5228 BITMAP_FREE (need_assert_for);
5231 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5232 and "struct" hacks. If VRP can determine that the
5233 array subscript is a constant, check if it is outside valid
5234 range. If the array subscript is a RANGE, warn if it is
5235 non-overlapping with valid range.
5236 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5238 static void
5239 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5241 value_range_t* vr = NULL;
5242 tree low_sub, up_sub;
5243 tree low_bound, up_bound, up_bound_p1;
5244 tree base;
5246 if (TREE_NO_WARNING (ref))
5247 return;
5249 low_sub = up_sub = TREE_OPERAND (ref, 1);
5250 up_bound = array_ref_up_bound (ref);
5252 /* Can not check flexible arrays. */
5253 if (!up_bound
5254 || TREE_CODE (up_bound) != INTEGER_CST)
5255 return;
5257 /* Accesses to trailing arrays via pointers may access storage
5258 beyond the types array bounds. */
5259 base = get_base_address (ref);
5260 if (base && TREE_CODE (base) == MEM_REF)
5262 tree cref, next = NULL_TREE;
5264 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
5265 return;
5267 cref = TREE_OPERAND (ref, 0);
5268 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
5269 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
5270 next && TREE_CODE (next) != FIELD_DECL;
5271 next = DECL_CHAIN (next))
5274 /* If this is the last field in a struct type or a field in a
5275 union type do not warn. */
5276 if (!next)
5277 return;
5280 low_bound = array_ref_low_bound (ref);
5281 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
5283 if (TREE_CODE (low_sub) == SSA_NAME)
5285 vr = get_value_range (low_sub);
5286 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5288 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5289 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5293 if (vr && vr->type == VR_ANTI_RANGE)
5295 if (TREE_CODE (up_sub) == INTEGER_CST
5296 && tree_int_cst_lt (up_bound, up_sub)
5297 && TREE_CODE (low_sub) == INTEGER_CST
5298 && tree_int_cst_lt (low_sub, low_bound))
5300 warning_at (location, OPT_Warray_bounds,
5301 "array subscript is outside array bounds");
5302 TREE_NO_WARNING (ref) = 1;
5305 else if (TREE_CODE (up_sub) == INTEGER_CST
5306 && (ignore_off_by_one
5307 ? (tree_int_cst_lt (up_bound, up_sub)
5308 && !tree_int_cst_equal (up_bound_p1, up_sub))
5309 : (tree_int_cst_lt (up_bound, up_sub)
5310 || tree_int_cst_equal (up_bound_p1, up_sub))))
5312 warning_at (location, OPT_Warray_bounds,
5313 "array subscript is above array bounds");
5314 TREE_NO_WARNING (ref) = 1;
5316 else if (TREE_CODE (low_sub) == INTEGER_CST
5317 && tree_int_cst_lt (low_sub, low_bound))
5319 warning_at (location, OPT_Warray_bounds,
5320 "array subscript is below array bounds");
5321 TREE_NO_WARNING (ref) = 1;
5325 /* Searches if the expr T, located at LOCATION computes
5326 address of an ARRAY_REF, and call check_array_ref on it. */
5328 static void
5329 search_for_addr_array (tree t, location_t location)
5331 while (TREE_CODE (t) == SSA_NAME)
5333 gimple g = SSA_NAME_DEF_STMT (t);
5335 if (gimple_code (g) != GIMPLE_ASSIGN)
5336 return;
5338 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5339 != GIMPLE_SINGLE_RHS)
5340 return;
5342 t = gimple_assign_rhs1 (g);
5346 /* We are only interested in addresses of ARRAY_REF's. */
5347 if (TREE_CODE (t) != ADDR_EXPR)
5348 return;
5350 /* Check each ARRAY_REFs in the reference chain. */
5353 if (TREE_CODE (t) == ARRAY_REF)
5354 check_array_ref (location, t, true /*ignore_off_by_one*/);
5356 t = TREE_OPERAND (t, 0);
5358 while (handled_component_p (t));
5360 if (TREE_CODE (t) == MEM_REF
5361 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
5362 && !TREE_NO_WARNING (t))
5364 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
5365 tree low_bound, up_bound, el_sz;
5366 double_int idx;
5367 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
5368 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
5369 || !TYPE_DOMAIN (TREE_TYPE (tem)))
5370 return;
5372 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5373 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5374 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
5375 if (!low_bound
5376 || TREE_CODE (low_bound) != INTEGER_CST
5377 || !up_bound
5378 || TREE_CODE (up_bound) != INTEGER_CST
5379 || !el_sz
5380 || TREE_CODE (el_sz) != INTEGER_CST)
5381 return;
5383 idx = mem_ref_offset (t);
5384 idx = double_int_sdiv (idx, tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
5385 if (double_int_scmp (idx, double_int_zero) < 0)
5387 warning_at (location, OPT_Warray_bounds,
5388 "array subscript is below array bounds");
5389 TREE_NO_WARNING (t) = 1;
5391 else if (double_int_scmp (idx,
5392 double_int_add
5393 (double_int_add
5394 (tree_to_double_int (up_bound),
5395 double_int_neg
5396 (tree_to_double_int (low_bound))),
5397 double_int_one)) > 0)
5399 warning_at (location, OPT_Warray_bounds,
5400 "array subscript is above array bounds");
5401 TREE_NO_WARNING (t) = 1;
5406 /* walk_tree() callback that checks if *TP is
5407 an ARRAY_REF inside an ADDR_EXPR (in which an array
5408 subscript one outside the valid range is allowed). Call
5409 check_array_ref for each ARRAY_REF found. The location is
5410 passed in DATA. */
5412 static tree
5413 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5415 tree t = *tp;
5416 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5417 location_t location;
5419 if (EXPR_HAS_LOCATION (t))
5420 location = EXPR_LOCATION (t);
5421 else
5423 location_t *locp = (location_t *) wi->info;
5424 location = *locp;
5427 *walk_subtree = TRUE;
5429 if (TREE_CODE (t) == ARRAY_REF)
5430 check_array_ref (location, t, false /*ignore_off_by_one*/);
5432 if (TREE_CODE (t) == MEM_REF
5433 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5434 search_for_addr_array (TREE_OPERAND (t, 0), location);
5436 if (TREE_CODE (t) == ADDR_EXPR)
5437 *walk_subtree = FALSE;
5439 return NULL_TREE;
5442 /* Walk over all statements of all reachable BBs and call check_array_bounds
5443 on them. */
5445 static void
5446 check_all_array_refs (void)
5448 basic_block bb;
5449 gimple_stmt_iterator si;
5451 FOR_EACH_BB (bb)
5453 edge_iterator ei;
5454 edge e;
5455 bool executable = false;
5457 /* Skip blocks that were found to be unreachable. */
5458 FOR_EACH_EDGE (e, ei, bb->preds)
5459 executable |= !!(e->flags & EDGE_EXECUTABLE);
5460 if (!executable)
5461 continue;
5463 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5465 gimple stmt = gsi_stmt (si);
5466 struct walk_stmt_info wi;
5467 if (!gimple_has_location (stmt))
5468 continue;
5470 if (is_gimple_call (stmt))
5472 size_t i;
5473 size_t n = gimple_call_num_args (stmt);
5474 for (i = 0; i < n; i++)
5476 tree arg = gimple_call_arg (stmt, i);
5477 search_for_addr_array (arg, gimple_location (stmt));
5480 else
5482 memset (&wi, 0, sizeof (wi));
5483 wi.info = CONST_CAST (void *, (const void *)
5484 gimple_location_ptr (stmt));
5486 walk_gimple_op (gsi_stmt (si),
5487 check_array_bounds,
5488 &wi);
5494 /* Convert range assertion expressions into the implied copies and
5495 copy propagate away the copies. Doing the trivial copy propagation
5496 here avoids the need to run the full copy propagation pass after
5497 VRP.
5499 FIXME, this will eventually lead to copy propagation removing the
5500 names that had useful range information attached to them. For
5501 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5502 then N_i will have the range [3, +INF].
5504 However, by converting the assertion into the implied copy
5505 operation N_i = N_j, we will then copy-propagate N_j into the uses
5506 of N_i and lose the range information. We may want to hold on to
5507 ASSERT_EXPRs a little while longer as the ranges could be used in
5508 things like jump threading.
5510 The problem with keeping ASSERT_EXPRs around is that passes after
5511 VRP need to handle them appropriately.
5513 Another approach would be to make the range information a first
5514 class property of the SSA_NAME so that it can be queried from
5515 any pass. This is made somewhat more complex by the need for
5516 multiple ranges to be associated with one SSA_NAME. */
5518 static void
5519 remove_range_assertions (void)
5521 basic_block bb;
5522 gimple_stmt_iterator si;
5524 /* Note that the BSI iterator bump happens at the bottom of the
5525 loop and no bump is necessary if we're removing the statement
5526 referenced by the current BSI. */
5527 FOR_EACH_BB (bb)
5528 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5530 gimple stmt = gsi_stmt (si);
5531 gimple use_stmt;
5533 if (is_gimple_assign (stmt)
5534 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5536 tree rhs = gimple_assign_rhs1 (stmt);
5537 tree var;
5538 tree cond = fold (ASSERT_EXPR_COND (rhs));
5539 use_operand_p use_p;
5540 imm_use_iterator iter;
5542 gcc_assert (cond != boolean_false_node);
5544 /* Propagate the RHS into every use of the LHS. */
5545 var = ASSERT_EXPR_VAR (rhs);
5546 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5547 gimple_assign_lhs (stmt))
5548 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5550 SET_USE (use_p, var);
5551 gcc_assert (TREE_CODE (var) == SSA_NAME);
5554 /* And finally, remove the copy, it is not needed. */
5555 gsi_remove (&si, true);
5556 release_defs (stmt);
5558 else
5559 gsi_next (&si);
5564 /* Return true if STMT is interesting for VRP. */
5566 static bool
5567 stmt_interesting_for_vrp (gimple stmt)
5569 if (gimple_code (stmt) == GIMPLE_PHI
5570 && is_gimple_reg (gimple_phi_result (stmt))
5571 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5572 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5573 return true;
5574 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5576 tree lhs = gimple_get_lhs (stmt);
5578 /* In general, assignments with virtual operands are not useful
5579 for deriving ranges, with the obvious exception of calls to
5580 builtin functions. */
5581 if (lhs && TREE_CODE (lhs) == SSA_NAME
5582 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5583 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5584 && ((is_gimple_call (stmt)
5585 && gimple_call_fndecl (stmt) != NULL_TREE
5586 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5587 || !gimple_vuse (stmt)))
5588 return true;
5590 else if (gimple_code (stmt) == GIMPLE_COND
5591 || gimple_code (stmt) == GIMPLE_SWITCH)
5592 return true;
5594 return false;
5598 /* Initialize local data structures for VRP. */
5600 static void
5601 vrp_initialize (void)
5603 basic_block bb;
5605 values_propagated = false;
5606 num_vr_values = num_ssa_names;
5607 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
5608 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5610 FOR_EACH_BB (bb)
5612 gimple_stmt_iterator si;
5614 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5616 gimple phi = gsi_stmt (si);
5617 if (!stmt_interesting_for_vrp (phi))
5619 tree lhs = PHI_RESULT (phi);
5620 set_value_range_to_varying (get_value_range (lhs));
5621 prop_set_simulate_again (phi, false);
5623 else
5624 prop_set_simulate_again (phi, true);
5627 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5629 gimple stmt = gsi_stmt (si);
5631 /* If the statement is a control insn, then we do not
5632 want to avoid simulating the statement once. Failure
5633 to do so means that those edges will never get added. */
5634 if (stmt_ends_bb_p (stmt))
5635 prop_set_simulate_again (stmt, true);
5636 else if (!stmt_interesting_for_vrp (stmt))
5638 ssa_op_iter i;
5639 tree def;
5640 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5641 set_value_range_to_varying (get_value_range (def));
5642 prop_set_simulate_again (stmt, false);
5644 else
5645 prop_set_simulate_again (stmt, true);
5650 /* Return the singleton value-range for NAME or NAME. */
5652 static inline tree
5653 vrp_valueize (tree name)
5655 if (TREE_CODE (name) == SSA_NAME)
5657 value_range_t *vr = get_value_range (name);
5658 if (vr->type == VR_RANGE
5659 && (vr->min == vr->max
5660 || operand_equal_p (vr->min, vr->max, 0)))
5661 return vr->min;
5663 return name;
5666 /* Visit assignment STMT. If it produces an interesting range, record
5667 the SSA name in *OUTPUT_P. */
5669 static enum ssa_prop_result
5670 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5672 tree def, lhs;
5673 ssa_op_iter iter;
5674 enum gimple_code code = gimple_code (stmt);
5675 lhs = gimple_get_lhs (stmt);
5677 /* We only keep track of ranges in integral and pointer types. */
5678 if (TREE_CODE (lhs) == SSA_NAME
5679 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5680 /* It is valid to have NULL MIN/MAX values on a type. See
5681 build_range_type. */
5682 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5683 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5684 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5686 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5688 /* Try folding the statement to a constant first. */
5689 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
5690 if (tem && !is_overflow_infinity (tem))
5691 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
5692 /* Then dispatch to value-range extracting functions. */
5693 else if (code == GIMPLE_CALL)
5694 extract_range_basic (&new_vr, stmt);
5695 else
5696 extract_range_from_assignment (&new_vr, stmt);
5698 if (update_value_range (lhs, &new_vr))
5700 *output_p = lhs;
5702 if (dump_file && (dump_flags & TDF_DETAILS))
5704 fprintf (dump_file, "Found new range for ");
5705 print_generic_expr (dump_file, lhs, 0);
5706 fprintf (dump_file, ": ");
5707 dump_value_range (dump_file, &new_vr);
5708 fprintf (dump_file, "\n\n");
5711 if (new_vr.type == VR_VARYING)
5712 return SSA_PROP_VARYING;
5714 return SSA_PROP_INTERESTING;
5717 return SSA_PROP_NOT_INTERESTING;
5720 /* Every other statement produces no useful ranges. */
5721 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5722 set_value_range_to_varying (get_value_range (def));
5724 return SSA_PROP_VARYING;
5727 /* Helper that gets the value range of the SSA_NAME with version I
5728 or a symbolic range containing the SSA_NAME only if the value range
5729 is varying or undefined. */
5731 static inline value_range_t
5732 get_vr_for_comparison (int i)
5734 value_range_t vr = *get_value_range (ssa_name (i));
5736 /* If name N_i does not have a valid range, use N_i as its own
5737 range. This allows us to compare against names that may
5738 have N_i in their ranges. */
5739 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5741 vr.type = VR_RANGE;
5742 vr.min = ssa_name (i);
5743 vr.max = ssa_name (i);
5746 return vr;
5749 /* Compare all the value ranges for names equivalent to VAR with VAL
5750 using comparison code COMP. Return the same value returned by
5751 compare_range_with_value, including the setting of
5752 *STRICT_OVERFLOW_P. */
5754 static tree
5755 compare_name_with_value (enum tree_code comp, tree var, tree val,
5756 bool *strict_overflow_p)
5758 bitmap_iterator bi;
5759 unsigned i;
5760 bitmap e;
5761 tree retval, t;
5762 int used_strict_overflow;
5763 bool sop;
5764 value_range_t equiv_vr;
5766 /* Get the set of equivalences for VAR. */
5767 e = get_value_range (var)->equiv;
5769 /* Start at -1. Set it to 0 if we do a comparison without relying
5770 on overflow, or 1 if all comparisons rely on overflow. */
5771 used_strict_overflow = -1;
5773 /* Compare vars' value range with val. */
5774 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5775 sop = false;
5776 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5777 if (retval)
5778 used_strict_overflow = sop ? 1 : 0;
5780 /* If the equiv set is empty we have done all work we need to do. */
5781 if (e == NULL)
5783 if (retval
5784 && used_strict_overflow > 0)
5785 *strict_overflow_p = true;
5786 return retval;
5789 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5791 equiv_vr = get_vr_for_comparison (i);
5792 sop = false;
5793 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5794 if (t)
5796 /* If we get different answers from different members
5797 of the equivalence set this check must be in a dead
5798 code region. Folding it to a trap representation
5799 would be correct here. For now just return don't-know. */
5800 if (retval != NULL
5801 && t != retval)
5803 retval = NULL_TREE;
5804 break;
5806 retval = t;
5808 if (!sop)
5809 used_strict_overflow = 0;
5810 else if (used_strict_overflow < 0)
5811 used_strict_overflow = 1;
5815 if (retval
5816 && used_strict_overflow > 0)
5817 *strict_overflow_p = true;
5819 return retval;
5823 /* Given a comparison code COMP and names N1 and N2, compare all the
5824 ranges equivalent to N1 against all the ranges equivalent to N2
5825 to determine the value of N1 COMP N2. Return the same value
5826 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5827 whether we relied on an overflow infinity in the comparison. */
5830 static tree
5831 compare_names (enum tree_code comp, tree n1, tree n2,
5832 bool *strict_overflow_p)
5834 tree t, retval;
5835 bitmap e1, e2;
5836 bitmap_iterator bi1, bi2;
5837 unsigned i1, i2;
5838 int used_strict_overflow;
5839 static bitmap_obstack *s_obstack = NULL;
5840 static bitmap s_e1 = NULL, s_e2 = NULL;
5842 /* Compare the ranges of every name equivalent to N1 against the
5843 ranges of every name equivalent to N2. */
5844 e1 = get_value_range (n1)->equiv;
5845 e2 = get_value_range (n2)->equiv;
5847 /* Use the fake bitmaps if e1 or e2 are not available. */
5848 if (s_obstack == NULL)
5850 s_obstack = XNEW (bitmap_obstack);
5851 bitmap_obstack_initialize (s_obstack);
5852 s_e1 = BITMAP_ALLOC (s_obstack);
5853 s_e2 = BITMAP_ALLOC (s_obstack);
5855 if (e1 == NULL)
5856 e1 = s_e1;
5857 if (e2 == NULL)
5858 e2 = s_e2;
5860 /* Add N1 and N2 to their own set of equivalences to avoid
5861 duplicating the body of the loop just to check N1 and N2
5862 ranges. */
5863 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5864 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5866 /* If the equivalence sets have a common intersection, then the two
5867 names can be compared without checking their ranges. */
5868 if (bitmap_intersect_p (e1, e2))
5870 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5871 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5873 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5874 ? boolean_true_node
5875 : boolean_false_node;
5878 /* Start at -1. Set it to 0 if we do a comparison without relying
5879 on overflow, or 1 if all comparisons rely on overflow. */
5880 used_strict_overflow = -1;
5882 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5883 N2 to their own set of equivalences to avoid duplicating the body
5884 of the loop just to check N1 and N2 ranges. */
5885 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5887 value_range_t vr1 = get_vr_for_comparison (i1);
5889 t = retval = NULL_TREE;
5890 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5892 bool sop = false;
5894 value_range_t vr2 = get_vr_for_comparison (i2);
5896 t = compare_ranges (comp, &vr1, &vr2, &sop);
5897 if (t)
5899 /* If we get different answers from different members
5900 of the equivalence set this check must be in a dead
5901 code region. Folding it to a trap representation
5902 would be correct here. For now just return don't-know. */
5903 if (retval != NULL
5904 && t != retval)
5906 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5907 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5908 return NULL_TREE;
5910 retval = t;
5912 if (!sop)
5913 used_strict_overflow = 0;
5914 else if (used_strict_overflow < 0)
5915 used_strict_overflow = 1;
5919 if (retval)
5921 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5922 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5923 if (used_strict_overflow > 0)
5924 *strict_overflow_p = true;
5925 return retval;
5929 /* None of the equivalent ranges are useful in computing this
5930 comparison. */
5931 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5932 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5933 return NULL_TREE;
5936 /* Helper function for vrp_evaluate_conditional_warnv. */
5938 static tree
5939 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5940 tree op0, tree op1,
5941 bool * strict_overflow_p)
5943 value_range_t *vr0, *vr1;
5945 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5946 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5948 if (vr0 && vr1)
5949 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5950 else if (vr0 && vr1 == NULL)
5951 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5952 else if (vr0 == NULL && vr1)
5953 return (compare_range_with_value
5954 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5955 return NULL;
5958 /* Helper function for vrp_evaluate_conditional_warnv. */
5960 static tree
5961 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5962 tree op1, bool use_equiv_p,
5963 bool *strict_overflow_p, bool *only_ranges)
5965 tree ret;
5966 if (only_ranges)
5967 *only_ranges = true;
5969 /* We only deal with integral and pointer types. */
5970 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5971 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5972 return NULL_TREE;
5974 if (use_equiv_p)
5976 if (only_ranges
5977 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5978 (code, op0, op1, strict_overflow_p)))
5979 return ret;
5980 *only_ranges = false;
5981 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5982 return compare_names (code, op0, op1, strict_overflow_p);
5983 else if (TREE_CODE (op0) == SSA_NAME)
5984 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5985 else if (TREE_CODE (op1) == SSA_NAME)
5986 return (compare_name_with_value
5987 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5989 else
5990 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5991 strict_overflow_p);
5992 return NULL_TREE;
5995 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5996 information. Return NULL if the conditional can not be evaluated.
5997 The ranges of all the names equivalent with the operands in COND
5998 will be used when trying to compute the value. If the result is
5999 based on undefined signed overflow, issue a warning if
6000 appropriate. */
6002 static tree
6003 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
6005 bool sop;
6006 tree ret;
6007 bool only_ranges;
6009 /* Some passes and foldings leak constants with overflow flag set
6010 into the IL. Avoid doing wrong things with these and bail out. */
6011 if ((TREE_CODE (op0) == INTEGER_CST
6012 && TREE_OVERFLOW (op0))
6013 || (TREE_CODE (op1) == INTEGER_CST
6014 && TREE_OVERFLOW (op1)))
6015 return NULL_TREE;
6017 sop = false;
6018 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
6019 &only_ranges);
6021 if (ret && sop)
6023 enum warn_strict_overflow_code wc;
6024 const char* warnmsg;
6026 if (is_gimple_min_invariant (ret))
6028 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
6029 warnmsg = G_("assuming signed overflow does not occur when "
6030 "simplifying conditional to constant");
6032 else
6034 wc = WARN_STRICT_OVERFLOW_COMPARISON;
6035 warnmsg = G_("assuming signed overflow does not occur when "
6036 "simplifying conditional");
6039 if (issue_strict_overflow_warning (wc))
6041 location_t location;
6043 if (!gimple_has_location (stmt))
6044 location = input_location;
6045 else
6046 location = gimple_location (stmt);
6047 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
6051 if (warn_type_limits
6052 && ret && only_ranges
6053 && TREE_CODE_CLASS (code) == tcc_comparison
6054 && TREE_CODE (op0) == SSA_NAME)
6056 /* If the comparison is being folded and the operand on the LHS
6057 is being compared against a constant value that is outside of
6058 the natural range of OP0's type, then the predicate will
6059 always fold regardless of the value of OP0. If -Wtype-limits
6060 was specified, emit a warning. */
6061 tree type = TREE_TYPE (op0);
6062 value_range_t *vr0 = get_value_range (op0);
6064 if (vr0->type != VR_VARYING
6065 && INTEGRAL_TYPE_P (type)
6066 && vrp_val_is_min (vr0->min)
6067 && vrp_val_is_max (vr0->max)
6068 && is_gimple_min_invariant (op1))
6070 location_t location;
6072 if (!gimple_has_location (stmt))
6073 location = input_location;
6074 else
6075 location = gimple_location (stmt);
6077 warning_at (location, OPT_Wtype_limits,
6078 integer_zerop (ret)
6079 ? G_("comparison always false "
6080 "due to limited range of data type")
6081 : G_("comparison always true "
6082 "due to limited range of data type"));
6086 return ret;
6090 /* Visit conditional statement STMT. If we can determine which edge
6091 will be taken out of STMT's basic block, record it in
6092 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6093 SSA_PROP_VARYING. */
6095 static enum ssa_prop_result
6096 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
6098 tree val;
6099 bool sop;
6101 *taken_edge_p = NULL;
6103 if (dump_file && (dump_flags & TDF_DETAILS))
6105 tree use;
6106 ssa_op_iter i;
6108 fprintf (dump_file, "\nVisiting conditional with predicate: ");
6109 print_gimple_stmt (dump_file, stmt, 0, 0);
6110 fprintf (dump_file, "\nWith known ranges\n");
6112 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
6114 fprintf (dump_file, "\t");
6115 print_generic_expr (dump_file, use, 0);
6116 fprintf (dump_file, ": ");
6117 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
6120 fprintf (dump_file, "\n");
6123 /* Compute the value of the predicate COND by checking the known
6124 ranges of each of its operands.
6126 Note that we cannot evaluate all the equivalent ranges here
6127 because those ranges may not yet be final and with the current
6128 propagation strategy, we cannot determine when the value ranges
6129 of the names in the equivalence set have changed.
6131 For instance, given the following code fragment
6133 i_5 = PHI <8, i_13>
6135 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6136 if (i_14 == 1)
6139 Assume that on the first visit to i_14, i_5 has the temporary
6140 range [8, 8] because the second argument to the PHI function is
6141 not yet executable. We derive the range ~[0, 0] for i_14 and the
6142 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6143 the first time, since i_14 is equivalent to the range [8, 8], we
6144 determine that the predicate is always false.
6146 On the next round of propagation, i_13 is determined to be
6147 VARYING, which causes i_5 to drop down to VARYING. So, another
6148 visit to i_14 is scheduled. In this second visit, we compute the
6149 exact same range and equivalence set for i_14, namely ~[0, 0] and
6150 { i_5 }. But we did not have the previous range for i_5
6151 registered, so vrp_visit_assignment thinks that the range for
6152 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6153 is not visited again, which stops propagation from visiting
6154 statements in the THEN clause of that if().
6156 To properly fix this we would need to keep the previous range
6157 value for the names in the equivalence set. This way we would've
6158 discovered that from one visit to the other i_5 changed from
6159 range [8, 8] to VR_VARYING.
6161 However, fixing this apparent limitation may not be worth the
6162 additional checking. Testing on several code bases (GCC, DLV,
6163 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6164 4 more predicates folded in SPEC. */
6165 sop = false;
6167 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
6168 gimple_cond_lhs (stmt),
6169 gimple_cond_rhs (stmt),
6170 false, &sop, NULL);
6171 if (val)
6173 if (!sop)
6174 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
6175 else
6177 if (dump_file && (dump_flags & TDF_DETAILS))
6178 fprintf (dump_file,
6179 "\nIgnoring predicate evaluation because "
6180 "it assumes that signed overflow is undefined");
6181 val = NULL_TREE;
6185 if (dump_file && (dump_flags & TDF_DETAILS))
6187 fprintf (dump_file, "\nPredicate evaluates to: ");
6188 if (val == NULL_TREE)
6189 fprintf (dump_file, "DON'T KNOW\n");
6190 else
6191 print_generic_stmt (dump_file, val, 0);
6194 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
6197 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6198 that includes the value VAL. The search is restricted to the range
6199 [START_IDX, n - 1] where n is the size of VEC.
6201 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6202 returned.
6204 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6205 it is placed in IDX and false is returned.
6207 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6208 returned. */
6210 static bool
6211 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
6213 size_t n = gimple_switch_num_labels (stmt);
6214 size_t low, high;
6216 /* Find case label for minimum of the value range or the next one.
6217 At each iteration we are searching in [low, high - 1]. */
6219 for (low = start_idx, high = n; high != low; )
6221 tree t;
6222 int cmp;
6223 /* Note that i != high, so we never ask for n. */
6224 size_t i = (high + low) / 2;
6225 t = gimple_switch_label (stmt, i);
6227 /* Cache the result of comparing CASE_LOW and val. */
6228 cmp = tree_int_cst_compare (CASE_LOW (t), val);
6230 if (cmp == 0)
6232 /* Ranges cannot be empty. */
6233 *idx = i;
6234 return true;
6236 else if (cmp > 0)
6237 high = i;
6238 else
6240 low = i + 1;
6241 if (CASE_HIGH (t) != NULL
6242 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6244 *idx = i;
6245 return true;
6250 *idx = high;
6251 return false;
6254 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6255 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6256 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6257 then MAX_IDX < MIN_IDX.
6258 Returns true if the default label is not needed. */
6260 static bool
6261 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
6262 size_t *max_idx)
6264 size_t i, j;
6265 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
6266 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
6268 if (i == j
6269 && min_take_default
6270 && max_take_default)
6272 /* Only the default case label reached.
6273 Return an empty range. */
6274 *min_idx = 1;
6275 *max_idx = 0;
6276 return false;
6278 else
6280 bool take_default = min_take_default || max_take_default;
6281 tree low, high;
6282 size_t k;
6284 if (max_take_default)
6285 j--;
6287 /* If the case label range is continuous, we do not need
6288 the default case label. Verify that. */
6289 high = CASE_LOW (gimple_switch_label (stmt, i));
6290 if (CASE_HIGH (gimple_switch_label (stmt, i)))
6291 high = CASE_HIGH (gimple_switch_label (stmt, i));
6292 for (k = i + 1; k <= j; ++k)
6294 low = CASE_LOW (gimple_switch_label (stmt, k));
6295 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
6297 take_default = true;
6298 break;
6300 high = low;
6301 if (CASE_HIGH (gimple_switch_label (stmt, k)))
6302 high = CASE_HIGH (gimple_switch_label (stmt, k));
6305 *min_idx = i;
6306 *max_idx = j;
6307 return !take_default;
6311 /* Visit switch statement STMT. If we can determine which edge
6312 will be taken out of STMT's basic block, record it in
6313 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6314 SSA_PROP_VARYING. */
6316 static enum ssa_prop_result
6317 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
6319 tree op, val;
6320 value_range_t *vr;
6321 size_t i = 0, j = 0;
6322 bool take_default;
6324 *taken_edge_p = NULL;
6325 op = gimple_switch_index (stmt);
6326 if (TREE_CODE (op) != SSA_NAME)
6327 return SSA_PROP_VARYING;
6329 vr = get_value_range (op);
6330 if (dump_file && (dump_flags & TDF_DETAILS))
6332 fprintf (dump_file, "\nVisiting switch expression with operand ");
6333 print_generic_expr (dump_file, op, 0);
6334 fprintf (dump_file, " with known range ");
6335 dump_value_range (dump_file, vr);
6336 fprintf (dump_file, "\n");
6339 if (vr->type != VR_RANGE
6340 || symbolic_range_p (vr))
6341 return SSA_PROP_VARYING;
6343 /* Find the single edge that is taken from the switch expression. */
6344 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6346 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6347 label */
6348 if (j < i)
6350 gcc_assert (take_default);
6351 val = gimple_switch_default_label (stmt);
6353 else
6355 /* Check if labels with index i to j and maybe the default label
6356 are all reaching the same label. */
6358 val = gimple_switch_label (stmt, i);
6359 if (take_default
6360 && CASE_LABEL (gimple_switch_default_label (stmt))
6361 != CASE_LABEL (val))
6363 if (dump_file && (dump_flags & TDF_DETAILS))
6364 fprintf (dump_file, " not a single destination for this "
6365 "range\n");
6366 return SSA_PROP_VARYING;
6368 for (++i; i <= j; ++i)
6370 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6372 if (dump_file && (dump_flags & TDF_DETAILS))
6373 fprintf (dump_file, " not a single destination for this "
6374 "range\n");
6375 return SSA_PROP_VARYING;
6380 *taken_edge_p = find_edge (gimple_bb (stmt),
6381 label_to_block (CASE_LABEL (val)));
6383 if (dump_file && (dump_flags & TDF_DETAILS))
6385 fprintf (dump_file, " will take edge to ");
6386 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6389 return SSA_PROP_INTERESTING;
6393 /* Evaluate statement STMT. If the statement produces a useful range,
6394 return SSA_PROP_INTERESTING and record the SSA name with the
6395 interesting range into *OUTPUT_P.
6397 If STMT is a conditional branch and we can determine its truth
6398 value, the taken edge is recorded in *TAKEN_EDGE_P.
6400 If STMT produces a varying value, return SSA_PROP_VARYING. */
6402 static enum ssa_prop_result
6403 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6405 tree def;
6406 ssa_op_iter iter;
6408 if (dump_file && (dump_flags & TDF_DETAILS))
6410 fprintf (dump_file, "\nVisiting statement:\n");
6411 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6412 fprintf (dump_file, "\n");
6415 if (!stmt_interesting_for_vrp (stmt))
6416 gcc_assert (stmt_ends_bb_p (stmt));
6417 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6419 /* In general, assignments with virtual operands are not useful
6420 for deriving ranges, with the obvious exception of calls to
6421 builtin functions. */
6422 if ((is_gimple_call (stmt)
6423 && gimple_call_fndecl (stmt) != NULL_TREE
6424 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
6425 || !gimple_vuse (stmt))
6426 return vrp_visit_assignment_or_call (stmt, output_p);
6428 else if (gimple_code (stmt) == GIMPLE_COND)
6429 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6430 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6431 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6433 /* All other statements produce nothing of interest for VRP, so mark
6434 their outputs varying and prevent further simulation. */
6435 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6436 set_value_range_to_varying (get_value_range (def));
6438 return SSA_PROP_VARYING;
6442 /* Meet operation for value ranges. Given two value ranges VR0 and
6443 VR1, store in VR0 a range that contains both VR0 and VR1. This
6444 may not be the smallest possible such range. */
6446 static void
6447 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6449 if (vr0->type == VR_UNDEFINED)
6451 copy_value_range (vr0, vr1);
6452 return;
6455 if (vr1->type == VR_UNDEFINED)
6457 /* Nothing to do. VR0 already has the resulting range. */
6458 return;
6461 if (vr0->type == VR_VARYING)
6463 /* Nothing to do. VR0 already has the resulting range. */
6464 return;
6467 if (vr1->type == VR_VARYING)
6469 set_value_range_to_varying (vr0);
6470 return;
6473 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6475 int cmp;
6476 tree min, max;
6478 /* Compute the convex hull of the ranges. The lower limit of
6479 the new range is the minimum of the two ranges. If they
6480 cannot be compared, then give up. */
6481 cmp = compare_values (vr0->min, vr1->min);
6482 if (cmp == 0 || cmp == 1)
6483 min = vr1->min;
6484 else if (cmp == -1)
6485 min = vr0->min;
6486 else
6487 goto give_up;
6489 /* Similarly, the upper limit of the new range is the maximum
6490 of the two ranges. If they cannot be compared, then
6491 give up. */
6492 cmp = compare_values (vr0->max, vr1->max);
6493 if (cmp == 0 || cmp == -1)
6494 max = vr1->max;
6495 else if (cmp == 1)
6496 max = vr0->max;
6497 else
6498 goto give_up;
6500 /* Check for useless ranges. */
6501 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6502 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6503 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6504 goto give_up;
6506 /* The resulting set of equivalences is the intersection of
6507 the two sets. */
6508 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6509 bitmap_and_into (vr0->equiv, vr1->equiv);
6510 else if (vr0->equiv && !vr1->equiv)
6511 bitmap_clear (vr0->equiv);
6513 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6515 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6517 /* Two anti-ranges meet only if their complements intersect.
6518 Only handle the case of identical ranges. */
6519 if (compare_values (vr0->min, vr1->min) == 0
6520 && compare_values (vr0->max, vr1->max) == 0
6521 && compare_values (vr0->min, vr0->max) == 0)
6523 /* The resulting set of equivalences is the intersection of
6524 the two sets. */
6525 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6526 bitmap_and_into (vr0->equiv, vr1->equiv);
6527 else if (vr0->equiv && !vr1->equiv)
6528 bitmap_clear (vr0->equiv);
6530 else
6531 goto give_up;
6533 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6535 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6536 only handle the case where the ranges have an empty intersection.
6537 The result of the meet operation is the anti-range. */
6538 if (!symbolic_range_p (vr0)
6539 && !symbolic_range_p (vr1)
6540 && !value_ranges_intersect_p (vr0, vr1))
6542 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6543 set. We need to compute the intersection of the two
6544 equivalence sets. */
6545 if (vr1->type == VR_ANTI_RANGE)
6546 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6548 /* The resulting set of equivalences is the intersection of
6549 the two sets. */
6550 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6551 bitmap_and_into (vr0->equiv, vr1->equiv);
6552 else if (vr0->equiv && !vr1->equiv)
6553 bitmap_clear (vr0->equiv);
6555 else
6556 goto give_up;
6558 else
6559 gcc_unreachable ();
6561 return;
6563 give_up:
6564 /* Failed to find an efficient meet. Before giving up and setting
6565 the result to VARYING, see if we can at least derive a useful
6566 anti-range. FIXME, all this nonsense about distinguishing
6567 anti-ranges from ranges is necessary because of the odd
6568 semantics of range_includes_zero_p and friends. */
6569 if (!symbolic_range_p (vr0)
6570 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6571 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6572 && !symbolic_range_p (vr1)
6573 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6574 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6576 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6578 /* Since this meet operation did not result from the meeting of
6579 two equivalent names, VR0 cannot have any equivalences. */
6580 if (vr0->equiv)
6581 bitmap_clear (vr0->equiv);
6583 else
6584 set_value_range_to_varying (vr0);
6588 /* Visit all arguments for PHI node PHI that flow through executable
6589 edges. If a valid value range can be derived from all the incoming
6590 value ranges, set a new range for the LHS of PHI. */
6592 static enum ssa_prop_result
6593 vrp_visit_phi_node (gimple phi)
6595 size_t i;
6596 tree lhs = PHI_RESULT (phi);
6597 value_range_t *lhs_vr = get_value_range (lhs);
6598 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6599 int edges, old_edges;
6600 struct loop *l;
6602 if (dump_file && (dump_flags & TDF_DETAILS))
6604 fprintf (dump_file, "\nVisiting PHI node: ");
6605 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6608 edges = 0;
6609 for (i = 0; i < gimple_phi_num_args (phi); i++)
6611 edge e = gimple_phi_arg_edge (phi, i);
6613 if (dump_file && (dump_flags & TDF_DETAILS))
6615 fprintf (dump_file,
6616 "\n Argument #%d (%d -> %d %sexecutable)\n",
6617 (int) i, e->src->index, e->dest->index,
6618 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6621 if (e->flags & EDGE_EXECUTABLE)
6623 tree arg = PHI_ARG_DEF (phi, i);
6624 value_range_t vr_arg;
6626 ++edges;
6628 if (TREE_CODE (arg) == SSA_NAME)
6630 vr_arg = *(get_value_range (arg));
6632 else
6634 if (is_overflow_infinity (arg))
6636 arg = copy_node (arg);
6637 TREE_OVERFLOW (arg) = 0;
6640 vr_arg.type = VR_RANGE;
6641 vr_arg.min = arg;
6642 vr_arg.max = arg;
6643 vr_arg.equiv = NULL;
6646 if (dump_file && (dump_flags & TDF_DETAILS))
6648 fprintf (dump_file, "\t");
6649 print_generic_expr (dump_file, arg, dump_flags);
6650 fprintf (dump_file, "\n\tValue: ");
6651 dump_value_range (dump_file, &vr_arg);
6652 fprintf (dump_file, "\n");
6655 vrp_meet (&vr_result, &vr_arg);
6657 if (vr_result.type == VR_VARYING)
6658 break;
6662 if (vr_result.type == VR_VARYING)
6663 goto varying;
6664 else if (vr_result.type == VR_UNDEFINED)
6665 goto update_range;
6667 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6668 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6670 /* To prevent infinite iterations in the algorithm, derive ranges
6671 when the new value is slightly bigger or smaller than the
6672 previous one. We don't do this if we have seen a new executable
6673 edge; this helps us avoid an overflow infinity for conditionals
6674 which are not in a loop. */
6675 if (edges > 0
6676 && gimple_phi_num_args (phi) > 1
6677 && edges == old_edges)
6679 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6680 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6682 /* For non VR_RANGE or for pointers fall back to varying if
6683 the range changed. */
6684 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
6685 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6686 && (cmp_min != 0 || cmp_max != 0))
6687 goto varying;
6689 /* If the new minimum is smaller or larger than the previous
6690 one, go all the way to -INF. In the first case, to avoid
6691 iterating millions of times to reach -INF, and in the
6692 other case to avoid infinite bouncing between different
6693 minimums. */
6694 if (cmp_min > 0 || cmp_min < 0)
6696 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6697 || !vrp_var_may_overflow (lhs, phi))
6698 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6699 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6700 vr_result.min =
6701 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6704 /* Similarly, if the new maximum is smaller or larger than
6705 the previous one, go all the way to +INF. */
6706 if (cmp_max < 0 || cmp_max > 0)
6708 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6709 || !vrp_var_may_overflow (lhs, phi))
6710 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6711 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6712 vr_result.max =
6713 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6716 /* If we dropped either bound to +-INF then if this is a loop
6717 PHI node SCEV may known more about its value-range. */
6718 if ((cmp_min > 0 || cmp_min < 0
6719 || cmp_max < 0 || cmp_max > 0)
6720 && current_loops
6721 && (l = loop_containing_stmt (phi))
6722 && l->header == gimple_bb (phi))
6723 adjust_range_with_scev (&vr_result, l, phi, lhs);
6725 /* If we will end up with a (-INF, +INF) range, set it to
6726 VARYING. Same if the previous max value was invalid for
6727 the type and we end up with vr_result.min > vr_result.max. */
6728 if ((vrp_val_is_max (vr_result.max)
6729 && vrp_val_is_min (vr_result.min))
6730 || compare_values (vr_result.min,
6731 vr_result.max) > 0)
6732 goto varying;
6735 /* If the new range is different than the previous value, keep
6736 iterating. */
6737 update_range:
6738 if (update_value_range (lhs, &vr_result))
6740 if (dump_file && (dump_flags & TDF_DETAILS))
6742 fprintf (dump_file, "Found new range for ");
6743 print_generic_expr (dump_file, lhs, 0);
6744 fprintf (dump_file, ": ");
6745 dump_value_range (dump_file, &vr_result);
6746 fprintf (dump_file, "\n\n");
6749 return SSA_PROP_INTERESTING;
6752 /* Nothing changed, don't add outgoing edges. */
6753 return SSA_PROP_NOT_INTERESTING;
6755 /* No match found. Set the LHS to VARYING. */
6756 varying:
6757 set_value_range_to_varying (lhs_vr);
6758 return SSA_PROP_VARYING;
6761 /* Simplify boolean operations if the source is known
6762 to be already a boolean. */
6763 static bool
6764 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6766 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6767 tree lhs, op0, op1;
6768 bool need_conversion;
6770 /* We handle only !=/== case here. */
6771 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
6773 op0 = gimple_assign_rhs1 (stmt);
6774 if (!op_with_boolean_value_range_p (op0))
6775 return false;
6777 op1 = gimple_assign_rhs2 (stmt);
6778 if (!op_with_boolean_value_range_p (op1))
6779 return false;
6781 /* Reduce number of cases to handle to NE_EXPR. As there is no
6782 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
6783 if (rhs_code == EQ_EXPR)
6785 if (TREE_CODE (op1) == INTEGER_CST)
6786 op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
6787 else
6788 return false;
6791 lhs = gimple_assign_lhs (stmt);
6792 need_conversion
6793 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
6795 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
6796 if (need_conversion
6797 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6798 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
6799 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
6800 return false;
6802 /* For A != 0 we can substitute A itself. */
6803 if (integer_zerop (op1))
6804 gimple_assign_set_rhs_with_ops (gsi,
6805 need_conversion
6806 ? NOP_EXPR : TREE_CODE (op0),
6807 op0, NULL_TREE);
6808 /* For A != B we substitute A ^ B. Either with conversion. */
6809 else if (need_conversion)
6811 gimple newop;
6812 tree tem = create_tmp_reg (TREE_TYPE (op0), NULL);
6813 newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
6814 tem = make_ssa_name (tem, newop);
6815 gimple_assign_set_lhs (newop, tem);
6816 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
6817 update_stmt (newop);
6818 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
6820 /* Or without. */
6821 else
6822 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
6823 update_stmt (gsi_stmt (*gsi));
6825 return true;
6828 /* Simplify a division or modulo operator to a right shift or
6829 bitwise and if the first operand is unsigned or is greater
6830 than zero and the second operand is an exact power of two. */
6832 static bool
6833 simplify_div_or_mod_using_ranges (gimple stmt)
6835 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6836 tree val = NULL;
6837 tree op0 = gimple_assign_rhs1 (stmt);
6838 tree op1 = gimple_assign_rhs2 (stmt);
6839 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6841 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6843 val = integer_one_node;
6845 else
6847 bool sop = false;
6849 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6851 if (val
6852 && sop
6853 && integer_onep (val)
6854 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6856 location_t location;
6858 if (!gimple_has_location (stmt))
6859 location = input_location;
6860 else
6861 location = gimple_location (stmt);
6862 warning_at (location, OPT_Wstrict_overflow,
6863 "assuming signed overflow does not occur when "
6864 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6868 if (val && integer_onep (val))
6870 tree t;
6872 if (rhs_code == TRUNC_DIV_EXPR)
6874 t = build_int_cst (integer_type_node, tree_log2 (op1));
6875 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6876 gimple_assign_set_rhs1 (stmt, op0);
6877 gimple_assign_set_rhs2 (stmt, t);
6879 else
6881 t = build_int_cst (TREE_TYPE (op1), 1);
6882 t = int_const_binop (MINUS_EXPR, op1, t);
6883 t = fold_convert (TREE_TYPE (op0), t);
6885 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6886 gimple_assign_set_rhs1 (stmt, op0);
6887 gimple_assign_set_rhs2 (stmt, t);
6890 update_stmt (stmt);
6891 return true;
6894 return false;
6897 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6898 ABS_EXPR. If the operand is <= 0, then simplify the
6899 ABS_EXPR into a NEGATE_EXPR. */
6901 static bool
6902 simplify_abs_using_ranges (gimple stmt)
6904 tree val = NULL;
6905 tree op = gimple_assign_rhs1 (stmt);
6906 tree type = TREE_TYPE (op);
6907 value_range_t *vr = get_value_range (op);
6909 if (TYPE_UNSIGNED (type))
6911 val = integer_zero_node;
6913 else if (vr)
6915 bool sop = false;
6917 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6918 if (!val)
6920 sop = false;
6921 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6922 &sop);
6924 if (val)
6926 if (integer_zerop (val))
6927 val = integer_one_node;
6928 else if (integer_onep (val))
6929 val = integer_zero_node;
6933 if (val
6934 && (integer_onep (val) || integer_zerop (val)))
6936 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6938 location_t location;
6940 if (!gimple_has_location (stmt))
6941 location = input_location;
6942 else
6943 location = gimple_location (stmt);
6944 warning_at (location, OPT_Wstrict_overflow,
6945 "assuming signed overflow does not occur when "
6946 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6949 gimple_assign_set_rhs1 (stmt, op);
6950 if (integer_onep (val))
6951 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6952 else
6953 gimple_assign_set_rhs_code (stmt, SSA_NAME);
6954 update_stmt (stmt);
6955 return true;
6959 return false;
6962 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
6963 If all the bits that are being cleared by & are already
6964 known to be zero from VR, or all the bits that are being
6965 set by | are already known to be one from VR, the bit
6966 operation is redundant. */
6968 static bool
6969 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6971 tree op0 = gimple_assign_rhs1 (stmt);
6972 tree op1 = gimple_assign_rhs2 (stmt);
6973 tree op = NULL_TREE;
6974 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6975 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6976 double_int may_be_nonzero0, may_be_nonzero1;
6977 double_int must_be_nonzero0, must_be_nonzero1;
6978 double_int mask;
6980 if (TREE_CODE (op0) == SSA_NAME)
6981 vr0 = *(get_value_range (op0));
6982 else if (is_gimple_min_invariant (op0))
6983 set_value_range_to_value (&vr0, op0, NULL);
6984 else
6985 return false;
6987 if (TREE_CODE (op1) == SSA_NAME)
6988 vr1 = *(get_value_range (op1));
6989 else if (is_gimple_min_invariant (op1))
6990 set_value_range_to_value (&vr1, op1, NULL);
6991 else
6992 return false;
6994 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
6995 return false;
6996 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
6997 return false;
6999 switch (gimple_assign_rhs_code (stmt))
7001 case BIT_AND_EXPR:
7002 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7003 if (double_int_zero_p (mask))
7005 op = op0;
7006 break;
7008 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7009 if (double_int_zero_p (mask))
7011 op = op1;
7012 break;
7014 break;
7015 case BIT_IOR_EXPR:
7016 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7017 if (double_int_zero_p (mask))
7019 op = op1;
7020 break;
7022 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7023 if (double_int_zero_p (mask))
7025 op = op0;
7026 break;
7028 break;
7029 default:
7030 gcc_unreachable ();
7033 if (op == NULL_TREE)
7034 return false;
7036 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
7037 update_stmt (gsi_stmt (*gsi));
7038 return true;
7041 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7042 a known value range VR.
7044 If there is one and only one value which will satisfy the
7045 conditional, then return that value. Else return NULL. */
7047 static tree
7048 test_for_singularity (enum tree_code cond_code, tree op0,
7049 tree op1, value_range_t *vr)
7051 tree min = NULL;
7052 tree max = NULL;
7054 /* Extract minimum/maximum values which satisfy the
7055 the conditional as it was written. */
7056 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
7058 /* This should not be negative infinity; there is no overflow
7059 here. */
7060 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
7062 max = op1;
7063 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
7065 tree one = build_int_cst (TREE_TYPE (op0), 1);
7066 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
7067 if (EXPR_P (max))
7068 TREE_NO_WARNING (max) = 1;
7071 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
7073 /* This should not be positive infinity; there is no overflow
7074 here. */
7075 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
7077 min = op1;
7078 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
7080 tree one = build_int_cst (TREE_TYPE (op0), 1);
7081 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
7082 if (EXPR_P (min))
7083 TREE_NO_WARNING (min) = 1;
7087 /* Now refine the minimum and maximum values using any
7088 value range information we have for op0. */
7089 if (min && max)
7091 if (compare_values (vr->min, min) == 1)
7092 min = vr->min;
7093 if (compare_values (vr->max, max) == -1)
7094 max = vr->max;
7096 /* If the new min/max values have converged to a single value,
7097 then there is only one value which can satisfy the condition,
7098 return that value. */
7099 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
7100 return min;
7102 return NULL;
7105 /* Simplify a conditional using a relational operator to an equality
7106 test if the range information indicates only one value can satisfy
7107 the original conditional. */
7109 static bool
7110 simplify_cond_using_ranges (gimple stmt)
7112 tree op0 = gimple_cond_lhs (stmt);
7113 tree op1 = gimple_cond_rhs (stmt);
7114 enum tree_code cond_code = gimple_cond_code (stmt);
7116 if (cond_code != NE_EXPR
7117 && cond_code != EQ_EXPR
7118 && TREE_CODE (op0) == SSA_NAME
7119 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7120 && is_gimple_min_invariant (op1))
7122 value_range_t *vr = get_value_range (op0);
7124 /* If we have range information for OP0, then we might be
7125 able to simplify this conditional. */
7126 if (vr->type == VR_RANGE)
7128 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
7130 if (new_tree)
7132 if (dump_file)
7134 fprintf (dump_file, "Simplified relational ");
7135 print_gimple_stmt (dump_file, stmt, 0, 0);
7136 fprintf (dump_file, " into ");
7139 gimple_cond_set_code (stmt, EQ_EXPR);
7140 gimple_cond_set_lhs (stmt, op0);
7141 gimple_cond_set_rhs (stmt, new_tree);
7143 update_stmt (stmt);
7145 if (dump_file)
7147 print_gimple_stmt (dump_file, stmt, 0, 0);
7148 fprintf (dump_file, "\n");
7151 return true;
7154 /* Try again after inverting the condition. We only deal
7155 with integral types here, so no need to worry about
7156 issues with inverting FP comparisons. */
7157 cond_code = invert_tree_comparison (cond_code, false);
7158 new_tree = test_for_singularity (cond_code, op0, op1, vr);
7160 if (new_tree)
7162 if (dump_file)
7164 fprintf (dump_file, "Simplified relational ");
7165 print_gimple_stmt (dump_file, stmt, 0, 0);
7166 fprintf (dump_file, " into ");
7169 gimple_cond_set_code (stmt, NE_EXPR);
7170 gimple_cond_set_lhs (stmt, op0);
7171 gimple_cond_set_rhs (stmt, new_tree);
7173 update_stmt (stmt);
7175 if (dump_file)
7177 print_gimple_stmt (dump_file, stmt, 0, 0);
7178 fprintf (dump_file, "\n");
7181 return true;
7186 return false;
7189 /* Simplify a switch statement using the value range of the switch
7190 argument. */
7192 static bool
7193 simplify_switch_using_ranges (gimple stmt)
7195 tree op = gimple_switch_index (stmt);
7196 value_range_t *vr;
7197 bool take_default;
7198 edge e;
7199 edge_iterator ei;
7200 size_t i = 0, j = 0, n, n2;
7201 tree vec2;
7202 switch_update su;
7204 if (TREE_CODE (op) == SSA_NAME)
7206 vr = get_value_range (op);
7208 /* We can only handle integer ranges. */
7209 if (vr->type != VR_RANGE
7210 || symbolic_range_p (vr))
7211 return false;
7213 /* Find case label for min/max of the value range. */
7214 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
7216 else if (TREE_CODE (op) == INTEGER_CST)
7218 take_default = !find_case_label_index (stmt, 1, op, &i);
7219 if (take_default)
7221 i = 1;
7222 j = 0;
7224 else
7226 j = i;
7229 else
7230 return false;
7232 n = gimple_switch_num_labels (stmt);
7234 /* Bail out if this is just all edges taken. */
7235 if (i == 1
7236 && j == n - 1
7237 && take_default)
7238 return false;
7240 /* Build a new vector of taken case labels. */
7241 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
7242 n2 = 0;
7244 /* Add the default edge, if necessary. */
7245 if (take_default)
7246 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
7248 for (; i <= j; ++i, ++n2)
7249 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
7251 /* Mark needed edges. */
7252 for (i = 0; i < n2; ++i)
7254 e = find_edge (gimple_bb (stmt),
7255 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
7256 e->aux = (void *)-1;
7259 /* Queue not needed edges for later removal. */
7260 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
7262 if (e->aux == (void *)-1)
7264 e->aux = NULL;
7265 continue;
7268 if (dump_file && (dump_flags & TDF_DETAILS))
7270 fprintf (dump_file, "removing unreachable case label\n");
7272 VEC_safe_push (edge, heap, to_remove_edges, e);
7273 e->flags &= ~EDGE_EXECUTABLE;
7276 /* And queue an update for the stmt. */
7277 su.stmt = stmt;
7278 su.vec = vec2;
7279 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
7280 return false;
7283 /* Simplify an integral conversion from an SSA name in STMT. */
7285 static bool
7286 simplify_conversion_using_ranges (gimple stmt)
7288 tree innerop, middleop, finaltype;
7289 gimple def_stmt;
7290 value_range_t *innervr;
7291 double_int innermin, innermax, middlemin, middlemax;
7293 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
7294 if (!INTEGRAL_TYPE_P (finaltype))
7295 return false;
7296 middleop = gimple_assign_rhs1 (stmt);
7297 def_stmt = SSA_NAME_DEF_STMT (middleop);
7298 if (!is_gimple_assign (def_stmt)
7299 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
7300 return false;
7301 innerop = gimple_assign_rhs1 (def_stmt);
7302 if (TREE_CODE (innerop) != SSA_NAME)
7303 return false;
7305 /* Get the value-range of the inner operand. */
7306 innervr = get_value_range (innerop);
7307 if (innervr->type != VR_RANGE
7308 || TREE_CODE (innervr->min) != INTEGER_CST
7309 || TREE_CODE (innervr->max) != INTEGER_CST)
7310 return false;
7312 /* Simulate the conversion chain to check if the result is equal if
7313 the middle conversion is removed. */
7314 innermin = tree_to_double_int (innervr->min);
7315 innermax = tree_to_double_int (innervr->max);
7316 middlemin = double_int_ext (innermin, TYPE_PRECISION (TREE_TYPE (middleop)),
7317 TYPE_UNSIGNED (TREE_TYPE (middleop)));
7318 middlemax = double_int_ext (innermax, TYPE_PRECISION (TREE_TYPE (middleop)),
7319 TYPE_UNSIGNED (TREE_TYPE (middleop)));
7320 /* If the middle values do not represent a proper range fail. */
7321 if (double_int_cmp (middlemin, middlemax,
7322 TYPE_UNSIGNED (TREE_TYPE (middleop))) > 0)
7323 return false;
7324 if (!double_int_equal_p (double_int_ext (middlemin,
7325 TYPE_PRECISION (finaltype),
7326 TYPE_UNSIGNED (finaltype)),
7327 double_int_ext (innermin,
7328 TYPE_PRECISION (finaltype),
7329 TYPE_UNSIGNED (finaltype)))
7330 || !double_int_equal_p (double_int_ext (middlemax,
7331 TYPE_PRECISION (finaltype),
7332 TYPE_UNSIGNED (finaltype)),
7333 double_int_ext (innermax,
7334 TYPE_PRECISION (finaltype),
7335 TYPE_UNSIGNED (finaltype))))
7336 return false;
7338 gimple_assign_set_rhs1 (stmt, innerop);
7339 update_stmt (stmt);
7340 return true;
7343 /* Return whether the value range *VR fits in an integer type specified
7344 by PRECISION and UNSIGNED_P. */
7346 static bool
7347 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
7349 tree src_type;
7350 unsigned src_precision;
7351 double_int tem;
7353 /* We can only handle integral and pointer types. */
7354 src_type = TREE_TYPE (vr->min);
7355 if (!INTEGRAL_TYPE_P (src_type)
7356 && !POINTER_TYPE_P (src_type))
7357 return false;
7359 /* An extension is always fine, so is an identity transform. */
7360 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
7361 if (src_precision < precision
7362 || (src_precision == precision
7363 && TYPE_UNSIGNED (src_type) == unsigned_p))
7364 return true;
7366 /* Now we can only handle ranges with constant bounds. */
7367 if (vr->type != VR_RANGE
7368 || TREE_CODE (vr->min) != INTEGER_CST
7369 || TREE_CODE (vr->max) != INTEGER_CST)
7370 return false;
7372 /* For precision-preserving sign-changes the MSB of the double-int
7373 has to be clear. */
7374 if (src_precision == precision
7375 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
7376 return false;
7378 /* Then we can perform the conversion on both ends and compare
7379 the result for equality. */
7380 tem = double_int_ext (tree_to_double_int (vr->min), precision, unsigned_p);
7381 if (!double_int_equal_p (tree_to_double_int (vr->min), tem))
7382 return false;
7383 tem = double_int_ext (tree_to_double_int (vr->max), precision, unsigned_p);
7384 if (!double_int_equal_p (tree_to_double_int (vr->max), tem))
7385 return false;
7387 return true;
7390 /* Simplify a conversion from integral SSA name to float in STMT. */
7392 static bool
7393 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
7395 tree rhs1 = gimple_assign_rhs1 (stmt);
7396 value_range_t *vr = get_value_range (rhs1);
7397 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
7398 enum machine_mode mode;
7399 tree tem;
7400 gimple conv;
7402 /* We can only handle constant ranges. */
7403 if (vr->type != VR_RANGE
7404 || TREE_CODE (vr->min) != INTEGER_CST
7405 || TREE_CODE (vr->max) != INTEGER_CST)
7406 return false;
7408 /* First check if we can use a signed type in place of an unsigned. */
7409 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
7410 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
7411 != CODE_FOR_nothing)
7412 && range_fits_type_p (vr, GET_MODE_PRECISION
7413 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
7414 mode = TYPE_MODE (TREE_TYPE (rhs1));
7415 /* If we can do the conversion in the current input mode do nothing. */
7416 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
7417 TYPE_UNSIGNED (TREE_TYPE (rhs1))))
7418 return false;
7419 /* Otherwise search for a mode we can use, starting from the narrowest
7420 integer mode available. */
7421 else
7423 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
7426 /* If we cannot do a signed conversion to float from mode
7427 or if the value-range does not fit in the signed type
7428 try with a wider mode. */
7429 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
7430 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
7431 break;
7433 mode = GET_MODE_WIDER_MODE (mode);
7434 /* But do not widen the input. Instead leave that to the
7435 optabs expansion code. */
7436 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
7437 return false;
7439 while (mode != VOIDmode);
7440 if (mode == VOIDmode)
7441 return false;
7444 /* It works, insert a truncation or sign-change before the
7445 float conversion. */
7446 tem = create_tmp_var (build_nonstandard_integer_type
7447 (GET_MODE_PRECISION (mode), 0), NULL);
7448 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
7449 tem = make_ssa_name (tem, conv);
7450 gimple_assign_set_lhs (conv, tem);
7451 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
7452 gimple_assign_set_rhs1 (stmt, tem);
7453 update_stmt (stmt);
7455 return true;
7458 /* Simplify STMT using ranges if possible. */
7460 static bool
7461 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
7463 gimple stmt = gsi_stmt (*gsi);
7464 if (is_gimple_assign (stmt))
7466 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7467 tree rhs1 = gimple_assign_rhs1 (stmt);
7469 switch (rhs_code)
7471 case EQ_EXPR:
7472 case NE_EXPR:
7473 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
7474 if the RHS is zero or one, and the LHS are known to be boolean
7475 values. */
7476 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7477 return simplify_truth_ops_using_ranges (gsi, stmt);
7478 break;
7480 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7481 and BIT_AND_EXPR respectively if the first operand is greater
7482 than zero and the second operand is an exact power of two. */
7483 case TRUNC_DIV_EXPR:
7484 case TRUNC_MOD_EXPR:
7485 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
7486 && integer_pow2p (gimple_assign_rhs2 (stmt)))
7487 return simplify_div_or_mod_using_ranges (stmt);
7488 break;
7490 /* Transform ABS (X) into X or -X as appropriate. */
7491 case ABS_EXPR:
7492 if (TREE_CODE (rhs1) == SSA_NAME
7493 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7494 return simplify_abs_using_ranges (stmt);
7495 break;
7497 case BIT_AND_EXPR:
7498 case BIT_IOR_EXPR:
7499 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7500 if all the bits being cleared are already cleared or
7501 all the bits being set are already set. */
7502 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7503 return simplify_bit_ops_using_ranges (gsi, stmt);
7504 break;
7506 CASE_CONVERT:
7507 if (TREE_CODE (rhs1) == SSA_NAME
7508 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7509 return simplify_conversion_using_ranges (stmt);
7510 break;
7512 case FLOAT_EXPR:
7513 if (TREE_CODE (rhs1) == SSA_NAME
7514 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7515 return simplify_float_conversion_using_ranges (gsi, stmt);
7516 break;
7518 default:
7519 break;
7522 else if (gimple_code (stmt) == GIMPLE_COND)
7523 return simplify_cond_using_ranges (stmt);
7524 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7525 return simplify_switch_using_ranges (stmt);
7527 return false;
7530 /* If the statement pointed by SI has a predicate whose value can be
7531 computed using the value range information computed by VRP, compute
7532 its value and return true. Otherwise, return false. */
7534 static bool
7535 fold_predicate_in (gimple_stmt_iterator *si)
7537 bool assignment_p = false;
7538 tree val;
7539 gimple stmt = gsi_stmt (*si);
7541 if (is_gimple_assign (stmt)
7542 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
7544 assignment_p = true;
7545 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
7546 gimple_assign_rhs1 (stmt),
7547 gimple_assign_rhs2 (stmt),
7548 stmt);
7550 else if (gimple_code (stmt) == GIMPLE_COND)
7551 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
7552 gimple_cond_lhs (stmt),
7553 gimple_cond_rhs (stmt),
7554 stmt);
7555 else
7556 return false;
7558 if (val)
7560 if (assignment_p)
7561 val = fold_convert (gimple_expr_type (stmt), val);
7563 if (dump_file)
7565 fprintf (dump_file, "Folding predicate ");
7566 print_gimple_expr (dump_file, stmt, 0, 0);
7567 fprintf (dump_file, " to ");
7568 print_generic_expr (dump_file, val, 0);
7569 fprintf (dump_file, "\n");
7572 if (is_gimple_assign (stmt))
7573 gimple_assign_set_rhs_from_tree (si, val);
7574 else
7576 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
7577 if (integer_zerop (val))
7578 gimple_cond_make_false (stmt);
7579 else if (integer_onep (val))
7580 gimple_cond_make_true (stmt);
7581 else
7582 gcc_unreachable ();
7585 return true;
7588 return false;
7591 /* Callback for substitute_and_fold folding the stmt at *SI. */
7593 static bool
7594 vrp_fold_stmt (gimple_stmt_iterator *si)
7596 if (fold_predicate_in (si))
7597 return true;
7599 return simplify_stmt_using_ranges (si);
7602 /* Stack of dest,src equivalency pairs that need to be restored after
7603 each attempt to thread a block's incoming edge to an outgoing edge.
7605 A NULL entry is used to mark the end of pairs which need to be
7606 restored. */
7607 static VEC(tree,heap) *stack;
7609 /* A trivial wrapper so that we can present the generic jump threading
7610 code with a simple API for simplifying statements. STMT is the
7611 statement we want to simplify, WITHIN_STMT provides the location
7612 for any overflow warnings. */
7614 static tree
7615 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7617 /* We only use VRP information to simplify conditionals. This is
7618 overly conservative, but it's unclear if doing more would be
7619 worth the compile time cost. */
7620 if (gimple_code (stmt) != GIMPLE_COND)
7621 return NULL;
7623 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7624 gimple_cond_lhs (stmt),
7625 gimple_cond_rhs (stmt), within_stmt);
7628 /* Blocks which have more than one predecessor and more than
7629 one successor present jump threading opportunities, i.e.,
7630 when the block is reached from a specific predecessor, we
7631 may be able to determine which of the outgoing edges will
7632 be traversed. When this optimization applies, we are able
7633 to avoid conditionals at runtime and we may expose secondary
7634 optimization opportunities.
7636 This routine is effectively a driver for the generic jump
7637 threading code. It basically just presents the generic code
7638 with edges that may be suitable for jump threading.
7640 Unlike DOM, we do not iterate VRP if jump threading was successful.
7641 While iterating may expose new opportunities for VRP, it is expected
7642 those opportunities would be very limited and the compile time cost
7643 to expose those opportunities would be significant.
7645 As jump threading opportunities are discovered, they are registered
7646 for later realization. */
7648 static void
7649 identify_jump_threads (void)
7651 basic_block bb;
7652 gimple dummy;
7653 int i;
7654 edge e;
7656 /* Ugh. When substituting values earlier in this pass we can
7657 wipe the dominance information. So rebuild the dominator
7658 information as we need it within the jump threading code. */
7659 calculate_dominance_info (CDI_DOMINATORS);
7661 /* We do not allow VRP information to be used for jump threading
7662 across a back edge in the CFG. Otherwise it becomes too
7663 difficult to avoid eliminating loop exit tests. Of course
7664 EDGE_DFS_BACK is not accurate at this time so we have to
7665 recompute it. */
7666 mark_dfs_back_edges ();
7668 /* Do not thread across edges we are about to remove. Just marking
7669 them as EDGE_DFS_BACK will do. */
7670 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7671 e->flags |= EDGE_DFS_BACK;
7673 /* Allocate our unwinder stack to unwind any temporary equivalences
7674 that might be recorded. */
7675 stack = VEC_alloc (tree, heap, 20);
7677 /* To avoid lots of silly node creation, we create a single
7678 conditional and just modify it in-place when attempting to
7679 thread jumps. */
7680 dummy = gimple_build_cond (EQ_EXPR,
7681 integer_zero_node, integer_zero_node,
7682 NULL, NULL);
7684 /* Walk through all the blocks finding those which present a
7685 potential jump threading opportunity. We could set this up
7686 as a dominator walker and record data during the walk, but
7687 I doubt it's worth the effort for the classes of jump
7688 threading opportunities we are trying to identify at this
7689 point in compilation. */
7690 FOR_EACH_BB (bb)
7692 gimple last;
7694 /* If the generic jump threading code does not find this block
7695 interesting, then there is nothing to do. */
7696 if (! potentially_threadable_block (bb))
7697 continue;
7699 /* We only care about blocks ending in a COND_EXPR. While there
7700 may be some value in handling SWITCH_EXPR here, I doubt it's
7701 terribly important. */
7702 last = gsi_stmt (gsi_last_bb (bb));
7704 /* We're basically looking for a switch or any kind of conditional with
7705 integral or pointer type arguments. Note the type of the second
7706 argument will be the same as the first argument, so no need to
7707 check it explicitly. */
7708 if (gimple_code (last) == GIMPLE_SWITCH
7709 || (gimple_code (last) == GIMPLE_COND
7710 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7711 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7712 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
7713 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7714 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
7716 edge_iterator ei;
7718 /* We've got a block with multiple predecessors and multiple
7719 successors which also ends in a suitable conditional or
7720 switch statement. For each predecessor, see if we can thread
7721 it to a specific successor. */
7722 FOR_EACH_EDGE (e, ei, bb->preds)
7724 /* Do not thread across back edges or abnormal edges
7725 in the CFG. */
7726 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7727 continue;
7729 thread_across_edge (dummy, e, true, &stack,
7730 simplify_stmt_for_jump_threading);
7735 /* We do not actually update the CFG or SSA graphs at this point as
7736 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7737 handle ASSERT_EXPRs gracefully. */
7740 /* We identified all the jump threading opportunities earlier, but could
7741 not transform the CFG at that time. This routine transforms the
7742 CFG and arranges for the dominator tree to be rebuilt if necessary.
7744 Note the SSA graph update will occur during the normal TODO
7745 processing by the pass manager. */
7746 static void
7747 finalize_jump_threads (void)
7749 thread_through_all_blocks (false);
7750 VEC_free (tree, heap, stack);
7754 /* Traverse all the blocks folding conditionals with known ranges. */
7756 static void
7757 vrp_finalize (void)
7759 size_t i;
7761 values_propagated = true;
7763 if (dump_file)
7765 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7766 dump_all_value_ranges (dump_file);
7767 fprintf (dump_file, "\n");
7770 substitute_and_fold (op_with_constant_singleton_value_range,
7771 vrp_fold_stmt, false);
7773 if (warn_array_bounds)
7774 check_all_array_refs ();
7776 /* We must identify jump threading opportunities before we release
7777 the datastructures built by VRP. */
7778 identify_jump_threads ();
7780 /* Free allocated memory. */
7781 for (i = 0; i < num_vr_values; i++)
7782 if (vr_value[i])
7784 BITMAP_FREE (vr_value[i]->equiv);
7785 free (vr_value[i]);
7788 free (vr_value);
7789 free (vr_phi_edge_counts);
7791 /* So that we can distinguish between VRP data being available
7792 and not available. */
7793 vr_value = NULL;
7794 vr_phi_edge_counts = NULL;
7798 /* Main entry point to VRP (Value Range Propagation). This pass is
7799 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7800 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7801 Programming Language Design and Implementation, pp. 67-78, 1995.
7802 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7804 This is essentially an SSA-CCP pass modified to deal with ranges
7805 instead of constants.
7807 While propagating ranges, we may find that two or more SSA name
7808 have equivalent, though distinct ranges. For instance,
7810 1 x_9 = p_3->a;
7811 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7812 3 if (p_4 == q_2)
7813 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7814 5 endif
7815 6 if (q_2)
7817 In the code above, pointer p_5 has range [q_2, q_2], but from the
7818 code we can also determine that p_5 cannot be NULL and, if q_2 had
7819 a non-varying range, p_5's range should also be compatible with it.
7821 These equivalences are created by two expressions: ASSERT_EXPR and
7822 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7823 result of another assertion, then we can use the fact that p_5 and
7824 p_4 are equivalent when evaluating p_5's range.
7826 Together with value ranges, we also propagate these equivalences
7827 between names so that we can take advantage of information from
7828 multiple ranges when doing final replacement. Note that this
7829 equivalency relation is transitive but not symmetric.
7831 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7832 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7833 in contexts where that assertion does not hold (e.g., in line 6).
7835 TODO, the main difference between this pass and Patterson's is that
7836 we do not propagate edge probabilities. We only compute whether
7837 edges can be taken or not. That is, instead of having a spectrum
7838 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7839 DON'T KNOW. In the future, it may be worthwhile to propagate
7840 probabilities to aid branch prediction. */
7842 static unsigned int
7843 execute_vrp (void)
7845 int i;
7846 edge e;
7847 switch_update *su;
7849 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7850 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7851 scev_initialize ();
7853 insert_range_assertions ();
7855 /* Estimate number of iterations - but do not use undefined behavior
7856 for this. We can't do this lazily as other functions may compute
7857 this using undefined behavior. */
7858 free_numbers_of_iterations_estimates ();
7859 estimate_numbers_of_iterations (false);
7861 to_remove_edges = VEC_alloc (edge, heap, 10);
7862 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7863 threadedge_initialize_values ();
7865 vrp_initialize ();
7866 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7867 vrp_finalize ();
7869 free_numbers_of_iterations_estimates ();
7871 /* ASSERT_EXPRs must be removed before finalizing jump threads
7872 as finalizing jump threads calls the CFG cleanup code which
7873 does not properly handle ASSERT_EXPRs. */
7874 remove_range_assertions ();
7876 /* If we exposed any new variables, go ahead and put them into
7877 SSA form now, before we handle jump threading. This simplifies
7878 interactions between rewriting of _DECL nodes into SSA form
7879 and rewriting SSA_NAME nodes into SSA form after block
7880 duplication and CFG manipulation. */
7881 update_ssa (TODO_update_ssa);
7883 finalize_jump_threads ();
7885 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7886 CFG in a broken state and requires a cfg_cleanup run. */
7887 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7888 remove_edge (e);
7889 /* Update SWITCH_EXPR case label vector. */
7890 FOR_EACH_VEC_ELT (switch_update, to_update_switch_stmts, i, su)
7892 size_t j;
7893 size_t n = TREE_VEC_LENGTH (su->vec);
7894 tree label;
7895 gimple_switch_set_num_labels (su->stmt, n);
7896 for (j = 0; j < n; j++)
7897 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7898 /* As we may have replaced the default label with a regular one
7899 make sure to make it a real default label again. This ensures
7900 optimal expansion. */
7901 label = gimple_switch_default_label (su->stmt);
7902 CASE_LOW (label) = NULL_TREE;
7903 CASE_HIGH (label) = NULL_TREE;
7906 if (VEC_length (edge, to_remove_edges) > 0)
7907 free_dominance_info (CDI_DOMINATORS);
7909 VEC_free (edge, heap, to_remove_edges);
7910 VEC_free (switch_update, heap, to_update_switch_stmts);
7911 threadedge_finalize_values ();
7913 scev_finalize ();
7914 loop_optimizer_finalize ();
7915 return 0;
7918 static bool
7919 gate_vrp (void)
7921 return flag_tree_vrp != 0;
7924 struct gimple_opt_pass pass_vrp =
7927 GIMPLE_PASS,
7928 "vrp", /* name */
7929 gate_vrp, /* gate */
7930 execute_vrp, /* execute */
7931 NULL, /* sub */
7932 NULL, /* next */
7933 0, /* static_pass_number */
7934 TV_TREE_VRP, /* tv_id */
7935 PROP_ssa, /* properties_required */
7936 0, /* properties_provided */
7937 0, /* properties_destroyed */
7938 0, /* todo_flags_start */
7939 TODO_cleanup_cfg
7940 | TODO_update_ssa
7941 | TODO_verify_ssa
7942 | TODO_verify_flow
7943 | TODO_ggc_collect /* todo_flags_finish */