spellcheck.h: add best_match template; implement early-reject
[official-gcc.git] / gcc / cp / search.c
blob990c3fe748dad387210f45bd2a083d03d4f8b238
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* High-level class interface. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "cp-tree.h"
28 #include "intl.h"
29 #include "toplev.h"
30 #include "spellcheck-tree.h"
32 static int is_subobject_of_p (tree, tree);
33 static tree dfs_lookup_base (tree, void *);
34 static tree dfs_dcast_hint_pre (tree, void *);
35 static tree dfs_dcast_hint_post (tree, void *);
36 static tree dfs_debug_mark (tree, void *);
37 static int check_hidden_convs (tree, int, int, tree, tree, tree);
38 static tree split_conversions (tree, tree, tree, tree);
39 static int lookup_conversions_r (tree, int, int,
40 tree, tree, tree, tree, tree *, tree *);
41 static int look_for_overrides_r (tree, tree);
42 static tree lookup_field_r (tree, void *);
43 static tree dfs_accessible_post (tree, void *);
44 static tree dfs_walk_once_accessible (tree, bool,
45 tree (*pre_fn) (tree, void *),
46 tree (*post_fn) (tree, void *),
47 void *data);
48 static tree dfs_access_in_type (tree, void *);
49 static access_kind access_in_type (tree, tree);
50 static tree dfs_get_pure_virtuals (tree, void *);
53 /* Variables for gathering statistics. */
54 static int n_fields_searched;
55 static int n_calls_lookup_field, n_calls_lookup_field_1;
56 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
57 static int n_calls_get_base_type;
58 static int n_outer_fields_searched;
59 static int n_contexts_saved;
62 /* Data for lookup_base and its workers. */
64 struct lookup_base_data_s
66 tree t; /* type being searched. */
67 tree base; /* The base type we're looking for. */
68 tree binfo; /* Found binfo. */
69 bool via_virtual; /* Found via a virtual path. */
70 bool ambiguous; /* Found multiply ambiguous */
71 bool repeated_base; /* Whether there are repeated bases in the
72 hierarchy. */
73 bool want_any; /* Whether we want any matching binfo. */
76 /* Worker function for lookup_base. See if we've found the desired
77 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
79 static tree
80 dfs_lookup_base (tree binfo, void *data_)
82 struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
84 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
86 if (!data->binfo)
88 data->binfo = binfo;
89 data->via_virtual
90 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
92 if (!data->repeated_base)
93 /* If there are no repeated bases, we can stop now. */
94 return binfo;
96 if (data->want_any && !data->via_virtual)
97 /* If this is a non-virtual base, then we can't do
98 better. */
99 return binfo;
101 return dfs_skip_bases;
103 else
105 gcc_assert (binfo != data->binfo);
107 /* We've found more than one matching binfo. */
108 if (!data->want_any)
110 /* This is immediately ambiguous. */
111 data->binfo = NULL_TREE;
112 data->ambiguous = true;
113 return error_mark_node;
116 /* Prefer one via a non-virtual path. */
117 if (!binfo_via_virtual (binfo, data->t))
119 data->binfo = binfo;
120 data->via_virtual = false;
121 return binfo;
124 /* There must be repeated bases, otherwise we'd have stopped
125 on the first base we found. */
126 return dfs_skip_bases;
130 return NULL_TREE;
133 /* Returns true if type BASE is accessible in T. (BASE is known to be
134 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
135 true, consider any special access of the current scope, or access
136 bestowed by friendship. */
138 bool
139 accessible_base_p (tree t, tree base, bool consider_local_p)
141 tree decl;
143 /* [class.access.base]
145 A base class is said to be accessible if an invented public
146 member of the base class is accessible.
148 If BASE is a non-proper base, this condition is trivially
149 true. */
150 if (same_type_p (t, base))
151 return true;
152 /* Rather than inventing a public member, we use the implicit
153 public typedef created in the scope of every class. */
154 decl = TYPE_FIELDS (base);
155 while (!DECL_SELF_REFERENCE_P (decl))
156 decl = DECL_CHAIN (decl);
157 while (ANON_AGGR_TYPE_P (t))
158 t = TYPE_CONTEXT (t);
159 return accessible_p (t, decl, consider_local_p);
162 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
163 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
164 non-NULL, fill with information about what kind of base we
165 discovered.
167 If the base is inaccessible, or ambiguous, then error_mark_node is
168 returned. If the tf_error bit of COMPLAIN is not set, no error
169 is issued. */
171 tree
172 lookup_base (tree t, tree base, base_access access,
173 base_kind *kind_ptr, tsubst_flags_t complain)
175 tree binfo;
176 tree t_binfo;
177 base_kind bk;
179 /* "Nothing" is definitely not derived from Base. */
180 if (t == NULL_TREE)
182 if (kind_ptr)
183 *kind_ptr = bk_not_base;
184 return NULL_TREE;
187 if (t == error_mark_node || base == error_mark_node)
189 if (kind_ptr)
190 *kind_ptr = bk_not_base;
191 return error_mark_node;
193 gcc_assert (TYPE_P (base));
195 if (!TYPE_P (t))
197 t_binfo = t;
198 t = BINFO_TYPE (t);
200 else
202 t = complete_type (TYPE_MAIN_VARIANT (t));
203 t_binfo = TYPE_BINFO (t);
206 base = TYPE_MAIN_VARIANT (base);
208 /* If BASE is incomplete, it can't be a base of T--and instantiating it
209 might cause an error. */
210 if (t_binfo && CLASS_TYPE_P (base) && COMPLETE_OR_OPEN_TYPE_P (base))
212 struct lookup_base_data_s data;
214 data.t = t;
215 data.base = base;
216 data.binfo = NULL_TREE;
217 data.ambiguous = data.via_virtual = false;
218 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
219 data.want_any = access == ba_any;
221 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
222 binfo = data.binfo;
224 if (!binfo)
225 bk = data.ambiguous ? bk_ambig : bk_not_base;
226 else if (binfo == t_binfo)
227 bk = bk_same_type;
228 else if (data.via_virtual)
229 bk = bk_via_virtual;
230 else
231 bk = bk_proper_base;
233 else
235 binfo = NULL_TREE;
236 bk = bk_not_base;
239 /* Check that the base is unambiguous and accessible. */
240 if (access != ba_any)
241 switch (bk)
243 case bk_not_base:
244 break;
246 case bk_ambig:
247 if (complain & tf_error)
248 error ("%qT is an ambiguous base of %qT", base, t);
249 binfo = error_mark_node;
250 break;
252 default:
253 if ((access & ba_check_bit)
254 /* If BASE is incomplete, then BASE and TYPE are probably
255 the same, in which case BASE is accessible. If they
256 are not the same, then TYPE is invalid. In that case,
257 there's no need to issue another error here, and
258 there's no implicit typedef to use in the code that
259 follows, so we skip the check. */
260 && COMPLETE_TYPE_P (base)
261 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
263 if (complain & tf_error)
264 error ("%qT is an inaccessible base of %qT", base, t);
265 binfo = error_mark_node;
266 bk = bk_inaccessible;
268 break;
271 if (kind_ptr)
272 *kind_ptr = bk;
274 return binfo;
277 /* Data for dcast_base_hint walker. */
279 struct dcast_data_s
281 tree subtype; /* The base type we're looking for. */
282 int virt_depth; /* Number of virtual bases encountered from most
283 derived. */
284 tree offset; /* Best hint offset discovered so far. */
285 bool repeated_base; /* Whether there are repeated bases in the
286 hierarchy. */
289 /* Worker for dcast_base_hint. Search for the base type being cast
290 from. */
292 static tree
293 dfs_dcast_hint_pre (tree binfo, void *data_)
295 struct dcast_data_s *data = (struct dcast_data_s *) data_;
297 if (BINFO_VIRTUAL_P (binfo))
298 data->virt_depth++;
300 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
302 if (data->virt_depth)
304 data->offset = ssize_int (-1);
305 return data->offset;
307 if (data->offset)
308 data->offset = ssize_int (-3);
309 else
310 data->offset = BINFO_OFFSET (binfo);
312 return data->repeated_base ? dfs_skip_bases : data->offset;
315 return NULL_TREE;
318 /* Worker for dcast_base_hint. Track the virtual depth. */
320 static tree
321 dfs_dcast_hint_post (tree binfo, void *data_)
323 struct dcast_data_s *data = (struct dcast_data_s *) data_;
325 if (BINFO_VIRTUAL_P (binfo))
326 data->virt_depth--;
328 return NULL_TREE;
331 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
332 started from is related to the required TARGET type, in order to optimize
333 the inheritance graph search. This information is independent of the
334 current context, and ignores private paths, hence get_base_distance is
335 inappropriate. Return a TREE specifying the base offset, BOFF.
336 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
337 and there are no public virtual SUBTYPE bases.
338 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
339 BOFF == -2, SUBTYPE is not a public base.
340 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
342 tree
343 dcast_base_hint (tree subtype, tree target)
345 struct dcast_data_s data;
347 data.subtype = subtype;
348 data.virt_depth = 0;
349 data.offset = NULL_TREE;
350 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
352 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
353 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
354 return data.offset ? data.offset : ssize_int (-2);
357 /* Search for a member with name NAME in a multiple inheritance
358 lattice specified by TYPE. If it does not exist, return NULL_TREE.
359 If the member is ambiguously referenced, return `error_mark_node'.
360 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
361 true, type declarations are preferred. */
363 /* Do a 1-level search for NAME as a member of TYPE. The caller must
364 figure out whether it can access this field. (Since it is only one
365 level, this is reasonable.) */
367 tree
368 lookup_field_1 (tree type, tree name, bool want_type)
370 tree field;
372 gcc_assert (identifier_p (name));
374 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
375 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
376 || TREE_CODE (type) == TYPENAME_TYPE)
377 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
378 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
379 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
380 the code often worked even when we treated the index as a list
381 of fields!)
382 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
383 return NULL_TREE;
385 if (CLASSTYPE_SORTED_FIELDS (type))
387 tree *fields = &CLASSTYPE_SORTED_FIELDS (type)->elts[0];
388 int lo = 0, hi = CLASSTYPE_SORTED_FIELDS (type)->len;
389 int i;
391 while (lo < hi)
393 i = (lo + hi) / 2;
395 if (GATHER_STATISTICS)
396 n_fields_searched++;
398 if (DECL_NAME (fields[i]) > name)
399 hi = i;
400 else if (DECL_NAME (fields[i]) < name)
401 lo = i + 1;
402 else
404 field = NULL_TREE;
406 /* We might have a nested class and a field with the
407 same name; we sorted them appropriately via
408 field_decl_cmp, so just look for the first or last
409 field with this name. */
410 if (want_type)
413 field = fields[i--];
414 while (i >= lo && DECL_NAME (fields[i]) == name);
415 if (!DECL_DECLARES_TYPE_P (field))
416 field = NULL_TREE;
418 else
421 field = fields[i++];
422 while (i < hi && DECL_NAME (fields[i]) == name);
425 if (field)
427 field = strip_using_decl (field);
428 if (is_overloaded_fn (field))
429 field = NULL_TREE;
432 return field;
435 return NULL_TREE;
438 field = TYPE_FIELDS (type);
440 if (GATHER_STATISTICS)
441 n_calls_lookup_field_1++;
443 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
445 tree decl = field;
447 if (GATHER_STATISTICS)
448 n_fields_searched++;
450 gcc_assert (DECL_P (field));
451 if (DECL_NAME (field) == NULL_TREE
452 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
454 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
455 if (temp)
456 return temp;
459 if (TREE_CODE (decl) == USING_DECL
460 && DECL_NAME (decl) == name)
462 decl = strip_using_decl (decl);
463 if (is_overloaded_fn (decl))
464 continue;
467 if (DECL_NAME (decl) == name
468 && (!want_type || DECL_DECLARES_TYPE_P (decl)))
469 return decl;
471 /* Not found. */
472 if (name == vptr_identifier)
474 /* Give the user what s/he thinks s/he wants. */
475 if (TYPE_POLYMORPHIC_P (type))
476 return TYPE_VFIELD (type);
478 return NULL_TREE;
481 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
482 NAMESPACE_DECL corresponding to the innermost non-block scope. */
484 tree
485 current_scope (void)
487 /* There are a number of cases we need to be aware of here:
488 current_class_type current_function_decl
489 global NULL NULL
490 fn-local NULL SET
491 class-local SET NULL
492 class->fn SET SET
493 fn->class SET SET
495 Those last two make life interesting. If we're in a function which is
496 itself inside a class, we need decls to go into the fn's decls (our
497 second case below). But if we're in a class and the class itself is
498 inside a function, we need decls to go into the decls for the class. To
499 achieve this last goal, we must see if, when both current_class_ptr and
500 current_function_decl are set, the class was declared inside that
501 function. If so, we know to put the decls into the class's scope. */
502 if (current_function_decl && current_class_type
503 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
504 && same_type_p (DECL_CONTEXT (current_function_decl),
505 current_class_type))
506 || (DECL_FRIEND_CONTEXT (current_function_decl)
507 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
508 current_class_type))))
509 return current_function_decl;
510 if (current_class_type)
511 return current_class_type;
512 if (current_function_decl)
513 return current_function_decl;
514 return current_namespace;
517 /* Returns nonzero if we are currently in a function scope. Note
518 that this function returns zero if we are within a local class, but
519 not within a member function body of the local class. */
522 at_function_scope_p (void)
524 tree cs = current_scope ();
525 /* Also check cfun to make sure that we're really compiling
526 this function (as opposed to having set current_function_decl
527 for access checking or some such). */
528 return (cs && TREE_CODE (cs) == FUNCTION_DECL
529 && cfun && cfun->decl == current_function_decl);
532 /* Returns true if the innermost active scope is a class scope. */
534 bool
535 at_class_scope_p (void)
537 tree cs = current_scope ();
538 return cs && TYPE_P (cs);
541 /* Returns true if the innermost active scope is a namespace scope. */
543 bool
544 at_namespace_scope_p (void)
546 tree cs = current_scope ();
547 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
550 /* Return the scope of DECL, as appropriate when doing name-lookup. */
552 tree
553 context_for_name_lookup (tree decl)
555 /* [class.union]
557 For the purposes of name lookup, after the anonymous union
558 definition, the members of the anonymous union are considered to
559 have been defined in the scope in which the anonymous union is
560 declared. */
561 tree context = DECL_CONTEXT (decl);
563 while (context && TYPE_P (context)
564 && (ANON_AGGR_TYPE_P (context) || UNSCOPED_ENUM_P (context)))
565 context = TYPE_CONTEXT (context);
566 if (!context)
567 context = global_namespace;
569 return context;
572 /* Returns true iff DECL is declared in TYPE. */
574 static bool
575 member_declared_in_type (tree decl, tree type)
577 /* A normal declaration obviously counts. */
578 if (context_for_name_lookup (decl) == type)
579 return true;
580 /* So does a using or access declaration. */
581 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl)
582 && purpose_member (type, DECL_ACCESS (decl)))
583 return true;
584 return false;
587 /* The accessibility routines use BINFO_ACCESS for scratch space
588 during the computation of the accessibility of some declaration. */
590 /* Avoid walking up past a declaration of the member. */
592 static tree
593 dfs_access_in_type_pre (tree binfo, void *data)
595 tree decl = (tree) data;
596 tree type = BINFO_TYPE (binfo);
597 if (member_declared_in_type (decl, type))
598 return dfs_skip_bases;
599 return NULL_TREE;
602 #define BINFO_ACCESS(NODE) \
603 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
605 /* Set the access associated with NODE to ACCESS. */
607 #define SET_BINFO_ACCESS(NODE, ACCESS) \
608 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
609 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
611 /* Called from access_in_type via dfs_walk. Calculate the access to
612 DATA (which is really a DECL) in BINFO. */
614 static tree
615 dfs_access_in_type (tree binfo, void *data)
617 tree decl = (tree) data;
618 tree type = BINFO_TYPE (binfo);
619 access_kind access = ak_none;
621 if (context_for_name_lookup (decl) == type)
623 /* If we have descended to the scope of DECL, just note the
624 appropriate access. */
625 if (TREE_PRIVATE (decl))
626 access = ak_private;
627 else if (TREE_PROTECTED (decl))
628 access = ak_protected;
629 else
630 access = ak_public;
632 else
634 /* First, check for an access-declaration that gives us more
635 access to the DECL. */
636 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
638 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
640 if (decl_access)
642 decl_access = TREE_VALUE (decl_access);
644 if (decl_access == access_public_node)
645 access = ak_public;
646 else if (decl_access == access_protected_node)
647 access = ak_protected;
648 else if (decl_access == access_private_node)
649 access = ak_private;
650 else
651 gcc_unreachable ();
655 if (!access)
657 int i;
658 tree base_binfo;
659 vec<tree, va_gc> *accesses;
661 /* Otherwise, scan our baseclasses, and pick the most favorable
662 access. */
663 accesses = BINFO_BASE_ACCESSES (binfo);
664 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
666 tree base_access = (*accesses)[i];
667 access_kind base_access_now = BINFO_ACCESS (base_binfo);
669 if (base_access_now == ak_none || base_access_now == ak_private)
670 /* If it was not accessible in the base, or only
671 accessible as a private member, we can't access it
672 all. */
673 base_access_now = ak_none;
674 else if (base_access == access_protected_node)
675 /* Public and protected members in the base become
676 protected here. */
677 base_access_now = ak_protected;
678 else if (base_access == access_private_node)
679 /* Public and protected members in the base become
680 private here. */
681 base_access_now = ak_private;
683 /* See if the new access, via this base, gives more
684 access than our previous best access. */
685 if (base_access_now != ak_none
686 && (access == ak_none || base_access_now < access))
688 access = base_access_now;
690 /* If the new access is public, we can't do better. */
691 if (access == ak_public)
692 break;
698 /* Note the access to DECL in TYPE. */
699 SET_BINFO_ACCESS (binfo, access);
701 return NULL_TREE;
704 /* Return the access to DECL in TYPE. */
706 static access_kind
707 access_in_type (tree type, tree decl)
709 tree binfo = TYPE_BINFO (type);
711 /* We must take into account
713 [class.paths]
715 If a name can be reached by several paths through a multiple
716 inheritance graph, the access is that of the path that gives
717 most access.
719 The algorithm we use is to make a post-order depth-first traversal
720 of the base-class hierarchy. As we come up the tree, we annotate
721 each node with the most lenient access. */
722 dfs_walk_once (binfo, dfs_access_in_type_pre, dfs_access_in_type, decl);
724 return BINFO_ACCESS (binfo);
727 /* Returns nonzero if it is OK to access DECL named in TYPE through an object
728 of OTYPE in the context of DERIVED. */
730 static int
731 protected_accessible_p (tree decl, tree derived, tree type, tree otype)
733 /* We're checking this clause from [class.access.base]
735 m as a member of N is protected, and the reference occurs in a
736 member or friend of class N, or in a member or friend of a
737 class P derived from N, where m as a member of P is public, private
738 or protected.
740 Here DERIVED is a possible P, DECL is m and TYPE is N. */
742 /* If DERIVED isn't derived from N, then it can't be a P. */
743 if (!DERIVED_FROM_P (type, derived))
744 return 0;
746 /* [class.protected]
748 When a friend or a member function of a derived class references
749 a protected nonstatic member of a base class, an access check
750 applies in addition to those described earlier in clause
751 _class.access_) Except when forming a pointer to member
752 (_expr.unary.op_), the access must be through a pointer to,
753 reference to, or object of the derived class itself (or any class
754 derived from that class) (_expr.ref_). If the access is to form
755 a pointer to member, the nested-name-specifier shall name the
756 derived class (or any class derived from that class). */
757 if (DECL_NONSTATIC_MEMBER_P (decl)
758 && !DERIVED_FROM_P (derived, otype))
759 return 0;
761 return 1;
764 /* Returns nonzero if SCOPE is a type or a friend of a type which would be able
765 to access DECL through TYPE. OTYPE is the type of the object. */
767 static int
768 friend_accessible_p (tree scope, tree decl, tree type, tree otype)
770 /* We're checking this clause from [class.access.base]
772 m as a member of N is protected, and the reference occurs in a
773 member or friend of class N, or in a member or friend of a
774 class P derived from N, where m as a member of P is public, private
775 or protected.
777 Here DECL is m and TYPE is N. SCOPE is the current context,
778 and we check all its possible Ps. */
779 tree befriending_classes;
780 tree t;
782 if (!scope)
783 return 0;
785 /* Is SCOPE itself a suitable P? */
786 if (TYPE_P (scope) && protected_accessible_p (decl, scope, type, otype))
787 return 1;
789 if (DECL_DECLARES_FUNCTION_P (scope))
790 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
791 else if (TYPE_P (scope))
792 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
793 else
794 return 0;
796 for (t = befriending_classes; t; t = TREE_CHAIN (t))
797 if (protected_accessible_p (decl, TREE_VALUE (t), type, otype))
798 return 1;
800 /* Nested classes have the same access as their enclosing types, as
801 per DR 45 (this is a change from C++98). */
802 if (TYPE_P (scope))
803 if (friend_accessible_p (TYPE_CONTEXT (scope), decl, type, otype))
804 return 1;
806 if (DECL_DECLARES_FUNCTION_P (scope))
808 /* Perhaps this SCOPE is a member of a class which is a
809 friend. */
810 if (DECL_CLASS_SCOPE_P (scope)
811 && friend_accessible_p (DECL_CONTEXT (scope), decl, type, otype))
812 return 1;
815 /* Maybe scope's template is a friend. */
816 if (tree tinfo = get_template_info (scope))
818 tree tmpl = TI_TEMPLATE (tinfo);
819 if (DECL_CLASS_TEMPLATE_P (tmpl))
820 tmpl = TREE_TYPE (tmpl);
821 else
822 tmpl = DECL_TEMPLATE_RESULT (tmpl);
823 if (tmpl != scope)
825 /* Increment processing_template_decl to make sure that
826 dependent_type_p works correctly. */
827 ++processing_template_decl;
828 int ret = friend_accessible_p (tmpl, decl, type, otype);
829 --processing_template_decl;
830 if (ret)
831 return 1;
835 /* If is_friend is true, we should have found a befriending class. */
836 gcc_checking_assert (!is_friend (type, scope));
838 return 0;
841 struct dfs_accessible_data
843 tree decl;
844 tree object_type;
847 /* Avoid walking up past a declaration of the member. */
849 static tree
850 dfs_accessible_pre (tree binfo, void *data)
852 dfs_accessible_data *d = (dfs_accessible_data *)data;
853 tree type = BINFO_TYPE (binfo);
854 if (member_declared_in_type (d->decl, type))
855 return dfs_skip_bases;
856 return NULL_TREE;
859 /* Called via dfs_walk_once_accessible from accessible_p */
861 static tree
862 dfs_accessible_post (tree binfo, void *data)
864 /* access_in_type already set BINFO_ACCESS for us. */
865 access_kind access = BINFO_ACCESS (binfo);
866 tree N = BINFO_TYPE (binfo);
867 dfs_accessible_data *d = (dfs_accessible_data *)data;
868 tree decl = d->decl;
869 tree scope = current_nonlambda_scope ();
871 /* A member m is accessible at the point R when named in class N if */
872 switch (access)
874 case ak_none:
875 return NULL_TREE;
877 case ak_public:
878 /* m as a member of N is public, or */
879 return binfo;
881 case ak_private:
883 /* m as a member of N is private, and R occurs in a member or friend of
884 class N, or */
885 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
886 && is_friend (N, scope))
887 return binfo;
888 return NULL_TREE;
891 case ak_protected:
893 /* m as a member of N is protected, and R occurs in a member or friend
894 of class N, or in a member or friend of a class P derived from N,
895 where m as a member of P is public, private, or protected */
896 if (friend_accessible_p (scope, decl, N, d->object_type))
897 return binfo;
898 return NULL_TREE;
901 default:
902 gcc_unreachable ();
906 /* Like accessible_p below, but within a template returns true iff DECL is
907 accessible in TYPE to all possible instantiations of the template. */
910 accessible_in_template_p (tree type, tree decl)
912 int save_ptd = processing_template_decl;
913 processing_template_decl = 0;
914 int val = accessible_p (type, decl, false);
915 processing_template_decl = save_ptd;
916 return val;
919 /* DECL is a declaration from a base class of TYPE, which was the
920 class used to name DECL. Return nonzero if, in the current
921 context, DECL is accessible. If TYPE is actually a BINFO node,
922 then we can tell in what context the access is occurring by looking
923 at the most derived class along the path indicated by BINFO. If
924 CONSIDER_LOCAL is true, do consider special access the current
925 scope or friendship thereof we might have. */
928 accessible_p (tree type, tree decl, bool consider_local_p)
930 tree binfo;
931 access_kind access;
933 /* If this declaration is in a block or namespace scope, there's no
934 access control. */
935 if (!TYPE_P (context_for_name_lookup (decl)))
936 return 1;
938 /* There is no need to perform access checks inside a thunk. */
939 if (current_function_decl && DECL_THUNK_P (current_function_decl))
940 return 1;
942 /* In a template declaration, we cannot be sure whether the
943 particular specialization that is instantiated will be a friend
944 or not. Therefore, all access checks are deferred until
945 instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
946 parameter list for a template (because we may see dependent types
947 in default arguments for template parameters), and access
948 checking should be performed in the outermost parameter list. */
949 if (processing_template_decl
950 && (!processing_template_parmlist || processing_template_decl > 1))
951 return 1;
953 tree otype = NULL_TREE;
954 if (!TYPE_P (type))
956 /* When accessing a non-static member, the most derived type in the
957 binfo chain is the type of the object; remember that type for
958 protected_accessible_p. */
959 for (tree b = type; b; b = BINFO_INHERITANCE_CHAIN (b))
960 otype = BINFO_TYPE (b);
961 type = BINFO_TYPE (type);
963 else
964 otype = type;
966 /* [class.access.base]
968 A member m is accessible when named in class N if
970 --m as a member of N is public, or
972 --m as a member of N is private, and the reference occurs in a
973 member or friend of class N, or
975 --m as a member of N is protected, and the reference occurs in a
976 member or friend of class N, or in a member or friend of a
977 class P derived from N, where m as a member of P is public, private or
978 protected, or
980 --there exists a base class B of N that is accessible at the point
981 of reference, and m is accessible when named in class B.
983 We walk the base class hierarchy, checking these conditions. */
985 /* We walk using TYPE_BINFO (type) because access_in_type will set
986 BINFO_ACCESS on it and its bases. */
987 binfo = TYPE_BINFO (type);
989 /* Compute the accessibility of DECL in the class hierarchy
990 dominated by type. */
991 access = access_in_type (type, decl);
992 if (access == ak_public)
993 return 1;
995 /* If we aren't considering the point of reference, only the first bullet
996 applies. */
997 if (!consider_local_p)
998 return 0;
1000 dfs_accessible_data d = { decl, otype };
1002 /* Walk the hierarchy again, looking for a base class that allows
1003 access. */
1004 return dfs_walk_once_accessible (binfo, /*friends=*/true,
1005 dfs_accessible_pre,
1006 dfs_accessible_post, &d)
1007 != NULL_TREE;
1010 struct lookup_field_info {
1011 /* The type in which we're looking. */
1012 tree type;
1013 /* The name of the field for which we're looking. */
1014 tree name;
1015 /* If non-NULL, the current result of the lookup. */
1016 tree rval;
1017 /* The path to RVAL. */
1018 tree rval_binfo;
1019 /* If non-NULL, the lookup was ambiguous, and this is a list of the
1020 candidates. */
1021 tree ambiguous;
1022 /* If nonzero, we are looking for types, not data members. */
1023 int want_type;
1024 /* If something went wrong, a message indicating what. */
1025 const char *errstr;
1028 /* Nonzero for a class member means that it is shared between all objects
1029 of that class.
1031 [class.member.lookup]:If the resulting set of declarations are not all
1032 from sub-objects of the same type, or the set has a nonstatic member
1033 and includes members from distinct sub-objects, there is an ambiguity
1034 and the program is ill-formed.
1036 This function checks that T contains no nonstatic members. */
1039 shared_member_p (tree t)
1041 if (VAR_P (t) || TREE_CODE (t) == TYPE_DECL \
1042 || TREE_CODE (t) == CONST_DECL)
1043 return 1;
1044 if (is_overloaded_fn (t))
1046 t = get_fns (t);
1047 for (; t; t = OVL_NEXT (t))
1049 tree fn = OVL_CURRENT (t);
1050 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1051 return 0;
1053 return 1;
1055 return 0;
1058 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1059 found as a base class and sub-object of the object denoted by
1060 BINFO. */
1062 static int
1063 is_subobject_of_p (tree parent, tree binfo)
1065 tree probe;
1067 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1069 if (probe == binfo)
1070 return 1;
1071 if (BINFO_VIRTUAL_P (probe))
1072 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1073 != NULL_TREE);
1075 return 0;
1078 /* DATA is really a struct lookup_field_info. Look for a field with
1079 the name indicated there in BINFO. If this function returns a
1080 non-NULL value it is the result of the lookup. Called from
1081 lookup_field via breadth_first_search. */
1083 static tree
1084 lookup_field_r (tree binfo, void *data)
1086 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1087 tree type = BINFO_TYPE (binfo);
1088 tree nval = NULL_TREE;
1090 /* If this is a dependent base, don't look in it. */
1091 if (BINFO_DEPENDENT_BASE_P (binfo))
1092 return NULL_TREE;
1094 /* If this base class is hidden by the best-known value so far, we
1095 don't need to look. */
1096 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1097 && !BINFO_VIRTUAL_P (binfo))
1098 return dfs_skip_bases;
1100 /* First, look for a function. There can't be a function and a data
1101 member with the same name, and if there's a function and a type
1102 with the same name, the type is hidden by the function. */
1103 if (!lfi->want_type)
1104 nval = lookup_fnfields_slot (type, lfi->name);
1106 if (!nval)
1107 /* Look for a data member or type. */
1108 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1109 else if (TREE_CODE (nval) == OVERLOAD && OVL_USED (nval))
1111 /* If we have both dependent and non-dependent using-declarations, return
1112 the dependent one rather than an incomplete list of functions. */
1113 tree dep_using = lookup_field_1 (type, lfi->name, lfi->want_type);
1114 if (dep_using && TREE_CODE (dep_using) == USING_DECL)
1115 nval = dep_using;
1118 /* If there is no declaration with the indicated name in this type,
1119 then there's nothing to do. */
1120 if (!nval)
1121 goto done;
1123 /* If we're looking up a type (as with an elaborated type specifier)
1124 we ignore all non-types we find. */
1125 if (lfi->want_type && !DECL_DECLARES_TYPE_P (nval))
1127 if (lfi->name == TYPE_IDENTIFIER (type))
1129 /* If the aggregate has no user defined constructors, we allow
1130 it to have fields with the same name as the enclosing type.
1131 If we are looking for that name, find the corresponding
1132 TYPE_DECL. */
1133 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1134 if (DECL_NAME (nval) == lfi->name
1135 && TREE_CODE (nval) == TYPE_DECL)
1136 break;
1138 else
1139 nval = NULL_TREE;
1140 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1142 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1143 lfi->name);
1144 if (e != NULL)
1145 nval = TYPE_MAIN_DECL (e->type);
1146 else
1147 goto done;
1151 /* If the lookup already found a match, and the new value doesn't
1152 hide the old one, we might have an ambiguity. */
1153 if (lfi->rval_binfo
1154 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1157 if (nval == lfi->rval && shared_member_p (nval))
1158 /* The two things are really the same. */
1160 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1161 /* The previous value hides the new one. */
1163 else
1165 /* We have a real ambiguity. We keep a chain of all the
1166 candidates. */
1167 if (!lfi->ambiguous && lfi->rval)
1169 /* This is the first time we noticed an ambiguity. Add
1170 what we previously thought was a reasonable candidate
1171 to the list. */
1172 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1173 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1176 /* Add the new value. */
1177 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1178 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1179 lfi->errstr = G_("request for member %qD is ambiguous");
1182 else
1184 lfi->rval = nval;
1185 lfi->rval_binfo = binfo;
1188 done:
1189 /* Don't look for constructors or destructors in base classes. */
1190 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1191 return dfs_skip_bases;
1192 return NULL_TREE;
1195 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1196 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1197 FUNCTIONS, and OPTYPE respectively. */
1199 tree
1200 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1202 tree baselink;
1204 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1205 || TREE_CODE (functions) == TEMPLATE_DECL
1206 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1207 || TREE_CODE (functions) == OVERLOAD);
1208 gcc_assert (!optype || TYPE_P (optype));
1209 gcc_assert (TREE_TYPE (functions));
1211 baselink = make_node (BASELINK);
1212 TREE_TYPE (baselink) = TREE_TYPE (functions);
1213 BASELINK_BINFO (baselink) = binfo;
1214 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1215 BASELINK_FUNCTIONS (baselink) = functions;
1216 BASELINK_OPTYPE (baselink) = optype;
1218 return baselink;
1221 /* Look for a member named NAME in an inheritance lattice dominated by
1222 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1223 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1224 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1225 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1226 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1227 TREE_VALUEs are the list of ambiguous candidates.
1229 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1231 If nothing can be found return NULL_TREE and do not issue an error. */
1233 tree
1234 lookup_member (tree xbasetype, tree name, int protect, bool want_type,
1235 tsubst_flags_t complain)
1237 tree rval, rval_binfo = NULL_TREE;
1238 tree type = NULL_TREE, basetype_path = NULL_TREE;
1239 struct lookup_field_info lfi;
1241 /* rval_binfo is the binfo associated with the found member, note,
1242 this can be set with useful information, even when rval is not
1243 set, because it must deal with ALL members, not just non-function
1244 members. It is used for ambiguity checking and the hidden
1245 checks. Whereas rval is only set if a proper (not hidden)
1246 non-function member is found. */
1248 const char *errstr = 0;
1250 if (name == error_mark_node
1251 || xbasetype == NULL_TREE
1252 || xbasetype == error_mark_node)
1253 return NULL_TREE;
1255 gcc_assert (identifier_p (name));
1257 if (TREE_CODE (xbasetype) == TREE_BINFO)
1259 type = BINFO_TYPE (xbasetype);
1260 basetype_path = xbasetype;
1262 else
1264 if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
1265 return NULL_TREE;
1266 type = xbasetype;
1267 xbasetype = NULL_TREE;
1270 type = complete_type (type);
1272 /* Make sure we're looking for a member of the current instantiation in the
1273 right partial specialization. */
1274 if (flag_concepts && dependent_type_p (type))
1275 if (tree t = currently_open_class (type))
1276 type = t;
1278 if (!basetype_path)
1279 basetype_path = TYPE_BINFO (type);
1281 if (!basetype_path)
1282 return NULL_TREE;
1284 if (GATHER_STATISTICS)
1285 n_calls_lookup_field++;
1287 memset (&lfi, 0, sizeof (lfi));
1288 lfi.type = type;
1289 lfi.name = name;
1290 lfi.want_type = want_type;
1291 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1292 rval = lfi.rval;
1293 rval_binfo = lfi.rval_binfo;
1294 if (rval_binfo)
1295 type = BINFO_TYPE (rval_binfo);
1296 errstr = lfi.errstr;
1298 /* If we are not interested in ambiguities, don't report them;
1299 just return NULL_TREE. */
1300 if (!protect && lfi.ambiguous)
1301 return NULL_TREE;
1303 if (protect == 2)
1305 if (lfi.ambiguous)
1306 return lfi.ambiguous;
1307 else
1308 protect = 0;
1311 /* [class.access]
1313 In the case of overloaded function names, access control is
1314 applied to the function selected by overloaded resolution.
1316 We cannot check here, even if RVAL is only a single non-static
1317 member function, since we do not know what the "this" pointer
1318 will be. For:
1320 class A { protected: void f(); };
1321 class B : public A {
1322 void g(A *p) {
1323 f(); // OK
1324 p->f(); // Not OK.
1328 only the first call to "f" is valid. However, if the function is
1329 static, we can check. */
1330 if (rval && protect
1331 && !really_overloaded_fn (rval))
1333 tree decl = is_overloaded_fn (rval) ? get_first_fn (rval) : rval;
1334 if (!DECL_NONSTATIC_MEMBER_FUNCTION_P (decl)
1335 && !perform_or_defer_access_check (basetype_path, decl, decl,
1336 complain))
1337 rval = error_mark_node;
1340 if (errstr && protect)
1342 if (complain & tf_error)
1344 error (errstr, name, type);
1345 if (lfi.ambiguous)
1346 print_candidates (lfi.ambiguous);
1348 rval = error_mark_node;
1351 if (rval && is_overloaded_fn (rval))
1352 rval = build_baselink (rval_binfo, basetype_path, rval,
1353 (IDENTIFIER_TYPENAME_P (name)
1354 ? TREE_TYPE (name): NULL_TREE));
1355 return rval;
1358 /* Helper class for lookup_member_fuzzy. */
1360 class lookup_field_fuzzy_info
1362 public:
1363 lookup_field_fuzzy_info (bool want_type_p) :
1364 m_want_type_p (want_type_p), m_candidates () {}
1366 void fuzzy_lookup_fnfields (tree type);
1367 void fuzzy_lookup_field (tree type);
1369 /* If true, we are looking for types, not data members. */
1370 bool m_want_type_p;
1371 /* The result: a vec of identifiers. */
1372 auto_vec<tree> m_candidates;
1375 /* Locate all methods within TYPE, append them to m_candidates. */
1377 void
1378 lookup_field_fuzzy_info::fuzzy_lookup_fnfields (tree type)
1380 vec<tree, va_gc> *method_vec;
1381 tree fn;
1382 size_t i;
1384 if (!CLASS_TYPE_P (type))
1385 return;
1387 method_vec = CLASSTYPE_METHOD_VEC (type);
1388 if (!method_vec)
1389 return;
1391 for (i = 0; vec_safe_iterate (method_vec, i, &fn); ++i)
1392 if (fn)
1393 m_candidates.safe_push (DECL_NAME (OVL_CURRENT (fn)));
1396 /* Locate all fields within TYPE, append them to m_candidates. */
1398 void
1399 lookup_field_fuzzy_info::fuzzy_lookup_field (tree type)
1401 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
1402 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
1403 || TREE_CODE (type) == TYPENAME_TYPE)
1404 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
1405 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
1406 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX.
1407 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
1408 return;
1410 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1412 if (!m_want_type_p || DECL_DECLARES_TYPE_P (field))
1413 if (DECL_NAME (field))
1414 m_candidates.safe_push (DECL_NAME (field));
1419 /* Helper function for lookup_member_fuzzy, called via dfs_walk_all
1420 DATA is really a lookup_field_fuzzy_info. Look for a field with
1421 the name indicated there in BINFO. Gathers pertinent identifiers into
1422 m_candidates. */
1424 static tree
1425 lookup_field_fuzzy_r (tree binfo, void *data)
1427 lookup_field_fuzzy_info *lffi = (lookup_field_fuzzy_info *) data;
1428 tree type = BINFO_TYPE (binfo);
1430 /* First, look for functions. */
1431 if (!lffi->m_want_type_p)
1432 lffi->fuzzy_lookup_fnfields (type);
1434 /* Look for data member and types. */
1435 lffi->fuzzy_lookup_field (type);
1437 return NULL_TREE;
1440 /* Like lookup_member, but try to find the closest match for NAME,
1441 rather than an exact match, and return an identifier (or NULL_TREE).
1442 Do not complain. */
1444 tree
1445 lookup_member_fuzzy (tree xbasetype, tree name, bool want_type_p)
1447 tree type = NULL_TREE, basetype_path = NULL_TREE;
1448 struct lookup_field_fuzzy_info lffi (want_type_p);
1450 /* rval_binfo is the binfo associated with the found member, note,
1451 this can be set with useful information, even when rval is not
1452 set, because it must deal with ALL members, not just non-function
1453 members. It is used for ambiguity checking and the hidden
1454 checks. Whereas rval is only set if a proper (not hidden)
1455 non-function member is found. */
1457 if (name == error_mark_node
1458 || xbasetype == NULL_TREE
1459 || xbasetype == error_mark_node)
1460 return NULL_TREE;
1462 gcc_assert (identifier_p (name));
1464 if (TREE_CODE (xbasetype) == TREE_BINFO)
1466 type = BINFO_TYPE (xbasetype);
1467 basetype_path = xbasetype;
1469 else
1471 if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
1472 return NULL_TREE;
1473 type = xbasetype;
1474 xbasetype = NULL_TREE;
1477 type = complete_type (type);
1479 /* Make sure we're looking for a member of the current instantiation in the
1480 right partial specialization. */
1481 if (flag_concepts && dependent_type_p (type))
1482 type = currently_open_class (type);
1484 if (!basetype_path)
1485 basetype_path = TYPE_BINFO (type);
1487 if (!basetype_path)
1488 return NULL_TREE;
1490 /* Populate lffi.m_candidates. */
1491 dfs_walk_all (basetype_path, &lookup_field_fuzzy_r, NULL, &lffi);
1493 return find_closest_identifier (name, &lffi.m_candidates);
1496 /* Like lookup_member, except that if we find a function member we
1497 return NULL_TREE. */
1499 tree
1500 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1502 tree rval = lookup_member (xbasetype, name, protect, want_type,
1503 tf_warning_or_error);
1505 /* Ignore functions, but propagate the ambiguity list. */
1506 if (!error_operand_p (rval)
1507 && (rval && BASELINK_P (rval)))
1508 return NULL_TREE;
1510 return rval;
1513 /* Like lookup_member, except that if we find a non-function member we
1514 return NULL_TREE. */
1516 tree
1517 lookup_fnfields (tree xbasetype, tree name, int protect)
1519 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false,
1520 tf_warning_or_error);
1522 /* Ignore non-functions, but propagate the ambiguity list. */
1523 if (!error_operand_p (rval)
1524 && (rval && !BASELINK_P (rval)))
1525 return NULL_TREE;
1527 return rval;
1530 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1531 corresponding to "operator TYPE ()", or -1 if there is no such
1532 operator. Only CLASS_TYPE itself is searched; this routine does
1533 not scan the base classes of CLASS_TYPE. */
1535 static int
1536 lookup_conversion_operator (tree class_type, tree type)
1538 int tpl_slot = -1;
1540 if (TYPE_HAS_CONVERSION (class_type))
1542 int i;
1543 tree fn;
1544 vec<tree, va_gc> *methods = CLASSTYPE_METHOD_VEC (class_type);
1546 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1547 vec_safe_iterate (methods, i, &fn); ++i)
1549 /* All the conversion operators come near the beginning of
1550 the class. Therefore, if FN is not a conversion
1551 operator, there is no matching conversion operator in
1552 CLASS_TYPE. */
1553 fn = OVL_CURRENT (fn);
1554 if (!DECL_CONV_FN_P (fn))
1555 break;
1557 if (TREE_CODE (fn) == TEMPLATE_DECL)
1558 /* All the templated conversion functions are on the same
1559 slot, so remember it. */
1560 tpl_slot = i;
1561 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1562 return i;
1566 return tpl_slot;
1569 /* TYPE is a class type. Return the index of the fields within
1570 the method vector with name NAME, or -1 if no such field exists.
1571 Does not lazily declare implicitly-declared member functions. */
1573 static int
1574 lookup_fnfields_idx_nolazy (tree type, tree name)
1576 vec<tree, va_gc> *method_vec;
1577 tree fn;
1578 tree tmp;
1579 size_t i;
1581 if (!CLASS_TYPE_P (type))
1582 return -1;
1584 method_vec = CLASSTYPE_METHOD_VEC (type);
1585 if (!method_vec)
1586 return -1;
1588 if (GATHER_STATISTICS)
1589 n_calls_lookup_fnfields_1++;
1591 /* Constructors are first... */
1592 if (name == ctor_identifier)
1594 fn = CLASSTYPE_CONSTRUCTORS (type);
1595 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1597 /* and destructors are second. */
1598 if (name == dtor_identifier)
1600 fn = CLASSTYPE_DESTRUCTORS (type);
1601 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1603 if (IDENTIFIER_TYPENAME_P (name))
1604 return lookup_conversion_operator (type, TREE_TYPE (name));
1606 /* Skip the conversion operators. */
1607 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1608 vec_safe_iterate (method_vec, i, &fn);
1609 ++i)
1610 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1611 break;
1613 /* If the type is complete, use binary search. */
1614 if (COMPLETE_TYPE_P (type))
1616 int lo;
1617 int hi;
1619 lo = i;
1620 hi = method_vec->length ();
1621 while (lo < hi)
1623 i = (lo + hi) / 2;
1625 if (GATHER_STATISTICS)
1626 n_outer_fields_searched++;
1628 tmp = (*method_vec)[i];
1629 tmp = DECL_NAME (OVL_CURRENT (tmp));
1630 if (tmp > name)
1631 hi = i;
1632 else if (tmp < name)
1633 lo = i + 1;
1634 else
1635 return i;
1638 else
1639 for (; vec_safe_iterate (method_vec, i, &fn); ++i)
1641 if (GATHER_STATISTICS)
1642 n_outer_fields_searched++;
1643 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1644 return i;
1647 return -1;
1650 /* TYPE is a class type. Return the index of the fields within
1651 the method vector with name NAME, or -1 if no such field exists. */
1654 lookup_fnfields_1 (tree type, tree name)
1656 if (!CLASS_TYPE_P (type))
1657 return -1;
1659 if (COMPLETE_TYPE_P (type))
1661 if ((name == ctor_identifier
1662 || name == base_ctor_identifier
1663 || name == complete_ctor_identifier))
1665 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1666 lazily_declare_fn (sfk_constructor, type);
1667 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1668 lazily_declare_fn (sfk_copy_constructor, type);
1669 if (CLASSTYPE_LAZY_MOVE_CTOR (type))
1670 lazily_declare_fn (sfk_move_constructor, type);
1672 else if (name == ansi_assopname (NOP_EXPR))
1674 if (CLASSTYPE_LAZY_COPY_ASSIGN (type))
1675 lazily_declare_fn (sfk_copy_assignment, type);
1676 if (CLASSTYPE_LAZY_MOVE_ASSIGN (type))
1677 lazily_declare_fn (sfk_move_assignment, type);
1679 else if ((name == dtor_identifier
1680 || name == base_dtor_identifier
1681 || name == complete_dtor_identifier
1682 || name == deleting_dtor_identifier)
1683 && CLASSTYPE_LAZY_DESTRUCTOR (type))
1684 lazily_declare_fn (sfk_destructor, type);
1687 return lookup_fnfields_idx_nolazy (type, name);
1690 /* TYPE is a class type. Return the field within the method vector with
1691 name NAME, or NULL_TREE if no such field exists. */
1693 tree
1694 lookup_fnfields_slot (tree type, tree name)
1696 int ix = lookup_fnfields_1 (complete_type (type), name);
1697 if (ix < 0)
1698 return NULL_TREE;
1699 return (*CLASSTYPE_METHOD_VEC (type))[ix];
1702 /* As above, but avoid lazily declaring functions. */
1704 tree
1705 lookup_fnfields_slot_nolazy (tree type, tree name)
1707 int ix = lookup_fnfields_idx_nolazy (complete_type (type), name);
1708 if (ix < 0)
1709 return NULL_TREE;
1710 return (*CLASSTYPE_METHOD_VEC (type))[ix];
1713 /* Like lookup_fnfields_1, except that the name is extracted from
1714 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1717 class_method_index_for_fn (tree class_type, tree function)
1719 gcc_assert (DECL_DECLARES_FUNCTION_P (function));
1721 return lookup_fnfields_1 (class_type,
1722 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1723 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1724 DECL_NAME (function));
1728 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1729 the class or namespace used to qualify the name. CONTEXT_CLASS is
1730 the class corresponding to the object in which DECL will be used.
1731 Return a possibly modified version of DECL that takes into account
1732 the CONTEXT_CLASS.
1734 In particular, consider an expression like `B::m' in the context of
1735 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1736 then the most derived class indicated by the BASELINK_BINFO will be
1737 `B', not `D'. This function makes that adjustment. */
1739 tree
1740 adjust_result_of_qualified_name_lookup (tree decl,
1741 tree qualifying_scope,
1742 tree context_class)
1744 if (context_class && context_class != error_mark_node
1745 && CLASS_TYPE_P (context_class)
1746 && CLASS_TYPE_P (qualifying_scope)
1747 && DERIVED_FROM_P (qualifying_scope, context_class)
1748 && BASELINK_P (decl))
1750 tree base;
1752 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1753 Because we do not yet know which function will be chosen by
1754 overload resolution, we cannot yet check either accessibility
1755 or ambiguity -- in either case, the choice of a static member
1756 function might make the usage valid. */
1757 base = lookup_base (context_class, qualifying_scope,
1758 ba_unique, NULL, tf_none);
1759 if (base && base != error_mark_node)
1761 BASELINK_ACCESS_BINFO (decl) = base;
1762 tree decl_binfo
1763 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1764 ba_unique, NULL, tf_none);
1765 if (decl_binfo && decl_binfo != error_mark_node)
1766 BASELINK_BINFO (decl) = decl_binfo;
1770 if (BASELINK_P (decl))
1771 BASELINK_QUALIFIED_P (decl) = true;
1773 return decl;
1777 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1778 PRE_FN is called in preorder, while POST_FN is called in postorder.
1779 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1780 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1781 that value is immediately returned and the walk is terminated. One
1782 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1783 POST_FN are passed the binfo to examine and the caller's DATA
1784 value. All paths are walked, thus virtual and morally virtual
1785 binfos can be multiply walked. */
1787 tree
1788 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1789 tree (*post_fn) (tree, void *), void *data)
1791 tree rval;
1792 unsigned ix;
1793 tree base_binfo;
1795 /* Call the pre-order walking function. */
1796 if (pre_fn)
1798 rval = pre_fn (binfo, data);
1799 if (rval)
1801 if (rval == dfs_skip_bases)
1802 goto skip_bases;
1803 return rval;
1807 /* Find the next child binfo to walk. */
1808 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1810 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1811 if (rval)
1812 return rval;
1815 skip_bases:
1816 /* Call the post-order walking function. */
1817 if (post_fn)
1819 rval = post_fn (binfo, data);
1820 gcc_assert (rval != dfs_skip_bases);
1821 return rval;
1824 return NULL_TREE;
1827 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1828 that binfos are walked at most once. */
1830 static tree
1831 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1832 tree (*post_fn) (tree, void *), hash_set<tree> *pset,
1833 void *data)
1835 tree rval;
1836 unsigned ix;
1837 tree base_binfo;
1839 /* Call the pre-order walking function. */
1840 if (pre_fn)
1842 rval = pre_fn (binfo, data);
1843 if (rval)
1845 if (rval == dfs_skip_bases)
1846 goto skip_bases;
1848 return rval;
1852 /* Find the next child binfo to walk. */
1853 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1855 if (BINFO_VIRTUAL_P (base_binfo))
1856 if (pset->add (base_binfo))
1857 continue;
1859 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, pset, data);
1860 if (rval)
1861 return rval;
1864 skip_bases:
1865 /* Call the post-order walking function. */
1866 if (post_fn)
1868 rval = post_fn (binfo, data);
1869 gcc_assert (rval != dfs_skip_bases);
1870 return rval;
1873 return NULL_TREE;
1876 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1877 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1878 For diamond shaped hierarchies we must mark the virtual bases, to
1879 avoid multiple walks. */
1881 tree
1882 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1883 tree (*post_fn) (tree, void *), void *data)
1885 static int active = 0; /* We must not be called recursively. */
1886 tree rval;
1888 gcc_assert (pre_fn || post_fn);
1889 gcc_assert (!active);
1890 active++;
1892 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1893 /* We are not diamond shaped, and therefore cannot encounter the
1894 same binfo twice. */
1895 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1896 else
1898 hash_set<tree> pset;
1899 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, &pset, data);
1902 active--;
1904 return rval;
1907 /* Worker function for dfs_walk_once_accessible. Behaves like
1908 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1909 access given by the current context should be considered, (b) ONCE
1910 indicates whether bases should be marked during traversal. */
1912 static tree
1913 dfs_walk_once_accessible_r (tree binfo, bool friends_p, hash_set<tree> *pset,
1914 tree (*pre_fn) (tree, void *),
1915 tree (*post_fn) (tree, void *), void *data)
1917 tree rval = NULL_TREE;
1918 unsigned ix;
1919 tree base_binfo;
1921 /* Call the pre-order walking function. */
1922 if (pre_fn)
1924 rval = pre_fn (binfo, data);
1925 if (rval)
1927 if (rval == dfs_skip_bases)
1928 goto skip_bases;
1930 return rval;
1934 /* Find the next child binfo to walk. */
1935 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1937 bool mark = pset && BINFO_VIRTUAL_P (base_binfo);
1939 if (mark && pset->contains (base_binfo))
1940 continue;
1942 /* If the base is inherited via private or protected
1943 inheritance, then we can't see it, unless we are a friend of
1944 the current binfo. */
1945 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1947 tree scope;
1948 if (!friends_p)
1949 continue;
1950 scope = current_scope ();
1951 if (!scope
1952 || TREE_CODE (scope) == NAMESPACE_DECL
1953 || !is_friend (BINFO_TYPE (binfo), scope))
1954 continue;
1957 if (mark)
1958 pset->add (base_binfo);
1960 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, pset,
1961 pre_fn, post_fn, data);
1962 if (rval)
1963 return rval;
1966 skip_bases:
1967 /* Call the post-order walking function. */
1968 if (post_fn)
1970 rval = post_fn (binfo, data);
1971 gcc_assert (rval != dfs_skip_bases);
1972 return rval;
1975 return NULL_TREE;
1978 /* Like dfs_walk_once except that only accessible bases are walked.
1979 FRIENDS_P indicates whether friendship of the local context
1980 should be considered when determining accessibility. */
1982 static tree
1983 dfs_walk_once_accessible (tree binfo, bool friends_p,
1984 tree (*pre_fn) (tree, void *),
1985 tree (*post_fn) (tree, void *), void *data)
1987 hash_set<tree> *pset = NULL;
1988 if (CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1989 pset = new hash_set<tree>;
1990 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, pset,
1991 pre_fn, post_fn, data);
1993 if (pset)
1994 delete pset;
1995 return rval;
1998 /* Check that virtual overrider OVERRIDER is acceptable for base function
1999 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
2001 static int
2002 check_final_overrider (tree overrider, tree basefn)
2004 tree over_type = TREE_TYPE (overrider);
2005 tree base_type = TREE_TYPE (basefn);
2006 tree over_return = fndecl_declared_return_type (overrider);
2007 tree base_return = fndecl_declared_return_type (basefn);
2008 tree over_throw, base_throw;
2010 int fail = 0;
2012 if (DECL_INVALID_OVERRIDER_P (overrider))
2013 return 0;
2015 if (same_type_p (base_return, over_return))
2016 /* OK */;
2017 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
2018 || (TREE_CODE (base_return) == TREE_CODE (over_return)
2019 && POINTER_TYPE_P (base_return)))
2021 /* Potentially covariant. */
2022 unsigned base_quals, over_quals;
2024 fail = !POINTER_TYPE_P (base_return);
2025 if (!fail)
2027 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
2029 base_return = TREE_TYPE (base_return);
2030 over_return = TREE_TYPE (over_return);
2032 base_quals = cp_type_quals (base_return);
2033 over_quals = cp_type_quals (over_return);
2035 if ((base_quals & over_quals) != over_quals)
2036 fail = 1;
2038 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
2040 /* Strictly speaking, the standard requires the return type to be
2041 complete even if it only differs in cv-quals, but that seems
2042 like a bug in the wording. */
2043 if (!same_type_ignoring_top_level_qualifiers_p (base_return,
2044 over_return))
2046 tree binfo = lookup_base (over_return, base_return,
2047 ba_check, NULL, tf_none);
2049 if (!binfo || binfo == error_mark_node)
2050 fail = 1;
2053 else if (can_convert_standard (TREE_TYPE (base_type),
2054 TREE_TYPE (over_type),
2055 tf_warning_or_error))
2056 /* GNU extension, allow trivial pointer conversions such as
2057 converting to void *, or qualification conversion. */
2059 if (pedwarn (DECL_SOURCE_LOCATION (overrider), 0,
2060 "invalid covariant return type for %q#D", overrider))
2061 inform (DECL_SOURCE_LOCATION (basefn),
2062 " overriding %q#D", basefn);
2064 else
2065 fail = 2;
2067 else
2068 fail = 2;
2069 if (!fail)
2070 /* OK */;
2071 else
2073 if (fail == 1)
2075 error ("invalid covariant return type for %q+#D", overrider);
2076 error (" overriding %q+#D", basefn);
2078 else
2080 error ("conflicting return type specified for %q+#D", overrider);
2081 error (" overriding %q+#D", basefn);
2083 DECL_INVALID_OVERRIDER_P (overrider) = 1;
2084 return 0;
2087 /* Check throw specifier is at least as strict. */
2088 maybe_instantiate_noexcept (basefn);
2089 maybe_instantiate_noexcept (overrider);
2090 base_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (basefn));
2091 over_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (overrider));
2093 if (!comp_except_specs (base_throw, over_throw, ce_derived))
2095 error ("looser throw specifier for %q+#F", overrider);
2096 error (" overriding %q+#F", basefn);
2097 DECL_INVALID_OVERRIDER_P (overrider) = 1;
2098 return 0;
2101 /* Check for conflicting type attributes. But leave transaction_safe for
2102 set_one_vmethod_tm_attributes. */
2103 if (!comp_type_attributes (over_type, base_type)
2104 && !tx_safe_fn_type_p (base_type)
2105 && !tx_safe_fn_type_p (over_type))
2107 error ("conflicting type attributes specified for %q+#D", overrider);
2108 error (" overriding %q+#D", basefn);
2109 DECL_INVALID_OVERRIDER_P (overrider) = 1;
2110 return 0;
2113 /* A function declared transaction_safe_dynamic that overrides a function
2114 declared transaction_safe (but not transaction_safe_dynamic) is
2115 ill-formed. */
2116 if (tx_safe_fn_type_p (base_type)
2117 && lookup_attribute ("transaction_safe_dynamic",
2118 DECL_ATTRIBUTES (overrider))
2119 && !lookup_attribute ("transaction_safe_dynamic",
2120 DECL_ATTRIBUTES (basefn)))
2122 error_at (DECL_SOURCE_LOCATION (overrider),
2123 "%qD declared %<transaction_safe_dynamic%>", overrider);
2124 inform (DECL_SOURCE_LOCATION (basefn),
2125 "overriding %qD declared %<transaction_safe%>", basefn);
2128 if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider))
2130 if (DECL_DELETED_FN (overrider))
2132 error ("deleted function %q+D", overrider);
2133 error ("overriding non-deleted function %q+D", basefn);
2134 maybe_explain_implicit_delete (overrider);
2136 else
2138 error ("non-deleted function %q+D", overrider);
2139 error ("overriding deleted function %q+D", basefn);
2141 return 0;
2143 if (DECL_FINAL_P (basefn))
2145 error ("virtual function %q+D", overrider);
2146 error ("overriding final function %q+D", basefn);
2147 return 0;
2149 return 1;
2152 /* Given a class TYPE, and a function decl FNDECL, look for
2153 virtual functions in TYPE's hierarchy which FNDECL overrides.
2154 We do not look in TYPE itself, only its bases.
2156 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
2157 find that it overrides anything.
2159 We check that every function which is overridden, is correctly
2160 overridden. */
2163 look_for_overrides (tree type, tree fndecl)
2165 tree binfo = TYPE_BINFO (type);
2166 tree base_binfo;
2167 int ix;
2168 int found = 0;
2170 /* A constructor for a class T does not override a function T
2171 in a base class. */
2172 if (DECL_CONSTRUCTOR_P (fndecl))
2173 return 0;
2175 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2177 tree basetype = BINFO_TYPE (base_binfo);
2179 if (TYPE_POLYMORPHIC_P (basetype))
2180 found += look_for_overrides_r (basetype, fndecl);
2182 return found;
2185 /* Look in TYPE for virtual functions with the same signature as
2186 FNDECL. */
2188 tree
2189 look_for_overrides_here (tree type, tree fndecl)
2191 int ix;
2193 /* If there are no methods in TYPE (meaning that only implicitly
2194 declared methods will ever be provided for TYPE), then there are
2195 no virtual functions. */
2196 if (!CLASSTYPE_METHOD_VEC (type))
2197 return NULL_TREE;
2199 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
2200 ix = CLASSTYPE_DESTRUCTOR_SLOT;
2201 else
2202 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
2203 if (ix >= 0)
2205 tree fns = (*CLASSTYPE_METHOD_VEC (type))[ix];
2207 for (; fns; fns = OVL_NEXT (fns))
2209 tree fn = OVL_CURRENT (fns);
2211 if (!DECL_VIRTUAL_P (fn))
2212 /* Not a virtual. */;
2213 else if (DECL_CONTEXT (fn) != type)
2214 /* Introduced with a using declaration. */;
2215 else if (DECL_STATIC_FUNCTION_P (fndecl))
2217 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
2218 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2219 if (compparms (TREE_CHAIN (btypes), dtypes))
2220 return fn;
2222 else if (same_signature_p (fndecl, fn))
2223 return fn;
2226 return NULL_TREE;
2229 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
2230 TYPE itself and its bases. */
2232 static int
2233 look_for_overrides_r (tree type, tree fndecl)
2235 tree fn = look_for_overrides_here (type, fndecl);
2236 if (fn)
2238 if (DECL_STATIC_FUNCTION_P (fndecl))
2240 /* A static member function cannot match an inherited
2241 virtual member function. */
2242 error ("%q+#D cannot be declared", fndecl);
2243 error (" since %q+#D declared in base class", fn);
2245 else
2247 /* It's definitely virtual, even if not explicitly set. */
2248 DECL_VIRTUAL_P (fndecl) = 1;
2249 check_final_overrider (fndecl, fn);
2251 return 1;
2254 /* We failed to find one declared in this class. Look in its bases. */
2255 return look_for_overrides (type, fndecl);
2258 /* Called via dfs_walk from dfs_get_pure_virtuals. */
2260 static tree
2261 dfs_get_pure_virtuals (tree binfo, void *data)
2263 tree type = (tree) data;
2265 /* We're not interested in primary base classes; the derived class
2266 of which they are a primary base will contain the information we
2267 need. */
2268 if (!BINFO_PRIMARY_P (binfo))
2270 tree virtuals;
2272 for (virtuals = BINFO_VIRTUALS (binfo);
2273 virtuals;
2274 virtuals = TREE_CHAIN (virtuals))
2275 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2276 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (type), BV_FN (virtuals));
2279 return NULL_TREE;
2282 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2284 void
2285 get_pure_virtuals (tree type)
2287 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2288 is going to be overridden. */
2289 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2290 /* Now, run through all the bases which are not primary bases, and
2291 collect the pure virtual functions. We look at the vtable in
2292 each class to determine what pure virtual functions are present.
2293 (A primary base is not interesting because the derived class of
2294 which it is a primary base will contain vtable entries for the
2295 pure virtuals in the base class. */
2296 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2299 /* Debug info for C++ classes can get very large; try to avoid
2300 emitting it everywhere.
2302 Note that this optimization wins even when the target supports
2303 BINCL (if only slightly), and reduces the amount of work for the
2304 linker. */
2306 void
2307 maybe_suppress_debug_info (tree t)
2309 if (write_symbols == NO_DEBUG)
2310 return;
2312 /* We might have set this earlier in cp_finish_decl. */
2313 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2315 /* Always emit the information for each class every time. */
2316 if (flag_emit_class_debug_always)
2317 return;
2319 /* If we already know how we're handling this class, handle debug info
2320 the same way. */
2321 if (CLASSTYPE_INTERFACE_KNOWN (t))
2323 if (CLASSTYPE_INTERFACE_ONLY (t))
2324 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2325 /* else don't set it. */
2327 /* If the class has a vtable, write out the debug info along with
2328 the vtable. */
2329 else if (TYPE_CONTAINS_VPTR_P (t))
2330 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2332 /* Otherwise, just emit the debug info normally. */
2335 /* Note that we want debugging information for a base class of a class
2336 whose vtable is being emitted. Normally, this would happen because
2337 calling the constructor for a derived class implies calling the
2338 constructors for all bases, which involve initializing the
2339 appropriate vptr with the vtable for the base class; but in the
2340 presence of optimization, this initialization may be optimized
2341 away, so we tell finish_vtable_vardecl that we want the debugging
2342 information anyway. */
2344 static tree
2345 dfs_debug_mark (tree binfo, void * /*data*/)
2347 tree t = BINFO_TYPE (binfo);
2349 if (CLASSTYPE_DEBUG_REQUESTED (t))
2350 return dfs_skip_bases;
2352 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2354 return NULL_TREE;
2357 /* Write out the debugging information for TYPE, whose vtable is being
2358 emitted. Also walk through our bases and note that we want to
2359 write out information for them. This avoids the problem of not
2360 writing any debug info for intermediate basetypes whose
2361 constructors, and thus the references to their vtables, and thus
2362 the vtables themselves, were optimized away. */
2364 void
2365 note_debug_info_needed (tree type)
2367 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2369 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2370 rest_of_type_compilation (type, toplevel_bindings_p ());
2373 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2376 void
2377 print_search_statistics (void)
2379 if (! GATHER_STATISTICS)
2381 fprintf (stderr, "no search statistics\n");
2382 return;
2385 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2386 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2387 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2388 n_outer_fields_searched, n_calls_lookup_fnfields);
2389 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2392 void
2393 reinit_search_statistics (void)
2395 n_fields_searched = 0;
2396 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2397 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2398 n_calls_get_base_type = 0;
2399 n_outer_fields_searched = 0;
2400 n_contexts_saved = 0;
2403 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2404 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2405 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2406 bases have been encountered already in the tree walk. PARENT_CONVS
2407 is the list of lists of conversion functions that could hide CONV
2408 and OTHER_CONVS is the list of lists of conversion functions that
2409 could hide or be hidden by CONV, should virtualness be involved in
2410 the hierarchy. Merely checking the conversion op's name is not
2411 enough because two conversion operators to the same type can have
2412 different names. Return nonzero if we are visible. */
2414 static int
2415 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2416 tree to_type, tree parent_convs, tree other_convs)
2418 tree level, probe;
2420 /* See if we are hidden by a parent conversion. */
2421 for (level = parent_convs; level; level = TREE_CHAIN (level))
2422 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2423 if (same_type_p (to_type, TREE_TYPE (probe)))
2424 return 0;
2426 if (virtual_depth || virtualness)
2428 /* In a virtual hierarchy, we could be hidden, or could hide a
2429 conversion function on the other_convs list. */
2430 for (level = other_convs; level; level = TREE_CHAIN (level))
2432 int we_hide_them;
2433 int they_hide_us;
2434 tree *prev, other;
2436 if (!(virtual_depth || TREE_STATIC (level)))
2437 /* Neither is morally virtual, so cannot hide each other. */
2438 continue;
2440 if (!TREE_VALUE (level))
2441 /* They evaporated away already. */
2442 continue;
2444 they_hide_us = (virtual_depth
2445 && original_binfo (binfo, TREE_PURPOSE (level)));
2446 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2447 && original_binfo (TREE_PURPOSE (level), binfo));
2449 if (!(we_hide_them || they_hide_us))
2450 /* Neither is within the other, so no hiding can occur. */
2451 continue;
2453 for (prev = &TREE_VALUE (level), other = *prev; other;)
2455 if (same_type_p (to_type, TREE_TYPE (other)))
2457 if (they_hide_us)
2458 /* We are hidden. */
2459 return 0;
2461 if (we_hide_them)
2463 /* We hide the other one. */
2464 other = TREE_CHAIN (other);
2465 *prev = other;
2466 continue;
2469 prev = &TREE_CHAIN (other);
2470 other = *prev;
2474 return 1;
2477 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2478 of conversion functions, the first slot will be for the current
2479 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2480 of conversion functions from children of the current binfo,
2481 concatenated with conversions from elsewhere in the hierarchy --
2482 that list begins with OTHER_CONVS. Return a single list of lists
2483 containing only conversions from the current binfo and its
2484 children. */
2486 static tree
2487 split_conversions (tree my_convs, tree parent_convs,
2488 tree child_convs, tree other_convs)
2490 tree t;
2491 tree prev;
2493 /* Remove the original other_convs portion from child_convs. */
2494 for (prev = NULL, t = child_convs;
2495 t != other_convs; prev = t, t = TREE_CHAIN (t))
2496 continue;
2498 if (prev)
2499 TREE_CHAIN (prev) = NULL_TREE;
2500 else
2501 child_convs = NULL_TREE;
2503 /* Attach the child convs to any we had at this level. */
2504 if (my_convs)
2506 my_convs = parent_convs;
2507 TREE_CHAIN (my_convs) = child_convs;
2509 else
2510 my_convs = child_convs;
2512 return my_convs;
2515 /* Worker for lookup_conversions. Lookup conversion functions in
2516 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2517 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2518 encountered virtual bases already in the tree walk. PARENT_CONVS &
2519 PARENT_TPL_CONVS are lists of list of conversions within parent
2520 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2521 elsewhere in the tree. Return the conversions found within this
2522 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2523 encountered virtualness. We keep template and non-template
2524 conversions separate, to avoid unnecessary type comparisons.
2526 The located conversion functions are held in lists of lists. The
2527 TREE_VALUE of the outer list is the list of conversion functions
2528 found in a particular binfo. The TREE_PURPOSE of both the outer
2529 and inner lists is the binfo at which those conversions were
2530 found. TREE_STATIC is set for those lists within of morally
2531 virtual binfos. The TREE_VALUE of the inner list is the conversion
2532 function or overload itself. The TREE_TYPE of each inner list node
2533 is the converted-to type. */
2535 static int
2536 lookup_conversions_r (tree binfo,
2537 int virtual_depth, int virtualness,
2538 tree parent_convs, tree parent_tpl_convs,
2539 tree other_convs, tree other_tpl_convs,
2540 tree *convs, tree *tpl_convs)
2542 int my_virtualness = 0;
2543 tree my_convs = NULL_TREE;
2544 tree my_tpl_convs = NULL_TREE;
2545 tree child_convs = NULL_TREE;
2546 tree child_tpl_convs = NULL_TREE;
2547 unsigned i;
2548 tree base_binfo;
2549 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2550 tree conv;
2552 /* If we have no conversion operators, then don't look. */
2553 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2555 *convs = *tpl_convs = NULL_TREE;
2557 return 0;
2560 if (BINFO_VIRTUAL_P (binfo))
2561 virtual_depth++;
2563 /* First, locate the unhidden ones at this level. */
2564 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2565 vec_safe_iterate (method_vec, i, &conv);
2566 ++i)
2568 tree cur = OVL_CURRENT (conv);
2570 if (!DECL_CONV_FN_P (cur))
2571 break;
2573 if (TREE_CODE (cur) == TEMPLATE_DECL)
2575 /* Only template conversions can be overloaded, and we must
2576 flatten them out and check each one individually. */
2577 tree tpls;
2579 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2581 tree tpl = OVL_CURRENT (tpls);
2582 tree type = DECL_CONV_FN_TYPE (tpl);
2584 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2585 type, parent_tpl_convs, other_tpl_convs))
2587 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2588 TREE_TYPE (my_tpl_convs) = type;
2589 if (virtual_depth)
2591 TREE_STATIC (my_tpl_convs) = 1;
2592 my_virtualness = 1;
2597 else
2599 tree name = DECL_NAME (cur);
2601 if (!IDENTIFIER_MARKED (name))
2603 tree type = DECL_CONV_FN_TYPE (cur);
2604 if (type_uses_auto (type))
2606 mark_used (cur);
2607 type = DECL_CONV_FN_TYPE (cur);
2610 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2611 type, parent_convs, other_convs))
2613 my_convs = tree_cons (binfo, conv, my_convs);
2614 TREE_TYPE (my_convs) = type;
2615 if (virtual_depth)
2617 TREE_STATIC (my_convs) = 1;
2618 my_virtualness = 1;
2620 IDENTIFIER_MARKED (name) = 1;
2626 if (my_convs)
2628 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2629 if (virtual_depth)
2630 TREE_STATIC (parent_convs) = 1;
2633 if (my_tpl_convs)
2635 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2636 if (virtual_depth)
2637 TREE_STATIC (parent_tpl_convs) = 1;
2640 child_convs = other_convs;
2641 child_tpl_convs = other_tpl_convs;
2643 /* Now iterate over each base, looking for more conversions. */
2644 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2646 tree base_convs, base_tpl_convs;
2647 unsigned base_virtualness;
2649 base_virtualness = lookup_conversions_r (base_binfo,
2650 virtual_depth, virtualness,
2651 parent_convs, parent_tpl_convs,
2652 child_convs, child_tpl_convs,
2653 &base_convs, &base_tpl_convs);
2654 if (base_virtualness)
2655 my_virtualness = virtualness = 1;
2656 child_convs = chainon (base_convs, child_convs);
2657 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2660 /* Unmark the conversions found at this level */
2661 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2662 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2664 *convs = split_conversions (my_convs, parent_convs,
2665 child_convs, other_convs);
2666 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2667 child_tpl_convs, other_tpl_convs);
2669 return my_virtualness;
2672 /* Return a TREE_LIST containing all the non-hidden user-defined
2673 conversion functions for TYPE (and its base-classes). The
2674 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2675 function. The TREE_PURPOSE is the BINFO from which the conversion
2676 functions in this node were selected. This function is effectively
2677 performing a set of member lookups as lookup_fnfield does, but
2678 using the type being converted to as the unique key, rather than the
2679 field name. */
2681 tree
2682 lookup_conversions (tree type)
2684 tree convs, tpl_convs;
2685 tree list = NULL_TREE;
2687 complete_type (type);
2688 if (!CLASS_TYPE_P (type) || !TYPE_BINFO (type))
2689 return NULL_TREE;
2691 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2692 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2693 &convs, &tpl_convs);
2695 /* Flatten the list-of-lists */
2696 for (; convs; convs = TREE_CHAIN (convs))
2698 tree probe, next;
2700 for (probe = TREE_VALUE (convs); probe; probe = next)
2702 next = TREE_CHAIN (probe);
2704 TREE_CHAIN (probe) = list;
2705 list = probe;
2709 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2711 tree probe, next;
2713 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2715 next = TREE_CHAIN (probe);
2717 TREE_CHAIN (probe) = list;
2718 list = probe;
2722 return list;
2725 /* Returns the binfo of the first direct or indirect virtual base derived
2726 from BINFO, or NULL if binfo is not via virtual. */
2728 tree
2729 binfo_from_vbase (tree binfo)
2731 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2733 if (BINFO_VIRTUAL_P (binfo))
2734 return binfo;
2736 return NULL_TREE;
2739 /* Returns the binfo of the first direct or indirect virtual base derived
2740 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2741 via virtual. */
2743 tree
2744 binfo_via_virtual (tree binfo, tree limit)
2746 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2747 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2748 return NULL_TREE;
2750 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2751 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2753 if (BINFO_VIRTUAL_P (binfo))
2754 return binfo;
2756 return NULL_TREE;
2759 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2760 Find the equivalent binfo within whatever graph HERE is located.
2761 This is the inverse of original_binfo. */
2763 tree
2764 copied_binfo (tree binfo, tree here)
2766 tree result = NULL_TREE;
2768 if (BINFO_VIRTUAL_P (binfo))
2770 tree t;
2772 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2773 t = BINFO_INHERITANCE_CHAIN (t))
2774 continue;
2776 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2778 else if (BINFO_INHERITANCE_CHAIN (binfo))
2780 tree cbinfo;
2781 tree base_binfo;
2782 int ix;
2784 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2785 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2786 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2788 result = base_binfo;
2789 break;
2792 else
2794 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2795 result = here;
2798 gcc_assert (result);
2799 return result;
2802 tree
2803 binfo_for_vbase (tree base, tree t)
2805 unsigned ix;
2806 tree binfo;
2807 vec<tree, va_gc> *vbases;
2809 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2810 vec_safe_iterate (vbases, ix, &binfo); ix++)
2811 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2812 return binfo;
2813 return NULL;
2816 /* BINFO is some base binfo of HERE, within some other
2817 hierarchy. Return the equivalent binfo, but in the hierarchy
2818 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2819 is not a base binfo of HERE, returns NULL_TREE. */
2821 tree
2822 original_binfo (tree binfo, tree here)
2824 tree result = NULL;
2826 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2827 result = here;
2828 else if (BINFO_VIRTUAL_P (binfo))
2829 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2830 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2831 : NULL_TREE);
2832 else if (BINFO_INHERITANCE_CHAIN (binfo))
2834 tree base_binfos;
2836 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2837 if (base_binfos)
2839 int ix;
2840 tree base_binfo;
2842 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2843 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2844 BINFO_TYPE (binfo)))
2846 result = base_binfo;
2847 break;
2852 return result;
2855 /* True iff TYPE has any dependent bases (and therefore we can't say
2856 definitively that another class is not a base of an instantiation of
2857 TYPE). */
2859 bool
2860 any_dependent_bases_p (tree type)
2862 if (!type || !CLASS_TYPE_P (type) || !processing_template_decl)
2863 return false;
2865 unsigned i;
2866 tree base_binfo;
2867 FOR_EACH_VEC_SAFE_ELT (BINFO_BASE_BINFOS (TYPE_BINFO (type)), i, base_binfo)
2868 if (BINFO_DEPENDENT_BASE_P (base_binfo))
2869 return true;
2871 return false;