re PR c++/19476 (Missed null checking elimination with new)
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blobfc255289f24ba7fce8d310d6cc9825a273c624f2
1 /* Loop invariant motion.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "tree-ssa.h"
29 #include "cfgloop.h"
30 #include "domwalk.h"
31 #include "params.h"
32 #include "tree-pass.h"
33 #include "flags.h"
34 #include "hash-table.h"
35 #include "tree-affine.h"
36 #include "pointer-set.h"
37 #include "tree-ssa-propagate.h"
39 /* TODO: Support for predicated code motion. I.e.
41 while (1)
43 if (cond)
45 a = inv;
46 something;
50 Where COND and INV are invariants, but evaluating INV may trap or be
51 invalid from some other reason if !COND. This may be transformed to
53 if (cond)
54 a = inv;
55 while (1)
57 if (cond)
58 something;
59 } */
61 /* The auxiliary data kept for each statement. */
63 struct lim_aux_data
65 struct loop *max_loop; /* The outermost loop in that the statement
66 is invariant. */
68 struct loop *tgt_loop; /* The loop out of that we want to move the
69 invariant. */
71 struct loop *always_executed_in;
72 /* The outermost loop for that we are sure
73 the statement is executed if the loop
74 is entered. */
76 unsigned cost; /* Cost of the computation performed by the
77 statement. */
79 vec<gimple> depends; /* Vector of statements that must be also
80 hoisted out of the loop when this statement
81 is hoisted; i.e. those that define the
82 operands of the statement and are inside of
83 the MAX_LOOP loop. */
86 /* Maps statements to their lim_aux_data. */
88 static struct pointer_map_t *lim_aux_data_map;
90 /* Description of a memory reference location. */
92 typedef struct mem_ref_loc
94 tree *ref; /* The reference itself. */
95 gimple stmt; /* The statement in that it occurs. */
96 } *mem_ref_loc_p;
99 /* Description of a memory reference. */
101 typedef struct mem_ref
103 unsigned id; /* ID assigned to the memory reference
104 (its index in memory_accesses.refs_list) */
105 hashval_t hash; /* Its hash value. */
107 /* The memory access itself and associated caching of alias-oracle
108 query meta-data. */
109 ao_ref mem;
111 bitmap_head stored; /* The set of loops in that this memory location
112 is stored to. */
113 vec<vec<mem_ref_loc> > accesses_in_loop;
114 /* The locations of the accesses. Vector
115 indexed by the loop number. */
117 /* The following sets are computed on demand. We keep both set and
118 its complement, so that we know whether the information was
119 already computed or not. */
120 bitmap_head indep_loop; /* The set of loops in that the memory
121 reference is independent, meaning:
122 If it is stored in the loop, this store
123 is independent on all other loads and
124 stores.
125 If it is only loaded, then it is independent
126 on all stores in the loop. */
127 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
128 } *mem_ref_p;
130 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
131 to record (in)dependence against stores in the loop and its subloops, the
132 second to record (in)dependence against all references in the loop
133 and its subloops. */
134 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
136 /* Mem_ref hashtable helpers. */
138 struct mem_ref_hasher : typed_noop_remove <mem_ref>
140 typedef mem_ref value_type;
141 typedef tree_node compare_type;
142 static inline hashval_t hash (const value_type *);
143 static inline bool equal (const value_type *, const compare_type *);
146 /* A hash function for struct mem_ref object OBJ. */
148 inline hashval_t
149 mem_ref_hasher::hash (const value_type *mem)
151 return mem->hash;
154 /* An equality function for struct mem_ref object MEM1 with
155 memory reference OBJ2. */
157 inline bool
158 mem_ref_hasher::equal (const value_type *mem1, const compare_type *obj2)
160 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
164 /* Description of memory accesses in loops. */
166 static struct
168 /* The hash table of memory references accessed in loops. */
169 hash_table <mem_ref_hasher> refs;
171 /* The list of memory references. */
172 vec<mem_ref_p> refs_list;
174 /* The set of memory references accessed in each loop. */
175 vec<bitmap_head> refs_in_loop;
177 /* The set of memory references stored in each loop. */
178 vec<bitmap_head> refs_stored_in_loop;
180 /* The set of memory references stored in each loop, including subloops . */
181 vec<bitmap_head> all_refs_stored_in_loop;
183 /* Cache for expanding memory addresses. */
184 struct pointer_map_t *ttae_cache;
185 } memory_accesses;
187 /* Obstack for the bitmaps in the above data structures. */
188 static bitmap_obstack lim_bitmap_obstack;
190 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
192 /* Minimum cost of an expensive expression. */
193 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
195 /* The outermost loop for which execution of the header guarantees that the
196 block will be executed. */
197 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
198 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
200 /* ID of the shared unanalyzable mem. */
201 #define UNANALYZABLE_MEM_ID 0
203 /* Whether the reference was analyzable. */
204 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
206 static struct lim_aux_data *
207 init_lim_data (gimple stmt)
209 void **p = pointer_map_insert (lim_aux_data_map, stmt);
211 *p = XCNEW (struct lim_aux_data);
212 return (struct lim_aux_data *) *p;
215 static struct lim_aux_data *
216 get_lim_data (gimple stmt)
218 void **p = pointer_map_contains (lim_aux_data_map, stmt);
219 if (!p)
220 return NULL;
222 return (struct lim_aux_data *) *p;
225 /* Releases the memory occupied by DATA. */
227 static void
228 free_lim_aux_data (struct lim_aux_data *data)
230 data->depends.release ();
231 free (data);
234 static void
235 clear_lim_data (gimple stmt)
237 void **p = pointer_map_contains (lim_aux_data_map, stmt);
238 if (!p)
239 return;
241 free_lim_aux_data ((struct lim_aux_data *) *p);
242 *p = NULL;
245 /* Calls CBCK for each index in memory reference ADDR_P. There are two
246 kinds situations handled; in each of these cases, the memory reference
247 and DATA are passed to the callback:
249 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
250 pass the pointer to the index to the callback.
252 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
253 pointer to addr to the callback.
255 If the callback returns false, the whole search stops and false is returned.
256 Otherwise the function returns true after traversing through the whole
257 reference *ADDR_P. */
259 bool
260 for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
262 tree *nxt, *idx;
264 for (; ; addr_p = nxt)
266 switch (TREE_CODE (*addr_p))
268 case SSA_NAME:
269 return cbck (*addr_p, addr_p, data);
271 case MEM_REF:
272 nxt = &TREE_OPERAND (*addr_p, 0);
273 return cbck (*addr_p, nxt, data);
275 case BIT_FIELD_REF:
276 case VIEW_CONVERT_EXPR:
277 case REALPART_EXPR:
278 case IMAGPART_EXPR:
279 nxt = &TREE_OPERAND (*addr_p, 0);
280 break;
282 case COMPONENT_REF:
283 /* If the component has varying offset, it behaves like index
284 as well. */
285 idx = &TREE_OPERAND (*addr_p, 2);
286 if (*idx
287 && !cbck (*addr_p, idx, data))
288 return false;
290 nxt = &TREE_OPERAND (*addr_p, 0);
291 break;
293 case ARRAY_REF:
294 case ARRAY_RANGE_REF:
295 nxt = &TREE_OPERAND (*addr_p, 0);
296 if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
297 return false;
298 break;
300 case VAR_DECL:
301 case PARM_DECL:
302 case CONST_DECL:
303 case STRING_CST:
304 case RESULT_DECL:
305 case VECTOR_CST:
306 case COMPLEX_CST:
307 case INTEGER_CST:
308 case REAL_CST:
309 case FIXED_CST:
310 case CONSTRUCTOR:
311 return true;
313 case ADDR_EXPR:
314 gcc_assert (is_gimple_min_invariant (*addr_p));
315 return true;
317 case TARGET_MEM_REF:
318 idx = &TMR_BASE (*addr_p);
319 if (*idx
320 && !cbck (*addr_p, idx, data))
321 return false;
322 idx = &TMR_INDEX (*addr_p);
323 if (*idx
324 && !cbck (*addr_p, idx, data))
325 return false;
326 idx = &TMR_INDEX2 (*addr_p);
327 if (*idx
328 && !cbck (*addr_p, idx, data))
329 return false;
330 return true;
332 default:
333 gcc_unreachable ();
338 /* If it is possible to hoist the statement STMT unconditionally,
339 returns MOVE_POSSIBLE.
340 If it is possible to hoist the statement STMT, but we must avoid making
341 it executed if it would not be executed in the original program (e.g.
342 because it may trap), return MOVE_PRESERVE_EXECUTION.
343 Otherwise return MOVE_IMPOSSIBLE. */
345 enum move_pos
346 movement_possibility (gimple stmt)
348 tree lhs;
349 enum move_pos ret = MOVE_POSSIBLE;
351 if (flag_unswitch_loops
352 && gimple_code (stmt) == GIMPLE_COND)
354 /* If we perform unswitching, force the operands of the invariant
355 condition to be moved out of the loop. */
356 return MOVE_POSSIBLE;
359 if (gimple_code (stmt) == GIMPLE_PHI
360 && gimple_phi_num_args (stmt) <= 2
361 && !virtual_operand_p (gimple_phi_result (stmt))
362 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
363 return MOVE_POSSIBLE;
365 if (gimple_get_lhs (stmt) == NULL_TREE)
366 return MOVE_IMPOSSIBLE;
368 if (gimple_vdef (stmt))
369 return MOVE_IMPOSSIBLE;
371 if (stmt_ends_bb_p (stmt)
372 || gimple_has_volatile_ops (stmt)
373 || gimple_has_side_effects (stmt)
374 || stmt_could_throw_p (stmt))
375 return MOVE_IMPOSSIBLE;
377 if (is_gimple_call (stmt))
379 /* While pure or const call is guaranteed to have no side effects, we
380 cannot move it arbitrarily. Consider code like
382 char *s = something ();
384 while (1)
386 if (s)
387 t = strlen (s);
388 else
389 t = 0;
392 Here the strlen call cannot be moved out of the loop, even though
393 s is invariant. In addition to possibly creating a call with
394 invalid arguments, moving out a function call that is not executed
395 may cause performance regressions in case the call is costly and
396 not executed at all. */
397 ret = MOVE_PRESERVE_EXECUTION;
398 lhs = gimple_call_lhs (stmt);
400 else if (is_gimple_assign (stmt))
401 lhs = gimple_assign_lhs (stmt);
402 else
403 return MOVE_IMPOSSIBLE;
405 if (TREE_CODE (lhs) == SSA_NAME
406 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
407 return MOVE_IMPOSSIBLE;
409 if (TREE_CODE (lhs) != SSA_NAME
410 || gimple_could_trap_p (stmt))
411 return MOVE_PRESERVE_EXECUTION;
413 /* Non local loads in a transaction cannot be hoisted out. Well,
414 unless the load happens on every path out of the loop, but we
415 don't take this into account yet. */
416 if (flag_tm
417 && gimple_in_transaction (stmt)
418 && gimple_assign_single_p (stmt))
420 tree rhs = gimple_assign_rhs1 (stmt);
421 if (DECL_P (rhs) && is_global_var (rhs))
423 if (dump_file)
425 fprintf (dump_file, "Cannot hoist conditional load of ");
426 print_generic_expr (dump_file, rhs, TDF_SLIM);
427 fprintf (dump_file, " because it is in a transaction.\n");
429 return MOVE_IMPOSSIBLE;
433 return ret;
436 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
437 loop to that we could move the expression using DEF if it did not have
438 other operands, i.e. the outermost loop enclosing LOOP in that the value
439 of DEF is invariant. */
441 static struct loop *
442 outermost_invariant_loop (tree def, struct loop *loop)
444 gimple def_stmt;
445 basic_block def_bb;
446 struct loop *max_loop;
447 struct lim_aux_data *lim_data;
449 if (!def)
450 return superloop_at_depth (loop, 1);
452 if (TREE_CODE (def) != SSA_NAME)
454 gcc_assert (is_gimple_min_invariant (def));
455 return superloop_at_depth (loop, 1);
458 def_stmt = SSA_NAME_DEF_STMT (def);
459 def_bb = gimple_bb (def_stmt);
460 if (!def_bb)
461 return superloop_at_depth (loop, 1);
463 max_loop = find_common_loop (loop, def_bb->loop_father);
465 lim_data = get_lim_data (def_stmt);
466 if (lim_data != NULL && lim_data->max_loop != NULL)
467 max_loop = find_common_loop (max_loop,
468 loop_outer (lim_data->max_loop));
469 if (max_loop == loop)
470 return NULL;
471 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
473 return max_loop;
476 /* DATA is a structure containing information associated with a statement
477 inside LOOP. DEF is one of the operands of this statement.
479 Find the outermost loop enclosing LOOP in that value of DEF is invariant
480 and record this in DATA->max_loop field. If DEF itself is defined inside
481 this loop as well (i.e. we need to hoist it out of the loop if we want
482 to hoist the statement represented by DATA), record the statement in that
483 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
484 add the cost of the computation of DEF to the DATA->cost.
486 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
488 static bool
489 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
490 bool add_cost)
492 gimple def_stmt = SSA_NAME_DEF_STMT (def);
493 basic_block def_bb = gimple_bb (def_stmt);
494 struct loop *max_loop;
495 struct lim_aux_data *def_data;
497 if (!def_bb)
498 return true;
500 max_loop = outermost_invariant_loop (def, loop);
501 if (!max_loop)
502 return false;
504 if (flow_loop_nested_p (data->max_loop, max_loop))
505 data->max_loop = max_loop;
507 def_data = get_lim_data (def_stmt);
508 if (!def_data)
509 return true;
511 if (add_cost
512 /* Only add the cost if the statement defining DEF is inside LOOP,
513 i.e. if it is likely that by moving the invariants dependent
514 on it, we will be able to avoid creating a new register for
515 it (since it will be only used in these dependent invariants). */
516 && def_bb->loop_father == loop)
517 data->cost += def_data->cost;
519 data->depends.safe_push (def_stmt);
521 return true;
524 /* Returns an estimate for a cost of statement STMT. The values here
525 are just ad-hoc constants, similar to costs for inlining. */
527 static unsigned
528 stmt_cost (gimple stmt)
530 /* Always try to create possibilities for unswitching. */
531 if (gimple_code (stmt) == GIMPLE_COND
532 || gimple_code (stmt) == GIMPLE_PHI)
533 return LIM_EXPENSIVE;
535 /* We should be hoisting calls if possible. */
536 if (is_gimple_call (stmt))
538 tree fndecl;
540 /* Unless the call is a builtin_constant_p; this always folds to a
541 constant, so moving it is useless. */
542 fndecl = gimple_call_fndecl (stmt);
543 if (fndecl
544 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
545 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
546 return 0;
548 return LIM_EXPENSIVE;
551 /* Hoisting memory references out should almost surely be a win. */
552 if (gimple_references_memory_p (stmt))
553 return LIM_EXPENSIVE;
555 if (gimple_code (stmt) != GIMPLE_ASSIGN)
556 return 1;
558 switch (gimple_assign_rhs_code (stmt))
560 case MULT_EXPR:
561 case WIDEN_MULT_EXPR:
562 case WIDEN_MULT_PLUS_EXPR:
563 case WIDEN_MULT_MINUS_EXPR:
564 case DOT_PROD_EXPR:
565 case FMA_EXPR:
566 case TRUNC_DIV_EXPR:
567 case CEIL_DIV_EXPR:
568 case FLOOR_DIV_EXPR:
569 case ROUND_DIV_EXPR:
570 case EXACT_DIV_EXPR:
571 case CEIL_MOD_EXPR:
572 case FLOOR_MOD_EXPR:
573 case ROUND_MOD_EXPR:
574 case TRUNC_MOD_EXPR:
575 case RDIV_EXPR:
576 /* Division and multiplication are usually expensive. */
577 return LIM_EXPENSIVE;
579 case LSHIFT_EXPR:
580 case RSHIFT_EXPR:
581 case WIDEN_LSHIFT_EXPR:
582 case LROTATE_EXPR:
583 case RROTATE_EXPR:
584 /* Shifts and rotates are usually expensive. */
585 return LIM_EXPENSIVE;
587 case CONSTRUCTOR:
588 /* Make vector construction cost proportional to the number
589 of elements. */
590 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
592 case SSA_NAME:
593 case PAREN_EXPR:
594 /* Whether or not something is wrapped inside a PAREN_EXPR
595 should not change move cost. Nor should an intermediate
596 unpropagated SSA name copy. */
597 return 0;
599 default:
600 return 1;
604 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
605 REF is independent. If REF is not independent in LOOP, NULL is returned
606 instead. */
608 static struct loop *
609 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
611 struct loop *aloop;
613 if (bitmap_bit_p (&ref->stored, loop->num))
614 return NULL;
616 for (aloop = outer;
617 aloop != loop;
618 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
619 if (!bitmap_bit_p (&ref->stored, aloop->num)
620 && ref_indep_loop_p (aloop, ref))
621 return aloop;
623 if (ref_indep_loop_p (loop, ref))
624 return loop;
625 else
626 return NULL;
629 /* If there is a simple load or store to a memory reference in STMT, returns
630 the location of the memory reference, and sets IS_STORE according to whether
631 it is a store or load. Otherwise, returns NULL. */
633 static tree *
634 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
636 tree *lhs, *rhs;
638 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
639 if (!gimple_assign_single_p (stmt))
640 return NULL;
642 lhs = gimple_assign_lhs_ptr (stmt);
643 rhs = gimple_assign_rhs1_ptr (stmt);
645 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
647 *is_store = false;
648 return rhs;
650 else if (gimple_vdef (stmt)
651 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
653 *is_store = true;
654 return lhs;
656 else
657 return NULL;
660 /* Returns the memory reference contained in STMT. */
662 static mem_ref_p
663 mem_ref_in_stmt (gimple stmt)
665 bool store;
666 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
667 hashval_t hash;
668 mem_ref_p ref;
670 if (!mem)
671 return NULL;
672 gcc_assert (!store);
674 hash = iterative_hash_expr (*mem, 0);
675 ref = memory_accesses.refs.find_with_hash (*mem, hash);
677 gcc_assert (ref != NULL);
678 return ref;
681 /* From a controlling predicate in DOM determine the arguments from
682 the PHI node PHI that are chosen if the predicate evaluates to
683 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
684 they are non-NULL. Returns true if the arguments can be determined,
685 else return false. */
687 static bool
688 extract_true_false_args_from_phi (basic_block dom, gimple phi,
689 tree *true_arg_p, tree *false_arg_p)
691 basic_block bb = gimple_bb (phi);
692 edge true_edge, false_edge, tem;
693 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
695 /* We have to verify that one edge into the PHI node is dominated
696 by the true edge of the predicate block and the other edge
697 dominated by the false edge. This ensures that the PHI argument
698 we are going to take is completely determined by the path we
699 take from the predicate block.
700 We can only use BB dominance checks below if the destination of
701 the true/false edges are dominated by their edge, thus only
702 have a single predecessor. */
703 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
704 tem = EDGE_PRED (bb, 0);
705 if (tem == true_edge
706 || (single_pred_p (true_edge->dest)
707 && (tem->src == true_edge->dest
708 || dominated_by_p (CDI_DOMINATORS,
709 tem->src, true_edge->dest))))
710 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
711 else if (tem == false_edge
712 || (single_pred_p (false_edge->dest)
713 && (tem->src == false_edge->dest
714 || dominated_by_p (CDI_DOMINATORS,
715 tem->src, false_edge->dest))))
716 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
717 else
718 return false;
719 tem = EDGE_PRED (bb, 1);
720 if (tem == true_edge
721 || (single_pred_p (true_edge->dest)
722 && (tem->src == true_edge->dest
723 || dominated_by_p (CDI_DOMINATORS,
724 tem->src, true_edge->dest))))
725 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
726 else if (tem == false_edge
727 || (single_pred_p (false_edge->dest)
728 && (tem->src == false_edge->dest
729 || dominated_by_p (CDI_DOMINATORS,
730 tem->src, false_edge->dest))))
731 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
732 else
733 return false;
734 if (!arg0 || !arg1)
735 return false;
737 if (true_arg_p)
738 *true_arg_p = arg0;
739 if (false_arg_p)
740 *false_arg_p = arg1;
742 return true;
745 /* Determine the outermost loop to that it is possible to hoist a statement
746 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
747 the outermost loop in that the value computed by STMT is invariant.
748 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
749 we preserve the fact whether STMT is executed. It also fills other related
750 information to LIM_DATA (STMT).
752 The function returns false if STMT cannot be hoisted outside of the loop it
753 is defined in, and true otherwise. */
755 static bool
756 determine_max_movement (gimple stmt, bool must_preserve_exec)
758 basic_block bb = gimple_bb (stmt);
759 struct loop *loop = bb->loop_father;
760 struct loop *level;
761 struct lim_aux_data *lim_data = get_lim_data (stmt);
762 tree val;
763 ssa_op_iter iter;
765 if (must_preserve_exec)
766 level = ALWAYS_EXECUTED_IN (bb);
767 else
768 level = superloop_at_depth (loop, 1);
769 lim_data->max_loop = level;
771 if (gimple_code (stmt) == GIMPLE_PHI)
773 use_operand_p use_p;
774 unsigned min_cost = UINT_MAX;
775 unsigned total_cost = 0;
776 struct lim_aux_data *def_data;
778 /* We will end up promoting dependencies to be unconditionally
779 evaluated. For this reason the PHI cost (and thus the
780 cost we remove from the loop by doing the invariant motion)
781 is that of the cheapest PHI argument dependency chain. */
782 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
784 val = USE_FROM_PTR (use_p);
785 if (TREE_CODE (val) != SSA_NAME)
786 continue;
787 if (!add_dependency (val, lim_data, loop, false))
788 return false;
789 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
790 if (def_data)
792 min_cost = MIN (min_cost, def_data->cost);
793 total_cost += def_data->cost;
797 lim_data->cost += min_cost;
799 if (gimple_phi_num_args (stmt) > 1)
801 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
802 gimple cond;
803 if (gsi_end_p (gsi_last_bb (dom)))
804 return false;
805 cond = gsi_stmt (gsi_last_bb (dom));
806 if (gimple_code (cond) != GIMPLE_COND)
807 return false;
808 /* Verify that this is an extended form of a diamond and
809 the PHI arguments are completely controlled by the
810 predicate in DOM. */
811 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
812 return false;
814 /* Fold in dependencies and cost of the condition. */
815 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
817 if (!add_dependency (val, lim_data, loop, false))
818 return false;
819 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
820 if (def_data)
821 total_cost += def_data->cost;
824 /* We want to avoid unconditionally executing very expensive
825 operations. As costs for our dependencies cannot be
826 negative just claim we are not invariand for this case.
827 We also are not sure whether the control-flow inside the
828 loop will vanish. */
829 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
830 && !(min_cost != 0
831 && total_cost / min_cost <= 2))
832 return false;
834 /* Assume that the control-flow in the loop will vanish.
835 ??? We should verify this and not artificially increase
836 the cost if that is not the case. */
837 lim_data->cost += stmt_cost (stmt);
840 return true;
842 else
843 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
844 if (!add_dependency (val, lim_data, loop, true))
845 return false;
847 if (gimple_vuse (stmt))
849 mem_ref_p ref = mem_ref_in_stmt (stmt);
851 if (ref)
853 lim_data->max_loop
854 = outermost_indep_loop (lim_data->max_loop, loop, ref);
855 if (!lim_data->max_loop)
856 return false;
858 else
860 if ((val = gimple_vuse (stmt)) != NULL_TREE)
862 if (!add_dependency (val, lim_data, loop, false))
863 return false;
868 lim_data->cost += stmt_cost (stmt);
870 return true;
873 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
874 and that one of the operands of this statement is computed by STMT.
875 Ensure that STMT (together with all the statements that define its
876 operands) is hoisted at least out of the loop LEVEL. */
878 static void
879 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
881 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
882 struct lim_aux_data *lim_data;
883 gimple dep_stmt;
884 unsigned i;
886 stmt_loop = find_common_loop (orig_loop, stmt_loop);
887 lim_data = get_lim_data (stmt);
888 if (lim_data != NULL && lim_data->tgt_loop != NULL)
889 stmt_loop = find_common_loop (stmt_loop,
890 loop_outer (lim_data->tgt_loop));
891 if (flow_loop_nested_p (stmt_loop, level))
892 return;
894 gcc_assert (level == lim_data->max_loop
895 || flow_loop_nested_p (lim_data->max_loop, level));
897 lim_data->tgt_loop = level;
898 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
899 set_level (dep_stmt, orig_loop, level);
902 /* Determines an outermost loop from that we want to hoist the statement STMT.
903 For now we chose the outermost possible loop. TODO -- use profiling
904 information to set it more sanely. */
906 static void
907 set_profitable_level (gimple stmt)
909 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
912 /* Returns true if STMT is a call that has side effects. */
914 static bool
915 nonpure_call_p (gimple stmt)
917 if (gimple_code (stmt) != GIMPLE_CALL)
918 return false;
920 return gimple_has_side_effects (stmt);
923 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
925 static gimple
926 rewrite_reciprocal (gimple_stmt_iterator *bsi)
928 gimple stmt, stmt1, stmt2;
929 tree name, lhs, type;
930 tree real_one;
931 gimple_stmt_iterator gsi;
933 stmt = gsi_stmt (*bsi);
934 lhs = gimple_assign_lhs (stmt);
935 type = TREE_TYPE (lhs);
937 real_one = build_one_cst (type);
939 name = make_temp_ssa_name (type, NULL, "reciptmp");
940 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, name, real_one,
941 gimple_assign_rhs2 (stmt));
943 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
944 gimple_assign_rhs1 (stmt));
946 /* Replace division stmt with reciprocal and multiply stmts.
947 The multiply stmt is not invariant, so update iterator
948 and avoid rescanning. */
949 gsi = *bsi;
950 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
951 gsi_replace (&gsi, stmt2, true);
953 /* Continue processing with invariant reciprocal statement. */
954 return stmt1;
957 /* Check if the pattern at *BSI is a bittest of the form
958 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
960 static gimple
961 rewrite_bittest (gimple_stmt_iterator *bsi)
963 gimple stmt, use_stmt, stmt1, stmt2;
964 tree lhs, name, t, a, b;
965 use_operand_p use;
967 stmt = gsi_stmt (*bsi);
968 lhs = gimple_assign_lhs (stmt);
970 /* Verify that the single use of lhs is a comparison against zero. */
971 if (TREE_CODE (lhs) != SSA_NAME
972 || !single_imm_use (lhs, &use, &use_stmt)
973 || gimple_code (use_stmt) != GIMPLE_COND)
974 return stmt;
975 if (gimple_cond_lhs (use_stmt) != lhs
976 || (gimple_cond_code (use_stmt) != NE_EXPR
977 && gimple_cond_code (use_stmt) != EQ_EXPR)
978 || !integer_zerop (gimple_cond_rhs (use_stmt)))
979 return stmt;
981 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
982 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
983 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
984 return stmt;
986 /* There is a conversion in between possibly inserted by fold. */
987 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
989 t = gimple_assign_rhs1 (stmt1);
990 if (TREE_CODE (t) != SSA_NAME
991 || !has_single_use (t))
992 return stmt;
993 stmt1 = SSA_NAME_DEF_STMT (t);
994 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
995 return stmt;
998 /* Verify that B is loop invariant but A is not. Verify that with
999 all the stmt walking we are still in the same loop. */
1000 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
1001 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
1002 return stmt;
1004 a = gimple_assign_rhs1 (stmt1);
1005 b = gimple_assign_rhs2 (stmt1);
1007 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
1008 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
1010 gimple_stmt_iterator rsi;
1012 /* 1 << B */
1013 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
1014 build_int_cst (TREE_TYPE (a), 1), b);
1015 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1016 stmt1 = gimple_build_assign (name, t);
1018 /* A & (1 << B) */
1019 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
1020 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1021 stmt2 = gimple_build_assign (name, t);
1023 /* Replace the SSA_NAME we compare against zero. Adjust
1024 the type of zero accordingly. */
1025 SET_USE (use, name);
1026 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
1028 /* Don't use gsi_replace here, none of the new assignments sets
1029 the variable originally set in stmt. Move bsi to stmt1, and
1030 then remove the original stmt, so that we get a chance to
1031 retain debug info for it. */
1032 rsi = *bsi;
1033 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1034 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1035 gsi_remove (&rsi, true);
1037 return stmt1;
1040 return stmt;
1043 /* For each statement determines the outermost loop in that it is invariant,
1044 - statements on whose motion it depends and the cost of the computation.
1045 - This information is stored to the LIM_DATA structure associated with
1046 - each statement. */
1047 class invariantness_dom_walker : public dom_walker
1049 public:
1050 invariantness_dom_walker (cdi_direction direction)
1051 : dom_walker (direction) {}
1053 virtual void before_dom_children (basic_block);
1056 /* Determine the outermost loops in that statements in basic block BB are
1057 invariant, and record them to the LIM_DATA associated with the statements.
1058 Callback for dom_walker. */
1060 void
1061 invariantness_dom_walker::before_dom_children (basic_block bb)
1063 enum move_pos pos;
1064 gimple_stmt_iterator bsi;
1065 gimple stmt;
1066 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1067 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1068 struct lim_aux_data *lim_data;
1070 if (!loop_outer (bb->loop_father))
1071 return;
1073 if (dump_file && (dump_flags & TDF_DETAILS))
1074 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1075 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1077 /* Look at PHI nodes, but only if there is at most two.
1078 ??? We could relax this further by post-processing the inserted
1079 code and transforming adjacent cond-exprs with the same predicate
1080 to control flow again. */
1081 bsi = gsi_start_phis (bb);
1082 if (!gsi_end_p (bsi)
1083 && ((gsi_next (&bsi), gsi_end_p (bsi))
1084 || (gsi_next (&bsi), gsi_end_p (bsi))))
1085 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1087 stmt = gsi_stmt (bsi);
1089 pos = movement_possibility (stmt);
1090 if (pos == MOVE_IMPOSSIBLE)
1091 continue;
1093 lim_data = init_lim_data (stmt);
1094 lim_data->always_executed_in = outermost;
1096 if (!determine_max_movement (stmt, false))
1098 lim_data->max_loop = NULL;
1099 continue;
1102 if (dump_file && (dump_flags & TDF_DETAILS))
1104 print_gimple_stmt (dump_file, stmt, 2, 0);
1105 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1106 loop_depth (lim_data->max_loop),
1107 lim_data->cost);
1110 if (lim_data->cost >= LIM_EXPENSIVE)
1111 set_profitable_level (stmt);
1114 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1116 stmt = gsi_stmt (bsi);
1118 pos = movement_possibility (stmt);
1119 if (pos == MOVE_IMPOSSIBLE)
1121 if (nonpure_call_p (stmt))
1123 maybe_never = true;
1124 outermost = NULL;
1126 /* Make sure to note always_executed_in for stores to make
1127 store-motion work. */
1128 else if (stmt_makes_single_store (stmt))
1130 struct lim_aux_data *lim_data = init_lim_data (stmt);
1131 lim_data->always_executed_in = outermost;
1133 continue;
1136 if (is_gimple_assign (stmt)
1137 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1138 == GIMPLE_BINARY_RHS))
1140 tree op0 = gimple_assign_rhs1 (stmt);
1141 tree op1 = gimple_assign_rhs2 (stmt);
1142 struct loop *ol1 = outermost_invariant_loop (op1,
1143 loop_containing_stmt (stmt));
1145 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1146 to be hoisted out of loop, saving expensive divide. */
1147 if (pos == MOVE_POSSIBLE
1148 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1149 && flag_unsafe_math_optimizations
1150 && !flag_trapping_math
1151 && ol1 != NULL
1152 && outermost_invariant_loop (op0, ol1) == NULL)
1153 stmt = rewrite_reciprocal (&bsi);
1155 /* If the shift count is invariant, convert (A >> B) & 1 to
1156 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1157 saving an expensive shift. */
1158 if (pos == MOVE_POSSIBLE
1159 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1160 && integer_onep (op1)
1161 && TREE_CODE (op0) == SSA_NAME
1162 && has_single_use (op0))
1163 stmt = rewrite_bittest (&bsi);
1166 lim_data = init_lim_data (stmt);
1167 lim_data->always_executed_in = outermost;
1169 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1170 continue;
1172 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1174 lim_data->max_loop = NULL;
1175 continue;
1178 if (dump_file && (dump_flags & TDF_DETAILS))
1180 print_gimple_stmt (dump_file, stmt, 2, 0);
1181 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1182 loop_depth (lim_data->max_loop),
1183 lim_data->cost);
1186 if (lim_data->cost >= LIM_EXPENSIVE)
1187 set_profitable_level (stmt);
1191 class move_computations_dom_walker : public dom_walker
1193 public:
1194 move_computations_dom_walker (cdi_direction direction)
1195 : dom_walker (direction), todo_ (0) {}
1197 virtual void before_dom_children (basic_block);
1199 unsigned int todo_;
1202 /* Hoist the statements in basic block BB out of the loops prescribed by
1203 data stored in LIM_DATA structures associated with each statement. Callback
1204 for walk_dominator_tree. */
1206 void
1207 move_computations_dom_walker::before_dom_children (basic_block bb)
1209 struct loop *level;
1210 gimple_stmt_iterator bsi;
1211 gimple stmt;
1212 unsigned cost = 0;
1213 struct lim_aux_data *lim_data;
1215 if (!loop_outer (bb->loop_father))
1216 return;
1218 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1220 gimple new_stmt;
1221 stmt = gsi_stmt (bsi);
1223 lim_data = get_lim_data (stmt);
1224 if (lim_data == NULL)
1226 gsi_next (&bsi);
1227 continue;
1230 cost = lim_data->cost;
1231 level = lim_data->tgt_loop;
1232 clear_lim_data (stmt);
1234 if (!level)
1236 gsi_next (&bsi);
1237 continue;
1240 if (dump_file && (dump_flags & TDF_DETAILS))
1242 fprintf (dump_file, "Moving PHI node\n");
1243 print_gimple_stmt (dump_file, stmt, 0, 0);
1244 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1245 cost, level->num);
1248 if (gimple_phi_num_args (stmt) == 1)
1250 tree arg = PHI_ARG_DEF (stmt, 0);
1251 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1252 gimple_phi_result (stmt),
1253 arg, NULL_TREE);
1254 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1256 else
1258 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1259 gimple cond = gsi_stmt (gsi_last_bb (dom));
1260 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1261 /* Get the PHI arguments corresponding to the true and false
1262 edges of COND. */
1263 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1264 gcc_assert (arg0 && arg1);
1265 t = build2 (gimple_cond_code (cond), boolean_type_node,
1266 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1267 new_stmt = gimple_build_assign_with_ops (COND_EXPR,
1268 gimple_phi_result (stmt),
1269 t, arg0, arg1);
1270 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1271 todo_ |= TODO_cleanup_cfg;
1273 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1274 remove_phi_node (&bsi, false);
1277 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1279 edge e;
1281 stmt = gsi_stmt (bsi);
1283 lim_data = get_lim_data (stmt);
1284 if (lim_data == NULL)
1286 gsi_next (&bsi);
1287 continue;
1290 cost = lim_data->cost;
1291 level = lim_data->tgt_loop;
1292 clear_lim_data (stmt);
1294 if (!level)
1296 gsi_next (&bsi);
1297 continue;
1300 /* We do not really want to move conditionals out of the loop; we just
1301 placed it here to force its operands to be moved if necessary. */
1302 if (gimple_code (stmt) == GIMPLE_COND)
1303 continue;
1305 if (dump_file && (dump_flags & TDF_DETAILS))
1307 fprintf (dump_file, "Moving statement\n");
1308 print_gimple_stmt (dump_file, stmt, 0, 0);
1309 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1310 cost, level->num);
1313 e = loop_preheader_edge (level);
1314 gcc_assert (!gimple_vdef (stmt));
1315 if (gimple_vuse (stmt))
1317 /* The new VUSE is the one from the virtual PHI in the loop
1318 header or the one already present. */
1319 gimple_stmt_iterator gsi2;
1320 for (gsi2 = gsi_start_phis (e->dest);
1321 !gsi_end_p (gsi2); gsi_next (&gsi2))
1323 gimple phi = gsi_stmt (gsi2);
1324 if (virtual_operand_p (gimple_phi_result (phi)))
1326 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1327 break;
1331 gsi_remove (&bsi, false);
1332 gsi_insert_on_edge (e, stmt);
1336 /* Hoist the statements out of the loops prescribed by data stored in
1337 LIM_DATA structures associated with each statement.*/
1339 static unsigned int
1340 move_computations (void)
1342 move_computations_dom_walker walker (CDI_DOMINATORS);
1343 walker.walk (cfun->cfg->x_entry_block_ptr);
1345 gsi_commit_edge_inserts ();
1346 if (need_ssa_update_p (cfun))
1347 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1349 return walker.todo_;
1352 /* Checks whether the statement defining variable *INDEX can be hoisted
1353 out of the loop passed in DATA. Callback for for_each_index. */
1355 static bool
1356 may_move_till (tree ref, tree *index, void *data)
1358 struct loop *loop = (struct loop *) data, *max_loop;
1360 /* If REF is an array reference, check also that the step and the lower
1361 bound is invariant in LOOP. */
1362 if (TREE_CODE (ref) == ARRAY_REF)
1364 tree step = TREE_OPERAND (ref, 3);
1365 tree lbound = TREE_OPERAND (ref, 2);
1367 max_loop = outermost_invariant_loop (step, loop);
1368 if (!max_loop)
1369 return false;
1371 max_loop = outermost_invariant_loop (lbound, loop);
1372 if (!max_loop)
1373 return false;
1376 max_loop = outermost_invariant_loop (*index, loop);
1377 if (!max_loop)
1378 return false;
1380 return true;
1383 /* If OP is SSA NAME, force the statement that defines it to be
1384 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1386 static void
1387 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1389 gimple stmt;
1391 if (!op
1392 || is_gimple_min_invariant (op))
1393 return;
1395 gcc_assert (TREE_CODE (op) == SSA_NAME);
1397 stmt = SSA_NAME_DEF_STMT (op);
1398 if (gimple_nop_p (stmt))
1399 return;
1401 set_level (stmt, orig_loop, loop);
1404 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1405 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1406 for_each_index. */
1408 struct fmt_data
1410 struct loop *loop;
1411 struct loop *orig_loop;
1414 static bool
1415 force_move_till (tree ref, tree *index, void *data)
1417 struct fmt_data *fmt_data = (struct fmt_data *) data;
1419 if (TREE_CODE (ref) == ARRAY_REF)
1421 tree step = TREE_OPERAND (ref, 3);
1422 tree lbound = TREE_OPERAND (ref, 2);
1424 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1425 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1428 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1430 return true;
1433 /* A function to free the mem_ref object OBJ. */
1435 static void
1436 memref_free (struct mem_ref *mem)
1438 unsigned i;
1439 vec<mem_ref_loc> *accs;
1441 FOR_EACH_VEC_ELT (mem->accesses_in_loop, i, accs)
1442 accs->release ();
1443 mem->accesses_in_loop.release ();
1445 free (mem);
1448 /* Allocates and returns a memory reference description for MEM whose hash
1449 value is HASH and id is ID. */
1451 static mem_ref_p
1452 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1454 mem_ref_p ref = XNEW (struct mem_ref);
1455 ao_ref_init (&ref->mem, mem);
1456 ref->id = id;
1457 ref->hash = hash;
1458 bitmap_initialize (&ref->stored, &lim_bitmap_obstack);
1459 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1460 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1461 ref->accesses_in_loop.create (0);
1463 return ref;
1466 /* Records memory reference location *LOC in LOOP to the memory reference
1467 description REF. The reference occurs in statement STMT. */
1469 static void
1470 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
1472 mem_ref_loc aref;
1474 if (ref->accesses_in_loop.length ()
1475 <= (unsigned) loop->num)
1476 ref->accesses_in_loop.safe_grow_cleared (loop->num + 1);
1478 aref.stmt = stmt;
1479 aref.ref = loc;
1480 ref->accesses_in_loop[loop->num].safe_push (aref);
1483 /* Marks reference REF as stored in LOOP. */
1485 static void
1486 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1488 while (loop != current_loops->tree_root
1489 && bitmap_set_bit (&ref->stored, loop->num))
1490 loop = loop_outer (loop);
1493 /* Gathers memory references in statement STMT in LOOP, storing the
1494 information about them in the memory_accesses structure. Marks
1495 the vops accessed through unrecognized statements there as
1496 well. */
1498 static void
1499 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1501 tree *mem = NULL;
1502 hashval_t hash;
1503 mem_ref **slot;
1504 mem_ref_p ref;
1505 bool is_stored;
1506 unsigned id;
1508 if (!gimple_vuse (stmt))
1509 return;
1511 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1512 if (!mem)
1514 /* We use the shared mem_ref for all unanalyzable refs. */
1515 id = UNANALYZABLE_MEM_ID;
1516 ref = memory_accesses.refs_list[id];
1517 if (dump_file && (dump_flags & TDF_DETAILS))
1519 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1520 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1522 is_stored = gimple_vdef (stmt);
1524 else
1526 hash = iterative_hash_expr (*mem, 0);
1527 slot = memory_accesses.refs.find_slot_with_hash (*mem, hash, INSERT);
1528 if (*slot)
1530 ref = (mem_ref_p) *slot;
1531 id = ref->id;
1533 else
1535 id = memory_accesses.refs_list.length ();
1536 ref = mem_ref_alloc (*mem, hash, id);
1537 memory_accesses.refs_list.safe_push (ref);
1538 *slot = ref;
1540 if (dump_file && (dump_flags & TDF_DETAILS))
1542 fprintf (dump_file, "Memory reference %u: ", id);
1543 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1544 fprintf (dump_file, "\n");
1548 record_mem_ref_loc (ref, loop, stmt, mem);
1550 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1551 if (is_stored)
1553 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1554 mark_ref_stored (ref, loop);
1556 return;
1559 static unsigned *bb_loop_postorder;
1561 /* qsort sort function to sort blocks after their loop fathers postorder. */
1563 static int
1564 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1566 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1567 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1568 struct loop *loop1 = bb1->loop_father;
1569 struct loop *loop2 = bb2->loop_father;
1570 if (loop1->num == loop2->num)
1571 return 0;
1572 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1575 /* Gathers memory references in loops. */
1577 static void
1578 analyze_memory_references (void)
1580 gimple_stmt_iterator bsi;
1581 basic_block bb, *bbs;
1582 struct loop *loop, *outer;
1583 loop_iterator li;
1584 unsigned i, n;
1586 /* Initialize bb_loop_postorder with a mapping from loop->num to
1587 its postorder index. */
1588 i = 0;
1589 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
1590 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1591 bb_loop_postorder[loop->num] = i++;
1592 /* Collect all basic-blocks in loops and sort them after their
1593 loops postorder. */
1594 i = 0;
1595 bbs = XNEWVEC (basic_block, n_basic_blocks - NUM_FIXED_BLOCKS);
1596 FOR_EACH_BB (bb)
1597 if (bb->loop_father != current_loops->tree_root)
1598 bbs[i++] = bb;
1599 n = i;
1600 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1601 free (bb_loop_postorder);
1603 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1604 That results in better locality for all the bitmaps. */
1605 for (i = 0; i < n; ++i)
1607 basic_block bb = bbs[i];
1608 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1609 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1612 free (bbs);
1614 /* Propagate the information about accessed memory references up
1615 the loop hierarchy. */
1616 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1618 /* Finalize the overall touched references (including subloops). */
1619 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1620 &memory_accesses.refs_stored_in_loop[loop->num]);
1622 /* Propagate the information about accessed memory references up
1623 the loop hierarchy. */
1624 outer = loop_outer (loop);
1625 if (outer == current_loops->tree_root)
1626 continue;
1628 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1629 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1633 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1634 tree_to_aff_combination_expand. */
1636 static bool
1637 mem_refs_may_alias_p (mem_ref_p mem1, mem_ref_p mem2,
1638 struct pointer_map_t **ttae_cache)
1640 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1641 object and their offset differ in such a way that the locations cannot
1642 overlap, then they cannot alias. */
1643 double_int size1, size2;
1644 aff_tree off1, off2;
1646 /* Perform basic offset and type-based disambiguation. */
1647 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1648 return false;
1650 /* The expansion of addresses may be a bit expensive, thus we only do
1651 the check at -O2 and higher optimization levels. */
1652 if (optimize < 2)
1653 return true;
1655 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1656 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1657 aff_combination_expand (&off1, ttae_cache);
1658 aff_combination_expand (&off2, ttae_cache);
1659 aff_combination_scale (&off1, double_int_minus_one);
1660 aff_combination_add (&off2, &off1);
1662 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1663 return false;
1665 return true;
1668 /* Iterates over all locations of REF in LOOP and its subloops calling
1669 fn.operator() with the location as argument. When that operator
1670 returns true the iteration is stopped and true is returned.
1671 Otherwise false is returned. */
1673 template <typename FN>
1674 static bool
1675 for_all_locs_in_loop (struct loop *loop, mem_ref_p ref, FN fn)
1677 unsigned i;
1678 mem_ref_loc_p loc;
1679 struct loop *subloop;
1681 if (ref->accesses_in_loop.length () > (unsigned) loop->num)
1682 FOR_EACH_VEC_ELT (ref->accesses_in_loop[loop->num], i, loc)
1683 if (fn (loc))
1684 return true;
1686 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
1687 if (for_all_locs_in_loop (subloop, ref, fn))
1688 return true;
1690 return false;
1693 /* Rewrites location LOC by TMP_VAR. */
1695 struct rewrite_mem_ref_loc
1697 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1698 bool operator () (mem_ref_loc_p loc);
1699 tree tmp_var;
1702 bool
1703 rewrite_mem_ref_loc::operator () (mem_ref_loc_p loc)
1705 *loc->ref = tmp_var;
1706 update_stmt (loc->stmt);
1707 return false;
1710 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1712 static void
1713 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1715 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1718 /* Stores the first reference location in LOCP. */
1720 struct first_mem_ref_loc_1
1722 first_mem_ref_loc_1 (mem_ref_loc_p *locp_) : locp (locp_) {}
1723 bool operator () (mem_ref_loc_p loc);
1724 mem_ref_loc_p *locp;
1727 bool
1728 first_mem_ref_loc_1::operator () (mem_ref_loc_p loc)
1730 *locp = loc;
1731 return true;
1734 /* Returns the first reference location to REF in LOOP. */
1736 static mem_ref_loc_p
1737 first_mem_ref_loc (struct loop *loop, mem_ref_p ref)
1739 mem_ref_loc_p locp = NULL;
1740 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1741 return locp;
1744 /* The name and the length of the currently generated variable
1745 for lsm. */
1746 #define MAX_LSM_NAME_LENGTH 40
1747 static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
1748 static int lsm_tmp_name_length;
1750 /* Adds S to lsm_tmp_name. */
1752 static void
1753 lsm_tmp_name_add (const char *s)
1755 int l = strlen (s) + lsm_tmp_name_length;
1756 if (l > MAX_LSM_NAME_LENGTH)
1757 return;
1759 strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
1760 lsm_tmp_name_length = l;
1763 /* Stores the name for temporary variable that replaces REF to
1764 lsm_tmp_name. */
1766 static void
1767 gen_lsm_tmp_name (tree ref)
1769 const char *name;
1771 switch (TREE_CODE (ref))
1773 case MEM_REF:
1774 case TARGET_MEM_REF:
1775 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1776 lsm_tmp_name_add ("_");
1777 break;
1779 case ADDR_EXPR:
1780 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1781 break;
1783 case BIT_FIELD_REF:
1784 case VIEW_CONVERT_EXPR:
1785 case ARRAY_RANGE_REF:
1786 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1787 break;
1789 case REALPART_EXPR:
1790 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1791 lsm_tmp_name_add ("_RE");
1792 break;
1794 case IMAGPART_EXPR:
1795 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1796 lsm_tmp_name_add ("_IM");
1797 break;
1799 case COMPONENT_REF:
1800 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1801 lsm_tmp_name_add ("_");
1802 name = get_name (TREE_OPERAND (ref, 1));
1803 if (!name)
1804 name = "F";
1805 lsm_tmp_name_add (name);
1806 break;
1808 case ARRAY_REF:
1809 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1810 lsm_tmp_name_add ("_I");
1811 break;
1813 case SSA_NAME:
1814 case VAR_DECL:
1815 case PARM_DECL:
1816 name = get_name (ref);
1817 if (!name)
1818 name = "D";
1819 lsm_tmp_name_add (name);
1820 break;
1822 case STRING_CST:
1823 lsm_tmp_name_add ("S");
1824 break;
1826 case RESULT_DECL:
1827 lsm_tmp_name_add ("R");
1828 break;
1830 case INTEGER_CST:
1831 /* Nothing. */
1832 break;
1834 default:
1835 gcc_unreachable ();
1839 /* Determines name for temporary variable that replaces REF.
1840 The name is accumulated into the lsm_tmp_name variable.
1841 N is added to the name of the temporary. */
1843 char *
1844 get_lsm_tmp_name (tree ref, unsigned n)
1846 char ns[2];
1848 lsm_tmp_name_length = 0;
1849 gen_lsm_tmp_name (ref);
1850 lsm_tmp_name_add ("_lsm");
1851 if (n < 10)
1853 ns[0] = '0' + n;
1854 ns[1] = 0;
1855 lsm_tmp_name_add (ns);
1857 return lsm_tmp_name;
1860 struct prev_flag_edges {
1861 /* Edge to insert new flag comparison code. */
1862 edge append_cond_position;
1864 /* Edge for fall through from previous flag comparison. */
1865 edge last_cond_fallthru;
1868 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1869 MEM along edge EX.
1871 The store is only done if MEM has changed. We do this so no
1872 changes to MEM occur on code paths that did not originally store
1873 into it.
1875 The common case for execute_sm will transform:
1877 for (...) {
1878 if (foo)
1879 stuff;
1880 else
1881 MEM = TMP_VAR;
1884 into:
1886 lsm = MEM;
1887 for (...) {
1888 if (foo)
1889 stuff;
1890 else
1891 lsm = TMP_VAR;
1893 MEM = lsm;
1895 This function will generate:
1897 lsm = MEM;
1899 lsm_flag = false;
1901 for (...) {
1902 if (foo)
1903 stuff;
1904 else {
1905 lsm = TMP_VAR;
1906 lsm_flag = true;
1909 if (lsm_flag) <--
1910 MEM = lsm; <--
1913 static void
1914 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1916 basic_block new_bb, then_bb, old_dest;
1917 bool loop_has_only_one_exit;
1918 edge then_old_edge, orig_ex = ex;
1919 gimple_stmt_iterator gsi;
1920 gimple stmt;
1921 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1923 /* ?? Insert store after previous store if applicable. See note
1924 below. */
1925 if (prev_edges)
1926 ex = prev_edges->append_cond_position;
1928 loop_has_only_one_exit = single_pred_p (ex->dest);
1930 if (loop_has_only_one_exit)
1931 ex = split_block_after_labels (ex->dest);
1933 old_dest = ex->dest;
1934 new_bb = split_edge (ex);
1935 then_bb = create_empty_bb (new_bb);
1936 if (current_loops && new_bb->loop_father)
1937 add_bb_to_loop (then_bb, new_bb->loop_father);
1939 gsi = gsi_start_bb (new_bb);
1940 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1941 NULL_TREE, NULL_TREE);
1942 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1944 gsi = gsi_start_bb (then_bb);
1945 /* Insert actual store. */
1946 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1947 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1949 make_edge (new_bb, then_bb, EDGE_TRUE_VALUE);
1950 make_edge (new_bb, old_dest, EDGE_FALSE_VALUE);
1951 then_old_edge = make_edge (then_bb, old_dest, EDGE_FALLTHRU);
1953 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1955 if (prev_edges)
1957 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1958 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1959 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1960 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1961 recompute_dominator (CDI_DOMINATORS, old_dest));
1964 /* ?? Because stores may alias, they must happen in the exact
1965 sequence they originally happened. Save the position right after
1966 the (_lsm) store we just created so we can continue appending after
1967 it and maintain the original order. */
1969 struct prev_flag_edges *p;
1971 if (orig_ex->aux)
1972 orig_ex->aux = NULL;
1973 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1974 p = (struct prev_flag_edges *) orig_ex->aux;
1975 p->append_cond_position = then_old_edge;
1976 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1977 orig_ex->aux = (void *) p;
1980 if (!loop_has_only_one_exit)
1981 for (gsi = gsi_start_phis (old_dest); !gsi_end_p (gsi); gsi_next (&gsi))
1983 gimple phi = gsi_stmt (gsi);
1984 unsigned i;
1986 for (i = 0; i < gimple_phi_num_args (phi); i++)
1987 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1989 tree arg = gimple_phi_arg_def (phi, i);
1990 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1991 update_stmt (phi);
1994 /* Remove the original fall through edge. This was the
1995 single_succ_edge (new_bb). */
1996 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1999 /* When REF is set on the location, set flag indicating the store. */
2001 struct sm_set_flag_if_changed
2003 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
2004 bool operator () (mem_ref_loc_p loc);
2005 tree flag;
2008 bool
2009 sm_set_flag_if_changed::operator () (mem_ref_loc_p loc)
2011 /* Only set the flag for writes. */
2012 if (is_gimple_assign (loc->stmt)
2013 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
2015 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
2016 gimple stmt = gimple_build_assign (flag, boolean_true_node);
2017 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2019 return false;
2022 /* Helper function for execute_sm. On every location where REF is
2023 set, set an appropriate flag indicating the store. */
2025 static tree
2026 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
2028 tree flag;
2029 char *str = get_lsm_tmp_name (ref->mem.ref, ~0);
2030 lsm_tmp_name_add ("_flag");
2031 flag = create_tmp_reg (boolean_type_node, str);
2032 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
2033 return flag;
2036 /* Executes store motion of memory reference REF from LOOP.
2037 Exits from the LOOP are stored in EXITS. The initialization of the
2038 temporary variable is put to the preheader of the loop, and assignments
2039 to the reference from the temporary variable are emitted to exits. */
2041 static void
2042 execute_sm (struct loop *loop, vec<edge> exits, mem_ref_p ref)
2044 tree tmp_var, store_flag;
2045 unsigned i;
2046 gimple load;
2047 struct fmt_data fmt_data;
2048 edge ex;
2049 struct lim_aux_data *lim_data;
2050 bool multi_threaded_model_p = false;
2051 gimple_stmt_iterator gsi;
2053 if (dump_file && (dump_flags & TDF_DETAILS))
2055 fprintf (dump_file, "Executing store motion of ");
2056 print_generic_expr (dump_file, ref->mem.ref, 0);
2057 fprintf (dump_file, " from loop %d\n", loop->num);
2060 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
2061 get_lsm_tmp_name (ref->mem.ref, ~0));
2063 fmt_data.loop = loop;
2064 fmt_data.orig_loop = loop;
2065 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
2067 if (block_in_transaction (loop_preheader_edge (loop)->src)
2068 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
2069 multi_threaded_model_p = true;
2071 if (multi_threaded_model_p)
2072 store_flag = execute_sm_if_changed_flag_set (loop, ref);
2074 rewrite_mem_refs (loop, ref, tmp_var);
2076 /* Emit the load code on a random exit edge or into the latch if
2077 the loop does not exit, so that we are sure it will be processed
2078 by move_computations after all dependencies. */
2079 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2081 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
2082 load altogether, since the store is predicated by a flag. We
2083 could, do the load only if it was originally in the loop. */
2084 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
2085 lim_data = init_lim_data (load);
2086 lim_data->max_loop = loop;
2087 lim_data->tgt_loop = loop;
2088 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2090 if (multi_threaded_model_p)
2092 load = gimple_build_assign (store_flag, boolean_false_node);
2093 lim_data = init_lim_data (load);
2094 lim_data->max_loop = loop;
2095 lim_data->tgt_loop = loop;
2096 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2099 /* Sink the store to every exit from the loop. */
2100 FOR_EACH_VEC_ELT (exits, i, ex)
2101 if (!multi_threaded_model_p)
2103 gimple store;
2104 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2105 gsi_insert_on_edge (ex, store);
2107 else
2108 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
2111 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2112 edges of the LOOP. */
2114 static void
2115 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2116 vec<edge> exits)
2118 mem_ref_p ref;
2119 unsigned i;
2120 bitmap_iterator bi;
2122 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2124 ref = memory_accesses.refs_list[i];
2125 execute_sm (loop, exits, ref);
2129 struct ref_always_accessed
2131 ref_always_accessed (struct loop *loop_, tree base_, bool stored_p_)
2132 : loop (loop_), base (base_), stored_p (stored_p_) {}
2133 bool operator () (mem_ref_loc_p loc);
2134 struct loop *loop;
2135 tree base;
2136 bool stored_p;
2139 bool
2140 ref_always_accessed::operator () (mem_ref_loc_p loc)
2142 struct loop *must_exec;
2144 if (!get_lim_data (loc->stmt))
2145 return false;
2147 /* If we require an always executed store make sure the statement
2148 stores to the reference. */
2149 if (stored_p)
2151 tree lhs;
2152 if (!gimple_get_lhs (loc->stmt))
2153 return false;
2154 lhs = get_base_address (gimple_get_lhs (loc->stmt));
2155 if (!lhs)
2156 return false;
2157 if (INDIRECT_REF_P (lhs)
2158 || TREE_CODE (lhs) == MEM_REF)
2159 lhs = TREE_OPERAND (lhs, 0);
2160 if (lhs != base)
2161 return false;
2164 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2165 if (!must_exec)
2166 return false;
2168 if (must_exec == loop
2169 || flow_loop_nested_p (must_exec, loop))
2170 return true;
2172 return false;
2175 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2176 make sure REF is always stored to in LOOP. */
2178 static bool
2179 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2181 tree base = ao_ref_base (&ref->mem);
2182 if (TREE_CODE (base) == MEM_REF)
2183 base = TREE_OPERAND (base, 0);
2185 return for_all_locs_in_loop (loop, ref,
2186 ref_always_accessed (loop, base, stored_p));
2189 /* Returns true if REF1 and REF2 are independent. */
2191 static bool
2192 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2194 if (ref1 == ref2)
2195 return true;
2197 if (dump_file && (dump_flags & TDF_DETAILS))
2198 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2199 ref1->id, ref2->id);
2201 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2203 if (dump_file && (dump_flags & TDF_DETAILS))
2204 fprintf (dump_file, "dependent.\n");
2205 return false;
2207 else
2209 if (dump_file && (dump_flags & TDF_DETAILS))
2210 fprintf (dump_file, "independent.\n");
2211 return true;
2215 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2216 and its super-loops. */
2218 static void
2219 record_dep_loop (struct loop *loop, mem_ref_p ref, bool stored_p)
2221 /* We can propagate dependent-in-loop bits up the loop
2222 hierarchy to all outer loops. */
2223 while (loop != current_loops->tree_root
2224 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2225 loop = loop_outer (loop);
2228 /* Returns true if REF is independent on all other memory references in
2229 LOOP. */
2231 static bool
2232 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref, bool stored_p)
2234 bitmap refs_to_check;
2235 unsigned i;
2236 bitmap_iterator bi;
2237 mem_ref_p aref;
2239 if (stored_p)
2240 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2241 else
2242 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2244 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2245 return false;
2247 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2249 aref = memory_accesses.refs_list[i];
2250 if (!refs_independent_p (ref, aref))
2251 return false;
2254 return true;
2257 /* Returns true if REF is independent on all other memory references in
2258 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2260 static bool
2261 ref_indep_loop_p_2 (struct loop *loop, mem_ref_p ref, bool stored_p)
2263 stored_p |= bitmap_bit_p (&ref->stored, loop->num);
2265 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2266 return true;
2267 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2268 return false;
2270 struct loop *inner = loop->inner;
2271 while (inner)
2273 if (!ref_indep_loop_p_2 (inner, ref, stored_p))
2274 return false;
2275 inner = inner->next;
2278 bool indep_p = ref_indep_loop_p_1 (loop, ref, stored_p);
2280 if (dump_file && (dump_flags & TDF_DETAILS))
2281 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2282 ref->id, loop->num, indep_p ? "independent" : "dependent");
2284 /* Record the computed result in the cache. */
2285 if (indep_p)
2287 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2288 && stored_p)
2290 /* If it's independend against all refs then it's independent
2291 against stores, too. */
2292 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2295 else
2297 record_dep_loop (loop, ref, stored_p);
2298 if (!stored_p)
2300 /* If it's dependent against stores it's dependent against
2301 all refs, too. */
2302 record_dep_loop (loop, ref, true);
2306 return indep_p;
2309 /* Returns true if REF is independent on all other memory references in
2310 LOOP. */
2312 static bool
2313 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2315 gcc_checking_assert (MEM_ANALYZABLE (ref));
2317 return ref_indep_loop_p_2 (loop, ref, false);
2320 /* Returns true if we can perform store motion of REF from LOOP. */
2322 static bool
2323 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2325 tree base;
2327 /* Can't hoist unanalyzable refs. */
2328 if (!MEM_ANALYZABLE (ref))
2329 return false;
2331 /* It should be movable. */
2332 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2333 || TREE_THIS_VOLATILE (ref->mem.ref)
2334 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2335 return false;
2337 /* If it can throw fail, we do not properly update EH info. */
2338 if (tree_could_throw_p (ref->mem.ref))
2339 return false;
2341 /* If it can trap, it must be always executed in LOOP.
2342 Readonly memory locations may trap when storing to them, but
2343 tree_could_trap_p is a predicate for rvalues, so check that
2344 explicitly. */
2345 base = get_base_address (ref->mem.ref);
2346 if ((tree_could_trap_p (ref->mem.ref)
2347 || (DECL_P (base) && TREE_READONLY (base)))
2348 && !ref_always_accessed_p (loop, ref, true))
2349 return false;
2351 /* And it must be independent on all other memory references
2352 in LOOP. */
2353 if (!ref_indep_loop_p (loop, ref))
2354 return false;
2356 return true;
2359 /* Marks the references in LOOP for that store motion should be performed
2360 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2361 motion was performed in one of the outer loops. */
2363 static void
2364 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2366 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2367 unsigned i;
2368 bitmap_iterator bi;
2369 mem_ref_p ref;
2371 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2373 ref = memory_accesses.refs_list[i];
2374 if (can_sm_ref_p (loop, ref))
2375 bitmap_set_bit (refs_to_sm, i);
2379 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2380 for a store motion optimization (i.e. whether we can insert statement
2381 on its exits). */
2383 static bool
2384 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2385 vec<edge> exits)
2387 unsigned i;
2388 edge ex;
2390 FOR_EACH_VEC_ELT (exits, i, ex)
2391 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2392 return false;
2394 return true;
2397 /* Try to perform store motion for all memory references modified inside
2398 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2399 store motion was executed in one of the outer loops. */
2401 static void
2402 store_motion_loop (struct loop *loop, bitmap sm_executed)
2404 vec<edge> exits = get_loop_exit_edges (loop);
2405 struct loop *subloop;
2406 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2408 if (loop_suitable_for_sm (loop, exits))
2410 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2411 hoist_memory_references (loop, sm_in_loop, exits);
2413 exits.release ();
2415 bitmap_ior_into (sm_executed, sm_in_loop);
2416 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2417 store_motion_loop (subloop, sm_executed);
2418 bitmap_and_compl_into (sm_executed, sm_in_loop);
2419 BITMAP_FREE (sm_in_loop);
2422 /* Try to perform store motion for all memory references modified inside
2423 loops. */
2425 static void
2426 store_motion (void)
2428 struct loop *loop;
2429 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2431 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2432 store_motion_loop (loop, sm_executed);
2434 BITMAP_FREE (sm_executed);
2435 gsi_commit_edge_inserts ();
2438 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2439 for each such basic block bb records the outermost loop for that execution
2440 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2441 blocks that contain a nonpure call. */
2443 static void
2444 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2446 basic_block bb = NULL, *bbs, last = NULL;
2447 unsigned i;
2448 edge e;
2449 struct loop *inn_loop = loop;
2451 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2453 bbs = get_loop_body_in_dom_order (loop);
2455 for (i = 0; i < loop->num_nodes; i++)
2457 edge_iterator ei;
2458 bb = bbs[i];
2460 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2461 last = bb;
2463 if (bitmap_bit_p (contains_call, bb->index))
2464 break;
2466 FOR_EACH_EDGE (e, ei, bb->succs)
2467 if (!flow_bb_inside_loop_p (loop, e->dest))
2468 break;
2469 if (e)
2470 break;
2472 /* A loop might be infinite (TODO use simple loop analysis
2473 to disprove this if possible). */
2474 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2475 break;
2477 if (!flow_bb_inside_loop_p (inn_loop, bb))
2478 break;
2480 if (bb->loop_father->header == bb)
2482 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2483 break;
2485 /* In a loop that is always entered we may proceed anyway.
2486 But record that we entered it and stop once we leave it. */
2487 inn_loop = bb->loop_father;
2491 while (1)
2493 SET_ALWAYS_EXECUTED_IN (last, loop);
2494 if (last == loop->header)
2495 break;
2496 last = get_immediate_dominator (CDI_DOMINATORS, last);
2499 free (bbs);
2502 for (loop = loop->inner; loop; loop = loop->next)
2503 fill_always_executed_in_1 (loop, contains_call);
2506 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2507 for each such basic block bb records the outermost loop for that execution
2508 of its header implies execution of bb. */
2510 static void
2511 fill_always_executed_in (void)
2513 sbitmap contains_call = sbitmap_alloc (last_basic_block);
2514 basic_block bb;
2515 struct loop *loop;
2517 bitmap_clear (contains_call);
2518 FOR_EACH_BB (bb)
2520 gimple_stmt_iterator gsi;
2521 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2523 if (nonpure_call_p (gsi_stmt (gsi)))
2524 break;
2527 if (!gsi_end_p (gsi))
2528 bitmap_set_bit (contains_call, bb->index);
2531 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2532 fill_always_executed_in_1 (loop, contains_call);
2534 sbitmap_free (contains_call);
2538 /* Compute the global information needed by the loop invariant motion pass. */
2540 static void
2541 tree_ssa_lim_initialize (void)
2543 unsigned i;
2545 bitmap_obstack_initialize (&lim_bitmap_obstack);
2546 lim_aux_data_map = pointer_map_create ();
2548 if (flag_tm)
2549 compute_transaction_bits ();
2551 alloc_aux_for_edges (0);
2553 memory_accesses.refs.create (100);
2554 memory_accesses.refs_list.create (100);
2555 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2556 memory_accesses.refs_list.quick_push
2557 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2559 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2560 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2561 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2562 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2563 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2564 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2566 for (i = 0; i < number_of_loops (cfun); i++)
2568 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2569 &lim_bitmap_obstack);
2570 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2571 &lim_bitmap_obstack);
2572 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2573 &lim_bitmap_obstack);
2576 memory_accesses.ttae_cache = NULL;
2579 /* Cleans up after the invariant motion pass. */
2581 static void
2582 tree_ssa_lim_finalize (void)
2584 basic_block bb;
2585 unsigned i;
2586 mem_ref_p ref;
2588 free_aux_for_edges ();
2590 FOR_EACH_BB (bb)
2591 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2593 bitmap_obstack_release (&lim_bitmap_obstack);
2594 pointer_map_destroy (lim_aux_data_map);
2596 memory_accesses.refs.dispose ();
2598 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2599 memref_free (ref);
2600 memory_accesses.refs_list.release ();
2602 memory_accesses.refs_in_loop.release ();
2603 memory_accesses.refs_stored_in_loop.release ();
2604 memory_accesses.all_refs_stored_in_loop.release ();
2606 if (memory_accesses.ttae_cache)
2607 free_affine_expand_cache (&memory_accesses.ttae_cache);
2610 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2611 i.e. those that are likely to be win regardless of the register pressure. */
2613 unsigned int
2614 tree_ssa_lim (void)
2616 unsigned int todo;
2618 tree_ssa_lim_initialize ();
2620 /* Gathers information about memory accesses in the loops. */
2621 analyze_memory_references ();
2623 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2624 fill_always_executed_in ();
2626 /* For each statement determine the outermost loop in that it is
2627 invariant and cost for computing the invariant. */
2628 invariantness_dom_walker (CDI_DOMINATORS)
2629 .walk (cfun->cfg->x_entry_block_ptr);
2631 /* Execute store motion. Force the necessary invariants to be moved
2632 out of the loops as well. */
2633 store_motion ();
2635 /* Move the expressions that are expensive enough. */
2636 todo = move_computations ();
2638 tree_ssa_lim_finalize ();
2640 return todo;