re PR c++/19476 (Missed null checking elimination with new)
[official-gcc.git] / gcc / ira-int.h
blob519f656f652bcfcad4b1f70c312932587d2a82c8
1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "cfgloop.h"
22 #include "ira.h"
23 #include "alloc-pool.h"
25 /* To provide consistency in naming, all IRA external variables,
26 functions, common typedefs start with prefix ira_. */
28 #ifdef ENABLE_CHECKING
29 #define ENABLE_IRA_CHECKING
30 #endif
32 #ifdef ENABLE_IRA_CHECKING
33 #define ira_assert(c) gcc_assert (c)
34 #else
35 /* Always define and include C, so that warnings for empty body in an
36 'if' statement and unused variable do not occur. */
37 #define ira_assert(c) ((void)(0 && (c)))
38 #endif
40 /* Compute register frequency from edge frequency FREQ. It is
41 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
42 profile driven feedback is available and the function is never
43 executed, frequency is always equivalent. Otherwise rescale the
44 edge frequency. */
45 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
46 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
47 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
48 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
50 /* A modified value of flag `-fira-verbose' used internally. */
51 extern int internal_flag_ira_verbose;
53 /* Dump file of the allocator if it is not NULL. */
54 extern FILE *ira_dump_file;
56 /* Typedefs for pointers to allocno live range, allocno, and copy of
57 allocnos. */
58 typedef struct live_range *live_range_t;
59 typedef struct ira_allocno *ira_allocno_t;
60 typedef struct ira_allocno_copy *ira_copy_t;
61 typedef struct ira_object *ira_object_t;
63 /* Definition of vector of allocnos and copies. */
65 /* Typedef for pointer to the subsequent structure. */
66 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
68 typedef unsigned short move_table[N_REG_CLASSES];
70 /* In general case, IRA is a regional allocator. The regions are
71 nested and form a tree. Currently regions are natural loops. The
72 following structure describes loop tree node (representing basic
73 block or loop). We need such tree because the loop tree from
74 cfgloop.h is not convenient for the optimization: basic blocks are
75 not a part of the tree from cfgloop.h. We also use the nodes for
76 storing additional information about basic blocks/loops for the
77 register allocation purposes. */
78 struct ira_loop_tree_node
80 /* The node represents basic block if children == NULL. */
81 basic_block bb; /* NULL for loop. */
82 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
83 struct loop *loop;
84 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
85 SUBLOOP_NEXT is always NULL for BBs. */
86 ira_loop_tree_node_t subloop_next, next;
87 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
88 the node. They are NULL for BBs. */
89 ira_loop_tree_node_t subloops, children;
90 /* The node immediately containing given node. */
91 ira_loop_tree_node_t parent;
93 /* Loop level in range [0, ira_loop_tree_height). */
94 int level;
96 /* All the following members are defined only for nodes representing
97 loops. */
99 /* The loop number from CFG loop tree. The root number is 0. */
100 int loop_num;
102 /* True if the loop was marked for removal from the register
103 allocation. */
104 bool to_remove_p;
106 /* Allocnos in the loop corresponding to their regnos. If it is
107 NULL the loop does not form a separate register allocation region
108 (e.g. because it has abnormal enter/exit edges and we can not put
109 code for register shuffling on the edges if a different
110 allocation is used for a pseudo-register on different sides of
111 the edges). Caps are not in the map (remember we can have more
112 one cap with the same regno in a region). */
113 ira_allocno_t *regno_allocno_map;
115 /* True if there is an entry to given loop not from its parent (or
116 grandparent) basic block. For example, it is possible for two
117 adjacent loops inside another loop. */
118 bool entered_from_non_parent_p;
120 /* Maximal register pressure inside loop for given register class
121 (defined only for the pressure classes). */
122 int reg_pressure[N_REG_CLASSES];
124 /* Numbers of allocnos referred or living in the loop node (except
125 for its subloops). */
126 bitmap all_allocnos;
128 /* Numbers of allocnos living at the loop borders. */
129 bitmap border_allocnos;
131 /* Regnos of pseudos modified in the loop node (including its
132 subloops). */
133 bitmap modified_regnos;
135 /* Numbers of copies referred in the corresponding loop. */
136 bitmap local_copies;
139 /* The root of the loop tree corresponding to the all function. */
140 extern ira_loop_tree_node_t ira_loop_tree_root;
142 /* Height of the loop tree. */
143 extern int ira_loop_tree_height;
145 /* All nodes representing basic blocks are referred through the
146 following array. We can not use basic block member `aux' for this
147 because it is used for insertion of insns on edges. */
148 extern ira_loop_tree_node_t ira_bb_nodes;
150 /* Two access macros to the nodes representing basic blocks. */
151 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
152 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
153 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
154 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
156 fprintf (stderr, \
157 "\n%s: %d: error in %s: it is not a block node\n", \
158 __FILE__, __LINE__, __FUNCTION__); \
159 gcc_unreachable (); \
161 _node; }))
162 #else
163 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
164 #endif
166 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
168 /* All nodes representing loops are referred through the following
169 array. */
170 extern ira_loop_tree_node_t ira_loop_nodes;
172 /* Two access macros to the nodes representing loops. */
173 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
174 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
175 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
176 if (_node->children == NULL || _node->bb != NULL \
177 || (_node->loop == NULL && current_loops != NULL)) \
179 fprintf (stderr, \
180 "\n%s: %d: error in %s: it is not a loop node\n", \
181 __FILE__, __LINE__, __FUNCTION__); \
182 gcc_unreachable (); \
184 _node; }))
185 #else
186 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
187 #endif
189 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
192 /* The structure describes program points where a given allocno lives.
193 If the live ranges of two allocnos are intersected, the allocnos
194 are in conflict. */
195 struct live_range
197 /* Object whose live range is described by given structure. */
198 ira_object_t object;
199 /* Program point range. */
200 int start, finish;
201 /* Next structure describing program points where the allocno
202 lives. */
203 live_range_t next;
204 /* Pointer to structures with the same start/finish. */
205 live_range_t start_next, finish_next;
208 /* Program points are enumerated by numbers from range
209 0..IRA_MAX_POINT-1. There are approximately two times more program
210 points than insns. Program points are places in the program where
211 liveness info can be changed. In most general case (there are more
212 complicated cases too) some program points correspond to places
213 where input operand dies and other ones correspond to places where
214 output operands are born. */
215 extern int ira_max_point;
217 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
218 live ranges with given start/finish point. */
219 extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
221 /* A structure representing conflict information for an allocno
222 (or one of its subwords). */
223 struct ira_object
225 /* The allocno associated with this record. */
226 ira_allocno_t allocno;
227 /* Vector of accumulated conflicting conflict_redords with NULL end
228 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
229 otherwise. */
230 void *conflicts_array;
231 /* Pointer to structures describing at what program point the
232 object lives. We always maintain the list in such way that *the
233 ranges in the list are not intersected and ordered by decreasing
234 their program points*. */
235 live_range_t live_ranges;
236 /* The subword within ALLOCNO which is represented by this object.
237 Zero means the lowest-order subword (or the entire allocno in case
238 it is not being tracked in subwords). */
239 int subword;
240 /* Allocated size of the conflicts array. */
241 unsigned int conflicts_array_size;
242 /* A unique number for every instance of this structure, which is used
243 to represent it in conflict bit vectors. */
244 int id;
245 /* Before building conflicts, MIN and MAX are initialized to
246 correspondingly minimal and maximal points of the accumulated
247 live ranges. Afterwards, they hold the minimal and maximal ids
248 of other ira_objects that this one can conflict with. */
249 int min, max;
250 /* Initial and accumulated hard registers conflicting with this
251 object and as a consequences can not be assigned to the allocno.
252 All non-allocatable hard regs and hard regs of register classes
253 different from given allocno one are included in the sets. */
254 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
255 /* Number of accumulated conflicts in the vector of conflicting
256 objects. */
257 int num_accumulated_conflicts;
258 /* TRUE if conflicts are represented by a vector of pointers to
259 ira_object structures. Otherwise, we use a bit vector indexed
260 by conflict ID numbers. */
261 unsigned int conflict_vec_p : 1;
264 /* A structure representing an allocno (allocation entity). Allocno
265 represents a pseudo-register in an allocation region. If
266 pseudo-register does not live in a region but it lives in the
267 nested regions, it is represented in the region by special allocno
268 called *cap*. There may be more one cap representing the same
269 pseudo-register in region. It means that the corresponding
270 pseudo-register lives in more one non-intersected subregion. */
271 struct ira_allocno
273 /* The allocno order number starting with 0. Each allocno has an
274 unique number and the number is never changed for the
275 allocno. */
276 int num;
277 /* Regno for allocno or cap. */
278 int regno;
279 /* Mode of the allocno which is the mode of the corresponding
280 pseudo-register. */
281 ENUM_BITFIELD (machine_mode) mode : 8;
282 /* Register class which should be used for allocation for given
283 allocno. NO_REGS means that we should use memory. */
284 ENUM_BITFIELD (reg_class) aclass : 16;
285 /* During the reload, value TRUE means that we should not reassign a
286 hard register to the allocno got memory earlier. It is set up
287 when we removed memory-memory move insn before each iteration of
288 the reload. */
289 unsigned int dont_reassign_p : 1;
290 #ifdef STACK_REGS
291 /* Set to TRUE if allocno can't be assigned to the stack hard
292 register correspondingly in this region and area including the
293 region and all its subregions recursively. */
294 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
295 #endif
296 /* TRUE value means that there is no sense to spill the allocno
297 during coloring because the spill will result in additional
298 reloads in reload pass. */
299 unsigned int bad_spill_p : 1;
300 /* TRUE if a hard register or memory has been assigned to the
301 allocno. */
302 unsigned int assigned_p : 1;
303 /* TRUE if conflicts for given allocno are represented by vector of
304 pointers to the conflicting allocnos. Otherwise, we use a bit
305 vector where a bit with given index represents allocno with the
306 same number. */
307 unsigned int conflict_vec_p : 1;
308 /* Hard register assigned to given allocno. Negative value means
309 that memory was allocated to the allocno. During the reload,
310 spilled allocno has value equal to the corresponding stack slot
311 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
312 reload (at this point pseudo-register has only one allocno) which
313 did not get stack slot yet. */
314 short int hard_regno;
315 /* Allocnos with the same regno are linked by the following member.
316 Allocnos corresponding to inner loops are first in the list (it
317 corresponds to depth-first traverse of the loops). */
318 ira_allocno_t next_regno_allocno;
319 /* There may be different allocnos with the same regno in different
320 regions. Allocnos are bound to the corresponding loop tree node.
321 Pseudo-register may have only one regular allocno with given loop
322 tree node but more than one cap (see comments above). */
323 ira_loop_tree_node_t loop_tree_node;
324 /* Accumulated usage references of the allocno. Here and below,
325 word 'accumulated' means info for given region and all nested
326 subregions. In this case, 'accumulated' means sum of references
327 of the corresponding pseudo-register in this region and in all
328 nested subregions recursively. */
329 int nrefs;
330 /* Accumulated frequency of usage of the allocno. */
331 int freq;
332 /* Minimal accumulated and updated costs of usage register of the
333 allocno class. */
334 int class_cost, updated_class_cost;
335 /* Minimal accumulated, and updated costs of memory for the allocno.
336 At the allocation start, the original and updated costs are
337 equal. The updated cost may be changed after finishing
338 allocation in a region and starting allocation in a subregion.
339 The change reflects the cost of spill/restore code on the
340 subregion border if we assign memory to the pseudo in the
341 subregion. */
342 int memory_cost, updated_memory_cost;
343 /* Accumulated number of points where the allocno lives and there is
344 excess pressure for its class. Excess pressure for a register
345 class at some point means that there are more allocnos of given
346 register class living at the point than number of hard-registers
347 of the class available for the allocation. */
348 int excess_pressure_points_num;
349 /* Copies to other non-conflicting allocnos. The copies can
350 represent move insn or potential move insn usually because of two
351 operand insn constraints. */
352 ira_copy_t allocno_copies;
353 /* It is a allocno (cap) representing given allocno on upper loop tree
354 level. */
355 ira_allocno_t cap;
356 /* It is a link to allocno (cap) on lower loop level represented by
357 given cap. Null if given allocno is not a cap. */
358 ira_allocno_t cap_member;
359 /* The number of objects tracked in the following array. */
360 int num_objects;
361 /* An array of structures describing conflict information and live
362 ranges for each object associated with the allocno. There may be
363 more than one such object in cases where the allocno represents a
364 multi-word register. */
365 ira_object_t objects[2];
366 /* Accumulated frequency of calls which given allocno
367 intersects. */
368 int call_freq;
369 /* Accumulated number of the intersected calls. */
370 int calls_crossed_num;
371 /* The number of calls across which it is live, but which should not
372 affect register preferences. */
373 int cheap_calls_crossed_num;
374 /* Array of usage costs (accumulated and the one updated during
375 coloring) for each hard register of the allocno class. The
376 member value can be NULL if all costs are the same and equal to
377 CLASS_COST. For example, the costs of two different hard
378 registers can be different if one hard register is callee-saved
379 and another one is callee-used and the allocno lives through
380 calls. Another example can be case when for some insn the
381 corresponding pseudo-register value should be put in specific
382 register class (e.g. AREG for x86) which is a strict subset of
383 the allocno class (GENERAL_REGS for x86). We have updated costs
384 to reflect the situation when the usage cost of a hard register
385 is decreased because the allocno is connected to another allocno
386 by a copy and the another allocno has been assigned to the hard
387 register. */
388 int *hard_reg_costs, *updated_hard_reg_costs;
389 /* Array of decreasing costs (accumulated and the one updated during
390 coloring) for allocnos conflicting with given allocno for hard
391 regno of the allocno class. The member value can be NULL if all
392 costs are the same. These costs are used to reflect preferences
393 of other allocnos not assigned yet during assigning to given
394 allocno. */
395 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
396 /* Different additional data. It is used to decrease size of
397 allocno data footprint. */
398 void *add_data;
402 /* All members of the allocno structures should be accessed only
403 through the following macros. */
404 #define ALLOCNO_NUM(A) ((A)->num)
405 #define ALLOCNO_REGNO(A) ((A)->regno)
406 #define ALLOCNO_REG(A) ((A)->reg)
407 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
408 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
409 #define ALLOCNO_CAP(A) ((A)->cap)
410 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
411 #define ALLOCNO_NREFS(A) ((A)->nrefs)
412 #define ALLOCNO_FREQ(A) ((A)->freq)
413 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
414 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
415 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
416 #define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
417 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
418 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
419 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
420 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
421 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
422 #ifdef STACK_REGS
423 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
424 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
425 #endif
426 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
427 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
428 #define ALLOCNO_MODE(A) ((A)->mode)
429 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
430 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
431 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
432 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
433 ((A)->conflict_hard_reg_costs)
434 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
435 ((A)->updated_conflict_hard_reg_costs)
436 #define ALLOCNO_CLASS(A) ((A)->aclass)
437 #define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
438 #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
439 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
440 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
441 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
442 ((A)->excess_pressure_points_num)
443 #define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
444 #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
445 #define ALLOCNO_ADD_DATA(A) ((A)->add_data)
447 /* Typedef for pointer to the subsequent structure. */
448 typedef struct ira_emit_data *ira_emit_data_t;
450 /* Allocno bound data used for emit pseudo live range split insns and
451 to flattening IR. */
452 struct ira_emit_data
454 /* TRUE if the allocno assigned to memory was a destination of
455 removed move (see ira-emit.c) at loop exit because the value of
456 the corresponding pseudo-register is not changed inside the
457 loop. */
458 unsigned int mem_optimized_dest_p : 1;
459 /* TRUE if the corresponding pseudo-register has disjoint live
460 ranges and the other allocnos of the pseudo-register except this
461 one changed REG. */
462 unsigned int somewhere_renamed_p : 1;
463 /* TRUE if allocno with the same REGNO in a subregion has been
464 renamed, in other words, got a new pseudo-register. */
465 unsigned int child_renamed_p : 1;
466 /* Final rtx representation of the allocno. */
467 rtx reg;
468 /* Non NULL if we remove restoring value from given allocno to
469 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
470 allocno value is not changed inside the loop. */
471 ira_allocno_t mem_optimized_dest;
474 #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
476 /* Data used to emit live range split insns and to flattening IR. */
477 extern ira_emit_data_t ira_allocno_emit_data;
479 /* Abbreviation for frequent emit data access. */
480 static inline rtx
481 allocno_emit_reg (ira_allocno_t a)
483 return ALLOCNO_EMIT_DATA (a)->reg;
486 #define OBJECT_ALLOCNO(O) ((O)->allocno)
487 #define OBJECT_SUBWORD(O) ((O)->subword)
488 #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
489 #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
490 #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
491 #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
492 #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
493 #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
494 #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
495 #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
496 #define OBJECT_MIN(O) ((O)->min)
497 #define OBJECT_MAX(O) ((O)->max)
498 #define OBJECT_CONFLICT_ID(O) ((O)->id)
499 #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
501 /* Map regno -> allocnos with given regno (see comments for
502 allocno member `next_regno_allocno'). */
503 extern ira_allocno_t *ira_regno_allocno_map;
505 /* Array of references to all allocnos. The order number of the
506 allocno corresponds to the index in the array. Removed allocnos
507 have NULL element value. */
508 extern ira_allocno_t *ira_allocnos;
510 /* The size of the previous array. */
511 extern int ira_allocnos_num;
513 /* Map a conflict id to its corresponding ira_object structure. */
514 extern ira_object_t *ira_object_id_map;
516 /* The size of the previous array. */
517 extern int ira_objects_num;
519 /* The following structure represents a copy of two allocnos. The
520 copies represent move insns or potential move insns usually because
521 of two operand insn constraints. To remove register shuffle, we
522 also create copies between allocno which is output of an insn and
523 allocno becoming dead in the insn. */
524 struct ira_allocno_copy
526 /* The unique order number of the copy node starting with 0. */
527 int num;
528 /* Allocnos connected by the copy. The first allocno should have
529 smaller order number than the second one. */
530 ira_allocno_t first, second;
531 /* Execution frequency of the copy. */
532 int freq;
533 bool constraint_p;
534 /* It is a move insn which is an origin of the copy. The member
535 value for the copy representing two operand insn constraints or
536 for the copy created to remove register shuffle is NULL. In last
537 case the copy frequency is smaller than the corresponding insn
538 execution frequency. */
539 rtx insn;
540 /* All copies with the same allocno as FIRST are linked by the two
541 following members. */
542 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
543 /* All copies with the same allocno as SECOND are linked by the two
544 following members. */
545 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
546 /* Region from which given copy is originated. */
547 ira_loop_tree_node_t loop_tree_node;
550 /* Array of references to all copies. The order number of the copy
551 corresponds to the index in the array. Removed copies have NULL
552 element value. */
553 extern ira_copy_t *ira_copies;
555 /* Size of the previous array. */
556 extern int ira_copies_num;
558 /* The following structure describes a stack slot used for spilled
559 pseudo-registers. */
560 struct ira_spilled_reg_stack_slot
562 /* pseudo-registers assigned to the stack slot. */
563 bitmap_head spilled_regs;
564 /* RTL representation of the stack slot. */
565 rtx mem;
566 /* Size of the stack slot. */
567 unsigned int width;
570 /* The number of elements in the following array. */
571 extern int ira_spilled_reg_stack_slots_num;
573 /* The following array contains info about spilled pseudo-registers
574 stack slots used in current function so far. */
575 extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
577 /* Correspondingly overall cost of the allocation, cost of the
578 allocnos assigned to hard-registers, cost of the allocnos assigned
579 to memory, cost of loads, stores and register move insns generated
580 for pseudo-register live range splitting (see ira-emit.c). */
581 extern int ira_overall_cost;
582 extern int ira_reg_cost, ira_mem_cost;
583 extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
584 extern int ira_move_loops_num, ira_additional_jumps_num;
587 /* This page contains a bitset implementation called 'min/max sets' used to
588 record conflicts in IRA.
589 They are named min/maxs set since we keep track of a minimum and a maximum
590 bit number for each set representing the bounds of valid elements. Otherwise,
591 the implementation resembles sbitmaps in that we store an array of integers
592 whose bits directly represent the members of the set. */
594 /* The type used as elements in the array, and the number of bits in
595 this type. */
597 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
598 #define IRA_INT_TYPE HOST_WIDE_INT
600 /* Set, clear or test bit number I in R, a bit vector of elements with
601 minimal index and maximal index equal correspondingly to MIN and
602 MAX. */
603 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
605 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
606 (({ int _min = (MIN), _max = (MAX), _i = (I); \
607 if (_i < _min || _i > _max) \
609 fprintf (stderr, \
610 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
611 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
612 gcc_unreachable (); \
614 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
615 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
618 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
619 (({ int _min = (MIN), _max = (MAX), _i = (I); \
620 if (_i < _min || _i > _max) \
622 fprintf (stderr, \
623 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
624 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
625 gcc_unreachable (); \
627 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
628 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
630 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
631 (({ int _min = (MIN), _max = (MAX), _i = (I); \
632 if (_i < _min || _i > _max) \
634 fprintf (stderr, \
635 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
636 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
637 gcc_unreachable (); \
639 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
640 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
642 #else
644 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
645 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
646 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
648 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
649 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
650 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
652 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
653 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
654 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
656 #endif
658 /* The iterator for min/max sets. */
659 typedef struct {
661 /* Array containing the bit vector. */
662 IRA_INT_TYPE *vec;
664 /* The number of the current element in the vector. */
665 unsigned int word_num;
667 /* The number of bits in the bit vector. */
668 unsigned int nel;
670 /* The current bit index of the bit vector. */
671 unsigned int bit_num;
673 /* Index corresponding to the 1st bit of the bit vector. */
674 int start_val;
676 /* The word of the bit vector currently visited. */
677 unsigned IRA_INT_TYPE word;
678 } minmax_set_iterator;
680 /* Initialize the iterator I for bit vector VEC containing minimal and
681 maximal values MIN and MAX. */
682 static inline void
683 minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
684 int max)
686 i->vec = vec;
687 i->word_num = 0;
688 i->nel = max < min ? 0 : max - min + 1;
689 i->start_val = min;
690 i->bit_num = 0;
691 i->word = i->nel == 0 ? 0 : vec[0];
694 /* Return TRUE if we have more allocnos to visit, in which case *N is
695 set to the number of the element to be visited. Otherwise, return
696 FALSE. */
697 static inline bool
698 minmax_set_iter_cond (minmax_set_iterator *i, int *n)
700 /* Skip words that are zeros. */
701 for (; i->word == 0; i->word = i->vec[i->word_num])
703 i->word_num++;
704 i->bit_num = i->word_num * IRA_INT_BITS;
706 /* If we have reached the end, break. */
707 if (i->bit_num >= i->nel)
708 return false;
711 /* Skip bits that are zero. */
712 for (; (i->word & 1) == 0; i->word >>= 1)
713 i->bit_num++;
715 *n = (int) i->bit_num + i->start_val;
717 return true;
720 /* Advance to the next element in the set. */
721 static inline void
722 minmax_set_iter_next (minmax_set_iterator *i)
724 i->word >>= 1;
725 i->bit_num++;
728 /* Loop over all elements of a min/max set given by bit vector VEC and
729 their minimal and maximal values MIN and MAX. In each iteration, N
730 is set to the number of next allocno. ITER is an instance of
731 minmax_set_iterator used to iterate over the set. */
732 #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
733 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
734 minmax_set_iter_cond (&(ITER), &(N)); \
735 minmax_set_iter_next (&(ITER)))
737 struct target_ira_int {
738 /* Initialized once. It is a maximal possible size of the allocated
739 struct costs. */
740 int x_max_struct_costs_size;
742 /* Allocated and initialized once, and used to initialize cost values
743 for each insn. */
744 struct costs *x_init_cost;
746 /* Allocated once, and used for temporary purposes. */
747 struct costs *x_temp_costs;
749 /* Allocated once, and used for the cost calculation. */
750 struct costs *x_op_costs[MAX_RECOG_OPERANDS];
751 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
753 /* Hard registers that can not be used for the register allocator for
754 all functions of the current compilation unit. */
755 HARD_REG_SET x_no_unit_alloc_regs;
757 /* Map: hard regs X modes -> set of hard registers for storing value
758 of given mode starting with given hard register. */
759 HARD_REG_SET (x_ira_reg_mode_hard_regset
760 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
762 /* Maximum cost of moving from a register in one class to a register
763 in another class. Based on TARGET_REGISTER_MOVE_COST. */
764 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
766 /* Similar, but here we don't have to move if the first index is a
767 subset of the second so in that case the cost is zero. */
768 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
770 /* Similar, but here we don't have to move if the first index is a
771 superset of the second so in that case the cost is zero. */
772 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
774 /* Keep track of the last mode we initialized move costs for. */
775 int x_last_mode_for_init_move_cost;
777 /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
778 cost not minimal. */
779 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
781 /* Map class->true if class is a possible allocno class, false
782 otherwise. */
783 bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
785 /* Map class->true if class is a pressure class, false otherwise. */
786 bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
788 /* Array of the number of hard registers of given class which are
789 available for allocation. The order is defined by the hard
790 register numbers. */
791 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
793 /* Index (in ira_class_hard_regs; for given register class and hard
794 register (in general case a hard register can belong to several
795 register classes;. The index is negative for hard registers
796 unavailable for the allocation. */
797 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
799 /* Array whose values are hard regset of hard registers available for
800 the allocation of given register class whose HARD_REGNO_MODE_OK
801 values for given mode are zero. */
802 HARD_REG_SET x_ira_prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
804 /* Index [CL][M] contains R if R appears somewhere in a register of the form:
806 (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
808 For example, if:
810 - (reg:M 2) is valid and occupies two registers;
811 - register 2 belongs to CL; and
812 - register 3 belongs to the same pressure class as CL
814 then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
815 in the set. */
816 HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
818 /* The value is number of elements in the subsequent array. */
819 int x_ira_important_classes_num;
821 /* The array containing all non-empty classes. Such classes is
822 important for calculation of the hard register usage costs. */
823 enum reg_class x_ira_important_classes[N_REG_CLASSES];
825 /* The array containing indexes of important classes in the previous
826 array. The array elements are defined only for important
827 classes. */
828 int x_ira_important_class_nums[N_REG_CLASSES];
830 /* Map class->true if class is an uniform class, false otherwise. */
831 bool x_ira_uniform_class_p[N_REG_CLASSES];
833 /* The biggest important class inside of intersection of the two
834 classes (that is calculated taking only hard registers available
835 for allocation into account;. If the both classes contain no hard
836 registers available for allocation, the value is calculated with
837 taking all hard-registers including fixed ones into account. */
838 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
840 /* Classes with end marker LIM_REG_CLASSES which are intersected with
841 given class (the first index). That includes given class itself.
842 This is calculated taking only hard registers available for
843 allocation into account. */
844 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
846 /* The biggest (smallest) important class inside of (covering) union
847 of the two classes (that is calculated taking only hard registers
848 available for allocation into account). If the both classes
849 contain no hard registers available for allocation, the value is
850 calculated with taking all hard-registers including fixed ones
851 into account. In other words, the value is the corresponding
852 reg_class_subunion (reg_class_superunion) value. */
853 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
854 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
856 /* For each reg class, table listing all the classes contained in it
857 (excluding the class itself. Non-allocatable registers are
858 excluded from the consideration). */
859 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
861 /* Array whose values are hard regset of hard registers for which
862 move of the hard register in given mode into itself is
863 prohibited. */
864 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
866 /* Flag of that the above array has been initialized. */
867 bool x_ira_prohibited_mode_move_regs_initialized_p;
870 extern struct target_ira_int default_target_ira_int;
871 #if SWITCHABLE_TARGET
872 extern struct target_ira_int *this_target_ira_int;
873 #else
874 #define this_target_ira_int (&default_target_ira_int)
875 #endif
877 #define ira_reg_mode_hard_regset \
878 (this_target_ira_int->x_ira_reg_mode_hard_regset)
879 #define ira_register_move_cost \
880 (this_target_ira_int->x_ira_register_move_cost)
881 #define ira_max_memory_move_cost \
882 (this_target_ira_int->x_ira_max_memory_move_cost)
883 #define ira_may_move_in_cost \
884 (this_target_ira_int->x_ira_may_move_in_cost)
885 #define ira_may_move_out_cost \
886 (this_target_ira_int->x_ira_may_move_out_cost)
887 #define ira_reg_allocno_class_p \
888 (this_target_ira_int->x_ira_reg_allocno_class_p)
889 #define ira_reg_pressure_class_p \
890 (this_target_ira_int->x_ira_reg_pressure_class_p)
891 #define ira_non_ordered_class_hard_regs \
892 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
893 #define ira_class_hard_reg_index \
894 (this_target_ira_int->x_ira_class_hard_reg_index)
895 #define ira_prohibited_class_mode_regs \
896 (this_target_ira_int->x_ira_prohibited_class_mode_regs)
897 #define ira_useful_class_mode_regs \
898 (this_target_ira_int->x_ira_useful_class_mode_regs)
899 #define ira_important_classes_num \
900 (this_target_ira_int->x_ira_important_classes_num)
901 #define ira_important_classes \
902 (this_target_ira_int->x_ira_important_classes)
903 #define ira_important_class_nums \
904 (this_target_ira_int->x_ira_important_class_nums)
905 #define ira_uniform_class_p \
906 (this_target_ira_int->x_ira_uniform_class_p)
907 #define ira_reg_class_intersect \
908 (this_target_ira_int->x_ira_reg_class_intersect)
909 #define ira_reg_class_super_classes \
910 (this_target_ira_int->x_ira_reg_class_super_classes)
911 #define ira_reg_class_subunion \
912 (this_target_ira_int->x_ira_reg_class_subunion)
913 #define ira_reg_class_superunion \
914 (this_target_ira_int->x_ira_reg_class_superunion)
915 #define ira_prohibited_mode_move_regs \
916 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
918 /* ira.c: */
920 extern void *ira_allocate (size_t);
921 extern void ira_free (void *addr);
922 extern bitmap ira_allocate_bitmap (void);
923 extern void ira_free_bitmap (bitmap);
924 extern void ira_print_disposition (FILE *);
925 extern void ira_debug_disposition (void);
926 extern void ira_debug_allocno_classes (void);
927 extern void ira_init_register_move_cost (enum machine_mode);
929 /* ira-build.c */
931 /* The current loop tree node and its regno allocno map. */
932 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
933 extern ira_allocno_t *ira_curr_regno_allocno_map;
935 extern void ira_debug_copy (ira_copy_t);
936 extern void debug (ira_allocno_copy &ref);
937 extern void debug (ira_allocno_copy *ptr);
939 extern void ira_debug_copies (void);
940 extern void ira_debug_allocno_copies (ira_allocno_t);
941 extern void debug (ira_allocno &ref);
942 extern void debug (ira_allocno *ptr);
944 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
945 void (*) (ira_loop_tree_node_t),
946 void (*) (ira_loop_tree_node_t));
947 extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
948 extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
949 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
950 extern void ira_create_allocno_objects (ira_allocno_t);
951 extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
952 extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
953 extern void ira_allocate_conflict_vec (ira_object_t, int);
954 extern void ira_allocate_object_conflicts (ira_object_t, int);
955 extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *);
956 extern void ira_print_expanded_allocno (ira_allocno_t);
957 extern void ira_add_live_range_to_object (ira_object_t, int, int);
958 extern live_range_t ira_create_live_range (ira_object_t, int, int,
959 live_range_t);
960 extern live_range_t ira_copy_live_range_list (live_range_t);
961 extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
962 extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
963 extern void ira_finish_live_range (live_range_t);
964 extern void ira_finish_live_range_list (live_range_t);
965 extern void ira_free_allocno_updated_costs (ira_allocno_t);
966 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
967 int, bool, rtx, ira_loop_tree_node_t);
968 extern void ira_add_allocno_copy_to_list (ira_copy_t);
969 extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
970 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
971 bool, rtx, ira_loop_tree_node_t);
973 extern int *ira_allocate_cost_vector (reg_class_t);
974 extern void ira_free_cost_vector (int *, reg_class_t);
976 extern void ira_flattening (int, int);
977 extern bool ira_build (void);
978 extern void ira_destroy (void);
980 /* ira-costs.c */
981 extern void ira_init_costs_once (void);
982 extern void ira_init_costs (void);
983 extern void ira_finish_costs_once (void);
984 extern void ira_costs (void);
985 extern void ira_tune_allocno_costs (void);
987 /* ira-lives.c */
989 extern void ira_rebuild_start_finish_chains (void);
990 extern void ira_print_live_range_list (FILE *, live_range_t);
991 extern void debug (live_range &ref);
992 extern void debug (live_range *ptr);
993 extern void ira_debug_live_range_list (live_range_t);
994 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
995 extern void ira_debug_live_ranges (void);
996 extern void ira_create_allocno_live_ranges (void);
997 extern void ira_compress_allocno_live_ranges (void);
998 extern void ira_finish_allocno_live_ranges (void);
1000 /* ira-conflicts.c */
1001 extern void ira_debug_conflicts (bool);
1002 extern void ira_build_conflicts (void);
1004 /* ira-color.c */
1005 extern void ira_debug_hard_regs_forest (void);
1006 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1007 extern void ira_reassign_conflict_allocnos (int);
1008 extern void ira_initiate_assign (void);
1009 extern void ira_finish_assign (void);
1010 extern void ira_color (void);
1012 /* ira-emit.c */
1013 extern void ira_initiate_emit_data (void);
1014 extern void ira_finish_emit_data (void);
1015 extern void ira_emit (bool);
1019 /* Return true if equivalence of pseudo REGNO is not a lvalue. */
1020 static inline bool
1021 ira_equiv_no_lvalue_p (int regno)
1023 if (regno >= ira_reg_equiv_len)
1024 return false;
1025 return (ira_reg_equiv[regno].constant != NULL_RTX
1026 || ira_reg_equiv[regno].invariant != NULL_RTX
1027 || (ira_reg_equiv[regno].memory != NULL_RTX
1028 && MEM_READONLY_P (ira_reg_equiv[regno].memory)));
1033 /* Initialize register costs for MODE if necessary. */
1034 static inline void
1035 ira_init_register_move_cost_if_necessary (enum machine_mode mode)
1037 if (ira_register_move_cost[mode] == NULL)
1038 ira_init_register_move_cost (mode);
1043 /* The iterator for all allocnos. */
1044 typedef struct {
1045 /* The number of the current element in IRA_ALLOCNOS. */
1046 int n;
1047 } ira_allocno_iterator;
1049 /* Initialize the iterator I. */
1050 static inline void
1051 ira_allocno_iter_init (ira_allocno_iterator *i)
1053 i->n = 0;
1056 /* Return TRUE if we have more allocnos to visit, in which case *A is
1057 set to the allocno to be visited. Otherwise, return FALSE. */
1058 static inline bool
1059 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1061 int n;
1063 for (n = i->n; n < ira_allocnos_num; n++)
1064 if (ira_allocnos[n] != NULL)
1066 *a = ira_allocnos[n];
1067 i->n = n + 1;
1068 return true;
1070 return false;
1073 /* Loop over all allocnos. In each iteration, A is set to the next
1074 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1075 the allocnos. */
1076 #define FOR_EACH_ALLOCNO(A, ITER) \
1077 for (ira_allocno_iter_init (&(ITER)); \
1078 ira_allocno_iter_cond (&(ITER), &(A));)
1080 /* The iterator for all objects. */
1081 typedef struct {
1082 /* The number of the current element in ira_object_id_map. */
1083 int n;
1084 } ira_object_iterator;
1086 /* Initialize the iterator I. */
1087 static inline void
1088 ira_object_iter_init (ira_object_iterator *i)
1090 i->n = 0;
1093 /* Return TRUE if we have more objects to visit, in which case *OBJ is
1094 set to the object to be visited. Otherwise, return FALSE. */
1095 static inline bool
1096 ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1098 int n;
1100 for (n = i->n; n < ira_objects_num; n++)
1101 if (ira_object_id_map[n] != NULL)
1103 *obj = ira_object_id_map[n];
1104 i->n = n + 1;
1105 return true;
1107 return false;
1110 /* Loop over all objects. In each iteration, OBJ is set to the next
1111 object. ITER is an instance of ira_object_iterator used to iterate
1112 the objects. */
1113 #define FOR_EACH_OBJECT(OBJ, ITER) \
1114 for (ira_object_iter_init (&(ITER)); \
1115 ira_object_iter_cond (&(ITER), &(OBJ));)
1117 /* The iterator for objects associated with an allocno. */
1118 typedef struct {
1119 /* The number of the element the allocno's object array. */
1120 int n;
1121 } ira_allocno_object_iterator;
1123 /* Initialize the iterator I. */
1124 static inline void
1125 ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1127 i->n = 0;
1130 /* Return TRUE if we have more objects to visit in allocno A, in which
1131 case *O is set to the object to be visited. Otherwise, return
1132 FALSE. */
1133 static inline bool
1134 ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1135 ira_object_t *o)
1137 int n = i->n++;
1138 if (n < ALLOCNO_NUM_OBJECTS (a))
1140 *o = ALLOCNO_OBJECT (a, n);
1141 return true;
1143 return false;
1146 /* Loop over all objects associated with allocno A. In each
1147 iteration, O is set to the next object. ITER is an instance of
1148 ira_allocno_object_iterator used to iterate the conflicts. */
1149 #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1150 for (ira_allocno_object_iter_init (&(ITER)); \
1151 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1154 /* The iterator for copies. */
1155 typedef struct {
1156 /* The number of the current element in IRA_COPIES. */
1157 int n;
1158 } ira_copy_iterator;
1160 /* Initialize the iterator I. */
1161 static inline void
1162 ira_copy_iter_init (ira_copy_iterator *i)
1164 i->n = 0;
1167 /* Return TRUE if we have more copies to visit, in which case *CP is
1168 set to the copy to be visited. Otherwise, return FALSE. */
1169 static inline bool
1170 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1172 int n;
1174 for (n = i->n; n < ira_copies_num; n++)
1175 if (ira_copies[n] != NULL)
1177 *cp = ira_copies[n];
1178 i->n = n + 1;
1179 return true;
1181 return false;
1184 /* Loop over all copies. In each iteration, C is set to the next
1185 copy. ITER is an instance of ira_copy_iterator used to iterate
1186 the copies. */
1187 #define FOR_EACH_COPY(C, ITER) \
1188 for (ira_copy_iter_init (&(ITER)); \
1189 ira_copy_iter_cond (&(ITER), &(C));)
1191 /* The iterator for object conflicts. */
1192 typedef struct {
1194 /* TRUE if the conflicts are represented by vector of allocnos. */
1195 bool conflict_vec_p;
1197 /* The conflict vector or conflict bit vector. */
1198 void *vec;
1200 /* The number of the current element in the vector (of type
1201 ira_object_t or IRA_INT_TYPE). */
1202 unsigned int word_num;
1204 /* The bit vector size. It is defined only if
1205 OBJECT_CONFLICT_VEC_P is FALSE. */
1206 unsigned int size;
1208 /* The current bit index of bit vector. It is defined only if
1209 OBJECT_CONFLICT_VEC_P is FALSE. */
1210 unsigned int bit_num;
1212 /* The object id corresponding to the 1st bit of the bit vector. It
1213 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
1214 int base_conflict_id;
1216 /* The word of bit vector currently visited. It is defined only if
1217 OBJECT_CONFLICT_VEC_P is FALSE. */
1218 unsigned IRA_INT_TYPE word;
1219 } ira_object_conflict_iterator;
1221 /* Initialize the iterator I with ALLOCNO conflicts. */
1222 static inline void
1223 ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1224 ira_object_t obj)
1226 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1227 i->vec = OBJECT_CONFLICT_ARRAY (obj);
1228 i->word_num = 0;
1229 if (i->conflict_vec_p)
1230 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1231 else
1233 if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
1234 i->size = 0;
1235 else
1236 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
1237 + IRA_INT_BITS)
1238 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1239 i->bit_num = 0;
1240 i->base_conflict_id = OBJECT_MIN (obj);
1241 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1245 /* Return TRUE if we have more conflicting allocnos to visit, in which
1246 case *A is set to the allocno to be visited. Otherwise, return
1247 FALSE. */
1248 static inline bool
1249 ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1250 ira_object_t *pobj)
1252 ira_object_t obj;
1254 if (i->conflict_vec_p)
1256 obj = ((ira_object_t *) i->vec)[i->word_num++];
1257 if (obj == NULL)
1258 return false;
1260 else
1262 unsigned IRA_INT_TYPE word = i->word;
1263 unsigned int bit_num = i->bit_num;
1265 /* Skip words that are zeros. */
1266 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1268 i->word_num++;
1270 /* If we have reached the end, break. */
1271 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1272 return false;
1274 bit_num = i->word_num * IRA_INT_BITS;
1277 /* Skip bits that are zero. */
1278 for (; (word & 1) == 0; word >>= 1)
1279 bit_num++;
1281 obj = ira_object_id_map[bit_num + i->base_conflict_id];
1282 i->bit_num = bit_num + 1;
1283 i->word = word >> 1;
1286 *pobj = obj;
1287 return true;
1290 /* Loop over all objects conflicting with OBJ. In each iteration,
1291 CONF is set to the next conflicting object. ITER is an instance
1292 of ira_object_conflict_iterator used to iterate the conflicts. */
1293 #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1294 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1295 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
1299 /* The function returns TRUE if at least one hard register from ones
1300 starting with HARD_REGNO and containing value of MODE are in set
1301 HARD_REGSET. */
1302 static inline bool
1303 ira_hard_reg_set_intersection_p (int hard_regno, enum machine_mode mode,
1304 HARD_REG_SET hard_regset)
1306 int i;
1308 gcc_assert (hard_regno >= 0);
1309 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1310 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1311 return true;
1312 return false;
1315 /* Return number of hard registers in hard register SET. */
1316 static inline int
1317 hard_reg_set_size (HARD_REG_SET set)
1319 int i, size;
1321 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1322 if (TEST_HARD_REG_BIT (set, i))
1323 size++;
1324 return size;
1327 /* The function returns TRUE if hard registers starting with
1328 HARD_REGNO and containing value of MODE are fully in set
1329 HARD_REGSET. */
1330 static inline bool
1331 ira_hard_reg_in_set_p (int hard_regno, enum machine_mode mode,
1332 HARD_REG_SET hard_regset)
1334 int i;
1336 ira_assert (hard_regno >= 0);
1337 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1338 if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1339 return false;
1340 return true;
1345 /* To save memory we use a lazy approach for allocation and
1346 initialization of the cost vectors. We do this only when it is
1347 really necessary. */
1349 /* Allocate cost vector *VEC for hard registers of ACLASS and
1350 initialize the elements by VAL if it is necessary */
1351 static inline void
1352 ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
1354 int i, *reg_costs;
1355 int len;
1357 if (*vec != NULL)
1358 return;
1359 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1360 len = ira_class_hard_regs_num[(int) aclass];
1361 for (i = 0; i < len; i++)
1362 reg_costs[i] = val;
1365 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1366 values of vector SRC into the vector if it is necessary */
1367 static inline void
1368 ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
1370 int len;
1372 if (*vec != NULL || src == NULL)
1373 return;
1374 *vec = ira_allocate_cost_vector (aclass);
1375 len = ira_class_hard_regs_num[aclass];
1376 memcpy (*vec, src, sizeof (int) * len);
1379 /* Allocate cost vector *VEC for hard registers of ACLASS and add
1380 values of vector SRC into the vector if it is necessary */
1381 static inline void
1382 ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
1384 int i, len;
1386 if (src == NULL)
1387 return;
1388 len = ira_class_hard_regs_num[aclass];
1389 if (*vec == NULL)
1391 *vec = ira_allocate_cost_vector (aclass);
1392 memset (*vec, 0, sizeof (int) * len);
1394 for (i = 0; i < len; i++)
1395 (*vec)[i] += src[i];
1398 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1399 values of vector SRC into the vector or initialize it by VAL (if
1400 SRC is null). */
1401 static inline void
1402 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
1403 int val, int *src)
1405 int i, *reg_costs;
1406 int len;
1408 if (*vec != NULL)
1409 return;
1410 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1411 len = ira_class_hard_regs_num[aclass];
1412 if (src != NULL)
1413 memcpy (reg_costs, src, sizeof (int) * len);
1414 else
1416 for (i = 0; i < len; i++)
1417 reg_costs[i] = val;
1421 extern rtx ira_create_new_reg (rtx);
1422 extern int first_moveable_pseudo, last_moveable_pseudo;