1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
89 #include "insn-attr.h"
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts
;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges
;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras
;
110 /* Number of instructions combined in this function. */
112 static int combine_successes
;
114 /* Totals over entire compilation. */
116 static int total_attempts
, total_merges
, total_extras
, total_successes
;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid
;
127 static int max_uid_cuid
;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT)(val) << (BITS_PER_WORD - 1)) << 1)
140 /* Maximum register number, which is the size of the tables below. */
142 static unsigned int combine_max_regno
;
144 /* Record last point of death of (hard or pseudo) register n. */
146 static rtx
*reg_last_death
;
148 /* Record last point of modification of (hard or pseudo) register n. */
150 static rtx
*reg_last_set
;
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
155 static int mem_last_set
;
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
160 static int last_call_cuid
;
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
168 static rtx subst_insn
;
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
173 static rtx subst_prev_insn
;
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
182 static int subst_low_cuid
;
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
187 static HARD_REG_SET newpat_used_regs
;
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
193 static rtx added_links_insn
;
195 /* Basic block number of the block in which we are performing combines. */
196 static int this_basic_block
;
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks
;
202 static int need_refresh
;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx
*reg_last_set_value
;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label
;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick
;
262 /* Set non-zero if references to register n in expressions should not be
265 static char *reg_last_set_invalid
;
267 /* Incremented for each label. */
269 static int label_tick
;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT
*reg_nonzero_bits
;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode
;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static unsigned char *reg_sign_bit_copies
;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid
;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode
*reg_last_set_mode
;
306 static unsigned HOST_WIDE_INT
*reg_last_set_nonzero_bits
;
307 static char *reg_last_set_sign_bit_copies
;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
317 union {rtx r
; unsigned int i
;} old_contents
;
318 union {rtx
*r
; unsigned int *i
;} where
;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
334 static struct undobuf undobuf
;
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
339 static int n_occurrences
;
341 static void do_SUBST
PARAMS ((rtx
*, rtx
));
342 static void do_SUBST_INT
PARAMS ((unsigned int *,
344 static void init_reg_last_arrays
PARAMS ((void));
345 static void setup_incoming_promotions
PARAMS ((void));
346 static void set_nonzero_bits_and_sign_copies
PARAMS ((rtx
, rtx
, void *));
347 static int cant_combine_insn_p
PARAMS ((rtx
));
348 static int can_combine_p
PARAMS ((rtx
, rtx
, rtx
, rtx
, rtx
*, rtx
*));
349 static int sets_function_arg_p
PARAMS ((rtx
));
350 static int combinable_i3pat
PARAMS ((rtx
, rtx
*, rtx
, rtx
, int, rtx
*));
351 static int contains_muldiv
PARAMS ((rtx
));
352 static rtx try_combine
PARAMS ((rtx
, rtx
, rtx
, int *));
353 static void undo_all
PARAMS ((void));
354 static void undo_commit
PARAMS ((void));
355 static rtx
*find_split_point
PARAMS ((rtx
*, rtx
));
356 static rtx subst
PARAMS ((rtx
, rtx
, rtx
, int, int));
357 static rtx combine_simplify_rtx
PARAMS ((rtx
, enum machine_mode
, int, int));
358 static rtx simplify_if_then_else
PARAMS ((rtx
));
359 static rtx simplify_set
PARAMS ((rtx
));
360 static rtx simplify_logical
PARAMS ((rtx
, int));
361 static rtx expand_compound_operation
PARAMS ((rtx
));
362 static rtx expand_field_assignment
PARAMS ((rtx
));
363 static rtx make_extraction
PARAMS ((enum machine_mode
, rtx
, HOST_WIDE_INT
,
364 rtx
, unsigned HOST_WIDE_INT
, int,
366 static rtx extract_left_shift
PARAMS ((rtx
, int));
367 static rtx make_compound_operation
PARAMS ((rtx
, enum rtx_code
));
368 static int get_pos_from_mask
PARAMS ((unsigned HOST_WIDE_INT
,
369 unsigned HOST_WIDE_INT
*));
370 static rtx force_to_mode
PARAMS ((rtx
, enum machine_mode
,
371 unsigned HOST_WIDE_INT
, rtx
, int));
372 static rtx if_then_else_cond
PARAMS ((rtx
, rtx
*, rtx
*));
373 static rtx known_cond
PARAMS ((rtx
, enum rtx_code
, rtx
, rtx
));
374 static int rtx_equal_for_field_assignment_p
PARAMS ((rtx
, rtx
));
375 static rtx make_field_assignment
PARAMS ((rtx
));
376 static rtx apply_distributive_law
PARAMS ((rtx
));
377 static rtx simplify_and_const_int
PARAMS ((rtx
, enum machine_mode
, rtx
,
378 unsigned HOST_WIDE_INT
));
379 static unsigned HOST_WIDE_INT nonzero_bits
PARAMS ((rtx
, enum machine_mode
));
380 static unsigned int num_sign_bit_copies
PARAMS ((rtx
, enum machine_mode
));
381 static int merge_outer_ops
PARAMS ((enum rtx_code
*, HOST_WIDE_INT
*,
382 enum rtx_code
, HOST_WIDE_INT
,
383 enum machine_mode
, int *));
384 static rtx simplify_shift_const
PARAMS ((rtx
, enum rtx_code
, enum machine_mode
,
386 static int recog_for_combine
PARAMS ((rtx
*, rtx
, rtx
*));
387 static rtx gen_lowpart_for_combine
PARAMS ((enum machine_mode
, rtx
));
388 static rtx gen_binary
PARAMS ((enum rtx_code
, enum machine_mode
,
390 static enum rtx_code simplify_comparison
PARAMS ((enum rtx_code
, rtx
*, rtx
*));
391 static void update_table_tick
PARAMS ((rtx
));
392 static void record_value_for_reg
PARAMS ((rtx
, rtx
, rtx
));
393 static void check_promoted_subreg
PARAMS ((rtx
, rtx
));
394 static void record_dead_and_set_regs_1
PARAMS ((rtx
, rtx
, void *));
395 static void record_dead_and_set_regs
PARAMS ((rtx
));
396 static int get_last_value_validate
PARAMS ((rtx
*, rtx
, int, int));
397 static rtx get_last_value
PARAMS ((rtx
));
398 static int use_crosses_set_p
PARAMS ((rtx
, int));
399 static void reg_dead_at_p_1
PARAMS ((rtx
, rtx
, void *));
400 static int reg_dead_at_p
PARAMS ((rtx
, rtx
));
401 static void move_deaths
PARAMS ((rtx
, rtx
, int, rtx
, rtx
*));
402 static int reg_bitfield_target_p
PARAMS ((rtx
, rtx
));
403 static void distribute_notes
PARAMS ((rtx
, rtx
, rtx
, rtx
, rtx
, rtx
));
404 static void distribute_links
PARAMS ((rtx
));
405 static void mark_used_regs_combine
PARAMS ((rtx
));
406 static int insn_cuid
PARAMS ((rtx
));
407 static void record_promoted_value
PARAMS ((rtx
, rtx
));
408 static rtx reversed_comparison
PARAMS ((rtx
, enum machine_mode
, rtx
, rtx
));
409 static enum rtx_code combine_reversed_comparison_code
PARAMS ((rtx
));
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
418 do_SUBST (into
, newval
)
424 if (oldval
== newval
)
428 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
430 buf
= (struct undo
*) xmalloc (sizeof (struct undo
));
434 buf
->old_contents
.r
= oldval
;
437 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
440 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
442 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
443 for the value of a HOST_WIDE_INT value (including CONST_INT) is
447 do_SUBST_INT (into
, newval
)
448 unsigned int *into
, newval
;
451 unsigned int oldval
= *into
;
453 if (oldval
== newval
)
457 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
459 buf
= (struct undo
*) xmalloc (sizeof (struct undo
));
463 buf
->old_contents
.i
= oldval
;
466 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
469 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
471 /* Main entry point for combiner. F is the first insn of the function.
472 NREGS is the first unused pseudo-reg number.
474 Return non-zero if the combiner has turned an indirect jump
475 instruction into a direct jump. */
477 combine_instructions (f
, nregs
)
486 rtx links
, nextlinks
;
488 int new_direct_jump_p
= 0;
490 combine_attempts
= 0;
493 combine_successes
= 0;
495 combine_max_regno
= nregs
;
497 reg_nonzero_bits
= ((unsigned HOST_WIDE_INT
*)
498 xcalloc (nregs
, sizeof (unsigned HOST_WIDE_INT
)));
500 = (unsigned char *) xcalloc (nregs
, sizeof (unsigned char));
502 reg_last_death
= (rtx
*) xmalloc (nregs
* sizeof (rtx
));
503 reg_last_set
= (rtx
*) xmalloc (nregs
* sizeof (rtx
));
504 reg_last_set_value
= (rtx
*) xmalloc (nregs
* sizeof (rtx
));
505 reg_last_set_table_tick
= (int *) xmalloc (nregs
* sizeof (int));
506 reg_last_set_label
= (int *) xmalloc (nregs
* sizeof (int));
507 reg_last_set_invalid
= (char *) xmalloc (nregs
* sizeof (char));
509 = (enum machine_mode
*) xmalloc (nregs
* sizeof (enum machine_mode
));
510 reg_last_set_nonzero_bits
511 = (unsigned HOST_WIDE_INT
*) xmalloc (nregs
* sizeof (HOST_WIDE_INT
));
512 reg_last_set_sign_bit_copies
513 = (char *) xmalloc (nregs
* sizeof (char));
515 init_reg_last_arrays ();
517 init_recog_no_volatile ();
519 /* Compute maximum uid value so uid_cuid can be allocated. */
521 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
522 if (INSN_UID (insn
) > i
)
525 uid_cuid
= (int *) xmalloc ((i
+ 1) * sizeof (int));
528 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
530 /* Don't use reg_nonzero_bits when computing it. This can cause problems
531 when, for example, we have j <<= 1 in a loop. */
533 nonzero_sign_valid
= 0;
535 /* Compute the mapping from uids to cuids.
536 Cuids are numbers assigned to insns, like uids,
537 except that cuids increase monotonically through the code.
539 Scan all SETs and see if we can deduce anything about what
540 bits are known to be zero for some registers and how many copies
541 of the sign bit are known to exist for those registers.
543 Also set any known values so that we can use it while searching
544 for what bits are known to be set. */
548 /* We need to initialize it here, because record_dead_and_set_regs may call
550 subst_prev_insn
= NULL_RTX
;
552 setup_incoming_promotions ();
554 refresh_blocks
= sbitmap_alloc (n_basic_blocks
);
555 sbitmap_zero (refresh_blocks
);
558 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
560 uid_cuid
[INSN_UID (insn
)] = ++i
;
566 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
568 record_dead_and_set_regs (insn
);
571 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
572 if (REG_NOTE_KIND (links
) == REG_INC
)
573 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
578 if (GET_CODE (insn
) == CODE_LABEL
)
582 nonzero_sign_valid
= 1;
584 /* Now scan all the insns in forward order. */
586 this_basic_block
= -1;
590 init_reg_last_arrays ();
591 setup_incoming_promotions ();
593 for (insn
= f
; insn
; insn
= next
? next
: NEXT_INSN (insn
))
597 /* If INSN starts a new basic block, update our basic block number. */
598 if (this_basic_block
+ 1 < n_basic_blocks
599 && BLOCK_HEAD (this_basic_block
+ 1) == insn
)
602 if (GET_CODE (insn
) == CODE_LABEL
)
605 else if (INSN_P (insn
))
607 /* See if we know about function return values before this
608 insn based upon SUBREG flags. */
609 check_promoted_subreg (insn
, PATTERN (insn
));
611 /* Try this insn with each insn it links back to. */
613 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
614 if ((next
= try_combine (insn
, XEXP (links
, 0),
615 NULL_RTX
, &new_direct_jump_p
)) != 0)
618 /* Try each sequence of three linked insns ending with this one. */
620 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
622 rtx link
= XEXP (links
, 0);
624 /* If the linked insn has been replaced by a note, then there
625 is no point in pursuing this chain any further. */
626 if (GET_CODE (link
) == NOTE
)
629 for (nextlinks
= LOG_LINKS (link
);
631 nextlinks
= XEXP (nextlinks
, 1))
632 if ((next
= try_combine (insn
, XEXP (links
, 0),
634 &new_direct_jump_p
)) != 0)
639 /* Try to combine a jump insn that uses CC0
640 with a preceding insn that sets CC0, and maybe with its
641 logical predecessor as well.
642 This is how we make decrement-and-branch insns.
643 We need this special code because data flow connections
644 via CC0 do not get entered in LOG_LINKS. */
646 if (GET_CODE (insn
) == JUMP_INSN
647 && (prev
= prev_nonnote_insn (insn
)) != 0
648 && GET_CODE (prev
) == INSN
649 && sets_cc0_p (PATTERN (prev
)))
651 if ((next
= try_combine (insn
, prev
,
652 NULL_RTX
, &new_direct_jump_p
)) != 0)
655 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
656 nextlinks
= XEXP (nextlinks
, 1))
657 if ((next
= try_combine (insn
, prev
,
659 &new_direct_jump_p
)) != 0)
663 /* Do the same for an insn that explicitly references CC0. */
664 if (GET_CODE (insn
) == INSN
665 && (prev
= prev_nonnote_insn (insn
)) != 0
666 && GET_CODE (prev
) == INSN
667 && sets_cc0_p (PATTERN (prev
))
668 && GET_CODE (PATTERN (insn
)) == SET
669 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
671 if ((next
= try_combine (insn
, prev
,
672 NULL_RTX
, &new_direct_jump_p
)) != 0)
675 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
676 nextlinks
= XEXP (nextlinks
, 1))
677 if ((next
= try_combine (insn
, prev
,
679 &new_direct_jump_p
)) != 0)
683 /* Finally, see if any of the insns that this insn links to
684 explicitly references CC0. If so, try this insn, that insn,
685 and its predecessor if it sets CC0. */
686 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
687 if (GET_CODE (XEXP (links
, 0)) == INSN
688 && GET_CODE (PATTERN (XEXP (links
, 0))) == SET
689 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (XEXP (links
, 0))))
690 && (prev
= prev_nonnote_insn (XEXP (links
, 0))) != 0
691 && GET_CODE (prev
) == INSN
692 && sets_cc0_p (PATTERN (prev
))
693 && (next
= try_combine (insn
, XEXP (links
, 0),
694 prev
, &new_direct_jump_p
)) != 0)
698 /* Try combining an insn with two different insns whose results it
700 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
701 for (nextlinks
= XEXP (links
, 1); nextlinks
;
702 nextlinks
= XEXP (nextlinks
, 1))
703 if ((next
= try_combine (insn
, XEXP (links
, 0),
705 &new_direct_jump_p
)) != 0)
708 if (GET_CODE (insn
) != NOTE
)
709 record_dead_and_set_regs (insn
);
716 delete_noop_moves (f
);
720 update_life_info (refresh_blocks
, UPDATE_LIFE_GLOBAL_RM_NOTES
,
725 sbitmap_free (refresh_blocks
);
726 free (reg_nonzero_bits
);
727 free (reg_sign_bit_copies
);
728 free (reg_last_death
);
730 free (reg_last_set_value
);
731 free (reg_last_set_table_tick
);
732 free (reg_last_set_label
);
733 free (reg_last_set_invalid
);
734 free (reg_last_set_mode
);
735 free (reg_last_set_nonzero_bits
);
736 free (reg_last_set_sign_bit_copies
);
740 struct undo
*undo
, *next
;
741 for (undo
= undobuf
.frees
; undo
; undo
= next
)
749 total_attempts
+= combine_attempts
;
750 total_merges
+= combine_merges
;
751 total_extras
+= combine_extras
;
752 total_successes
+= combine_successes
;
754 nonzero_sign_valid
= 0;
756 /* Make recognizer allow volatile MEMs again. */
759 return new_direct_jump_p
;
762 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
765 init_reg_last_arrays ()
767 unsigned int nregs
= combine_max_regno
;
769 memset ((char *) reg_last_death
, 0, nregs
* sizeof (rtx
));
770 memset ((char *) reg_last_set
, 0, nregs
* sizeof (rtx
));
771 memset ((char *) reg_last_set_value
, 0, nregs
* sizeof (rtx
));
772 memset ((char *) reg_last_set_table_tick
, 0, nregs
* sizeof (int));
773 memset ((char *) reg_last_set_label
, 0, nregs
* sizeof (int));
774 memset (reg_last_set_invalid
, 0, nregs
* sizeof (char));
775 memset ((char *) reg_last_set_mode
, 0, nregs
* sizeof (enum machine_mode
));
776 memset ((char *) reg_last_set_nonzero_bits
, 0, nregs
* sizeof (HOST_WIDE_INT
));
777 memset (reg_last_set_sign_bit_copies
, 0, nregs
* sizeof (char));
780 /* Set up any promoted values for incoming argument registers. */
783 setup_incoming_promotions ()
785 #ifdef PROMOTE_FUNCTION_ARGS
788 enum machine_mode mode
;
790 rtx first
= get_insns ();
792 #ifndef OUTGOING_REGNO
793 #define OUTGOING_REGNO(N) N
795 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
796 /* Check whether this register can hold an incoming pointer
797 argument. FUNCTION_ARG_REGNO_P tests outgoing register
798 numbers, so translate if necessary due to register windows. */
799 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno
))
800 && (reg
= promoted_input_arg (regno
, &mode
, &unsignedp
)) != 0)
803 (reg
, first
, gen_rtx_fmt_e ((unsignedp
? ZERO_EXTEND
806 gen_rtx_CLOBBER (mode
, const0_rtx
)));
811 /* Called via note_stores. If X is a pseudo that is narrower than
812 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
814 If we are setting only a portion of X and we can't figure out what
815 portion, assume all bits will be used since we don't know what will
818 Similarly, set how many bits of X are known to be copies of the sign bit
819 at all locations in the function. This is the smallest number implied
823 set_nonzero_bits_and_sign_copies (x
, set
, data
)
826 void *data ATTRIBUTE_UNUSED
;
830 if (GET_CODE (x
) == REG
831 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
832 /* If this register is undefined at the start of the file, we can't
833 say what its contents were. */
834 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
, REGNO (x
))
835 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
837 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
839 reg_nonzero_bits
[REGNO (x
)] = GET_MODE_MASK (GET_MODE (x
));
840 reg_sign_bit_copies
[REGNO (x
)] = 1;
844 /* If this is a complex assignment, see if we can convert it into a
845 simple assignment. */
846 set
= expand_field_assignment (set
);
848 /* If this is a simple assignment, or we have a paradoxical SUBREG,
849 set what we know about X. */
851 if (SET_DEST (set
) == x
852 || (GET_CODE (SET_DEST (set
)) == SUBREG
853 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set
)))
854 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set
)))))
855 && SUBREG_REG (SET_DEST (set
)) == x
))
857 rtx src
= SET_SRC (set
);
859 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
860 /* If X is narrower than a word and SRC is a non-negative
861 constant that would appear negative in the mode of X,
862 sign-extend it for use in reg_nonzero_bits because some
863 machines (maybe most) will actually do the sign-extension
864 and this is the conservative approach.
866 ??? For 2.5, try to tighten up the MD files in this regard
867 instead of this kludge. */
869 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
870 && GET_CODE (src
) == CONST_INT
872 && 0 != (INTVAL (src
)
874 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
875 src
= GEN_INT (INTVAL (src
)
876 | ((HOST_WIDE_INT
) (-1)
877 << GET_MODE_BITSIZE (GET_MODE (x
))));
880 reg_nonzero_bits
[REGNO (x
)]
881 |= nonzero_bits (src
, nonzero_bits_mode
);
882 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
883 if (reg_sign_bit_copies
[REGNO (x
)] == 0
884 || reg_sign_bit_copies
[REGNO (x
)] > num
)
885 reg_sign_bit_copies
[REGNO (x
)] = num
;
889 reg_nonzero_bits
[REGNO (x
)] = GET_MODE_MASK (GET_MODE (x
));
890 reg_sign_bit_copies
[REGNO (x
)] = 1;
895 /* See if INSN can be combined into I3. PRED and SUCC are optionally
896 insns that were previously combined into I3 or that will be combined
897 into the merger of INSN and I3.
899 Return 0 if the combination is not allowed for any reason.
901 If the combination is allowed, *PDEST will be set to the single
902 destination of INSN and *PSRC to the single source, and this function
906 can_combine_p (insn
, i3
, pred
, succ
, pdest
, psrc
)
909 rtx pred ATTRIBUTE_UNUSED
;
914 rtx set
= 0, src
, dest
;
919 int all_adjacent
= (succ
? (next_active_insn (insn
) == succ
920 && next_active_insn (succ
) == i3
)
921 : next_active_insn (insn
) == i3
);
923 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
924 or a PARALLEL consisting of such a SET and CLOBBERs.
926 If INSN has CLOBBER parallel parts, ignore them for our processing.
927 By definition, these happen during the execution of the insn. When it
928 is merged with another insn, all bets are off. If they are, in fact,
929 needed and aren't also supplied in I3, they may be added by
930 recog_for_combine. Otherwise, it won't match.
932 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
935 Get the source and destination of INSN. If more than one, can't
938 if (GET_CODE (PATTERN (insn
)) == SET
)
939 set
= PATTERN (insn
);
940 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
941 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
943 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
945 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
947 switch (GET_CODE (elt
))
949 /* This is important to combine floating point insns
952 /* Combining an isolated USE doesn't make sense.
953 We depend here on combinable_i3_pat to reject them. */
954 /* The code below this loop only verifies that the inputs of
955 the SET in INSN do not change. We call reg_set_between_p
956 to verify that the REG in the USE does not change between
958 If the USE in INSN was for a pseudo register, the matching
959 insn pattern will likely match any register; combining this
960 with any other USE would only be safe if we knew that the
961 used registers have identical values, or if there was
962 something to tell them apart, e.g. different modes. For
963 now, we forgo such complicated tests and simply disallow
964 combining of USES of pseudo registers with any other USE. */
965 if (GET_CODE (XEXP (elt
, 0)) == REG
966 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
968 rtx i3pat
= PATTERN (i3
);
969 int i
= XVECLEN (i3pat
, 0) - 1;
970 unsigned int regno
= REGNO (XEXP (elt
, 0));
974 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
976 if (GET_CODE (i3elt
) == USE
977 && GET_CODE (XEXP (i3elt
, 0)) == REG
978 && (REGNO (XEXP (i3elt
, 0)) == regno
979 ? reg_set_between_p (XEXP (elt
, 0),
980 PREV_INSN (insn
), i3
)
981 : regno
>= FIRST_PSEUDO_REGISTER
))
988 /* We can ignore CLOBBERs. */
993 /* Ignore SETs whose result isn't used but not those that
994 have side-effects. */
995 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
996 && ! side_effects_p (elt
))
999 /* If we have already found a SET, this is a second one and
1000 so we cannot combine with this insn. */
1008 /* Anything else means we can't combine. */
1014 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1015 so don't do anything with it. */
1016 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1025 set
= expand_field_assignment (set
);
1026 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1028 /* Don't eliminate a store in the stack pointer. */
1029 if (dest
== stack_pointer_rtx
1030 /* If we couldn't eliminate a field assignment, we can't combine. */
1031 || GET_CODE (dest
) == ZERO_EXTRACT
|| GET_CODE (dest
) == STRICT_LOW_PART
1032 /* Don't combine with an insn that sets a register to itself if it has
1033 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1034 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1035 /* Can't merge an ASM_OPERANDS. */
1036 || GET_CODE (src
) == ASM_OPERANDS
1037 /* Can't merge a function call. */
1038 || GET_CODE (src
) == CALL
1039 /* Don't eliminate a function call argument. */
1040 || (GET_CODE (i3
) == CALL_INSN
1041 && (find_reg_fusage (i3
, USE
, dest
)
1042 || (GET_CODE (dest
) == REG
1043 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1044 && global_regs
[REGNO (dest
)])))
1045 /* Don't substitute into an incremented register. */
1046 || FIND_REG_INC_NOTE (i3
, dest
)
1047 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1049 /* Don't combine the end of a libcall into anything. */
1050 /* ??? This gives worse code, and appears to be unnecessary, since no
1051 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1052 use REG_RETVAL notes for noconflict blocks, but other code here
1053 makes sure that those insns don't disappear. */
1054 || find_reg_note (insn
, REG_RETVAL
, NULL_RTX
)
1056 /* Make sure that DEST is not used after SUCC but before I3. */
1057 || (succ
&& ! all_adjacent
1058 && reg_used_between_p (dest
, succ
, i3
))
1059 /* Make sure that the value that is to be substituted for the register
1060 does not use any registers whose values alter in between. However,
1061 If the insns are adjacent, a use can't cross a set even though we
1062 think it might (this can happen for a sequence of insns each setting
1063 the same destination; reg_last_set of that register might point to
1064 a NOTE). If INSN has a REG_EQUIV note, the register is always
1065 equivalent to the memory so the substitution is valid even if there
1066 are intervening stores. Also, don't move a volatile asm or
1067 UNSPEC_VOLATILE across any other insns. */
1069 && (((GET_CODE (src
) != MEM
1070 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1071 && use_crosses_set_p (src
, INSN_CUID (insn
)))
1072 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1073 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1074 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1075 better register allocation by not doing the combine. */
1076 || find_reg_note (i3
, REG_NO_CONFLICT
, dest
)
1077 || (succ
&& find_reg_note (succ
, REG_NO_CONFLICT
, dest
))
1078 /* Don't combine across a CALL_INSN, because that would possibly
1079 change whether the life span of some REGs crosses calls or not,
1080 and it is a pain to update that information.
1081 Exception: if source is a constant, moving it later can't hurt.
1082 Accept that special case, because it helps -fforce-addr a lot. */
1083 || (INSN_CUID (insn
) < last_call_cuid
&& ! CONSTANT_P (src
)))
1086 /* DEST must either be a REG or CC0. */
1087 if (GET_CODE (dest
) == REG
)
1089 /* If register alignment is being enforced for multi-word items in all
1090 cases except for parameters, it is possible to have a register copy
1091 insn referencing a hard register that is not allowed to contain the
1092 mode being copied and which would not be valid as an operand of most
1093 insns. Eliminate this problem by not combining with such an insn.
1095 Also, on some machines we don't want to extend the life of a hard
1098 if (GET_CODE (src
) == REG
1099 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1100 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
1101 /* Don't extend the life of a hard register unless it is
1102 user variable (if we have few registers) or it can't
1103 fit into the desired register (meaning something special
1105 Also avoid substituting a return register into I3, because
1106 reload can't handle a conflict with constraints of other
1108 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1109 && ! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
)))))
1112 else if (GET_CODE (dest
) != CC0
)
1115 /* Don't substitute for a register intended as a clobberable operand.
1116 Similarly, don't substitute an expression containing a register that
1117 will be clobbered in I3. */
1118 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1119 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1120 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
1121 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0),
1123 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0), dest
)))
1126 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1127 or not), reject, unless nothing volatile comes between it and I3 */
1129 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1131 /* Make sure succ doesn't contain a volatile reference. */
1132 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1135 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1136 if (INSN_P (p
) && p
!= succ
&& volatile_refs_p (PATTERN (p
)))
1140 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1141 to be an explicit register variable, and was chosen for a reason. */
1143 if (GET_CODE (src
) == ASM_OPERANDS
1144 && GET_CODE (dest
) == REG
&& REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
1147 /* If there are any volatile insns between INSN and I3, reject, because
1148 they might affect machine state. */
1150 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1151 if (INSN_P (p
) && p
!= succ
&& volatile_insn_p (PATTERN (p
)))
1154 /* If INSN or I2 contains an autoincrement or autodecrement,
1155 make sure that register is not used between there and I3,
1156 and not already used in I3 either.
1157 Also insist that I3 not be a jump; if it were one
1158 and the incremented register were spilled, we would lose. */
1161 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1162 if (REG_NOTE_KIND (link
) == REG_INC
1163 && (GET_CODE (i3
) == JUMP_INSN
1164 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
1165 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
1170 /* Don't combine an insn that follows a CC0-setting insn.
1171 An insn that uses CC0 must not be separated from the one that sets it.
1172 We do, however, allow I2 to follow a CC0-setting insn if that insn
1173 is passed as I1; in that case it will be deleted also.
1174 We also allow combining in this case if all the insns are adjacent
1175 because that would leave the two CC0 insns adjacent as well.
1176 It would be more logical to test whether CC0 occurs inside I1 or I2,
1177 but that would be much slower, and this ought to be equivalent. */
1179 p
= prev_nonnote_insn (insn
);
1180 if (p
&& p
!= pred
&& GET_CODE (p
) == INSN
&& sets_cc0_p (PATTERN (p
))
1185 /* If we get here, we have passed all the tests and the combination is
1194 /* Check if PAT is an insn - or a part of it - used to set up an
1195 argument for a function in a hard register. */
1198 sets_function_arg_p (pat
)
1204 switch (GET_CODE (pat
))
1207 return sets_function_arg_p (PATTERN (pat
));
1210 for (i
= XVECLEN (pat
, 0); --i
>= 0;)
1211 if (sets_function_arg_p (XVECEXP (pat
, 0, i
)))
1217 inner_dest
= SET_DEST (pat
);
1218 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
1219 || GET_CODE (inner_dest
) == SUBREG
1220 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
1221 inner_dest
= XEXP (inner_dest
, 0);
1223 return (GET_CODE (inner_dest
) == REG
1224 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
1225 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest
)));
1234 /* LOC is the location within I3 that contains its pattern or the component
1235 of a PARALLEL of the pattern. We validate that it is valid for combining.
1237 One problem is if I3 modifies its output, as opposed to replacing it
1238 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1239 so would produce an insn that is not equivalent to the original insns.
1243 (set (reg:DI 101) (reg:DI 100))
1244 (set (subreg:SI (reg:DI 101) 0) <foo>)
1246 This is NOT equivalent to:
1248 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1249 (set (reg:DI 101) (reg:DI 100))])
1251 Not only does this modify 100 (in which case it might still be valid
1252 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1254 We can also run into a problem if I2 sets a register that I1
1255 uses and I1 gets directly substituted into I3 (not via I2). In that
1256 case, we would be getting the wrong value of I2DEST into I3, so we
1257 must reject the combination. This case occurs when I2 and I1 both
1258 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1259 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1260 of a SET must prevent combination from occurring.
1262 Before doing the above check, we first try to expand a field assignment
1263 into a set of logical operations.
1265 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1266 we place a register that is both set and used within I3. If more than one
1267 such register is detected, we fail.
1269 Return 1 if the combination is valid, zero otherwise. */
1272 combinable_i3pat (i3
, loc
, i2dest
, i1dest
, i1_not_in_src
, pi3dest_killed
)
1278 rtx
*pi3dest_killed
;
1282 if (GET_CODE (x
) == SET
)
1284 rtx set
= expand_field_assignment (x
);
1285 rtx dest
= SET_DEST (set
);
1286 rtx src
= SET_SRC (set
);
1287 rtx inner_dest
= dest
;
1290 rtx inner_src
= src
;
1295 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
1296 || GET_CODE (inner_dest
) == SUBREG
1297 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
1298 inner_dest
= XEXP (inner_dest
, 0);
1300 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1303 while (GET_CODE (inner_src
) == STRICT_LOW_PART
1304 || GET_CODE (inner_src
) == SUBREG
1305 || GET_CODE (inner_src
) == ZERO_EXTRACT
)
1306 inner_src
= XEXP (inner_src
, 0);
1308 /* If it is better that two different modes keep two different pseudos,
1309 avoid combining them. This avoids producing the following pattern
1311 (set (subreg:SI (reg/v:QI 21) 0)
1312 (lshiftrt:SI (reg/v:SI 20)
1314 If that were made, reload could not handle the pair of
1315 reg 20/21, since it would try to get any GENERAL_REGS
1316 but some of them don't handle QImode. */
1318 if (rtx_equal_p (inner_src
, i2dest
)
1319 && GET_CODE (inner_dest
) == REG
1320 && ! MODES_TIEABLE_P (GET_MODE (i2dest
), GET_MODE (inner_dest
)))
1324 /* Check for the case where I3 modifies its output, as
1326 if ((inner_dest
!= dest
1327 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
1328 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))))
1330 /* This is the same test done in can_combine_p except we can't test
1331 all_adjacent; we don't have to, since this instruction will stay
1332 in place, thus we are not considering increasing the lifetime of
1335 Also, if this insn sets a function argument, combining it with
1336 something that might need a spill could clobber a previous
1337 function argument; the all_adjacent test in can_combine_p also
1338 checks this; here, we do a more specific test for this case. */
1340 || (GET_CODE (inner_dest
) == REG
1341 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
1342 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
1343 GET_MODE (inner_dest
))))
1344 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
)))
1347 /* If DEST is used in I3, it is being killed in this insn,
1348 so record that for later.
1349 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1350 STACK_POINTER_REGNUM, since these are always considered to be
1351 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1352 if (pi3dest_killed
&& GET_CODE (dest
) == REG
1353 && reg_referenced_p (dest
, PATTERN (i3
))
1354 && REGNO (dest
) != FRAME_POINTER_REGNUM
1355 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1356 && REGNO (dest
) != HARD_FRAME_POINTER_REGNUM
1358 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1359 && (REGNO (dest
) != ARG_POINTER_REGNUM
1360 || ! fixed_regs
[REGNO (dest
)])
1362 && REGNO (dest
) != STACK_POINTER_REGNUM
)
1364 if (*pi3dest_killed
)
1367 *pi3dest_killed
= dest
;
1371 else if (GET_CODE (x
) == PARALLEL
)
1375 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
1376 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
,
1377 i1_not_in_src
, pi3dest_killed
))
1384 /* Return 1 if X is an arithmetic expression that contains a multiplication
1385 and division. We don't count multiplications by powers of two here. */
1391 switch (GET_CODE (x
))
1393 case MOD
: case DIV
: case UMOD
: case UDIV
:
1397 return ! (GET_CODE (XEXP (x
, 1)) == CONST_INT
1398 && exact_log2 (INTVAL (XEXP (x
, 1))) >= 0);
1400 switch (GET_RTX_CLASS (GET_CODE (x
)))
1402 case 'c': case '<': case '2':
1403 return contains_muldiv (XEXP (x
, 0))
1404 || contains_muldiv (XEXP (x
, 1));
1407 return contains_muldiv (XEXP (x
, 0));
1415 /* Determine whether INSN can be used in a combination. Return nonzero if
1416 not. This is used in try_combine to detect early some cases where we
1417 can't perform combinations. */
1420 cant_combine_insn_p (insn
)
1426 /* If this isn't really an insn, we can't do anything.
1427 This can occur when flow deletes an insn that it has merged into an
1428 auto-increment address. */
1429 if (! INSN_P (insn
))
1432 /* Never combine loads and stores involving hard regs. The register
1433 allocator can usually handle such reg-reg moves by tying. If we allow
1434 the combiner to make substitutions of hard regs, we risk aborting in
1435 reload on machines that have SMALL_REGISTER_CLASSES.
1436 As an exception, we allow combinations involving fixed regs; these are
1437 not available to the register allocator so there's no risk involved. */
1439 set
= single_set (insn
);
1442 src
= SET_SRC (set
);
1443 dest
= SET_DEST (set
);
1444 if (GET_CODE (src
) == SUBREG
)
1445 src
= SUBREG_REG (src
);
1446 if (GET_CODE (dest
) == SUBREG
)
1447 dest
= SUBREG_REG (dest
);
1448 if (REG_P (src
) && REG_P (dest
)
1449 && ((REGNO (src
) < FIRST_PSEUDO_REGISTER
1450 && ! fixed_regs
[REGNO (src
)])
1451 || (REGNO (dest
) < FIRST_PSEUDO_REGISTER
1452 && ! fixed_regs
[REGNO (dest
)])))
1458 /* Try to combine the insns I1 and I2 into I3.
1459 Here I1 and I2 appear earlier than I3.
1460 I1 can be zero; then we combine just I2 into I3.
1462 If we are combining three insns and the resulting insn is not recognized,
1463 try splitting it into two insns. If that happens, I2 and I3 are retained
1464 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1467 Return 0 if the combination does not work. Then nothing is changed.
1468 If we did the combination, return the insn at which combine should
1471 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1472 new direct jump instruction. */
1475 try_combine (i3
, i2
, i1
, new_direct_jump_p
)
1477 int *new_direct_jump_p
;
1479 /* New patterns for I3 and I2, respectively. */
1480 rtx newpat
, newi2pat
= 0;
1481 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1482 int added_sets_1
, added_sets_2
;
1483 /* Total number of SETs to put into I3. */
1485 /* Nonzero is I2's body now appears in I3. */
1487 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1488 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
1489 /* Contains I3 if the destination of I3 is used in its source, which means
1490 that the old life of I3 is being killed. If that usage is placed into
1491 I2 and not in I3, a REG_DEAD note must be made. */
1492 rtx i3dest_killed
= 0;
1493 /* SET_DEST and SET_SRC of I2 and I1. */
1494 rtx i2dest
, i2src
, i1dest
= 0, i1src
= 0;
1495 /* PATTERN (I2), or a copy of it in certain cases. */
1497 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1498 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
1499 int i1_feeds_i3
= 0;
1500 /* Notes that must be added to REG_NOTES in I3 and I2. */
1501 rtx new_i3_notes
, new_i2_notes
;
1502 /* Notes that we substituted I3 into I2 instead of the normal case. */
1503 int i3_subst_into_i2
= 0;
1504 /* Notes that I1, I2 or I3 is a MULT operation. */
1512 /* Exit early if one of the insns involved can't be used for
1514 if (cant_combine_insn_p (i3
)
1515 || cant_combine_insn_p (i2
)
1516 || (i1
&& cant_combine_insn_p (i1
))
1517 /* We also can't do anything if I3 has a
1518 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1521 /* ??? This gives worse code, and appears to be unnecessary, since no
1522 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1523 || find_reg_note (i3
, REG_LIBCALL
, NULL_RTX
)
1529 undobuf
.other_insn
= 0;
1531 /* Reset the hard register usage information. */
1532 CLEAR_HARD_REG_SET (newpat_used_regs
);
1534 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1535 code below, set I1 to be the earlier of the two insns. */
1536 if (i1
&& INSN_CUID (i1
) > INSN_CUID (i2
))
1537 temp
= i1
, i1
= i2
, i2
= temp
;
1539 added_links_insn
= 0;
1541 /* First check for one important special-case that the code below will
1542 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1543 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1544 we may be able to replace that destination with the destination of I3.
1545 This occurs in the common code where we compute both a quotient and
1546 remainder into a structure, in which case we want to do the computation
1547 directly into the structure to avoid register-register copies.
1549 Note that this case handles both multiple sets in I2 and also
1550 cases where I2 has a number of CLOBBER or PARALLELs.
1552 We make very conservative checks below and only try to handle the
1553 most common cases of this. For example, we only handle the case
1554 where I2 and I3 are adjacent to avoid making difficult register
1557 if (i1
== 0 && GET_CODE (i3
) == INSN
&& GET_CODE (PATTERN (i3
)) == SET
1558 && GET_CODE (SET_SRC (PATTERN (i3
))) == REG
1559 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
1560 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
1561 && GET_CODE (PATTERN (i2
)) == PARALLEL
1562 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
1563 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1564 below would need to check what is inside (and reg_overlap_mentioned_p
1565 doesn't support those codes anyway). Don't allow those destinations;
1566 the resulting insn isn't likely to be recognized anyway. */
1567 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
1568 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
1569 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
1570 SET_DEST (PATTERN (i3
)))
1571 && next_real_insn (i2
) == i3
)
1573 rtx p2
= PATTERN (i2
);
1575 /* Make sure that the destination of I3,
1576 which we are going to substitute into one output of I2,
1577 is not used within another output of I2. We must avoid making this:
1578 (parallel [(set (mem (reg 69)) ...)
1579 (set (reg 69) ...)])
1580 which is not well-defined as to order of actions.
1581 (Besides, reload can't handle output reloads for this.)
1583 The problem can also happen if the dest of I3 is a memory ref,
1584 if another dest in I2 is an indirect memory ref. */
1585 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1586 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1587 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1588 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
1589 SET_DEST (XVECEXP (p2
, 0, i
))))
1592 if (i
== XVECLEN (p2
, 0))
1593 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1594 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1595 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1596 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
1601 subst_low_cuid
= INSN_CUID (i2
);
1603 added_sets_2
= added_sets_1
= 0;
1604 i2dest
= SET_SRC (PATTERN (i3
));
1606 /* Replace the dest in I2 with our dest and make the resulting
1607 insn the new pattern for I3. Then skip to where we
1608 validate the pattern. Everything was set up above. */
1609 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)),
1610 SET_DEST (PATTERN (i3
)));
1613 i3_subst_into_i2
= 1;
1614 goto validate_replacement
;
1618 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1619 one of those words to another constant, merge them by making a new
1622 && (temp
= single_set (i2
)) != 0
1623 && (GET_CODE (SET_SRC (temp
)) == CONST_INT
1624 || GET_CODE (SET_SRC (temp
)) == CONST_DOUBLE
)
1625 && GET_CODE (SET_DEST (temp
)) == REG
1626 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp
))) == MODE_INT
1627 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp
))) == 2 * UNITS_PER_WORD
1628 && GET_CODE (PATTERN (i3
)) == SET
1629 && GET_CODE (SET_DEST (PATTERN (i3
))) == SUBREG
1630 && SUBREG_REG (SET_DEST (PATTERN (i3
))) == SET_DEST (temp
)
1631 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3
)))) == MODE_INT
1632 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3
)))) == UNITS_PER_WORD
1633 && GET_CODE (SET_SRC (PATTERN (i3
))) == CONST_INT
)
1635 HOST_WIDE_INT lo
, hi
;
1637 if (GET_CODE (SET_SRC (temp
)) == CONST_INT
)
1638 lo
= INTVAL (SET_SRC (temp
)), hi
= lo
< 0 ? -1 : 0;
1641 lo
= CONST_DOUBLE_LOW (SET_SRC (temp
));
1642 hi
= CONST_DOUBLE_HIGH (SET_SRC (temp
));
1645 if (subreg_lowpart_p (SET_DEST (PATTERN (i3
))))
1647 /* We don't handle the case of the target word being wider
1648 than a host wide int. */
1649 if (HOST_BITS_PER_WIDE_INT
< BITS_PER_WORD
)
1652 lo
&= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1653 lo
|= INTVAL (SET_SRC (PATTERN (i3
)));
1655 else if (HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1656 hi
= INTVAL (SET_SRC (PATTERN (i3
)));
1657 else if (HOST_BITS_PER_WIDE_INT
>= 2 * BITS_PER_WORD
)
1659 int sign
= -(int) ((unsigned HOST_WIDE_INT
) lo
1660 >> (HOST_BITS_PER_WIDE_INT
- 1));
1662 lo
&= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1663 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1664 lo
|= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1665 (INTVAL (SET_SRC (PATTERN (i3
)))));
1667 hi
= lo
< 0 ? -1 : 0;
1670 /* We don't handle the case of the higher word not fitting
1671 entirely in either hi or lo. */
1676 subst_low_cuid
= INSN_CUID (i2
);
1677 added_sets_2
= added_sets_1
= 0;
1678 i2dest
= SET_DEST (temp
);
1680 SUBST (SET_SRC (temp
),
1681 immed_double_const (lo
, hi
, GET_MODE (SET_DEST (temp
))));
1683 newpat
= PATTERN (i2
);
1684 goto validate_replacement
;
1688 /* If we have no I1 and I2 looks like:
1689 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1691 make up a dummy I1 that is
1694 (set (reg:CC X) (compare:CC Y (const_int 0)))
1696 (We can ignore any trailing CLOBBERs.)
1698 This undoes a previous combination and allows us to match a branch-and-
1701 if (i1
== 0 && GET_CODE (PATTERN (i2
)) == PARALLEL
1702 && XVECLEN (PATTERN (i2
), 0) >= 2
1703 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 0)) == SET
1704 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
1706 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
1707 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
1708 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 1)) == SET
1709 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1))) == REG
1710 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
1711 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1))))
1713 for (i
= XVECLEN (PATTERN (i2
), 0) - 1; i
>= 2; i
--)
1714 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != CLOBBER
)
1719 /* We make I1 with the same INSN_UID as I2. This gives it
1720 the same INSN_CUID for value tracking. Our fake I1 will
1721 never appear in the insn stream so giving it the same INSN_UID
1722 as I2 will not cause a problem. */
1724 subst_prev_insn
= i1
1725 = gen_rtx_INSN (VOIDmode
, INSN_UID (i2
), NULL_RTX
, i2
,
1726 XVECEXP (PATTERN (i2
), 0, 1), -1, NULL_RTX
,
1729 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
1730 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
1731 SET_DEST (PATTERN (i1
)));
1736 /* Verify that I2 and I1 are valid for combining. */
1737 if (! can_combine_p (i2
, i3
, i1
, NULL_RTX
, &i2dest
, &i2src
)
1738 || (i1
&& ! can_combine_p (i1
, i3
, NULL_RTX
, i2
, &i1dest
, &i1src
)))
1744 /* Record whether I2DEST is used in I2SRC and similarly for the other
1745 cases. Knowing this will help in register status updating below. */
1746 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
1747 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
1748 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
1750 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1752 i1_feeds_i3
= i1
&& ! reg_overlap_mentioned_p (i1dest
, i2src
);
1754 /* Ensure that I3's pattern can be the destination of combines. */
1755 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
,
1756 i1
&& i2dest_in_i1src
&& i1_feeds_i3
,
1763 /* See if any of the insns is a MULT operation. Unless one is, we will
1764 reject a combination that is, since it must be slower. Be conservative
1766 if (GET_CODE (i2src
) == MULT
1767 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
1768 || (GET_CODE (PATTERN (i3
)) == SET
1769 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
1772 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1773 We used to do this EXCEPT in one case: I3 has a post-inc in an
1774 output operand. However, that exception can give rise to insns like
1776 which is a famous insn on the PDP-11 where the value of r3 used as the
1777 source was model-dependent. Avoid this sort of thing. */
1780 if (!(GET_CODE (PATTERN (i3
)) == SET
1781 && GET_CODE (SET_SRC (PATTERN (i3
))) == REG
1782 && GET_CODE (SET_DEST (PATTERN (i3
))) == MEM
1783 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
1784 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
1785 /* It's not the exception. */
1788 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
1789 if (REG_NOTE_KIND (link
) == REG_INC
1790 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
1792 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
1799 /* See if the SETs in I1 or I2 need to be kept around in the merged
1800 instruction: whenever the value set there is still needed past I3.
1801 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1803 For the SET in I1, we have two cases: If I1 and I2 independently
1804 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1805 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1806 in I1 needs to be kept around unless I1DEST dies or is set in either
1807 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1808 I1DEST. If so, we know I1 feeds into I2. */
1810 added_sets_2
= ! dead_or_set_p (i3
, i2dest
);
1813 = i1
&& ! (i1_feeds_i3
? dead_or_set_p (i3
, i1dest
)
1814 : (dead_or_set_p (i3
, i1dest
) || dead_or_set_p (i2
, i1dest
)));
1816 /* If the set in I2 needs to be kept around, we must make a copy of
1817 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1818 PATTERN (I2), we are only substituting for the original I1DEST, not into
1819 an already-substituted copy. This also prevents making self-referential
1820 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1823 i2pat
= (GET_CODE (PATTERN (i2
)) == PARALLEL
1824 ? gen_rtx_SET (VOIDmode
, i2dest
, i2src
)
1828 i2pat
= copy_rtx (i2pat
);
1832 /* Substitute in the latest insn for the regs set by the earlier ones. */
1834 maxreg
= max_reg_num ();
1838 /* It is possible that the source of I2 or I1 may be performing an
1839 unneeded operation, such as a ZERO_EXTEND of something that is known
1840 to have the high part zero. Handle that case by letting subst look at
1841 the innermost one of them.
1843 Another way to do this would be to have a function that tries to
1844 simplify a single insn instead of merging two or more insns. We don't
1845 do this because of the potential of infinite loops and because
1846 of the potential extra memory required. However, doing it the way
1847 we are is a bit of a kludge and doesn't catch all cases.
1849 But only do this if -fexpensive-optimizations since it slows things down
1850 and doesn't usually win. */
1852 if (flag_expensive_optimizations
)
1854 /* Pass pc_rtx so no substitutions are done, just simplifications.
1855 The cases that we are interested in here do not involve the few
1856 cases were is_replaced is checked. */
1859 subst_low_cuid
= INSN_CUID (i1
);
1860 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0);
1864 subst_low_cuid
= INSN_CUID (i2
);
1865 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0);
1870 /* Many machines that don't use CC0 have insns that can both perform an
1871 arithmetic operation and set the condition code. These operations will
1872 be represented as a PARALLEL with the first element of the vector
1873 being a COMPARE of an arithmetic operation with the constant zero.
1874 The second element of the vector will set some pseudo to the result
1875 of the same arithmetic operation. If we simplify the COMPARE, we won't
1876 match such a pattern and so will generate an extra insn. Here we test
1877 for this case, where both the comparison and the operation result are
1878 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1879 I2SRC. Later we will make the PARALLEL that contains I2. */
1881 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
1882 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
1883 && XEXP (SET_SRC (PATTERN (i3
)), 1) == const0_rtx
1884 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
1886 #ifdef EXTRA_CC_MODES
1888 enum machine_mode compare_mode
;
1891 newpat
= PATTERN (i3
);
1892 SUBST (XEXP (SET_SRC (newpat
), 0), i2src
);
1896 #ifdef EXTRA_CC_MODES
1897 /* See if a COMPARE with the operand we substituted in should be done
1898 with the mode that is currently being used. If not, do the same
1899 processing we do in `subst' for a SET; namely, if the destination
1900 is used only once, try to replace it with a register of the proper
1901 mode and also replace the COMPARE. */
1902 if (undobuf
.other_insn
== 0
1903 && (cc_use
= find_single_use (SET_DEST (newpat
), i3
,
1904 &undobuf
.other_insn
))
1905 && ((compare_mode
= SELECT_CC_MODE (GET_CODE (*cc_use
),
1907 != GET_MODE (SET_DEST (newpat
))))
1909 unsigned int regno
= REGNO (SET_DEST (newpat
));
1910 rtx new_dest
= gen_rtx_REG (compare_mode
, regno
);
1912 if (regno
< FIRST_PSEUDO_REGISTER
1913 || (REG_N_SETS (regno
) == 1 && ! added_sets_2
1914 && ! REG_USERVAR_P (SET_DEST (newpat
))))
1916 if (regno
>= FIRST_PSEUDO_REGISTER
)
1917 SUBST (regno_reg_rtx
[regno
], new_dest
);
1919 SUBST (SET_DEST (newpat
), new_dest
);
1920 SUBST (XEXP (*cc_use
, 0), new_dest
);
1921 SUBST (SET_SRC (newpat
),
1922 gen_rtx_COMPARE (compare_mode
, i2src
, const0_rtx
));
1925 undobuf
.other_insn
= 0;
1932 n_occurrences
= 0; /* `subst' counts here */
1934 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1935 need to make a unique copy of I2SRC each time we substitute it
1936 to avoid self-referential rtl. */
1938 subst_low_cuid
= INSN_CUID (i2
);
1939 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0,
1940 ! i1_feeds_i3
&& i1dest_in_i1src
);
1942 /* Record whether i2's body now appears within i3's body. */
1943 i2_is_used
= n_occurrences
;
1946 /* If we already got a failure, don't try to do more. Otherwise,
1947 try to substitute in I1 if we have it. */
1949 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
1951 /* Before we can do this substitution, we must redo the test done
1952 above (see detailed comments there) that ensures that I1DEST
1953 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1955 if (! combinable_i3pat (NULL_RTX
, &newpat
, i1dest
, NULL_RTX
,
1963 subst_low_cuid
= INSN_CUID (i1
);
1964 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0);
1967 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1968 to count all the ways that I2SRC and I1SRC can be used. */
1969 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
1970 && i2_is_used
+ added_sets_2
> 1)
1971 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
1972 && (n_occurrences
+ added_sets_1
+ (added_sets_2
&& ! i1_feeds_i3
)
1974 /* Fail if we tried to make a new register (we used to abort, but there's
1975 really no reason to). */
1976 || max_reg_num () != maxreg
1977 /* Fail if we couldn't do something and have a CLOBBER. */
1978 || GET_CODE (newpat
) == CLOBBER
1979 /* Fail if this new pattern is a MULT and we didn't have one before
1980 at the outer level. */
1981 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
1988 /* If the actions of the earlier insns must be kept
1989 in addition to substituting them into the latest one,
1990 we must make a new PARALLEL for the latest insn
1991 to hold additional the SETs. */
1993 if (added_sets_1
|| added_sets_2
)
1997 if (GET_CODE (newpat
) == PARALLEL
)
1999 rtvec old
= XVEC (newpat
, 0);
2000 total_sets
= XVECLEN (newpat
, 0) + added_sets_1
+ added_sets_2
;
2001 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
2002 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
2003 sizeof (old
->elem
[0]) * old
->num_elem
);
2008 total_sets
= 1 + added_sets_1
+ added_sets_2
;
2009 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
2010 XVECEXP (newpat
, 0, 0) = old
;
2014 XVECEXP (newpat
, 0, --total_sets
)
2015 = (GET_CODE (PATTERN (i1
)) == PARALLEL
2016 ? gen_rtx_SET (VOIDmode
, i1dest
, i1src
) : PATTERN (i1
));
2020 /* If there is no I1, use I2's body as is. We used to also not do
2021 the subst call below if I2 was substituted into I3,
2022 but that could lose a simplification. */
2024 XVECEXP (newpat
, 0, --total_sets
) = i2pat
;
2026 /* See comment where i2pat is assigned. */
2027 XVECEXP (newpat
, 0, --total_sets
)
2028 = subst (i2pat
, i1dest
, i1src
, 0, 0);
2032 /* We come here when we are replacing a destination in I2 with the
2033 destination of I3. */
2034 validate_replacement
:
2036 /* Note which hard regs this insn has as inputs. */
2037 mark_used_regs_combine (newpat
);
2039 /* Is the result of combination a valid instruction? */
2040 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2042 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2043 the second SET's destination is a register that is unused. In that case,
2044 we just need the first SET. This can occur when simplifying a divmod
2045 insn. We *must* test for this case here because the code below that
2046 splits two independent SETs doesn't handle this case correctly when it
2047 updates the register status. Also check the case where the first
2048 SET's destination is unused. That would not cause incorrect code, but
2049 does cause an unneeded insn to remain. */
2051 if (insn_code_number
< 0 && GET_CODE (newpat
) == PARALLEL
2052 && XVECLEN (newpat
, 0) == 2
2053 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2054 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2055 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == REG
2056 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (XVECEXP (newpat
, 0, 1)))
2057 && ! side_effects_p (SET_SRC (XVECEXP (newpat
, 0, 1)))
2058 && asm_noperands (newpat
) < 0)
2060 newpat
= XVECEXP (newpat
, 0, 0);
2061 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2064 else if (insn_code_number
< 0 && GET_CODE (newpat
) == PARALLEL
2065 && XVECLEN (newpat
, 0) == 2
2066 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2067 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2068 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) == REG
2069 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (XVECEXP (newpat
, 0, 0)))
2070 && ! side_effects_p (SET_SRC (XVECEXP (newpat
, 0, 0)))
2071 && asm_noperands (newpat
) < 0)
2073 newpat
= XVECEXP (newpat
, 0, 1);
2074 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2077 /* If we were combining three insns and the result is a simple SET
2078 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2079 insns. There are two ways to do this. It can be split using a
2080 machine-specific method (like when you have an addition of a large
2081 constant) or by combine in the function find_split_point. */
2083 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
2084 && asm_noperands (newpat
) < 0)
2086 rtx m_split
, *split
;
2087 rtx ni2dest
= i2dest
;
2089 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2090 use I2DEST as a scratch register will help. In the latter case,
2091 convert I2DEST to the mode of the source of NEWPAT if we can. */
2093 m_split
= split_insns (newpat
, i3
);
2095 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2096 inputs of NEWPAT. */
2098 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2099 possible to try that as a scratch reg. This would require adding
2100 more code to make it work though. */
2102 if (m_split
== 0 && ! reg_overlap_mentioned_p (ni2dest
, newpat
))
2104 /* If I2DEST is a hard register or the only use of a pseudo,
2105 we can change its mode. */
2106 if (GET_MODE (SET_DEST (newpat
)) != GET_MODE (i2dest
)
2107 && GET_MODE (SET_DEST (newpat
)) != VOIDmode
2108 && GET_CODE (i2dest
) == REG
2109 && (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
2110 || (REG_N_SETS (REGNO (i2dest
)) == 1 && ! added_sets_2
2111 && ! REG_USERVAR_P (i2dest
))))
2112 ni2dest
= gen_rtx_REG (GET_MODE (SET_DEST (newpat
)),
2115 m_split
= split_insns (gen_rtx_PARALLEL
2117 gen_rtvec (2, newpat
,
2118 gen_rtx_CLOBBER (VOIDmode
,
2121 /* If the split with the mode-changed register didn't work, try
2122 the original register. */
2123 if (! m_split
&& ni2dest
!= i2dest
)
2126 m_split
= split_insns (gen_rtx_PARALLEL
2128 gen_rtvec (2, newpat
,
2129 gen_rtx_CLOBBER (VOIDmode
,
2135 /* If we've split a jump pattern, we'll wind up with a sequence even
2136 with one instruction. We can handle that below, so extract it. */
2137 if (m_split
&& GET_CODE (m_split
) == SEQUENCE
2138 && XVECLEN (m_split
, 0) == 1)
2139 m_split
= PATTERN (XVECEXP (m_split
, 0, 0));
2141 if (m_split
&& GET_CODE (m_split
) != SEQUENCE
)
2143 insn_code_number
= recog_for_combine (&m_split
, i3
, &new_i3_notes
);
2144 if (insn_code_number
>= 0)
2147 else if (m_split
&& GET_CODE (m_split
) == SEQUENCE
2148 && XVECLEN (m_split
, 0) == 2
2149 && (next_real_insn (i2
) == i3
2150 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split
, 0, 0)),
2154 rtx newi3pat
= PATTERN (XVECEXP (m_split
, 0, 1));
2155 newi2pat
= PATTERN (XVECEXP (m_split
, 0, 0));
2157 i3set
= single_set (XVECEXP (m_split
, 0, 1));
2158 i2set
= single_set (XVECEXP (m_split
, 0, 0));
2160 /* In case we changed the mode of I2DEST, replace it in the
2161 pseudo-register table here. We can't do it above in case this
2162 code doesn't get executed and we do a split the other way. */
2164 if (REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
2165 SUBST (regno_reg_rtx
[REGNO (i2dest
)], ni2dest
);
2167 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2169 /* If I2 or I3 has multiple SETs, we won't know how to track
2170 register status, so don't use these insns. If I2's destination
2171 is used between I2 and I3, we also can't use these insns. */
2173 if (i2_code_number
>= 0 && i2set
&& i3set
2174 && (next_real_insn (i2
) == i3
2175 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
2176 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
2178 if (insn_code_number
>= 0)
2181 /* It is possible that both insns now set the destination of I3.
2182 If so, we must show an extra use of it. */
2184 if (insn_code_number
>= 0)
2186 rtx new_i3_dest
= SET_DEST (i3set
);
2187 rtx new_i2_dest
= SET_DEST (i2set
);
2189 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
2190 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
2191 || GET_CODE (new_i3_dest
) == SUBREG
)
2192 new_i3_dest
= XEXP (new_i3_dest
, 0);
2194 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
2195 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
2196 || GET_CODE (new_i2_dest
) == SUBREG
)
2197 new_i2_dest
= XEXP (new_i2_dest
, 0);
2199 if (GET_CODE (new_i3_dest
) == REG
2200 && GET_CODE (new_i2_dest
) == REG
2201 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
))
2202 REG_N_SETS (REGNO (new_i2_dest
))++;
2206 /* If we can split it and use I2DEST, go ahead and see if that
2207 helps things be recognized. Verify that none of the registers
2208 are set between I2 and I3. */
2209 if (insn_code_number
< 0 && (split
= find_split_point (&newpat
, i3
)) != 0
2211 && GET_CODE (i2dest
) == REG
2213 /* We need I2DEST in the proper mode. If it is a hard register
2214 or the only use of a pseudo, we can change its mode. */
2215 && (GET_MODE (*split
) == GET_MODE (i2dest
)
2216 || GET_MODE (*split
) == VOIDmode
2217 || REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
2218 || (REG_N_SETS (REGNO (i2dest
)) == 1 && ! added_sets_2
2219 && ! REG_USERVAR_P (i2dest
)))
2220 && (next_real_insn (i2
) == i3
2221 || ! use_crosses_set_p (*split
, INSN_CUID (i2
)))
2222 /* We can't overwrite I2DEST if its value is still used by
2224 && ! reg_referenced_p (i2dest
, newpat
))
2226 rtx newdest
= i2dest
;
2227 enum rtx_code split_code
= GET_CODE (*split
);
2228 enum machine_mode split_mode
= GET_MODE (*split
);
2230 /* Get NEWDEST as a register in the proper mode. We have already
2231 validated that we can do this. */
2232 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
2234 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
2236 if (REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
2237 SUBST (regno_reg_rtx
[REGNO (i2dest
)], newdest
);
2240 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2241 an ASHIFT. This can occur if it was inside a PLUS and hence
2242 appeared to be a memory address. This is a kludge. */
2243 if (split_code
== MULT
2244 && GET_CODE (XEXP (*split
, 1)) == CONST_INT
2245 && INTVAL (XEXP (*split
, 1)) > 0
2246 && (i
= exact_log2 (INTVAL (XEXP (*split
, 1)))) >= 0)
2248 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
2249 XEXP (*split
, 0), GEN_INT (i
)));
2250 /* Update split_code because we may not have a multiply
2252 split_code
= GET_CODE (*split
);
2255 #ifdef INSN_SCHEDULING
2256 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2257 be written as a ZERO_EXTEND. */
2258 if (split_code
== SUBREG
&& GET_CODE (SUBREG_REG (*split
)) == MEM
)
2259 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
2260 SUBREG_REG (*split
)));
2263 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, *split
);
2264 SUBST (*split
, newdest
);
2265 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2267 /* If the split point was a MULT and we didn't have one before,
2268 don't use one now. */
2269 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
2270 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2274 /* Check for a case where we loaded from memory in a narrow mode and
2275 then sign extended it, but we need both registers. In that case,
2276 we have a PARALLEL with both loads from the same memory location.
2277 We can split this into a load from memory followed by a register-register
2278 copy. This saves at least one insn, more if register allocation can
2281 We cannot do this if the destination of the second assignment is
2282 a register that we have already assumed is zero-extended. Similarly
2283 for a SUBREG of such a register. */
2285 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2286 && GET_CODE (newpat
) == PARALLEL
2287 && XVECLEN (newpat
, 0) == 2
2288 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2289 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
2290 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2291 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2292 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
2293 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2295 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2296 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2297 && ! (temp
= SET_DEST (XVECEXP (newpat
, 0, 1)),
2298 (GET_CODE (temp
) == REG
2299 && reg_nonzero_bits
[REGNO (temp
)] != 0
2300 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2301 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2302 && (reg_nonzero_bits
[REGNO (temp
)]
2303 != GET_MODE_MASK (word_mode
))))
2304 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
2305 && (temp
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
2306 (GET_CODE (temp
) == REG
2307 && reg_nonzero_bits
[REGNO (temp
)] != 0
2308 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2309 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2310 && (reg_nonzero_bits
[REGNO (temp
)]
2311 != GET_MODE_MASK (word_mode
)))))
2312 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2313 SET_SRC (XVECEXP (newpat
, 0, 1)))
2314 && ! find_reg_note (i3
, REG_UNUSED
,
2315 SET_DEST (XVECEXP (newpat
, 0, 0))))
2319 newi2pat
= XVECEXP (newpat
, 0, 0);
2320 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
2321 newpat
= XVECEXP (newpat
, 0, 1);
2322 SUBST (SET_SRC (newpat
),
2323 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat
)), ni2dest
));
2324 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2326 if (i2_code_number
>= 0)
2327 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2329 if (insn_code_number
>= 0)
2334 /* If we will be able to accept this, we have made a change to the
2335 destination of I3. This can invalidate a LOG_LINKS pointing
2336 to I3. No other part of combine.c makes such a transformation.
2338 The new I3 will have a destination that was previously the
2339 destination of I1 or I2 and which was used in i2 or I3. Call
2340 distribute_links to make a LOG_LINK from the next use of
2341 that destination. */
2343 PATTERN (i3
) = newpat
;
2344 distribute_links (gen_rtx_INSN_LIST (VOIDmode
, i3
, NULL_RTX
));
2346 /* I3 now uses what used to be its destination and which is
2347 now I2's destination. That means we need a LOG_LINK from
2348 I3 to I2. But we used to have one, so we still will.
2350 However, some later insn might be using I2's dest and have
2351 a LOG_LINK pointing at I3. We must remove this link.
2352 The simplest way to remove the link is to point it at I1,
2353 which we know will be a NOTE. */
2355 for (insn
= NEXT_INSN (i3
);
2356 insn
&& (this_basic_block
== n_basic_blocks
- 1
2357 || insn
!= BLOCK_HEAD (this_basic_block
+ 1));
2358 insn
= NEXT_INSN (insn
))
2360 if (INSN_P (insn
) && reg_referenced_p (ni2dest
, PATTERN (insn
)))
2362 for (link
= LOG_LINKS (insn
); link
;
2363 link
= XEXP (link
, 1))
2364 if (XEXP (link
, 0) == i3
)
2365 XEXP (link
, 0) = i1
;
2373 /* Similarly, check for a case where we have a PARALLEL of two independent
2374 SETs but we started with three insns. In this case, we can do the sets
2375 as two separate insns. This case occurs when some SET allows two
2376 other insns to combine, but the destination of that SET is still live. */
2378 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2379 && GET_CODE (newpat
) == PARALLEL
2380 && XVECLEN (newpat
, 0) == 2
2381 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2382 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
2383 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
2384 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2385 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2386 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2387 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2389 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2390 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != USE
2391 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != USE
2392 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2393 XVECEXP (newpat
, 0, 0))
2394 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
2395 XVECEXP (newpat
, 0, 1))
2396 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
2397 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
2399 /* Normally, it doesn't matter which of the two is done first,
2400 but it does if one references cc0. In that case, it has to
2403 if (reg_referenced_p (cc0_rtx
, XVECEXP (newpat
, 0, 0)))
2405 newi2pat
= XVECEXP (newpat
, 0, 0);
2406 newpat
= XVECEXP (newpat
, 0, 1);
2411 newi2pat
= XVECEXP (newpat
, 0, 1);
2412 newpat
= XVECEXP (newpat
, 0, 0);
2415 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2417 if (i2_code_number
>= 0)
2418 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2421 /* If it still isn't recognized, fail and change things back the way they
2423 if ((insn_code_number
< 0
2424 /* Is the result a reasonable ASM_OPERANDS? */
2425 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
2431 /* If we had to change another insn, make sure it is valid also. */
2432 if (undobuf
.other_insn
)
2434 rtx other_pat
= PATTERN (undobuf
.other_insn
);
2435 rtx new_other_notes
;
2438 CLEAR_HARD_REG_SET (newpat_used_regs
);
2440 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
2443 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
2449 PATTERN (undobuf
.other_insn
) = other_pat
;
2451 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2452 are still valid. Then add any non-duplicate notes added by
2453 recog_for_combine. */
2454 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
2456 next
= XEXP (note
, 1);
2458 if (REG_NOTE_KIND (note
) == REG_UNUSED
2459 && ! reg_set_p (XEXP (note
, 0), PATTERN (undobuf
.other_insn
)))
2461 if (GET_CODE (XEXP (note
, 0)) == REG
)
2462 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
2464 remove_note (undobuf
.other_insn
, note
);
2468 for (note
= new_other_notes
; note
; note
= XEXP (note
, 1))
2469 if (GET_CODE (XEXP (note
, 0)) == REG
)
2470 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
2472 distribute_notes (new_other_notes
, undobuf
.other_insn
,
2473 undobuf
.other_insn
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2476 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2477 they are adjacent to each other or not. */
2479 rtx p
= prev_nonnote_insn (i3
);
2480 if (p
&& p
!= i2
&& GET_CODE (p
) == INSN
&& newi2pat
2481 && sets_cc0_p (newi2pat
))
2489 /* We now know that we can do this combination. Merge the insns and
2490 update the status of registers and LOG_LINKS. */
2493 rtx i3notes
, i2notes
, i1notes
= 0;
2494 rtx i3links
, i2links
, i1links
= 0;
2497 /* Compute which registers we expect to eliminate. newi2pat may be setting
2498 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2499 same as i3dest, in which case newi2pat may be setting i1dest. */
2500 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
2501 || i2dest_in_i2src
|| i2dest_in_i1src
2503 rtx elim_i1
= (i1
== 0 || i1dest_in_i1src
2504 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
2507 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2509 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
2510 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
2512 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
2514 /* Ensure that we do not have something that should not be shared but
2515 occurs multiple times in the new insns. Check this by first
2516 resetting all the `used' flags and then copying anything is shared. */
2518 reset_used_flags (i3notes
);
2519 reset_used_flags (i2notes
);
2520 reset_used_flags (i1notes
);
2521 reset_used_flags (newpat
);
2522 reset_used_flags (newi2pat
);
2523 if (undobuf
.other_insn
)
2524 reset_used_flags (PATTERN (undobuf
.other_insn
));
2526 i3notes
= copy_rtx_if_shared (i3notes
);
2527 i2notes
= copy_rtx_if_shared (i2notes
);
2528 i1notes
= copy_rtx_if_shared (i1notes
);
2529 newpat
= copy_rtx_if_shared (newpat
);
2530 newi2pat
= copy_rtx_if_shared (newi2pat
);
2531 if (undobuf
.other_insn
)
2532 reset_used_flags (PATTERN (undobuf
.other_insn
));
2534 INSN_CODE (i3
) = insn_code_number
;
2535 PATTERN (i3
) = newpat
;
2536 if (undobuf
.other_insn
)
2537 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
2539 /* We had one special case above where I2 had more than one set and
2540 we replaced a destination of one of those sets with the destination
2541 of I3. In that case, we have to update LOG_LINKS of insns later
2542 in this basic block. Note that this (expensive) case is rare.
2544 Also, in this case, we must pretend that all REG_NOTEs for I2
2545 actually came from I3, so that REG_UNUSED notes from I2 will be
2546 properly handled. */
2548 if (i3_subst_into_i2
)
2550 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
2551 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != USE
2552 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))) == REG
2553 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
2554 && ! find_reg_note (i2
, REG_UNUSED
,
2555 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
2556 for (temp
= NEXT_INSN (i2
);
2557 temp
&& (this_basic_block
== n_basic_blocks
- 1
2558 || BLOCK_HEAD (this_basic_block
) != temp
);
2559 temp
= NEXT_INSN (temp
))
2560 if (temp
!= i3
&& INSN_P (temp
))
2561 for (link
= LOG_LINKS (temp
); link
; link
= XEXP (link
, 1))
2562 if (XEXP (link
, 0) == i2
)
2563 XEXP (link
, 0) = i3
;
2568 while (XEXP (link
, 1))
2569 link
= XEXP (link
, 1);
2570 XEXP (link
, 1) = i2notes
;
2584 INSN_CODE (i2
) = i2_code_number
;
2585 PATTERN (i2
) = newi2pat
;
2589 PUT_CODE (i2
, NOTE
);
2590 NOTE_LINE_NUMBER (i2
) = NOTE_INSN_DELETED
;
2591 NOTE_SOURCE_FILE (i2
) = 0;
2598 PUT_CODE (i1
, NOTE
);
2599 NOTE_LINE_NUMBER (i1
) = NOTE_INSN_DELETED
;
2600 NOTE_SOURCE_FILE (i1
) = 0;
2603 /* Get death notes for everything that is now used in either I3 or
2604 I2 and used to die in a previous insn. If we built two new
2605 patterns, move from I1 to I2 then I2 to I3 so that we get the
2606 proper movement on registers that I2 modifies. */
2610 move_deaths (newi2pat
, NULL_RTX
, INSN_CUID (i1
), i2
, &midnotes
);
2611 move_deaths (newpat
, newi2pat
, INSN_CUID (i1
), i3
, &midnotes
);
2614 move_deaths (newpat
, NULL_RTX
, i1
? INSN_CUID (i1
) : INSN_CUID (i2
),
2617 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2619 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL_RTX
,
2622 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL_RTX
,
2625 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL_RTX
,
2628 distribute_notes (midnotes
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
2631 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2632 know these are REG_UNUSED and want them to go to the desired insn,
2633 so we always pass it as i3. We have not counted the notes in
2634 reg_n_deaths yet, so we need to do so now. */
2636 if (newi2pat
&& new_i2_notes
)
2638 for (temp
= new_i2_notes
; temp
; temp
= XEXP (temp
, 1))
2639 if (GET_CODE (XEXP (temp
, 0)) == REG
)
2640 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
2642 distribute_notes (new_i2_notes
, i2
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2647 for (temp
= new_i3_notes
; temp
; temp
= XEXP (temp
, 1))
2648 if (GET_CODE (XEXP (temp
, 0)) == REG
)
2649 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
2651 distribute_notes (new_i3_notes
, i3
, i3
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2654 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2655 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2656 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2657 in that case, it might delete I2. Similarly for I2 and I1.
2658 Show an additional death due to the REG_DEAD note we make here. If
2659 we discard it in distribute_notes, we will decrement it again. */
2663 if (GET_CODE (i3dest_killed
) == REG
)
2664 REG_N_DEATHS (REGNO (i3dest_killed
))++;
2666 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
2667 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
2669 NULL_RTX
, i2
, NULL_RTX
, elim_i2
, elim_i1
);
2671 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
2673 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
2677 if (i2dest_in_i2src
)
2679 if (GET_CODE (i2dest
) == REG
)
2680 REG_N_DEATHS (REGNO (i2dest
))++;
2682 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
2683 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
2684 NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2686 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
2687 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
2688 NULL_RTX
, NULL_RTX
);
2691 if (i1dest_in_i1src
)
2693 if (GET_CODE (i1dest
) == REG
)
2694 REG_N_DEATHS (REGNO (i1dest
))++;
2696 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
2697 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
2698 NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2700 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
2701 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
2702 NULL_RTX
, NULL_RTX
);
2705 distribute_links (i3links
);
2706 distribute_links (i2links
);
2707 distribute_links (i1links
);
2709 if (GET_CODE (i2dest
) == REG
)
2712 rtx i2_insn
= 0, i2_val
= 0, set
;
2714 /* The insn that used to set this register doesn't exist, and
2715 this life of the register may not exist either. See if one of
2716 I3's links points to an insn that sets I2DEST. If it does,
2717 that is now the last known value for I2DEST. If we don't update
2718 this and I2 set the register to a value that depended on its old
2719 contents, we will get confused. If this insn is used, thing
2720 will be set correctly in combine_instructions. */
2722 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
2723 if ((set
= single_set (XEXP (link
, 0))) != 0
2724 && rtx_equal_p (i2dest
, SET_DEST (set
)))
2725 i2_insn
= XEXP (link
, 0), i2_val
= SET_SRC (set
);
2727 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
2729 /* If the reg formerly set in I2 died only once and that was in I3,
2730 zero its use count so it won't make `reload' do any work. */
2732 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
2733 && ! i2dest_in_i2src
)
2735 regno
= REGNO (i2dest
);
2736 REG_N_SETS (regno
)--;
2740 if (i1
&& GET_CODE (i1dest
) == REG
)
2743 rtx i1_insn
= 0, i1_val
= 0, set
;
2745 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
2746 if ((set
= single_set (XEXP (link
, 0))) != 0
2747 && rtx_equal_p (i1dest
, SET_DEST (set
)))
2748 i1_insn
= XEXP (link
, 0), i1_val
= SET_SRC (set
);
2750 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
2752 regno
= REGNO (i1dest
);
2753 if (! added_sets_1
&& ! i1dest_in_i1src
)
2754 REG_N_SETS (regno
)--;
2757 /* Update reg_nonzero_bits et al for any changes that may have been made
2758 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2759 important. Because newi2pat can affect nonzero_bits of newpat */
2761 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
2762 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
2764 /* Set new_direct_jump_p if a new return or simple jump instruction
2767 If I3 is now an unconditional jump, ensure that it has a
2768 BARRIER following it since it may have initially been a
2769 conditional jump. It may also be the last nonnote insn. */
2771 if (GET_CODE (newpat
) == RETURN
|| any_uncondjump_p (i3
))
2773 *new_direct_jump_p
= 1;
2775 if ((temp
= next_nonnote_insn (i3
)) == NULL_RTX
2776 || GET_CODE (temp
) != BARRIER
)
2777 emit_barrier_after (i3
);
2779 /* An NOOP jump does not need barrier, but it does need cleaning up
2781 if (GET_CODE (newpat
) == SET
2782 && SET_SRC (newpat
) == pc_rtx
2783 && SET_DEST (newpat
) == pc_rtx
)
2784 *new_direct_jump_p
= 1;
2787 combine_successes
++;
2790 /* Clear this here, so that subsequent get_last_value calls are not
2792 subst_prev_insn
= NULL_RTX
;
2794 if (added_links_insn
2795 && (newi2pat
== 0 || INSN_CUID (added_links_insn
) < INSN_CUID (i2
))
2796 && INSN_CUID (added_links_insn
) < INSN_CUID (i3
))
2797 return added_links_insn
;
2799 return newi2pat
? i2
: i3
;
2802 /* Undo all the modifications recorded in undobuf. */
2807 struct undo
*undo
, *next
;
2809 for (undo
= undobuf
.undos
; undo
; undo
= next
)
2813 *undo
->where
.i
= undo
->old_contents
.i
;
2815 *undo
->where
.r
= undo
->old_contents
.r
;
2817 undo
->next
= undobuf
.frees
;
2818 undobuf
.frees
= undo
;
2823 /* Clear this here, so that subsequent get_last_value calls are not
2825 subst_prev_insn
= NULL_RTX
;
2828 /* We've committed to accepting the changes we made. Move all
2829 of the undos to the free list. */
2834 struct undo
*undo
, *next
;
2836 for (undo
= undobuf
.undos
; undo
; undo
= next
)
2839 undo
->next
= undobuf
.frees
;
2840 undobuf
.frees
= undo
;
2846 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2847 where we have an arithmetic expression and return that point. LOC will
2850 try_combine will call this function to see if an insn can be split into
2854 find_split_point (loc
, insn
)
2859 enum rtx_code code
= GET_CODE (x
);
2861 unsigned HOST_WIDE_INT len
= 0;
2862 HOST_WIDE_INT pos
= 0;
2864 rtx inner
= NULL_RTX
;
2866 /* First special-case some codes. */
2870 #ifdef INSN_SCHEDULING
2871 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2873 if (GET_CODE (SUBREG_REG (x
)) == MEM
)
2876 return find_split_point (&SUBREG_REG (x
), insn
);
2880 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2881 using LO_SUM and HIGH. */
2882 if (GET_CODE (XEXP (x
, 0)) == CONST
2883 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2886 gen_rtx_LO_SUM (Pmode
,
2887 gen_rtx_HIGH (Pmode
, XEXP (x
, 0)),
2889 return &XEXP (XEXP (x
, 0), 0);
2893 /* If we have a PLUS whose second operand is a constant and the
2894 address is not valid, perhaps will can split it up using
2895 the machine-specific way to split large constants. We use
2896 the first pseudo-reg (one of the virtual regs) as a placeholder;
2897 it will not remain in the result. */
2898 if (GET_CODE (XEXP (x
, 0)) == PLUS
2899 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
2900 && ! memory_address_p (GET_MODE (x
), XEXP (x
, 0)))
2902 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
2903 rtx seq
= split_insns (gen_rtx_SET (VOIDmode
, reg
, XEXP (x
, 0)),
2906 /* This should have produced two insns, each of which sets our
2907 placeholder. If the source of the second is a valid address,
2908 we can make put both sources together and make a split point
2911 if (seq
&& XVECLEN (seq
, 0) == 2
2912 && GET_CODE (XVECEXP (seq
, 0, 0)) == INSN
2913 && GET_CODE (PATTERN (XVECEXP (seq
, 0, 0))) == SET
2914 && SET_DEST (PATTERN (XVECEXP (seq
, 0, 0))) == reg
2915 && ! reg_mentioned_p (reg
,
2916 SET_SRC (PATTERN (XVECEXP (seq
, 0, 0))))
2917 && GET_CODE (XVECEXP (seq
, 0, 1)) == INSN
2918 && GET_CODE (PATTERN (XVECEXP (seq
, 0, 1))) == SET
2919 && SET_DEST (PATTERN (XVECEXP (seq
, 0, 1))) == reg
2920 && memory_address_p (GET_MODE (x
),
2921 SET_SRC (PATTERN (XVECEXP (seq
, 0, 1)))))
2923 rtx src1
= SET_SRC (PATTERN (XVECEXP (seq
, 0, 0)));
2924 rtx src2
= SET_SRC (PATTERN (XVECEXP (seq
, 0, 1)));
2926 /* Replace the placeholder in SRC2 with SRC1. If we can
2927 find where in SRC2 it was placed, that can become our
2928 split point and we can replace this address with SRC2.
2929 Just try two obvious places. */
2931 src2
= replace_rtx (src2
, reg
, src1
);
2933 if (XEXP (src2
, 0) == src1
)
2934 split
= &XEXP (src2
, 0);
2935 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
2936 && XEXP (XEXP (src2
, 0), 0) == src1
)
2937 split
= &XEXP (XEXP (src2
, 0), 0);
2941 SUBST (XEXP (x
, 0), src2
);
2946 /* If that didn't work, perhaps the first operand is complex and
2947 needs to be computed separately, so make a split point there.
2948 This will occur on machines that just support REG + CONST
2949 and have a constant moved through some previous computation. */
2951 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x
, 0), 0))) != 'o'
2952 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
2953 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x
, 0), 0))))
2955 return &XEXP (XEXP (x
, 0), 0);
2961 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2962 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2963 we need to put the operand into a register. So split at that
2966 if (SET_DEST (x
) == cc0_rtx
2967 && GET_CODE (SET_SRC (x
)) != COMPARE
2968 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
2969 && GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) != 'o'
2970 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
2971 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x
)))) == 'o'))
2972 return &SET_SRC (x
);
2975 /* See if we can split SET_SRC as it stands. */
2976 split
= find_split_point (&SET_SRC (x
), insn
);
2977 if (split
&& split
!= &SET_SRC (x
))
2980 /* See if we can split SET_DEST as it stands. */
2981 split
= find_split_point (&SET_DEST (x
), insn
);
2982 if (split
&& split
!= &SET_DEST (x
))
2985 /* See if this is a bitfield assignment with everything constant. If
2986 so, this is an IOR of an AND, so split it into that. */
2987 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
2988 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)))
2989 <= HOST_BITS_PER_WIDE_INT
)
2990 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
2991 && GET_CODE (XEXP (SET_DEST (x
), 2)) == CONST_INT
2992 && GET_CODE (SET_SRC (x
)) == CONST_INT
2993 && ((INTVAL (XEXP (SET_DEST (x
), 1))
2994 + INTVAL (XEXP (SET_DEST (x
), 2)))
2995 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0))))
2996 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
2998 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
2999 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
3000 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
3001 rtx dest
= XEXP (SET_DEST (x
), 0);
3002 enum machine_mode mode
= GET_MODE (dest
);
3003 unsigned HOST_WIDE_INT mask
= ((HOST_WIDE_INT
) 1 << len
) - 1;
3005 if (BITS_BIG_ENDIAN
)
3006 pos
= GET_MODE_BITSIZE (mode
) - len
- pos
;
3010 gen_binary (IOR
, mode
, dest
, GEN_INT (src
<< pos
)));
3013 gen_binary (IOR
, mode
,
3014 gen_binary (AND
, mode
, dest
,
3015 GEN_INT (~(mask
<< pos
)
3016 & GET_MODE_MASK (mode
))),
3017 GEN_INT (src
<< pos
)));
3019 SUBST (SET_DEST (x
), dest
);
3021 split
= find_split_point (&SET_SRC (x
), insn
);
3022 if (split
&& split
!= &SET_SRC (x
))
3026 /* Otherwise, see if this is an operation that we can split into two.
3027 If so, try to split that. */
3028 code
= GET_CODE (SET_SRC (x
));
3033 /* If we are AND'ing with a large constant that is only a single
3034 bit and the result is only being used in a context where we
3035 need to know if it is zero or non-zero, replace it with a bit
3036 extraction. This will avoid the large constant, which might
3037 have taken more than one insn to make. If the constant were
3038 not a valid argument to the AND but took only one insn to make,
3039 this is no worse, but if it took more than one insn, it will
3042 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3043 && GET_CODE (XEXP (SET_SRC (x
), 0)) == REG
3044 && (pos
= exact_log2 (INTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
3045 && GET_CODE (SET_DEST (x
)) == REG
3046 && (split
= find_single_use (SET_DEST (x
), insn
, (rtx
*)0)) != 0
3047 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
3048 && XEXP (*split
, 0) == SET_DEST (x
)
3049 && XEXP (*split
, 1) == const0_rtx
)
3051 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
3052 XEXP (SET_SRC (x
), 0),
3053 pos
, NULL_RTX
, 1, 1, 0, 0);
3054 if (extraction
!= 0)
3056 SUBST (SET_SRC (x
), extraction
);
3057 return find_split_point (loc
, insn
);
3063 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3064 is known to be on, this can be converted into a NEG of a shift. */
3065 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
3066 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
3067 && 1 <= (pos
= exact_log2
3068 (nonzero_bits (XEXP (SET_SRC (x
), 0),
3069 GET_MODE (XEXP (SET_SRC (x
), 0))))))
3071 enum machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
3075 gen_rtx_LSHIFTRT (mode
,
3076 XEXP (SET_SRC (x
), 0),
3079 split
= find_split_point (&SET_SRC (x
), insn
);
3080 if (split
&& split
!= &SET_SRC (x
))
3086 inner
= XEXP (SET_SRC (x
), 0);
3088 /* We can't optimize if either mode is a partial integer
3089 mode as we don't know how many bits are significant
3091 if (GET_MODE_CLASS (GET_MODE (inner
)) == MODE_PARTIAL_INT
3092 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
3096 len
= GET_MODE_BITSIZE (GET_MODE (inner
));
3102 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3103 && GET_CODE (XEXP (SET_SRC (x
), 2)) == CONST_INT
)
3105 inner
= XEXP (SET_SRC (x
), 0);
3106 len
= INTVAL (XEXP (SET_SRC (x
), 1));
3107 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
3109 if (BITS_BIG_ENDIAN
)
3110 pos
= GET_MODE_BITSIZE (GET_MODE (inner
)) - len
- pos
;
3111 unsignedp
= (code
== ZERO_EXTRACT
);
3119 if (len
&& pos
>= 0 && pos
+ len
<= GET_MODE_BITSIZE (GET_MODE (inner
)))
3121 enum machine_mode mode
= GET_MODE (SET_SRC (x
));
3123 /* For unsigned, we have a choice of a shift followed by an
3124 AND or two shifts. Use two shifts for field sizes where the
3125 constant might be too large. We assume here that we can
3126 always at least get 8-bit constants in an AND insn, which is
3127 true for every current RISC. */
3129 if (unsignedp
&& len
<= 8)
3134 (mode
, gen_lowpart_for_combine (mode
, inner
),
3136 GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1)));
3138 split
= find_split_point (&SET_SRC (x
), insn
);
3139 if (split
&& split
!= &SET_SRC (x
))
3146 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
3147 gen_rtx_ASHIFT (mode
,
3148 gen_lowpart_for_combine (mode
, inner
),
3149 GEN_INT (GET_MODE_BITSIZE (mode
)
3151 GEN_INT (GET_MODE_BITSIZE (mode
) - len
)));
3153 split
= find_split_point (&SET_SRC (x
), insn
);
3154 if (split
&& split
!= &SET_SRC (x
))
3159 /* See if this is a simple operation with a constant as the second
3160 operand. It might be that this constant is out of range and hence
3161 could be used as a split point. */
3162 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '2'
3163 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == 'c'
3164 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '<')
3165 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
3166 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x
), 0))) == 'o'
3167 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
3168 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x
), 0))))
3170 return &XEXP (SET_SRC (x
), 1);
3172 /* Finally, see if this is a simple operation with its first operand
3173 not in a register. The operation might require this operand in a
3174 register, so return it as a split point. We can always do this
3175 because if the first operand were another operation, we would have
3176 already found it as a split point. */
3177 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '2'
3178 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == 'c'
3179 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '<'
3180 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '1')
3181 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
3182 return &XEXP (SET_SRC (x
), 0);
3188 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3189 it is better to write this as (not (ior A B)) so we can split it.
3190 Similarly for IOR. */
3191 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
3194 gen_rtx_NOT (GET_MODE (x
),
3195 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
3197 XEXP (XEXP (x
, 0), 0),
3198 XEXP (XEXP (x
, 1), 0))));
3199 return find_split_point (loc
, insn
);
3202 /* Many RISC machines have a large set of logical insns. If the
3203 second operand is a NOT, put it first so we will try to split the
3204 other operand first. */
3205 if (GET_CODE (XEXP (x
, 1)) == NOT
)
3207 rtx tem
= XEXP (x
, 0);
3208 SUBST (XEXP (x
, 0), XEXP (x
, 1));
3209 SUBST (XEXP (x
, 1), tem
);
3217 /* Otherwise, select our actions depending on our rtx class. */
3218 switch (GET_RTX_CLASS (code
))
3220 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3222 split
= find_split_point (&XEXP (x
, 2), insn
);
3225 /* ... fall through ... */
3229 split
= find_split_point (&XEXP (x
, 1), insn
);
3232 /* ... fall through ... */
3234 /* Some machines have (and (shift ...) ...) insns. If X is not
3235 an AND, but XEXP (X, 0) is, use it as our split point. */
3236 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
3237 return &XEXP (x
, 0);
3239 split
= find_split_point (&XEXP (x
, 0), insn
);
3245 /* Otherwise, we don't have a split point. */
3249 /* Throughout X, replace FROM with TO, and return the result.
3250 The result is TO if X is FROM;
3251 otherwise the result is X, but its contents may have been modified.
3252 If they were modified, a record was made in undobuf so that
3253 undo_all will (among other things) return X to its original state.
3255 If the number of changes necessary is too much to record to undo,
3256 the excess changes are not made, so the result is invalid.
3257 The changes already made can still be undone.
3258 undobuf.num_undo is incremented for such changes, so by testing that
3259 the caller can tell whether the result is valid.
3261 `n_occurrences' is incremented each time FROM is replaced.
3263 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3265 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3266 by copying if `n_occurrences' is non-zero. */
3269 subst (x
, from
, to
, in_dest
, unique_copy
)
3274 enum rtx_code code
= GET_CODE (x
);
3275 enum machine_mode op0_mode
= VOIDmode
;
3280 /* Two expressions are equal if they are identical copies of a shared
3281 RTX or if they are both registers with the same register number
3284 #define COMBINE_RTX_EQUAL_P(X,Y) \
3286 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3287 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3289 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
3292 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
3295 /* If X and FROM are the same register but different modes, they will
3296 not have been seen as equal above. However, flow.c will make a
3297 LOG_LINKS entry for that case. If we do nothing, we will try to
3298 rerecognize our original insn and, when it succeeds, we will
3299 delete the feeding insn, which is incorrect.
3301 So force this insn not to match in this (rare) case. */
3302 if (! in_dest
&& code
== REG
&& GET_CODE (from
) == REG
3303 && REGNO (x
) == REGNO (from
))
3304 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
3306 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3307 of which may contain things that can be combined. */
3308 if (code
!= MEM
&& code
!= LO_SUM
&& GET_RTX_CLASS (code
) == 'o')
3311 /* It is possible to have a subexpression appear twice in the insn.
3312 Suppose that FROM is a register that appears within TO.
3313 Then, after that subexpression has been scanned once by `subst',
3314 the second time it is scanned, TO may be found. If we were
3315 to scan TO here, we would find FROM within it and create a
3316 self-referent rtl structure which is completely wrong. */
3317 if (COMBINE_RTX_EQUAL_P (x
, to
))
3320 /* Parallel asm_operands need special attention because all of the
3321 inputs are shared across the arms. Furthermore, unsharing the
3322 rtl results in recognition failures. Failure to handle this case
3323 specially can result in circular rtl.
3325 Solve this by doing a normal pass across the first entry of the
3326 parallel, and only processing the SET_DESTs of the subsequent
3329 if (code
== PARALLEL
3330 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
3331 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
3333 new = subst (XVECEXP (x
, 0, 0), from
, to
, 0, unique_copy
);
3335 /* If this substitution failed, this whole thing fails. */
3336 if (GET_CODE (new) == CLOBBER
3337 && XEXP (new, 0) == const0_rtx
)
3340 SUBST (XVECEXP (x
, 0, 0), new);
3342 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
3344 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
3346 if (GET_CODE (dest
) != REG
3347 && GET_CODE (dest
) != CC0
3348 && GET_CODE (dest
) != PC
)
3350 new = subst (dest
, from
, to
, 0, unique_copy
);
3352 /* If this substitution failed, this whole thing fails. */
3353 if (GET_CODE (new) == CLOBBER
3354 && XEXP (new, 0) == const0_rtx
)
3357 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new);
3363 len
= GET_RTX_LENGTH (code
);
3364 fmt
= GET_RTX_FORMAT (code
);
3366 /* We don't need to process a SET_DEST that is a register, CC0,
3367 or PC, so set up to skip this common case. All other cases
3368 where we want to suppress replacing something inside a
3369 SET_SRC are handled via the IN_DEST operand. */
3371 && (GET_CODE (SET_DEST (x
)) == REG
3372 || GET_CODE (SET_DEST (x
)) == CC0
3373 || GET_CODE (SET_DEST (x
)) == PC
))
3376 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3379 op0_mode
= GET_MODE (XEXP (x
, 0));
3381 for (i
= 0; i
< len
; i
++)
3386 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3388 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
3390 new = (unique_copy
&& n_occurrences
3391 ? copy_rtx (to
) : to
);
3396 new = subst (XVECEXP (x
, i
, j
), from
, to
, 0,
3399 /* If this substitution failed, this whole thing
3401 if (GET_CODE (new) == CLOBBER
3402 && XEXP (new, 0) == const0_rtx
)
3406 SUBST (XVECEXP (x
, i
, j
), new);
3409 else if (fmt
[i
] == 'e')
3411 /* If this is a register being set, ignore it. */
3414 && (code
== SUBREG
|| code
== STRICT_LOW_PART
3415 || code
== ZERO_EXTRACT
)
3417 && GET_CODE (new) == REG
)
3420 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
3422 /* In general, don't install a subreg involving two
3423 modes not tieable. It can worsen register
3424 allocation, and can even make invalid reload
3425 insns, since the reg inside may need to be copied
3426 from in the outside mode, and that may be invalid
3427 if it is an fp reg copied in integer mode.
3429 We allow two exceptions to this: It is valid if
3430 it is inside another SUBREG and the mode of that
3431 SUBREG and the mode of the inside of TO is
3432 tieable and it is valid if X is a SET that copies
3435 if (GET_CODE (to
) == SUBREG
3436 && ! MODES_TIEABLE_P (GET_MODE (to
),
3437 GET_MODE (SUBREG_REG (to
)))
3438 && ! (code
== SUBREG
3439 && MODES_TIEABLE_P (GET_MODE (x
),
3440 GET_MODE (SUBREG_REG (to
))))
3442 && ! (code
== SET
&& i
== 1 && XEXP (x
, 0) == cc0_rtx
)
3445 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
3447 #ifdef CLASS_CANNOT_CHANGE_MODE
3449 && GET_CODE (to
) == REG
3450 && REGNO (to
) < FIRST_PSEUDO_REGISTER
3451 && (TEST_HARD_REG_BIT
3452 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_MODE
],
3454 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to
),
3456 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
3459 new = (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
3463 /* If we are in a SET_DEST, suppress most cases unless we
3464 have gone inside a MEM, in which case we want to
3465 simplify the address. We assume here that things that
3466 are actually part of the destination have their inner
3467 parts in the first expression. This is true for SUBREG,
3468 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3469 things aside from REG and MEM that should appear in a
3471 new = subst (XEXP (x
, i
), from
, to
,
3473 && (code
== SUBREG
|| code
== STRICT_LOW_PART
3474 || code
== ZERO_EXTRACT
))
3476 && i
== 0), unique_copy
);
3478 /* If we found that we will have to reject this combination,
3479 indicate that by returning the CLOBBER ourselves, rather than
3480 an expression containing it. This will speed things up as
3481 well as prevent accidents where two CLOBBERs are considered
3482 to be equal, thus producing an incorrect simplification. */
3484 if (GET_CODE (new) == CLOBBER
&& XEXP (new, 0) == const0_rtx
)
3487 SUBST (XEXP (x
, i
), new);
3492 /* Try to simplify X. If the simplification changed the code, it is likely
3493 that further simplification will help, so loop, but limit the number
3494 of repetitions that will be performed. */
3496 for (i
= 0; i
< 4; i
++)
3498 /* If X is sufficiently simple, don't bother trying to do anything
3500 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
3501 x
= combine_simplify_rtx (x
, op0_mode
, i
== 3, in_dest
);
3503 if (GET_CODE (x
) == code
)
3506 code
= GET_CODE (x
);
3508 /* We no longer know the original mode of operand 0 since we
3509 have changed the form of X) */
3510 op0_mode
= VOIDmode
;
3516 /* Simplify X, a piece of RTL. We just operate on the expression at the
3517 outer level; call `subst' to simplify recursively. Return the new
3520 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3521 will be the iteration even if an expression with a code different from
3522 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3525 combine_simplify_rtx (x
, op0_mode
, last
, in_dest
)
3527 enum machine_mode op0_mode
;
3531 enum rtx_code code
= GET_CODE (x
);
3532 enum machine_mode mode
= GET_MODE (x
);
3537 /* If this is a commutative operation, put a constant last and a complex
3538 expression first. We don't need to do this for comparisons here. */
3539 if (GET_RTX_CLASS (code
) == 'c'
3540 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
3543 SUBST (XEXP (x
, 0), XEXP (x
, 1));
3544 SUBST (XEXP (x
, 1), temp
);
3547 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3548 sign extension of a PLUS with a constant, reverse the order of the sign
3549 extension and the addition. Note that this not the same as the original
3550 code, but overflow is undefined for signed values. Also note that the
3551 PLUS will have been partially moved "inside" the sign-extension, so that
3552 the first operand of X will really look like:
3553 (ashiftrt (plus (ashift A C4) C5) C4).
3555 (plus (ashiftrt (ashift A C4) C2) C4)
3556 and replace the first operand of X with that expression. Later parts
3557 of this function may simplify the expression further.
3559 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3560 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3561 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3563 We do this to simplify address expressions. */
3565 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
)
3566 && GET_CODE (XEXP (x
, 0)) == ASHIFTRT
3567 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
3568 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == ASHIFT
3569 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 1)) == CONST_INT
3570 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3571 && XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 1) == XEXP (XEXP (x
, 0), 1)
3572 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == CONST_INT
3573 && (temp
= simplify_binary_operation (ASHIFTRT
, mode
,
3574 XEXP (XEXP (XEXP (x
, 0), 0), 1),
3575 XEXP (XEXP (x
, 0), 1))) != 0)
3578 = simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
3579 XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 0),
3580 INTVAL (XEXP (XEXP (x
, 0), 1)));
3582 new = simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
, new,
3583 INTVAL (XEXP (XEXP (x
, 0), 1)));
3585 SUBST (XEXP (x
, 0), gen_binary (PLUS
, mode
, new, temp
));
3588 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3589 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3590 things. Check for cases where both arms are testing the same
3593 Don't do anything if all operands are very simple. */
3595 if (((GET_RTX_CLASS (code
) == '2' || GET_RTX_CLASS (code
) == 'c'
3596 || GET_RTX_CLASS (code
) == '<')
3597 && ((GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) != 'o'
3598 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
3599 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0))))
3601 || (GET_RTX_CLASS (GET_CODE (XEXP (x
, 1))) != 'o'
3602 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
3603 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 1))))
3605 || (GET_RTX_CLASS (code
) == '1'
3606 && ((GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) != 'o'
3607 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
3608 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0))))
3611 rtx cond
, true_rtx
, false_rtx
;
3613 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
3615 /* If everything is a comparison, what we have is highly unlikely
3616 to be simpler, so don't use it. */
3617 && ! (GET_RTX_CLASS (code
) == '<'
3618 && (GET_RTX_CLASS (GET_CODE (true_rtx
)) == '<'
3619 || GET_RTX_CLASS (GET_CODE (false_rtx
)) == '<')))
3621 rtx cop1
= const0_rtx
;
3622 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
3624 if (cond_code
== NE
&& GET_RTX_CLASS (GET_CODE (cond
)) == '<')
3627 /* Simplify the alternative arms; this may collapse the true and
3628 false arms to store-flag values. */
3629 true_rtx
= subst (true_rtx
, pc_rtx
, pc_rtx
, 0, 0);
3630 false_rtx
= subst (false_rtx
, pc_rtx
, pc_rtx
, 0, 0);
3632 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3633 is unlikely to be simpler. */
3634 if (general_operand (true_rtx
, VOIDmode
)
3635 && general_operand (false_rtx
, VOIDmode
))
3637 /* Restarting if we generate a store-flag expression will cause
3638 us to loop. Just drop through in this case. */
3640 /* If the result values are STORE_FLAG_VALUE and zero, we can
3641 just make the comparison operation. */
3642 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
3643 x
= gen_binary (cond_code
, mode
, cond
, cop1
);
3644 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
3645 && reverse_condition (cond_code
) != UNKNOWN
)
3646 x
= gen_binary (reverse_condition (cond_code
),
3649 /* Likewise, we can make the negate of a comparison operation
3650 if the result values are - STORE_FLAG_VALUE and zero. */
3651 else if (GET_CODE (true_rtx
) == CONST_INT
3652 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
3653 && false_rtx
== const0_rtx
)
3654 x
= simplify_gen_unary (NEG
, mode
,
3655 gen_binary (cond_code
, mode
, cond
,
3658 else if (GET_CODE (false_rtx
) == CONST_INT
3659 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
3660 && true_rtx
== const0_rtx
)
3661 x
= simplify_gen_unary (NEG
, mode
,
3662 gen_binary (reverse_condition
3667 return gen_rtx_IF_THEN_ELSE (mode
,
3668 gen_binary (cond_code
, VOIDmode
,
3670 true_rtx
, false_rtx
);
3672 code
= GET_CODE (x
);
3673 op0_mode
= VOIDmode
;
3678 /* Try to fold this expression in case we have constants that weren't
3681 switch (GET_RTX_CLASS (code
))
3684 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
3688 enum machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
3689 if (cmp_mode
== VOIDmode
)
3691 cmp_mode
= GET_MODE (XEXP (x
, 1));
3692 if (cmp_mode
== VOIDmode
)
3693 cmp_mode
= op0_mode
;
3695 temp
= simplify_relational_operation (code
, cmp_mode
,
3696 XEXP (x
, 0), XEXP (x
, 1));
3698 #ifdef FLOAT_STORE_FLAG_VALUE
3699 if (temp
!= 0 && GET_MODE_CLASS (mode
) == MODE_FLOAT
)
3701 if (temp
== const0_rtx
)
3702 temp
= CONST0_RTX (mode
);
3704 temp
= immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode
), mode
);
3710 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
3714 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
3715 XEXP (x
, 1), XEXP (x
, 2));
3722 code
= GET_CODE (temp
);
3723 op0_mode
= VOIDmode
;
3724 mode
= GET_MODE (temp
);
3727 /* First see if we can apply the inverse distributive law. */
3728 if (code
== PLUS
|| code
== MINUS
3729 || code
== AND
|| code
== IOR
|| code
== XOR
)
3731 x
= apply_distributive_law (x
);
3732 code
= GET_CODE (x
);
3733 op0_mode
= VOIDmode
;
3736 /* If CODE is an associative operation not otherwise handled, see if we
3737 can associate some operands. This can win if they are constants or
3738 if they are logically related (i.e. (a & b) & a). */
3739 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
3740 || code
== AND
|| code
== IOR
|| code
== XOR
3741 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
3742 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
3743 || (flag_unsafe_math_optimizations
&& FLOAT_MODE_P (mode
))))
3745 if (GET_CODE (XEXP (x
, 0)) == code
)
3747 rtx other
= XEXP (XEXP (x
, 0), 0);
3748 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
3749 rtx inner_op1
= XEXP (x
, 1);
3752 /* Make sure we pass the constant operand if any as the second
3753 one if this is a commutative operation. */
3754 if (CONSTANT_P (inner_op0
) && GET_RTX_CLASS (code
) == 'c')
3756 rtx tem
= inner_op0
;
3757 inner_op0
= inner_op1
;
3760 inner
= simplify_binary_operation (code
== MINUS
? PLUS
3761 : code
== DIV
? MULT
3763 mode
, inner_op0
, inner_op1
);
3765 /* For commutative operations, try the other pair if that one
3767 if (inner
== 0 && GET_RTX_CLASS (code
) == 'c')
3769 other
= XEXP (XEXP (x
, 0), 1);
3770 inner
= simplify_binary_operation (code
, mode
,
3771 XEXP (XEXP (x
, 0), 0),
3776 return gen_binary (code
, mode
, other
, inner
);
3780 /* A little bit of algebraic simplification here. */
3784 /* Ensure that our address has any ASHIFTs converted to MULT in case
3785 address-recognizing predicates are called later. */
3786 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
3787 SUBST (XEXP (x
, 0), temp
);
3791 if (op0_mode
== VOIDmode
)
3792 op0_mode
= GET_MODE (SUBREG_REG (x
));
3794 /* simplify_subreg can't use gen_lowpart_for_combine. */
3795 if (CONSTANT_P (SUBREG_REG (x
))
3796 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
))
3797 return gen_lowpart_for_combine (mode
, SUBREG_REG (x
));
3801 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
3807 /* Note that we cannot do any narrowing for non-constants since
3808 we might have been counting on using the fact that some bits were
3809 zero. We now do this in the SET. */
3814 /* (not (plus X -1)) can become (neg X). */
3815 if (GET_CODE (XEXP (x
, 0)) == PLUS
3816 && XEXP (XEXP (x
, 0), 1) == constm1_rtx
)
3817 return gen_rtx_NEG (mode
, XEXP (XEXP (x
, 0), 0));
3819 /* Similarly, (not (neg X)) is (plus X -1). */
3820 if (GET_CODE (XEXP (x
, 0)) == NEG
)
3821 return gen_rtx_PLUS (mode
, XEXP (XEXP (x
, 0), 0), constm1_rtx
);
3823 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3824 if (GET_CODE (XEXP (x
, 0)) == XOR
3825 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3826 && (temp
= simplify_unary_operation (NOT
, mode
,
3827 XEXP (XEXP (x
, 0), 1),
3829 return gen_binary (XOR
, mode
, XEXP (XEXP (x
, 0), 0), temp
);
3831 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3832 other than 1, but that is not valid. We could do a similar
3833 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3834 but this doesn't seem common enough to bother with. */
3835 if (GET_CODE (XEXP (x
, 0)) == ASHIFT
3836 && XEXP (XEXP (x
, 0), 0) == const1_rtx
)
3837 return gen_rtx_ROTATE (mode
, simplify_gen_unary (NOT
, mode
,
3839 XEXP (XEXP (x
, 0), 1));
3841 if (GET_CODE (XEXP (x
, 0)) == SUBREG
3842 && subreg_lowpart_p (XEXP (x
, 0))
3843 && (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0)))
3844 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x
, 0)))))
3845 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == ASHIFT
3846 && XEXP (SUBREG_REG (XEXP (x
, 0)), 0) == const1_rtx
)
3848 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (XEXP (x
, 0)));
3850 x
= gen_rtx_ROTATE (inner_mode
,
3851 simplify_gen_unary (NOT
, inner_mode
, const1_rtx
,
3853 XEXP (SUBREG_REG (XEXP (x
, 0)), 1));
3854 return gen_lowpart_for_combine (mode
, x
);
3857 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3858 reversing the comparison code if valid. */
3859 if (STORE_FLAG_VALUE
== -1
3860 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == '<'
3861 && (reversed
= reversed_comparison (x
, mode
, XEXP (XEXP (x
, 0), 0),
3862 XEXP (XEXP (x
, 0), 1))))
3865 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3866 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3867 perform the above simplification. */
3869 if (STORE_FLAG_VALUE
== -1
3870 && GET_CODE (XEXP (x
, 0)) == ASHIFTRT
3871 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3872 && INTVAL (XEXP (XEXP (x
, 0), 1)) == GET_MODE_BITSIZE (mode
) - 1)
3873 return gen_rtx_GE (mode
, XEXP (XEXP (x
, 0), 0), const0_rtx
);
3875 /* Apply De Morgan's laws to reduce number of patterns for machines
3876 with negating logical insns (and-not, nand, etc.). If result has
3877 only one NOT, put it first, since that is how the patterns are
3880 if (GET_CODE (XEXP (x
, 0)) == IOR
|| GET_CODE (XEXP (x
, 0)) == AND
)
3882 rtx in1
= XEXP (XEXP (x
, 0), 0), in2
= XEXP (XEXP (x
, 0), 1);
3883 enum machine_mode op_mode
;
3885 op_mode
= GET_MODE (in1
);
3886 in1
= simplify_gen_unary (NOT
, op_mode
, in1
, op_mode
);
3888 op_mode
= GET_MODE (in2
);
3889 if (op_mode
== VOIDmode
)
3891 in2
= simplify_gen_unary (NOT
, op_mode
, in2
, op_mode
);
3893 if (GET_CODE (in2
) == NOT
&& GET_CODE (in1
) != NOT
)
3896 in2
= in1
; in1
= tem
;
3899 return gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)) == IOR
? AND
: IOR
,
3905 /* (neg (plus X 1)) can become (not X). */
3906 if (GET_CODE (XEXP (x
, 0)) == PLUS
3907 && XEXP (XEXP (x
, 0), 1) == const1_rtx
)
3908 return gen_rtx_NOT (mode
, XEXP (XEXP (x
, 0), 0));
3910 /* Similarly, (neg (not X)) is (plus X 1). */
3911 if (GET_CODE (XEXP (x
, 0)) == NOT
)
3912 return plus_constant (XEXP (XEXP (x
, 0), 0), 1);
3914 /* (neg (minus X Y)) can become (minus Y X). */
3915 if (GET_CODE (XEXP (x
, 0)) == MINUS
3916 && (! FLOAT_MODE_P (mode
)
3917 /* x-y != -(y-x) with IEEE floating point. */
3918 || TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
3919 || flag_unsafe_math_optimizations
))
3920 return gen_binary (MINUS
, mode
, XEXP (XEXP (x
, 0), 1),
3921 XEXP (XEXP (x
, 0), 0));
3923 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3924 if (GET_CODE (XEXP (x
, 0)) == XOR
&& XEXP (XEXP (x
, 0), 1) == const1_rtx
3925 && nonzero_bits (XEXP (XEXP (x
, 0), 0), mode
) == 1)
3926 return gen_binary (PLUS
, mode
, XEXP (XEXP (x
, 0), 0), constm1_rtx
);
3928 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3929 if we can then eliminate the NEG (e.g.,
3930 if the operand is a constant). */
3932 if (GET_CODE (XEXP (x
, 0)) == ASHIFT
)
3934 temp
= simplify_unary_operation (NEG
, mode
,
3935 XEXP (XEXP (x
, 0), 0), mode
);
3937 return gen_binary (ASHIFT
, mode
, temp
, XEXP (XEXP (x
, 0), 1));
3940 temp
= expand_compound_operation (XEXP (x
, 0));
3942 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3943 replaced by (lshiftrt X C). This will convert
3944 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3946 if (GET_CODE (temp
) == ASHIFTRT
3947 && GET_CODE (XEXP (temp
, 1)) == CONST_INT
3948 && INTVAL (XEXP (temp
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
3949 return simplify_shift_const (temp
, LSHIFTRT
, mode
, XEXP (temp
, 0),
3950 INTVAL (XEXP (temp
, 1)));
3952 /* If X has only a single bit that might be nonzero, say, bit I, convert
3953 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3954 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3955 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3956 or a SUBREG of one since we'd be making the expression more
3957 complex if it was just a register. */
3959 if (GET_CODE (temp
) != REG
3960 && ! (GET_CODE (temp
) == SUBREG
3961 && GET_CODE (SUBREG_REG (temp
)) == REG
)
3962 && (i
= exact_log2 (nonzero_bits (temp
, mode
))) >= 0)
3964 rtx temp1
= simplify_shift_const
3965 (NULL_RTX
, ASHIFTRT
, mode
,
3966 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, temp
,
3967 GET_MODE_BITSIZE (mode
) - 1 - i
),
3968 GET_MODE_BITSIZE (mode
) - 1 - i
);
3970 /* If all we did was surround TEMP with the two shifts, we
3971 haven't improved anything, so don't use it. Otherwise,
3972 we are better off with TEMP1. */
3973 if (GET_CODE (temp1
) != ASHIFTRT
3974 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
3975 || XEXP (XEXP (temp1
, 0), 0) != temp
)
3981 /* We can't handle truncation to a partial integer mode here
3982 because we don't know the real bitsize of the partial
3984 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
3987 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
3988 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
3989 GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))))
3991 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
3992 GET_MODE_MASK (mode
), NULL_RTX
, 0));
3994 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3995 if ((GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
3996 || GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
)
3997 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
)
3998 return XEXP (XEXP (x
, 0), 0);
4000 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4001 (OP:SI foo:SI) if OP is NEG or ABS. */
4002 if ((GET_CODE (XEXP (x
, 0)) == ABS
4003 || GET_CODE (XEXP (x
, 0)) == NEG
)
4004 && (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SIGN_EXTEND
4005 || GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
)
4006 && GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == mode
)
4007 return simplify_gen_unary (GET_CODE (XEXP (x
, 0)), mode
,
4008 XEXP (XEXP (XEXP (x
, 0), 0), 0), mode
);
4010 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4012 if (GET_CODE (XEXP (x
, 0)) == SUBREG
4013 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == TRUNCATE
4014 && subreg_lowpart_p (XEXP (x
, 0)))
4015 return SUBREG_REG (XEXP (x
, 0));
4017 /* If we know that the value is already truncated, we can
4018 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4019 is nonzero for the corresponding modes. But don't do this
4020 for an (LSHIFTRT (MULT ...)) since this will cause problems
4021 with the umulXi3_highpart patterns. */
4022 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
4023 GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))))
4024 && num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
4025 >= GET_MODE_BITSIZE (mode
) + 1
4026 && ! (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
4027 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == MULT
))
4028 return gen_lowpart_for_combine (mode
, XEXP (x
, 0));
4030 /* A truncate of a comparison can be replaced with a subreg if
4031 STORE_FLAG_VALUE permits. This is like the previous test,
4032 but it works even if the comparison is done in a mode larger
4033 than HOST_BITS_PER_WIDE_INT. */
4034 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4035 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == '<'
4036 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0)
4037 return gen_lowpart_for_combine (mode
, XEXP (x
, 0));
4039 /* Similarly, a truncate of a register whose value is a
4040 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4042 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4043 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
4044 && (temp
= get_last_value (XEXP (x
, 0)))
4045 && GET_RTX_CLASS (GET_CODE (temp
)) == '<')
4046 return gen_lowpart_for_combine (mode
, XEXP (x
, 0));
4050 case FLOAT_TRUNCATE
:
4051 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4052 if (GET_CODE (XEXP (x
, 0)) == FLOAT_EXTEND
4053 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
)
4054 return XEXP (XEXP (x
, 0), 0);
4056 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4057 (OP:SF foo:SF) if OP is NEG or ABS. */
4058 if ((GET_CODE (XEXP (x
, 0)) == ABS
4059 || GET_CODE (XEXP (x
, 0)) == NEG
)
4060 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == FLOAT_EXTEND
4061 && GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == mode
)
4062 return simplify_gen_unary (GET_CODE (XEXP (x
, 0)), mode
,
4063 XEXP (XEXP (XEXP (x
, 0), 0), 0), mode
);
4065 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4066 is (float_truncate:SF x). */
4067 if (GET_CODE (XEXP (x
, 0)) == SUBREG
4068 && subreg_lowpart_p (XEXP (x
, 0))
4069 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == FLOAT_TRUNCATE
)
4070 return SUBREG_REG (XEXP (x
, 0));
4075 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4076 using cc0, in which case we want to leave it as a COMPARE
4077 so we can distinguish it from a register-register-copy. */
4078 if (XEXP (x
, 1) == const0_rtx
)
4081 /* In IEEE floating point, x-0 is not the same as x. */
4082 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
4083 || ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 0)))
4084 || flag_unsafe_math_optimizations
)
4085 && XEXP (x
, 1) == CONST0_RTX (GET_MODE (XEXP (x
, 0))))
4091 /* (const (const X)) can become (const X). Do it this way rather than
4092 returning the inner CONST since CONST can be shared with a
4094 if (GET_CODE (XEXP (x
, 0)) == CONST
)
4095 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4100 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4101 can add in an offset. find_split_point will split this address up
4102 again if it doesn't match. */
4103 if (GET_CODE (XEXP (x
, 0)) == HIGH
4104 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
4110 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4111 outermost. That's because that's the way indexed addresses are
4112 supposed to appear. This code used to check many more cases, but
4113 they are now checked elsewhere. */
4114 if (GET_CODE (XEXP (x
, 0)) == PLUS
4115 && CONSTANT_ADDRESS_P (XEXP (XEXP (x
, 0), 1)))
4116 return gen_binary (PLUS
, mode
,
4117 gen_binary (PLUS
, mode
, XEXP (XEXP (x
, 0), 0),
4119 XEXP (XEXP (x
, 0), 1));
4121 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4122 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4123 bit-field and can be replaced by either a sign_extend or a
4124 sign_extract. The `and' may be a zero_extend and the two
4125 <c>, -<c> constants may be reversed. */
4126 if (GET_CODE (XEXP (x
, 0)) == XOR
4127 && GET_CODE (XEXP (x
, 1)) == CONST_INT
4128 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
4129 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
4130 && ((i
= exact_log2 (INTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
4131 || (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
4132 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4133 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
4134 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == CONST_INT
4135 && (INTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
4136 == ((HOST_WIDE_INT
) 1 << (i
+ 1)) - 1))
4137 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
4138 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
4139 == (unsigned int) i
+ 1))))
4140 return simplify_shift_const
4141 (NULL_RTX
, ASHIFTRT
, mode
,
4142 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4143 XEXP (XEXP (XEXP (x
, 0), 0), 0),
4144 GET_MODE_BITSIZE (mode
) - (i
+ 1)),
4145 GET_MODE_BITSIZE (mode
) - (i
+ 1));
4147 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4148 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4149 is 1. This produces better code than the alternative immediately
4151 if (GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == '<'
4152 && ((STORE_FLAG_VALUE
== -1 && XEXP (x
, 1) == const1_rtx
)
4153 || (STORE_FLAG_VALUE
== 1 && XEXP (x
, 1) == constm1_rtx
))
4154 && (reversed
= reversed_comparison (XEXP (x
, 0), mode
,
4155 XEXP (XEXP (x
, 0), 0),
4156 XEXP (XEXP (x
, 0), 1))))
4158 simplify_gen_unary (NEG
, mode
, reversed
, mode
);
4160 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4161 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4162 the bitsize of the mode - 1. This allows simplification of
4163 "a = (b & 8) == 0;" */
4164 if (XEXP (x
, 1) == constm1_rtx
4165 && GET_CODE (XEXP (x
, 0)) != REG
4166 && ! (GET_CODE (XEXP (x
,0)) == SUBREG
4167 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == REG
)
4168 && nonzero_bits (XEXP (x
, 0), mode
) == 1)
4169 return simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
,
4170 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4171 gen_rtx_XOR (mode
, XEXP (x
, 0), const1_rtx
),
4172 GET_MODE_BITSIZE (mode
) - 1),
4173 GET_MODE_BITSIZE (mode
) - 1);
4175 /* If we are adding two things that have no bits in common, convert
4176 the addition into an IOR. This will often be further simplified,
4177 for example in cases like ((a & 1) + (a & 2)), which can
4180 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4181 && (nonzero_bits (XEXP (x
, 0), mode
)
4182 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
4184 /* Try to simplify the expression further. */
4185 rtx tor
= gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
4186 temp
= combine_simplify_rtx (tor
, mode
, last
, in_dest
);
4188 /* If we could, great. If not, do not go ahead with the IOR
4189 replacement, since PLUS appears in many special purpose
4190 address arithmetic instructions. */
4191 if (GET_CODE (temp
) != CLOBBER
&& temp
!= tor
)
4197 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4198 by reversing the comparison code if valid. */
4199 if (STORE_FLAG_VALUE
== 1
4200 && XEXP (x
, 0) == const1_rtx
4201 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 1))) == '<'
4202 && (reversed
= reversed_comparison (XEXP (x
, 1), mode
,
4203 XEXP (XEXP (x
, 1), 0),
4204 XEXP (XEXP (x
, 1), 1))))
4207 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4208 (and <foo> (const_int pow2-1)) */
4209 if (GET_CODE (XEXP (x
, 1)) == AND
4210 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
4211 && exact_log2 (-INTVAL (XEXP (XEXP (x
, 1), 1))) >= 0
4212 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
4213 return simplify_and_const_int (NULL_RTX
, mode
, XEXP (x
, 0),
4214 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
4216 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4218 if (GET_CODE (XEXP (x
, 1)) == PLUS
&& INTEGRAL_MODE_P (mode
))
4219 return gen_binary (MINUS
, mode
,
4220 gen_binary (MINUS
, mode
, XEXP (x
, 0),
4221 XEXP (XEXP (x
, 1), 0)),
4222 XEXP (XEXP (x
, 1), 1));
4226 /* If we have (mult (plus A B) C), apply the distributive law and then
4227 the inverse distributive law to see if things simplify. This
4228 occurs mostly in addresses, often when unrolling loops. */
4230 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
4232 x
= apply_distributive_law
4233 (gen_binary (PLUS
, mode
,
4234 gen_binary (MULT
, mode
,
4235 XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)),
4236 gen_binary (MULT
, mode
,
4237 XEXP (XEXP (x
, 0), 1),
4238 copy_rtx (XEXP (x
, 1)))));
4240 if (GET_CODE (x
) != MULT
)
4243 /* Try simplify a*(b/c) as (a*b)/c. */
4244 if (FLOAT_MODE_P (mode
) && flag_unsafe_math_optimizations
4245 && GET_CODE (XEXP (x
, 0)) == DIV
)
4247 rtx tem
= simplify_binary_operation (MULT
, mode
,
4248 XEXP (XEXP (x
, 0), 0),
4251 return gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
4256 /* If this is a divide by a power of two, treat it as a shift if
4257 its first operand is a shift. */
4258 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
4259 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0
4260 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
4261 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
4262 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
4263 || GET_CODE (XEXP (x
, 0)) == ROTATE
4264 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
4265 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (x
, 0), i
);
4269 case GT
: case GTU
: case GE
: case GEU
:
4270 case LT
: case LTU
: case LE
: case LEU
:
4271 case UNEQ
: case LTGT
:
4272 case UNGT
: case UNGE
:
4273 case UNLT
: case UNLE
:
4274 case UNORDERED
: case ORDERED
:
4275 /* If the first operand is a condition code, we can't do anything
4277 if (GET_CODE (XEXP (x
, 0)) == COMPARE
4278 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
4280 && XEXP (x
, 0) != cc0_rtx
4284 rtx op0
= XEXP (x
, 0);
4285 rtx op1
= XEXP (x
, 1);
4286 enum rtx_code new_code
;
4288 if (GET_CODE (op0
) == COMPARE
)
4289 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
4291 /* Simplify our comparison, if possible. */
4292 new_code
= simplify_comparison (code
, &op0
, &op1
);
4294 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4295 if only the low-order bit is possibly nonzero in X (such as when
4296 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4297 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4298 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4301 Remove any ZERO_EXTRACT we made when thinking this was a
4302 comparison. It may now be simpler to use, e.g., an AND. If a
4303 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4304 the call to make_compound_operation in the SET case. */
4306 if (STORE_FLAG_VALUE
== 1
4307 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4308 && op1
== const0_rtx
4309 && mode
== GET_MODE (op0
)
4310 && nonzero_bits (op0
, mode
) == 1)
4311 return gen_lowpart_for_combine (mode
,
4312 expand_compound_operation (op0
));
4314 else if (STORE_FLAG_VALUE
== 1
4315 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4316 && op1
== const0_rtx
4317 && mode
== GET_MODE (op0
)
4318 && (num_sign_bit_copies (op0
, mode
)
4319 == GET_MODE_BITSIZE (mode
)))
4321 op0
= expand_compound_operation (op0
);
4322 return simplify_gen_unary (NEG
, mode
,
4323 gen_lowpart_for_combine (mode
, op0
),
4327 else if (STORE_FLAG_VALUE
== 1
4328 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4329 && op1
== const0_rtx
4330 && mode
== GET_MODE (op0
)
4331 && nonzero_bits (op0
, mode
) == 1)
4333 op0
= expand_compound_operation (op0
);
4334 return gen_binary (XOR
, mode
,
4335 gen_lowpart_for_combine (mode
, op0
),
4339 else if (STORE_FLAG_VALUE
== 1
4340 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4341 && op1
== const0_rtx
4342 && mode
== GET_MODE (op0
)
4343 && (num_sign_bit_copies (op0
, mode
)
4344 == GET_MODE_BITSIZE (mode
)))
4346 op0
= expand_compound_operation (op0
);
4347 return plus_constant (gen_lowpart_for_combine (mode
, op0
), 1);
4350 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4352 if (STORE_FLAG_VALUE
== -1
4353 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4354 && op1
== const0_rtx
4355 && (num_sign_bit_copies (op0
, mode
)
4356 == GET_MODE_BITSIZE (mode
)))
4357 return gen_lowpart_for_combine (mode
,
4358 expand_compound_operation (op0
));
4360 else if (STORE_FLAG_VALUE
== -1
4361 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4362 && op1
== const0_rtx
4363 && mode
== GET_MODE (op0
)
4364 && nonzero_bits (op0
, mode
) == 1)
4366 op0
= expand_compound_operation (op0
);
4367 return simplify_gen_unary (NEG
, mode
,
4368 gen_lowpart_for_combine (mode
, op0
),
4372 else if (STORE_FLAG_VALUE
== -1
4373 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4374 && op1
== const0_rtx
4375 && mode
== GET_MODE (op0
)
4376 && (num_sign_bit_copies (op0
, mode
)
4377 == GET_MODE_BITSIZE (mode
)))
4379 op0
= expand_compound_operation (op0
);
4380 return simplify_gen_unary (NOT
, mode
,
4381 gen_lowpart_for_combine (mode
, op0
),
4385 /* If X is 0/1, (eq X 0) is X-1. */
4386 else if (STORE_FLAG_VALUE
== -1
4387 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4388 && op1
== const0_rtx
4389 && mode
== GET_MODE (op0
)
4390 && nonzero_bits (op0
, mode
) == 1)
4392 op0
= expand_compound_operation (op0
);
4393 return plus_constant (gen_lowpart_for_combine (mode
, op0
), -1);
4396 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4397 one bit that might be nonzero, we can convert (ne x 0) to
4398 (ashift x c) where C puts the bit in the sign bit. Remove any
4399 AND with STORE_FLAG_VALUE when we are done, since we are only
4400 going to test the sign bit. */
4401 if (new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4402 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4403 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
4404 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE(mode
)-1))
4405 && op1
== const0_rtx
4406 && mode
== GET_MODE (op0
)
4407 && (i
= exact_log2 (nonzero_bits (op0
, mode
))) >= 0)
4409 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4410 expand_compound_operation (op0
),
4411 GET_MODE_BITSIZE (mode
) - 1 - i
);
4412 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
4418 /* If the code changed, return a whole new comparison. */
4419 if (new_code
!= code
)
4420 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
4422 /* Otherwise, keep this operation, but maybe change its operands.
4423 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4424 SUBST (XEXP (x
, 0), op0
);
4425 SUBST (XEXP (x
, 1), op1
);
4430 return simplify_if_then_else (x
);
4436 /* If we are processing SET_DEST, we are done. */
4440 return expand_compound_operation (x
);
4443 return simplify_set (x
);
4448 return simplify_logical (x
, last
);
4451 /* (abs (neg <foo>)) -> (abs <foo>) */
4452 if (GET_CODE (XEXP (x
, 0)) == NEG
)
4453 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4455 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4457 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
4460 /* If operand is something known to be positive, ignore the ABS. */
4461 if (GET_CODE (XEXP (x
, 0)) == FFS
|| GET_CODE (XEXP (x
, 0)) == ABS
4462 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4463 <= HOST_BITS_PER_WIDE_INT
)
4464 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
4465 & ((HOST_WIDE_INT
) 1
4466 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1)))
4470 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4471 if (num_sign_bit_copies (XEXP (x
, 0), mode
) == GET_MODE_BITSIZE (mode
))
4472 return gen_rtx_NEG (mode
, XEXP (x
, 0));
4477 /* (ffs (*_extend <X>)) = (ffs <X>) */
4478 if (GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
4479 || GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
)
4480 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4484 /* (float (sign_extend <X>)) = (float <X>). */
4485 if (GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
4486 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4494 /* If this is a shift by a constant amount, simplify it. */
4495 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
4496 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
4497 INTVAL (XEXP (x
, 1)));
4499 #ifdef SHIFT_COUNT_TRUNCATED
4500 else if (SHIFT_COUNT_TRUNCATED
&& GET_CODE (XEXP (x
, 1)) != REG
)
4502 force_to_mode (XEXP (x
, 1), GET_MODE (x
),
4504 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
4513 rtx op0
= XEXP (x
, 0);
4514 rtx op1
= XEXP (x
, 1);
4517 if (GET_CODE (op1
) != PARALLEL
)
4519 len
= XVECLEN (op1
, 0);
4521 && GET_CODE (XVECEXP (op1
, 0, 0)) == CONST_INT
4522 && GET_CODE (op0
) == VEC_CONCAT
)
4524 int offset
= INTVAL (XVECEXP (op1
, 0, 0)) * GET_MODE_SIZE (GET_MODE (x
));
4526 /* Try to find the element in the VEC_CONCAT. */
4529 if (GET_MODE (op0
) == GET_MODE (x
))
4531 if (GET_CODE (op0
) == VEC_CONCAT
)
4533 HOST_WIDE_INT op0_size
= GET_MODE_SIZE (GET_MODE (XEXP (op0
, 0)));
4534 if (op0_size
< offset
)
4535 op0
= XEXP (op0
, 0);
4539 op0
= XEXP (op0
, 1);
4557 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4560 simplify_if_then_else (x
)
4563 enum machine_mode mode
= GET_MODE (x
);
4564 rtx cond
= XEXP (x
, 0);
4565 rtx true_rtx
= XEXP (x
, 1);
4566 rtx false_rtx
= XEXP (x
, 2);
4567 enum rtx_code true_code
= GET_CODE (cond
);
4568 int comparison_p
= GET_RTX_CLASS (true_code
) == '<';
4571 enum rtx_code false_code
;
4574 /* Simplify storing of the truth value. */
4575 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
4576 return gen_binary (true_code
, mode
, XEXP (cond
, 0), XEXP (cond
, 1));
4578 /* Also when the truth value has to be reversed. */
4580 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
4581 && (reversed
= reversed_comparison (cond
, mode
, XEXP (cond
, 0),
4585 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4586 in it is being compared against certain values. Get the true and false
4587 comparisons and see if that says anything about the value of each arm. */
4590 && ((false_code
= combine_reversed_comparison_code (cond
))
4592 && GET_CODE (XEXP (cond
, 0)) == REG
)
4595 rtx from
= XEXP (cond
, 0);
4596 rtx true_val
= XEXP (cond
, 1);
4597 rtx false_val
= true_val
;
4600 /* If FALSE_CODE is EQ, swap the codes and arms. */
4602 if (false_code
== EQ
)
4604 swapped
= 1, true_code
= EQ
, false_code
= NE
;
4605 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
4608 /* If we are comparing against zero and the expression being tested has
4609 only a single bit that might be nonzero, that is its value when it is
4610 not equal to zero. Similarly if it is known to be -1 or 0. */
4612 if (true_code
== EQ
&& true_val
== const0_rtx
4613 && exact_log2 (nzb
= nonzero_bits (from
, GET_MODE (from
))) >= 0)
4614 false_code
= EQ
, false_val
= GEN_INT (nzb
);
4615 else if (true_code
== EQ
&& true_val
== const0_rtx
4616 && (num_sign_bit_copies (from
, GET_MODE (from
))
4617 == GET_MODE_BITSIZE (GET_MODE (from
))))
4618 false_code
= EQ
, false_val
= constm1_rtx
;
4620 /* Now simplify an arm if we know the value of the register in the
4621 branch and it is used in the arm. Be careful due to the potential
4622 of locally-shared RTL. */
4624 if (reg_mentioned_p (from
, true_rtx
))
4625 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
4627 pc_rtx
, pc_rtx
, 0, 0);
4628 if (reg_mentioned_p (from
, false_rtx
))
4629 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
4631 pc_rtx
, pc_rtx
, 0, 0);
4633 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
4634 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
4636 true_rtx
= XEXP (x
, 1);
4637 false_rtx
= XEXP (x
, 2);
4638 true_code
= GET_CODE (cond
);
4641 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4642 reversed, do so to avoid needing two sets of patterns for
4643 subtract-and-branch insns. Similarly if we have a constant in the true
4644 arm, the false arm is the same as the first operand of the comparison, or
4645 the false arm is more complicated than the true arm. */
4648 && combine_reversed_comparison_code (cond
) != UNKNOWN
4649 && (true_rtx
== pc_rtx
4650 || (CONSTANT_P (true_rtx
)
4651 && GET_CODE (false_rtx
) != CONST_INT
&& false_rtx
!= pc_rtx
)
4652 || true_rtx
== const0_rtx
4653 || (GET_RTX_CLASS (GET_CODE (true_rtx
)) == 'o'
4654 && GET_RTX_CLASS (GET_CODE (false_rtx
)) != 'o')
4655 || (GET_CODE (true_rtx
) == SUBREG
4656 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx
))) == 'o'
4657 && GET_RTX_CLASS (GET_CODE (false_rtx
)) != 'o')
4658 || reg_mentioned_p (true_rtx
, false_rtx
)
4659 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
4661 true_code
= reversed_comparison_code (cond
, NULL
);
4663 reversed_comparison (cond
, GET_MODE (cond
), XEXP (cond
, 0),
4666 SUBST (XEXP (x
, 1), false_rtx
);
4667 SUBST (XEXP (x
, 2), true_rtx
);
4669 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
4672 /* It is possible that the conditional has been simplified out. */
4673 true_code
= GET_CODE (cond
);
4674 comparison_p
= GET_RTX_CLASS (true_code
) == '<';
4677 /* If the two arms are identical, we don't need the comparison. */
4679 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
4682 /* Convert a == b ? b : a to "a". */
4683 if (true_code
== EQ
&& ! side_effects_p (cond
)
4684 && (! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
4685 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
4686 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
4688 else if (true_code
== NE
&& ! side_effects_p (cond
)
4689 && (! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
4690 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
4691 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
4694 /* Look for cases where we have (abs x) or (neg (abs X)). */
4696 if (GET_MODE_CLASS (mode
) == MODE_INT
4697 && GET_CODE (false_rtx
) == NEG
4698 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
4700 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
4701 && ! side_effects_p (true_rtx
))
4706 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
4710 simplify_gen_unary (NEG
, mode
,
4711 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
4717 /* Look for MIN or MAX. */
4719 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
4721 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
4722 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
4723 && ! side_effects_p (cond
))
4728 return gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
4731 return gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
4734 return gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
4737 return gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
4742 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4743 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4744 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4745 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4746 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4747 neither 1 or -1, but it isn't worth checking for. */
4749 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
4750 && comparison_p
&& mode
!= VOIDmode
&& ! side_effects_p (x
))
4752 rtx t
= make_compound_operation (true_rtx
, SET
);
4753 rtx f
= make_compound_operation (false_rtx
, SET
);
4754 rtx cond_op0
= XEXP (cond
, 0);
4755 rtx cond_op1
= XEXP (cond
, 1);
4756 enum rtx_code op
= NIL
, extend_op
= NIL
;
4757 enum machine_mode m
= mode
;
4758 rtx z
= 0, c1
= NULL_RTX
;
4760 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
4761 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
4762 || GET_CODE (t
) == ASHIFT
4763 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
4764 && rtx_equal_p (XEXP (t
, 0), f
))
4765 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
4767 /* If an identity-zero op is commutative, check whether there
4768 would be a match if we swapped the operands. */
4769 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
4770 || GET_CODE (t
) == XOR
)
4771 && rtx_equal_p (XEXP (t
, 1), f
))
4772 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
4773 else if (GET_CODE (t
) == SIGN_EXTEND
4774 && (GET_CODE (XEXP (t
, 0)) == PLUS
4775 || GET_CODE (XEXP (t
, 0)) == MINUS
4776 || GET_CODE (XEXP (t
, 0)) == IOR
4777 || GET_CODE (XEXP (t
, 0)) == XOR
4778 || GET_CODE (XEXP (t
, 0)) == ASHIFT
4779 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
4780 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
4781 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
4782 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
4783 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
4784 && (num_sign_bit_copies (f
, GET_MODE (f
))
4785 > (GET_MODE_BITSIZE (mode
)
4786 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 0))))))
4788 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4789 extend_op
= SIGN_EXTEND
;
4790 m
= GET_MODE (XEXP (t
, 0));
4792 else if (GET_CODE (t
) == SIGN_EXTEND
4793 && (GET_CODE (XEXP (t
, 0)) == PLUS
4794 || GET_CODE (XEXP (t
, 0)) == IOR
4795 || GET_CODE (XEXP (t
, 0)) == XOR
)
4796 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
4797 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
4798 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
4799 && (num_sign_bit_copies (f
, GET_MODE (f
))
4800 > (GET_MODE_BITSIZE (mode
)
4801 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 1))))))
4803 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4804 extend_op
= SIGN_EXTEND
;
4805 m
= GET_MODE (XEXP (t
, 0));
4807 else if (GET_CODE (t
) == ZERO_EXTEND
4808 && (GET_CODE (XEXP (t
, 0)) == PLUS
4809 || GET_CODE (XEXP (t
, 0)) == MINUS
4810 || GET_CODE (XEXP (t
, 0)) == IOR
4811 || GET_CODE (XEXP (t
, 0)) == XOR
4812 || GET_CODE (XEXP (t
, 0)) == ASHIFT
4813 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
4814 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
4815 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
4816 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4817 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
4818 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
4819 && ((nonzero_bits (f
, GET_MODE (f
))
4820 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 0))))
4823 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4824 extend_op
= ZERO_EXTEND
;
4825 m
= GET_MODE (XEXP (t
, 0));
4827 else if (GET_CODE (t
) == ZERO_EXTEND
4828 && (GET_CODE (XEXP (t
, 0)) == PLUS
4829 || GET_CODE (XEXP (t
, 0)) == IOR
4830 || GET_CODE (XEXP (t
, 0)) == XOR
)
4831 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
4832 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4833 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
4834 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
4835 && ((nonzero_bits (f
, GET_MODE (f
))
4836 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 1))))
4839 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4840 extend_op
= ZERO_EXTEND
;
4841 m
= GET_MODE (XEXP (t
, 0));
4846 temp
= subst (gen_binary (true_code
, m
, cond_op0
, cond_op1
),
4847 pc_rtx
, pc_rtx
, 0, 0);
4848 temp
= gen_binary (MULT
, m
, temp
,
4849 gen_binary (MULT
, m
, c1
, const_true_rtx
));
4850 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0);
4851 temp
= gen_binary (op
, m
, gen_lowpart_for_combine (m
, z
), temp
);
4853 if (extend_op
!= NIL
)
4854 temp
= simplify_gen_unary (extend_op
, mode
, temp
, m
);
4860 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4861 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4862 negation of a single bit, we can convert this operation to a shift. We
4863 can actually do this more generally, but it doesn't seem worth it. */
4865 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
4866 && false_rtx
== const0_rtx
&& GET_CODE (true_rtx
) == CONST_INT
4867 && ((1 == nonzero_bits (XEXP (cond
, 0), mode
)
4868 && (i
= exact_log2 (INTVAL (true_rtx
))) >= 0)
4869 || ((num_sign_bit_copies (XEXP (cond
, 0), mode
)
4870 == GET_MODE_BITSIZE (mode
))
4871 && (i
= exact_log2 (-INTVAL (true_rtx
))) >= 0)))
4873 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4874 gen_lowpart_for_combine (mode
, XEXP (cond
, 0)), i
);
4879 /* Simplify X, a SET expression. Return the new expression. */
4885 rtx src
= SET_SRC (x
);
4886 rtx dest
= SET_DEST (x
);
4887 enum machine_mode mode
4888 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
4892 /* (set (pc) (return)) gets written as (return). */
4893 if (GET_CODE (dest
) == PC
&& GET_CODE (src
) == RETURN
)
4896 /* Now that we know for sure which bits of SRC we are using, see if we can
4897 simplify the expression for the object knowing that we only need the
4900 if (GET_MODE_CLASS (mode
) == MODE_INT
)
4902 src
= force_to_mode (src
, mode
, ~(HOST_WIDE_INT
) 0, NULL_RTX
, 0);
4903 SUBST (SET_SRC (x
), src
);
4906 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4907 the comparison result and try to simplify it unless we already have used
4908 undobuf.other_insn. */
4909 if ((GET_CODE (src
) == COMPARE
4914 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
4915 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
4916 && GET_RTX_CLASS (GET_CODE (*cc_use
)) == '<'
4917 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
4919 enum rtx_code old_code
= GET_CODE (*cc_use
);
4920 enum rtx_code new_code
;
4922 int other_changed
= 0;
4923 enum machine_mode compare_mode
= GET_MODE (dest
);
4925 if (GET_CODE (src
) == COMPARE
)
4926 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
4928 op0
= src
, op1
= const0_rtx
;
4930 /* Simplify our comparison, if possible. */
4931 new_code
= simplify_comparison (old_code
, &op0
, &op1
);
4933 #ifdef EXTRA_CC_MODES
4934 /* If this machine has CC modes other than CCmode, check to see if we
4935 need to use a different CC mode here. */
4936 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
4937 #endif /* EXTRA_CC_MODES */
4939 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4940 /* If the mode changed, we have to change SET_DEST, the mode in the
4941 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4942 a hard register, just build new versions with the proper mode. If it
4943 is a pseudo, we lose unless it is only time we set the pseudo, in
4944 which case we can safely change its mode. */
4945 if (compare_mode
!= GET_MODE (dest
))
4947 unsigned int regno
= REGNO (dest
);
4948 rtx new_dest
= gen_rtx_REG (compare_mode
, regno
);
4950 if (regno
< FIRST_PSEUDO_REGISTER
4951 || (REG_N_SETS (regno
) == 1 && ! REG_USERVAR_P (dest
)))
4953 if (regno
>= FIRST_PSEUDO_REGISTER
)
4954 SUBST (regno_reg_rtx
[regno
], new_dest
);
4956 SUBST (SET_DEST (x
), new_dest
);
4957 SUBST (XEXP (*cc_use
, 0), new_dest
);
4965 /* If the code changed, we have to build a new comparison in
4966 undobuf.other_insn. */
4967 if (new_code
!= old_code
)
4969 unsigned HOST_WIDE_INT mask
;
4971 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
4974 /* If the only change we made was to change an EQ into an NE or
4975 vice versa, OP0 has only one bit that might be nonzero, and OP1
4976 is zero, check if changing the user of the condition code will
4977 produce a valid insn. If it won't, we can keep the original code
4978 in that insn by surrounding our operation with an XOR. */
4980 if (((old_code
== NE
&& new_code
== EQ
)
4981 || (old_code
== EQ
&& new_code
== NE
))
4982 && ! other_changed
&& op1
== const0_rtx
4983 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
4984 && exact_log2 (mask
= nonzero_bits (op0
, GET_MODE (op0
))) >= 0)
4986 rtx pat
= PATTERN (other_insn
), note
= 0;
4988 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
4989 && ! check_asm_operands (pat
)))
4991 PUT_CODE (*cc_use
, old_code
);
4994 op0
= gen_binary (XOR
, GET_MODE (op0
), op0
, GEN_INT (mask
));
5002 undobuf
.other_insn
= other_insn
;
5005 /* If we are now comparing against zero, change our source if
5006 needed. If we do not use cc0, we always have a COMPARE. */
5007 if (op1
== const0_rtx
&& dest
== cc0_rtx
)
5009 SUBST (SET_SRC (x
), op0
);
5015 /* Otherwise, if we didn't previously have a COMPARE in the
5016 correct mode, we need one. */
5017 if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
)
5019 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
5024 /* Otherwise, update the COMPARE if needed. */
5025 SUBST (XEXP (src
, 0), op0
);
5026 SUBST (XEXP (src
, 1), op1
);
5031 /* Get SET_SRC in a form where we have placed back any
5032 compound expressions. Then do the checks below. */
5033 src
= make_compound_operation (src
, SET
);
5034 SUBST (SET_SRC (x
), src
);
5037 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5038 and X being a REG or (subreg (reg)), we may be able to convert this to
5039 (set (subreg:m2 x) (op)).
5041 We can always do this if M1 is narrower than M2 because that means that
5042 we only care about the low bits of the result.
5044 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5045 perform a narrower operation than requested since the high-order bits will
5046 be undefined. On machine where it is defined, this transformation is safe
5047 as long as M1 and M2 have the same number of words. */
5049 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
5050 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src
))) != 'o'
5051 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
5053 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
5054 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
5055 #ifndef WORD_REGISTER_OPERATIONS
5056 && (GET_MODE_SIZE (GET_MODE (src
))
5057 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
5059 #ifdef CLASS_CANNOT_CHANGE_MODE
5060 && ! (GET_CODE (dest
) == REG
&& REGNO (dest
) < FIRST_PSEUDO_REGISTER
5061 && (TEST_HARD_REG_BIT
5062 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_MODE
],
5064 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src
),
5065 GET_MODE (SUBREG_REG (src
))))
5067 && (GET_CODE (dest
) == REG
5068 || (GET_CODE (dest
) == SUBREG
5069 && GET_CODE (SUBREG_REG (dest
)) == REG
)))
5071 SUBST (SET_DEST (x
),
5072 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src
)),
5074 SUBST (SET_SRC (x
), SUBREG_REG (src
));
5076 src
= SET_SRC (x
), dest
= SET_DEST (x
);
5079 #ifdef LOAD_EXTEND_OP
5080 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5081 would require a paradoxical subreg. Replace the subreg with a
5082 zero_extend to avoid the reload that would otherwise be required. */
5084 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
5085 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))) != NIL
5086 && SUBREG_BYTE (src
) == 0
5087 && (GET_MODE_SIZE (GET_MODE (src
))
5088 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
5089 && GET_CODE (SUBREG_REG (src
)) == MEM
)
5092 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))),
5093 GET_MODE (src
), SUBREG_REG (src
)));
5099 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5100 are comparing an item known to be 0 or -1 against 0, use a logical
5101 operation instead. Check for one of the arms being an IOR of the other
5102 arm with some value. We compute three terms to be IOR'ed together. In
5103 practice, at most two will be nonzero. Then we do the IOR's. */
5105 if (GET_CODE (dest
) != PC
5106 && GET_CODE (src
) == IF_THEN_ELSE
5107 && GET_MODE_CLASS (GET_MODE (src
)) == MODE_INT
5108 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
5109 && XEXP (XEXP (src
, 0), 1) == const0_rtx
5110 && GET_MODE (src
) == GET_MODE (XEXP (XEXP (src
, 0), 0))
5111 #ifdef HAVE_conditional_move
5112 && ! can_conditionally_move_p (GET_MODE (src
))
5114 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0),
5115 GET_MODE (XEXP (XEXP (src
, 0), 0)))
5116 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src
, 0), 0))))
5117 && ! side_effects_p (src
))
5119 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
5120 ? XEXP (src
, 1) : XEXP (src
, 2));
5121 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
5122 ? XEXP (src
, 2) : XEXP (src
, 1));
5123 rtx term1
= const0_rtx
, term2
, term3
;
5125 if (GET_CODE (true_rtx
) == IOR
5126 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
5127 term1
= false_rtx
, true_rtx
= XEXP(true_rtx
, 1), false_rtx
= const0_rtx
;
5128 else if (GET_CODE (true_rtx
) == IOR
5129 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
5130 term1
= false_rtx
, true_rtx
= XEXP(true_rtx
, 0), false_rtx
= const0_rtx
;
5131 else if (GET_CODE (false_rtx
) == IOR
5132 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
5133 term1
= true_rtx
, false_rtx
= XEXP(false_rtx
, 1), true_rtx
= const0_rtx
;
5134 else if (GET_CODE (false_rtx
) == IOR
5135 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
5136 term1
= true_rtx
, false_rtx
= XEXP(false_rtx
, 0), true_rtx
= const0_rtx
;
5138 term2
= gen_binary (AND
, GET_MODE (src
),
5139 XEXP (XEXP (src
, 0), 0), true_rtx
);
5140 term3
= gen_binary (AND
, GET_MODE (src
),
5141 simplify_gen_unary (NOT
, GET_MODE (src
),
5142 XEXP (XEXP (src
, 0), 0),
5147 gen_binary (IOR
, GET_MODE (src
),
5148 gen_binary (IOR
, GET_MODE (src
), term1
, term2
),
5154 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5155 whole thing fail. */
5156 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
5158 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
5161 /* Convert this into a field assignment operation, if possible. */
5162 return make_field_assignment (x
);
5165 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5166 result. LAST is nonzero if this is the last retry. */
5169 simplify_logical (x
, last
)
5173 enum machine_mode mode
= GET_MODE (x
);
5174 rtx op0
= XEXP (x
, 0);
5175 rtx op1
= XEXP (x
, 1);
5178 switch (GET_CODE (x
))
5181 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5182 insn (and may simplify more). */
5183 if (GET_CODE (op0
) == XOR
5184 && rtx_equal_p (XEXP (op0
, 0), op1
)
5185 && ! side_effects_p (op1
))
5186 x
= gen_binary (AND
, mode
,
5187 simplify_gen_unary (NOT
, mode
, XEXP (op0
, 1), mode
),
5190 if (GET_CODE (op0
) == XOR
5191 && rtx_equal_p (XEXP (op0
, 1), op1
)
5192 && ! side_effects_p (op1
))
5193 x
= gen_binary (AND
, mode
,
5194 simplify_gen_unary (NOT
, mode
, XEXP (op0
, 0), mode
),
5197 /* Similarly for (~(A ^ B)) & A. */
5198 if (GET_CODE (op0
) == NOT
5199 && GET_CODE (XEXP (op0
, 0)) == XOR
5200 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), op1
)
5201 && ! side_effects_p (op1
))
5202 x
= gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 1), op1
);
5204 if (GET_CODE (op0
) == NOT
5205 && GET_CODE (XEXP (op0
, 0)) == XOR
5206 && rtx_equal_p (XEXP (XEXP (op0
, 0), 1), op1
)
5207 && ! side_effects_p (op1
))
5208 x
= gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 0), op1
);
5210 /* We can call simplify_and_const_int only if we don't lose
5211 any (sign) bits when converting INTVAL (op1) to
5212 "unsigned HOST_WIDE_INT". */
5213 if (GET_CODE (op1
) == CONST_INT
5214 && (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5215 || INTVAL (op1
) > 0))
5217 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
5219 /* If we have (ior (and (X C1) C2)) and the next restart would be
5220 the last, simplify this by making C1 as small as possible
5223 && GET_CODE (x
) == IOR
&& GET_CODE (op0
) == AND
5224 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5225 && GET_CODE (op1
) == CONST_INT
)
5226 return gen_binary (IOR
, mode
,
5227 gen_binary (AND
, mode
, XEXP (op0
, 0),
5228 GEN_INT (INTVAL (XEXP (op0
, 1))
5229 & ~INTVAL (op1
))), op1
);
5231 if (GET_CODE (x
) != AND
)
5234 if (GET_RTX_CLASS (GET_CODE (x
)) == 'c'
5235 || GET_RTX_CLASS (GET_CODE (x
)) == '2')
5236 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
5239 /* Convert (A | B) & A to A. */
5240 if (GET_CODE (op0
) == IOR
5241 && (rtx_equal_p (XEXP (op0
, 0), op1
)
5242 || rtx_equal_p (XEXP (op0
, 1), op1
))
5243 && ! side_effects_p (XEXP (op0
, 0))
5244 && ! side_effects_p (XEXP (op0
, 1)))
5247 /* In the following group of tests (and those in case IOR below),
5248 we start with some combination of logical operations and apply
5249 the distributive law followed by the inverse distributive law.
5250 Most of the time, this results in no change. However, if some of
5251 the operands are the same or inverses of each other, simplifications
5254 For example, (and (ior A B) (not B)) can occur as the result of
5255 expanding a bit field assignment. When we apply the distributive
5256 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5257 which then simplifies to (and (A (not B))).
5259 If we have (and (ior A B) C), apply the distributive law and then
5260 the inverse distributive law to see if things simplify. */
5262 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
5264 x
= apply_distributive_law
5265 (gen_binary (GET_CODE (op0
), mode
,
5266 gen_binary (AND
, mode
, XEXP (op0
, 0), op1
),
5267 gen_binary (AND
, mode
, XEXP (op0
, 1),
5269 if (GET_CODE (x
) != AND
)
5273 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
5274 return apply_distributive_law
5275 (gen_binary (GET_CODE (op1
), mode
,
5276 gen_binary (AND
, mode
, XEXP (op1
, 0), op0
),
5277 gen_binary (AND
, mode
, XEXP (op1
, 1),
5280 /* Similarly, taking advantage of the fact that
5281 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5283 if (GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == XOR
)
5284 return apply_distributive_law
5285 (gen_binary (XOR
, mode
,
5286 gen_binary (IOR
, mode
, XEXP (op0
, 0), XEXP (op1
, 0)),
5287 gen_binary (IOR
, mode
, copy_rtx (XEXP (op0
, 0)),
5290 else if (GET_CODE (op1
) == NOT
&& GET_CODE (op0
) == XOR
)
5291 return apply_distributive_law
5292 (gen_binary (XOR
, mode
,
5293 gen_binary (IOR
, mode
, XEXP (op1
, 0), XEXP (op0
, 0)),
5294 gen_binary (IOR
, mode
, copy_rtx (XEXP (op1
, 0)), XEXP (op0
, 1))));
5298 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5299 if (GET_CODE (op1
) == CONST_INT
5300 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5301 && (nonzero_bits (op0
, mode
) & ~INTVAL (op1
)) == 0)
5304 /* Convert (A & B) | A to A. */
5305 if (GET_CODE (op0
) == AND
5306 && (rtx_equal_p (XEXP (op0
, 0), op1
)
5307 || rtx_equal_p (XEXP (op0
, 1), op1
))
5308 && ! side_effects_p (XEXP (op0
, 0))
5309 && ! side_effects_p (XEXP (op0
, 1)))
5312 /* If we have (ior (and A B) C), apply the distributive law and then
5313 the inverse distributive law to see if things simplify. */
5315 if (GET_CODE (op0
) == AND
)
5317 x
= apply_distributive_law
5318 (gen_binary (AND
, mode
,
5319 gen_binary (IOR
, mode
, XEXP (op0
, 0), op1
),
5320 gen_binary (IOR
, mode
, XEXP (op0
, 1),
5323 if (GET_CODE (x
) != IOR
)
5327 if (GET_CODE (op1
) == AND
)
5329 x
= apply_distributive_law
5330 (gen_binary (AND
, mode
,
5331 gen_binary (IOR
, mode
, XEXP (op1
, 0), op0
),
5332 gen_binary (IOR
, mode
, XEXP (op1
, 1),
5335 if (GET_CODE (x
) != IOR
)
5339 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5340 mode size to (rotate A CX). */
5342 if (((GET_CODE (op0
) == ASHIFT
&& GET_CODE (op1
) == LSHIFTRT
)
5343 || (GET_CODE (op1
) == ASHIFT
&& GET_CODE (op0
) == LSHIFTRT
))
5344 && rtx_equal_p (XEXP (op0
, 0), XEXP (op1
, 0))
5345 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5346 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
5347 && (INTVAL (XEXP (op0
, 1)) + INTVAL (XEXP (op1
, 1))
5348 == GET_MODE_BITSIZE (mode
)))
5349 return gen_rtx_ROTATE (mode
, XEXP (op0
, 0),
5350 (GET_CODE (op0
) == ASHIFT
5351 ? XEXP (op0
, 1) : XEXP (op1
, 1)));
5353 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5354 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5355 does not affect any of the bits in OP1, it can really be done
5356 as a PLUS and we can associate. We do this by seeing if OP1
5357 can be safely shifted left C bits. */
5358 if (GET_CODE (op1
) == CONST_INT
&& GET_CODE (op0
) == ASHIFTRT
5359 && GET_CODE (XEXP (op0
, 0)) == PLUS
5360 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
5361 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5362 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
)
5364 int count
= INTVAL (XEXP (op0
, 1));
5365 HOST_WIDE_INT mask
= INTVAL (op1
) << count
;
5367 if (mask
>> count
== INTVAL (op1
)
5368 && (mask
& nonzero_bits (XEXP (op0
, 0), mode
)) == 0)
5370 SUBST (XEXP (XEXP (op0
, 0), 1),
5371 GEN_INT (INTVAL (XEXP (XEXP (op0
, 0), 1)) | mask
));
5378 /* If we are XORing two things that have no bits in common,
5379 convert them into an IOR. This helps to detect rotation encoded
5380 using those methods and possibly other simplifications. */
5382 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5383 && (nonzero_bits (op0
, mode
)
5384 & nonzero_bits (op1
, mode
)) == 0)
5385 return (gen_binary (IOR
, mode
, op0
, op1
));
5387 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5388 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5391 int num_negated
= 0;
5393 if (GET_CODE (op0
) == NOT
)
5394 num_negated
++, op0
= XEXP (op0
, 0);
5395 if (GET_CODE (op1
) == NOT
)
5396 num_negated
++, op1
= XEXP (op1
, 0);
5398 if (num_negated
== 2)
5400 SUBST (XEXP (x
, 0), op0
);
5401 SUBST (XEXP (x
, 1), op1
);
5403 else if (num_negated
== 1)
5405 simplify_gen_unary (NOT
, mode
, gen_binary (XOR
, mode
, op0
, op1
),
5409 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5410 correspond to a machine insn or result in further simplifications
5411 if B is a constant. */
5413 if (GET_CODE (op0
) == AND
5414 && rtx_equal_p (XEXP (op0
, 1), op1
)
5415 && ! side_effects_p (op1
))
5416 return gen_binary (AND
, mode
,
5417 simplify_gen_unary (NOT
, mode
, XEXP (op0
, 0), mode
),
5420 else if (GET_CODE (op0
) == AND
5421 && rtx_equal_p (XEXP (op0
, 0), op1
)
5422 && ! side_effects_p (op1
))
5423 return gen_binary (AND
, mode
,
5424 simplify_gen_unary (NOT
, mode
, XEXP (op0
, 1), mode
),
5427 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5428 comparison if STORE_FLAG_VALUE is 1. */
5429 if (STORE_FLAG_VALUE
== 1
5430 && op1
== const1_rtx
5431 && GET_RTX_CLASS (GET_CODE (op0
)) == '<'
5432 && (reversed
= reversed_comparison (op0
, mode
, XEXP (op0
, 0),
5436 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5437 is (lt foo (const_int 0)), so we can perform the above
5438 simplification if STORE_FLAG_VALUE is 1. */
5440 if (STORE_FLAG_VALUE
== 1
5441 && op1
== const1_rtx
5442 && GET_CODE (op0
) == LSHIFTRT
5443 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5444 && INTVAL (XEXP (op0
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
5445 return gen_rtx_GE (mode
, XEXP (op0
, 0), const0_rtx
);
5447 /* (xor (comparison foo bar) (const_int sign-bit))
5448 when STORE_FLAG_VALUE is the sign bit. */
5449 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5450 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5451 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1))
5452 && op1
== const_true_rtx
5453 && GET_RTX_CLASS (GET_CODE (op0
)) == '<'
5454 && (reversed
= reversed_comparison (op0
, mode
, XEXP (op0
, 0),
5467 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5468 operations" because they can be replaced with two more basic operations.
5469 ZERO_EXTEND is also considered "compound" because it can be replaced with
5470 an AND operation, which is simpler, though only one operation.
5472 The function expand_compound_operation is called with an rtx expression
5473 and will convert it to the appropriate shifts and AND operations,
5474 simplifying at each stage.
5476 The function make_compound_operation is called to convert an expression
5477 consisting of shifts and ANDs into the equivalent compound expression.
5478 It is the inverse of this function, loosely speaking. */
5481 expand_compound_operation (x
)
5484 unsigned HOST_WIDE_INT pos
= 0, len
;
5486 unsigned int modewidth
;
5489 switch (GET_CODE (x
))
5494 /* We can't necessarily use a const_int for a multiword mode;
5495 it depends on implicitly extending the value.
5496 Since we don't know the right way to extend it,
5497 we can't tell whether the implicit way is right.
5499 Even for a mode that is no wider than a const_int,
5500 we can't win, because we need to sign extend one of its bits through
5501 the rest of it, and we don't know which bit. */
5502 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
5505 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5506 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5507 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5508 reloaded. If not for that, MEM's would very rarely be safe.
5510 Reject MODEs bigger than a word, because we might not be able
5511 to reference a two-register group starting with an arbitrary register
5512 (and currently gen_lowpart might crash for a SUBREG). */
5514 if (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))) > UNITS_PER_WORD
)
5517 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)));
5518 /* If the inner object has VOIDmode (the only way this can happen
5519 is if it is a ASM_OPERANDS), we can't do anything since we don't
5520 know how much masking to do. */
5529 /* If the operand is a CLOBBER, just return it. */
5530 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
5533 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
5534 || GET_CODE (XEXP (x
, 2)) != CONST_INT
5535 || GET_MODE (XEXP (x
, 0)) == VOIDmode
)
5538 len
= INTVAL (XEXP (x
, 1));
5539 pos
= INTVAL (XEXP (x
, 2));
5541 /* If this goes outside the object being extracted, replace the object
5542 with a (use (mem ...)) construct that only combine understands
5543 and is used only for this purpose. */
5544 if (len
+ pos
> GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))))
5545 SUBST (XEXP (x
, 0), gen_rtx_USE (GET_MODE (x
), XEXP (x
, 0)));
5547 if (BITS_BIG_ENDIAN
)
5548 pos
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - len
- pos
;
5555 /* Convert sign extension to zero extension, if we know that the high
5556 bit is not set, as this is easier to optimize. It will be converted
5557 back to cheaper alternative in make_extraction. */
5558 if (GET_CODE (x
) == SIGN_EXTEND
5559 && (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5560 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
5561 & ~(((unsigned HOST_WIDE_INT
)
5562 GET_MODE_MASK (GET_MODE (XEXP (x
, 0))))
5566 rtx temp
= gen_rtx_ZERO_EXTEND (GET_MODE (x
), XEXP (x
, 0));
5567 return expand_compound_operation (temp
);
5570 /* We can optimize some special cases of ZERO_EXTEND. */
5571 if (GET_CODE (x
) == ZERO_EXTEND
)
5573 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5574 know that the last value didn't have any inappropriate bits
5576 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5577 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5578 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5579 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), GET_MODE (x
))
5580 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5581 return XEXP (XEXP (x
, 0), 0);
5583 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5584 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5585 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5586 && subreg_lowpart_p (XEXP (x
, 0))
5587 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5588 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), GET_MODE (x
))
5589 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5590 return SUBREG_REG (XEXP (x
, 0));
5592 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5593 is a comparison and STORE_FLAG_VALUE permits. This is like
5594 the first case, but it works even when GET_MODE (x) is larger
5595 than HOST_WIDE_INT. */
5596 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5597 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5598 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x
, 0), 0))) == '<'
5599 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5600 <= HOST_BITS_PER_WIDE_INT
)
5601 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5602 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5603 return XEXP (XEXP (x
, 0), 0);
5605 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5606 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5607 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5608 && subreg_lowpart_p (XEXP (x
, 0))
5609 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0)))) == '<'
5610 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5611 <= HOST_BITS_PER_WIDE_INT
)
5612 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5613 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5614 return SUBREG_REG (XEXP (x
, 0));
5618 /* If we reach here, we want to return a pair of shifts. The inner
5619 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5620 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5621 logical depending on the value of UNSIGNEDP.
5623 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5624 converted into an AND of a shift.
5626 We must check for the case where the left shift would have a negative
5627 count. This can happen in a case like (x >> 31) & 255 on machines
5628 that can't shift by a constant. On those machines, we would first
5629 combine the shift with the AND to produce a variable-position
5630 extraction. Then the constant of 31 would be substituted in to produce
5631 a such a position. */
5633 modewidth
= GET_MODE_BITSIZE (GET_MODE (x
));
5634 if (modewidth
+ len
>= pos
)
5635 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
5637 simplify_shift_const (NULL_RTX
, ASHIFT
,
5640 modewidth
- pos
- len
),
5643 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
5644 tem
= simplify_and_const_int (NULL_RTX
, GET_MODE (x
),
5645 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
5648 ((HOST_WIDE_INT
) 1 << len
) - 1);
5650 /* Any other cases we can't handle. */
5653 /* If we couldn't do this for some reason, return the original
5655 if (GET_CODE (tem
) == CLOBBER
)
5661 /* X is a SET which contains an assignment of one object into
5662 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5663 or certain SUBREGS). If possible, convert it into a series of
5666 We half-heartedly support variable positions, but do not at all
5667 support variable lengths. */
5670 expand_field_assignment (x
)
5674 rtx pos
; /* Always counts from low bit. */
5677 enum machine_mode compute_mode
;
5679 /* Loop until we find something we can't simplify. */
5682 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
5683 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
5685 int byte_offset
= SUBREG_BYTE (XEXP (SET_DEST (x
), 0));
5687 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
5688 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)));
5689 pos
= GEN_INT (BITS_PER_WORD
* (byte_offset
/ UNITS_PER_WORD
));
5691 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
5692 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
)
5694 inner
= XEXP (SET_DEST (x
), 0);
5695 len
= INTVAL (XEXP (SET_DEST (x
), 1));
5696 pos
= XEXP (SET_DEST (x
), 2);
5698 /* If the position is constant and spans the width of INNER,
5699 surround INNER with a USE to indicate this. */
5700 if (GET_CODE (pos
) == CONST_INT
5701 && INTVAL (pos
) + len
> GET_MODE_BITSIZE (GET_MODE (inner
)))
5702 inner
= gen_rtx_USE (GET_MODE (SET_DEST (x
)), inner
);
5704 if (BITS_BIG_ENDIAN
)
5706 if (GET_CODE (pos
) == CONST_INT
)
5707 pos
= GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner
)) - len
5709 else if (GET_CODE (pos
) == MINUS
5710 && GET_CODE (XEXP (pos
, 1)) == CONST_INT
5711 && (INTVAL (XEXP (pos
, 1))
5712 == GET_MODE_BITSIZE (GET_MODE (inner
)) - len
))
5713 /* If position is ADJUST - X, new position is X. */
5714 pos
= XEXP (pos
, 0);
5716 pos
= gen_binary (MINUS
, GET_MODE (pos
),
5717 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner
))
5723 /* A SUBREG between two modes that occupy the same numbers of words
5724 can be done by moving the SUBREG to the source. */
5725 else if (GET_CODE (SET_DEST (x
)) == SUBREG
5726 /* We need SUBREGs to compute nonzero_bits properly. */
5727 && nonzero_sign_valid
5728 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
5729 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
5730 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
5731 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
5733 x
= gen_rtx_SET (VOIDmode
, SUBREG_REG (SET_DEST (x
)),
5734 gen_lowpart_for_combine
5735 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
5742 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
5743 inner
= SUBREG_REG (inner
);
5745 compute_mode
= GET_MODE (inner
);
5747 /* Don't attempt bitwise arithmetic on non-integral modes. */
5748 if (! INTEGRAL_MODE_P (compute_mode
))
5750 enum machine_mode imode
;
5752 /* Something is probably seriously wrong if this matches. */
5753 if (! FLOAT_MODE_P (compute_mode
))
5756 /* Try to find an integral mode to pun with. */
5757 imode
= mode_for_size (GET_MODE_BITSIZE (compute_mode
), MODE_INT
, 0);
5758 if (imode
== BLKmode
)
5761 compute_mode
= imode
;
5762 inner
= gen_lowpart_for_combine (imode
, inner
);
5765 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5766 if (len
< HOST_BITS_PER_WIDE_INT
)
5767 mask
= GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1);
5771 /* Now compute the equivalent expression. Make a copy of INNER
5772 for the SET_DEST in case it is a MEM into which we will substitute;
5773 we don't want shared RTL in that case. */
5775 (VOIDmode
, copy_rtx (inner
),
5776 gen_binary (IOR
, compute_mode
,
5777 gen_binary (AND
, compute_mode
,
5778 simplify_gen_unary (NOT
, compute_mode
,
5784 gen_binary (ASHIFT
, compute_mode
,
5785 gen_binary (AND
, compute_mode
,
5786 gen_lowpart_for_combine
5787 (compute_mode
, SET_SRC (x
)),
5795 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5796 it is an RTX that represents a variable starting position; otherwise,
5797 POS is the (constant) starting bit position (counted from the LSB).
5799 INNER may be a USE. This will occur when we started with a bitfield
5800 that went outside the boundary of the object in memory, which is
5801 allowed on most machines. To isolate this case, we produce a USE
5802 whose mode is wide enough and surround the MEM with it. The only
5803 code that understands the USE is this routine. If it is not removed,
5804 it will cause the resulting insn not to match.
5806 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5809 IN_DEST is non-zero if this is a reference in the destination of a
5810 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5811 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5814 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5815 ZERO_EXTRACT should be built even for bits starting at bit 0.
5817 MODE is the desired mode of the result (if IN_DEST == 0).
5819 The result is an RTX for the extraction or NULL_RTX if the target
5823 make_extraction (mode
, inner
, pos
, pos_rtx
, len
,
5824 unsignedp
, in_dest
, in_compare
)
5825 enum machine_mode mode
;
5829 unsigned HOST_WIDE_INT len
;
5831 int in_dest
, in_compare
;
5833 /* This mode describes the size of the storage area
5834 to fetch the overall value from. Within that, we
5835 ignore the POS lowest bits, etc. */
5836 enum machine_mode is_mode
= GET_MODE (inner
);
5837 enum machine_mode inner_mode
;
5838 enum machine_mode wanted_inner_mode
= byte_mode
;
5839 enum machine_mode wanted_inner_reg_mode
= word_mode
;
5840 enum machine_mode pos_mode
= word_mode
;
5841 enum machine_mode extraction_mode
= word_mode
;
5842 enum machine_mode tmode
= mode_for_size (len
, MODE_INT
, 1);
5845 rtx orig_pos_rtx
= pos_rtx
;
5846 HOST_WIDE_INT orig_pos
;
5848 /* Get some information about INNER and get the innermost object. */
5849 if (GET_CODE (inner
) == USE
)
5850 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5851 /* We don't need to adjust the position because we set up the USE
5852 to pretend that it was a full-word object. */
5853 spans_byte
= 1, inner
= XEXP (inner
, 0);
5854 else if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
5856 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5857 consider just the QI as the memory to extract from.
5858 The subreg adds or removes high bits; its mode is
5859 irrelevant to the meaning of this extraction,
5860 since POS and LEN count from the lsb. */
5861 if (GET_CODE (SUBREG_REG (inner
)) == MEM
)
5862 is_mode
= GET_MODE (SUBREG_REG (inner
));
5863 inner
= SUBREG_REG (inner
);
5866 inner_mode
= GET_MODE (inner
);
5868 if (pos_rtx
&& GET_CODE (pos_rtx
) == CONST_INT
)
5869 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
5871 /* See if this can be done without an extraction. We never can if the
5872 width of the field is not the same as that of some integer mode. For
5873 registers, we can only avoid the extraction if the position is at the
5874 low-order bit and this is either not in the destination or we have the
5875 appropriate STRICT_LOW_PART operation available.
5877 For MEM, we can avoid an extract if the field starts on an appropriate
5878 boundary and we can change the mode of the memory reference. However,
5879 we cannot directly access the MEM if we have a USE and the underlying
5880 MEM is not TMODE. This combination means that MEM was being used in a
5881 context where bits outside its mode were being referenced; that is only
5882 valid in bit-field insns. */
5884 if (tmode
!= BLKmode
5885 && ! (spans_byte
&& inner_mode
!= tmode
)
5886 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
5887 && GET_CODE (inner
) != MEM
5889 || (GET_CODE (inner
) == REG
5890 && have_insn_for (STRICT_LOW_PART
, tmode
))))
5891 || (GET_CODE (inner
) == MEM
&& pos_rtx
== 0
5893 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
5894 : BITS_PER_UNIT
)) == 0
5895 /* We can't do this if we are widening INNER_MODE (it
5896 may not be aligned, for one thing). */
5897 && GET_MODE_BITSIZE (inner_mode
) >= GET_MODE_BITSIZE (tmode
)
5898 && (inner_mode
== tmode
5899 || (! mode_dependent_address_p (XEXP (inner
, 0))
5900 && ! MEM_VOLATILE_P (inner
))))))
5902 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5903 field. If the original and current mode are the same, we need not
5904 adjust the offset. Otherwise, we do if bytes big endian.
5906 If INNER is not a MEM, get a piece consisting of just the field
5907 of interest (in this case POS % BITS_PER_WORD must be 0). */
5909 if (GET_CODE (inner
) == MEM
)
5911 HOST_WIDE_INT offset
;
5913 /* POS counts from lsb, but make OFFSET count in memory order. */
5914 if (BYTES_BIG_ENDIAN
)
5915 offset
= (GET_MODE_BITSIZE (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
5917 offset
= pos
/ BITS_PER_UNIT
;
5919 new = adjust_address_nv (inner
, tmode
, offset
);
5921 else if (GET_CODE (inner
) == REG
)
5923 /* We can't call gen_lowpart_for_combine here since we always want
5924 a SUBREG and it would sometimes return a new hard register. */
5925 if (tmode
!= inner_mode
)
5927 HOST_WIDE_INT final_word
= pos
/ BITS_PER_WORD
;
5929 if (WORDS_BIG_ENDIAN
5930 && GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
5931 final_word
= ((GET_MODE_SIZE (inner_mode
)
5932 - GET_MODE_SIZE (tmode
))
5933 / UNITS_PER_WORD
) - final_word
;
5935 final_word
*= UNITS_PER_WORD
;
5936 if (BYTES_BIG_ENDIAN
&&
5937 GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (tmode
))
5938 final_word
+= (GET_MODE_SIZE (inner_mode
)
5939 - GET_MODE_SIZE (tmode
)) % UNITS_PER_WORD
;
5941 new = gen_rtx_SUBREG (tmode
, inner
, final_word
);
5947 new = force_to_mode (inner
, tmode
,
5948 len
>= HOST_BITS_PER_WIDE_INT
5949 ? ~(unsigned HOST_WIDE_INT
) 0
5950 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
5953 /* If this extraction is going into the destination of a SET,
5954 make a STRICT_LOW_PART unless we made a MEM. */
5957 return (GET_CODE (new) == MEM
? new
5958 : (GET_CODE (new) != SUBREG
5959 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
5960 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new)));
5965 /* If we know that no extraneous bits are set, and that the high
5966 bit is not set, convert the extraction to the cheaper of
5967 sign and zero extension, that are equivalent in these cases. */
5968 if (flag_expensive_optimizations
5969 && (GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
5970 && ((nonzero_bits (new, tmode
)
5971 & ~(((unsigned HOST_WIDE_INT
)
5972 GET_MODE_MASK (tmode
))
5976 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new);
5977 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new);
5979 /* Prefer ZERO_EXTENSION, since it gives more information to
5981 if (rtx_cost (temp
, SET
) <= rtx_cost (temp1
, SET
))
5986 /* Otherwise, sign- or zero-extend unless we already are in the
5989 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
5993 /* Unless this is a COMPARE or we have a funny memory reference,
5994 don't do anything with zero-extending field extracts starting at
5995 the low-order bit since they are simple AND operations. */
5996 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
5997 && ! in_compare
&& ! spans_byte
&& unsignedp
)
6000 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6001 we would be spanning bytes or if the position is not a constant and the
6002 length is not 1. In all other cases, we would only be going outside
6003 our object in cases when an original shift would have been
6005 if (! spans_byte
&& GET_CODE (inner
) == MEM
6006 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_BITSIZE (is_mode
))
6007 || (pos_rtx
!= 0 && len
!= 1)))
6010 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6011 and the mode for the result. */
6012 if (in_dest
&& mode_for_extraction(EP_insv
, -1) != MAX_MACHINE_MODE
)
6014 wanted_inner_reg_mode
= mode_for_extraction (EP_insv
, 0);
6015 pos_mode
= mode_for_extraction (EP_insv
, 2);
6016 extraction_mode
= mode_for_extraction (EP_insv
, 3);
6019 if (! in_dest
&& unsignedp
6020 && mode_for_extraction (EP_extzv
, -1) != MAX_MACHINE_MODE
)
6022 wanted_inner_reg_mode
= mode_for_extraction (EP_extzv
, 1);
6023 pos_mode
= mode_for_extraction (EP_extzv
, 3);
6024 extraction_mode
= mode_for_extraction (EP_extzv
, 0);
6027 if (! in_dest
&& ! unsignedp
6028 && mode_for_extraction (EP_extv
, -1) != MAX_MACHINE_MODE
)
6030 wanted_inner_reg_mode
= mode_for_extraction (EP_extv
, 1);
6031 pos_mode
= mode_for_extraction (EP_extv
, 3);
6032 extraction_mode
= mode_for_extraction (EP_extv
, 0);
6035 /* Never narrow an object, since that might not be safe. */
6037 if (mode
!= VOIDmode
6038 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
6039 extraction_mode
= mode
;
6041 if (pos_rtx
&& GET_MODE (pos_rtx
) != VOIDmode
6042 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6043 pos_mode
= GET_MODE (pos_rtx
);
6045 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6046 if we have to change the mode of memory and cannot, the desired mode is
6048 if (GET_CODE (inner
) != MEM
)
6049 wanted_inner_mode
= wanted_inner_reg_mode
;
6050 else if (inner_mode
!= wanted_inner_mode
6051 && (mode_dependent_address_p (XEXP (inner
, 0))
6052 || MEM_VOLATILE_P (inner
)))
6053 wanted_inner_mode
= extraction_mode
;
6057 if (BITS_BIG_ENDIAN
)
6059 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6060 BITS_BIG_ENDIAN style. If position is constant, compute new
6061 position. Otherwise, build subtraction.
6062 Note that POS is relative to the mode of the original argument.
6063 If it's a MEM we need to recompute POS relative to that.
6064 However, if we're extracting from (or inserting into) a register,
6065 we want to recompute POS relative to wanted_inner_mode. */
6066 int width
= (GET_CODE (inner
) == MEM
6067 ? GET_MODE_BITSIZE (is_mode
)
6068 : GET_MODE_BITSIZE (wanted_inner_mode
));
6071 pos
= width
- len
- pos
;
6074 = gen_rtx_MINUS (GET_MODE (pos_rtx
), GEN_INT (width
- len
), pos_rtx
);
6075 /* POS may be less than 0 now, but we check for that below.
6076 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6079 /* If INNER has a wider mode, make it smaller. If this is a constant
6080 extract, try to adjust the byte to point to the byte containing
6082 if (wanted_inner_mode
!= VOIDmode
6083 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
6084 && ((GET_CODE (inner
) == MEM
6085 && (inner_mode
== wanted_inner_mode
6086 || (! mode_dependent_address_p (XEXP (inner
, 0))
6087 && ! MEM_VOLATILE_P (inner
))))))
6091 /* The computations below will be correct if the machine is big
6092 endian in both bits and bytes or little endian in bits and bytes.
6093 If it is mixed, we must adjust. */
6095 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6096 adjust OFFSET to compensate. */
6097 if (BYTES_BIG_ENDIAN
6099 && GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (is_mode
))
6100 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
6102 /* If this is a constant position, we can move to the desired byte. */
6105 offset
+= pos
/ BITS_PER_UNIT
;
6106 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
6109 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
6111 && is_mode
!= wanted_inner_mode
)
6112 offset
= (GET_MODE_SIZE (is_mode
)
6113 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
6115 if (offset
!= 0 || inner_mode
!= wanted_inner_mode
)
6116 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
6119 /* If INNER is not memory, we can always get it into the proper mode. If we
6120 are changing its mode, POS must be a constant and smaller than the size
6122 else if (GET_CODE (inner
) != MEM
)
6124 if (GET_MODE (inner
) != wanted_inner_mode
6126 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
6129 inner
= force_to_mode (inner
, wanted_inner_mode
,
6131 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
6132 ? ~(unsigned HOST_WIDE_INT
) 0
6133 : ((((unsigned HOST_WIDE_INT
) 1 << len
) - 1)
6138 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6139 have to zero extend. Otherwise, we can just use a SUBREG. */
6141 && GET_MODE_SIZE (pos_mode
) > GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6143 rtx temp
= gen_rtx_ZERO_EXTEND (pos_mode
, pos_rtx
);
6145 /* If we know that no extraneous bits are set, and that the high
6146 bit is not set, convert extraction to cheaper one - either
6147 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6149 if (flag_expensive_optimizations
6150 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx
)) <= HOST_BITS_PER_WIDE_INT
6151 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
6152 & ~(((unsigned HOST_WIDE_INT
)
6153 GET_MODE_MASK (GET_MODE (pos_rtx
)))
6157 rtx temp1
= gen_rtx_SIGN_EXTEND (pos_mode
, pos_rtx
);
6159 /* Prefer ZERO_EXTENSION, since it gives more information to
6161 if (rtx_cost (temp1
, SET
) < rtx_cost (temp
, SET
))
6166 else if (pos_rtx
!= 0
6167 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6168 pos_rtx
= gen_lowpart_for_combine (pos_mode
, pos_rtx
);
6170 /* Make POS_RTX unless we already have it and it is correct. If we don't
6171 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6173 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
6174 pos_rtx
= orig_pos_rtx
;
6176 else if (pos_rtx
== 0)
6177 pos_rtx
= GEN_INT (pos
);
6179 /* Make the required operation. See if we can use existing rtx. */
6180 new = gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
6181 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
6183 new = gen_lowpart_for_combine (mode
, new);
6188 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6189 with any other operations in X. Return X without that shift if so. */
6192 extract_left_shift (x
, count
)
6196 enum rtx_code code
= GET_CODE (x
);
6197 enum machine_mode mode
= GET_MODE (x
);
6203 /* This is the shift itself. If it is wide enough, we will return
6204 either the value being shifted if the shift count is equal to
6205 COUNT or a shift for the difference. */
6206 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6207 && INTVAL (XEXP (x
, 1)) >= count
)
6208 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
6209 INTVAL (XEXP (x
, 1)) - count
);
6213 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6214 return simplify_gen_unary (code
, mode
, tem
, mode
);
6218 case PLUS
: case IOR
: case XOR
: case AND
:
6219 /* If we can safely shift this constant and we find the inner shift,
6220 make a new operation. */
6221 if (GET_CODE (XEXP (x
,1)) == CONST_INT
6222 && (INTVAL (XEXP (x
, 1)) & ((((HOST_WIDE_INT
) 1 << count
)) - 1)) == 0
6223 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6224 return gen_binary (code
, mode
, tem
,
6225 GEN_INT (INTVAL (XEXP (x
, 1)) >> count
));
6236 /* Look at the expression rooted at X. Look for expressions
6237 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6238 Form these expressions.
6240 Return the new rtx, usually just X.
6242 Also, for machines like the VAX that don't have logical shift insns,
6243 try to convert logical to arithmetic shift operations in cases where
6244 they are equivalent. This undoes the canonicalizations to logical
6245 shifts done elsewhere.
6247 We try, as much as possible, to re-use rtl expressions to save memory.
6249 IN_CODE says what kind of expression we are processing. Normally, it is
6250 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6251 being kludges), it is MEM. When processing the arguments of a comparison
6252 or a COMPARE against zero, it is COMPARE. */
6255 make_compound_operation (x
, in_code
)
6257 enum rtx_code in_code
;
6259 enum rtx_code code
= GET_CODE (x
);
6260 enum machine_mode mode
= GET_MODE (x
);
6261 int mode_width
= GET_MODE_BITSIZE (mode
);
6263 enum rtx_code next_code
;
6269 /* Select the code to be used in recursive calls. Once we are inside an
6270 address, we stay there. If we have a comparison, set to COMPARE,
6271 but once inside, go back to our default of SET. */
6273 next_code
= (code
== MEM
|| code
== PLUS
|| code
== MINUS
? MEM
6274 : ((code
== COMPARE
|| GET_RTX_CLASS (code
) == '<')
6275 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
6276 : in_code
== COMPARE
? SET
: in_code
);
6278 /* Process depending on the code of this operation. If NEW is set
6279 non-zero, it will be returned. */
6284 /* Convert shifts by constants into multiplications if inside
6286 if (in_code
== MEM
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6287 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
6288 && INTVAL (XEXP (x
, 1)) >= 0)
6290 new = make_compound_operation (XEXP (x
, 0), next_code
);
6291 new = gen_rtx_MULT (mode
, new,
6292 GEN_INT ((HOST_WIDE_INT
) 1
6293 << INTVAL (XEXP (x
, 1))));
6298 /* If the second operand is not a constant, we can't do anything
6300 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
6303 /* If the constant is a power of two minus one and the first operand
6304 is a logical right shift, make an extraction. */
6305 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6306 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6308 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6309 new = make_extraction (mode
, new, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
6310 0, in_code
== COMPARE
);
6313 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6314 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
6315 && subreg_lowpart_p (XEXP (x
, 0))
6316 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
6317 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6319 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x
, 0)), 0),
6321 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x
, 0))), new, 0,
6322 XEXP (SUBREG_REG (XEXP (x
, 0)), 1), i
, 1,
6323 0, in_code
== COMPARE
);
6325 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6326 else if ((GET_CODE (XEXP (x
, 0)) == XOR
6327 || GET_CODE (XEXP (x
, 0)) == IOR
)
6328 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
6329 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
6330 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6332 /* Apply the distributive law, and then try to make extractions. */
6333 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
6334 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
6336 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
6338 new = make_compound_operation (new, in_code
);
6341 /* If we are have (and (rotate X C) M) and C is larger than the number
6342 of bits in M, this is an extraction. */
6344 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
6345 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6346 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0
6347 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
6349 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6350 new = make_extraction (mode
, new,
6351 (GET_MODE_BITSIZE (mode
)
6352 - INTVAL (XEXP (XEXP (x
, 0), 1))),
6353 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6356 /* On machines without logical shifts, if the operand of the AND is
6357 a logical shift and our mask turns off all the propagated sign
6358 bits, we can replace the logical shift with an arithmetic shift. */
6359 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6360 && !have_insn_for (LSHIFTRT
, mode
)
6361 && have_insn_for (ASHIFTRT
, mode
)
6362 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6363 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
6364 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
6365 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
6367 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
6369 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
6370 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
6372 gen_rtx_ASHIFTRT (mode
,
6373 make_compound_operation
6374 (XEXP (XEXP (x
, 0), 0), next_code
),
6375 XEXP (XEXP (x
, 0), 1)));
6378 /* If the constant is one less than a power of two, this might be
6379 representable by an extraction even if no shift is present.
6380 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6381 we are in a COMPARE. */
6382 else if ((i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6383 new = make_extraction (mode
,
6384 make_compound_operation (XEXP (x
, 0),
6386 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6388 /* If we are in a comparison and this is an AND with a power of two,
6389 convert this into the appropriate bit extract. */
6390 else if (in_code
== COMPARE
6391 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
6392 new = make_extraction (mode
,
6393 make_compound_operation (XEXP (x
, 0),
6395 i
, NULL_RTX
, 1, 1, 0, 1);
6400 /* If the sign bit is known to be zero, replace this with an
6401 arithmetic shift. */
6402 if (have_insn_for (ASHIFTRT
, mode
)
6403 && ! have_insn_for (LSHIFTRT
, mode
)
6404 && mode_width
<= HOST_BITS_PER_WIDE_INT
6405 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
6407 new = gen_rtx_ASHIFTRT (mode
,
6408 make_compound_operation (XEXP (x
, 0),
6414 /* ... fall through ... */
6420 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6421 this is a SIGN_EXTRACT. */
6422 if (GET_CODE (rhs
) == CONST_INT
6423 && GET_CODE (lhs
) == ASHIFT
6424 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
6425 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1)))
6427 new = make_compound_operation (XEXP (lhs
, 0), next_code
);
6428 new = make_extraction (mode
, new,
6429 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
6430 NULL_RTX
, mode_width
- INTVAL (rhs
),
6431 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6435 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6436 If so, try to merge the shifts into a SIGN_EXTEND. We could
6437 also do this for some cases of SIGN_EXTRACT, but it doesn't
6438 seem worth the effort; the case checked for occurs on Alpha. */
6440 if (GET_RTX_CLASS (GET_CODE (lhs
)) != 'o'
6441 && ! (GET_CODE (lhs
) == SUBREG
6442 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs
))) == 'o'))
6443 && GET_CODE (rhs
) == CONST_INT
6444 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
6445 && (new = extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
6446 new = make_extraction (mode
, make_compound_operation (new, next_code
),
6447 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
6448 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6453 /* Call ourselves recursively on the inner expression. If we are
6454 narrowing the object and it has a different RTL code from
6455 what it originally did, do this SUBREG as a force_to_mode. */
6457 tem
= make_compound_operation (SUBREG_REG (x
), in_code
);
6458 if (GET_CODE (tem
) != GET_CODE (SUBREG_REG (x
))
6459 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (tem
))
6460 && subreg_lowpart_p (x
))
6462 rtx newer
= force_to_mode (tem
, mode
, ~(HOST_WIDE_INT
) 0,
6465 /* If we have something other than a SUBREG, we might have
6466 done an expansion, so rerun ourselves. */
6467 if (GET_CODE (newer
) != SUBREG
)
6468 newer
= make_compound_operation (newer
, in_code
);
6473 /* If this is a paradoxical subreg, and the new code is a sign or
6474 zero extension, omit the subreg and widen the extension. If it
6475 is a regular subreg, we can still get rid of the subreg by not
6476 widening so much, or in fact removing the extension entirely. */
6477 if ((GET_CODE (tem
) == SIGN_EXTEND
6478 || GET_CODE (tem
) == ZERO_EXTEND
)
6479 && subreg_lowpart_p (x
))
6481 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (tem
))
6482 || (GET_MODE_SIZE (mode
) >
6483 GET_MODE_SIZE (GET_MODE (XEXP (tem
, 0)))))
6484 tem
= gen_rtx_fmt_e (GET_CODE (tem
), mode
, XEXP (tem
, 0));
6486 tem
= gen_lowpart_for_combine (mode
, XEXP (tem
, 0));
6497 x
= gen_lowpart_for_combine (mode
, new);
6498 code
= GET_CODE (x
);
6501 /* Now recursively process each operand of this operation. */
6502 fmt
= GET_RTX_FORMAT (code
);
6503 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
6506 new = make_compound_operation (XEXP (x
, i
), next_code
);
6507 SUBST (XEXP (x
, i
), new);
6513 /* Given M see if it is a value that would select a field of bits
6514 within an item, but not the entire word. Return -1 if not.
6515 Otherwise, return the starting position of the field, where 0 is the
6518 *PLEN is set to the length of the field. */
6521 get_pos_from_mask (m
, plen
)
6522 unsigned HOST_WIDE_INT m
;
6523 unsigned HOST_WIDE_INT
*plen
;
6525 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6526 int pos
= exact_log2 (m
& -m
);
6532 /* Now shift off the low-order zero bits and see if we have a power of
6534 len
= exact_log2 ((m
>> pos
) + 1);
6543 /* See if X can be simplified knowing that we will only refer to it in
6544 MODE and will only refer to those bits that are nonzero in MASK.
6545 If other bits are being computed or if masking operations are done
6546 that select a superset of the bits in MASK, they can sometimes be
6549 Return a possibly simplified expression, but always convert X to
6550 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6552 Also, if REG is non-zero and X is a register equal in value to REG,
6555 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6556 are all off in X. This is used when X will be complemented, by either
6557 NOT, NEG, or XOR. */
6560 force_to_mode (x
, mode
, mask
, reg
, just_select
)
6562 enum machine_mode mode
;
6563 unsigned HOST_WIDE_INT mask
;
6567 enum rtx_code code
= GET_CODE (x
);
6568 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
6569 enum machine_mode op_mode
;
6570 unsigned HOST_WIDE_INT fuller_mask
, nonzero
;
6573 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6574 code below will do the wrong thing since the mode of such an
6575 expression is VOIDmode.
6577 Also do nothing if X is a CLOBBER; this can happen if X was
6578 the return value from a call to gen_lowpart_for_combine. */
6579 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
6582 /* We want to perform the operation is its present mode unless we know
6583 that the operation is valid in MODE, in which case we do the operation
6585 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
6586 && have_insn_for (code
, mode
))
6587 ? mode
: GET_MODE (x
));
6589 /* It is not valid to do a right-shift in a narrower mode
6590 than the one it came in with. */
6591 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
6592 && GET_MODE_BITSIZE (mode
) < GET_MODE_BITSIZE (GET_MODE (x
)))
6593 op_mode
= GET_MODE (x
);
6595 /* Truncate MASK to fit OP_MODE. */
6597 mask
&= GET_MODE_MASK (op_mode
);
6599 /* When we have an arithmetic operation, or a shift whose count we
6600 do not know, we need to assume that all bit the up to the highest-order
6601 bit in MASK will be needed. This is how we form such a mask. */
6603 fuller_mask
= (GET_MODE_BITSIZE (op_mode
) >= HOST_BITS_PER_WIDE_INT
6604 ? GET_MODE_MASK (op_mode
)
6605 : (((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mask
) + 1))
6608 fuller_mask
= ~(HOST_WIDE_INT
) 0;
6610 /* Determine what bits of X are guaranteed to be (non)zero. */
6611 nonzero
= nonzero_bits (x
, mode
);
6613 /* If none of the bits in X are needed, return a zero. */
6614 if (! just_select
&& (nonzero
& mask
) == 0)
6617 /* If X is a CONST_INT, return a new one. Do this here since the
6618 test below will fail. */
6619 if (GET_CODE (x
) == CONST_INT
)
6621 HOST_WIDE_INT cval
= INTVAL (x
) & mask
;
6622 int width
= GET_MODE_BITSIZE (mode
);
6624 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6625 number, sign extend it. */
6626 if (width
> 0 && width
< HOST_BITS_PER_WIDE_INT
6627 && (cval
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6628 cval
|= (HOST_WIDE_INT
) -1 << width
;
6630 return GEN_INT (cval
);
6633 /* If X is narrower than MODE and we want all the bits in X's mode, just
6634 get X in the proper mode. */
6635 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
)
6636 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
6637 return gen_lowpart_for_combine (mode
, x
);
6639 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6640 MASK are already known to be zero in X, we need not do anything. */
6641 if (GET_MODE (x
) == mode
&& code
!= SUBREG
&& (~mask
& nonzero
) == 0)
6647 /* If X is a (clobber (const_int)), return it since we know we are
6648 generating something that won't match. */
6652 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6653 spanned the boundary of the MEM. If we are now masking so it is
6654 within that boundary, we don't need the USE any more. */
6655 if (! BITS_BIG_ENDIAN
6656 && (mask
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6657 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
6664 x
= expand_compound_operation (x
);
6665 if (GET_CODE (x
) != code
)
6666 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
6670 if (reg
!= 0 && (rtx_equal_p (get_last_value (reg
), x
)
6671 || rtx_equal_p (reg
, get_last_value (x
))))
6676 if (subreg_lowpart_p (x
)
6677 /* We can ignore the effect of this SUBREG if it narrows the mode or
6678 if the constant masks to zero all the bits the mode doesn't
6680 && ((GET_MODE_SIZE (GET_MODE (x
))
6681 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
6683 & GET_MODE_MASK (GET_MODE (x
))
6684 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
6685 return force_to_mode (SUBREG_REG (x
), mode
, mask
, reg
, next_select
);
6689 /* If this is an AND with a constant, convert it into an AND
6690 whose constant is the AND of that constant with MASK. If it
6691 remains an AND of MASK, delete it since it is redundant. */
6693 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
6695 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
6696 mask
& INTVAL (XEXP (x
, 1)));
6698 /* If X is still an AND, see if it is an AND with a mask that
6699 is just some low-order bits. If so, and it is MASK, we don't
6702 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6703 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (x
, 1)) == mask
)
6706 /* If it remains an AND, try making another AND with the bits
6707 in the mode mask that aren't in MASK turned on. If the
6708 constant in the AND is wide enough, this might make a
6709 cheaper constant. */
6711 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6712 && GET_MODE_MASK (GET_MODE (x
)) != mask
6713 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
6715 HOST_WIDE_INT cval
= (INTVAL (XEXP (x
, 1))
6716 | (GET_MODE_MASK (GET_MODE (x
)) & ~mask
));
6717 int width
= GET_MODE_BITSIZE (GET_MODE (x
));
6720 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6721 number, sign extend it. */
6722 if (width
> 0 && width
< HOST_BITS_PER_WIDE_INT
6723 && (cval
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6724 cval
|= (HOST_WIDE_INT
) -1 << width
;
6726 y
= gen_binary (AND
, GET_MODE (x
), XEXP (x
, 0), GEN_INT (cval
));
6727 if (rtx_cost (y
, SET
) < rtx_cost (x
, SET
))
6737 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6738 low-order bits (as in an alignment operation) and FOO is already
6739 aligned to that boundary, mask C1 to that boundary as well.
6740 This may eliminate that PLUS and, later, the AND. */
6743 unsigned int width
= GET_MODE_BITSIZE (mode
);
6744 unsigned HOST_WIDE_INT smask
= mask
;
6746 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6747 number, sign extend it. */
6749 if (width
< HOST_BITS_PER_WIDE_INT
6750 && (smask
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6751 smask
|= (HOST_WIDE_INT
) -1 << width
;
6753 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6754 && exact_log2 (- smask
) >= 0)
6758 && (XEXP (x
, 0) == stack_pointer_rtx
6759 || XEXP (x
, 0) == frame_pointer_rtx
))
6761 int sp_alignment
= STACK_BOUNDARY
/ BITS_PER_UNIT
;
6762 unsigned HOST_WIDE_INT sp_mask
= GET_MODE_MASK (mode
);
6764 sp_mask
&= ~(sp_alignment
- 1);
6765 if ((sp_mask
& ~smask
) == 0
6766 && ((INTVAL (XEXP (x
, 1)) - STACK_BIAS
) & ~smask
) != 0)
6767 return force_to_mode (plus_constant (XEXP (x
, 0),
6768 ((INTVAL (XEXP (x
, 1)) -
6769 STACK_BIAS
) & smask
)
6771 mode
, smask
, reg
, next_select
);
6774 if ((nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
6775 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
6776 return force_to_mode (plus_constant (XEXP (x
, 0),
6777 (INTVAL (XEXP (x
, 1))
6779 mode
, smask
, reg
, next_select
);
6783 /* ... fall through ... */
6786 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6787 most significant bit in MASK since carries from those bits will
6788 affect the bits we are interested in. */
6793 /* If X is (minus C Y) where C's least set bit is larger than any bit
6794 in the mask, then we may replace with (neg Y). */
6795 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
6796 && (((unsigned HOST_WIDE_INT
) (INTVAL (XEXP (x
, 0))
6797 & -INTVAL (XEXP (x
, 0))))
6800 x
= simplify_gen_unary (NEG
, GET_MODE (x
), XEXP (x
, 1),
6802 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
6805 /* Similarly, if C contains every bit in the mask, then we may
6806 replace with (not Y). */
6807 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
6808 && ((INTVAL (XEXP (x
, 0)) | (HOST_WIDE_INT
) mask
)
6809 == INTVAL (XEXP (x
, 0))))
6811 x
= simplify_gen_unary (NOT
, GET_MODE (x
),
6812 XEXP (x
, 1), GET_MODE (x
));
6813 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
6821 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6822 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6823 operation which may be a bitfield extraction. Ensure that the
6824 constant we form is not wider than the mode of X. */
6826 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6827 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6828 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
6829 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
6830 && GET_CODE (XEXP (x
, 1)) == CONST_INT
6831 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
6832 + floor_log2 (INTVAL (XEXP (x
, 1))))
6833 < GET_MODE_BITSIZE (GET_MODE (x
)))
6834 && (INTVAL (XEXP (x
, 1))
6835 & ~nonzero_bits (XEXP (x
, 0), GET_MODE (x
))) == 0)
6837 temp
= GEN_INT ((INTVAL (XEXP (x
, 1)) & mask
)
6838 << INTVAL (XEXP (XEXP (x
, 0), 1)));
6839 temp
= gen_binary (GET_CODE (x
), GET_MODE (x
),
6840 XEXP (XEXP (x
, 0), 0), temp
);
6841 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), temp
,
6842 XEXP (XEXP (x
, 0), 1));
6843 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
6847 /* For most binary operations, just propagate into the operation and
6848 change the mode if we have an operation of that mode. */
6850 op0
= gen_lowpart_for_combine (op_mode
,
6851 force_to_mode (XEXP (x
, 0), mode
, mask
,
6853 op1
= gen_lowpart_for_combine (op_mode
,
6854 force_to_mode (XEXP (x
, 1), mode
, mask
,
6857 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6858 MASK since OP1 might have been sign-extended but we never want
6859 to turn on extra bits, since combine might have previously relied
6860 on them being off. */
6861 if (GET_CODE (op1
) == CONST_INT
&& (code
== IOR
|| code
== XOR
)
6862 && (INTVAL (op1
) & mask
) != 0)
6863 op1
= GEN_INT (INTVAL (op1
) & mask
);
6865 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
6866 x
= gen_binary (code
, op_mode
, op0
, op1
);
6870 /* For left shifts, do the same, but just for the first operand.
6871 However, we cannot do anything with shifts where we cannot
6872 guarantee that the counts are smaller than the size of the mode
6873 because such a count will have a different meaning in a
6876 if (! (GET_CODE (XEXP (x
, 1)) == CONST_INT
6877 && INTVAL (XEXP (x
, 1)) >= 0
6878 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (mode
))
6879 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
6880 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
6881 < (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
))))
6884 /* If the shift count is a constant and we can do arithmetic in
6885 the mode of the shift, refine which bits we need. Otherwise, use the
6886 conservative form of the mask. */
6887 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6888 && INTVAL (XEXP (x
, 1)) >= 0
6889 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (op_mode
)
6890 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
6891 mask
>>= INTVAL (XEXP (x
, 1));
6895 op0
= gen_lowpart_for_combine (op_mode
,
6896 force_to_mode (XEXP (x
, 0), op_mode
,
6897 mask
, reg
, next_select
));
6899 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
6900 x
= gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
6904 /* Here we can only do something if the shift count is a constant,
6905 this shift constant is valid for the host, and we can do arithmetic
6908 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6909 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
6910 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
6912 rtx inner
= XEXP (x
, 0);
6913 unsigned HOST_WIDE_INT inner_mask
;
6915 /* Select the mask of the bits we need for the shift operand. */
6916 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
6918 /* We can only change the mode of the shift if we can do arithmetic
6919 in the mode of the shift and INNER_MASK is no wider than the
6920 width of OP_MODE. */
6921 if (GET_MODE_BITSIZE (op_mode
) > HOST_BITS_PER_WIDE_INT
6922 || (inner_mask
& ~GET_MODE_MASK (op_mode
)) != 0)
6923 op_mode
= GET_MODE (x
);
6925 inner
= force_to_mode (inner
, op_mode
, inner_mask
, reg
, next_select
);
6927 if (GET_MODE (x
) != op_mode
|| inner
!= XEXP (x
, 0))
6928 x
= gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
6931 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6932 shift and AND produces only copies of the sign bit (C2 is one less
6933 than a power of two), we can do this with just a shift. */
6935 if (GET_CODE (x
) == LSHIFTRT
6936 && GET_CODE (XEXP (x
, 1)) == CONST_INT
6937 /* The shift puts one of the sign bit copies in the least significant
6939 && ((INTVAL (XEXP (x
, 1))
6940 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
6941 >= GET_MODE_BITSIZE (GET_MODE (x
)))
6942 && exact_log2 (mask
+ 1) >= 0
6943 /* Number of bits left after the shift must be more than the mask
6945 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
6946 <= GET_MODE_BITSIZE (GET_MODE (x
)))
6947 /* Must be more sign bit copies than the mask needs. */
6948 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
6949 >= exact_log2 (mask
+ 1)))
6950 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
6951 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x
))
6952 - exact_log2 (mask
+ 1)));
6957 /* If we are just looking for the sign bit, we don't need this shift at
6958 all, even if it has a variable count. */
6959 if (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
6960 && (mask
== ((unsigned HOST_WIDE_INT
) 1
6961 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
6962 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
6964 /* If this is a shift by a constant, get a mask that contains those bits
6965 that are not copies of the sign bit. We then have two cases: If
6966 MASK only includes those bits, this can be a logical shift, which may
6967 allow simplifications. If MASK is a single-bit field not within
6968 those bits, we are requesting a copy of the sign bit and hence can
6969 shift the sign bit to the appropriate location. */
6971 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0
6972 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
6976 /* If the considered data is wider then HOST_WIDE_INT, we can't
6977 represent a mask for all its bits in a single scalar.
6978 But we only care about the lower bits, so calculate these. */
6980 if (GET_MODE_BITSIZE (GET_MODE (x
)) > HOST_BITS_PER_WIDE_INT
)
6982 nonzero
= ~(HOST_WIDE_INT
) 0;
6984 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6985 is the number of bits a full-width mask would have set.
6986 We need only shift if these are fewer than nonzero can
6987 hold. If not, we must keep all bits set in nonzero. */
6989 if (GET_MODE_BITSIZE (GET_MODE (x
)) - INTVAL (XEXP (x
, 1))
6990 < HOST_BITS_PER_WIDE_INT
)
6991 nonzero
>>= INTVAL (XEXP (x
, 1))
6992 + HOST_BITS_PER_WIDE_INT
6993 - GET_MODE_BITSIZE (GET_MODE (x
)) ;
6997 nonzero
= GET_MODE_MASK (GET_MODE (x
));
6998 nonzero
>>= INTVAL (XEXP (x
, 1));
7001 if ((mask
& ~nonzero
) == 0
7002 || (i
= exact_log2 (mask
)) >= 0)
7004 x
= simplify_shift_const
7005 (x
, LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
7006 i
< 0 ? INTVAL (XEXP (x
, 1))
7007 : GET_MODE_BITSIZE (GET_MODE (x
)) - 1 - i
);
7009 if (GET_CODE (x
) != ASHIFTRT
)
7010 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7014 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
7015 even if the shift count isn't a constant. */
7017 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1));
7021 /* If this is a zero- or sign-extension operation that just affects bits
7022 we don't care about, remove it. Be sure the call above returned
7023 something that is still a shift. */
7025 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
7026 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7027 && INTVAL (XEXP (x
, 1)) >= 0
7028 && (INTVAL (XEXP (x
, 1))
7029 <= GET_MODE_BITSIZE (GET_MODE (x
)) - (floor_log2 (mask
) + 1))
7030 && GET_CODE (XEXP (x
, 0)) == ASHIFT
7031 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7032 && INTVAL (XEXP (XEXP (x
, 0), 1)) == INTVAL (XEXP (x
, 1)))
7033 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
7040 /* If the shift count is constant and we can do computations
7041 in the mode of X, compute where the bits we care about are.
7042 Otherwise, we can't do anything. Don't change the mode of
7043 the shift or propagate MODE into the shift, though. */
7044 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7045 && INTVAL (XEXP (x
, 1)) >= 0)
7047 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
7048 GET_MODE (x
), GEN_INT (mask
),
7050 if (temp
&& GET_CODE(temp
) == CONST_INT
)
7052 force_to_mode (XEXP (x
, 0), GET_MODE (x
),
7053 INTVAL (temp
), reg
, next_select
));
7058 /* If we just want the low-order bit, the NEG isn't needed since it
7059 won't change the low-order bit. */
7061 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, just_select
);
7063 /* We need any bits less significant than the most significant bit in
7064 MASK since carries from those bits will affect the bits we are
7070 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7071 same as the XOR case above. Ensure that the constant we form is not
7072 wider than the mode of X. */
7074 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7075 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7076 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7077 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
7078 < GET_MODE_BITSIZE (GET_MODE (x
)))
7079 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
7081 temp
= GEN_INT (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)));
7082 temp
= gen_binary (XOR
, GET_MODE (x
), XEXP (XEXP (x
, 0), 0), temp
);
7083 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), temp
, XEXP (XEXP (x
, 0), 1));
7085 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7088 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7089 use the full mask inside the NOT. */
7093 op0
= gen_lowpart_for_combine (op_mode
,
7094 force_to_mode (XEXP (x
, 0), mode
, mask
,
7096 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
7097 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
7101 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7102 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7103 which is equal to STORE_FLAG_VALUE. */
7104 if ((mask
& ~STORE_FLAG_VALUE
) == 0 && XEXP (x
, 1) == const0_rtx
7105 && exact_log2 (nonzero_bits (XEXP (x
, 0), mode
)) >= 0
7106 && nonzero_bits (XEXP (x
, 0), mode
) == STORE_FLAG_VALUE
)
7107 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
7112 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7113 written in a narrower mode. We play it safe and do not do so. */
7116 gen_lowpart_for_combine (GET_MODE (x
),
7117 force_to_mode (XEXP (x
, 1), mode
,
7118 mask
, reg
, next_select
)));
7120 gen_lowpart_for_combine (GET_MODE (x
),
7121 force_to_mode (XEXP (x
, 2), mode
,
7122 mask
, reg
,next_select
)));
7129 /* Ensure we return a value of the proper mode. */
7130 return gen_lowpart_for_combine (mode
, x
);
7133 /* Return nonzero if X is an expression that has one of two values depending on
7134 whether some other value is zero or nonzero. In that case, we return the
7135 value that is being tested, *PTRUE is set to the value if the rtx being
7136 returned has a nonzero value, and *PFALSE is set to the other alternative.
7138 If we return zero, we set *PTRUE and *PFALSE to X. */
7141 if_then_else_cond (x
, ptrue
, pfalse
)
7143 rtx
*ptrue
, *pfalse
;
7145 enum machine_mode mode
= GET_MODE (x
);
7146 enum rtx_code code
= GET_CODE (x
);
7147 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
7148 unsigned HOST_WIDE_INT nz
;
7150 /* If we are comparing a value against zero, we are done. */
7151 if ((code
== NE
|| code
== EQ
)
7152 && GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) == 0)
7154 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
7155 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
7159 /* If this is a unary operation whose operand has one of two values, apply
7160 our opcode to compute those values. */
7161 else if (GET_RTX_CLASS (code
) == '1'
7162 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
7164 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
7165 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
7166 GET_MODE (XEXP (x
, 0)));
7170 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7171 make can't possibly match and would suppress other optimizations. */
7172 else if (code
== COMPARE
)
7175 /* If this is a binary operation, see if either side has only one of two
7176 values. If either one does or if both do and they are conditional on
7177 the same value, compute the new true and false values. */
7178 else if (GET_RTX_CLASS (code
) == 'c' || GET_RTX_CLASS (code
) == '2'
7179 || GET_RTX_CLASS (code
) == '<')
7181 cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
);
7182 cond1
= if_then_else_cond (XEXP (x
, 1), &true1
, &false1
);
7184 if ((cond0
!= 0 || cond1
!= 0)
7185 && ! (cond0
!= 0 && cond1
!= 0 && ! rtx_equal_p (cond0
, cond1
)))
7187 /* If if_then_else_cond returned zero, then true/false are the
7188 same rtl. We must copy one of them to prevent invalid rtl
7191 true0
= copy_rtx (true0
);
7192 else if (cond1
== 0)
7193 true1
= copy_rtx (true1
);
7195 *ptrue
= gen_binary (code
, mode
, true0
, true1
);
7196 *pfalse
= gen_binary (code
, mode
, false0
, false1
);
7197 return cond0
? cond0
: cond1
;
7200 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7201 operands is zero when the other is non-zero, and vice-versa,
7202 and STORE_FLAG_VALUE is 1 or -1. */
7204 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7205 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
7207 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7209 rtx op0
= XEXP (XEXP (x
, 0), 1);
7210 rtx op1
= XEXP (XEXP (x
, 1), 1);
7212 cond0
= XEXP (XEXP (x
, 0), 0);
7213 cond1
= XEXP (XEXP (x
, 1), 0);
7215 if (GET_RTX_CLASS (GET_CODE (cond0
)) == '<'
7216 && GET_RTX_CLASS (GET_CODE (cond1
)) == '<'
7217 && ((GET_CODE (cond0
) == combine_reversed_comparison_code (cond1
)
7218 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7219 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7220 || ((swap_condition (GET_CODE (cond0
))
7221 == combine_reversed_comparison_code (cond1
))
7222 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7223 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7224 && ! side_effects_p (x
))
7226 *ptrue
= gen_binary (MULT
, mode
, op0
, const_true_rtx
);
7227 *pfalse
= gen_binary (MULT
, mode
,
7229 ? simplify_gen_unary (NEG
, mode
, op1
,
7237 /* Similarly for MULT, AND and UMIN, except that for these the result
7239 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7240 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
7241 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7243 cond0
= XEXP (XEXP (x
, 0), 0);
7244 cond1
= XEXP (XEXP (x
, 1), 0);
7246 if (GET_RTX_CLASS (GET_CODE (cond0
)) == '<'
7247 && GET_RTX_CLASS (GET_CODE (cond1
)) == '<'
7248 && ((GET_CODE (cond0
) == combine_reversed_comparison_code (cond1
)
7249 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7250 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7251 || ((swap_condition (GET_CODE (cond0
))
7252 == combine_reversed_comparison_code (cond1
))
7253 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7254 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7255 && ! side_effects_p (x
))
7257 *ptrue
= *pfalse
= const0_rtx
;
7263 else if (code
== IF_THEN_ELSE
)
7265 /* If we have IF_THEN_ELSE already, extract the condition and
7266 canonicalize it if it is NE or EQ. */
7267 cond0
= XEXP (x
, 0);
7268 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
7269 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
7270 return XEXP (cond0
, 0);
7271 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
7273 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
7274 return XEXP (cond0
, 0);
7280 /* If X is a SUBREG, we can narrow both the true and false values
7281 if the inner expression, if there is a condition. */
7282 else if (code
== SUBREG
7283 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
7286 *ptrue
= simplify_gen_subreg (mode
, true0
,
7287 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
7288 *pfalse
= simplify_gen_subreg (mode
, false0
,
7289 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
7294 /* If X is a constant, this isn't special and will cause confusions
7295 if we treat it as such. Likewise if it is equivalent to a constant. */
7296 else if (CONSTANT_P (x
)
7297 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
7300 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7301 will be least confusing to the rest of the compiler. */
7302 else if (mode
== BImode
)
7304 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
7308 /* If X is known to be either 0 or -1, those are the true and
7309 false values when testing X. */
7310 else if (x
== constm1_rtx
|| x
== const0_rtx
7311 || (mode
!= VOIDmode
7312 && num_sign_bit_copies (x
, mode
) == GET_MODE_BITSIZE (mode
)))
7314 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
7318 /* Likewise for 0 or a single bit. */
7319 else if (mode
!= VOIDmode
7320 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7321 && exact_log2 (nz
= nonzero_bits (x
, mode
)) >= 0)
7323 *ptrue
= GEN_INT (nz
), *pfalse
= const0_rtx
;
7327 /* Otherwise fail; show no condition with true and false values the same. */
7328 *ptrue
= *pfalse
= x
;
7332 /* Return the value of expression X given the fact that condition COND
7333 is known to be true when applied to REG as its first operand and VAL
7334 as its second. X is known to not be shared and so can be modified in
7337 We only handle the simplest cases, and specifically those cases that
7338 arise with IF_THEN_ELSE expressions. */
7341 known_cond (x
, cond
, reg
, val
)
7346 enum rtx_code code
= GET_CODE (x
);
7351 if (side_effects_p (x
))
7354 /* If either operand of the condition is a floating point value,
7355 then we have to avoid collapsing an EQ comparison. */
7357 && rtx_equal_p (x
, reg
)
7358 && ! FLOAT_MODE_P (GET_MODE (x
))
7359 && ! FLOAT_MODE_P (GET_MODE (val
)))
7362 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
7365 /* If X is (abs REG) and we know something about REG's relationship
7366 with zero, we may be able to simplify this. */
7368 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
7371 case GE
: case GT
: case EQ
:
7374 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
7376 GET_MODE (XEXP (x
, 0)));
7381 /* The only other cases we handle are MIN, MAX, and comparisons if the
7382 operands are the same as REG and VAL. */
7384 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == 'c')
7386 if (rtx_equal_p (XEXP (x
, 0), val
))
7387 cond
= swap_condition (cond
), temp
= val
, val
= reg
, reg
= temp
;
7389 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
7391 if (GET_RTX_CLASS (code
) == '<')
7393 if (comparison_dominates_p (cond
, code
))
7394 return const_true_rtx
;
7396 code
= combine_reversed_comparison_code (x
);
7398 && comparison_dominates_p (cond
, code
))
7403 else if (code
== SMAX
|| code
== SMIN
7404 || code
== UMIN
|| code
== UMAX
)
7406 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
7408 /* Do not reverse the condition when it is NE or EQ.
7409 This is because we cannot conclude anything about
7410 the value of 'SMAX (x, y)' when x is not equal to y,
7411 but we can when x equals y. */
7412 if ((code
== SMAX
|| code
== UMAX
)
7413 && ! (cond
== EQ
|| cond
== NE
))
7414 cond
= reverse_condition (cond
);
7419 return unsignedp
? x
: XEXP (x
, 1);
7421 return unsignedp
? x
: XEXP (x
, 0);
7423 return unsignedp
? XEXP (x
, 1) : x
;
7425 return unsignedp
? XEXP (x
, 0) : x
;
7433 fmt
= GET_RTX_FORMAT (code
);
7434 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7437 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
7438 else if (fmt
[i
] == 'E')
7439 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7440 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
7447 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7448 assignment as a field assignment. */
7451 rtx_equal_for_field_assignment_p (x
, y
)
7455 if (x
== y
|| rtx_equal_p (x
, y
))
7458 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
7461 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7462 Note that all SUBREGs of MEM are paradoxical; otherwise they
7463 would have been rewritten. */
7464 if (GET_CODE (x
) == MEM
&& GET_CODE (y
) == SUBREG
7465 && GET_CODE (SUBREG_REG (y
)) == MEM
7466 && rtx_equal_p (SUBREG_REG (y
),
7467 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y
)), x
)))
7470 if (GET_CODE (y
) == MEM
&& GET_CODE (x
) == SUBREG
7471 && GET_CODE (SUBREG_REG (x
)) == MEM
7472 && rtx_equal_p (SUBREG_REG (x
),
7473 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x
)), y
)))
7476 /* We used to see if get_last_value of X and Y were the same but that's
7477 not correct. In one direction, we'll cause the assignment to have
7478 the wrong destination and in the case, we'll import a register into this
7479 insn that might have already have been dead. So fail if none of the
7480 above cases are true. */
7484 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7485 Return that assignment if so.
7487 We only handle the most common cases. */
7490 make_field_assignment (x
)
7493 rtx dest
= SET_DEST (x
);
7494 rtx src
= SET_SRC (x
);
7499 unsigned HOST_WIDE_INT len
;
7501 enum machine_mode mode
;
7503 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7504 a clear of a one-bit field. We will have changed it to
7505 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7508 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
7509 && GET_CODE (XEXP (XEXP (src
, 0), 0)) == CONST_INT
7510 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
7511 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7513 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7516 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7520 else if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
7521 && subreg_lowpart_p (XEXP (src
, 0))
7522 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
7523 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
7524 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
7525 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
7526 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7528 assign
= make_extraction (VOIDmode
, dest
, 0,
7529 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
7532 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7536 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7538 else if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
7539 && XEXP (XEXP (src
, 0), 0) == const1_rtx
7540 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7542 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7545 return gen_rtx_SET (VOIDmode
, assign
, const1_rtx
);
7549 /* The other case we handle is assignments into a constant-position
7550 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7551 a mask that has all one bits except for a group of zero bits and
7552 OTHER is known to have zeros where C1 has ones, this is such an
7553 assignment. Compute the position and length from C1. Shift OTHER
7554 to the appropriate position, force it to the required mode, and
7555 make the extraction. Check for the AND in both operands. */
7557 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
7560 rhs
= expand_compound_operation (XEXP (src
, 0));
7561 lhs
= expand_compound_operation (XEXP (src
, 1));
7563 if (GET_CODE (rhs
) == AND
7564 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
7565 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
7566 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
7567 else if (GET_CODE (lhs
) == AND
7568 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
7569 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
7570 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
7574 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (GET_MODE (dest
)), &len
);
7575 if (pos
< 0 || pos
+ len
> GET_MODE_BITSIZE (GET_MODE (dest
))
7576 || GET_MODE_BITSIZE (GET_MODE (dest
)) > HOST_BITS_PER_WIDE_INT
7577 || (c1
& nonzero_bits (other
, GET_MODE (dest
))) != 0)
7580 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
7584 /* The mode to use for the source is the mode of the assignment, or of
7585 what is inside a possible STRICT_LOW_PART. */
7586 mode
= (GET_CODE (assign
) == STRICT_LOW_PART
7587 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
7589 /* Shift OTHER right POS places and make it the source, restricting it
7590 to the proper length and mode. */
7592 src
= force_to_mode (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
7593 GET_MODE (src
), other
, pos
),
7595 GET_MODE_BITSIZE (mode
) >= HOST_BITS_PER_WIDE_INT
7596 ? ~(unsigned HOST_WIDE_INT
) 0
7597 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7600 return gen_rtx_SET (VOIDmode
, assign
, src
);
7603 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7607 apply_distributive_law (x
)
7610 enum rtx_code code
= GET_CODE (x
);
7611 rtx lhs
, rhs
, other
;
7613 enum rtx_code inner_code
;
7615 /* Distributivity is not true for floating point.
7616 It can change the value. So don't do it.
7617 -- rms and moshier@world.std.com. */
7618 if (FLOAT_MODE_P (GET_MODE (x
)))
7621 /* The outer operation can only be one of the following: */
7622 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
7623 && code
!= PLUS
&& code
!= MINUS
)
7626 lhs
= XEXP (x
, 0), rhs
= XEXP (x
, 1);
7628 /* If either operand is a primitive we can't do anything, so get out
7630 if (GET_RTX_CLASS (GET_CODE (lhs
)) == 'o'
7631 || GET_RTX_CLASS (GET_CODE (rhs
)) == 'o')
7634 lhs
= expand_compound_operation (lhs
);
7635 rhs
= expand_compound_operation (rhs
);
7636 inner_code
= GET_CODE (lhs
);
7637 if (inner_code
!= GET_CODE (rhs
))
7640 /* See if the inner and outer operations distribute. */
7647 /* These all distribute except over PLUS. */
7648 if (code
== PLUS
|| code
== MINUS
)
7653 if (code
!= PLUS
&& code
!= MINUS
)
7658 /* This is also a multiply, so it distributes over everything. */
7662 /* Non-paradoxical SUBREGs distributes over all operations, provided
7663 the inner modes and byte offsets are the same, this is an extraction
7664 of a low-order part, we don't convert an fp operation to int or
7665 vice versa, and we would not be converting a single-word
7666 operation into a multi-word operation. The latter test is not
7667 required, but it prevents generating unneeded multi-word operations.
7668 Some of the previous tests are redundant given the latter test, but
7669 are retained because they are required for correctness.
7671 We produce the result slightly differently in this case. */
7673 if (GET_MODE (SUBREG_REG (lhs
)) != GET_MODE (SUBREG_REG (rhs
))
7674 || SUBREG_BYTE (lhs
) != SUBREG_BYTE (rhs
)
7675 || ! subreg_lowpart_p (lhs
)
7676 || (GET_MODE_CLASS (GET_MODE (lhs
))
7677 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs
))))
7678 || (GET_MODE_SIZE (GET_MODE (lhs
))
7679 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))))
7680 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))) > UNITS_PER_WORD
)
7683 tem
= gen_binary (code
, GET_MODE (SUBREG_REG (lhs
)),
7684 SUBREG_REG (lhs
), SUBREG_REG (rhs
));
7685 return gen_lowpart_for_combine (GET_MODE (x
), tem
);
7691 /* Set LHS and RHS to the inner operands (A and B in the example
7692 above) and set OTHER to the common operand (C in the example).
7693 These is only one way to do this unless the inner operation is
7695 if (GET_RTX_CLASS (inner_code
) == 'c'
7696 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
7697 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
7698 else if (GET_RTX_CLASS (inner_code
) == 'c'
7699 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
7700 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
7701 else if (GET_RTX_CLASS (inner_code
) == 'c'
7702 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
7703 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
7704 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
7705 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
7709 /* Form the new inner operation, seeing if it simplifies first. */
7710 tem
= gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
7712 /* There is one exception to the general way of distributing:
7713 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7714 if (code
== XOR
&& inner_code
== IOR
)
7717 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
7720 /* We may be able to continuing distributing the result, so call
7721 ourselves recursively on the inner operation before forming the
7722 outer operation, which we return. */
7723 return gen_binary (inner_code
, GET_MODE (x
),
7724 apply_distributive_law (tem
), other
);
7727 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7730 Return an equivalent form, if different from X. Otherwise, return X. If
7731 X is zero, we are to always construct the equivalent form. */
7734 simplify_and_const_int (x
, mode
, varop
, constop
)
7736 enum machine_mode mode
;
7738 unsigned HOST_WIDE_INT constop
;
7740 unsigned HOST_WIDE_INT nonzero
;
7743 /* Simplify VAROP knowing that we will be only looking at some of the
7745 varop
= force_to_mode (varop
, mode
, constop
, NULL_RTX
, 0);
7747 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7748 CONST_INT, we are done. */
7749 if (GET_CODE (varop
) == CLOBBER
|| GET_CODE (varop
) == CONST_INT
)
7752 /* See what bits may be nonzero in VAROP. Unlike the general case of
7753 a call to nonzero_bits, here we don't care about bits outside
7756 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
7757 nonzero
= trunc_int_for_mode (nonzero
, mode
);
7759 /* Turn off all bits in the constant that are known to already be zero.
7760 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7761 which is tested below. */
7765 /* If we don't have any bits left, return zero. */
7769 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7770 a power of two, we can replace this with a ASHIFT. */
7771 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
7772 && (i
= exact_log2 (constop
)) >= 0)
7773 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
7775 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7776 or XOR, then try to apply the distributive law. This may eliminate
7777 operations if either branch can be simplified because of the AND.
7778 It may also make some cases more complex, but those cases probably
7779 won't match a pattern either with or without this. */
7781 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
7783 gen_lowpart_for_combine
7785 apply_distributive_law
7786 (gen_binary (GET_CODE (varop
), GET_MODE (varop
),
7787 simplify_and_const_int (NULL_RTX
, GET_MODE (varop
),
7788 XEXP (varop
, 0), constop
),
7789 simplify_and_const_int (NULL_RTX
, GET_MODE (varop
),
7790 XEXP (varop
, 1), constop
))));
7792 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7793 if we already had one (just check for the simplest cases). */
7794 if (x
&& GET_CODE (XEXP (x
, 0)) == SUBREG
7795 && GET_MODE (XEXP (x
, 0)) == mode
7796 && SUBREG_REG (XEXP (x
, 0)) == varop
)
7797 varop
= XEXP (x
, 0);
7799 varop
= gen_lowpart_for_combine (mode
, varop
);
7801 /* If we can't make the SUBREG, try to return what we were given. */
7802 if (GET_CODE (varop
) == CLOBBER
)
7803 return x
? x
: varop
;
7805 /* If we are only masking insignificant bits, return VAROP. */
7806 if (constop
== nonzero
)
7809 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7810 else if (x
== 0 || GET_CODE (x
) != AND
|| GET_MODE (x
) != mode
)
7811 x
= gen_binary (AND
, mode
, varop
, GEN_INT (constop
));
7815 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
7816 || (unsigned HOST_WIDE_INT
) INTVAL (XEXP (x
, 1)) != constop
)
7817 SUBST (XEXP (x
, 1), GEN_INT (constop
));
7819 SUBST (XEXP (x
, 0), varop
);
7825 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7826 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7827 is less useful. We can't allow both, because that results in exponential
7828 run time recursion. There is a nullstone testcase that triggered
7829 this. This macro avoids accidental uses of num_sign_bit_copies. */
7830 #define num_sign_bit_copies()
7832 /* Given an expression, X, compute which bits in X can be non-zero.
7833 We don't care about bits outside of those defined in MODE.
7835 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7836 a shift, AND, or zero_extract, we can do better. */
7838 static unsigned HOST_WIDE_INT
7839 nonzero_bits (x
, mode
)
7841 enum machine_mode mode
;
7843 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
7844 unsigned HOST_WIDE_INT inner_nz
;
7846 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
7849 /* For floating-point values, assume all bits are needed. */
7850 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
))
7853 /* If X is wider than MODE, use its mode instead. */
7854 if (GET_MODE_BITSIZE (GET_MODE (x
)) > mode_width
)
7856 mode
= GET_MODE (x
);
7857 nonzero
= GET_MODE_MASK (mode
);
7858 mode_width
= GET_MODE_BITSIZE (mode
);
7861 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
7862 /* Our only callers in this case look for single bit values. So
7863 just return the mode mask. Those tests will then be false. */
7866 #ifndef WORD_REGISTER_OPERATIONS
7867 /* If MODE is wider than X, but both are a single word for both the host
7868 and target machines, we can compute this from which bits of the
7869 object might be nonzero in its own mode, taking into account the fact
7870 that on many CISC machines, accessing an object in a wider mode
7871 causes the high-order bits to become undefined. So they are
7872 not known to be zero. */
7874 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
7875 && GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
7876 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
7877 && GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (GET_MODE (x
)))
7879 nonzero
&= nonzero_bits (x
, GET_MODE (x
));
7880 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
7885 code
= GET_CODE (x
);
7889 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
7890 /* If pointers extend unsigned and this is a pointer in Pmode, say that
7891 all the bits above ptr_mode are known to be zero. */
7892 if (POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
7894 nonzero
&= GET_MODE_MASK (ptr_mode
);
7897 #ifdef STACK_BOUNDARY
7898 /* If this is the stack pointer, we may know something about its
7899 alignment. If PUSH_ROUNDING is defined, it is possible for the
7900 stack to be momentarily aligned only to that amount, so we pick
7901 the least alignment. */
7903 /* We can't check for arg_pointer_rtx here, because it is not
7904 guaranteed to have as much alignment as the stack pointer.
7905 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7906 alignment but the argument pointer has only 64 bit alignment. */
7908 if ((x
== frame_pointer_rtx
7909 || x
== stack_pointer_rtx
7910 || x
== hard_frame_pointer_rtx
7911 || (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
7912 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
))
7918 int sp_alignment
= STACK_BOUNDARY
/ BITS_PER_UNIT
;
7920 #ifdef PUSH_ROUNDING
7921 if (REGNO (x
) == STACK_POINTER_REGNUM
&& PUSH_ARGS
)
7922 sp_alignment
= MIN (PUSH_ROUNDING (1), sp_alignment
);
7925 /* We must return here, otherwise we may get a worse result from
7926 one of the choices below. There is nothing useful below as
7927 far as the stack pointer is concerned. */
7928 return nonzero
&= ~(sp_alignment
- 1);
7932 /* If X is a register whose nonzero bits value is current, use it.
7933 Otherwise, if X is a register whose value we can find, use that
7934 value. Otherwise, use the previously-computed global nonzero bits
7935 for this register. */
7937 if (reg_last_set_value
[REGNO (x
)] != 0
7938 && reg_last_set_mode
[REGNO (x
)] == mode
7939 && (reg_last_set_label
[REGNO (x
)] == label_tick
7940 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
7941 && REG_N_SETS (REGNO (x
)) == 1
7942 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
,
7944 && INSN_CUID (reg_last_set
[REGNO (x
)]) < subst_low_cuid
)
7945 return reg_last_set_nonzero_bits
[REGNO (x
)];
7947 tem
= get_last_value (x
);
7951 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7952 /* If X is narrower than MODE and TEM is a non-negative
7953 constant that would appear negative in the mode of X,
7954 sign-extend it for use in reg_nonzero_bits because some
7955 machines (maybe most) will actually do the sign-extension
7956 and this is the conservative approach.
7958 ??? For 2.5, try to tighten up the MD files in this regard
7959 instead of this kludge. */
7961 if (GET_MODE_BITSIZE (GET_MODE (x
)) < mode_width
7962 && GET_CODE (tem
) == CONST_INT
7964 && 0 != (INTVAL (tem
)
7965 & ((HOST_WIDE_INT
) 1
7966 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
7967 tem
= GEN_INT (INTVAL (tem
)
7968 | ((HOST_WIDE_INT
) (-1)
7969 << GET_MODE_BITSIZE (GET_MODE (x
))));
7971 return nonzero_bits (tem
, mode
);
7973 else if (nonzero_sign_valid
&& reg_nonzero_bits
[REGNO (x
)])
7974 return reg_nonzero_bits
[REGNO (x
)] & nonzero
;
7979 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7980 /* If X is negative in MODE, sign-extend the value. */
7981 if (INTVAL (x
) > 0 && mode_width
< BITS_PER_WORD
7982 && 0 != (INTVAL (x
) & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))))
7983 return (INTVAL (x
) | ((HOST_WIDE_INT
) (-1) << mode_width
));
7989 #ifdef LOAD_EXTEND_OP
7990 /* In many, if not most, RISC machines, reading a byte from memory
7991 zeros the rest of the register. Noticing that fact saves a lot
7992 of extra zero-extends. */
7993 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
7994 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
7999 case UNEQ
: case LTGT
:
8000 case GT
: case GTU
: case UNGT
:
8001 case LT
: case LTU
: case UNLT
:
8002 case GE
: case GEU
: case UNGE
:
8003 case LE
: case LEU
: case UNLE
:
8004 case UNORDERED
: case ORDERED
:
8006 /* If this produces an integer result, we know which bits are set.
8007 Code here used to clear bits outside the mode of X, but that is
8010 if (GET_MODE_CLASS (mode
) == MODE_INT
8011 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
8012 nonzero
= STORE_FLAG_VALUE
;
8017 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8018 and num_sign_bit_copies. */
8019 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
8020 == GET_MODE_BITSIZE (GET_MODE (x
)))
8024 if (GET_MODE_SIZE (GET_MODE (x
)) < mode_width
)
8025 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
8030 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8031 and num_sign_bit_copies. */
8032 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
8033 == GET_MODE_BITSIZE (GET_MODE (x
)))
8039 nonzero
&= (nonzero_bits (XEXP (x
, 0), mode
) & GET_MODE_MASK (mode
));
8043 nonzero
&= nonzero_bits (XEXP (x
, 0), mode
);
8044 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
8045 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
8049 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8050 Otherwise, show all the bits in the outer mode but not the inner
8052 inner_nz
= nonzero_bits (XEXP (x
, 0), mode
);
8053 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
8055 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
8057 & (((HOST_WIDE_INT
) 1
8058 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1))))
8059 inner_nz
|= (GET_MODE_MASK (mode
)
8060 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
8063 nonzero
&= inner_nz
;
8067 nonzero
&= (nonzero_bits (XEXP (x
, 0), mode
)
8068 & nonzero_bits (XEXP (x
, 1), mode
));
8072 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
8073 nonzero
&= (nonzero_bits (XEXP (x
, 0), mode
)
8074 | nonzero_bits (XEXP (x
, 1), mode
));
8077 case PLUS
: case MINUS
:
8079 case DIV
: case UDIV
:
8080 case MOD
: case UMOD
:
8081 /* We can apply the rules of arithmetic to compute the number of
8082 high- and low-order zero bits of these operations. We start by
8083 computing the width (position of the highest-order non-zero bit)
8084 and the number of low-order zero bits for each value. */
8086 unsigned HOST_WIDE_INT nz0
= nonzero_bits (XEXP (x
, 0), mode
);
8087 unsigned HOST_WIDE_INT nz1
= nonzero_bits (XEXP (x
, 1), mode
);
8088 int width0
= floor_log2 (nz0
) + 1;
8089 int width1
= floor_log2 (nz1
) + 1;
8090 int low0
= floor_log2 (nz0
& -nz0
);
8091 int low1
= floor_log2 (nz1
& -nz1
);
8092 HOST_WIDE_INT op0_maybe_minusp
8093 = (nz0
& ((HOST_WIDE_INT
) 1 << (mode_width
- 1)));
8094 HOST_WIDE_INT op1_maybe_minusp
8095 = (nz1
& ((HOST_WIDE_INT
) 1 << (mode_width
- 1)));
8096 unsigned int result_width
= mode_width
;
8104 && (XEXP (x
, 0) == stack_pointer_rtx
8105 || XEXP (x
, 0) == frame_pointer_rtx
)
8106 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
8108 int sp_alignment
= STACK_BOUNDARY
/ BITS_PER_UNIT
;
8110 nz0
= (GET_MODE_MASK (mode
) & ~(sp_alignment
- 1));
8111 nz1
= INTVAL (XEXP (x
, 1)) - STACK_BIAS
;
8112 width0
= floor_log2 (nz0
) + 1;
8113 width1
= floor_log2 (nz1
) + 1;
8114 low0
= floor_log2 (nz0
& -nz0
);
8115 low1
= floor_log2 (nz1
& -nz1
);
8118 result_width
= MAX (width0
, width1
) + 1;
8119 result_low
= MIN (low0
, low1
);
8122 result_low
= MIN (low0
, low1
);
8125 result_width
= width0
+ width1
;
8126 result_low
= low0
+ low1
;
8131 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
8132 result_width
= width0
;
8137 result_width
= width0
;
8142 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
8143 result_width
= MIN (width0
, width1
);
8144 result_low
= MIN (low0
, low1
);
8149 result_width
= MIN (width0
, width1
);
8150 result_low
= MIN (low0
, low1
);
8156 if (result_width
< mode_width
)
8157 nonzero
&= ((HOST_WIDE_INT
) 1 << result_width
) - 1;
8160 nonzero
&= ~(((HOST_WIDE_INT
) 1 << result_low
) - 1);
8162 #ifdef POINTERS_EXTEND_UNSIGNED
8163 /* If pointers extend unsigned and this is an addition or subtraction
8164 to a pointer in Pmode, all the bits above ptr_mode are known to be
8166 if (POINTERS_EXTEND_UNSIGNED
> 0 && GET_MODE (x
) == Pmode
8167 && (code
== PLUS
|| code
== MINUS
)
8168 && GET_CODE (XEXP (x
, 0)) == REG
&& REG_POINTER (XEXP (x
, 0)))
8169 nonzero
&= GET_MODE_MASK (ptr_mode
);
8175 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8176 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8177 nonzero
&= ((HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
8181 /* If this is a SUBREG formed for a promoted variable that has
8182 been zero-extended, we know that at least the high-order bits
8183 are zero, though others might be too. */
8185 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
))
8186 nonzero
= (GET_MODE_MASK (GET_MODE (x
))
8187 & nonzero_bits (SUBREG_REG (x
), GET_MODE (x
)));
8189 /* If the inner mode is a single word for both the host and target
8190 machines, we can compute this from which bits of the inner
8191 object might be nonzero. */
8192 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) <= BITS_PER_WORD
8193 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
8194 <= HOST_BITS_PER_WIDE_INT
))
8196 nonzero
&= nonzero_bits (SUBREG_REG (x
), mode
);
8198 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8199 /* If this is a typical RISC machine, we only have to worry
8200 about the way loads are extended. */
8201 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
8203 & (((unsigned HOST_WIDE_INT
) 1
8204 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) - 1))))
8206 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) != ZERO_EXTEND
)
8209 /* On many CISC machines, accessing an object in a wider mode
8210 causes the high-order bits to become undefined. So they are
8211 not known to be zero. */
8212 if (GET_MODE_SIZE (GET_MODE (x
))
8213 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8214 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
8215 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
))));
8224 /* The nonzero bits are in two classes: any bits within MODE
8225 that aren't in GET_MODE (x) are always significant. The rest of the
8226 nonzero bits are those that are significant in the operand of
8227 the shift when shifted the appropriate number of bits. This
8228 shows that high-order bits are cleared by the right shift and
8229 low-order bits by left shifts. */
8230 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8231 && INTVAL (XEXP (x
, 1)) >= 0
8232 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8234 enum machine_mode inner_mode
= GET_MODE (x
);
8235 unsigned int width
= GET_MODE_BITSIZE (inner_mode
);
8236 int count
= INTVAL (XEXP (x
, 1));
8237 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
8238 unsigned HOST_WIDE_INT op_nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
8239 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
8240 unsigned HOST_WIDE_INT outer
= 0;
8242 if (mode_width
> width
)
8243 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
8245 if (code
== LSHIFTRT
)
8247 else if (code
== ASHIFTRT
)
8251 /* If the sign bit may have been nonzero before the shift, we
8252 need to mark all the places it could have been copied to
8253 by the shift as possibly nonzero. */
8254 if (inner
& ((HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
8255 inner
|= (((HOST_WIDE_INT
) 1 << count
) - 1) << (width
- count
);
8257 else if (code
== ASHIFT
)
8260 inner
= ((inner
<< (count
% width
)
8261 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
8263 nonzero
&= (outer
| inner
);
8268 /* This is at most the number of bits in the mode. */
8269 nonzero
= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
) + 1)) - 1;
8273 nonzero
&= (nonzero_bits (XEXP (x
, 1), mode
)
8274 | nonzero_bits (XEXP (x
, 2), mode
));
8284 /* See the macro definition above. */
8285 #undef num_sign_bit_copies
8287 /* Return the number of bits at the high-order end of X that are known to
8288 be equal to the sign bit. X will be used in mode MODE; if MODE is
8289 VOIDmode, X will be used in its own mode. The returned value will always
8290 be between 1 and the number of bits in MODE. */
8293 num_sign_bit_copies (x
, mode
)
8295 enum machine_mode mode
;
8297 enum rtx_code code
= GET_CODE (x
);
8298 unsigned int bitwidth
;
8299 int num0
, num1
, result
;
8300 unsigned HOST_WIDE_INT nonzero
;
8303 /* If we weren't given a mode, use the mode of X. If the mode is still
8304 VOIDmode, we don't know anything. Likewise if one of the modes is
8307 if (mode
== VOIDmode
)
8308 mode
= GET_MODE (x
);
8310 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
)))
8313 bitwidth
= GET_MODE_BITSIZE (mode
);
8315 /* For a smaller object, just ignore the high bits. */
8316 if (bitwidth
< GET_MODE_BITSIZE (GET_MODE (x
)))
8318 num0
= num_sign_bit_copies (x
, GET_MODE (x
));
8320 num0
- (int) (GET_MODE_BITSIZE (GET_MODE (x
)) - bitwidth
));
8323 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_BITSIZE (GET_MODE (x
)))
8325 #ifndef WORD_REGISTER_OPERATIONS
8326 /* If this machine does not do all register operations on the entire
8327 register and MODE is wider than the mode of X, we can say nothing
8328 at all about the high-order bits. */
8331 /* Likewise on machines that do, if the mode of the object is smaller
8332 than a word and loads of that size don't sign extend, we can say
8333 nothing about the high order bits. */
8334 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
8335 #ifdef LOAD_EXTEND_OP
8336 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
8347 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8348 /* If pointers extend signed and this is a pointer in Pmode, say that
8349 all the bits above ptr_mode are known to be sign bit copies. */
8350 if (! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
&& mode
== Pmode
8352 return GET_MODE_BITSIZE (Pmode
) - GET_MODE_BITSIZE (ptr_mode
) + 1;
8355 if (reg_last_set_value
[REGNO (x
)] != 0
8356 && reg_last_set_mode
[REGNO (x
)] == mode
8357 && (reg_last_set_label
[REGNO (x
)] == label_tick
8358 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
8359 && REG_N_SETS (REGNO (x
)) == 1
8360 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
,
8362 && INSN_CUID (reg_last_set
[REGNO (x
)]) < subst_low_cuid
)
8363 return reg_last_set_sign_bit_copies
[REGNO (x
)];
8365 tem
= get_last_value (x
);
8367 return num_sign_bit_copies (tem
, mode
);
8369 if (nonzero_sign_valid
&& reg_sign_bit_copies
[REGNO (x
)] != 0)
8370 return reg_sign_bit_copies
[REGNO (x
)];
8374 #ifdef LOAD_EXTEND_OP
8375 /* Some RISC machines sign-extend all loads of smaller than a word. */
8376 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
8377 return MAX (1, ((int) bitwidth
8378 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1));
8383 /* If the constant is negative, take its 1's complement and remask.
8384 Then see how many zero bits we have. */
8385 nonzero
= INTVAL (x
) & GET_MODE_MASK (mode
);
8386 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
8387 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8388 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
8390 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
8393 /* If this is a SUBREG for a promoted object that is sign-extended
8394 and we are looking at it in a wider mode, we know that at least the
8395 high-order bits are known to be sign bit copies. */
8397 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
8399 num0
= num_sign_bit_copies (SUBREG_REG (x
), mode
);
8400 return MAX ((int) bitwidth
8401 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1,
8405 /* For a smaller object, just ignore the high bits. */
8406 if (bitwidth
<= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))))
8408 num0
= num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
);
8409 return MAX (1, (num0
8410 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
8414 #ifdef WORD_REGISTER_OPERATIONS
8415 #ifdef LOAD_EXTEND_OP
8416 /* For paradoxical SUBREGs on machines where all register operations
8417 affect the entire register, just look inside. Note that we are
8418 passing MODE to the recursive call, so the number of sign bit copies
8419 will remain relative to that mode, not the inner mode. */
8421 /* This works only if loads sign extend. Otherwise, if we get a
8422 reload for the inner part, it may be loaded from the stack, and
8423 then we lose all sign bit copies that existed before the store
8426 if ((GET_MODE_SIZE (GET_MODE (x
))
8427 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8428 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
)
8429 return num_sign_bit_copies (SUBREG_REG (x
), mode
);
8435 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
8436 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
8440 return (bitwidth
- GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
8441 + num_sign_bit_copies (XEXP (x
, 0), VOIDmode
));
8444 /* For a smaller object, just ignore the high bits. */
8445 num0
= num_sign_bit_copies (XEXP (x
, 0), VOIDmode
);
8446 return MAX (1, (num0
- (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
8450 return num_sign_bit_copies (XEXP (x
, 0), mode
);
8452 case ROTATE
: case ROTATERT
:
8453 /* If we are rotating left by a number of bits less than the number
8454 of sign bit copies, we can just subtract that amount from the
8456 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8457 && INTVAL (XEXP (x
, 1)) >= 0
8458 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
8460 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8461 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
8462 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
8467 /* In general, this subtracts one sign bit copy. But if the value
8468 is known to be positive, the number of sign bit copies is the
8469 same as that of the input. Finally, if the input has just one bit
8470 that might be nonzero, all the bits are copies of the sign bit. */
8471 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8472 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
8473 return num0
> 1 ? num0
- 1 : 1;
8475 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
8480 && (((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
8485 case IOR
: case AND
: case XOR
:
8486 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
8487 /* Logical operations will preserve the number of sign-bit copies.
8488 MIN and MAX operations always return one of the operands. */
8489 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8490 num1
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8491 return MIN (num0
, num1
);
8493 case PLUS
: case MINUS
:
8494 /* For addition and subtraction, we can have a 1-bit carry. However,
8495 if we are subtracting 1 from a positive number, there will not
8496 be such a carry. Furthermore, if the positive number is known to
8497 be 0 or 1, we know the result is either -1 or 0. */
8499 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
8500 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
8502 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
8503 if ((((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
8504 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
8505 : bitwidth
- floor_log2 (nonzero
) - 1);
8508 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8509 num1
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8510 result
= MAX (1, MIN (num0
, num1
) - 1);
8512 #ifdef POINTERS_EXTEND_UNSIGNED
8513 /* If pointers extend signed and this is an addition or subtraction
8514 to a pointer in Pmode, all the bits above ptr_mode are known to be
8516 if (! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
8517 && (code
== PLUS
|| code
== MINUS
)
8518 && GET_CODE (XEXP (x
, 0)) == REG
&& REG_POINTER (XEXP (x
, 0)))
8519 result
= MAX ((int)(GET_MODE_BITSIZE (Pmode
)
8520 - GET_MODE_BITSIZE (ptr_mode
) + 1),
8526 /* The number of bits of the product is the sum of the number of
8527 bits of both terms. However, unless one of the terms if known
8528 to be positive, we must allow for an additional bit since negating
8529 a negative number can remove one sign bit copy. */
8531 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8532 num1
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8534 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
8536 && (bitwidth
> HOST_BITS_PER_WIDE_INT
8537 || (((nonzero_bits (XEXP (x
, 0), mode
)
8538 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8539 && ((nonzero_bits (XEXP (x
, 1), mode
)
8540 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))))
8543 return MAX (1, result
);
8546 /* The result must be <= the first operand. If the first operand
8547 has the high bit set, we know nothing about the number of sign
8549 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
8551 else if ((nonzero_bits (XEXP (x
, 0), mode
)
8552 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8555 return num_sign_bit_copies (XEXP (x
, 0), mode
);
8558 /* The result must be <= the second operand. */
8559 return num_sign_bit_copies (XEXP (x
, 1), mode
);
8562 /* Similar to unsigned division, except that we have to worry about
8563 the case where the divisor is negative, in which case we have
8565 result
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8567 && (bitwidth
> HOST_BITS_PER_WIDE_INT
8568 || (nonzero_bits (XEXP (x
, 1), mode
)
8569 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
8575 result
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8577 && (bitwidth
> HOST_BITS_PER_WIDE_INT
8578 || (nonzero_bits (XEXP (x
, 1), mode
)
8579 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
8585 /* Shifts by a constant add to the number of bits equal to the
8587 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8588 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8589 && INTVAL (XEXP (x
, 1)) > 0)
8590 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
8595 /* Left shifts destroy copies. */
8596 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
8597 || INTVAL (XEXP (x
, 1)) < 0
8598 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
)
8601 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8602 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
8605 num0
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8606 num1
= num_sign_bit_copies (XEXP (x
, 2), mode
);
8607 return MIN (num0
, num1
);
8609 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
8610 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
8611 case GEU
: case GTU
: case LEU
: case LTU
:
8612 case UNORDERED
: case ORDERED
:
8613 /* If the constant is negative, take its 1's complement and remask.
8614 Then see how many zero bits we have. */
8615 nonzero
= STORE_FLAG_VALUE
;
8616 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
8617 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8618 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
8620 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
8627 /* If we haven't been able to figure it out by one of the above rules,
8628 see if some of the high-order bits are known to be zero. If so,
8629 count those bits and return one less than that amount. If we can't
8630 safely compute the mask for this mode, always return BITWIDTH. */
8632 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
8635 nonzero
= nonzero_bits (x
, mode
);
8636 return (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))
8637 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1);
8640 /* Return the number of "extended" bits there are in X, when interpreted
8641 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8642 unsigned quantities, this is the number of high-order zero bits.
8643 For signed quantities, this is the number of copies of the sign bit
8644 minus 1. In both case, this function returns the number of "spare"
8645 bits. For example, if two quantities for which this function returns
8646 at least 1 are added, the addition is known not to overflow.
8648 This function will always return 0 unless called during combine, which
8649 implies that it must be called from a define_split. */
8652 extended_count (x
, mode
, unsignedp
)
8654 enum machine_mode mode
;
8657 if (nonzero_sign_valid
== 0)
8661 ? (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8662 ? (GET_MODE_BITSIZE (mode
) - 1
8663 - floor_log2 (nonzero_bits (x
, mode
)))
8665 : num_sign_bit_copies (x
, mode
) - 1);
8668 /* This function is called from `simplify_shift_const' to merge two
8669 outer operations. Specifically, we have already found that we need
8670 to perform operation *POP0 with constant *PCONST0 at the outermost
8671 position. We would now like to also perform OP1 with constant CONST1
8672 (with *POP0 being done last).
8674 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8675 the resulting operation. *PCOMP_P is set to 1 if we would need to
8676 complement the innermost operand, otherwise it is unchanged.
8678 MODE is the mode in which the operation will be done. No bits outside
8679 the width of this mode matter. It is assumed that the width of this mode
8680 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8682 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8683 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8684 result is simply *PCONST0.
8686 If the resulting operation cannot be expressed as one operation, we
8687 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8690 merge_outer_ops (pop0
, pconst0
, op1
, const1
, mode
, pcomp_p
)
8691 enum rtx_code
*pop0
;
8692 HOST_WIDE_INT
*pconst0
;
8694 HOST_WIDE_INT const1
;
8695 enum machine_mode mode
;
8698 enum rtx_code op0
= *pop0
;
8699 HOST_WIDE_INT const0
= *pconst0
;
8701 const0
&= GET_MODE_MASK (mode
);
8702 const1
&= GET_MODE_MASK (mode
);
8704 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8708 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8711 if (op1
== NIL
|| op0
== SET
)
8714 else if (op0
== NIL
)
8715 op0
= op1
, const0
= const1
;
8717 else if (op0
== op1
)
8741 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8742 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
8745 /* If the two constants aren't the same, we can't do anything. The
8746 remaining six cases can all be done. */
8747 else if (const0
!= const1
)
8755 /* (a & b) | b == b */
8757 else /* op1 == XOR */
8758 /* (a ^ b) | b == a | b */
8764 /* (a & b) ^ b == (~a) & b */
8765 op0
= AND
, *pcomp_p
= 1;
8766 else /* op1 == IOR */
8767 /* (a | b) ^ b == a & ~b */
8768 op0
= AND
, *pconst0
= ~const0
;
8773 /* (a | b) & b == b */
8775 else /* op1 == XOR */
8776 /* (a ^ b) & b) == (~a) & b */
8783 /* Check for NO-OP cases. */
8784 const0
&= GET_MODE_MASK (mode
);
8786 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
8788 else if (const0
== 0 && op0
== AND
)
8790 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
8794 /* ??? Slightly redundant with the above mask, but not entirely.
8795 Moving this above means we'd have to sign-extend the mode mask
8796 for the final test. */
8797 const0
= trunc_int_for_mode (const0
, mode
);
8805 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8806 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8807 that we started with.
8809 The shift is normally computed in the widest mode we find in VAROP, as
8810 long as it isn't a different number of words than RESULT_MODE. Exceptions
8811 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8814 simplify_shift_const (x
, code
, result_mode
, varop
, orig_count
)
8817 enum machine_mode result_mode
;
8821 enum rtx_code orig_code
= code
;
8824 enum machine_mode mode
= result_mode
;
8825 enum machine_mode shift_mode
, tmode
;
8826 unsigned int mode_words
8827 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
8828 /* We form (outer_op (code varop count) (outer_const)). */
8829 enum rtx_code outer_op
= NIL
;
8830 HOST_WIDE_INT outer_const
= 0;
8832 int complement_p
= 0;
8835 /* Make sure and truncate the "natural" shift on the way in. We don't
8836 want to do this inside the loop as it makes it more difficult to
8838 #ifdef SHIFT_COUNT_TRUNCATED
8839 if (SHIFT_COUNT_TRUNCATED
)
8840 orig_count
&= GET_MODE_BITSIZE (mode
) - 1;
8843 /* If we were given an invalid count, don't do anything except exactly
8844 what was requested. */
8846 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_BITSIZE (mode
))
8851 return gen_rtx_fmt_ee (code
, mode
, varop
, GEN_INT (orig_count
));
8856 /* Unless one of the branches of the `if' in this loop does a `continue',
8857 we will `break' the loop after the `if'. */
8861 /* If we have an operand of (clobber (const_int 0)), just return that
8863 if (GET_CODE (varop
) == CLOBBER
)
8866 /* If we discovered we had to complement VAROP, leave. Making a NOT
8867 here would cause an infinite loop. */
8871 /* Convert ROTATERT to ROTATE. */
8872 if (code
== ROTATERT
)
8873 code
= ROTATE
, count
= GET_MODE_BITSIZE (result_mode
) - count
;
8875 /* We need to determine what mode we will do the shift in. If the
8876 shift is a right shift or a ROTATE, we must always do it in the mode
8877 it was originally done in. Otherwise, we can do it in MODE, the
8878 widest mode encountered. */
8880 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
8881 ? result_mode
: mode
);
8883 /* Handle cases where the count is greater than the size of the mode
8884 minus 1. For ASHIFT, use the size minus one as the count (this can
8885 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8886 take the count modulo the size. For other shifts, the result is
8889 Since these shifts are being produced by the compiler by combining
8890 multiple operations, each of which are defined, we know what the
8891 result is supposed to be. */
8893 if (count
> GET_MODE_BITSIZE (shift_mode
) - 1)
8895 if (code
== ASHIFTRT
)
8896 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
8897 else if (code
== ROTATE
|| code
== ROTATERT
)
8898 count
%= GET_MODE_BITSIZE (shift_mode
);
8901 /* We can't simply return zero because there may be an
8909 /* An arithmetic right shift of a quantity known to be -1 or 0
8911 if (code
== ASHIFTRT
8912 && (num_sign_bit_copies (varop
, shift_mode
)
8913 == GET_MODE_BITSIZE (shift_mode
)))
8919 /* If we are doing an arithmetic right shift and discarding all but
8920 the sign bit copies, this is equivalent to doing a shift by the
8921 bitsize minus one. Convert it into that shift because it will often
8922 allow other simplifications. */
8924 if (code
== ASHIFTRT
8925 && (count
+ num_sign_bit_copies (varop
, shift_mode
)
8926 >= GET_MODE_BITSIZE (shift_mode
)))
8927 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
8929 /* We simplify the tests below and elsewhere by converting
8930 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8931 `make_compound_operation' will convert it to a ASHIFTRT for
8932 those machines (such as VAX) that don't have a LSHIFTRT. */
8933 if (GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
8935 && ((nonzero_bits (varop
, shift_mode
)
8936 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (shift_mode
) - 1)))
8940 switch (GET_CODE (varop
))
8946 new = expand_compound_operation (varop
);
8955 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8956 minus the width of a smaller mode, we can do this with a
8957 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8958 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
8959 && ! mode_dependent_address_p (XEXP (varop
, 0))
8960 && ! MEM_VOLATILE_P (varop
)
8961 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
8962 MODE_INT
, 1)) != BLKmode
)
8964 new = adjust_address_nv (varop
, tmode
,
8965 BYTES_BIG_ENDIAN
? 0
8966 : count
/ BITS_PER_UNIT
);
8968 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
8969 : ZERO_EXTEND
, mode
, new);
8976 /* Similar to the case above, except that we can only do this if
8977 the resulting mode is the same as that of the underlying
8978 MEM and adjust the address depending on the *bits* endianness
8979 because of the way that bit-field extract insns are defined. */
8980 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
8981 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
8982 MODE_INT
, 1)) != BLKmode
8983 && tmode
== GET_MODE (XEXP (varop
, 0)))
8985 if (BITS_BIG_ENDIAN
)
8986 new = XEXP (varop
, 0);
8989 new = copy_rtx (XEXP (varop
, 0));
8990 SUBST (XEXP (new, 0),
8991 plus_constant (XEXP (new, 0),
8992 count
/ BITS_PER_UNIT
));
8995 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
8996 : ZERO_EXTEND
, mode
, new);
9003 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9004 the same number of words as what we've seen so far. Then store
9005 the widest mode in MODE. */
9006 if (subreg_lowpart_p (varop
)
9007 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
9008 > GET_MODE_SIZE (GET_MODE (varop
)))
9009 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
9010 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
9013 varop
= SUBREG_REG (varop
);
9014 if (GET_MODE_SIZE (GET_MODE (varop
)) > GET_MODE_SIZE (mode
))
9015 mode
= GET_MODE (varop
);
9021 /* Some machines use MULT instead of ASHIFT because MULT
9022 is cheaper. But it is still better on those machines to
9023 merge two shifts into one. */
9024 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
9025 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
9028 = gen_binary (ASHIFT
, GET_MODE (varop
), XEXP (varop
, 0),
9029 GEN_INT (exact_log2 (INTVAL (XEXP (varop
, 1)))));
9035 /* Similar, for when divides are cheaper. */
9036 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
9037 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
9040 = gen_binary (LSHIFTRT
, GET_MODE (varop
), XEXP (varop
, 0),
9041 GEN_INT (exact_log2 (INTVAL (XEXP (varop
, 1)))));
9047 /* If we are extracting just the sign bit of an arithmetic
9048 right shift, that shift is not needed. However, the sign
9049 bit of a wider mode may be different from what would be
9050 interpreted as the sign bit in a narrower mode, so, if
9051 the result is narrower, don't discard the shift. */
9052 if (code
== LSHIFTRT
&& count
== GET_MODE_BITSIZE (result_mode
) - 1
9053 && (GET_MODE_BITSIZE (result_mode
)
9054 >= GET_MODE_BITSIZE (GET_MODE (varop
))))
9056 varop
= XEXP (varop
, 0);
9060 /* ... fall through ... */
9065 /* Here we have two nested shifts. The result is usually the
9066 AND of a new shift with a mask. We compute the result below. */
9067 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
9068 && INTVAL (XEXP (varop
, 1)) >= 0
9069 && INTVAL (XEXP (varop
, 1)) < GET_MODE_BITSIZE (GET_MODE (varop
))
9070 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9071 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
9073 enum rtx_code first_code
= GET_CODE (varop
);
9074 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
9075 unsigned HOST_WIDE_INT mask
;
9078 /* We have one common special case. We can't do any merging if
9079 the inner code is an ASHIFTRT of a smaller mode. However, if
9080 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9081 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9082 we can convert it to
9083 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9084 This simplifies certain SIGN_EXTEND operations. */
9085 if (code
== ASHIFT
&& first_code
== ASHIFTRT
9086 && (GET_MODE_BITSIZE (result_mode
)
9087 - GET_MODE_BITSIZE (GET_MODE (varop
))) == count
)
9089 /* C3 has the low-order C1 bits zero. */
9091 mask
= (GET_MODE_MASK (mode
)
9092 & ~(((HOST_WIDE_INT
) 1 << first_count
) - 1));
9094 varop
= simplify_and_const_int (NULL_RTX
, result_mode
,
9095 XEXP (varop
, 0), mask
);
9096 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
, result_mode
,
9098 count
= first_count
;
9103 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9104 than C1 high-order bits equal to the sign bit, we can convert
9105 this to either an ASHIFT or a ASHIFTRT depending on the
9108 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9110 if (code
== ASHIFTRT
&& first_code
== ASHIFT
9111 && GET_MODE (varop
) == shift_mode
9112 && (num_sign_bit_copies (XEXP (varop
, 0), shift_mode
)
9115 varop
= XEXP (varop
, 0);
9117 signed_count
= count
- first_count
;
9118 if (signed_count
< 0)
9119 count
= -signed_count
, code
= ASHIFT
;
9121 count
= signed_count
;
9126 /* There are some cases we can't do. If CODE is ASHIFTRT,
9127 we can only do this if FIRST_CODE is also ASHIFTRT.
9129 We can't do the case when CODE is ROTATE and FIRST_CODE is
9132 If the mode of this shift is not the mode of the outer shift,
9133 we can't do this if either shift is a right shift or ROTATE.
9135 Finally, we can't do any of these if the mode is too wide
9136 unless the codes are the same.
9138 Handle the case where the shift codes are the same
9141 if (code
== first_code
)
9143 if (GET_MODE (varop
) != result_mode
9144 && (code
== ASHIFTRT
|| code
== LSHIFTRT
9148 count
+= first_count
;
9149 varop
= XEXP (varop
, 0);
9153 if (code
== ASHIFTRT
9154 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
9155 || GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
9156 || (GET_MODE (varop
) != result_mode
9157 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
9158 || first_code
== ROTATE
9159 || code
== ROTATE
)))
9162 /* To compute the mask to apply after the shift, shift the
9163 nonzero bits of the inner shift the same way the
9164 outer shift will. */
9166 mask_rtx
= GEN_INT (nonzero_bits (varop
, GET_MODE (varop
)));
9169 = simplify_binary_operation (code
, result_mode
, mask_rtx
,
9172 /* Give up if we can't compute an outer operation to use. */
9174 || GET_CODE (mask_rtx
) != CONST_INT
9175 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
9177 result_mode
, &complement_p
))
9180 /* If the shifts are in the same direction, we add the
9181 counts. Otherwise, we subtract them. */
9182 signed_count
= count
;
9183 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9184 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
9185 signed_count
+= first_count
;
9187 signed_count
-= first_count
;
9189 /* If COUNT is positive, the new shift is usually CODE,
9190 except for the two exceptions below, in which case it is
9191 FIRST_CODE. If the count is negative, FIRST_CODE should
9193 if (signed_count
> 0
9194 && ((first_code
== ROTATE
&& code
== ASHIFT
)
9195 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
9196 code
= first_code
, count
= signed_count
;
9197 else if (signed_count
< 0)
9198 code
= first_code
, count
= -signed_count
;
9200 count
= signed_count
;
9202 varop
= XEXP (varop
, 0);
9206 /* If we have (A << B << C) for any shift, we can convert this to
9207 (A << C << B). This wins if A is a constant. Only try this if
9208 B is not a constant. */
9210 else if (GET_CODE (varop
) == code
9211 && GET_CODE (XEXP (varop
, 1)) != CONST_INT
9213 = simplify_binary_operation (code
, mode
,
9217 varop
= gen_rtx_fmt_ee (code
, mode
, new, XEXP (varop
, 1));
9224 /* Make this fit the case below. */
9225 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0),
9226 GEN_INT (GET_MODE_MASK (mode
)));
9232 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9233 with C the size of VAROP - 1 and the shift is logical if
9234 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9235 we have an (le X 0) operation. If we have an arithmetic shift
9236 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9237 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9239 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
9240 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
9241 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9242 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
9243 && count
== GET_MODE_BITSIZE (GET_MODE (varop
)) - 1
9244 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
9247 varop
= gen_rtx_LE (GET_MODE (varop
), XEXP (varop
, 1),
9250 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
9251 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
9256 /* If we have (shift (logical)), move the logical to the outside
9257 to allow it to possibly combine with another logical and the
9258 shift to combine with another shift. This also canonicalizes to
9259 what a ZERO_EXTRACT looks like. Also, some machines have
9260 (and (shift)) insns. */
9262 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
9263 && (new = simplify_binary_operation (code
, result_mode
,
9265 GEN_INT (count
))) != 0
9266 && GET_CODE (new) == CONST_INT
9267 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
9268 INTVAL (new), result_mode
, &complement_p
))
9270 varop
= XEXP (varop
, 0);
9274 /* If we can't do that, try to simplify the shift in each arm of the
9275 logical expression, make a new logical expression, and apply
9276 the inverse distributive law. */
9278 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
9279 XEXP (varop
, 0), count
);
9280 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
9281 XEXP (varop
, 1), count
);
9283 varop
= gen_binary (GET_CODE (varop
), shift_mode
, lhs
, rhs
);
9284 varop
= apply_distributive_law (varop
);
9291 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9292 says that the sign bit can be tested, FOO has mode MODE, C is
9293 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9294 that may be nonzero. */
9295 if (code
== LSHIFTRT
9296 && XEXP (varop
, 1) == const0_rtx
9297 && GET_MODE (XEXP (varop
, 0)) == result_mode
9298 && count
== GET_MODE_BITSIZE (result_mode
) - 1
9299 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9300 && ((STORE_FLAG_VALUE
9301 & ((HOST_WIDE_INT
) 1
9302 < (GET_MODE_BITSIZE (result_mode
) - 1))))
9303 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
9304 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9305 (HOST_WIDE_INT
) 1, result_mode
,
9308 varop
= XEXP (varop
, 0);
9315 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9316 than the number of bits in the mode is equivalent to A. */
9317 if (code
== LSHIFTRT
&& count
== GET_MODE_BITSIZE (result_mode
) - 1
9318 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1)
9320 varop
= XEXP (varop
, 0);
9325 /* NEG commutes with ASHIFT since it is multiplication. Move the
9326 NEG outside to allow shifts to combine. */
9328 && merge_outer_ops (&outer_op
, &outer_const
, NEG
,
9329 (HOST_WIDE_INT
) 0, result_mode
,
9332 varop
= XEXP (varop
, 0);
9338 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9339 is one less than the number of bits in the mode is
9340 equivalent to (xor A 1). */
9341 if (code
== LSHIFTRT
&& count
== GET_MODE_BITSIZE (result_mode
) - 1
9342 && XEXP (varop
, 1) == constm1_rtx
9343 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
9344 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9345 (HOST_WIDE_INT
) 1, result_mode
,
9349 varop
= XEXP (varop
, 0);
9353 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9354 that might be nonzero in BAR are those being shifted out and those
9355 bits are known zero in FOO, we can replace the PLUS with FOO.
9356 Similarly in the other operand order. This code occurs when
9357 we are computing the size of a variable-size array. */
9359 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9360 && count
< HOST_BITS_PER_WIDE_INT
9361 && nonzero_bits (XEXP (varop
, 1), result_mode
) >> count
== 0
9362 && (nonzero_bits (XEXP (varop
, 1), result_mode
)
9363 & nonzero_bits (XEXP (varop
, 0), result_mode
)) == 0)
9365 varop
= XEXP (varop
, 0);
9368 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9369 && count
< HOST_BITS_PER_WIDE_INT
9370 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9371 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9373 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9374 & nonzero_bits (XEXP (varop
, 1),
9377 varop
= XEXP (varop
, 1);
9381 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9383 && GET_CODE (XEXP (varop
, 1)) == CONST_INT
9384 && (new = simplify_binary_operation (ASHIFT
, result_mode
,
9386 GEN_INT (count
))) != 0
9387 && GET_CODE (new) == CONST_INT
9388 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
9389 INTVAL (new), result_mode
, &complement_p
))
9391 varop
= XEXP (varop
, 0);
9397 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9398 with C the size of VAROP - 1 and the shift is logical if
9399 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9400 we have a (gt X 0) operation. If the shift is arithmetic with
9401 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9402 we have a (neg (gt X 0)) operation. */
9404 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9405 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
9406 && count
== GET_MODE_BITSIZE (GET_MODE (varop
)) - 1
9407 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
9408 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9409 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
9410 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
9413 varop
= gen_rtx_GT (GET_MODE (varop
), XEXP (varop
, 1),
9416 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
9417 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
9424 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9425 if the truncate does not affect the value. */
9426 if (code
== LSHIFTRT
9427 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
9428 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9429 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
9430 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop
, 0)))
9431 - GET_MODE_BITSIZE (GET_MODE (varop
)))))
9433 rtx varop_inner
= XEXP (varop
, 0);
9436 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
9437 XEXP (varop_inner
, 0),
9439 (count
+ INTVAL (XEXP (varop_inner
, 1))));
9440 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
9453 /* We need to determine what mode to do the shift in. If the shift is
9454 a right shift or ROTATE, we must always do it in the mode it was
9455 originally done in. Otherwise, we can do it in MODE, the widest mode
9456 encountered. The code we care about is that of the shift that will
9457 actually be done, not the shift that was originally requested. */
9459 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
9460 ? result_mode
: mode
);
9462 /* We have now finished analyzing the shift. The result should be
9463 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9464 OUTER_OP is non-NIL, it is an operation that needs to be applied
9465 to the result of the shift. OUTER_CONST is the relevant constant,
9466 but we must turn off all bits turned off in the shift.
9468 If we were passed a value for X, see if we can use any pieces of
9469 it. If not, make new rtx. */
9471 if (x
&& GET_RTX_CLASS (GET_CODE (x
)) == '2'
9472 && GET_CODE (XEXP (x
, 1)) == CONST_INT
9473 && INTVAL (XEXP (x
, 1)) == count
)
9474 const_rtx
= XEXP (x
, 1);
9476 const_rtx
= GEN_INT (count
);
9478 if (x
&& GET_CODE (XEXP (x
, 0)) == SUBREG
9479 && GET_MODE (XEXP (x
, 0)) == shift_mode
9480 && SUBREG_REG (XEXP (x
, 0)) == varop
)
9481 varop
= XEXP (x
, 0);
9482 else if (GET_MODE (varop
) != shift_mode
)
9483 varop
= gen_lowpart_for_combine (shift_mode
, varop
);
9485 /* If we can't make the SUBREG, try to return what we were given. */
9486 if (GET_CODE (varop
) == CLOBBER
)
9487 return x
? x
: varop
;
9489 new = simplify_binary_operation (code
, shift_mode
, varop
, const_rtx
);
9494 if (x
== 0 || GET_CODE (x
) != code
|| GET_MODE (x
) != shift_mode
)
9495 x
= gen_rtx_fmt_ee (code
, shift_mode
, varop
, const_rtx
);
9497 SUBST (XEXP (x
, 0), varop
);
9498 SUBST (XEXP (x
, 1), const_rtx
);
9501 /* If we have an outer operation and we just made a shift, it is
9502 possible that we could have simplified the shift were it not
9503 for the outer operation. So try to do the simplification
9506 if (outer_op
!= NIL
&& GET_CODE (x
) == code
9507 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
9508 x
= simplify_shift_const (x
, code
, shift_mode
, XEXP (x
, 0),
9509 INTVAL (XEXP (x
, 1)));
9511 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9512 turn off all the bits that the shift would have turned off. */
9513 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
9514 x
= simplify_and_const_int (NULL_RTX
, shift_mode
, x
,
9515 GET_MODE_MASK (result_mode
) >> orig_count
);
9517 /* Do the remainder of the processing in RESULT_MODE. */
9518 x
= gen_lowpart_for_combine (result_mode
, x
);
9520 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9523 x
=simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
9525 if (outer_op
!= NIL
)
9527 if (GET_MODE_BITSIZE (result_mode
) < HOST_BITS_PER_WIDE_INT
)
9528 outer_const
= trunc_int_for_mode (outer_const
, result_mode
);
9530 if (outer_op
== AND
)
9531 x
= simplify_and_const_int (NULL_RTX
, result_mode
, x
, outer_const
);
9532 else if (outer_op
== SET
)
9533 /* This means that we have determined that the result is
9534 equivalent to a constant. This should be rare. */
9535 x
= GEN_INT (outer_const
);
9536 else if (GET_RTX_CLASS (outer_op
) == '1')
9537 x
= simplify_gen_unary (outer_op
, result_mode
, x
, result_mode
);
9539 x
= gen_binary (outer_op
, result_mode
, x
, GEN_INT (outer_const
));
9545 /* Like recog, but we receive the address of a pointer to a new pattern.
9546 We try to match the rtx that the pointer points to.
9547 If that fails, we may try to modify or replace the pattern,
9548 storing the replacement into the same pointer object.
9550 Modifications include deletion or addition of CLOBBERs.
9552 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9553 the CLOBBERs are placed.
9555 The value is the final insn code from the pattern ultimately matched,
9559 recog_for_combine (pnewpat
, insn
, pnotes
)
9565 int insn_code_number
;
9566 int num_clobbers_to_add
= 0;
9571 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9572 we use to indicate that something didn't match. If we find such a
9573 thing, force rejection. */
9574 if (GET_CODE (pat
) == PARALLEL
)
9575 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
9576 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
9577 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
9580 /* Remove the old notes prior to trying to recognize the new pattern. */
9581 old_notes
= REG_NOTES (insn
);
9582 REG_NOTES (insn
) = 0;
9584 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
9586 /* If it isn't, there is the possibility that we previously had an insn
9587 that clobbered some register as a side effect, but the combined
9588 insn doesn't need to do that. So try once more without the clobbers
9589 unless this represents an ASM insn. */
9591 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
9592 && GET_CODE (pat
) == PARALLEL
)
9596 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
9597 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
9600 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
9604 SUBST_INT (XVECLEN (pat
, 0), pos
);
9607 pat
= XVECEXP (pat
, 0, 0);
9609 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
9612 /* Recognize all noop sets, these will be killed by followup pass. */
9613 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
9614 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
9616 REG_NOTES (insn
) = old_notes
;
9618 /* If we had any clobbers to add, make a new pattern than contains
9619 them. Then check to make sure that all of them are dead. */
9620 if (num_clobbers_to_add
)
9622 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
9623 rtvec_alloc (GET_CODE (pat
) == PARALLEL
9625 + num_clobbers_to_add
)
9626 : num_clobbers_to_add
+ 1));
9628 if (GET_CODE (pat
) == PARALLEL
)
9629 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
9630 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
9632 XVECEXP (newpat
, 0, 0) = pat
;
9634 add_clobbers (newpat
, insn_code_number
);
9636 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
9637 i
< XVECLEN (newpat
, 0); i
++)
9639 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) == REG
9640 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
9642 notes
= gen_rtx_EXPR_LIST (REG_UNUSED
,
9643 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
9651 return insn_code_number
;
9654 /* Like gen_lowpart but for use by combine. In combine it is not possible
9655 to create any new pseudoregs. However, it is safe to create
9656 invalid memory addresses, because combine will try to recognize
9657 them and all they will do is make the combine attempt fail.
9659 If for some reason this cannot do its job, an rtx
9660 (clobber (const_int 0)) is returned.
9661 An insn containing that will not be recognized. */
9666 gen_lowpart_for_combine (mode
, x
)
9667 enum machine_mode mode
;
9672 if (GET_MODE (x
) == mode
)
9675 /* We can only support MODE being wider than a word if X is a
9676 constant integer or has a mode the same size. */
9678 if (GET_MODE_SIZE (mode
) > UNITS_PER_WORD
9679 && ! ((GET_MODE (x
) == VOIDmode
9680 && (GET_CODE (x
) == CONST_INT
9681 || GET_CODE (x
) == CONST_DOUBLE
))
9682 || GET_MODE_SIZE (GET_MODE (x
)) == GET_MODE_SIZE (mode
)))
9683 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
9685 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9686 won't know what to do. So we will strip off the SUBREG here and
9687 process normally. */
9688 if (GET_CODE (x
) == SUBREG
&& GET_CODE (SUBREG_REG (x
)) == MEM
)
9691 if (GET_MODE (x
) == mode
)
9695 result
= gen_lowpart_common (mode
, x
);
9696 #ifdef CLASS_CANNOT_CHANGE_MODE
9698 && GET_CODE (result
) == SUBREG
9699 && GET_CODE (SUBREG_REG (result
)) == REG
9700 && REGNO (SUBREG_REG (result
)) >= FIRST_PSEUDO_REGISTER
9701 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result
),
9702 GET_MODE (SUBREG_REG (result
))))
9703 REG_CHANGES_MODE (REGNO (SUBREG_REG (result
))) = 1;
9709 if (GET_CODE (x
) == MEM
)
9713 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9715 if (MEM_VOLATILE_P (x
) || mode_dependent_address_p (XEXP (x
, 0)))
9716 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
9718 /* If we want to refer to something bigger than the original memref,
9719 generate a perverse subreg instead. That will force a reload
9720 of the original memref X. */
9721 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
))
9722 return gen_rtx_SUBREG (mode
, x
, 0);
9724 if (WORDS_BIG_ENDIAN
)
9725 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
9726 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
9728 if (BYTES_BIG_ENDIAN
)
9730 /* Adjust the address so that the address-after-the-data is
9732 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
9733 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
9736 return adjust_address_nv (x
, mode
, offset
);
9739 /* If X is a comparison operator, rewrite it in a new mode. This
9740 probably won't match, but may allow further simplifications. */
9741 else if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
9742 return gen_rtx_fmt_ee (GET_CODE (x
), mode
, XEXP (x
, 0), XEXP (x
, 1));
9744 /* If we couldn't simplify X any other way, just enclose it in a
9745 SUBREG. Normally, this SUBREG won't match, but some patterns may
9746 include an explicit SUBREG or we may simplify it further in combine. */
9752 offset
= subreg_lowpart_offset (mode
, GET_MODE (x
));
9753 res
= simplify_gen_subreg (mode
, x
, GET_MODE (x
), offset
);
9756 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
9760 /* These routines make binary and unary operations by first seeing if they
9761 fold; if not, a new expression is allocated. */
9764 gen_binary (code
, mode
, op0
, op1
)
9766 enum machine_mode mode
;
9772 if (GET_RTX_CLASS (code
) == 'c'
9773 && swap_commutative_operands_p (op0
, op1
))
9774 tem
= op0
, op0
= op1
, op1
= tem
;
9776 if (GET_RTX_CLASS (code
) == '<')
9778 enum machine_mode op_mode
= GET_MODE (op0
);
9780 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9781 just (REL_OP X Y). */
9782 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
9784 op1
= XEXP (op0
, 1);
9785 op0
= XEXP (op0
, 0);
9786 op_mode
= GET_MODE (op0
);
9789 if (op_mode
== VOIDmode
)
9790 op_mode
= GET_MODE (op1
);
9791 result
= simplify_relational_operation (code
, op_mode
, op0
, op1
);
9794 result
= simplify_binary_operation (code
, mode
, op0
, op1
);
9799 /* Put complex operands first and constants second. */
9800 if (GET_RTX_CLASS (code
) == 'c'
9801 && swap_commutative_operands_p (op0
, op1
))
9802 return gen_rtx_fmt_ee (code
, mode
, op1
, op0
);
9804 /* If we are turning off bits already known off in OP0, we need not do
9806 else if (code
== AND
&& GET_CODE (op1
) == CONST_INT
9807 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
9808 && (nonzero_bits (op0
, mode
) & ~INTVAL (op1
)) == 0)
9811 return gen_rtx_fmt_ee (code
, mode
, op0
, op1
);
9814 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9815 comparison code that will be tested.
9817 The result is a possibly different comparison code to use. *POP0 and
9818 *POP1 may be updated.
9820 It is possible that we might detect that a comparison is either always
9821 true or always false. However, we do not perform general constant
9822 folding in combine, so this knowledge isn't useful. Such tautologies
9823 should have been detected earlier. Hence we ignore all such cases. */
9825 static enum rtx_code
9826 simplify_comparison (code
, pop0
, pop1
)
9835 enum machine_mode mode
, tmode
;
9837 /* Try a few ways of applying the same transformation to both operands. */
9840 #ifndef WORD_REGISTER_OPERATIONS
9841 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9842 so check specially. */
9843 if (code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
9844 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
9845 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
9846 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
9847 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
9848 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
9849 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0)))
9850 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0))))
9851 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9852 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
9853 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
9854 && GET_CODE (XEXP (XEXP (op1
, 0), 1)) == CONST_INT
9855 && INTVAL (XEXP (op0
, 1)) == INTVAL (XEXP (op1
, 1))
9856 && INTVAL (XEXP (op0
, 1)) == INTVAL (XEXP (XEXP (op0
, 0), 1))
9857 && INTVAL (XEXP (op0
, 1)) == INTVAL (XEXP (XEXP (op1
, 0), 1))
9858 && (INTVAL (XEXP (op0
, 1))
9859 == (GET_MODE_BITSIZE (GET_MODE (op0
))
9861 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))))))))
9863 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
9864 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
9868 /* If both operands are the same constant shift, see if we can ignore the
9869 shift. We can if the shift is a rotate or if the bits shifted out of
9870 this shift are known to be zero for both inputs and if the type of
9871 comparison is compatible with the shift. */
9872 if (GET_CODE (op0
) == GET_CODE (op1
)
9873 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
9874 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
9875 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
9876 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
9877 || (GET_CODE (op0
) == ASHIFTRT
9878 && (code
!= GTU
&& code
!= LTU
9879 && code
!= GEU
&& code
!= LEU
)))
9880 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9881 && INTVAL (XEXP (op0
, 1)) >= 0
9882 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
9883 && XEXP (op0
, 1) == XEXP (op1
, 1))
9885 enum machine_mode mode
= GET_MODE (op0
);
9886 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
9887 int shift_count
= INTVAL (XEXP (op0
, 1));
9889 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
9890 mask
&= (mask
>> shift_count
) << shift_count
;
9891 else if (GET_CODE (op0
) == ASHIFT
)
9892 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
9894 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
9895 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
9896 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
9901 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9902 SUBREGs are of the same mode, and, in both cases, the AND would
9903 be redundant if the comparison was done in the narrower mode,
9904 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9905 and the operand's possibly nonzero bits are 0xffffff01; in that case
9906 if we only care about QImode, we don't need the AND). This case
9907 occurs if the output mode of an scc insn is not SImode and
9908 STORE_FLAG_VALUE == 1 (e.g., the 386).
9910 Similarly, check for a case where the AND's are ZERO_EXTEND
9911 operations from some narrower mode even though a SUBREG is not
9914 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
9915 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9916 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
)
9918 rtx inner_op0
= XEXP (op0
, 0);
9919 rtx inner_op1
= XEXP (op1
, 0);
9920 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
9921 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
9924 if (GET_CODE (inner_op0
) == SUBREG
&& GET_CODE (inner_op1
) == SUBREG
9925 && (GET_MODE_SIZE (GET_MODE (inner_op0
))
9926 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0
))))
9927 && (GET_MODE (SUBREG_REG (inner_op0
))
9928 == GET_MODE (SUBREG_REG (inner_op1
)))
9929 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0
)))
9930 <= HOST_BITS_PER_WIDE_INT
)
9931 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
9932 GET_MODE (SUBREG_REG (inner_op0
)))))
9933 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
9934 GET_MODE (SUBREG_REG (inner_op1
))))))
9936 op0
= SUBREG_REG (inner_op0
);
9937 op1
= SUBREG_REG (inner_op1
);
9939 /* The resulting comparison is always unsigned since we masked
9940 off the original sign bit. */
9941 code
= unsigned_condition (code
);
9947 for (tmode
= GET_CLASS_NARROWEST_MODE
9948 (GET_MODE_CLASS (GET_MODE (op0
)));
9949 tmode
!= GET_MODE (op0
); tmode
= GET_MODE_WIDER_MODE (tmode
))
9950 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
9952 op0
= gen_lowpart_for_combine (tmode
, inner_op0
);
9953 op1
= gen_lowpart_for_combine (tmode
, inner_op1
);
9954 code
= unsigned_condition (code
);
9963 /* If both operands are NOT, we can strip off the outer operation
9964 and adjust the comparison code for swapped operands; similarly for
9965 NEG, except that this must be an equality comparison. */
9966 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
9967 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
9968 && (code
== EQ
|| code
== NE
)))
9969 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
9975 /* If the first operand is a constant, swap the operands and adjust the
9976 comparison code appropriately, but don't do this if the second operand
9977 is already a constant integer. */
9978 if (swap_commutative_operands_p (op0
, op1
))
9980 tem
= op0
, op0
= op1
, op1
= tem
;
9981 code
= swap_condition (code
);
9984 /* We now enter a loop during which we will try to simplify the comparison.
9985 For the most part, we only are concerned with comparisons with zero,
9986 but some things may really be comparisons with zero but not start
9987 out looking that way. */
9989 while (GET_CODE (op1
) == CONST_INT
)
9991 enum machine_mode mode
= GET_MODE (op0
);
9992 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
9993 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
9994 int equality_comparison_p
;
9995 int sign_bit_comparison_p
;
9996 int unsigned_comparison_p
;
9997 HOST_WIDE_INT const_op
;
9999 /* We only want to handle integral modes. This catches VOIDmode,
10000 CCmode, and the floating-point modes. An exception is that we
10001 can handle VOIDmode if OP0 is a COMPARE or a comparison
10004 if (GET_MODE_CLASS (mode
) != MODE_INT
10005 && ! (mode
== VOIDmode
10006 && (GET_CODE (op0
) == COMPARE
10007 || GET_RTX_CLASS (GET_CODE (op0
)) == '<')))
10010 /* Get the constant we are comparing against and turn off all bits
10011 not on in our mode. */
10012 const_op
= trunc_int_for_mode (INTVAL (op1
), mode
);
10013 op1
= GEN_INT (const_op
);
10015 /* If we are comparing against a constant power of two and the value
10016 being compared can only have that single bit nonzero (e.g., it was
10017 `and'ed with that bit), we can replace this with a comparison
10020 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
10021 || code
== LT
|| code
== LTU
)
10022 && mode_width
<= HOST_BITS_PER_WIDE_INT
10023 && exact_log2 (const_op
) >= 0
10024 && nonzero_bits (op0
, mode
) == (unsigned HOST_WIDE_INT
) const_op
)
10026 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
10027 op1
= const0_rtx
, const_op
= 0;
10030 /* Similarly, if we are comparing a value known to be either -1 or
10031 0 with -1, change it to the opposite comparison against zero. */
10034 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
10035 || code
== GEU
|| code
== LTU
)
10036 && num_sign_bit_copies (op0
, mode
) == mode_width
)
10038 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
10039 op1
= const0_rtx
, const_op
= 0;
10042 /* Do some canonicalizations based on the comparison code. We prefer
10043 comparisons against zero and then prefer equality comparisons.
10044 If we can reduce the size of a constant, we will do that too. */
10049 /* < C is equivalent to <= (C - 1) */
10053 op1
= GEN_INT (const_op
);
10055 /* ... fall through to LE case below. */
10061 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10065 op1
= GEN_INT (const_op
);
10069 /* If we are doing a <= 0 comparison on a value known to have
10070 a zero sign bit, we can replace this with == 0. */
10071 else if (const_op
== 0
10072 && mode_width
<= HOST_BITS_PER_WIDE_INT
10073 && (nonzero_bits (op0
, mode
)
10074 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
10079 /* >= C is equivalent to > (C - 1). */
10083 op1
= GEN_INT (const_op
);
10085 /* ... fall through to GT below. */
10091 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10095 op1
= GEN_INT (const_op
);
10099 /* If we are doing a > 0 comparison on a value known to have
10100 a zero sign bit, we can replace this with != 0. */
10101 else if (const_op
== 0
10102 && mode_width
<= HOST_BITS_PER_WIDE_INT
10103 && (nonzero_bits (op0
, mode
)
10104 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
10109 /* < C is equivalent to <= (C - 1). */
10113 op1
= GEN_INT (const_op
);
10115 /* ... fall through ... */
10118 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10119 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10120 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10122 const_op
= 0, op1
= const0_rtx
;
10130 /* unsigned <= 0 is equivalent to == 0 */
10134 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10135 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10136 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
10138 const_op
= 0, op1
= const0_rtx
;
10144 /* >= C is equivalent to < (C - 1). */
10148 op1
= GEN_INT (const_op
);
10150 /* ... fall through ... */
10153 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10154 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10155 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10157 const_op
= 0, op1
= const0_rtx
;
10165 /* unsigned > 0 is equivalent to != 0 */
10169 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10170 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10171 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
10173 const_op
= 0, op1
= const0_rtx
;
10182 /* Compute some predicates to simplify code below. */
10184 equality_comparison_p
= (code
== EQ
|| code
== NE
);
10185 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
10186 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
10189 /* If this is a sign bit comparison and we can do arithmetic in
10190 MODE, say that we will only be needing the sign bit of OP0. */
10191 if (sign_bit_comparison_p
10192 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10193 op0
= force_to_mode (op0
, mode
,
10195 << (GET_MODE_BITSIZE (mode
) - 1)),
10198 /* Now try cases based on the opcode of OP0. If none of the cases
10199 does a "continue", we exit this loop immediately after the
10202 switch (GET_CODE (op0
))
10205 /* If we are extracting a single bit from a variable position in
10206 a constant that has only a single bit set and are comparing it
10207 with zero, we can convert this into an equality comparison
10208 between the position and the location of the single bit. */
10210 if (GET_CODE (XEXP (op0
, 0)) == CONST_INT
10211 && XEXP (op0
, 1) == const1_rtx
10212 && equality_comparison_p
&& const_op
== 0
10213 && (i
= exact_log2 (INTVAL (XEXP (op0
, 0)))) >= 0)
10215 if (BITS_BIG_ENDIAN
)
10217 enum machine_mode new_mode
10218 = mode_for_extraction (EP_extzv
, 1);
10219 if (new_mode
== MAX_MACHINE_MODE
)
10220 i
= BITS_PER_WORD
- 1 - i
;
10224 i
= (GET_MODE_BITSIZE (mode
) - 1 - i
);
10228 op0
= XEXP (op0
, 2);
10232 /* Result is nonzero iff shift count is equal to I. */
10233 code
= reverse_condition (code
);
10237 /* ... fall through ... */
10240 tem
= expand_compound_operation (op0
);
10249 /* If testing for equality, we can take the NOT of the constant. */
10250 if (equality_comparison_p
10251 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
10253 op0
= XEXP (op0
, 0);
10258 /* If just looking at the sign bit, reverse the sense of the
10260 if (sign_bit_comparison_p
)
10262 op0
= XEXP (op0
, 0);
10263 code
= (code
== GE
? LT
: GE
);
10269 /* If testing for equality, we can take the NEG of the constant. */
10270 if (equality_comparison_p
10271 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
10273 op0
= XEXP (op0
, 0);
10278 /* The remaining cases only apply to comparisons with zero. */
10282 /* When X is ABS or is known positive,
10283 (neg X) is < 0 if and only if X != 0. */
10285 if (sign_bit_comparison_p
10286 && (GET_CODE (XEXP (op0
, 0)) == ABS
10287 || (mode_width
<= HOST_BITS_PER_WIDE_INT
10288 && (nonzero_bits (XEXP (op0
, 0), mode
)
10289 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)))
10291 op0
= XEXP (op0
, 0);
10292 code
= (code
== LT
? NE
: EQ
);
10296 /* If we have NEG of something whose two high-order bits are the
10297 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10298 if (num_sign_bit_copies (op0
, mode
) >= 2)
10300 op0
= XEXP (op0
, 0);
10301 code
= swap_condition (code
);
10307 /* If we are testing equality and our count is a constant, we
10308 can perform the inverse operation on our RHS. */
10309 if (equality_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
10310 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
10311 op1
, XEXP (op0
, 1))) != 0)
10313 op0
= XEXP (op0
, 0);
10318 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10319 a particular bit. Convert it to an AND of a constant of that
10320 bit. This will be converted into a ZERO_EXTRACT. */
10321 if (const_op
== 0 && sign_bit_comparison_p
10322 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10323 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
10325 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10328 - INTVAL (XEXP (op0
, 1)))));
10329 code
= (code
== LT
? NE
: EQ
);
10333 /* Fall through. */
10336 /* ABS is ignorable inside an equality comparison with zero. */
10337 if (const_op
== 0 && equality_comparison_p
)
10339 op0
= XEXP (op0
, 0);
10345 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10346 to (compare FOO CONST) if CONST fits in FOO's mode and we
10347 are either testing inequality or have an unsigned comparison
10348 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10349 if (! unsigned_comparison_p
10350 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10351 <= HOST_BITS_PER_WIDE_INT
)
10352 && ((unsigned HOST_WIDE_INT
) const_op
10353 < (((unsigned HOST_WIDE_INT
) 1
10354 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))) - 1)))))
10356 op0
= XEXP (op0
, 0);
10362 /* Check for the case where we are comparing A - C1 with C2,
10363 both constants are smaller than 1/2 the maximum positive
10364 value in MODE, and the comparison is equality or unsigned.
10365 In that case, if A is either zero-extended to MODE or has
10366 sufficient sign bits so that the high-order bit in MODE
10367 is a copy of the sign in the inner mode, we can prove that it is
10368 safe to do the operation in the wider mode. This simplifies
10369 many range checks. */
10371 if (mode_width
<= HOST_BITS_PER_WIDE_INT
10372 && subreg_lowpart_p (op0
)
10373 && GET_CODE (SUBREG_REG (op0
)) == PLUS
10374 && GET_CODE (XEXP (SUBREG_REG (op0
), 1)) == CONST_INT
10375 && INTVAL (XEXP (SUBREG_REG (op0
), 1)) < 0
10376 && (-INTVAL (XEXP (SUBREG_REG (op0
), 1))
10377 < (HOST_WIDE_INT
) (GET_MODE_MASK (mode
) / 2))
10378 && (unsigned HOST_WIDE_INT
) const_op
< GET_MODE_MASK (mode
) / 2
10379 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0
), 0),
10380 GET_MODE (SUBREG_REG (op0
)))
10381 & ~GET_MODE_MASK (mode
))
10382 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0
), 0),
10383 GET_MODE (SUBREG_REG (op0
)))
10384 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
10385 - GET_MODE_BITSIZE (mode
)))))
10387 op0
= SUBREG_REG (op0
);
10391 /* If the inner mode is narrower and we are extracting the low part,
10392 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10393 if (subreg_lowpart_p (op0
)
10394 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
))) < mode_width
)
10395 /* Fall through */ ;
10399 /* ... fall through ... */
10402 if ((unsigned_comparison_p
|| equality_comparison_p
)
10403 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10404 <= HOST_BITS_PER_WIDE_INT
)
10405 && ((unsigned HOST_WIDE_INT
) const_op
10406 < GET_MODE_MASK (GET_MODE (XEXP (op0
, 0)))))
10408 op0
= XEXP (op0
, 0);
10414 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10415 this for equality comparisons due to pathological cases involving
10417 if (equality_comparison_p
10418 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10419 op1
, XEXP (op0
, 1))))
10421 op0
= XEXP (op0
, 0);
10426 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10427 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
10428 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
10430 op0
= XEXP (XEXP (op0
, 0), 0);
10431 code
= (code
== LT
? EQ
: NE
);
10437 /* We used to optimize signed comparisons against zero, but that
10438 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10439 arrive here as equality comparisons, or (GEU, LTU) are
10440 optimized away. No need to special-case them. */
10442 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10443 (eq B (minus A C)), whichever simplifies. We can only do
10444 this for equality comparisons due to pathological cases involving
10446 if (equality_comparison_p
10447 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
10448 XEXP (op0
, 1), op1
)))
10450 op0
= XEXP (op0
, 0);
10455 if (equality_comparison_p
10456 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10457 XEXP (op0
, 0), op1
)))
10459 op0
= XEXP (op0
, 1);
10464 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10465 of bits in X minus 1, is one iff X > 0. */
10466 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
10467 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10468 && INTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
10469 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10471 op0
= XEXP (op0
, 1);
10472 code
= (code
== GE
? LE
: GT
);
10478 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10479 if C is zero or B is a constant. */
10480 if (equality_comparison_p
10481 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
10482 XEXP (op0
, 1), op1
)))
10484 op0
= XEXP (op0
, 0);
10491 case UNEQ
: case LTGT
:
10492 case LT
: case LTU
: case UNLT
: case LE
: case LEU
: case UNLE
:
10493 case GT
: case GTU
: case UNGT
: case GE
: case GEU
: case UNGE
:
10494 case UNORDERED
: case ORDERED
:
10495 /* We can't do anything if OP0 is a condition code value, rather
10496 than an actual data value. */
10499 || XEXP (op0
, 0) == cc0_rtx
10501 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
10504 /* Get the two operands being compared. */
10505 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
10506 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
10508 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
10510 /* Check for the cases where we simply want the result of the
10511 earlier test or the opposite of that result. */
10512 if (code
== NE
|| code
== EQ
10513 || (GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
10514 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10515 && (STORE_FLAG_VALUE
10516 & (((HOST_WIDE_INT
) 1
10517 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
10518 && (code
== LT
|| code
== GE
)))
10520 enum rtx_code new_code
;
10521 if (code
== LT
|| code
== NE
)
10522 new_code
= GET_CODE (op0
);
10524 new_code
= combine_reversed_comparison_code (op0
);
10526 if (new_code
!= UNKNOWN
)
10537 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10539 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
10540 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
10541 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10543 op0
= XEXP (op0
, 1);
10544 code
= (code
== GE
? GT
: LE
);
10550 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10551 will be converted to a ZERO_EXTRACT later. */
10552 if (const_op
== 0 && equality_comparison_p
10553 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10554 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
10556 op0
= simplify_and_const_int
10557 (op0
, mode
, gen_rtx_LSHIFTRT (mode
,
10559 XEXP (XEXP (op0
, 0), 1)),
10560 (HOST_WIDE_INT
) 1);
10564 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10565 zero and X is a comparison and C1 and C2 describe only bits set
10566 in STORE_FLAG_VALUE, we can compare with X. */
10567 if (const_op
== 0 && equality_comparison_p
10568 && mode_width
<= HOST_BITS_PER_WIDE_INT
10569 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10570 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
10571 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10572 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
10573 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
10575 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10576 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
10577 if ((~STORE_FLAG_VALUE
& mask
) == 0
10578 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0
, 0), 0))) == '<'
10579 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
10580 && GET_RTX_CLASS (GET_CODE (tem
)) == '<')))
10582 op0
= XEXP (XEXP (op0
, 0), 0);
10587 /* If we are doing an equality comparison of an AND of a bit equal
10588 to the sign bit, replace this with a LT or GE comparison of
10589 the underlying value. */
10590 if (equality_comparison_p
10592 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10593 && mode_width
<= HOST_BITS_PER_WIDE_INT
10594 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10595 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10597 op0
= XEXP (op0
, 0);
10598 code
= (code
== EQ
? GE
: LT
);
10602 /* If this AND operation is really a ZERO_EXTEND from a narrower
10603 mode, the constant fits within that mode, and this is either an
10604 equality or unsigned comparison, try to do this comparison in
10605 the narrower mode. */
10606 if ((equality_comparison_p
|| unsigned_comparison_p
)
10607 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10608 && (i
= exact_log2 ((INTVAL (XEXP (op0
, 1))
10609 & GET_MODE_MASK (mode
))
10611 && const_op
>> i
== 0
10612 && (tmode
= mode_for_size (i
, MODE_INT
, 1)) != BLKmode
)
10614 op0
= gen_lowpart_for_combine (tmode
, XEXP (op0
, 0));
10618 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10619 in both M1 and M2 and the SUBREG is either paradoxical or
10620 represents the low part, permute the SUBREG and the AND and
10622 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
10624 #ifdef WORD_REGISTER_OPERATIONS
10626 > (GET_MODE_BITSIZE
10627 (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))))
10628 && mode_width
<= BITS_PER_WORD
)
10631 <= (GET_MODE_BITSIZE
10632 (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))))
10633 && subreg_lowpart_p (XEXP (op0
, 0))))
10634 #ifndef WORD_REGISTER_OPERATIONS
10635 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10636 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10637 As originally written the upper bits have a defined value
10638 due to the AND operation. However, if we commute the AND
10639 inside the SUBREG then they no longer have defined values
10640 and the meaning of the code has been changed. */
10641 && (GET_MODE_SIZE (GET_MODE (XEXP (op0
, 0)))
10642 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0
, 0)))))
10644 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10645 && mode_width
<= HOST_BITS_PER_WIDE_INT
10646 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))
10647 <= HOST_BITS_PER_WIDE_INT
)
10648 && (INTVAL (XEXP (op0
, 1)) & ~mask
) == 0
10649 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))
10650 & INTVAL (XEXP (op0
, 1)))
10651 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1)) != mask
10652 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1))
10653 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))))
10657 = gen_lowpart_for_combine
10659 gen_binary (AND
, GET_MODE (SUBREG_REG (XEXP (op0
, 0))),
10660 SUBREG_REG (XEXP (op0
, 0)), XEXP (op0
, 1)));
10664 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10665 (eq (and (lshiftrt X) 1) 0). */
10666 if (const_op
== 0 && equality_comparison_p
10667 && XEXP (op0
, 1) == const1_rtx
10668 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
10669 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == NOT
)
10671 op0
= simplify_and_const_int
10673 gen_rtx_LSHIFTRT (mode
, XEXP (XEXP (XEXP (op0
, 0), 0), 0),
10674 XEXP (XEXP (op0
, 0), 1)),
10675 (HOST_WIDE_INT
) 1);
10676 code
= (code
== NE
? EQ
: NE
);
10682 /* If we have (compare (ashift FOO N) (const_int C)) and
10683 the high order N bits of FOO (N+1 if an inequality comparison)
10684 are known to be zero, we can do this by comparing FOO with C
10685 shifted right N bits so long as the low-order N bits of C are
10687 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
10688 && INTVAL (XEXP (op0
, 1)) >= 0
10689 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
10690 < HOST_BITS_PER_WIDE_INT
)
10692 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0)
10693 && mode_width
<= HOST_BITS_PER_WIDE_INT
10694 && (nonzero_bits (XEXP (op0
, 0), mode
)
10695 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
10696 + ! equality_comparison_p
))) == 0)
10698 /* We must perform a logical shift, not an arithmetic one,
10699 as we want the top N bits of C to be zero. */
10700 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
10702 temp
>>= INTVAL (XEXP (op0
, 1));
10703 op1
= GEN_INT (trunc_int_for_mode (temp
, mode
));
10704 op0
= XEXP (op0
, 0);
10708 /* If we are doing a sign bit comparison, it means we are testing
10709 a particular bit. Convert it to the appropriate AND. */
10710 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
10711 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
10713 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10716 - INTVAL (XEXP (op0
, 1)))));
10717 code
= (code
== LT
? NE
: EQ
);
10721 /* If this an equality comparison with zero and we are shifting
10722 the low bit to the sign bit, we can convert this to an AND of the
10724 if (const_op
== 0 && equality_comparison_p
10725 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10726 && INTVAL (XEXP (op0
, 1)) == mode_width
- 1)
10728 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10729 (HOST_WIDE_INT
) 1);
10735 /* If this is an equality comparison with zero, we can do this
10736 as a logical shift, which might be much simpler. */
10737 if (equality_comparison_p
&& const_op
== 0
10738 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
)
10740 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
10742 INTVAL (XEXP (op0
, 1)));
10746 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10747 do the comparison in a narrower mode. */
10748 if (! unsigned_comparison_p
10749 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10750 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10751 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
10752 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
10753 MODE_INT
, 1)) != BLKmode
10754 && ((unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (tmode
)
10755 || ((unsigned HOST_WIDE_INT
) -const_op
10756 <= GET_MODE_MASK (tmode
))))
10758 op0
= gen_lowpart_for_combine (tmode
, XEXP (XEXP (op0
, 0), 0));
10762 /* Likewise if OP0 is a PLUS of a sign extension with a
10763 constant, which is usually represented with the PLUS
10764 between the shifts. */
10765 if (! unsigned_comparison_p
10766 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10767 && GET_CODE (XEXP (op0
, 0)) == PLUS
10768 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10769 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
10770 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
10771 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
10772 MODE_INT
, 1)) != BLKmode
10773 && ((unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (tmode
)
10774 || ((unsigned HOST_WIDE_INT
) -const_op
10775 <= GET_MODE_MASK (tmode
))))
10777 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
10778 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
10779 rtx new_const
= gen_binary (ASHIFTRT
, GET_MODE (op0
), add_const
,
10782 op0
= gen_binary (PLUS
, tmode
,
10783 gen_lowpart_for_combine (tmode
, inner
),
10788 /* ... fall through ... */
10790 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10791 the low order N bits of FOO are known to be zero, we can do this
10792 by comparing FOO with C shifted left N bits so long as no
10793 overflow occurs. */
10794 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
10795 && INTVAL (XEXP (op0
, 1)) >= 0
10796 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
10797 && mode_width
<= HOST_BITS_PER_WIDE_INT
10798 && (nonzero_bits (XEXP (op0
, 0), mode
)
10799 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0
10801 || (floor_log2 (const_op
) + INTVAL (XEXP (op0
, 1))
10804 const_op
<<= INTVAL (XEXP (op0
, 1));
10805 op1
= GEN_INT (const_op
);
10806 op0
= XEXP (op0
, 0);
10810 /* If we are using this shift to extract just the sign bit, we
10811 can replace this with an LT or GE comparison. */
10813 && (equality_comparison_p
|| sign_bit_comparison_p
)
10814 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10815 && INTVAL (XEXP (op0
, 1)) == mode_width
- 1)
10817 op0
= XEXP (op0
, 0);
10818 code
= (code
== NE
|| code
== GT
? LT
: GE
);
10830 /* Now make any compound operations involved in this comparison. Then,
10831 check for an outmost SUBREG on OP0 that is not doing anything or is
10832 paradoxical. The latter case can only occur when it is known that the
10833 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
10834 We can never remove a SUBREG for a non-equality comparison because the
10835 sign bit is in a different place in the underlying object. */
10837 op0
= make_compound_operation (op0
, op1
== const0_rtx
? COMPARE
: SET
);
10838 op1
= make_compound_operation (op1
, SET
);
10840 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
10841 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10842 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0
))) == MODE_INT
10843 && (code
== NE
|| code
== EQ
)
10844 && ((GET_MODE_SIZE (GET_MODE (op0
))
10845 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
))))))
10847 op0
= SUBREG_REG (op0
);
10848 op1
= gen_lowpart_for_combine (GET_MODE (op0
), op1
);
10851 else if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
10852 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10853 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0
))) == MODE_INT
10854 && (code
== NE
|| code
== EQ
)
10855 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
10856 <= HOST_BITS_PER_WIDE_INT
)
10857 && (nonzero_bits (SUBREG_REG (op0
), GET_MODE (SUBREG_REG (op0
)))
10858 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0
10859 && (tem
= gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0
)),
10861 (nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
10862 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0))
10863 op0
= SUBREG_REG (op0
), op1
= tem
;
10865 /* We now do the opposite procedure: Some machines don't have compare
10866 insns in all modes. If OP0's mode is an integer mode smaller than a
10867 word and we can't do a compare in that mode, see if there is a larger
10868 mode for which we can do the compare. There are a number of cases in
10869 which we can use the wider mode. */
10871 mode
= GET_MODE (op0
);
10872 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
10873 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
10874 && ! have_insn_for (COMPARE
, mode
))
10875 for (tmode
= GET_MODE_WIDER_MODE (mode
);
10877 && GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
);
10878 tmode
= GET_MODE_WIDER_MODE (tmode
))
10879 if (have_insn_for (COMPARE
, tmode
))
10881 /* If the only nonzero bits in OP0 and OP1 are those in the
10882 narrower mode and this is an equality or unsigned comparison,
10883 we can use the wider mode. Similarly for sign-extended
10884 values, in which case it is true for all comparisons. */
10885 if (((code
== EQ
|| code
== NE
10886 || code
== GEU
|| code
== GTU
|| code
== LEU
|| code
== LTU
)
10887 && (nonzero_bits (op0
, tmode
) & ~GET_MODE_MASK (mode
)) == 0
10888 && (nonzero_bits (op1
, tmode
) & ~GET_MODE_MASK (mode
)) == 0)
10889 || ((num_sign_bit_copies (op0
, tmode
)
10890 > GET_MODE_BITSIZE (tmode
) - GET_MODE_BITSIZE (mode
))
10891 && (num_sign_bit_copies (op1
, tmode
)
10892 > GET_MODE_BITSIZE (tmode
) - GET_MODE_BITSIZE (mode
))))
10894 /* If OP0 is an AND and we don't have an AND in MODE either,
10895 make a new AND in the proper mode. */
10896 if (GET_CODE (op0
) == AND
10897 && !have_insn_for (AND
, mode
))
10898 op0
= gen_binary (AND
, tmode
,
10899 gen_lowpart_for_combine (tmode
,
10901 gen_lowpart_for_combine (tmode
,
10904 op0
= gen_lowpart_for_combine (tmode
, op0
);
10905 op1
= gen_lowpart_for_combine (tmode
, op1
);
10909 /* If this is a test for negative, we can make an explicit
10910 test of the sign bit. */
10912 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
10913 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10915 op0
= gen_binary (AND
, tmode
,
10916 gen_lowpart_for_combine (tmode
, op0
),
10917 GEN_INT ((HOST_WIDE_INT
) 1
10918 << (GET_MODE_BITSIZE (mode
) - 1)));
10919 code
= (code
== LT
) ? NE
: EQ
;
10924 #ifdef CANONICALIZE_COMPARISON
10925 /* If this machine only supports a subset of valid comparisons, see if we
10926 can convert an unsupported one into a supported one. */
10927 CANONICALIZE_COMPARISON (code
, op0
, op1
);
10936 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10937 searching backward. */
10938 static enum rtx_code
10939 combine_reversed_comparison_code (exp
)
10942 enum rtx_code code1
= reversed_comparison_code (exp
, NULL
);
10945 if (code1
!= UNKNOWN
10946 || GET_MODE_CLASS (GET_MODE (XEXP (exp
, 0))) != MODE_CC
)
10948 /* Otherwise try and find where the condition codes were last set and
10950 x
= get_last_value (XEXP (exp
, 0));
10951 if (!x
|| GET_CODE (x
) != COMPARE
)
10953 return reversed_comparison_code_parts (GET_CODE (exp
),
10954 XEXP (x
, 0), XEXP (x
, 1), NULL
);
10956 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10957 Return NULL_RTX in case we fail to do the reversal. */
10959 reversed_comparison (exp
, mode
, op0
, op1
)
10961 enum machine_mode mode
;
10963 enum rtx_code reversed_code
= combine_reversed_comparison_code (exp
);
10964 if (reversed_code
== UNKNOWN
)
10967 return gen_binary (reversed_code
, mode
, op0
, op1
);
10970 /* Utility function for following routine. Called when X is part of a value
10971 being stored into reg_last_set_value. Sets reg_last_set_table_tick
10972 for each register mentioned. Similar to mention_regs in cse.c */
10975 update_table_tick (x
)
10978 enum rtx_code code
= GET_CODE (x
);
10979 const char *fmt
= GET_RTX_FORMAT (code
);
10984 unsigned int regno
= REGNO (x
);
10985 unsigned int endregno
10986 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
10987 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
10990 for (r
= regno
; r
< endregno
; r
++)
10991 reg_last_set_table_tick
[r
] = label_tick
;
10996 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
10997 /* Note that we can't have an "E" in values stored; see
10998 get_last_value_validate. */
11000 update_table_tick (XEXP (x
, i
));
11003 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11004 are saying that the register is clobbered and we no longer know its
11005 value. If INSN is zero, don't update reg_last_set; this is only permitted
11006 with VALUE also zero and is used to invalidate the register. */
11009 record_value_for_reg (reg
, insn
, value
)
11014 unsigned int regno
= REGNO (reg
);
11015 unsigned int endregno
11016 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11017 ? HARD_REGNO_NREGS (regno
, GET_MODE (reg
)) : 1);
11020 /* If VALUE contains REG and we have a previous value for REG, substitute
11021 the previous value. */
11022 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
11026 /* Set things up so get_last_value is allowed to see anything set up to
11028 subst_low_cuid
= INSN_CUID (insn
);
11029 tem
= get_last_value (reg
);
11031 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11032 it isn't going to be useful and will take a lot of time to process,
11033 so just use the CLOBBER. */
11037 if ((GET_RTX_CLASS (GET_CODE (tem
)) == '2'
11038 || GET_RTX_CLASS (GET_CODE (tem
)) == 'c')
11039 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
11040 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
11041 tem
= XEXP (tem
, 0);
11043 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
11047 /* For each register modified, show we don't know its value, that
11048 we don't know about its bitwise content, that its value has been
11049 updated, and that we don't know the location of the death of the
11051 for (i
= regno
; i
< endregno
; i
++)
11054 reg_last_set
[i
] = insn
;
11056 reg_last_set_value
[i
] = 0;
11057 reg_last_set_mode
[i
] = 0;
11058 reg_last_set_nonzero_bits
[i
] = 0;
11059 reg_last_set_sign_bit_copies
[i
] = 0;
11060 reg_last_death
[i
] = 0;
11063 /* Mark registers that are being referenced in this value. */
11065 update_table_tick (value
);
11067 /* Now update the status of each register being set.
11068 If someone is using this register in this block, set this register
11069 to invalid since we will get confused between the two lives in this
11070 basic block. This makes using this register always invalid. In cse, we
11071 scan the table to invalidate all entries using this register, but this
11072 is too much work for us. */
11074 for (i
= regno
; i
< endregno
; i
++)
11076 reg_last_set_label
[i
] = label_tick
;
11077 if (value
&& reg_last_set_table_tick
[i
] == label_tick
)
11078 reg_last_set_invalid
[i
] = 1;
11080 reg_last_set_invalid
[i
] = 0;
11083 /* The value being assigned might refer to X (like in "x++;"). In that
11084 case, we must replace it with (clobber (const_int 0)) to prevent
11086 if (value
&& ! get_last_value_validate (&value
, insn
,
11087 reg_last_set_label
[regno
], 0))
11089 value
= copy_rtx (value
);
11090 if (! get_last_value_validate (&value
, insn
,
11091 reg_last_set_label
[regno
], 1))
11095 /* For the main register being modified, update the value, the mode, the
11096 nonzero bits, and the number of sign bit copies. */
11098 reg_last_set_value
[regno
] = value
;
11102 subst_low_cuid
= INSN_CUID (insn
);
11103 reg_last_set_mode
[regno
] = GET_MODE (reg
);
11104 reg_last_set_nonzero_bits
[regno
] = nonzero_bits (value
, GET_MODE (reg
));
11105 reg_last_set_sign_bit_copies
[regno
]
11106 = num_sign_bit_copies (value
, GET_MODE (reg
));
11110 /* Called via note_stores from record_dead_and_set_regs to handle one
11111 SET or CLOBBER in an insn. DATA is the instruction in which the
11112 set is occurring. */
11115 record_dead_and_set_regs_1 (dest
, setter
, data
)
11119 rtx record_dead_insn
= (rtx
) data
;
11121 if (GET_CODE (dest
) == SUBREG
)
11122 dest
= SUBREG_REG (dest
);
11124 if (GET_CODE (dest
) == REG
)
11126 /* If we are setting the whole register, we know its value. Otherwise
11127 show that we don't know the value. We can handle SUBREG in
11129 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
11130 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
11131 else if (GET_CODE (setter
) == SET
11132 && GET_CODE (SET_DEST (setter
)) == SUBREG
11133 && SUBREG_REG (SET_DEST (setter
)) == dest
11134 && GET_MODE_BITSIZE (GET_MODE (dest
)) <= BITS_PER_WORD
11135 && subreg_lowpart_p (SET_DEST (setter
)))
11136 record_value_for_reg (dest
, record_dead_insn
,
11137 gen_lowpart_for_combine (GET_MODE (dest
),
11138 SET_SRC (setter
)));
11140 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
11142 else if (GET_CODE (dest
) == MEM
11143 /* Ignore pushes, they clobber nothing. */
11144 && ! push_operand (dest
, GET_MODE (dest
)))
11145 mem_last_set
= INSN_CUID (record_dead_insn
);
11148 /* Update the records of when each REG was most recently set or killed
11149 for the things done by INSN. This is the last thing done in processing
11150 INSN in the combiner loop.
11152 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11153 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11154 and also the similar information mem_last_set (which insn most recently
11155 modified memory) and last_call_cuid (which insn was the most recent
11156 subroutine call). */
11159 record_dead_and_set_regs (insn
)
11165 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
11167 if (REG_NOTE_KIND (link
) == REG_DEAD
11168 && GET_CODE (XEXP (link
, 0)) == REG
)
11170 unsigned int regno
= REGNO (XEXP (link
, 0));
11171 unsigned int endregno
11172 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11173 ? HARD_REGNO_NREGS (regno
, GET_MODE (XEXP (link
, 0)))
11176 for (i
= regno
; i
< endregno
; i
++)
11177 reg_last_death
[i
] = insn
;
11179 else if (REG_NOTE_KIND (link
) == REG_INC
)
11180 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
11183 if (GET_CODE (insn
) == CALL_INSN
)
11185 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
11186 if (call_used_regs
[i
])
11188 reg_last_set_value
[i
] = 0;
11189 reg_last_set_mode
[i
] = 0;
11190 reg_last_set_nonzero_bits
[i
] = 0;
11191 reg_last_set_sign_bit_copies
[i
] = 0;
11192 reg_last_death
[i
] = 0;
11195 last_call_cuid
= mem_last_set
= INSN_CUID (insn
);
11198 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
11201 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11202 register present in the SUBREG, so for each such SUBREG go back and
11203 adjust nonzero and sign bit information of the registers that are
11204 known to have some zero/sign bits set.
11206 This is needed because when combine blows the SUBREGs away, the
11207 information on zero/sign bits is lost and further combines can be
11208 missed because of that. */
11211 record_promoted_value (insn
, subreg
)
11216 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
11217 enum machine_mode mode
= GET_MODE (subreg
);
11219 if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
11222 for (links
= LOG_LINKS (insn
); links
;)
11224 insn
= XEXP (links
, 0);
11225 set
= single_set (insn
);
11227 if (! set
|| GET_CODE (SET_DEST (set
)) != REG
11228 || REGNO (SET_DEST (set
)) != regno
11229 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
11231 links
= XEXP (links
, 1);
11235 if (reg_last_set
[regno
] == insn
)
11237 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
))
11238 reg_last_set_nonzero_bits
[regno
] &= GET_MODE_MASK (mode
);
11241 if (GET_CODE (SET_SRC (set
)) == REG
)
11243 regno
= REGNO (SET_SRC (set
));
11244 links
= LOG_LINKS (insn
);
11251 /* Scan X for promoted SUBREGs. For each one found,
11252 note what it implies to the registers used in it. */
11255 check_promoted_subreg (insn
, x
)
11259 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
11260 && GET_CODE (SUBREG_REG (x
)) == REG
)
11261 record_promoted_value (insn
, x
);
11264 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
11267 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
11271 check_promoted_subreg (insn
, XEXP (x
, i
));
11275 if (XVEC (x
, i
) != 0)
11276 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
11277 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
11283 /* Utility routine for the following function. Verify that all the registers
11284 mentioned in *LOC are valid when *LOC was part of a value set when
11285 label_tick == TICK. Return 0 if some are not.
11287 If REPLACE is non-zero, replace the invalid reference with
11288 (clobber (const_int 0)) and return 1. This replacement is useful because
11289 we often can get useful information about the form of a value (e.g., if
11290 it was produced by a shift that always produces -1 or 0) even though
11291 we don't know exactly what registers it was produced from. */
11294 get_last_value_validate (loc
, insn
, tick
, replace
)
11301 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
11302 int len
= GET_RTX_LENGTH (GET_CODE (x
));
11305 if (GET_CODE (x
) == REG
)
11307 unsigned int regno
= REGNO (x
);
11308 unsigned int endregno
11309 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11310 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
11313 for (j
= regno
; j
< endregno
; j
++)
11314 if (reg_last_set_invalid
[j
]
11315 /* If this is a pseudo-register that was only set once and not
11316 live at the beginning of the function, it is always valid. */
11317 || (! (regno
>= FIRST_PSEUDO_REGISTER
11318 && REG_N_SETS (regno
) == 1
11319 && (! REGNO_REG_SET_P
11320 (BASIC_BLOCK (0)->global_live_at_start
, regno
)))
11321 && reg_last_set_label
[j
] > tick
))
11324 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11330 /* If this is a memory reference, make sure that there were
11331 no stores after it that might have clobbered the value. We don't
11332 have alias info, so we assume any store invalidates it. */
11333 else if (GET_CODE (x
) == MEM
&& ! RTX_UNCHANGING_P (x
)
11334 && INSN_CUID (insn
) <= mem_last_set
)
11337 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11341 for (i
= 0; i
< len
; i
++)
11343 && get_last_value_validate (&XEXP (x
, i
), insn
, tick
, replace
) == 0)
11344 /* Don't bother with these. They shouldn't occur anyway. */
11348 /* If we haven't found a reason for it to be invalid, it is valid. */
11352 /* Get the last value assigned to X, if known. Some registers
11353 in the value may be replaced with (clobber (const_int 0)) if their value
11354 is known longer known reliably. */
11360 unsigned int regno
;
11363 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11364 then convert it to the desired mode. If this is a paradoxical SUBREG,
11365 we cannot predict what values the "extra" bits might have. */
11366 if (GET_CODE (x
) == SUBREG
11367 && subreg_lowpart_p (x
)
11368 && (GET_MODE_SIZE (GET_MODE (x
))
11369 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
11370 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
11371 return gen_lowpart_for_combine (GET_MODE (x
), value
);
11373 if (GET_CODE (x
) != REG
)
11377 value
= reg_last_set_value
[regno
];
11379 /* If we don't have a value, or if it isn't for this basic block and
11380 it's either a hard register, set more than once, or it's a live
11381 at the beginning of the function, return 0.
11383 Because if it's not live at the beginning of the function then the reg
11384 is always set before being used (is never used without being set).
11385 And, if it's set only once, and it's always set before use, then all
11386 uses must have the same last value, even if it's not from this basic
11390 || (reg_last_set_label
[regno
] != label_tick
11391 && (regno
< FIRST_PSEUDO_REGISTER
11392 || REG_N_SETS (regno
) != 1
11393 || (REGNO_REG_SET_P
11394 (BASIC_BLOCK (0)->global_live_at_start
, regno
)))))
11397 /* If the value was set in a later insn than the ones we are processing,
11398 we can't use it even if the register was only set once. */
11399 if (INSN_CUID (reg_last_set
[regno
]) >= subst_low_cuid
)
11402 /* If the value has all its registers valid, return it. */
11403 if (get_last_value_validate (&value
, reg_last_set
[regno
],
11404 reg_last_set_label
[regno
], 0))
11407 /* Otherwise, make a copy and replace any invalid register with
11408 (clobber (const_int 0)). If that fails for some reason, return 0. */
11410 value
= copy_rtx (value
);
11411 if (get_last_value_validate (&value
, reg_last_set
[regno
],
11412 reg_last_set_label
[regno
], 1))
11418 /* Return nonzero if expression X refers to a REG or to memory
11419 that is set in an instruction more recent than FROM_CUID. */
11422 use_crosses_set_p (x
, from_cuid
)
11428 enum rtx_code code
= GET_CODE (x
);
11432 unsigned int regno
= REGNO (x
);
11433 unsigned endreg
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11434 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
11436 #ifdef PUSH_ROUNDING
11437 /* Don't allow uses of the stack pointer to be moved,
11438 because we don't know whether the move crosses a push insn. */
11439 if (regno
== STACK_POINTER_REGNUM
&& PUSH_ARGS
)
11442 for (; regno
< endreg
; regno
++)
11443 if (reg_last_set
[regno
]
11444 && INSN_CUID (reg_last_set
[regno
]) > from_cuid
)
11449 if (code
== MEM
&& mem_last_set
> from_cuid
)
11452 fmt
= GET_RTX_FORMAT (code
);
11454 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11459 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
11460 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_cuid
))
11463 else if (fmt
[i
] == 'e'
11464 && use_crosses_set_p (XEXP (x
, i
), from_cuid
))
11470 /* Define three variables used for communication between the following
11473 static unsigned int reg_dead_regno
, reg_dead_endregno
;
11474 static int reg_dead_flag
;
11476 /* Function called via note_stores from reg_dead_at_p.
11478 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11479 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11482 reg_dead_at_p_1 (dest
, x
, data
)
11485 void *data ATTRIBUTE_UNUSED
;
11487 unsigned int regno
, endregno
;
11489 if (GET_CODE (dest
) != REG
)
11492 regno
= REGNO (dest
);
11493 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11494 ? HARD_REGNO_NREGS (regno
, GET_MODE (dest
)) : 1);
11496 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
11497 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
11500 /* Return non-zero if REG is known to be dead at INSN.
11502 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11503 referencing REG, it is dead. If we hit a SET referencing REG, it is
11504 live. Otherwise, see if it is live or dead at the start of the basic
11505 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11506 must be assumed to be always live. */
11509 reg_dead_at_p (reg
, insn
)
11516 /* Set variables for reg_dead_at_p_1. */
11517 reg_dead_regno
= REGNO (reg
);
11518 reg_dead_endregno
= reg_dead_regno
+ (reg_dead_regno
< FIRST_PSEUDO_REGISTER
11519 ? HARD_REGNO_NREGS (reg_dead_regno
,
11525 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11526 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
11528 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
11529 if (TEST_HARD_REG_BIT (newpat_used_regs
, i
))
11533 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11534 beginning of function. */
11535 for (; insn
&& GET_CODE (insn
) != CODE_LABEL
&& GET_CODE (insn
) != BARRIER
;
11536 insn
= prev_nonnote_insn (insn
))
11538 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
11540 return reg_dead_flag
== 1 ? 1 : 0;
11542 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
11546 /* Get the basic block number that we were in. */
11551 for (block
= 0; block
< n_basic_blocks
; block
++)
11552 if (insn
== BLOCK_HEAD (block
))
11555 if (block
== n_basic_blocks
)
11559 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
11560 if (REGNO_REG_SET_P (BASIC_BLOCK (block
)->global_live_at_start
, i
))
11566 /* Note hard registers in X that are used. This code is similar to
11567 that in flow.c, but much simpler since we don't care about pseudos. */
11570 mark_used_regs_combine (x
)
11573 RTX_CODE code
= GET_CODE (x
);
11574 unsigned int regno
;
11586 case ADDR_DIFF_VEC
:
11589 /* CC0 must die in the insn after it is set, so we don't need to take
11590 special note of it here. */
11596 /* If we are clobbering a MEM, mark any hard registers inside the
11597 address as used. */
11598 if (GET_CODE (XEXP (x
, 0)) == MEM
)
11599 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
11604 /* A hard reg in a wide mode may really be multiple registers.
11605 If so, mark all of them just like the first. */
11606 if (regno
< FIRST_PSEUDO_REGISTER
)
11608 unsigned int endregno
, r
;
11610 /* None of this applies to the stack, frame or arg pointers */
11611 if (regno
== STACK_POINTER_REGNUM
11612 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11613 || regno
== HARD_FRAME_POINTER_REGNUM
11615 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11616 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
11618 || regno
== FRAME_POINTER_REGNUM
)
11621 endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
11622 for (r
= regno
; r
< endregno
; r
++)
11623 SET_HARD_REG_BIT (newpat_used_regs
, r
);
11629 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11631 rtx testreg
= SET_DEST (x
);
11633 while (GET_CODE (testreg
) == SUBREG
11634 || GET_CODE (testreg
) == ZERO_EXTRACT
11635 || GET_CODE (testreg
) == SIGN_EXTRACT
11636 || GET_CODE (testreg
) == STRICT_LOW_PART
)
11637 testreg
= XEXP (testreg
, 0);
11639 if (GET_CODE (testreg
) == MEM
)
11640 mark_used_regs_combine (XEXP (testreg
, 0));
11642 mark_used_regs_combine (SET_SRC (x
));
11650 /* Recursively scan the operands of this expression. */
11653 const char *fmt
= GET_RTX_FORMAT (code
);
11655 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11658 mark_used_regs_combine (XEXP (x
, i
));
11659 else if (fmt
[i
] == 'E')
11663 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
11664 mark_used_regs_combine (XVECEXP (x
, i
, j
));
11670 /* Remove register number REGNO from the dead registers list of INSN.
11672 Return the note used to record the death, if there was one. */
11675 remove_death (regno
, insn
)
11676 unsigned int regno
;
11679 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
11683 REG_N_DEATHS (regno
)--;
11684 remove_note (insn
, note
);
11690 /* For each register (hardware or pseudo) used within expression X, if its
11691 death is in an instruction with cuid between FROM_CUID (inclusive) and
11692 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11693 list headed by PNOTES.
11695 That said, don't move registers killed by maybe_kill_insn.
11697 This is done when X is being merged by combination into TO_INSN. These
11698 notes will then be distributed as needed. */
11701 move_deaths (x
, maybe_kill_insn
, from_cuid
, to_insn
, pnotes
)
11703 rtx maybe_kill_insn
;
11710 enum rtx_code code
= GET_CODE (x
);
11714 unsigned int regno
= REGNO (x
);
11715 rtx where_dead
= reg_last_death
[regno
];
11716 rtx before_dead
, after_dead
;
11718 /* Don't move the register if it gets killed in between from and to */
11719 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
11720 && ! reg_referenced_p (x
, maybe_kill_insn
))
11723 /* WHERE_DEAD could be a USE insn made by combine, so first we
11724 make sure that we have insns with valid INSN_CUID values. */
11725 before_dead
= where_dead
;
11726 while (before_dead
&& INSN_UID (before_dead
) > max_uid_cuid
)
11727 before_dead
= PREV_INSN (before_dead
);
11729 after_dead
= where_dead
;
11730 while (after_dead
&& INSN_UID (after_dead
) > max_uid_cuid
)
11731 after_dead
= NEXT_INSN (after_dead
);
11733 if (before_dead
&& after_dead
11734 && INSN_CUID (before_dead
) >= from_cuid
11735 && (INSN_CUID (after_dead
) < INSN_CUID (to_insn
)
11736 || (where_dead
!= after_dead
11737 && INSN_CUID (after_dead
) == INSN_CUID (to_insn
))))
11739 rtx note
= remove_death (regno
, where_dead
);
11741 /* It is possible for the call above to return 0. This can occur
11742 when reg_last_death points to I2 or I1 that we combined with.
11743 In that case make a new note.
11745 We must also check for the case where X is a hard register
11746 and NOTE is a death note for a range of hard registers
11747 including X. In that case, we must put REG_DEAD notes for
11748 the remaining registers in place of NOTE. */
11750 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
11751 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
11752 > GET_MODE_SIZE (GET_MODE (x
))))
11754 unsigned int deadregno
= REGNO (XEXP (note
, 0));
11755 unsigned int deadend
11756 = (deadregno
+ HARD_REGNO_NREGS (deadregno
,
11757 GET_MODE (XEXP (note
, 0))));
11758 unsigned int ourend
11759 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
11762 for (i
= deadregno
; i
< deadend
; i
++)
11763 if (i
< regno
|| i
>= ourend
)
11764 REG_NOTES (where_dead
)
11765 = gen_rtx_EXPR_LIST (REG_DEAD
,
11766 gen_rtx_REG (reg_raw_mode
[i
], i
),
11767 REG_NOTES (where_dead
));
11770 /* If we didn't find any note, or if we found a REG_DEAD note that
11771 covers only part of the given reg, and we have a multi-reg hard
11772 register, then to be safe we must check for REG_DEAD notes
11773 for each register other than the first. They could have
11774 their own REG_DEAD notes lying around. */
11775 else if ((note
== 0
11777 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
11778 < GET_MODE_SIZE (GET_MODE (x
)))))
11779 && regno
< FIRST_PSEUDO_REGISTER
11780 && HARD_REGNO_NREGS (regno
, GET_MODE (x
)) > 1)
11782 unsigned int ourend
11783 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
11784 unsigned int i
, offset
;
11788 offset
= HARD_REGNO_NREGS (regno
, GET_MODE (XEXP (note
, 0)));
11792 for (i
= regno
+ offset
; i
< ourend
; i
++)
11793 move_deaths (gen_rtx_REG (reg_raw_mode
[i
], i
),
11794 maybe_kill_insn
, from_cuid
, to_insn
, &oldnotes
);
11797 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
11799 XEXP (note
, 1) = *pnotes
;
11803 *pnotes
= gen_rtx_EXPR_LIST (REG_DEAD
, x
, *pnotes
);
11805 REG_N_DEATHS (regno
)++;
11811 else if (GET_CODE (x
) == SET
)
11813 rtx dest
= SET_DEST (x
);
11815 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11817 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11818 that accesses one word of a multi-word item, some
11819 piece of everything register in the expression is used by
11820 this insn, so remove any old death. */
11821 /* ??? So why do we test for equality of the sizes? */
11823 if (GET_CODE (dest
) == ZERO_EXTRACT
11824 || GET_CODE (dest
) == STRICT_LOW_PART
11825 || (GET_CODE (dest
) == SUBREG
11826 && (((GET_MODE_SIZE (GET_MODE (dest
))
11827 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
11828 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
11829 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
11831 move_deaths (dest
, maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11835 /* If this is some other SUBREG, we know it replaces the entire
11836 value, so use that as the destination. */
11837 if (GET_CODE (dest
) == SUBREG
)
11838 dest
= SUBREG_REG (dest
);
11840 /* If this is a MEM, adjust deaths of anything used in the address.
11841 For a REG (the only other possibility), the entire value is
11842 being replaced so the old value is not used in this insn. */
11844 if (GET_CODE (dest
) == MEM
)
11845 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_cuid
,
11850 else if (GET_CODE (x
) == CLOBBER
)
11853 len
= GET_RTX_LENGTH (code
);
11854 fmt
= GET_RTX_FORMAT (code
);
11856 for (i
= 0; i
< len
; i
++)
11861 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
11862 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_cuid
,
11865 else if (fmt
[i
] == 'e')
11866 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11870 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11871 pattern of an insn. X must be a REG. */
11874 reg_bitfield_target_p (x
, body
)
11880 if (GET_CODE (body
) == SET
)
11882 rtx dest
= SET_DEST (body
);
11884 unsigned int regno
, tregno
, endregno
, endtregno
;
11886 if (GET_CODE (dest
) == ZERO_EXTRACT
)
11887 target
= XEXP (dest
, 0);
11888 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
11889 target
= SUBREG_REG (XEXP (dest
, 0));
11893 if (GET_CODE (target
) == SUBREG
)
11894 target
= SUBREG_REG (target
);
11896 if (GET_CODE (target
) != REG
)
11899 tregno
= REGNO (target
), regno
= REGNO (x
);
11900 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
11901 return target
== x
;
11903 endtregno
= tregno
+ HARD_REGNO_NREGS (tregno
, GET_MODE (target
));
11904 endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
11906 return endregno
> tregno
&& regno
< endtregno
;
11909 else if (GET_CODE (body
) == PARALLEL
)
11910 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
11911 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
11917 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11918 as appropriate. I3 and I2 are the insns resulting from the combination
11919 insns including FROM (I2 may be zero).
11921 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11922 not need REG_DEAD notes because they are being substituted for. This
11923 saves searching in the most common cases.
11925 Each note in the list is either ignored or placed on some insns, depending
11926 on the type of note. */
11929 distribute_notes (notes
, from_insn
, i3
, i2
, elim_i2
, elim_i1
)
11933 rtx elim_i2
, elim_i1
;
11935 rtx note
, next_note
;
11938 for (note
= notes
; note
; note
= next_note
)
11940 rtx place
= 0, place2
= 0;
11942 /* If this NOTE references a pseudo register, ensure it references
11943 the latest copy of that register. */
11944 if (XEXP (note
, 0) && GET_CODE (XEXP (note
, 0)) == REG
11945 && REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
)
11946 XEXP (note
, 0) = regno_reg_rtx
[REGNO (XEXP (note
, 0))];
11948 next_note
= XEXP (note
, 1);
11949 switch (REG_NOTE_KIND (note
))
11953 case REG_EXEC_COUNT
:
11954 /* Doesn't matter much where we put this, as long as it's somewhere.
11955 It is preferable to keep these notes on branches, which is most
11956 likely to be i3. */
11960 case REG_VTABLE_REF
:
11961 /* ??? Should remain with *a particular* memory load. Given the
11962 nature of vtable data, the last insn seems relatively safe. */
11966 case REG_NON_LOCAL_GOTO
:
11967 if (GET_CODE (i3
) == JUMP_INSN
)
11969 else if (i2
&& GET_CODE (i2
) == JUMP_INSN
)
11975 case REG_EH_REGION
:
11976 /* These notes must remain with the call or trapping instruction. */
11977 if (GET_CODE (i3
) == CALL_INSN
)
11979 else if (i2
&& GET_CODE (i2
) == CALL_INSN
)
11981 else if (flag_non_call_exceptions
)
11983 if (may_trap_p (i3
))
11985 else if (i2
&& may_trap_p (i2
))
11987 /* ??? Otherwise assume we've combined things such that we
11988 can now prove that the instructions can't trap. Drop the
11989 note in this case. */
11997 /* These notes must remain with the call. It should not be
11998 possible for both I2 and I3 to be a call. */
11999 if (GET_CODE (i3
) == CALL_INSN
)
12001 else if (i2
&& GET_CODE (i2
) == CALL_INSN
)
12008 /* Any clobbers for i3 may still exist, and so we must process
12009 REG_UNUSED notes from that insn.
12011 Any clobbers from i2 or i1 can only exist if they were added by
12012 recog_for_combine. In that case, recog_for_combine created the
12013 necessary REG_UNUSED notes. Trying to keep any original
12014 REG_UNUSED notes from these insns can cause incorrect output
12015 if it is for the same register as the original i3 dest.
12016 In that case, we will notice that the register is set in i3,
12017 and then add a REG_UNUSED note for the destination of i3, which
12018 is wrong. However, it is possible to have REG_UNUSED notes from
12019 i2 or i1 for register which were both used and clobbered, so
12020 we keep notes from i2 or i1 if they will turn into REG_DEAD
12023 /* If this register is set or clobbered in I3, put the note there
12024 unless there is one already. */
12025 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
12027 if (from_insn
!= i3
)
12030 if (! (GET_CODE (XEXP (note
, 0)) == REG
12031 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
12032 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
12035 /* Otherwise, if this register is used by I3, then this register
12036 now dies here, so we must put a REG_DEAD note here unless there
12038 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
12039 && ! (GET_CODE (XEXP (note
, 0)) == REG
12040 ? find_regno_note (i3
, REG_DEAD
,
12041 REGNO (XEXP (note
, 0)))
12042 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
12044 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
12052 /* These notes say something about results of an insn. We can
12053 only support them if they used to be on I3 in which case they
12054 remain on I3. Otherwise they are ignored.
12056 If the note refers to an expression that is not a constant, we
12057 must also ignore the note since we cannot tell whether the
12058 equivalence is still true. It might be possible to do
12059 slightly better than this (we only have a problem if I2DEST
12060 or I1DEST is present in the expression), but it doesn't
12061 seem worth the trouble. */
12063 if (from_insn
== i3
12064 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
12069 case REG_NO_CONFLICT
:
12070 /* These notes say something about how a register is used. They must
12071 be present on any use of the register in I2 or I3. */
12072 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
12075 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
12085 /* This can show up in several ways -- either directly in the
12086 pattern, or hidden off in the constant pool with (or without?)
12087 a REG_EQUAL note. */
12088 /* ??? Ignore the without-reg_equal-note problem for now. */
12089 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
12090 || ((tem
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
12091 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
12092 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0)))
12096 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
12097 || ((tem
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
12098 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
12099 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0))))
12110 /* These notes say something about the value of a register prior
12111 to the execution of an insn. It is too much trouble to see
12112 if the note is still correct in all situations. It is better
12113 to simply delete it. */
12117 /* If the insn previously containing this note still exists,
12118 put it back where it was. Otherwise move it to the previous
12119 insn. Adjust the corresponding REG_LIBCALL note. */
12120 if (GET_CODE (from_insn
) != NOTE
)
12124 tem
= find_reg_note (XEXP (note
, 0), REG_LIBCALL
, NULL_RTX
);
12125 place
= prev_real_insn (from_insn
);
12127 XEXP (tem
, 0) = place
;
12128 /* If we're deleting the last remaining instruction of a
12129 libcall sequence, don't add the notes. */
12130 else if (XEXP (note
, 0) == from_insn
)
12136 /* This is handled similarly to REG_RETVAL. */
12137 if (GET_CODE (from_insn
) != NOTE
)
12141 tem
= find_reg_note (XEXP (note
, 0), REG_RETVAL
, NULL_RTX
);
12142 place
= next_real_insn (from_insn
);
12144 XEXP (tem
, 0) = place
;
12145 /* If we're deleting the last remaining instruction of a
12146 libcall sequence, don't add the notes. */
12147 else if (XEXP (note
, 0) == from_insn
)
12153 /* If the register is used as an input in I3, it dies there.
12154 Similarly for I2, if it is non-zero and adjacent to I3.
12156 If the register is not used as an input in either I3 or I2
12157 and it is not one of the registers we were supposed to eliminate,
12158 there are two possibilities. We might have a non-adjacent I2
12159 or we might have somehow eliminated an additional register
12160 from a computation. For example, we might have had A & B where
12161 we discover that B will always be zero. In this case we will
12162 eliminate the reference to A.
12164 In both cases, we must search to see if we can find a previous
12165 use of A and put the death note there. */
12168 && GET_CODE (from_insn
) == CALL_INSN
12169 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
12171 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
12173 else if (i2
!= 0 && next_nonnote_insn (i2
) == i3
12174 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
12177 if (rtx_equal_p (XEXP (note
, 0), elim_i2
)
12178 || rtx_equal_p (XEXP (note
, 0), elim_i1
))
12183 basic_block bb
= BASIC_BLOCK (this_basic_block
);
12185 for (tem
= PREV_INSN (i3
); place
== 0; tem
= PREV_INSN (tem
))
12187 if (! INSN_P (tem
))
12189 if (tem
== bb
->head
)
12194 /* If the register is being set at TEM, see if that is all
12195 TEM is doing. If so, delete TEM. Otherwise, make this
12196 into a REG_UNUSED note instead. */
12197 if (reg_set_p (XEXP (note
, 0), PATTERN (tem
)))
12199 rtx set
= single_set (tem
);
12200 rtx inner_dest
= 0;
12202 rtx cc0_setter
= NULL_RTX
;
12206 for (inner_dest
= SET_DEST (set
);
12207 (GET_CODE (inner_dest
) == STRICT_LOW_PART
12208 || GET_CODE (inner_dest
) == SUBREG
12209 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
12210 inner_dest
= XEXP (inner_dest
, 0))
12213 /* Verify that it was the set, and not a clobber that
12214 modified the register.
12216 CC0 targets must be careful to maintain setter/user
12217 pairs. If we cannot delete the setter due to side
12218 effects, mark the user with an UNUSED note instead
12221 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
12222 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
12224 && (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
12225 || ((cc0_setter
= prev_cc0_setter (tem
)) != NULL
12226 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))
12230 /* Move the notes and links of TEM elsewhere.
12231 This might delete other dead insns recursively.
12232 First set the pattern to something that won't use
12235 PATTERN (tem
) = pc_rtx
;
12237 distribute_notes (REG_NOTES (tem
), tem
, tem
,
12238 NULL_RTX
, NULL_RTX
, NULL_RTX
);
12239 distribute_links (LOG_LINKS (tem
));
12241 PUT_CODE (tem
, NOTE
);
12242 NOTE_LINE_NUMBER (tem
) = NOTE_INSN_DELETED
;
12243 NOTE_SOURCE_FILE (tem
) = 0;
12246 /* Delete the setter too. */
12249 PATTERN (cc0_setter
) = pc_rtx
;
12251 distribute_notes (REG_NOTES (cc0_setter
),
12252 cc0_setter
, cc0_setter
,
12253 NULL_RTX
, NULL_RTX
, NULL_RTX
);
12254 distribute_links (LOG_LINKS (cc0_setter
));
12256 PUT_CODE (cc0_setter
, NOTE
);
12257 NOTE_LINE_NUMBER (cc0_setter
)
12258 = NOTE_INSN_DELETED
;
12259 NOTE_SOURCE_FILE (cc0_setter
) = 0;
12263 /* If the register is both set and used here, put the
12264 REG_DEAD note here, but place a REG_UNUSED note
12265 here too unless there already is one. */
12266 else if (reg_referenced_p (XEXP (note
, 0),
12271 if (! find_regno_note (tem
, REG_UNUSED
,
12272 REGNO (XEXP (note
, 0))))
12274 = gen_rtx_EXPR_LIST (REG_UNUSED
, XEXP (note
, 0),
12279 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
12281 /* If there isn't already a REG_UNUSED note, put one
12283 if (! find_regno_note (tem
, REG_UNUSED
,
12284 REGNO (XEXP (note
, 0))))
12289 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem
))
12290 || (GET_CODE (tem
) == CALL_INSN
12291 && find_reg_fusage (tem
, USE
, XEXP (note
, 0))))
12295 /* If we are doing a 3->2 combination, and we have a
12296 register which formerly died in i3 and was not used
12297 by i2, which now no longer dies in i3 and is used in
12298 i2 but does not die in i2, and place is between i2
12299 and i3, then we may need to move a link from place to
12301 if (i2
&& INSN_UID (place
) <= max_uid_cuid
12302 && INSN_CUID (place
) > INSN_CUID (i2
)
12304 && INSN_CUID (from_insn
) > INSN_CUID (i2
)
12305 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
12307 rtx links
= LOG_LINKS (place
);
12308 LOG_LINKS (place
) = 0;
12309 distribute_links (links
);
12314 if (tem
== bb
->head
)
12318 /* We haven't found an insn for the death note and it
12319 is still a REG_DEAD note, but we have hit the beginning
12320 of the block. If the existing life info says the reg
12321 was dead, there's nothing left to do. Otherwise, we'll
12322 need to do a global life update after combine. */
12323 if (REG_NOTE_KIND (note
) == REG_DEAD
&& place
== 0
12324 && REGNO_REG_SET_P (bb
->global_live_at_start
,
12325 REGNO (XEXP (note
, 0))))
12327 SET_BIT (refresh_blocks
, this_basic_block
);
12332 /* If the register is set or already dead at PLACE, we needn't do
12333 anything with this note if it is still a REG_DEAD note.
12334 We can here if it is set at all, not if is it totally replace,
12335 which is what `dead_or_set_p' checks, so also check for it being
12338 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
12340 unsigned int regno
= REGNO (XEXP (note
, 0));
12342 /* Similarly, if the instruction on which we want to place
12343 the note is a noop, we'll need do a global live update
12344 after we remove them in delete_noop_moves. */
12345 if (noop_move_p (place
))
12347 SET_BIT (refresh_blocks
, this_basic_block
);
12351 if (dead_or_set_p (place
, XEXP (note
, 0))
12352 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
12354 /* Unless the register previously died in PLACE, clear
12355 reg_last_death. [I no longer understand why this is
12357 if (reg_last_death
[regno
] != place
)
12358 reg_last_death
[regno
] = 0;
12362 reg_last_death
[regno
] = place
;
12364 /* If this is a death note for a hard reg that is occupying
12365 multiple registers, ensure that we are still using all
12366 parts of the object. If we find a piece of the object
12367 that is unused, we must arrange for an appropriate REG_DEAD
12368 note to be added for it. However, we can't just emit a USE
12369 and tag the note to it, since the register might actually
12370 be dead; so we recourse, and the recursive call then finds
12371 the previous insn that used this register. */
12373 if (place
&& regno
< FIRST_PSEUDO_REGISTER
12374 && HARD_REGNO_NREGS (regno
, GET_MODE (XEXP (note
, 0))) > 1)
12376 unsigned int endregno
12377 = regno
+ HARD_REGNO_NREGS (regno
,
12378 GET_MODE (XEXP (note
, 0)));
12382 for (i
= regno
; i
< endregno
; i
++)
12383 if ((! refers_to_regno_p (i
, i
+ 1, PATTERN (place
), 0)
12384 && ! find_regno_fusage (place
, USE
, i
))
12385 || dead_or_set_regno_p (place
, i
))
12390 /* Put only REG_DEAD notes for pieces that are
12391 not already dead or set. */
12393 for (i
= regno
; i
< endregno
;
12394 i
+= HARD_REGNO_NREGS (i
, reg_raw_mode
[i
]))
12396 rtx piece
= gen_rtx_REG (reg_raw_mode
[i
], i
);
12397 basic_block bb
= BASIC_BLOCK (this_basic_block
);
12399 if (! dead_or_set_p (place
, piece
)
12400 && ! reg_bitfield_target_p (piece
,
12404 = gen_rtx_EXPR_LIST (REG_DEAD
, piece
, NULL_RTX
);
12406 distribute_notes (new_note
, place
, place
,
12407 NULL_RTX
, NULL_RTX
, NULL_RTX
);
12409 else if (! refers_to_regno_p (i
, i
+ 1,
12410 PATTERN (place
), 0)
12411 && ! find_regno_fusage (place
, USE
, i
))
12412 for (tem
= PREV_INSN (place
); ;
12413 tem
= PREV_INSN (tem
))
12415 if (! INSN_P (tem
))
12417 if (tem
== bb
->head
)
12419 SET_BIT (refresh_blocks
,
12426 if (dead_or_set_p (tem
, piece
)
12427 || reg_bitfield_target_p (piece
,
12431 = gen_rtx_EXPR_LIST (REG_UNUSED
, piece
,
12446 /* Any other notes should not be present at this point in the
12453 XEXP (note
, 1) = REG_NOTES (place
);
12454 REG_NOTES (place
) = note
;
12456 else if ((REG_NOTE_KIND (note
) == REG_DEAD
12457 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12458 && GET_CODE (XEXP (note
, 0)) == REG
)
12459 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
12463 if ((REG_NOTE_KIND (note
) == REG_DEAD
12464 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12465 && GET_CODE (XEXP (note
, 0)) == REG
)
12466 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
12468 REG_NOTES (place2
) = gen_rtx_fmt_ee (GET_CODE (note
),
12469 REG_NOTE_KIND (note
),
12471 REG_NOTES (place2
));
12476 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12477 I3, I2, and I1 to new locations. This is also called in one case to
12478 add a link pointing at I3 when I3's destination is changed. */
12481 distribute_links (links
)
12484 rtx link
, next_link
;
12486 for (link
= links
; link
; link
= next_link
)
12492 next_link
= XEXP (link
, 1);
12494 /* If the insn that this link points to is a NOTE or isn't a single
12495 set, ignore it. In the latter case, it isn't clear what we
12496 can do other than ignore the link, since we can't tell which
12497 register it was for. Such links wouldn't be used by combine
12500 It is not possible for the destination of the target of the link to
12501 have been changed by combine. The only potential of this is if we
12502 replace I3, I2, and I1 by I3 and I2. But in that case the
12503 destination of I2 also remains unchanged. */
12505 if (GET_CODE (XEXP (link
, 0)) == NOTE
12506 || (set
= single_set (XEXP (link
, 0))) == 0)
12509 reg
= SET_DEST (set
);
12510 while (GET_CODE (reg
) == SUBREG
|| GET_CODE (reg
) == ZERO_EXTRACT
12511 || GET_CODE (reg
) == SIGN_EXTRACT
12512 || GET_CODE (reg
) == STRICT_LOW_PART
)
12513 reg
= XEXP (reg
, 0);
12515 /* A LOG_LINK is defined as being placed on the first insn that uses
12516 a register and points to the insn that sets the register. Start
12517 searching at the next insn after the target of the link and stop
12518 when we reach a set of the register or the end of the basic block.
12520 Note that this correctly handles the link that used to point from
12521 I3 to I2. Also note that not much searching is typically done here
12522 since most links don't point very far away. */
12524 for (insn
= NEXT_INSN (XEXP (link
, 0));
12525 (insn
&& (this_basic_block
== n_basic_blocks
- 1
12526 || BLOCK_HEAD (this_basic_block
+ 1) != insn
));
12527 insn
= NEXT_INSN (insn
))
12528 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
12530 if (reg_referenced_p (reg
, PATTERN (insn
)))
12534 else if (GET_CODE (insn
) == CALL_INSN
12535 && find_reg_fusage (insn
, USE
, reg
))
12541 /* If we found a place to put the link, place it there unless there
12542 is already a link to the same insn as LINK at that point. */
12548 for (link2
= LOG_LINKS (place
); link2
; link2
= XEXP (link2
, 1))
12549 if (XEXP (link2
, 0) == XEXP (link
, 0))
12554 XEXP (link
, 1) = LOG_LINKS (place
);
12555 LOG_LINKS (place
) = link
;
12557 /* Set added_links_insn to the earliest insn we added a
12559 if (added_links_insn
== 0
12560 || INSN_CUID (added_links_insn
) > INSN_CUID (place
))
12561 added_links_insn
= place
;
12567 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12573 while (insn
!= 0 && INSN_UID (insn
) > max_uid_cuid
12574 && GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == USE
)
12575 insn
= NEXT_INSN (insn
);
12577 if (INSN_UID (insn
) > max_uid_cuid
)
12580 return INSN_CUID (insn
);
12584 dump_combine_stats (file
)
12589 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12590 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
12594 dump_combine_total_stats (file
)
12599 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12600 total_attempts
, total_merges
, total_extras
, total_successes
);