* gcc.dg/vect/vect-outer-simd-1.c: Remove cleanup-tree-dump directive.
[official-gcc.git] / gcc / tree-data-ref.c
blob368d3dfc72a1d9d4a56c5ab8f0a5d2b6ac8460cb
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass walks a given loop structure searching for array
22 references. The information about the array accesses is recorded
23 in DATA_REFERENCE structures.
25 The basic test for determining the dependences is:
26 given two access functions chrec1 and chrec2 to a same array, and
27 x and y two vectors from the iteration domain, the same element of
28 the array is accessed twice at iterations x and y if and only if:
29 | chrec1 (x) == chrec2 (y).
31 The goals of this analysis are:
33 - to determine the independence: the relation between two
34 independent accesses is qualified with the chrec_known (this
35 information allows a loop parallelization),
37 - when two data references access the same data, to qualify the
38 dependence relation with classic dependence representations:
40 - distance vectors
41 - direction vectors
42 - loop carried level dependence
43 - polyhedron dependence
44 or with the chains of recurrences based representation,
46 - to define a knowledge base for storing the data dependence
47 information,
49 - to define an interface to access this data.
52 Definitions:
54 - subscript: given two array accesses a subscript is the tuple
55 composed of the access functions for a given dimension. Example:
56 Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
57 (f1, g1), (f2, g2), (f3, g3).
59 - Diophantine equation: an equation whose coefficients and
60 solutions are integer constants, for example the equation
61 | 3*x + 2*y = 1
62 has an integer solution x = 1 and y = -1.
64 References:
66 - "Advanced Compilation for High Performance Computing" by Randy
67 Allen and Ken Kennedy.
68 http://citeseer.ist.psu.edu/goff91practical.html
70 - "Loop Transformations for Restructuring Compilers - The Foundations"
71 by Utpal Banerjee.
76 #include "config.h"
77 #include "system.h"
78 #include "coretypes.h"
79 #include "hash-set.h"
80 #include "machmode.h"
81 #include "vec.h"
82 #include "double-int.h"
83 #include "input.h"
84 #include "alias.h"
85 #include "symtab.h"
86 #include "options.h"
87 #include "wide-int.h"
88 #include "inchash.h"
89 #include "tree.h"
90 #include "fold-const.h"
91 #include "hashtab.h"
92 #include "tm.h"
93 #include "hard-reg-set.h"
94 #include "function.h"
95 #include "rtl.h"
96 #include "flags.h"
97 #include "statistics.h"
98 #include "real.h"
99 #include "fixed-value.h"
100 #include "insn-config.h"
101 #include "expmed.h"
102 #include "dojump.h"
103 #include "explow.h"
104 #include "calls.h"
105 #include "emit-rtl.h"
106 #include "varasm.h"
107 #include "stmt.h"
108 #include "expr.h"
109 #include "gimple-pretty-print.h"
110 #include "predict.h"
111 #include "dominance.h"
112 #include "cfg.h"
113 #include "basic-block.h"
114 #include "tree-ssa-alias.h"
115 #include "internal-fn.h"
116 #include "gimple-expr.h"
117 #include "is-a.h"
118 #include "gimple.h"
119 #include "gimple-iterator.h"
120 #include "tree-ssa-loop-niter.h"
121 #include "tree-ssa-loop.h"
122 #include "tree-ssa.h"
123 #include "cfgloop.h"
124 #include "tree-data-ref.h"
125 #include "tree-scalar-evolution.h"
126 #include "dumpfile.h"
127 #include "langhooks.h"
128 #include "tree-affine.h"
129 #include "params.h"
131 static struct datadep_stats
133 int num_dependence_tests;
134 int num_dependence_dependent;
135 int num_dependence_independent;
136 int num_dependence_undetermined;
138 int num_subscript_tests;
139 int num_subscript_undetermined;
140 int num_same_subscript_function;
142 int num_ziv;
143 int num_ziv_independent;
144 int num_ziv_dependent;
145 int num_ziv_unimplemented;
147 int num_siv;
148 int num_siv_independent;
149 int num_siv_dependent;
150 int num_siv_unimplemented;
152 int num_miv;
153 int num_miv_independent;
154 int num_miv_dependent;
155 int num_miv_unimplemented;
156 } dependence_stats;
158 static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
159 struct data_reference *,
160 struct data_reference *,
161 struct loop *);
162 /* Returns true iff A divides B. */
164 static inline bool
165 tree_fold_divides_p (const_tree a, const_tree b)
167 gcc_assert (TREE_CODE (a) == INTEGER_CST);
168 gcc_assert (TREE_CODE (b) == INTEGER_CST);
169 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
172 /* Returns true iff A divides B. */
174 static inline bool
175 int_divides_p (int a, int b)
177 return ((b % a) == 0);
182 /* Dump into FILE all the data references from DATAREFS. */
184 static void
185 dump_data_references (FILE *file, vec<data_reference_p> datarefs)
187 unsigned int i;
188 struct data_reference *dr;
190 FOR_EACH_VEC_ELT (datarefs, i, dr)
191 dump_data_reference (file, dr);
194 /* Unified dump into FILE all the data references from DATAREFS. */
196 DEBUG_FUNCTION void
197 debug (vec<data_reference_p> &ref)
199 dump_data_references (stderr, ref);
202 DEBUG_FUNCTION void
203 debug (vec<data_reference_p> *ptr)
205 if (ptr)
206 debug (*ptr);
207 else
208 fprintf (stderr, "<nil>\n");
212 /* Dump into STDERR all the data references from DATAREFS. */
214 DEBUG_FUNCTION void
215 debug_data_references (vec<data_reference_p> datarefs)
217 dump_data_references (stderr, datarefs);
220 /* Print to STDERR the data_reference DR. */
222 DEBUG_FUNCTION void
223 debug_data_reference (struct data_reference *dr)
225 dump_data_reference (stderr, dr);
228 /* Dump function for a DATA_REFERENCE structure. */
230 void
231 dump_data_reference (FILE *outf,
232 struct data_reference *dr)
234 unsigned int i;
236 fprintf (outf, "#(Data Ref: \n");
237 fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index);
238 fprintf (outf, "# stmt: ");
239 print_gimple_stmt (outf, DR_STMT (dr), 0, 0);
240 fprintf (outf, "# ref: ");
241 print_generic_stmt (outf, DR_REF (dr), 0);
242 fprintf (outf, "# base_object: ");
243 print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
245 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
247 fprintf (outf, "# Access function %d: ", i);
248 print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
250 fprintf (outf, "#)\n");
253 /* Unified dump function for a DATA_REFERENCE structure. */
255 DEBUG_FUNCTION void
256 debug (data_reference &ref)
258 dump_data_reference (stderr, &ref);
261 DEBUG_FUNCTION void
262 debug (data_reference *ptr)
264 if (ptr)
265 debug (*ptr);
266 else
267 fprintf (stderr, "<nil>\n");
271 /* Dumps the affine function described by FN to the file OUTF. */
273 static void
274 dump_affine_function (FILE *outf, affine_fn fn)
276 unsigned i;
277 tree coef;
279 print_generic_expr (outf, fn[0], TDF_SLIM);
280 for (i = 1; fn.iterate (i, &coef); i++)
282 fprintf (outf, " + ");
283 print_generic_expr (outf, coef, TDF_SLIM);
284 fprintf (outf, " * x_%u", i);
288 /* Dumps the conflict function CF to the file OUTF. */
290 static void
291 dump_conflict_function (FILE *outf, conflict_function *cf)
293 unsigned i;
295 if (cf->n == NO_DEPENDENCE)
296 fprintf (outf, "no dependence");
297 else if (cf->n == NOT_KNOWN)
298 fprintf (outf, "not known");
299 else
301 for (i = 0; i < cf->n; i++)
303 if (i != 0)
304 fprintf (outf, " ");
305 fprintf (outf, "[");
306 dump_affine_function (outf, cf->fns[i]);
307 fprintf (outf, "]");
312 /* Dump function for a SUBSCRIPT structure. */
314 static void
315 dump_subscript (FILE *outf, struct subscript *subscript)
317 conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
319 fprintf (outf, "\n (subscript \n");
320 fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
321 dump_conflict_function (outf, cf);
322 if (CF_NONTRIVIAL_P (cf))
324 tree last_iteration = SUB_LAST_CONFLICT (subscript);
325 fprintf (outf, "\n last_conflict: ");
326 print_generic_expr (outf, last_iteration, 0);
329 cf = SUB_CONFLICTS_IN_B (subscript);
330 fprintf (outf, "\n iterations_that_access_an_element_twice_in_B: ");
331 dump_conflict_function (outf, cf);
332 if (CF_NONTRIVIAL_P (cf))
334 tree last_iteration = SUB_LAST_CONFLICT (subscript);
335 fprintf (outf, "\n last_conflict: ");
336 print_generic_expr (outf, last_iteration, 0);
339 fprintf (outf, "\n (Subscript distance: ");
340 print_generic_expr (outf, SUB_DISTANCE (subscript), 0);
341 fprintf (outf, " ))\n");
344 /* Print the classic direction vector DIRV to OUTF. */
346 static void
347 print_direction_vector (FILE *outf,
348 lambda_vector dirv,
349 int length)
351 int eq;
353 for (eq = 0; eq < length; eq++)
355 enum data_dependence_direction dir = ((enum data_dependence_direction)
356 dirv[eq]);
358 switch (dir)
360 case dir_positive:
361 fprintf (outf, " +");
362 break;
363 case dir_negative:
364 fprintf (outf, " -");
365 break;
366 case dir_equal:
367 fprintf (outf, " =");
368 break;
369 case dir_positive_or_equal:
370 fprintf (outf, " +=");
371 break;
372 case dir_positive_or_negative:
373 fprintf (outf, " +-");
374 break;
375 case dir_negative_or_equal:
376 fprintf (outf, " -=");
377 break;
378 case dir_star:
379 fprintf (outf, " *");
380 break;
381 default:
382 fprintf (outf, "indep");
383 break;
386 fprintf (outf, "\n");
389 /* Print a vector of direction vectors. */
391 static void
392 print_dir_vectors (FILE *outf, vec<lambda_vector> dir_vects,
393 int length)
395 unsigned j;
396 lambda_vector v;
398 FOR_EACH_VEC_ELT (dir_vects, j, v)
399 print_direction_vector (outf, v, length);
402 /* Print out a vector VEC of length N to OUTFILE. */
404 static inline void
405 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
407 int i;
409 for (i = 0; i < n; i++)
410 fprintf (outfile, "%3d ", vector[i]);
411 fprintf (outfile, "\n");
414 /* Print a vector of distance vectors. */
416 static void
417 print_dist_vectors (FILE *outf, vec<lambda_vector> dist_vects,
418 int length)
420 unsigned j;
421 lambda_vector v;
423 FOR_EACH_VEC_ELT (dist_vects, j, v)
424 print_lambda_vector (outf, v, length);
427 /* Dump function for a DATA_DEPENDENCE_RELATION structure. */
429 static void
430 dump_data_dependence_relation (FILE *outf,
431 struct data_dependence_relation *ddr)
433 struct data_reference *dra, *drb;
435 fprintf (outf, "(Data Dep: \n");
437 if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
439 if (ddr)
441 dra = DDR_A (ddr);
442 drb = DDR_B (ddr);
443 if (dra)
444 dump_data_reference (outf, dra);
445 else
446 fprintf (outf, " (nil)\n");
447 if (drb)
448 dump_data_reference (outf, drb);
449 else
450 fprintf (outf, " (nil)\n");
452 fprintf (outf, " (don't know)\n)\n");
453 return;
456 dra = DDR_A (ddr);
457 drb = DDR_B (ddr);
458 dump_data_reference (outf, dra);
459 dump_data_reference (outf, drb);
461 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
462 fprintf (outf, " (no dependence)\n");
464 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
466 unsigned int i;
467 struct loop *loopi;
469 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
471 fprintf (outf, " access_fn_A: ");
472 print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
473 fprintf (outf, " access_fn_B: ");
474 print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
475 dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
478 fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr));
479 fprintf (outf, " loop nest: (");
480 FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr), i, loopi)
481 fprintf (outf, "%d ", loopi->num);
482 fprintf (outf, ")\n");
484 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
486 fprintf (outf, " distance_vector: ");
487 print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
488 DDR_NB_LOOPS (ddr));
491 for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
493 fprintf (outf, " direction_vector: ");
494 print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
495 DDR_NB_LOOPS (ddr));
499 fprintf (outf, ")\n");
502 /* Debug version. */
504 DEBUG_FUNCTION void
505 debug_data_dependence_relation (struct data_dependence_relation *ddr)
507 dump_data_dependence_relation (stderr, ddr);
510 /* Dump into FILE all the dependence relations from DDRS. */
512 void
513 dump_data_dependence_relations (FILE *file,
514 vec<ddr_p> ddrs)
516 unsigned int i;
517 struct data_dependence_relation *ddr;
519 FOR_EACH_VEC_ELT (ddrs, i, ddr)
520 dump_data_dependence_relation (file, ddr);
523 DEBUG_FUNCTION void
524 debug (vec<ddr_p> &ref)
526 dump_data_dependence_relations (stderr, ref);
529 DEBUG_FUNCTION void
530 debug (vec<ddr_p> *ptr)
532 if (ptr)
533 debug (*ptr);
534 else
535 fprintf (stderr, "<nil>\n");
539 /* Dump to STDERR all the dependence relations from DDRS. */
541 DEBUG_FUNCTION void
542 debug_data_dependence_relations (vec<ddr_p> ddrs)
544 dump_data_dependence_relations (stderr, ddrs);
547 /* Dumps the distance and direction vectors in FILE. DDRS contains
548 the dependence relations, and VECT_SIZE is the size of the
549 dependence vectors, or in other words the number of loops in the
550 considered nest. */
552 static void
553 dump_dist_dir_vectors (FILE *file, vec<ddr_p> ddrs)
555 unsigned int i, j;
556 struct data_dependence_relation *ddr;
557 lambda_vector v;
559 FOR_EACH_VEC_ELT (ddrs, i, ddr)
560 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
562 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), j, v)
564 fprintf (file, "DISTANCE_V (");
565 print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
566 fprintf (file, ")\n");
569 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), j, v)
571 fprintf (file, "DIRECTION_V (");
572 print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
573 fprintf (file, ")\n");
577 fprintf (file, "\n\n");
580 /* Dumps the data dependence relations DDRS in FILE. */
582 static void
583 dump_ddrs (FILE *file, vec<ddr_p> ddrs)
585 unsigned int i;
586 struct data_dependence_relation *ddr;
588 FOR_EACH_VEC_ELT (ddrs, i, ddr)
589 dump_data_dependence_relation (file, ddr);
591 fprintf (file, "\n\n");
594 DEBUG_FUNCTION void
595 debug_ddrs (vec<ddr_p> ddrs)
597 dump_ddrs (stderr, ddrs);
600 /* Helper function for split_constant_offset. Expresses OP0 CODE OP1
601 (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
602 constant of type ssizetype, and returns true. If we cannot do this
603 with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
604 is returned. */
606 static bool
607 split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
608 tree *var, tree *off)
610 tree var0, var1;
611 tree off0, off1;
612 enum tree_code ocode = code;
614 *var = NULL_TREE;
615 *off = NULL_TREE;
617 switch (code)
619 case INTEGER_CST:
620 *var = build_int_cst (type, 0);
621 *off = fold_convert (ssizetype, op0);
622 return true;
624 case POINTER_PLUS_EXPR:
625 ocode = PLUS_EXPR;
626 /* FALLTHROUGH */
627 case PLUS_EXPR:
628 case MINUS_EXPR:
629 split_constant_offset (op0, &var0, &off0);
630 split_constant_offset (op1, &var1, &off1);
631 *var = fold_build2 (code, type, var0, var1);
632 *off = size_binop (ocode, off0, off1);
633 return true;
635 case MULT_EXPR:
636 if (TREE_CODE (op1) != INTEGER_CST)
637 return false;
639 split_constant_offset (op0, &var0, &off0);
640 *var = fold_build2 (MULT_EXPR, type, var0, op1);
641 *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
642 return true;
644 case ADDR_EXPR:
646 tree base, poffset;
647 HOST_WIDE_INT pbitsize, pbitpos;
648 machine_mode pmode;
649 int punsignedp, pvolatilep;
651 op0 = TREE_OPERAND (op0, 0);
652 base = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset,
653 &pmode, &punsignedp, &pvolatilep, false);
655 if (pbitpos % BITS_PER_UNIT != 0)
656 return false;
657 base = build_fold_addr_expr (base);
658 off0 = ssize_int (pbitpos / BITS_PER_UNIT);
660 if (poffset)
662 split_constant_offset (poffset, &poffset, &off1);
663 off0 = size_binop (PLUS_EXPR, off0, off1);
664 if (POINTER_TYPE_P (TREE_TYPE (base)))
665 base = fold_build_pointer_plus (base, poffset);
666 else
667 base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
668 fold_convert (TREE_TYPE (base), poffset));
671 var0 = fold_convert (type, base);
673 /* If variable length types are involved, punt, otherwise casts
674 might be converted into ARRAY_REFs in gimplify_conversion.
675 To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
676 possibly no longer appears in current GIMPLE, might resurface.
677 This perhaps could run
678 if (CONVERT_EXPR_P (var0))
680 gimplify_conversion (&var0);
681 // Attempt to fill in any within var0 found ARRAY_REF's
682 // element size from corresponding op embedded ARRAY_REF,
683 // if unsuccessful, just punt.
684 } */
685 while (POINTER_TYPE_P (type))
686 type = TREE_TYPE (type);
687 if (int_size_in_bytes (type) < 0)
688 return false;
690 *var = var0;
691 *off = off0;
692 return true;
695 case SSA_NAME:
697 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
698 return false;
700 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
701 enum tree_code subcode;
703 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
704 return false;
706 var0 = gimple_assign_rhs1 (def_stmt);
707 subcode = gimple_assign_rhs_code (def_stmt);
708 var1 = gimple_assign_rhs2 (def_stmt);
710 return split_constant_offset_1 (type, var0, subcode, var1, var, off);
712 CASE_CONVERT:
714 /* We must not introduce undefined overflow, and we must not change the value.
715 Hence we're okay if the inner type doesn't overflow to start with
716 (pointer or signed), the outer type also is an integer or pointer
717 and the outer precision is at least as large as the inner. */
718 tree itype = TREE_TYPE (op0);
719 if ((POINTER_TYPE_P (itype)
720 || (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype)))
721 && TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
722 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
724 split_constant_offset (op0, &var0, off);
725 *var = fold_convert (type, var0);
726 return true;
728 return false;
731 default:
732 return false;
736 /* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
737 will be ssizetype. */
739 void
740 split_constant_offset (tree exp, tree *var, tree *off)
742 tree type = TREE_TYPE (exp), otype, op0, op1, e, o;
743 enum tree_code code;
745 *var = exp;
746 *off = ssize_int (0);
747 STRIP_NOPS (exp);
749 if (tree_is_chrec (exp)
750 || get_gimple_rhs_class (TREE_CODE (exp)) == GIMPLE_TERNARY_RHS)
751 return;
753 otype = TREE_TYPE (exp);
754 code = TREE_CODE (exp);
755 extract_ops_from_tree (exp, &code, &op0, &op1);
756 if (split_constant_offset_1 (otype, op0, code, op1, &e, &o))
758 *var = fold_convert (type, e);
759 *off = o;
763 /* Returns the address ADDR of an object in a canonical shape (without nop
764 casts, and with type of pointer to the object). */
766 static tree
767 canonicalize_base_object_address (tree addr)
769 tree orig = addr;
771 STRIP_NOPS (addr);
773 /* The base address may be obtained by casting from integer, in that case
774 keep the cast. */
775 if (!POINTER_TYPE_P (TREE_TYPE (addr)))
776 return orig;
778 if (TREE_CODE (addr) != ADDR_EXPR)
779 return addr;
781 return build_fold_addr_expr (TREE_OPERAND (addr, 0));
784 /* Analyzes the behavior of the memory reference DR in the innermost loop or
785 basic block that contains it. Returns true if analysis succeed or false
786 otherwise. */
788 bool
789 dr_analyze_innermost (struct data_reference *dr, struct loop *nest)
791 gimple stmt = DR_STMT (dr);
792 struct loop *loop = loop_containing_stmt (stmt);
793 tree ref = DR_REF (dr);
794 HOST_WIDE_INT pbitsize, pbitpos;
795 tree base, poffset;
796 machine_mode pmode;
797 int punsignedp, pvolatilep;
798 affine_iv base_iv, offset_iv;
799 tree init, dinit, step;
800 bool in_loop = (loop && loop->num);
802 if (dump_file && (dump_flags & TDF_DETAILS))
803 fprintf (dump_file, "analyze_innermost: ");
805 base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset,
806 &pmode, &punsignedp, &pvolatilep, false);
807 gcc_assert (base != NULL_TREE);
809 if (pbitpos % BITS_PER_UNIT != 0)
811 if (dump_file && (dump_flags & TDF_DETAILS))
812 fprintf (dump_file, "failed: bit offset alignment.\n");
813 return false;
816 if (TREE_CODE (base) == MEM_REF)
818 if (!integer_zerop (TREE_OPERAND (base, 1)))
820 offset_int moff = mem_ref_offset (base);
821 tree mofft = wide_int_to_tree (sizetype, moff);
822 if (!poffset)
823 poffset = mofft;
824 else
825 poffset = size_binop (PLUS_EXPR, poffset, mofft);
827 base = TREE_OPERAND (base, 0);
829 else
830 base = build_fold_addr_expr (base);
832 if (in_loop)
834 if (!simple_iv (loop, loop_containing_stmt (stmt), base, &base_iv,
835 nest ? true : false))
837 if (nest)
839 if (dump_file && (dump_flags & TDF_DETAILS))
840 fprintf (dump_file, "failed: evolution of base is not"
841 " affine.\n");
842 return false;
844 else
846 base_iv.base = base;
847 base_iv.step = ssize_int (0);
848 base_iv.no_overflow = true;
852 else
854 base_iv.base = base;
855 base_iv.step = ssize_int (0);
856 base_iv.no_overflow = true;
859 if (!poffset)
861 offset_iv.base = ssize_int (0);
862 offset_iv.step = ssize_int (0);
864 else
866 if (!in_loop)
868 offset_iv.base = poffset;
869 offset_iv.step = ssize_int (0);
871 else if (!simple_iv (loop, loop_containing_stmt (stmt),
872 poffset, &offset_iv,
873 nest ? true : false))
875 if (nest)
877 if (dump_file && (dump_flags & TDF_DETAILS))
878 fprintf (dump_file, "failed: evolution of offset is not"
879 " affine.\n");
880 return false;
882 else
884 offset_iv.base = poffset;
885 offset_iv.step = ssize_int (0);
890 init = ssize_int (pbitpos / BITS_PER_UNIT);
891 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
892 init = size_binop (PLUS_EXPR, init, dinit);
893 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
894 init = size_binop (PLUS_EXPR, init, dinit);
896 step = size_binop (PLUS_EXPR,
897 fold_convert (ssizetype, base_iv.step),
898 fold_convert (ssizetype, offset_iv.step));
900 DR_BASE_ADDRESS (dr) = canonicalize_base_object_address (base_iv.base);
902 DR_OFFSET (dr) = fold_convert (ssizetype, offset_iv.base);
903 DR_INIT (dr) = init;
904 DR_STEP (dr) = step;
906 DR_ALIGNED_TO (dr) = size_int (highest_pow2_factor (offset_iv.base));
908 if (dump_file && (dump_flags & TDF_DETAILS))
909 fprintf (dump_file, "success.\n");
911 return true;
914 /* Determines the base object and the list of indices of memory reference
915 DR, analyzed in LOOP and instantiated in loop nest NEST. */
917 static void
918 dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop)
920 vec<tree> access_fns = vNULL;
921 tree ref, op;
922 tree base, off, access_fn;
923 basic_block before_loop;
925 /* If analyzing a basic-block there are no indices to analyze
926 and thus no access functions. */
927 if (!nest)
929 DR_BASE_OBJECT (dr) = DR_REF (dr);
930 DR_ACCESS_FNS (dr).create (0);
931 return;
934 ref = DR_REF (dr);
935 before_loop = block_before_loop (nest);
937 /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
938 into a two element array with a constant index. The base is
939 then just the immediate underlying object. */
940 if (TREE_CODE (ref) == REALPART_EXPR)
942 ref = TREE_OPERAND (ref, 0);
943 access_fns.safe_push (integer_zero_node);
945 else if (TREE_CODE (ref) == IMAGPART_EXPR)
947 ref = TREE_OPERAND (ref, 0);
948 access_fns.safe_push (integer_one_node);
951 /* Analyze access functions of dimensions we know to be independent. */
952 while (handled_component_p (ref))
954 if (TREE_CODE (ref) == ARRAY_REF)
956 op = TREE_OPERAND (ref, 1);
957 access_fn = analyze_scalar_evolution (loop, op);
958 access_fn = instantiate_scev (before_loop, loop, access_fn);
959 access_fns.safe_push (access_fn);
961 else if (TREE_CODE (ref) == COMPONENT_REF
962 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
964 /* For COMPONENT_REFs of records (but not unions!) use the
965 FIELD_DECL offset as constant access function so we can
966 disambiguate a[i].f1 and a[i].f2. */
967 tree off = component_ref_field_offset (ref);
968 off = size_binop (PLUS_EXPR,
969 size_binop (MULT_EXPR,
970 fold_convert (bitsizetype, off),
971 bitsize_int (BITS_PER_UNIT)),
972 DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)));
973 access_fns.safe_push (off);
975 else
976 /* If we have an unhandled component we could not translate
977 to an access function stop analyzing. We have determined
978 our base object in this case. */
979 break;
981 ref = TREE_OPERAND (ref, 0);
984 /* If the address operand of a MEM_REF base has an evolution in the
985 analyzed nest, add it as an additional independent access-function. */
986 if (TREE_CODE (ref) == MEM_REF)
988 op = TREE_OPERAND (ref, 0);
989 access_fn = analyze_scalar_evolution (loop, op);
990 access_fn = instantiate_scev (before_loop, loop, access_fn);
991 if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
993 tree orig_type;
994 tree memoff = TREE_OPERAND (ref, 1);
995 base = initial_condition (access_fn);
996 orig_type = TREE_TYPE (base);
997 STRIP_USELESS_TYPE_CONVERSION (base);
998 split_constant_offset (base, &base, &off);
999 STRIP_USELESS_TYPE_CONVERSION (base);
1000 /* Fold the MEM_REF offset into the evolutions initial
1001 value to make more bases comparable. */
1002 if (!integer_zerop (memoff))
1004 off = size_binop (PLUS_EXPR, off,
1005 fold_convert (ssizetype, memoff));
1006 memoff = build_int_cst (TREE_TYPE (memoff), 0);
1008 /* Adjust the offset so it is a multiple of the access type
1009 size and thus we separate bases that can possibly be used
1010 to produce partial overlaps (which the access_fn machinery
1011 cannot handle). */
1012 wide_int rem;
1013 if (TYPE_SIZE_UNIT (TREE_TYPE (ref))
1014 && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref))) == INTEGER_CST
1015 && !integer_zerop (TYPE_SIZE_UNIT (TREE_TYPE (ref))))
1016 rem = wi::mod_trunc (off, TYPE_SIZE_UNIT (TREE_TYPE (ref)), SIGNED);
1017 else
1018 /* If we can't compute the remainder simply force the initial
1019 condition to zero. */
1020 rem = off;
1021 off = wide_int_to_tree (ssizetype, wi::sub (off, rem));
1022 memoff = wide_int_to_tree (TREE_TYPE (memoff), rem);
1023 /* And finally replace the initial condition. */
1024 access_fn = chrec_replace_initial_condition
1025 (access_fn, fold_convert (orig_type, off));
1026 /* ??? This is still not a suitable base object for
1027 dr_may_alias_p - the base object needs to be an
1028 access that covers the object as whole. With
1029 an evolution in the pointer this cannot be
1030 guaranteed.
1031 As a band-aid, mark the access so we can special-case
1032 it in dr_may_alias_p. */
1033 tree old = ref;
1034 ref = fold_build2_loc (EXPR_LOCATION (ref),
1035 MEM_REF, TREE_TYPE (ref),
1036 base, memoff);
1037 MR_DEPENDENCE_CLIQUE (ref) = MR_DEPENDENCE_CLIQUE (old);
1038 MR_DEPENDENCE_BASE (ref) = MR_DEPENDENCE_BASE (old);
1039 DR_UNCONSTRAINED_BASE (dr) = true;
1040 access_fns.safe_push (access_fn);
1043 else if (DECL_P (ref))
1045 /* Canonicalize DR_BASE_OBJECT to MEM_REF form. */
1046 ref = build2 (MEM_REF, TREE_TYPE (ref),
1047 build_fold_addr_expr (ref),
1048 build_int_cst (reference_alias_ptr_type (ref), 0));
1051 DR_BASE_OBJECT (dr) = ref;
1052 DR_ACCESS_FNS (dr) = access_fns;
1055 /* Extracts the alias analysis information from the memory reference DR. */
1057 static void
1058 dr_analyze_alias (struct data_reference *dr)
1060 tree ref = DR_REF (dr);
1061 tree base = get_base_address (ref), addr;
1063 if (INDIRECT_REF_P (base)
1064 || TREE_CODE (base) == MEM_REF)
1066 addr = TREE_OPERAND (base, 0);
1067 if (TREE_CODE (addr) == SSA_NAME)
1068 DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
1072 /* Frees data reference DR. */
1074 void
1075 free_data_ref (data_reference_p dr)
1077 DR_ACCESS_FNS (dr).release ();
1078 free (dr);
1081 /* Analyzes memory reference MEMREF accessed in STMT. The reference
1082 is read if IS_READ is true, write otherwise. Returns the
1083 data_reference description of MEMREF. NEST is the outermost loop
1084 in which the reference should be instantiated, LOOP is the loop in
1085 which the data reference should be analyzed. */
1087 struct data_reference *
1088 create_data_ref (loop_p nest, loop_p loop, tree memref, gimple stmt,
1089 bool is_read)
1091 struct data_reference *dr;
1093 if (dump_file && (dump_flags & TDF_DETAILS))
1095 fprintf (dump_file, "Creating dr for ");
1096 print_generic_expr (dump_file, memref, TDF_SLIM);
1097 fprintf (dump_file, "\n");
1100 dr = XCNEW (struct data_reference);
1101 DR_STMT (dr) = stmt;
1102 DR_REF (dr) = memref;
1103 DR_IS_READ (dr) = is_read;
1105 dr_analyze_innermost (dr, nest);
1106 dr_analyze_indices (dr, nest, loop);
1107 dr_analyze_alias (dr);
1109 if (dump_file && (dump_flags & TDF_DETAILS))
1111 unsigned i;
1112 fprintf (dump_file, "\tbase_address: ");
1113 print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
1114 fprintf (dump_file, "\n\toffset from base address: ");
1115 print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
1116 fprintf (dump_file, "\n\tconstant offset from base address: ");
1117 print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
1118 fprintf (dump_file, "\n\tstep: ");
1119 print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
1120 fprintf (dump_file, "\n\taligned to: ");
1121 print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
1122 fprintf (dump_file, "\n\tbase_object: ");
1123 print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
1124 fprintf (dump_file, "\n");
1125 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
1127 fprintf (dump_file, "\tAccess function %d: ", i);
1128 print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM);
1132 return dr;
1135 /* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
1136 expressions. */
1137 static bool
1138 dr_equal_offsets_p1 (tree offset1, tree offset2)
1140 bool res;
1142 STRIP_NOPS (offset1);
1143 STRIP_NOPS (offset2);
1145 if (offset1 == offset2)
1146 return true;
1148 if (TREE_CODE (offset1) != TREE_CODE (offset2)
1149 || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
1150 return false;
1152 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
1153 TREE_OPERAND (offset2, 0));
1155 if (!res || !BINARY_CLASS_P (offset1))
1156 return res;
1158 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
1159 TREE_OPERAND (offset2, 1));
1161 return res;
1164 /* Check if DRA and DRB have equal offsets. */
1165 bool
1166 dr_equal_offsets_p (struct data_reference *dra,
1167 struct data_reference *drb)
1169 tree offset1, offset2;
1171 offset1 = DR_OFFSET (dra);
1172 offset2 = DR_OFFSET (drb);
1174 return dr_equal_offsets_p1 (offset1, offset2);
1177 /* Returns true if FNA == FNB. */
1179 static bool
1180 affine_function_equal_p (affine_fn fna, affine_fn fnb)
1182 unsigned i, n = fna.length ();
1184 if (n != fnb.length ())
1185 return false;
1187 for (i = 0; i < n; i++)
1188 if (!operand_equal_p (fna[i], fnb[i], 0))
1189 return false;
1191 return true;
1194 /* If all the functions in CF are the same, returns one of them,
1195 otherwise returns NULL. */
1197 static affine_fn
1198 common_affine_function (conflict_function *cf)
1200 unsigned i;
1201 affine_fn comm;
1203 if (!CF_NONTRIVIAL_P (cf))
1204 return affine_fn ();
1206 comm = cf->fns[0];
1208 for (i = 1; i < cf->n; i++)
1209 if (!affine_function_equal_p (comm, cf->fns[i]))
1210 return affine_fn ();
1212 return comm;
1215 /* Returns the base of the affine function FN. */
1217 static tree
1218 affine_function_base (affine_fn fn)
1220 return fn[0];
1223 /* Returns true if FN is a constant. */
1225 static bool
1226 affine_function_constant_p (affine_fn fn)
1228 unsigned i;
1229 tree coef;
1231 for (i = 1; fn.iterate (i, &coef); i++)
1232 if (!integer_zerop (coef))
1233 return false;
1235 return true;
1238 /* Returns true if FN is the zero constant function. */
1240 static bool
1241 affine_function_zero_p (affine_fn fn)
1243 return (integer_zerop (affine_function_base (fn))
1244 && affine_function_constant_p (fn));
1247 /* Returns a signed integer type with the largest precision from TA
1248 and TB. */
1250 static tree
1251 signed_type_for_types (tree ta, tree tb)
1253 if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
1254 return signed_type_for (ta);
1255 else
1256 return signed_type_for (tb);
1259 /* Applies operation OP on affine functions FNA and FNB, and returns the
1260 result. */
1262 static affine_fn
1263 affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
1265 unsigned i, n, m;
1266 affine_fn ret;
1267 tree coef;
1269 if (fnb.length () > fna.length ())
1271 n = fna.length ();
1272 m = fnb.length ();
1274 else
1276 n = fnb.length ();
1277 m = fna.length ();
1280 ret.create (m);
1281 for (i = 0; i < n; i++)
1283 tree type = signed_type_for_types (TREE_TYPE (fna[i]),
1284 TREE_TYPE (fnb[i]));
1285 ret.quick_push (fold_build2 (op, type, fna[i], fnb[i]));
1288 for (; fna.iterate (i, &coef); i++)
1289 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1290 coef, integer_zero_node));
1291 for (; fnb.iterate (i, &coef); i++)
1292 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1293 integer_zero_node, coef));
1295 return ret;
1298 /* Returns the sum of affine functions FNA and FNB. */
1300 static affine_fn
1301 affine_fn_plus (affine_fn fna, affine_fn fnb)
1303 return affine_fn_op (PLUS_EXPR, fna, fnb);
1306 /* Returns the difference of affine functions FNA and FNB. */
1308 static affine_fn
1309 affine_fn_minus (affine_fn fna, affine_fn fnb)
1311 return affine_fn_op (MINUS_EXPR, fna, fnb);
1314 /* Frees affine function FN. */
1316 static void
1317 affine_fn_free (affine_fn fn)
1319 fn.release ();
1322 /* Determine for each subscript in the data dependence relation DDR
1323 the distance. */
1325 static void
1326 compute_subscript_distance (struct data_dependence_relation *ddr)
1328 conflict_function *cf_a, *cf_b;
1329 affine_fn fn_a, fn_b, diff;
1331 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
1333 unsigned int i;
1335 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
1337 struct subscript *subscript;
1339 subscript = DDR_SUBSCRIPT (ddr, i);
1340 cf_a = SUB_CONFLICTS_IN_A (subscript);
1341 cf_b = SUB_CONFLICTS_IN_B (subscript);
1343 fn_a = common_affine_function (cf_a);
1344 fn_b = common_affine_function (cf_b);
1345 if (!fn_a.exists () || !fn_b.exists ())
1347 SUB_DISTANCE (subscript) = chrec_dont_know;
1348 return;
1350 diff = affine_fn_minus (fn_a, fn_b);
1352 if (affine_function_constant_p (diff))
1353 SUB_DISTANCE (subscript) = affine_function_base (diff);
1354 else
1355 SUB_DISTANCE (subscript) = chrec_dont_know;
1357 affine_fn_free (diff);
1362 /* Returns the conflict function for "unknown". */
1364 static conflict_function *
1365 conflict_fn_not_known (void)
1367 conflict_function *fn = XCNEW (conflict_function);
1368 fn->n = NOT_KNOWN;
1370 return fn;
1373 /* Returns the conflict function for "independent". */
1375 static conflict_function *
1376 conflict_fn_no_dependence (void)
1378 conflict_function *fn = XCNEW (conflict_function);
1379 fn->n = NO_DEPENDENCE;
1381 return fn;
1384 /* Returns true if the address of OBJ is invariant in LOOP. */
1386 static bool
1387 object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
1389 while (handled_component_p (obj))
1391 if (TREE_CODE (obj) == ARRAY_REF)
1393 /* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only
1394 need to check the stride and the lower bound of the reference. */
1395 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1396 loop->num)
1397 || chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 3),
1398 loop->num))
1399 return false;
1401 else if (TREE_CODE (obj) == COMPONENT_REF)
1403 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1404 loop->num))
1405 return false;
1407 obj = TREE_OPERAND (obj, 0);
1410 if (!INDIRECT_REF_P (obj)
1411 && TREE_CODE (obj) != MEM_REF)
1412 return true;
1414 return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
1415 loop->num);
1418 /* Returns false if we can prove that data references A and B do not alias,
1419 true otherwise. If LOOP_NEST is false no cross-iteration aliases are
1420 considered. */
1422 bool
1423 dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
1424 bool loop_nest)
1426 tree addr_a = DR_BASE_OBJECT (a);
1427 tree addr_b = DR_BASE_OBJECT (b);
1429 /* If we are not processing a loop nest but scalar code we
1430 do not need to care about possible cross-iteration dependences
1431 and thus can process the full original reference. Do so,
1432 similar to how loop invariant motion applies extra offset-based
1433 disambiguation. */
1434 if (!loop_nest)
1436 aff_tree off1, off2;
1437 widest_int size1, size2;
1438 get_inner_reference_aff (DR_REF (a), &off1, &size1);
1439 get_inner_reference_aff (DR_REF (b), &off2, &size2);
1440 aff_combination_scale (&off1, -1);
1441 aff_combination_add (&off2, &off1);
1442 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1443 return false;
1446 if ((TREE_CODE (addr_a) == MEM_REF || TREE_CODE (addr_a) == TARGET_MEM_REF)
1447 && (TREE_CODE (addr_b) == MEM_REF || TREE_CODE (addr_b) == TARGET_MEM_REF)
1448 && MR_DEPENDENCE_CLIQUE (addr_a) == MR_DEPENDENCE_CLIQUE (addr_b)
1449 && MR_DEPENDENCE_BASE (addr_a) != MR_DEPENDENCE_BASE (addr_b))
1450 return false;
1452 /* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we
1453 do not know the size of the base-object. So we cannot do any
1454 offset/overlap based analysis but have to rely on points-to
1455 information only. */
1456 if (TREE_CODE (addr_a) == MEM_REF
1457 && (DR_UNCONSTRAINED_BASE (a)
1458 || TREE_CODE (TREE_OPERAND (addr_a, 0)) == SSA_NAME))
1460 /* For true dependences we can apply TBAA. */
1461 if (flag_strict_aliasing
1462 && DR_IS_WRITE (a) && DR_IS_READ (b)
1463 && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
1464 get_alias_set (DR_REF (b))))
1465 return false;
1466 if (TREE_CODE (addr_b) == MEM_REF)
1467 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1468 TREE_OPERAND (addr_b, 0));
1469 else
1470 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1471 build_fold_addr_expr (addr_b));
1473 else if (TREE_CODE (addr_b) == MEM_REF
1474 && (DR_UNCONSTRAINED_BASE (b)
1475 || TREE_CODE (TREE_OPERAND (addr_b, 0)) == SSA_NAME))
1477 /* For true dependences we can apply TBAA. */
1478 if (flag_strict_aliasing
1479 && DR_IS_WRITE (a) && DR_IS_READ (b)
1480 && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
1481 get_alias_set (DR_REF (b))))
1482 return false;
1483 if (TREE_CODE (addr_a) == MEM_REF)
1484 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1485 TREE_OPERAND (addr_b, 0));
1486 else
1487 return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a),
1488 TREE_OPERAND (addr_b, 0));
1491 /* Otherwise DR_BASE_OBJECT is an access that covers the whole object
1492 that is being subsetted in the loop nest. */
1493 if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
1494 return refs_output_dependent_p (addr_a, addr_b);
1495 else if (DR_IS_READ (a) && DR_IS_WRITE (b))
1496 return refs_anti_dependent_p (addr_a, addr_b);
1497 return refs_may_alias_p (addr_a, addr_b);
1500 /* Initialize a data dependence relation between data accesses A and
1501 B. NB_LOOPS is the number of loops surrounding the references: the
1502 size of the classic distance/direction vectors. */
1504 struct data_dependence_relation *
1505 initialize_data_dependence_relation (struct data_reference *a,
1506 struct data_reference *b,
1507 vec<loop_p> loop_nest)
1509 struct data_dependence_relation *res;
1510 unsigned int i;
1512 res = XNEW (struct data_dependence_relation);
1513 DDR_A (res) = a;
1514 DDR_B (res) = b;
1515 DDR_LOOP_NEST (res).create (0);
1516 DDR_REVERSED_P (res) = false;
1517 DDR_SUBSCRIPTS (res).create (0);
1518 DDR_DIR_VECTS (res).create (0);
1519 DDR_DIST_VECTS (res).create (0);
1521 if (a == NULL || b == NULL)
1523 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1524 return res;
1527 /* If the data references do not alias, then they are independent. */
1528 if (!dr_may_alias_p (a, b, loop_nest.exists ()))
1530 DDR_ARE_DEPENDENT (res) = chrec_known;
1531 return res;
1534 /* The case where the references are exactly the same. */
1535 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
1537 if (loop_nest.exists ()
1538 && !object_address_invariant_in_loop_p (loop_nest[0],
1539 DR_BASE_OBJECT (a)))
1541 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1542 return res;
1544 DDR_AFFINE_P (res) = true;
1545 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1546 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
1547 DDR_LOOP_NEST (res) = loop_nest;
1548 DDR_INNER_LOOP (res) = 0;
1549 DDR_SELF_REFERENCE (res) = true;
1550 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1552 struct subscript *subscript;
1554 subscript = XNEW (struct subscript);
1555 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1556 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1557 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1558 SUB_DISTANCE (subscript) = chrec_dont_know;
1559 DDR_SUBSCRIPTS (res).safe_push (subscript);
1561 return res;
1564 /* If the references do not access the same object, we do not know
1565 whether they alias or not. */
1566 if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0))
1568 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1569 return res;
1572 /* If the base of the object is not invariant in the loop nest, we cannot
1573 analyze it. TODO -- in fact, it would suffice to record that there may
1574 be arbitrary dependences in the loops where the base object varies. */
1575 if (loop_nest.exists ()
1576 && !object_address_invariant_in_loop_p (loop_nest[0],
1577 DR_BASE_OBJECT (a)))
1579 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1580 return res;
1583 /* If the number of dimensions of the access to not agree we can have
1584 a pointer access to a component of the array element type and an
1585 array access while the base-objects are still the same. Punt. */
1586 if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
1588 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1589 return res;
1592 DDR_AFFINE_P (res) = true;
1593 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1594 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
1595 DDR_LOOP_NEST (res) = loop_nest;
1596 DDR_INNER_LOOP (res) = 0;
1597 DDR_SELF_REFERENCE (res) = false;
1599 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1601 struct subscript *subscript;
1603 subscript = XNEW (struct subscript);
1604 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1605 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1606 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1607 SUB_DISTANCE (subscript) = chrec_dont_know;
1608 DDR_SUBSCRIPTS (res).safe_push (subscript);
1611 return res;
1614 /* Frees memory used by the conflict function F. */
1616 static void
1617 free_conflict_function (conflict_function *f)
1619 unsigned i;
1621 if (CF_NONTRIVIAL_P (f))
1623 for (i = 0; i < f->n; i++)
1624 affine_fn_free (f->fns[i]);
1626 free (f);
1629 /* Frees memory used by SUBSCRIPTS. */
1631 static void
1632 free_subscripts (vec<subscript_p> subscripts)
1634 unsigned i;
1635 subscript_p s;
1637 FOR_EACH_VEC_ELT (subscripts, i, s)
1639 free_conflict_function (s->conflicting_iterations_in_a);
1640 free_conflict_function (s->conflicting_iterations_in_b);
1641 free (s);
1643 subscripts.release ();
1646 /* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
1647 description. */
1649 static inline void
1650 finalize_ddr_dependent (struct data_dependence_relation *ddr,
1651 tree chrec)
1653 DDR_ARE_DEPENDENT (ddr) = chrec;
1654 free_subscripts (DDR_SUBSCRIPTS (ddr));
1655 DDR_SUBSCRIPTS (ddr).create (0);
1658 /* The dependence relation DDR cannot be represented by a distance
1659 vector. */
1661 static inline void
1662 non_affine_dependence_relation (struct data_dependence_relation *ddr)
1664 if (dump_file && (dump_flags & TDF_DETAILS))
1665 fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
1667 DDR_AFFINE_P (ddr) = false;
1672 /* This section contains the classic Banerjee tests. */
1674 /* Returns true iff CHREC_A and CHREC_B are not dependent on any index
1675 variables, i.e., if the ZIV (Zero Index Variable) test is true. */
1677 static inline bool
1678 ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1680 return (evolution_function_is_constant_p (chrec_a)
1681 && evolution_function_is_constant_p (chrec_b));
1684 /* Returns true iff CHREC_A and CHREC_B are dependent on an index
1685 variable, i.e., if the SIV (Single Index Variable) test is true. */
1687 static bool
1688 siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1690 if ((evolution_function_is_constant_p (chrec_a)
1691 && evolution_function_is_univariate_p (chrec_b))
1692 || (evolution_function_is_constant_p (chrec_b)
1693 && evolution_function_is_univariate_p (chrec_a)))
1694 return true;
1696 if (evolution_function_is_univariate_p (chrec_a)
1697 && evolution_function_is_univariate_p (chrec_b))
1699 switch (TREE_CODE (chrec_a))
1701 case POLYNOMIAL_CHREC:
1702 switch (TREE_CODE (chrec_b))
1704 case POLYNOMIAL_CHREC:
1705 if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
1706 return false;
1708 default:
1709 return true;
1712 default:
1713 return true;
1717 return false;
1720 /* Creates a conflict function with N dimensions. The affine functions
1721 in each dimension follow. */
1723 static conflict_function *
1724 conflict_fn (unsigned n, ...)
1726 unsigned i;
1727 conflict_function *ret = XCNEW (conflict_function);
1728 va_list ap;
1730 gcc_assert (0 < n && n <= MAX_DIM);
1731 va_start (ap, n);
1733 ret->n = n;
1734 for (i = 0; i < n; i++)
1735 ret->fns[i] = va_arg (ap, affine_fn);
1736 va_end (ap);
1738 return ret;
1741 /* Returns constant affine function with value CST. */
1743 static affine_fn
1744 affine_fn_cst (tree cst)
1746 affine_fn fn;
1747 fn.create (1);
1748 fn.quick_push (cst);
1749 return fn;
1752 /* Returns affine function with single variable, CST + COEF * x_DIM. */
1754 static affine_fn
1755 affine_fn_univar (tree cst, unsigned dim, tree coef)
1757 affine_fn fn;
1758 fn.create (dim + 1);
1759 unsigned i;
1761 gcc_assert (dim > 0);
1762 fn.quick_push (cst);
1763 for (i = 1; i < dim; i++)
1764 fn.quick_push (integer_zero_node);
1765 fn.quick_push (coef);
1766 return fn;
1769 /* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
1770 *OVERLAPS_B are initialized to the functions that describe the
1771 relation between the elements accessed twice by CHREC_A and
1772 CHREC_B. For k >= 0, the following property is verified:
1774 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1776 static void
1777 analyze_ziv_subscript (tree chrec_a,
1778 tree chrec_b,
1779 conflict_function **overlaps_a,
1780 conflict_function **overlaps_b,
1781 tree *last_conflicts)
1783 tree type, difference;
1784 dependence_stats.num_ziv++;
1786 if (dump_file && (dump_flags & TDF_DETAILS))
1787 fprintf (dump_file, "(analyze_ziv_subscript \n");
1789 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1790 chrec_a = chrec_convert (type, chrec_a, NULL);
1791 chrec_b = chrec_convert (type, chrec_b, NULL);
1792 difference = chrec_fold_minus (type, chrec_a, chrec_b);
1794 switch (TREE_CODE (difference))
1796 case INTEGER_CST:
1797 if (integer_zerop (difference))
1799 /* The difference is equal to zero: the accessed index
1800 overlaps for each iteration in the loop. */
1801 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1802 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1803 *last_conflicts = chrec_dont_know;
1804 dependence_stats.num_ziv_dependent++;
1806 else
1808 /* The accesses do not overlap. */
1809 *overlaps_a = conflict_fn_no_dependence ();
1810 *overlaps_b = conflict_fn_no_dependence ();
1811 *last_conflicts = integer_zero_node;
1812 dependence_stats.num_ziv_independent++;
1814 break;
1816 default:
1817 /* We're not sure whether the indexes overlap. For the moment,
1818 conservatively answer "don't know". */
1819 if (dump_file && (dump_flags & TDF_DETAILS))
1820 fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
1822 *overlaps_a = conflict_fn_not_known ();
1823 *overlaps_b = conflict_fn_not_known ();
1824 *last_conflicts = chrec_dont_know;
1825 dependence_stats.num_ziv_unimplemented++;
1826 break;
1829 if (dump_file && (dump_flags & TDF_DETAILS))
1830 fprintf (dump_file, ")\n");
1833 /* Similar to max_stmt_executions_int, but returns the bound as a tree,
1834 and only if it fits to the int type. If this is not the case, or the
1835 bound on the number of iterations of LOOP could not be derived, returns
1836 chrec_dont_know. */
1838 static tree
1839 max_stmt_executions_tree (struct loop *loop)
1841 widest_int nit;
1843 if (!max_stmt_executions (loop, &nit))
1844 return chrec_dont_know;
1846 if (!wi::fits_to_tree_p (nit, unsigned_type_node))
1847 return chrec_dont_know;
1849 return wide_int_to_tree (unsigned_type_node, nit);
1852 /* Determine whether the CHREC is always positive/negative. If the expression
1853 cannot be statically analyzed, return false, otherwise set the answer into
1854 VALUE. */
1856 static bool
1857 chrec_is_positive (tree chrec, bool *value)
1859 bool value0, value1, value2;
1860 tree end_value, nb_iter;
1862 switch (TREE_CODE (chrec))
1864 case POLYNOMIAL_CHREC:
1865 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
1866 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
1867 return false;
1869 /* FIXME -- overflows. */
1870 if (value0 == value1)
1872 *value = value0;
1873 return true;
1876 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
1877 and the proof consists in showing that the sign never
1878 changes during the execution of the loop, from 0 to
1879 loop->nb_iterations. */
1880 if (!evolution_function_is_affine_p (chrec))
1881 return false;
1883 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
1884 if (chrec_contains_undetermined (nb_iter))
1885 return false;
1887 #if 0
1888 /* TODO -- If the test is after the exit, we may decrease the number of
1889 iterations by one. */
1890 if (after_exit)
1891 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
1892 #endif
1894 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
1896 if (!chrec_is_positive (end_value, &value2))
1897 return false;
1899 *value = value0;
1900 return value0 == value1;
1902 case INTEGER_CST:
1903 switch (tree_int_cst_sgn (chrec))
1905 case -1:
1906 *value = false;
1907 break;
1908 case 1:
1909 *value = true;
1910 break;
1911 default:
1912 return false;
1914 return true;
1916 default:
1917 return false;
1922 /* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
1923 constant, and CHREC_B is an affine function. *OVERLAPS_A and
1924 *OVERLAPS_B are initialized to the functions that describe the
1925 relation between the elements accessed twice by CHREC_A and
1926 CHREC_B. For k >= 0, the following property is verified:
1928 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1930 static void
1931 analyze_siv_subscript_cst_affine (tree chrec_a,
1932 tree chrec_b,
1933 conflict_function **overlaps_a,
1934 conflict_function **overlaps_b,
1935 tree *last_conflicts)
1937 bool value0, value1, value2;
1938 tree type, difference, tmp;
1940 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1941 chrec_a = chrec_convert (type, chrec_a, NULL);
1942 chrec_b = chrec_convert (type, chrec_b, NULL);
1943 difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
1945 /* Special case overlap in the first iteration. */
1946 if (integer_zerop (difference))
1948 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1949 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1950 *last_conflicts = integer_one_node;
1951 return;
1954 if (!chrec_is_positive (initial_condition (difference), &value0))
1956 if (dump_file && (dump_flags & TDF_DETAILS))
1957 fprintf (dump_file, "siv test failed: chrec is not positive.\n");
1959 dependence_stats.num_siv_unimplemented++;
1960 *overlaps_a = conflict_fn_not_known ();
1961 *overlaps_b = conflict_fn_not_known ();
1962 *last_conflicts = chrec_dont_know;
1963 return;
1965 else
1967 if (value0 == false)
1969 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
1971 if (dump_file && (dump_flags & TDF_DETAILS))
1972 fprintf (dump_file, "siv test failed: chrec not positive.\n");
1974 *overlaps_a = conflict_fn_not_known ();
1975 *overlaps_b = conflict_fn_not_known ();
1976 *last_conflicts = chrec_dont_know;
1977 dependence_stats.num_siv_unimplemented++;
1978 return;
1980 else
1982 if (value1 == true)
1984 /* Example:
1985 chrec_a = 12
1986 chrec_b = {10, +, 1}
1989 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
1991 HOST_WIDE_INT numiter;
1992 struct loop *loop = get_chrec_loop (chrec_b);
1994 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1995 tmp = fold_build2 (EXACT_DIV_EXPR, type,
1996 fold_build1 (ABS_EXPR, type, difference),
1997 CHREC_RIGHT (chrec_b));
1998 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
1999 *last_conflicts = integer_one_node;
2002 /* Perform weak-zero siv test to see if overlap is
2003 outside the loop bounds. */
2004 numiter = max_stmt_executions_int (loop);
2006 if (numiter >= 0
2007 && compare_tree_int (tmp, numiter) > 0)
2009 free_conflict_function (*overlaps_a);
2010 free_conflict_function (*overlaps_b);
2011 *overlaps_a = conflict_fn_no_dependence ();
2012 *overlaps_b = conflict_fn_no_dependence ();
2013 *last_conflicts = integer_zero_node;
2014 dependence_stats.num_siv_independent++;
2015 return;
2017 dependence_stats.num_siv_dependent++;
2018 return;
2021 /* When the step does not divide the difference, there are
2022 no overlaps. */
2023 else
2025 *overlaps_a = conflict_fn_no_dependence ();
2026 *overlaps_b = conflict_fn_no_dependence ();
2027 *last_conflicts = integer_zero_node;
2028 dependence_stats.num_siv_independent++;
2029 return;
2033 else
2035 /* Example:
2036 chrec_a = 12
2037 chrec_b = {10, +, -1}
2039 In this case, chrec_a will not overlap with chrec_b. */
2040 *overlaps_a = conflict_fn_no_dependence ();
2041 *overlaps_b = conflict_fn_no_dependence ();
2042 *last_conflicts = integer_zero_node;
2043 dependence_stats.num_siv_independent++;
2044 return;
2048 else
2050 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
2052 if (dump_file && (dump_flags & TDF_DETAILS))
2053 fprintf (dump_file, "siv test failed: chrec not positive.\n");
2055 *overlaps_a = conflict_fn_not_known ();
2056 *overlaps_b = conflict_fn_not_known ();
2057 *last_conflicts = chrec_dont_know;
2058 dependence_stats.num_siv_unimplemented++;
2059 return;
2061 else
2063 if (value2 == false)
2065 /* Example:
2066 chrec_a = 3
2067 chrec_b = {10, +, -1}
2069 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
2071 HOST_WIDE_INT numiter;
2072 struct loop *loop = get_chrec_loop (chrec_b);
2074 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2075 tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
2076 CHREC_RIGHT (chrec_b));
2077 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
2078 *last_conflicts = integer_one_node;
2080 /* Perform weak-zero siv test to see if overlap is
2081 outside the loop bounds. */
2082 numiter = max_stmt_executions_int (loop);
2084 if (numiter >= 0
2085 && compare_tree_int (tmp, numiter) > 0)
2087 free_conflict_function (*overlaps_a);
2088 free_conflict_function (*overlaps_b);
2089 *overlaps_a = conflict_fn_no_dependence ();
2090 *overlaps_b = conflict_fn_no_dependence ();
2091 *last_conflicts = integer_zero_node;
2092 dependence_stats.num_siv_independent++;
2093 return;
2095 dependence_stats.num_siv_dependent++;
2096 return;
2099 /* When the step does not divide the difference, there
2100 are no overlaps. */
2101 else
2103 *overlaps_a = conflict_fn_no_dependence ();
2104 *overlaps_b = conflict_fn_no_dependence ();
2105 *last_conflicts = integer_zero_node;
2106 dependence_stats.num_siv_independent++;
2107 return;
2110 else
2112 /* Example:
2113 chrec_a = 3
2114 chrec_b = {4, +, 1}
2116 In this case, chrec_a will not overlap with chrec_b. */
2117 *overlaps_a = conflict_fn_no_dependence ();
2118 *overlaps_b = conflict_fn_no_dependence ();
2119 *last_conflicts = integer_zero_node;
2120 dependence_stats.num_siv_independent++;
2121 return;
2128 /* Helper recursive function for initializing the matrix A. Returns
2129 the initial value of CHREC. */
2131 static tree
2132 initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
2134 gcc_assert (chrec);
2136 switch (TREE_CODE (chrec))
2138 case POLYNOMIAL_CHREC:
2139 gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST);
2141 A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
2142 return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
2144 case PLUS_EXPR:
2145 case MULT_EXPR:
2146 case MINUS_EXPR:
2148 tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2149 tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
2151 return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
2154 CASE_CONVERT:
2156 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2157 return chrec_convert (chrec_type (chrec), op, NULL);
2160 case BIT_NOT_EXPR:
2162 /* Handle ~X as -1 - X. */
2163 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2164 return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
2165 build_int_cst (TREE_TYPE (chrec), -1), op);
2168 case INTEGER_CST:
2169 return chrec;
2171 default:
2172 gcc_unreachable ();
2173 return NULL_TREE;
2177 #define FLOOR_DIV(x,y) ((x) / (y))
2179 /* Solves the special case of the Diophantine equation:
2180 | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
2182 Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
2183 number of iterations that loops X and Y run. The overlaps will be
2184 constructed as evolutions in dimension DIM. */
2186 static void
2187 compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
2188 affine_fn *overlaps_a,
2189 affine_fn *overlaps_b,
2190 tree *last_conflicts, int dim)
2192 if (((step_a > 0 && step_b > 0)
2193 || (step_a < 0 && step_b < 0)))
2195 int step_overlaps_a, step_overlaps_b;
2196 int gcd_steps_a_b, last_conflict, tau2;
2198 gcd_steps_a_b = gcd (step_a, step_b);
2199 step_overlaps_a = step_b / gcd_steps_a_b;
2200 step_overlaps_b = step_a / gcd_steps_a_b;
2202 if (niter > 0)
2204 tau2 = FLOOR_DIV (niter, step_overlaps_a);
2205 tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
2206 last_conflict = tau2;
2207 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2209 else
2210 *last_conflicts = chrec_dont_know;
2212 *overlaps_a = affine_fn_univar (integer_zero_node, dim,
2213 build_int_cst (NULL_TREE,
2214 step_overlaps_a));
2215 *overlaps_b = affine_fn_univar (integer_zero_node, dim,
2216 build_int_cst (NULL_TREE,
2217 step_overlaps_b));
2220 else
2222 *overlaps_a = affine_fn_cst (integer_zero_node);
2223 *overlaps_b = affine_fn_cst (integer_zero_node);
2224 *last_conflicts = integer_zero_node;
2228 /* Solves the special case of a Diophantine equation where CHREC_A is
2229 an affine bivariate function, and CHREC_B is an affine univariate
2230 function. For example,
2232 | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
2234 has the following overlapping functions:
2236 | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
2237 | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
2238 | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
2240 FORNOW: This is a specialized implementation for a case occurring in
2241 a common benchmark. Implement the general algorithm. */
2243 static void
2244 compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
2245 conflict_function **overlaps_a,
2246 conflict_function **overlaps_b,
2247 tree *last_conflicts)
2249 bool xz_p, yz_p, xyz_p;
2250 int step_x, step_y, step_z;
2251 HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
2252 affine_fn overlaps_a_xz, overlaps_b_xz;
2253 affine_fn overlaps_a_yz, overlaps_b_yz;
2254 affine_fn overlaps_a_xyz, overlaps_b_xyz;
2255 affine_fn ova1, ova2, ovb;
2256 tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
2258 step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
2259 step_y = int_cst_value (CHREC_RIGHT (chrec_a));
2260 step_z = int_cst_value (CHREC_RIGHT (chrec_b));
2262 niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)));
2263 niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a));
2264 niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b));
2266 if (niter_x < 0 || niter_y < 0 || niter_z < 0)
2268 if (dump_file && (dump_flags & TDF_DETAILS))
2269 fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
2271 *overlaps_a = conflict_fn_not_known ();
2272 *overlaps_b = conflict_fn_not_known ();
2273 *last_conflicts = chrec_dont_know;
2274 return;
2277 niter = MIN (niter_x, niter_z);
2278 compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
2279 &overlaps_a_xz,
2280 &overlaps_b_xz,
2281 &last_conflicts_xz, 1);
2282 niter = MIN (niter_y, niter_z);
2283 compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
2284 &overlaps_a_yz,
2285 &overlaps_b_yz,
2286 &last_conflicts_yz, 2);
2287 niter = MIN (niter_x, niter_z);
2288 niter = MIN (niter_y, niter);
2289 compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
2290 &overlaps_a_xyz,
2291 &overlaps_b_xyz,
2292 &last_conflicts_xyz, 3);
2294 xz_p = !integer_zerop (last_conflicts_xz);
2295 yz_p = !integer_zerop (last_conflicts_yz);
2296 xyz_p = !integer_zerop (last_conflicts_xyz);
2298 if (xz_p || yz_p || xyz_p)
2300 ova1 = affine_fn_cst (integer_zero_node);
2301 ova2 = affine_fn_cst (integer_zero_node);
2302 ovb = affine_fn_cst (integer_zero_node);
2303 if (xz_p)
2305 affine_fn t0 = ova1;
2306 affine_fn t2 = ovb;
2308 ova1 = affine_fn_plus (ova1, overlaps_a_xz);
2309 ovb = affine_fn_plus (ovb, overlaps_b_xz);
2310 affine_fn_free (t0);
2311 affine_fn_free (t2);
2312 *last_conflicts = last_conflicts_xz;
2314 if (yz_p)
2316 affine_fn t0 = ova2;
2317 affine_fn t2 = ovb;
2319 ova2 = affine_fn_plus (ova2, overlaps_a_yz);
2320 ovb = affine_fn_plus (ovb, overlaps_b_yz);
2321 affine_fn_free (t0);
2322 affine_fn_free (t2);
2323 *last_conflicts = last_conflicts_yz;
2325 if (xyz_p)
2327 affine_fn t0 = ova1;
2328 affine_fn t2 = ova2;
2329 affine_fn t4 = ovb;
2331 ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
2332 ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
2333 ovb = affine_fn_plus (ovb, overlaps_b_xyz);
2334 affine_fn_free (t0);
2335 affine_fn_free (t2);
2336 affine_fn_free (t4);
2337 *last_conflicts = last_conflicts_xyz;
2339 *overlaps_a = conflict_fn (2, ova1, ova2);
2340 *overlaps_b = conflict_fn (1, ovb);
2342 else
2344 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2345 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2346 *last_conflicts = integer_zero_node;
2349 affine_fn_free (overlaps_a_xz);
2350 affine_fn_free (overlaps_b_xz);
2351 affine_fn_free (overlaps_a_yz);
2352 affine_fn_free (overlaps_b_yz);
2353 affine_fn_free (overlaps_a_xyz);
2354 affine_fn_free (overlaps_b_xyz);
2357 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
2359 static void
2360 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
2361 int size)
2363 memcpy (vec2, vec1, size * sizeof (*vec1));
2366 /* Copy the elements of M x N matrix MAT1 to MAT2. */
2368 static void
2369 lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
2370 int m, int n)
2372 int i;
2374 for (i = 0; i < m; i++)
2375 lambda_vector_copy (mat1[i], mat2[i], n);
2378 /* Store the N x N identity matrix in MAT. */
2380 static void
2381 lambda_matrix_id (lambda_matrix mat, int size)
2383 int i, j;
2385 for (i = 0; i < size; i++)
2386 for (j = 0; j < size; j++)
2387 mat[i][j] = (i == j) ? 1 : 0;
2390 /* Return the first nonzero element of vector VEC1 between START and N.
2391 We must have START <= N. Returns N if VEC1 is the zero vector. */
2393 static int
2394 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
2396 int j = start;
2397 while (j < n && vec1[j] == 0)
2398 j++;
2399 return j;
2402 /* Add a multiple of row R1 of matrix MAT with N columns to row R2:
2403 R2 = R2 + CONST1 * R1. */
2405 static void
2406 lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
2408 int i;
2410 if (const1 == 0)
2411 return;
2413 for (i = 0; i < n; i++)
2414 mat[r2][i] += const1 * mat[r1][i];
2417 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
2418 and store the result in VEC2. */
2420 static void
2421 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
2422 int size, int const1)
2424 int i;
2426 if (const1 == 0)
2427 lambda_vector_clear (vec2, size);
2428 else
2429 for (i = 0; i < size; i++)
2430 vec2[i] = const1 * vec1[i];
2433 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
2435 static void
2436 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
2437 int size)
2439 lambda_vector_mult_const (vec1, vec2, size, -1);
2442 /* Negate row R1 of matrix MAT which has N columns. */
2444 static void
2445 lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
2447 lambda_vector_negate (mat[r1], mat[r1], n);
2450 /* Return true if two vectors are equal. */
2452 static bool
2453 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
2455 int i;
2456 for (i = 0; i < size; i++)
2457 if (vec1[i] != vec2[i])
2458 return false;
2459 return true;
2462 /* Given an M x N integer matrix A, this function determines an M x
2463 M unimodular matrix U, and an M x N echelon matrix S such that
2464 "U.A = S". This decomposition is also known as "right Hermite".
2466 Ref: Algorithm 2.1 page 33 in "Loop Transformations for
2467 Restructuring Compilers" Utpal Banerjee. */
2469 static void
2470 lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
2471 lambda_matrix S, lambda_matrix U)
2473 int i, j, i0 = 0;
2475 lambda_matrix_copy (A, S, m, n);
2476 lambda_matrix_id (U, m);
2478 for (j = 0; j < n; j++)
2480 if (lambda_vector_first_nz (S[j], m, i0) < m)
2482 ++i0;
2483 for (i = m - 1; i >= i0; i--)
2485 while (S[i][j] != 0)
2487 int sigma, factor, a, b;
2489 a = S[i-1][j];
2490 b = S[i][j];
2491 sigma = (a * b < 0) ? -1: 1;
2492 a = abs (a);
2493 b = abs (b);
2494 factor = sigma * (a / b);
2496 lambda_matrix_row_add (S, n, i, i-1, -factor);
2497 std::swap (S[i], S[i-1]);
2499 lambda_matrix_row_add (U, m, i, i-1, -factor);
2500 std::swap (U[i], U[i-1]);
2507 /* Determines the overlapping elements due to accesses CHREC_A and
2508 CHREC_B, that are affine functions. This function cannot handle
2509 symbolic evolution functions, ie. when initial conditions are
2510 parameters, because it uses lambda matrices of integers. */
2512 static void
2513 analyze_subscript_affine_affine (tree chrec_a,
2514 tree chrec_b,
2515 conflict_function **overlaps_a,
2516 conflict_function **overlaps_b,
2517 tree *last_conflicts)
2519 unsigned nb_vars_a, nb_vars_b, dim;
2520 HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
2521 lambda_matrix A, U, S;
2522 struct obstack scratch_obstack;
2524 if (eq_evolutions_p (chrec_a, chrec_b))
2526 /* The accessed index overlaps for each iteration in the
2527 loop. */
2528 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2529 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2530 *last_conflicts = chrec_dont_know;
2531 return;
2533 if (dump_file && (dump_flags & TDF_DETAILS))
2534 fprintf (dump_file, "(analyze_subscript_affine_affine \n");
2536 /* For determining the initial intersection, we have to solve a
2537 Diophantine equation. This is the most time consuming part.
2539 For answering to the question: "Is there a dependence?" we have
2540 to prove that there exists a solution to the Diophantine
2541 equation, and that the solution is in the iteration domain,
2542 i.e. the solution is positive or zero, and that the solution
2543 happens before the upper bound loop.nb_iterations. Otherwise
2544 there is no dependence. This function outputs a description of
2545 the iterations that hold the intersections. */
2547 nb_vars_a = nb_vars_in_chrec (chrec_a);
2548 nb_vars_b = nb_vars_in_chrec (chrec_b);
2550 gcc_obstack_init (&scratch_obstack);
2552 dim = nb_vars_a + nb_vars_b;
2553 U = lambda_matrix_new (dim, dim, &scratch_obstack);
2554 A = lambda_matrix_new (dim, 1, &scratch_obstack);
2555 S = lambda_matrix_new (dim, 1, &scratch_obstack);
2557 init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
2558 init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
2559 gamma = init_b - init_a;
2561 /* Don't do all the hard work of solving the Diophantine equation
2562 when we already know the solution: for example,
2563 | {3, +, 1}_1
2564 | {3, +, 4}_2
2565 | gamma = 3 - 3 = 0.
2566 Then the first overlap occurs during the first iterations:
2567 | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
2569 if (gamma == 0)
2571 if (nb_vars_a == 1 && nb_vars_b == 1)
2573 HOST_WIDE_INT step_a, step_b;
2574 HOST_WIDE_INT niter, niter_a, niter_b;
2575 affine_fn ova, ovb;
2577 niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a));
2578 niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b));
2579 niter = MIN (niter_a, niter_b);
2580 step_a = int_cst_value (CHREC_RIGHT (chrec_a));
2581 step_b = int_cst_value (CHREC_RIGHT (chrec_b));
2583 compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
2584 &ova, &ovb,
2585 last_conflicts, 1);
2586 *overlaps_a = conflict_fn (1, ova);
2587 *overlaps_b = conflict_fn (1, ovb);
2590 else if (nb_vars_a == 2 && nb_vars_b == 1)
2591 compute_overlap_steps_for_affine_1_2
2592 (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
2594 else if (nb_vars_a == 1 && nb_vars_b == 2)
2595 compute_overlap_steps_for_affine_1_2
2596 (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
2598 else
2600 if (dump_file && (dump_flags & TDF_DETAILS))
2601 fprintf (dump_file, "affine-affine test failed: too many variables.\n");
2602 *overlaps_a = conflict_fn_not_known ();
2603 *overlaps_b = conflict_fn_not_known ();
2604 *last_conflicts = chrec_dont_know;
2606 goto end_analyze_subs_aa;
2609 /* U.A = S */
2610 lambda_matrix_right_hermite (A, dim, 1, S, U);
2612 if (S[0][0] < 0)
2614 S[0][0] *= -1;
2615 lambda_matrix_row_negate (U, dim, 0);
2617 gcd_alpha_beta = S[0][0];
2619 /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
2620 but that is a quite strange case. Instead of ICEing, answer
2621 don't know. */
2622 if (gcd_alpha_beta == 0)
2624 *overlaps_a = conflict_fn_not_known ();
2625 *overlaps_b = conflict_fn_not_known ();
2626 *last_conflicts = chrec_dont_know;
2627 goto end_analyze_subs_aa;
2630 /* The classic "gcd-test". */
2631 if (!int_divides_p (gcd_alpha_beta, gamma))
2633 /* The "gcd-test" has determined that there is no integer
2634 solution, i.e. there is no dependence. */
2635 *overlaps_a = conflict_fn_no_dependence ();
2636 *overlaps_b = conflict_fn_no_dependence ();
2637 *last_conflicts = integer_zero_node;
2640 /* Both access functions are univariate. This includes SIV and MIV cases. */
2641 else if (nb_vars_a == 1 && nb_vars_b == 1)
2643 /* Both functions should have the same evolution sign. */
2644 if (((A[0][0] > 0 && -A[1][0] > 0)
2645 || (A[0][0] < 0 && -A[1][0] < 0)))
2647 /* The solutions are given by:
2649 | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
2650 | [u21 u22] [y0]
2652 For a given integer t. Using the following variables,
2654 | i0 = u11 * gamma / gcd_alpha_beta
2655 | j0 = u12 * gamma / gcd_alpha_beta
2656 | i1 = u21
2657 | j1 = u22
2659 the solutions are:
2661 | x0 = i0 + i1 * t,
2662 | y0 = j0 + j1 * t. */
2663 HOST_WIDE_INT i0, j0, i1, j1;
2665 i0 = U[0][0] * gamma / gcd_alpha_beta;
2666 j0 = U[0][1] * gamma / gcd_alpha_beta;
2667 i1 = U[1][0];
2668 j1 = U[1][1];
2670 if ((i1 == 0 && i0 < 0)
2671 || (j1 == 0 && j0 < 0))
2673 /* There is no solution.
2674 FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
2675 falls in here, but for the moment we don't look at the
2676 upper bound of the iteration domain. */
2677 *overlaps_a = conflict_fn_no_dependence ();
2678 *overlaps_b = conflict_fn_no_dependence ();
2679 *last_conflicts = integer_zero_node;
2680 goto end_analyze_subs_aa;
2683 if (i1 > 0 && j1 > 0)
2685 HOST_WIDE_INT niter_a
2686 = max_stmt_executions_int (get_chrec_loop (chrec_a));
2687 HOST_WIDE_INT niter_b
2688 = max_stmt_executions_int (get_chrec_loop (chrec_b));
2689 HOST_WIDE_INT niter = MIN (niter_a, niter_b);
2691 /* (X0, Y0) is a solution of the Diophantine equation:
2692 "chrec_a (X0) = chrec_b (Y0)". */
2693 HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
2694 CEIL (-j0, j1));
2695 HOST_WIDE_INT x0 = i1 * tau1 + i0;
2696 HOST_WIDE_INT y0 = j1 * tau1 + j0;
2698 /* (X1, Y1) is the smallest positive solution of the eq
2699 "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
2700 first conflict occurs. */
2701 HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
2702 HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
2703 HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
2705 if (niter > 0)
2707 HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter - i0, i1),
2708 FLOOR_DIV (niter - j0, j1));
2709 HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
2711 /* If the overlap occurs outside of the bounds of the
2712 loop, there is no dependence. */
2713 if (x1 >= niter || y1 >= niter)
2715 *overlaps_a = conflict_fn_no_dependence ();
2716 *overlaps_b = conflict_fn_no_dependence ();
2717 *last_conflicts = integer_zero_node;
2718 goto end_analyze_subs_aa;
2720 else
2721 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2723 else
2724 *last_conflicts = chrec_dont_know;
2726 *overlaps_a
2727 = conflict_fn (1,
2728 affine_fn_univar (build_int_cst (NULL_TREE, x1),
2730 build_int_cst (NULL_TREE, i1)));
2731 *overlaps_b
2732 = conflict_fn (1,
2733 affine_fn_univar (build_int_cst (NULL_TREE, y1),
2735 build_int_cst (NULL_TREE, j1)));
2737 else
2739 /* FIXME: For the moment, the upper bound of the
2740 iteration domain for i and j is not checked. */
2741 if (dump_file && (dump_flags & TDF_DETAILS))
2742 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2743 *overlaps_a = conflict_fn_not_known ();
2744 *overlaps_b = conflict_fn_not_known ();
2745 *last_conflicts = chrec_dont_know;
2748 else
2750 if (dump_file && (dump_flags & TDF_DETAILS))
2751 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2752 *overlaps_a = conflict_fn_not_known ();
2753 *overlaps_b = conflict_fn_not_known ();
2754 *last_conflicts = chrec_dont_know;
2757 else
2759 if (dump_file && (dump_flags & TDF_DETAILS))
2760 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2761 *overlaps_a = conflict_fn_not_known ();
2762 *overlaps_b = conflict_fn_not_known ();
2763 *last_conflicts = chrec_dont_know;
2766 end_analyze_subs_aa:
2767 obstack_free (&scratch_obstack, NULL);
2768 if (dump_file && (dump_flags & TDF_DETAILS))
2770 fprintf (dump_file, " (overlaps_a = ");
2771 dump_conflict_function (dump_file, *overlaps_a);
2772 fprintf (dump_file, ")\n (overlaps_b = ");
2773 dump_conflict_function (dump_file, *overlaps_b);
2774 fprintf (dump_file, "))\n");
2778 /* Returns true when analyze_subscript_affine_affine can be used for
2779 determining the dependence relation between chrec_a and chrec_b,
2780 that contain symbols. This function modifies chrec_a and chrec_b
2781 such that the analysis result is the same, and such that they don't
2782 contain symbols, and then can safely be passed to the analyzer.
2784 Example: The analysis of the following tuples of evolutions produce
2785 the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
2786 vs. {0, +, 1}_1
2788 {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
2789 {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
2792 static bool
2793 can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
2795 tree diff, type, left_a, left_b, right_b;
2797 if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
2798 || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
2799 /* FIXME: For the moment not handled. Might be refined later. */
2800 return false;
2802 type = chrec_type (*chrec_a);
2803 left_a = CHREC_LEFT (*chrec_a);
2804 left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
2805 diff = chrec_fold_minus (type, left_a, left_b);
2807 if (!evolution_function_is_constant_p (diff))
2808 return false;
2810 if (dump_file && (dump_flags & TDF_DETAILS))
2811 fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
2813 *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
2814 diff, CHREC_RIGHT (*chrec_a));
2815 right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
2816 *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
2817 build_int_cst (type, 0),
2818 right_b);
2819 return true;
2822 /* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
2823 *OVERLAPS_B are initialized to the functions that describe the
2824 relation between the elements accessed twice by CHREC_A and
2825 CHREC_B. For k >= 0, the following property is verified:
2827 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2829 static void
2830 analyze_siv_subscript (tree chrec_a,
2831 tree chrec_b,
2832 conflict_function **overlaps_a,
2833 conflict_function **overlaps_b,
2834 tree *last_conflicts,
2835 int loop_nest_num)
2837 dependence_stats.num_siv++;
2839 if (dump_file && (dump_flags & TDF_DETAILS))
2840 fprintf (dump_file, "(analyze_siv_subscript \n");
2842 if (evolution_function_is_constant_p (chrec_a)
2843 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2844 analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
2845 overlaps_a, overlaps_b, last_conflicts);
2847 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2848 && evolution_function_is_constant_p (chrec_b))
2849 analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
2850 overlaps_b, overlaps_a, last_conflicts);
2852 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2853 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2855 if (!chrec_contains_symbols (chrec_a)
2856 && !chrec_contains_symbols (chrec_b))
2858 analyze_subscript_affine_affine (chrec_a, chrec_b,
2859 overlaps_a, overlaps_b,
2860 last_conflicts);
2862 if (CF_NOT_KNOWN_P (*overlaps_a)
2863 || CF_NOT_KNOWN_P (*overlaps_b))
2864 dependence_stats.num_siv_unimplemented++;
2865 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2866 || CF_NO_DEPENDENCE_P (*overlaps_b))
2867 dependence_stats.num_siv_independent++;
2868 else
2869 dependence_stats.num_siv_dependent++;
2871 else if (can_use_analyze_subscript_affine_affine (&chrec_a,
2872 &chrec_b))
2874 analyze_subscript_affine_affine (chrec_a, chrec_b,
2875 overlaps_a, overlaps_b,
2876 last_conflicts);
2878 if (CF_NOT_KNOWN_P (*overlaps_a)
2879 || CF_NOT_KNOWN_P (*overlaps_b))
2880 dependence_stats.num_siv_unimplemented++;
2881 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2882 || CF_NO_DEPENDENCE_P (*overlaps_b))
2883 dependence_stats.num_siv_independent++;
2884 else
2885 dependence_stats.num_siv_dependent++;
2887 else
2888 goto siv_subscript_dontknow;
2891 else
2893 siv_subscript_dontknow:;
2894 if (dump_file && (dump_flags & TDF_DETAILS))
2895 fprintf (dump_file, " siv test failed: unimplemented");
2896 *overlaps_a = conflict_fn_not_known ();
2897 *overlaps_b = conflict_fn_not_known ();
2898 *last_conflicts = chrec_dont_know;
2899 dependence_stats.num_siv_unimplemented++;
2902 if (dump_file && (dump_flags & TDF_DETAILS))
2903 fprintf (dump_file, ")\n");
2906 /* Returns false if we can prove that the greatest common divisor of the steps
2907 of CHREC does not divide CST, false otherwise. */
2909 static bool
2910 gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
2912 HOST_WIDE_INT cd = 0, val;
2913 tree step;
2915 if (!tree_fits_shwi_p (cst))
2916 return true;
2917 val = tree_to_shwi (cst);
2919 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
2921 step = CHREC_RIGHT (chrec);
2922 if (!tree_fits_shwi_p (step))
2923 return true;
2924 cd = gcd (cd, tree_to_shwi (step));
2925 chrec = CHREC_LEFT (chrec);
2928 return val % cd == 0;
2931 /* Analyze a MIV (Multiple Index Variable) subscript with respect to
2932 LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
2933 functions that describe the relation between the elements accessed
2934 twice by CHREC_A and CHREC_B. For k >= 0, the following property
2935 is verified:
2937 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2939 static void
2940 analyze_miv_subscript (tree chrec_a,
2941 tree chrec_b,
2942 conflict_function **overlaps_a,
2943 conflict_function **overlaps_b,
2944 tree *last_conflicts,
2945 struct loop *loop_nest)
2947 tree type, difference;
2949 dependence_stats.num_miv++;
2950 if (dump_file && (dump_flags & TDF_DETAILS))
2951 fprintf (dump_file, "(analyze_miv_subscript \n");
2953 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
2954 chrec_a = chrec_convert (type, chrec_a, NULL);
2955 chrec_b = chrec_convert (type, chrec_b, NULL);
2956 difference = chrec_fold_minus (type, chrec_a, chrec_b);
2958 if (eq_evolutions_p (chrec_a, chrec_b))
2960 /* Access functions are the same: all the elements are accessed
2961 in the same order. */
2962 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2963 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2964 *last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
2965 dependence_stats.num_miv_dependent++;
2968 else if (evolution_function_is_constant_p (difference)
2969 /* For the moment, the following is verified:
2970 evolution_function_is_affine_multivariate_p (chrec_a,
2971 loop_nest->num) */
2972 && !gcd_of_steps_may_divide_p (chrec_a, difference))
2974 /* testsuite/.../ssa-chrec-33.c
2975 {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
2977 The difference is 1, and all the evolution steps are multiples
2978 of 2, consequently there are no overlapping elements. */
2979 *overlaps_a = conflict_fn_no_dependence ();
2980 *overlaps_b = conflict_fn_no_dependence ();
2981 *last_conflicts = integer_zero_node;
2982 dependence_stats.num_miv_independent++;
2985 else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
2986 && !chrec_contains_symbols (chrec_a)
2987 && evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
2988 && !chrec_contains_symbols (chrec_b))
2990 /* testsuite/.../ssa-chrec-35.c
2991 {0, +, 1}_2 vs. {0, +, 1}_3
2992 the overlapping elements are respectively located at iterations:
2993 {0, +, 1}_x and {0, +, 1}_x,
2994 in other words, we have the equality:
2995 {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
2997 Other examples:
2998 {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
2999 {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
3001 {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
3002 {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
3004 analyze_subscript_affine_affine (chrec_a, chrec_b,
3005 overlaps_a, overlaps_b, last_conflicts);
3007 if (CF_NOT_KNOWN_P (*overlaps_a)
3008 || CF_NOT_KNOWN_P (*overlaps_b))
3009 dependence_stats.num_miv_unimplemented++;
3010 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
3011 || CF_NO_DEPENDENCE_P (*overlaps_b))
3012 dependence_stats.num_miv_independent++;
3013 else
3014 dependence_stats.num_miv_dependent++;
3017 else
3019 /* When the analysis is too difficult, answer "don't know". */
3020 if (dump_file && (dump_flags & TDF_DETAILS))
3021 fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
3023 *overlaps_a = conflict_fn_not_known ();
3024 *overlaps_b = conflict_fn_not_known ();
3025 *last_conflicts = chrec_dont_know;
3026 dependence_stats.num_miv_unimplemented++;
3029 if (dump_file && (dump_flags & TDF_DETAILS))
3030 fprintf (dump_file, ")\n");
3033 /* Determines the iterations for which CHREC_A is equal to CHREC_B in
3034 with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
3035 OVERLAP_ITERATIONS_B are initialized with two functions that
3036 describe the iterations that contain conflicting elements.
3038 Remark: For an integer k >= 0, the following equality is true:
3040 CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
3043 static void
3044 analyze_overlapping_iterations (tree chrec_a,
3045 tree chrec_b,
3046 conflict_function **overlap_iterations_a,
3047 conflict_function **overlap_iterations_b,
3048 tree *last_conflicts, struct loop *loop_nest)
3050 unsigned int lnn = loop_nest->num;
3052 dependence_stats.num_subscript_tests++;
3054 if (dump_file && (dump_flags & TDF_DETAILS))
3056 fprintf (dump_file, "(analyze_overlapping_iterations \n");
3057 fprintf (dump_file, " (chrec_a = ");
3058 print_generic_expr (dump_file, chrec_a, 0);
3059 fprintf (dump_file, ")\n (chrec_b = ");
3060 print_generic_expr (dump_file, chrec_b, 0);
3061 fprintf (dump_file, ")\n");
3064 if (chrec_a == NULL_TREE
3065 || chrec_b == NULL_TREE
3066 || chrec_contains_undetermined (chrec_a)
3067 || chrec_contains_undetermined (chrec_b))
3069 dependence_stats.num_subscript_undetermined++;
3071 *overlap_iterations_a = conflict_fn_not_known ();
3072 *overlap_iterations_b = conflict_fn_not_known ();
3075 /* If they are the same chrec, and are affine, they overlap
3076 on every iteration. */
3077 else if (eq_evolutions_p (chrec_a, chrec_b)
3078 && (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3079 || operand_equal_p (chrec_a, chrec_b, 0)))
3081 dependence_stats.num_same_subscript_function++;
3082 *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
3083 *overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
3084 *last_conflicts = chrec_dont_know;
3087 /* If they aren't the same, and aren't affine, we can't do anything
3088 yet. */
3089 else if ((chrec_contains_symbols (chrec_a)
3090 || chrec_contains_symbols (chrec_b))
3091 && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3092 || !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
3094 dependence_stats.num_subscript_undetermined++;
3095 *overlap_iterations_a = conflict_fn_not_known ();
3096 *overlap_iterations_b = conflict_fn_not_known ();
3099 else if (ziv_subscript_p (chrec_a, chrec_b))
3100 analyze_ziv_subscript (chrec_a, chrec_b,
3101 overlap_iterations_a, overlap_iterations_b,
3102 last_conflicts);
3104 else if (siv_subscript_p (chrec_a, chrec_b))
3105 analyze_siv_subscript (chrec_a, chrec_b,
3106 overlap_iterations_a, overlap_iterations_b,
3107 last_conflicts, lnn);
3109 else
3110 analyze_miv_subscript (chrec_a, chrec_b,
3111 overlap_iterations_a, overlap_iterations_b,
3112 last_conflicts, loop_nest);
3114 if (dump_file && (dump_flags & TDF_DETAILS))
3116 fprintf (dump_file, " (overlap_iterations_a = ");
3117 dump_conflict_function (dump_file, *overlap_iterations_a);
3118 fprintf (dump_file, ")\n (overlap_iterations_b = ");
3119 dump_conflict_function (dump_file, *overlap_iterations_b);
3120 fprintf (dump_file, "))\n");
3124 /* Helper function for uniquely inserting distance vectors. */
3126 static void
3127 save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
3129 unsigned i;
3130 lambda_vector v;
3132 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, v)
3133 if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
3134 return;
3136 DDR_DIST_VECTS (ddr).safe_push (dist_v);
3139 /* Helper function for uniquely inserting direction vectors. */
3141 static void
3142 save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
3144 unsigned i;
3145 lambda_vector v;
3147 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), i, v)
3148 if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
3149 return;
3151 DDR_DIR_VECTS (ddr).safe_push (dir_v);
3154 /* Add a distance of 1 on all the loops outer than INDEX. If we
3155 haven't yet determined a distance for this outer loop, push a new
3156 distance vector composed of the previous distance, and a distance
3157 of 1 for this outer loop. Example:
3159 | loop_1
3160 | loop_2
3161 | A[10]
3162 | endloop_2
3163 | endloop_1
3165 Saved vectors are of the form (dist_in_1, dist_in_2). First, we
3166 save (0, 1), then we have to save (1, 0). */
3168 static void
3169 add_outer_distances (struct data_dependence_relation *ddr,
3170 lambda_vector dist_v, int index)
3172 /* For each outer loop where init_v is not set, the accesses are
3173 in dependence of distance 1 in the loop. */
3174 while (--index >= 0)
3176 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3177 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3178 save_v[index] = 1;
3179 save_dist_v (ddr, save_v);
3183 /* Return false when fail to represent the data dependence as a
3184 distance vector. INIT_B is set to true when a component has been
3185 added to the distance vector DIST_V. INDEX_CARRY is then set to
3186 the index in DIST_V that carries the dependence. */
3188 static bool
3189 build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
3190 struct data_reference *ddr_a,
3191 struct data_reference *ddr_b,
3192 lambda_vector dist_v, bool *init_b,
3193 int *index_carry)
3195 unsigned i;
3196 lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3198 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3200 tree access_fn_a, access_fn_b;
3201 struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
3203 if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
3205 non_affine_dependence_relation (ddr);
3206 return false;
3209 access_fn_a = DR_ACCESS_FN (ddr_a, i);
3210 access_fn_b = DR_ACCESS_FN (ddr_b, i);
3212 if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
3213 && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
3215 int dist, index;
3216 int var_a = CHREC_VARIABLE (access_fn_a);
3217 int var_b = CHREC_VARIABLE (access_fn_b);
3219 if (var_a != var_b
3220 || chrec_contains_undetermined (SUB_DISTANCE (subscript)))
3222 non_affine_dependence_relation (ddr);
3223 return false;
3226 dist = int_cst_value (SUB_DISTANCE (subscript));
3227 index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
3228 *index_carry = MIN (index, *index_carry);
3230 /* This is the subscript coupling test. If we have already
3231 recorded a distance for this loop (a distance coming from
3232 another subscript), it should be the same. For example,
3233 in the following code, there is no dependence:
3235 | loop i = 0, N, 1
3236 | T[i+1][i] = ...
3237 | ... = T[i][i]
3238 | endloop
3240 if (init_v[index] != 0 && dist_v[index] != dist)
3242 finalize_ddr_dependent (ddr, chrec_known);
3243 return false;
3246 dist_v[index] = dist;
3247 init_v[index] = 1;
3248 *init_b = true;
3250 else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
3252 /* This can be for example an affine vs. constant dependence
3253 (T[i] vs. T[3]) that is not an affine dependence and is
3254 not representable as a distance vector. */
3255 non_affine_dependence_relation (ddr);
3256 return false;
3260 return true;
3263 /* Return true when the DDR contains only constant access functions. */
3265 static bool
3266 constant_access_functions (const struct data_dependence_relation *ddr)
3268 unsigned i;
3270 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3271 if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
3272 || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
3273 return false;
3275 return true;
3278 /* Helper function for the case where DDR_A and DDR_B are the same
3279 multivariate access function with a constant step. For an example
3280 see pr34635-1.c. */
3282 static void
3283 add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
3285 int x_1, x_2;
3286 tree c_1 = CHREC_LEFT (c_2);
3287 tree c_0 = CHREC_LEFT (c_1);
3288 lambda_vector dist_v;
3289 int v1, v2, cd;
3291 /* Polynomials with more than 2 variables are not handled yet. When
3292 the evolution steps are parameters, it is not possible to
3293 represent the dependence using classical distance vectors. */
3294 if (TREE_CODE (c_0) != INTEGER_CST
3295 || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
3296 || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
3298 DDR_AFFINE_P (ddr) = false;
3299 return;
3302 x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
3303 x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
3305 /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
3306 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3307 v1 = int_cst_value (CHREC_RIGHT (c_1));
3308 v2 = int_cst_value (CHREC_RIGHT (c_2));
3309 cd = gcd (v1, v2);
3310 v1 /= cd;
3311 v2 /= cd;
3313 if (v2 < 0)
3315 v2 = -v2;
3316 v1 = -v1;
3319 dist_v[x_1] = v2;
3320 dist_v[x_2] = -v1;
3321 save_dist_v (ddr, dist_v);
3323 add_outer_distances (ddr, dist_v, x_1);
3326 /* Helper function for the case where DDR_A and DDR_B are the same
3327 access functions. */
3329 static void
3330 add_other_self_distances (struct data_dependence_relation *ddr)
3332 lambda_vector dist_v;
3333 unsigned i;
3334 int index_carry = DDR_NB_LOOPS (ddr);
3336 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3338 tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
3340 if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
3342 if (!evolution_function_is_univariate_p (access_fun))
3344 if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
3346 DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
3347 return;
3350 access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
3352 if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
3353 add_multivariate_self_dist (ddr, access_fun);
3354 else
3355 /* The evolution step is not constant: it varies in
3356 the outer loop, so this cannot be represented by a
3357 distance vector. For example in pr34635.c the
3358 evolution is {0, +, {0, +, 4}_1}_2. */
3359 DDR_AFFINE_P (ddr) = false;
3361 return;
3364 index_carry = MIN (index_carry,
3365 index_in_loop_nest (CHREC_VARIABLE (access_fun),
3366 DDR_LOOP_NEST (ddr)));
3370 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3371 add_outer_distances (ddr, dist_v, index_carry);
3374 static void
3375 insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
3377 lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3379 dist_v[DDR_INNER_LOOP (ddr)] = 1;
3380 save_dist_v (ddr, dist_v);
3383 /* Adds a unit distance vector to DDR when there is a 0 overlap. This
3384 is the case for example when access functions are the same and
3385 equal to a constant, as in:
3387 | loop_1
3388 | A[3] = ...
3389 | ... = A[3]
3390 | endloop_1
3392 in which case the distance vectors are (0) and (1). */
3394 static void
3395 add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
3397 unsigned i, j;
3399 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3401 subscript_p sub = DDR_SUBSCRIPT (ddr, i);
3402 conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
3403 conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
3405 for (j = 0; j < ca->n; j++)
3406 if (affine_function_zero_p (ca->fns[j]))
3408 insert_innermost_unit_dist_vector (ddr);
3409 return;
3412 for (j = 0; j < cb->n; j++)
3413 if (affine_function_zero_p (cb->fns[j]))
3415 insert_innermost_unit_dist_vector (ddr);
3416 return;
3421 /* Compute the classic per loop distance vector. DDR is the data
3422 dependence relation to build a vector from. Return false when fail
3423 to represent the data dependence as a distance vector. */
3425 static bool
3426 build_classic_dist_vector (struct data_dependence_relation *ddr,
3427 struct loop *loop_nest)
3429 bool init_b = false;
3430 int index_carry = DDR_NB_LOOPS (ddr);
3431 lambda_vector dist_v;
3433 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
3434 return false;
3436 if (same_access_functions (ddr))
3438 /* Save the 0 vector. */
3439 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3440 save_dist_v (ddr, dist_v);
3442 if (constant_access_functions (ddr))
3443 add_distance_for_zero_overlaps (ddr);
3445 if (DDR_NB_LOOPS (ddr) > 1)
3446 add_other_self_distances (ddr);
3448 return true;
3451 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3452 if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
3453 dist_v, &init_b, &index_carry))
3454 return false;
3456 /* Save the distance vector if we initialized one. */
3457 if (init_b)
3459 /* Verify a basic constraint: classic distance vectors should
3460 always be lexicographically positive.
3462 Data references are collected in the order of execution of
3463 the program, thus for the following loop
3465 | for (i = 1; i < 100; i++)
3466 | for (j = 1; j < 100; j++)
3468 | t = T[j+1][i-1]; // A
3469 | T[j][i] = t + 2; // B
3472 references are collected following the direction of the wind:
3473 A then B. The data dependence tests are performed also
3474 following this order, such that we're looking at the distance
3475 separating the elements accessed by A from the elements later
3476 accessed by B. But in this example, the distance returned by
3477 test_dep (A, B) is lexicographically negative (-1, 1), that
3478 means that the access A occurs later than B with respect to
3479 the outer loop, ie. we're actually looking upwind. In this
3480 case we solve test_dep (B, A) looking downwind to the
3481 lexicographically positive solution, that returns the
3482 distance vector (1, -1). */
3483 if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
3485 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3486 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3487 loop_nest))
3488 return false;
3489 compute_subscript_distance (ddr);
3490 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3491 save_v, &init_b, &index_carry))
3492 return false;
3493 save_dist_v (ddr, save_v);
3494 DDR_REVERSED_P (ddr) = true;
3496 /* In this case there is a dependence forward for all the
3497 outer loops:
3499 | for (k = 1; k < 100; k++)
3500 | for (i = 1; i < 100; i++)
3501 | for (j = 1; j < 100; j++)
3503 | t = T[j+1][i-1]; // A
3504 | T[j][i] = t + 2; // B
3507 the vectors are:
3508 (0, 1, -1)
3509 (1, 1, -1)
3510 (1, -1, 1)
3512 if (DDR_NB_LOOPS (ddr) > 1)
3514 add_outer_distances (ddr, save_v, index_carry);
3515 add_outer_distances (ddr, dist_v, index_carry);
3518 else
3520 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3521 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3523 if (DDR_NB_LOOPS (ddr) > 1)
3525 lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3527 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
3528 DDR_A (ddr), loop_nest))
3529 return false;
3530 compute_subscript_distance (ddr);
3531 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3532 opposite_v, &init_b,
3533 &index_carry))
3534 return false;
3536 save_dist_v (ddr, save_v);
3537 add_outer_distances (ddr, dist_v, index_carry);
3538 add_outer_distances (ddr, opposite_v, index_carry);
3540 else
3541 save_dist_v (ddr, save_v);
3544 else
3546 /* There is a distance of 1 on all the outer loops: Example:
3547 there is a dependence of distance 1 on loop_1 for the array A.
3549 | loop_1
3550 | A[5] = ...
3551 | endloop
3553 add_outer_distances (ddr, dist_v,
3554 lambda_vector_first_nz (dist_v,
3555 DDR_NB_LOOPS (ddr), 0));
3558 if (dump_file && (dump_flags & TDF_DETAILS))
3560 unsigned i;
3562 fprintf (dump_file, "(build_classic_dist_vector\n");
3563 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
3565 fprintf (dump_file, " dist_vector = (");
3566 print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
3567 DDR_NB_LOOPS (ddr));
3568 fprintf (dump_file, " )\n");
3570 fprintf (dump_file, ")\n");
3573 return true;
3576 /* Return the direction for a given distance.
3577 FIXME: Computing dir this way is suboptimal, since dir can catch
3578 cases that dist is unable to represent. */
3580 static inline enum data_dependence_direction
3581 dir_from_dist (int dist)
3583 if (dist > 0)
3584 return dir_positive;
3585 else if (dist < 0)
3586 return dir_negative;
3587 else
3588 return dir_equal;
3591 /* Compute the classic per loop direction vector. DDR is the data
3592 dependence relation to build a vector from. */
3594 static void
3595 build_classic_dir_vector (struct data_dependence_relation *ddr)
3597 unsigned i, j;
3598 lambda_vector dist_v;
3600 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
3602 lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3604 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
3605 dir_v[j] = dir_from_dist (dist_v[j]);
3607 save_dir_v (ddr, dir_v);
3611 /* Helper function. Returns true when there is a dependence between
3612 data references DRA and DRB. */
3614 static bool
3615 subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
3616 struct data_reference *dra,
3617 struct data_reference *drb,
3618 struct loop *loop_nest)
3620 unsigned int i;
3621 tree last_conflicts;
3622 struct subscript *subscript;
3623 tree res = NULL_TREE;
3625 for (i = 0; DDR_SUBSCRIPTS (ddr).iterate (i, &subscript); i++)
3627 conflict_function *overlaps_a, *overlaps_b;
3629 analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
3630 DR_ACCESS_FN (drb, i),
3631 &overlaps_a, &overlaps_b,
3632 &last_conflicts, loop_nest);
3634 if (SUB_CONFLICTS_IN_A (subscript))
3635 free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
3636 if (SUB_CONFLICTS_IN_B (subscript))
3637 free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
3639 SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
3640 SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
3641 SUB_LAST_CONFLICT (subscript) = last_conflicts;
3643 /* If there is any undetermined conflict function we have to
3644 give a conservative answer in case we cannot prove that
3645 no dependence exists when analyzing another subscript. */
3646 if (CF_NOT_KNOWN_P (overlaps_a)
3647 || CF_NOT_KNOWN_P (overlaps_b))
3649 res = chrec_dont_know;
3650 continue;
3653 /* When there is a subscript with no dependence we can stop. */
3654 else if (CF_NO_DEPENDENCE_P (overlaps_a)
3655 || CF_NO_DEPENDENCE_P (overlaps_b))
3657 res = chrec_known;
3658 break;
3662 if (res == NULL_TREE)
3663 return true;
3665 if (res == chrec_known)
3666 dependence_stats.num_dependence_independent++;
3667 else
3668 dependence_stats.num_dependence_undetermined++;
3669 finalize_ddr_dependent (ddr, res);
3670 return false;
3673 /* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
3675 static void
3676 subscript_dependence_tester (struct data_dependence_relation *ddr,
3677 struct loop *loop_nest)
3679 if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest))
3680 dependence_stats.num_dependence_dependent++;
3682 compute_subscript_distance (ddr);
3683 if (build_classic_dist_vector (ddr, loop_nest))
3684 build_classic_dir_vector (ddr);
3687 /* Returns true when all the access functions of A are affine or
3688 constant with respect to LOOP_NEST. */
3690 static bool
3691 access_functions_are_affine_or_constant_p (const struct data_reference *a,
3692 const struct loop *loop_nest)
3694 unsigned int i;
3695 vec<tree> fns = DR_ACCESS_FNS (a);
3696 tree t;
3698 FOR_EACH_VEC_ELT (fns, i, t)
3699 if (!evolution_function_is_invariant_p (t, loop_nest->num)
3700 && !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
3701 return false;
3703 return true;
3706 /* Initializes an equation for an OMEGA problem using the information
3707 contained in the ACCESS_FUN. Returns true when the operation
3708 succeeded.
3710 PB is the omega constraint system.
3711 EQ is the number of the equation to be initialized.
3712 OFFSET is used for shifting the variables names in the constraints:
3713 a constrain is composed of 2 * the number of variables surrounding
3714 dependence accesses. OFFSET is set either to 0 for the first n variables,
3715 then it is set to n.
3716 ACCESS_FUN is expected to be an affine chrec. */
3718 static bool
3719 init_omega_eq_with_af (omega_pb pb, unsigned eq,
3720 unsigned int offset, tree access_fun,
3721 struct data_dependence_relation *ddr)
3723 switch (TREE_CODE (access_fun))
3725 case POLYNOMIAL_CHREC:
3727 tree left = CHREC_LEFT (access_fun);
3728 tree right = CHREC_RIGHT (access_fun);
3729 int var = CHREC_VARIABLE (access_fun);
3730 unsigned var_idx;
3732 if (TREE_CODE (right) != INTEGER_CST)
3733 return false;
3735 var_idx = index_in_loop_nest (var, DDR_LOOP_NEST (ddr));
3736 pb->eqs[eq].coef[offset + var_idx + 1] = int_cst_value (right);
3738 /* Compute the innermost loop index. */
3739 DDR_INNER_LOOP (ddr) = MAX (DDR_INNER_LOOP (ddr), var_idx);
3741 if (offset == 0)
3742 pb->eqs[eq].coef[var_idx + DDR_NB_LOOPS (ddr) + 1]
3743 += int_cst_value (right);
3745 switch (TREE_CODE (left))
3747 case POLYNOMIAL_CHREC:
3748 return init_omega_eq_with_af (pb, eq, offset, left, ddr);
3750 case INTEGER_CST:
3751 pb->eqs[eq].coef[0] += int_cst_value (left);
3752 return true;
3754 default:
3755 return false;
3759 case INTEGER_CST:
3760 pb->eqs[eq].coef[0] += int_cst_value (access_fun);
3761 return true;
3763 default:
3764 return false;
3768 /* As explained in the comments preceding init_omega_for_ddr, we have
3769 to set up a system for each loop level, setting outer loops
3770 variation to zero, and current loop variation to positive or zero.
3771 Save each lexico positive distance vector. */
3773 static void
3774 omega_extract_distance_vectors (omega_pb pb,
3775 struct data_dependence_relation *ddr)
3777 int eq, geq;
3778 unsigned i, j;
3779 struct loop *loopi, *loopj;
3780 enum omega_result res;
3782 /* Set a new problem for each loop in the nest. The basis is the
3783 problem that we have initialized until now. On top of this we
3784 add new constraints. */
3785 for (i = 0; i <= DDR_INNER_LOOP (ddr)
3786 && DDR_LOOP_NEST (ddr).iterate (i, &loopi); i++)
3788 int dist = 0;
3789 omega_pb copy = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr),
3790 DDR_NB_LOOPS (ddr));
3792 omega_copy_problem (copy, pb);
3794 /* For all the outer loops "loop_j", add "dj = 0". */
3795 for (j = 0; j < i && DDR_LOOP_NEST (ddr).iterate (j, &loopj); j++)
3797 eq = omega_add_zero_eq (copy, omega_black);
3798 copy->eqs[eq].coef[j + 1] = 1;
3801 /* For "loop_i", add "0 <= di". */
3802 geq = omega_add_zero_geq (copy, omega_black);
3803 copy->geqs[geq].coef[i + 1] = 1;
3805 /* Reduce the constraint system, and test that the current
3806 problem is feasible. */
3807 res = omega_simplify_problem (copy);
3808 if (res == omega_false
3809 || res == omega_unknown
3810 || copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
3811 goto next_problem;
3813 for (eq = 0; eq < copy->num_subs; eq++)
3814 if (copy->subs[eq].key == (int) i + 1)
3816 dist = copy->subs[eq].coef[0];
3817 goto found_dist;
3820 if (dist == 0)
3822 /* Reinitialize problem... */
3823 omega_copy_problem (copy, pb);
3824 for (j = 0; j < i && DDR_LOOP_NEST (ddr).iterate (j, &loopj); j++)
3826 eq = omega_add_zero_eq (copy, omega_black);
3827 copy->eqs[eq].coef[j + 1] = 1;
3830 /* ..., but this time "di = 1". */
3831 eq = omega_add_zero_eq (copy, omega_black);
3832 copy->eqs[eq].coef[i + 1] = 1;
3833 copy->eqs[eq].coef[0] = -1;
3835 res = omega_simplify_problem (copy);
3836 if (res == omega_false
3837 || res == omega_unknown
3838 || copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
3839 goto next_problem;
3841 for (eq = 0; eq < copy->num_subs; eq++)
3842 if (copy->subs[eq].key == (int) i + 1)
3844 dist = copy->subs[eq].coef[0];
3845 goto found_dist;
3849 found_dist:;
3850 /* Save the lexicographically positive distance vector. */
3851 if (dist >= 0)
3853 lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3854 lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3856 dist_v[i] = dist;
3858 for (eq = 0; eq < copy->num_subs; eq++)
3859 if (copy->subs[eq].key > 0)
3861 dist = copy->subs[eq].coef[0];
3862 dist_v[copy->subs[eq].key - 1] = dist;
3865 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
3866 dir_v[j] = dir_from_dist (dist_v[j]);
3868 save_dist_v (ddr, dist_v);
3869 save_dir_v (ddr, dir_v);
3872 next_problem:;
3873 omega_free_problem (copy);
3877 /* This is called for each subscript of a tuple of data references:
3878 insert an equality for representing the conflicts. */
3880 static bool
3881 omega_setup_subscript (tree access_fun_a, tree access_fun_b,
3882 struct data_dependence_relation *ddr,
3883 omega_pb pb, bool *maybe_dependent)
3885 int eq;
3886 tree type = signed_type_for_types (TREE_TYPE (access_fun_a),
3887 TREE_TYPE (access_fun_b));
3888 tree fun_a = chrec_convert (type, access_fun_a, NULL);
3889 tree fun_b = chrec_convert (type, access_fun_b, NULL);
3890 tree difference = chrec_fold_minus (type, fun_a, fun_b);
3891 tree minus_one;
3893 /* When the fun_a - fun_b is not constant, the dependence is not
3894 captured by the classic distance vector representation. */
3895 if (TREE_CODE (difference) != INTEGER_CST)
3896 return false;
3898 /* ZIV test. */
3899 if (ziv_subscript_p (fun_a, fun_b) && !integer_zerop (difference))
3901 /* There is no dependence. */
3902 *maybe_dependent = false;
3903 return true;
3906 minus_one = build_int_cst (type, -1);
3907 fun_b = chrec_fold_multiply (type, fun_b, minus_one);
3909 eq = omega_add_zero_eq (pb, omega_black);
3910 if (!init_omega_eq_with_af (pb, eq, DDR_NB_LOOPS (ddr), fun_a, ddr)
3911 || !init_omega_eq_with_af (pb, eq, 0, fun_b, ddr))
3912 /* There is probably a dependence, but the system of
3913 constraints cannot be built: answer "don't know". */
3914 return false;
3916 /* GCD test. */
3917 if (DDR_NB_LOOPS (ddr) != 0 && pb->eqs[eq].coef[0]
3918 && !int_divides_p (lambda_vector_gcd
3919 ((lambda_vector) &(pb->eqs[eq].coef[1]),
3920 2 * DDR_NB_LOOPS (ddr)),
3921 pb->eqs[eq].coef[0]))
3923 /* There is no dependence. */
3924 *maybe_dependent = false;
3925 return true;
3928 return true;
3931 /* Helper function, same as init_omega_for_ddr but specialized for
3932 data references A and B. */
3934 static bool
3935 init_omega_for_ddr_1 (struct data_reference *dra, struct data_reference *drb,
3936 struct data_dependence_relation *ddr,
3937 omega_pb pb, bool *maybe_dependent)
3939 unsigned i;
3940 int ineq;
3941 struct loop *loopi;
3942 unsigned nb_loops = DDR_NB_LOOPS (ddr);
3944 /* Insert an equality per subscript. */
3945 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3947 if (!omega_setup_subscript (DR_ACCESS_FN (dra, i), DR_ACCESS_FN (drb, i),
3948 ddr, pb, maybe_dependent))
3949 return false;
3950 else if (*maybe_dependent == false)
3952 /* There is no dependence. */
3953 DDR_ARE_DEPENDENT (ddr) = chrec_known;
3954 return true;
3958 /* Insert inequalities: constraints corresponding to the iteration
3959 domain, i.e. the loops surrounding the references "loop_x" and
3960 the distance variables "dx". The layout of the OMEGA
3961 representation is as follows:
3962 - coef[0] is the constant
3963 - coef[1..nb_loops] are the protected variables that will not be
3964 removed by the solver: the "dx"
3965 - coef[nb_loops + 1, 2*nb_loops] are the loop variables: "loop_x".
3967 for (i = 0; i <= DDR_INNER_LOOP (ddr)
3968 && DDR_LOOP_NEST (ddr).iterate (i, &loopi); i++)
3970 HOST_WIDE_INT nbi = max_stmt_executions_int (loopi);
3972 /* 0 <= loop_x */
3973 ineq = omega_add_zero_geq (pb, omega_black);
3974 pb->geqs[ineq].coef[i + nb_loops + 1] = 1;
3976 /* 0 <= loop_x + dx */
3977 ineq = omega_add_zero_geq (pb, omega_black);
3978 pb->geqs[ineq].coef[i + nb_loops + 1] = 1;
3979 pb->geqs[ineq].coef[i + 1] = 1;
3981 if (nbi != -1)
3983 /* loop_x <= nb_iters */
3984 ineq = omega_add_zero_geq (pb, omega_black);
3985 pb->geqs[ineq].coef[i + nb_loops + 1] = -1;
3986 pb->geqs[ineq].coef[0] = nbi;
3988 /* loop_x + dx <= nb_iters */
3989 ineq = omega_add_zero_geq (pb, omega_black);
3990 pb->geqs[ineq].coef[i + nb_loops + 1] = -1;
3991 pb->geqs[ineq].coef[i + 1] = -1;
3992 pb->geqs[ineq].coef[0] = nbi;
3994 /* A step "dx" bigger than nb_iters is not feasible, so
3995 add "0 <= nb_iters + dx", */
3996 ineq = omega_add_zero_geq (pb, omega_black);
3997 pb->geqs[ineq].coef[i + 1] = 1;
3998 pb->geqs[ineq].coef[0] = nbi;
3999 /* and "dx <= nb_iters". */
4000 ineq = omega_add_zero_geq (pb, omega_black);
4001 pb->geqs[ineq].coef[i + 1] = -1;
4002 pb->geqs[ineq].coef[0] = nbi;
4006 omega_extract_distance_vectors (pb, ddr);
4008 return true;
4011 /* Sets up the Omega dependence problem for the data dependence
4012 relation DDR. Returns false when the constraint system cannot be
4013 built, ie. when the test answers "don't know". Returns true
4014 otherwise, and when independence has been proved (using one of the
4015 trivial dependence test), set MAYBE_DEPENDENT to false, otherwise
4016 set MAYBE_DEPENDENT to true.
4018 Example: for setting up the dependence system corresponding to the
4019 conflicting accesses
4021 | loop_i
4022 | loop_j
4023 | A[i, i+1] = ...
4024 | ... A[2*j, 2*(i + j)]
4025 | endloop_j
4026 | endloop_i
4028 the following constraints come from the iteration domain:
4030 0 <= i <= Ni
4031 0 <= i + di <= Ni
4032 0 <= j <= Nj
4033 0 <= j + dj <= Nj
4035 where di, dj are the distance variables. The constraints
4036 representing the conflicting elements are:
4038 i = 2 * (j + dj)
4039 i + 1 = 2 * (i + di + j + dj)
4041 For asking that the resulting distance vector (di, dj) be
4042 lexicographically positive, we insert the constraint "di >= 0". If
4043 "di = 0" in the solution, we fix that component to zero, and we
4044 look at the inner loops: we set a new problem where all the outer
4045 loop distances are zero, and fix this inner component to be
4046 positive. When one of the components is positive, we save that
4047 distance, and set a new problem where the distance on this loop is
4048 zero, searching for other distances in the inner loops. Here is
4049 the classic example that illustrates that we have to set for each
4050 inner loop a new problem:
4052 | loop_1
4053 | loop_2
4054 | A[10]
4055 | endloop_2
4056 | endloop_1
4058 we have to save two distances (1, 0) and (0, 1).
4060 Given two array references, refA and refB, we have to set the
4061 dependence problem twice, refA vs. refB and refB vs. refA, and we
4062 cannot do a single test, as refB might occur before refA in the
4063 inner loops, and the contrary when considering outer loops: ex.
4065 | loop_0
4066 | loop_1
4067 | loop_2
4068 | T[{1,+,1}_2][{1,+,1}_1] // refA
4069 | T[{2,+,1}_2][{0,+,1}_1] // refB
4070 | endloop_2
4071 | endloop_1
4072 | endloop_0
4074 refB touches the elements in T before refA, and thus for the same
4075 loop_0 refB precedes refA: ie. the distance vector (0, 1, -1)
4076 but for successive loop_0 iterations, we have (1, -1, 1)
4078 The Omega solver expects the distance variables ("di" in the
4079 previous example) to come first in the constraint system (as
4080 variables to be protected, or "safe" variables), the constraint
4081 system is built using the following layout:
4083 "cst | distance vars | index vars".
4086 static bool
4087 init_omega_for_ddr (struct data_dependence_relation *ddr,
4088 bool *maybe_dependent)
4090 omega_pb pb;
4091 bool res = false;
4093 *maybe_dependent = true;
4095 if (same_access_functions (ddr))
4097 unsigned j;
4098 lambda_vector dir_v;
4100 /* Save the 0 vector. */
4101 save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
4102 dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
4103 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
4104 dir_v[j] = dir_equal;
4105 save_dir_v (ddr, dir_v);
4107 /* Save the dependences carried by outer loops. */
4108 pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
4109 res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb,
4110 maybe_dependent);
4111 omega_free_problem (pb);
4112 return res;
4115 /* Omega expects the protected variables (those that have to be kept
4116 after elimination) to appear first in the constraint system.
4117 These variables are the distance variables. In the following
4118 initialization we declare NB_LOOPS safe variables, and the total
4119 number of variables for the constraint system is 2*NB_LOOPS. */
4120 pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
4121 res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb,
4122 maybe_dependent);
4123 omega_free_problem (pb);
4125 /* Stop computation if not decidable, or no dependence. */
4126 if (res == false || *maybe_dependent == false)
4127 return res;
4129 pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
4130 res = init_omega_for_ddr_1 (DDR_B (ddr), DDR_A (ddr), ddr, pb,
4131 maybe_dependent);
4132 omega_free_problem (pb);
4134 return res;
4137 /* Return true when DDR contains the same information as that stored
4138 in DIR_VECTS and in DIST_VECTS, return false otherwise. */
4140 static bool
4141 ddr_consistent_p (FILE *file,
4142 struct data_dependence_relation *ddr,
4143 vec<lambda_vector> dist_vects,
4144 vec<lambda_vector> dir_vects)
4146 unsigned int i, j;
4148 /* If dump_file is set, output there. */
4149 if (dump_file && (dump_flags & TDF_DETAILS))
4150 file = dump_file;
4152 if (dist_vects.length () != DDR_NUM_DIST_VECTS (ddr))
4154 lambda_vector b_dist_v;
4155 fprintf (file, "\n(Number of distance vectors differ: Banerjee has %d, Omega has %d.\n",
4156 dist_vects.length (),
4157 DDR_NUM_DIST_VECTS (ddr));
4159 fprintf (file, "Banerjee dist vectors:\n");
4160 FOR_EACH_VEC_ELT (dist_vects, i, b_dist_v)
4161 print_lambda_vector (file, b_dist_v, DDR_NB_LOOPS (ddr));
4163 fprintf (file, "Omega dist vectors:\n");
4164 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
4165 print_lambda_vector (file, DDR_DIST_VECT (ddr, i), DDR_NB_LOOPS (ddr));
4167 fprintf (file, "data dependence relation:\n");
4168 dump_data_dependence_relation (file, ddr);
4170 fprintf (file, ")\n");
4171 return false;
4174 if (dir_vects.length () != DDR_NUM_DIR_VECTS (ddr))
4176 fprintf (file, "\n(Number of direction vectors differ: Banerjee has %d, Omega has %d.)\n",
4177 dir_vects.length (),
4178 DDR_NUM_DIR_VECTS (ddr));
4179 return false;
4182 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
4184 lambda_vector a_dist_v;
4185 lambda_vector b_dist_v = DDR_DIST_VECT (ddr, i);
4187 /* Distance vectors are not ordered in the same way in the DDR
4188 and in the DIST_VECTS: search for a matching vector. */
4189 FOR_EACH_VEC_ELT (dist_vects, j, a_dist_v)
4190 if (lambda_vector_equal (a_dist_v, b_dist_v, DDR_NB_LOOPS (ddr)))
4191 break;
4193 if (j == dist_vects.length ())
4195 fprintf (file, "\n(Dist vectors from the first dependence analyzer:\n");
4196 print_dist_vectors (file, dist_vects, DDR_NB_LOOPS (ddr));
4197 fprintf (file, "not found in Omega dist vectors:\n");
4198 print_dist_vectors (file, DDR_DIST_VECTS (ddr), DDR_NB_LOOPS (ddr));
4199 fprintf (file, "data dependence relation:\n");
4200 dump_data_dependence_relation (file, ddr);
4201 fprintf (file, ")\n");
4205 for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
4207 lambda_vector a_dir_v;
4208 lambda_vector b_dir_v = DDR_DIR_VECT (ddr, i);
4210 /* Direction vectors are not ordered in the same way in the DDR
4211 and in the DIR_VECTS: search for a matching vector. */
4212 FOR_EACH_VEC_ELT (dir_vects, j, a_dir_v)
4213 if (lambda_vector_equal (a_dir_v, b_dir_v, DDR_NB_LOOPS (ddr)))
4214 break;
4216 if (j == dist_vects.length ())
4218 fprintf (file, "\n(Dir vectors from the first dependence analyzer:\n");
4219 print_dir_vectors (file, dir_vects, DDR_NB_LOOPS (ddr));
4220 fprintf (file, "not found in Omega dir vectors:\n");
4221 print_dir_vectors (file, DDR_DIR_VECTS (ddr), DDR_NB_LOOPS (ddr));
4222 fprintf (file, "data dependence relation:\n");
4223 dump_data_dependence_relation (file, ddr);
4224 fprintf (file, ")\n");
4228 return true;
4231 /* This computes the affine dependence relation between A and B with
4232 respect to LOOP_NEST. CHREC_KNOWN is used for representing the
4233 independence between two accesses, while CHREC_DONT_KNOW is used
4234 for representing the unknown relation.
4236 Note that it is possible to stop the computation of the dependence
4237 relation the first time we detect a CHREC_KNOWN element for a given
4238 subscript. */
4240 void
4241 compute_affine_dependence (struct data_dependence_relation *ddr,
4242 struct loop *loop_nest)
4244 struct data_reference *dra = DDR_A (ddr);
4245 struct data_reference *drb = DDR_B (ddr);
4247 if (dump_file && (dump_flags & TDF_DETAILS))
4249 fprintf (dump_file, "(compute_affine_dependence\n");
4250 fprintf (dump_file, " stmt_a: ");
4251 print_gimple_stmt (dump_file, DR_STMT (dra), 0, TDF_SLIM);
4252 fprintf (dump_file, " stmt_b: ");
4253 print_gimple_stmt (dump_file, DR_STMT (drb), 0, TDF_SLIM);
4256 /* Analyze only when the dependence relation is not yet known. */
4257 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
4259 dependence_stats.num_dependence_tests++;
4261 if (access_functions_are_affine_or_constant_p (dra, loop_nest)
4262 && access_functions_are_affine_or_constant_p (drb, loop_nest))
4264 subscript_dependence_tester (ddr, loop_nest);
4266 if (flag_check_data_deps)
4268 /* Dump the dependences from the first algorithm. */
4269 if (dump_file && (dump_flags & TDF_DETAILS))
4271 fprintf (dump_file, "\n\nBanerjee Analyzer\n");
4272 dump_data_dependence_relation (dump_file, ddr);
4275 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
4277 bool maybe_dependent;
4278 vec<lambda_vector> dir_vects, dist_vects;
4280 /* Save the result of the first DD analyzer. */
4281 dist_vects = DDR_DIST_VECTS (ddr);
4282 dir_vects = DDR_DIR_VECTS (ddr);
4284 /* Reset the information. */
4285 DDR_DIST_VECTS (ddr).create (0);
4286 DDR_DIR_VECTS (ddr).create (0);
4288 /* Compute the same information using Omega. */
4289 if (!init_omega_for_ddr (ddr, &maybe_dependent))
4290 goto csys_dont_know;
4292 if (dump_file && (dump_flags & TDF_DETAILS))
4294 fprintf (dump_file, "Omega Analyzer\n");
4295 dump_data_dependence_relation (dump_file, ddr);
4298 /* Check that we get the same information. */
4299 if (maybe_dependent)
4300 gcc_assert (ddr_consistent_p (stderr, ddr, dist_vects,
4301 dir_vects));
4306 /* As a last case, if the dependence cannot be determined, or if
4307 the dependence is considered too difficult to determine, answer
4308 "don't know". */
4309 else
4311 csys_dont_know:;
4312 dependence_stats.num_dependence_undetermined++;
4314 if (dump_file && (dump_flags & TDF_DETAILS))
4316 fprintf (dump_file, "Data ref a:\n");
4317 dump_data_reference (dump_file, dra);
4318 fprintf (dump_file, "Data ref b:\n");
4319 dump_data_reference (dump_file, drb);
4320 fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
4322 finalize_ddr_dependent (ddr, chrec_dont_know);
4326 if (dump_file && (dump_flags & TDF_DETAILS))
4328 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
4329 fprintf (dump_file, ") -> no dependence\n");
4330 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
4331 fprintf (dump_file, ") -> dependence analysis failed\n");
4332 else
4333 fprintf (dump_file, ")\n");
4337 /* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
4338 the data references in DATAREFS, in the LOOP_NEST. When
4339 COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
4340 relations. Return true when successful, i.e. data references number
4341 is small enough to be handled. */
4343 bool
4344 compute_all_dependences (vec<data_reference_p> datarefs,
4345 vec<ddr_p> *dependence_relations,
4346 vec<loop_p> loop_nest,
4347 bool compute_self_and_rr)
4349 struct data_dependence_relation *ddr;
4350 struct data_reference *a, *b;
4351 unsigned int i, j;
4353 if ((int) datarefs.length ()
4354 > PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
4356 struct data_dependence_relation *ddr;
4358 /* Insert a single relation into dependence_relations:
4359 chrec_dont_know. */
4360 ddr = initialize_data_dependence_relation (NULL, NULL, loop_nest);
4361 dependence_relations->safe_push (ddr);
4362 return false;
4365 FOR_EACH_VEC_ELT (datarefs, i, a)
4366 for (j = i + 1; datarefs.iterate (j, &b); j++)
4367 if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
4369 ddr = initialize_data_dependence_relation (a, b, loop_nest);
4370 dependence_relations->safe_push (ddr);
4371 if (loop_nest.exists ())
4372 compute_affine_dependence (ddr, loop_nest[0]);
4375 if (compute_self_and_rr)
4376 FOR_EACH_VEC_ELT (datarefs, i, a)
4378 ddr = initialize_data_dependence_relation (a, a, loop_nest);
4379 dependence_relations->safe_push (ddr);
4380 if (loop_nest.exists ())
4381 compute_affine_dependence (ddr, loop_nest[0]);
4384 return true;
4387 /* Describes a location of a memory reference. */
4389 typedef struct data_ref_loc_d
4391 /* The memory reference. */
4392 tree ref;
4394 /* True if the memory reference is read. */
4395 bool is_read;
4396 } data_ref_loc;
4399 /* Stores the locations of memory references in STMT to REFERENCES. Returns
4400 true if STMT clobbers memory, false otherwise. */
4402 static bool
4403 get_references_in_stmt (gimple stmt, vec<data_ref_loc, va_heap> *references)
4405 bool clobbers_memory = false;
4406 data_ref_loc ref;
4407 tree op0, op1;
4408 enum gimple_code stmt_code = gimple_code (stmt);
4410 /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
4411 As we cannot model data-references to not spelled out
4412 accesses give up if they may occur. */
4413 if (stmt_code == GIMPLE_CALL
4414 && !(gimple_call_flags (stmt) & ECF_CONST))
4416 /* Allow IFN_GOMP_SIMD_LANE in their own loops. */
4417 if (gimple_call_internal_p (stmt))
4418 switch (gimple_call_internal_fn (stmt))
4420 case IFN_GOMP_SIMD_LANE:
4422 struct loop *loop = gimple_bb (stmt)->loop_father;
4423 tree uid = gimple_call_arg (stmt, 0);
4424 gcc_assert (TREE_CODE (uid) == SSA_NAME);
4425 if (loop == NULL
4426 || loop->simduid != SSA_NAME_VAR (uid))
4427 clobbers_memory = true;
4428 break;
4430 case IFN_MASK_LOAD:
4431 case IFN_MASK_STORE:
4432 break;
4433 default:
4434 clobbers_memory = true;
4435 break;
4437 else
4438 clobbers_memory = true;
4440 else if (stmt_code == GIMPLE_ASM
4441 && (gimple_asm_volatile_p (as_a <gasm *> (stmt))
4442 || gimple_vuse (stmt)))
4443 clobbers_memory = true;
4445 if (!gimple_vuse (stmt))
4446 return clobbers_memory;
4448 if (stmt_code == GIMPLE_ASSIGN)
4450 tree base;
4451 op0 = gimple_assign_lhs (stmt);
4452 op1 = gimple_assign_rhs1 (stmt);
4454 if (DECL_P (op1)
4455 || (REFERENCE_CLASS_P (op1)
4456 && (base = get_base_address (op1))
4457 && TREE_CODE (base) != SSA_NAME))
4459 ref.ref = op1;
4460 ref.is_read = true;
4461 references->safe_push (ref);
4464 else if (stmt_code == GIMPLE_CALL)
4466 unsigned i, n;
4468 ref.is_read = false;
4469 if (gimple_call_internal_p (stmt))
4470 switch (gimple_call_internal_fn (stmt))
4472 case IFN_MASK_LOAD:
4473 if (gimple_call_lhs (stmt) == NULL_TREE)
4474 break;
4475 ref.is_read = true;
4476 case IFN_MASK_STORE:
4477 ref.ref = fold_build2 (MEM_REF,
4478 ref.is_read
4479 ? TREE_TYPE (gimple_call_lhs (stmt))
4480 : TREE_TYPE (gimple_call_arg (stmt, 3)),
4481 gimple_call_arg (stmt, 0),
4482 gimple_call_arg (stmt, 1));
4483 references->safe_push (ref);
4484 return false;
4485 default:
4486 break;
4489 op0 = gimple_call_lhs (stmt);
4490 n = gimple_call_num_args (stmt);
4491 for (i = 0; i < n; i++)
4493 op1 = gimple_call_arg (stmt, i);
4495 if (DECL_P (op1)
4496 || (REFERENCE_CLASS_P (op1) && get_base_address (op1)))
4498 ref.ref = op1;
4499 ref.is_read = true;
4500 references->safe_push (ref);
4504 else
4505 return clobbers_memory;
4507 if (op0
4508 && (DECL_P (op0)
4509 || (REFERENCE_CLASS_P (op0) && get_base_address (op0))))
4511 ref.ref = op0;
4512 ref.is_read = false;
4513 references->safe_push (ref);
4515 return clobbers_memory;
4518 /* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
4519 reference, returns false, otherwise returns true. NEST is the outermost
4520 loop of the loop nest in which the references should be analyzed. */
4522 bool
4523 find_data_references_in_stmt (struct loop *nest, gimple stmt,
4524 vec<data_reference_p> *datarefs)
4526 unsigned i;
4527 auto_vec<data_ref_loc, 2> references;
4528 data_ref_loc *ref;
4529 bool ret = true;
4530 data_reference_p dr;
4532 if (get_references_in_stmt (stmt, &references))
4533 return false;
4535 FOR_EACH_VEC_ELT (references, i, ref)
4537 dr = create_data_ref (nest, loop_containing_stmt (stmt),
4538 ref->ref, stmt, ref->is_read);
4539 gcc_assert (dr != NULL);
4540 datarefs->safe_push (dr);
4542 references.release ();
4543 return ret;
4546 /* Stores the data references in STMT to DATAREFS. If there is an
4547 unanalyzable reference, returns false, otherwise returns true.
4548 NEST is the outermost loop of the loop nest in which the references
4549 should be instantiated, LOOP is the loop in which the references
4550 should be analyzed. */
4552 bool
4553 graphite_find_data_references_in_stmt (loop_p nest, loop_p loop, gimple stmt,
4554 vec<data_reference_p> *datarefs)
4556 unsigned i;
4557 auto_vec<data_ref_loc, 2> references;
4558 data_ref_loc *ref;
4559 bool ret = true;
4560 data_reference_p dr;
4562 if (get_references_in_stmt (stmt, &references))
4563 return false;
4565 FOR_EACH_VEC_ELT (references, i, ref)
4567 dr = create_data_ref (nest, loop, ref->ref, stmt, ref->is_read);
4568 gcc_assert (dr != NULL);
4569 datarefs->safe_push (dr);
4572 references.release ();
4573 return ret;
4576 /* Search the data references in LOOP, and record the information into
4577 DATAREFS. Returns chrec_dont_know when failing to analyze a
4578 difficult case, returns NULL_TREE otherwise. */
4580 tree
4581 find_data_references_in_bb (struct loop *loop, basic_block bb,
4582 vec<data_reference_p> *datarefs)
4584 gimple_stmt_iterator bsi;
4586 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
4588 gimple stmt = gsi_stmt (bsi);
4590 if (!find_data_references_in_stmt (loop, stmt, datarefs))
4592 struct data_reference *res;
4593 res = XCNEW (struct data_reference);
4594 datarefs->safe_push (res);
4596 return chrec_dont_know;
4600 return NULL_TREE;
4603 /* Search the data references in LOOP, and record the information into
4604 DATAREFS. Returns chrec_dont_know when failing to analyze a
4605 difficult case, returns NULL_TREE otherwise.
4607 TODO: This function should be made smarter so that it can handle address
4608 arithmetic as if they were array accesses, etc. */
4610 tree
4611 find_data_references_in_loop (struct loop *loop,
4612 vec<data_reference_p> *datarefs)
4614 basic_block bb, *bbs;
4615 unsigned int i;
4617 bbs = get_loop_body_in_dom_order (loop);
4619 for (i = 0; i < loop->num_nodes; i++)
4621 bb = bbs[i];
4623 if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
4625 free (bbs);
4626 return chrec_dont_know;
4629 free (bbs);
4631 return NULL_TREE;
4634 /* Recursive helper function. */
4636 static bool
4637 find_loop_nest_1 (struct loop *loop, vec<loop_p> *loop_nest)
4639 /* Inner loops of the nest should not contain siblings. Example:
4640 when there are two consecutive loops,
4642 | loop_0
4643 | loop_1
4644 | A[{0, +, 1}_1]
4645 | endloop_1
4646 | loop_2
4647 | A[{0, +, 1}_2]
4648 | endloop_2
4649 | endloop_0
4651 the dependence relation cannot be captured by the distance
4652 abstraction. */
4653 if (loop->next)
4654 return false;
4656 loop_nest->safe_push (loop);
4657 if (loop->inner)
4658 return find_loop_nest_1 (loop->inner, loop_nest);
4659 return true;
4662 /* Return false when the LOOP is not well nested. Otherwise return
4663 true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
4664 contain the loops from the outermost to the innermost, as they will
4665 appear in the classic distance vector. */
4667 bool
4668 find_loop_nest (struct loop *loop, vec<loop_p> *loop_nest)
4670 loop_nest->safe_push (loop);
4671 if (loop->inner)
4672 return find_loop_nest_1 (loop->inner, loop_nest);
4673 return true;
4676 /* Returns true when the data dependences have been computed, false otherwise.
4677 Given a loop nest LOOP, the following vectors are returned:
4678 DATAREFS is initialized to all the array elements contained in this loop,
4679 DEPENDENCE_RELATIONS contains the relations between the data references.
4680 Compute read-read and self relations if
4681 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
4683 bool
4684 compute_data_dependences_for_loop (struct loop *loop,
4685 bool compute_self_and_read_read_dependences,
4686 vec<loop_p> *loop_nest,
4687 vec<data_reference_p> *datarefs,
4688 vec<ddr_p> *dependence_relations)
4690 bool res = true;
4692 memset (&dependence_stats, 0, sizeof (dependence_stats));
4694 /* If the loop nest is not well formed, or one of the data references
4695 is not computable, give up without spending time to compute other
4696 dependences. */
4697 if (!loop
4698 || !find_loop_nest (loop, loop_nest)
4699 || find_data_references_in_loop (loop, datarefs) == chrec_dont_know
4700 || !compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
4701 compute_self_and_read_read_dependences))
4702 res = false;
4704 if (dump_file && (dump_flags & TDF_STATS))
4706 fprintf (dump_file, "Dependence tester statistics:\n");
4708 fprintf (dump_file, "Number of dependence tests: %d\n",
4709 dependence_stats.num_dependence_tests);
4710 fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
4711 dependence_stats.num_dependence_dependent);
4712 fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
4713 dependence_stats.num_dependence_independent);
4714 fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
4715 dependence_stats.num_dependence_undetermined);
4717 fprintf (dump_file, "Number of subscript tests: %d\n",
4718 dependence_stats.num_subscript_tests);
4719 fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
4720 dependence_stats.num_subscript_undetermined);
4721 fprintf (dump_file, "Number of same subscript function: %d\n",
4722 dependence_stats.num_same_subscript_function);
4724 fprintf (dump_file, "Number of ziv tests: %d\n",
4725 dependence_stats.num_ziv);
4726 fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
4727 dependence_stats.num_ziv_dependent);
4728 fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
4729 dependence_stats.num_ziv_independent);
4730 fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
4731 dependence_stats.num_ziv_unimplemented);
4733 fprintf (dump_file, "Number of siv tests: %d\n",
4734 dependence_stats.num_siv);
4735 fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
4736 dependence_stats.num_siv_dependent);
4737 fprintf (dump_file, "Number of siv tests returning independent: %d\n",
4738 dependence_stats.num_siv_independent);
4739 fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
4740 dependence_stats.num_siv_unimplemented);
4742 fprintf (dump_file, "Number of miv tests: %d\n",
4743 dependence_stats.num_miv);
4744 fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
4745 dependence_stats.num_miv_dependent);
4746 fprintf (dump_file, "Number of miv tests returning independent: %d\n",
4747 dependence_stats.num_miv_independent);
4748 fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
4749 dependence_stats.num_miv_unimplemented);
4752 return res;
4755 /* Returns true when the data dependences for the basic block BB have been
4756 computed, false otherwise.
4757 DATAREFS is initialized to all the array elements contained in this basic
4758 block, DEPENDENCE_RELATIONS contains the relations between the data
4759 references. Compute read-read and self relations if
4760 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
4761 bool
4762 compute_data_dependences_for_bb (basic_block bb,
4763 bool compute_self_and_read_read_dependences,
4764 vec<data_reference_p> *datarefs,
4765 vec<ddr_p> *dependence_relations)
4767 if (find_data_references_in_bb (NULL, bb, datarefs) == chrec_dont_know)
4768 return false;
4770 return compute_all_dependences (*datarefs, dependence_relations, vNULL,
4771 compute_self_and_read_read_dependences);
4774 /* Entry point (for testing only). Analyze all the data references
4775 and the dependence relations in LOOP.
4777 The data references are computed first.
4779 A relation on these nodes is represented by a complete graph. Some
4780 of the relations could be of no interest, thus the relations can be
4781 computed on demand.
4783 In the following function we compute all the relations. This is
4784 just a first implementation that is here for:
4785 - for showing how to ask for the dependence relations,
4786 - for the debugging the whole dependence graph,
4787 - for the dejagnu testcases and maintenance.
4789 It is possible to ask only for a part of the graph, avoiding to
4790 compute the whole dependence graph. The computed dependences are
4791 stored in a knowledge base (KB) such that later queries don't
4792 recompute the same information. The implementation of this KB is
4793 transparent to the optimizer, and thus the KB can be changed with a
4794 more efficient implementation, or the KB could be disabled. */
4795 static void
4796 analyze_all_data_dependences (struct loop *loop)
4798 unsigned int i;
4799 int nb_data_refs = 10;
4800 vec<data_reference_p> datarefs;
4801 datarefs.create (nb_data_refs);
4802 vec<ddr_p> dependence_relations;
4803 dependence_relations.create (nb_data_refs * nb_data_refs);
4804 vec<loop_p> loop_nest;
4805 loop_nest.create (3);
4807 /* Compute DDs on the whole function. */
4808 compute_data_dependences_for_loop (loop, false, &loop_nest, &datarefs,
4809 &dependence_relations);
4811 if (dump_file)
4813 dump_data_dependence_relations (dump_file, dependence_relations);
4814 fprintf (dump_file, "\n\n");
4816 if (dump_flags & TDF_DETAILS)
4817 dump_dist_dir_vectors (dump_file, dependence_relations);
4819 if (dump_flags & TDF_STATS)
4821 unsigned nb_top_relations = 0;
4822 unsigned nb_bot_relations = 0;
4823 unsigned nb_chrec_relations = 0;
4824 struct data_dependence_relation *ddr;
4826 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
4828 if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
4829 nb_top_relations++;
4831 else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
4832 nb_bot_relations++;
4834 else
4835 nb_chrec_relations++;
4838 gather_stats_on_scev_database ();
4842 loop_nest.release ();
4843 free_dependence_relations (dependence_relations);
4844 free_data_refs (datarefs);
4847 /* Computes all the data dependences and check that the results of
4848 several analyzers are the same. */
4850 void
4851 tree_check_data_deps (void)
4853 struct loop *loop_nest;
4855 FOR_EACH_LOOP (loop_nest, 0)
4856 analyze_all_data_dependences (loop_nest);
4859 /* Free the memory used by a data dependence relation DDR. */
4861 void
4862 free_dependence_relation (struct data_dependence_relation *ddr)
4864 if (ddr == NULL)
4865 return;
4867 if (DDR_SUBSCRIPTS (ddr).exists ())
4868 free_subscripts (DDR_SUBSCRIPTS (ddr));
4869 DDR_DIST_VECTS (ddr).release ();
4870 DDR_DIR_VECTS (ddr).release ();
4872 free (ddr);
4875 /* Free the memory used by the data dependence relations from
4876 DEPENDENCE_RELATIONS. */
4878 void
4879 free_dependence_relations (vec<ddr_p> dependence_relations)
4881 unsigned int i;
4882 struct data_dependence_relation *ddr;
4884 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
4885 if (ddr)
4886 free_dependence_relation (ddr);
4888 dependence_relations.release ();
4891 /* Free the memory used by the data references from DATAREFS. */
4893 void
4894 free_data_refs (vec<data_reference_p> datarefs)
4896 unsigned int i;
4897 struct data_reference *dr;
4899 FOR_EACH_VEC_ELT (datarefs, i, dr)
4900 free_data_ref (dr);
4901 datarefs.release ();