* gcc.dg/vect/vect-outer-simd-1.c: Remove cleanup-tree-dump directive.
[official-gcc.git] / gcc / gcse.c
blob28476fb41a6072cb880a7864d5f98d4590d6f2f0
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
141 #include "hard-reg-set.h"
142 #include "rtl.h"
143 #include "hash-set.h"
144 #include "machmode.h"
145 #include "vec.h"
146 #include "double-int.h"
147 #include "input.h"
148 #include "alias.h"
149 #include "symtab.h"
150 #include "wide-int.h"
151 #include "inchash.h"
152 #include "tree.h"
153 #include "tm_p.h"
154 #include "regs.h"
155 #include "ira.h"
156 #include "flags.h"
157 #include "insn-config.h"
158 #include "recog.h"
159 #include "predict.h"
160 #include "function.h"
161 #include "dominance.h"
162 #include "cfg.h"
163 #include "cfgrtl.h"
164 #include "cfganal.h"
165 #include "lcm.h"
166 #include "cfgcleanup.h"
167 #include "basic-block.h"
168 #include "hashtab.h"
169 #include "statistics.h"
170 #include "real.h"
171 #include "fixed-value.h"
172 #include "expmed.h"
173 #include "dojump.h"
174 #include "explow.h"
175 #include "calls.h"
176 #include "emit-rtl.h"
177 #include "varasm.h"
178 #include "stmt.h"
179 #include "expr.h"
180 #include "except.h"
181 #include "ggc.h"
182 #include "params.h"
183 #include "alloc-pool.h"
184 #include "cselib.h"
185 #include "intl.h"
186 #include "obstack.h"
187 #include "tree-pass.h"
188 #include "hash-table.h"
189 #include "df.h"
190 #include "dbgcnt.h"
191 #include "target.h"
192 #include "gcse.h"
193 #include "gcse-common.h"
195 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
196 are a superset of those done by classic GCSE.
198 Two passes of copy/constant propagation are done around PRE or hoisting
199 because the first one enables more GCSE and the second one helps to clean
200 up the copies that PRE and HOIST create. This is needed more for PRE than
201 for HOIST because code hoisting will try to use an existing register
202 containing the common subexpression rather than create a new one. This is
203 harder to do for PRE because of the code motion (which HOIST doesn't do).
205 Expressions we are interested in GCSE-ing are of the form
206 (set (pseudo-reg) (expression)).
207 Function want_to_gcse_p says what these are.
209 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
210 This allows PRE to hoist expressions that are expressed in multiple insns,
211 such as complex address calculations (e.g. for PIC code, or loads with a
212 high part and a low part).
214 PRE handles moving invariant expressions out of loops (by treating them as
215 partially redundant).
217 **********************
219 We used to support multiple passes but there are diminishing returns in
220 doing so. The first pass usually makes 90% of the changes that are doable.
221 A second pass can make a few more changes made possible by the first pass.
222 Experiments show any further passes don't make enough changes to justify
223 the expense.
225 A study of spec92 using an unlimited number of passes:
226 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
227 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
228 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
230 It was found doing copy propagation between each pass enables further
231 substitutions.
233 This study was done before expressions in REG_EQUAL notes were added as
234 candidate expressions for optimization, and before the GIMPLE optimizers
235 were added. Probably, multiple passes is even less efficient now than
236 at the time when the study was conducted.
238 PRE is quite expensive in complicated functions because the DFA can take
239 a while to converge. Hence we only perform one pass.
241 **********************
243 The steps for PRE are:
245 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
247 2) Perform the data flow analysis for PRE.
249 3) Delete the redundant instructions
251 4) Insert the required copies [if any] that make the partially
252 redundant instructions fully redundant.
254 5) For other reaching expressions, insert an instruction to copy the value
255 to a newly created pseudo that will reach the redundant instruction.
257 The deletion is done first so that when we do insertions we
258 know which pseudo reg to use.
260 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
261 argue it is not. The number of iterations for the algorithm to converge
262 is typically 2-4 so I don't view it as that expensive (relatively speaking).
264 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
265 we create. To make an expression reach the place where it's redundant,
266 the result of the expression is copied to a new register, and the redundant
267 expression is deleted by replacing it with this new register. Classic GCSE
268 doesn't have this problem as much as it computes the reaching defs of
269 each register in each block and thus can try to use an existing
270 register. */
272 /* GCSE global vars. */
274 struct target_gcse default_target_gcse;
275 #if SWITCHABLE_TARGET
276 struct target_gcse *this_target_gcse = &default_target_gcse;
277 #endif
279 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
280 int flag_rerun_cse_after_global_opts;
282 /* An obstack for our working variables. */
283 static struct obstack gcse_obstack;
285 /* Hash table of expressions. */
287 struct gcse_expr
289 /* The expression. */
290 rtx expr;
291 /* Index in the available expression bitmaps. */
292 int bitmap_index;
293 /* Next entry with the same hash. */
294 struct gcse_expr *next_same_hash;
295 /* List of anticipatable occurrences in basic blocks in the function.
296 An "anticipatable occurrence" is one that is the first occurrence in the
297 basic block, the operands are not modified in the basic block prior
298 to the occurrence and the output is not used between the start of
299 the block and the occurrence. */
300 struct gcse_occr *antic_occr;
301 /* List of available occurrence in basic blocks in the function.
302 An "available occurrence" is one that is the last occurrence in the
303 basic block and the operands are not modified by following statements in
304 the basic block [including this insn]. */
305 struct gcse_occr *avail_occr;
306 /* Non-null if the computation is PRE redundant.
307 The value is the newly created pseudo-reg to record a copy of the
308 expression in all the places that reach the redundant copy. */
309 rtx reaching_reg;
310 /* Maximum distance in instructions this expression can travel.
311 We avoid moving simple expressions for more than a few instructions
312 to keep register pressure under control.
313 A value of "0" removes restrictions on how far the expression can
314 travel. */
315 int max_distance;
318 /* Occurrence of an expression.
319 There is one per basic block. If a pattern appears more than once the
320 last appearance is used [or first for anticipatable expressions]. */
322 struct gcse_occr
324 /* Next occurrence of this expression. */
325 struct gcse_occr *next;
326 /* The insn that computes the expression. */
327 rtx_insn *insn;
328 /* Nonzero if this [anticipatable] occurrence has been deleted. */
329 char deleted_p;
330 /* Nonzero if this [available] occurrence has been copied to
331 reaching_reg. */
332 /* ??? This is mutually exclusive with deleted_p, so they could share
333 the same byte. */
334 char copied_p;
337 typedef struct gcse_occr *occr_t;
339 /* Expression hash tables.
340 Each hash table is an array of buckets.
341 ??? It is known that if it were an array of entries, structure elements
342 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
343 not clear whether in the final analysis a sufficient amount of memory would
344 be saved as the size of the available expression bitmaps would be larger
345 [one could build a mapping table without holes afterwards though].
346 Someday I'll perform the computation and figure it out. */
348 struct gcse_hash_table_d
350 /* The table itself.
351 This is an array of `expr_hash_table_size' elements. */
352 struct gcse_expr **table;
354 /* Size of the hash table, in elements. */
355 unsigned int size;
357 /* Number of hash table elements. */
358 unsigned int n_elems;
361 /* Expression hash table. */
362 static struct gcse_hash_table_d expr_hash_table;
364 /* This is a list of expressions which are MEMs and will be used by load
365 or store motion.
366 Load motion tracks MEMs which aren't killed by anything except itself,
367 i.e. loads and stores to a single location.
368 We can then allow movement of these MEM refs with a little special
369 allowance. (all stores copy the same value to the reaching reg used
370 for the loads). This means all values used to store into memory must have
371 no side effects so we can re-issue the setter value. */
373 struct ls_expr
375 struct gcse_expr * expr; /* Gcse expression reference for LM. */
376 rtx pattern; /* Pattern of this mem. */
377 rtx pattern_regs; /* List of registers mentioned by the mem. */
378 rtx_insn_list *loads; /* INSN list of loads seen. */
379 rtx_insn_list *stores; /* INSN list of stores seen. */
380 struct ls_expr * next; /* Next in the list. */
381 int invalid; /* Invalid for some reason. */
382 int index; /* If it maps to a bitmap index. */
383 unsigned int hash_index; /* Index when in a hash table. */
384 rtx reaching_reg; /* Register to use when re-writing. */
387 /* Head of the list of load/store memory refs. */
388 static struct ls_expr * pre_ldst_mems = NULL;
390 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
392 typedef ls_expr *value_type;
393 typedef value_type compare_type;
394 static inline hashval_t hash (const ls_expr *);
395 static inline bool equal (const ls_expr *, const ls_expr *);
398 /* Hashtable helpers. */
399 inline hashval_t
400 pre_ldst_expr_hasher::hash (const ls_expr *x)
402 int do_not_record_p = 0;
403 return
404 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
407 static int expr_equiv_p (const_rtx, const_rtx);
409 inline bool
410 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
411 const ls_expr *ptr2)
413 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
416 /* Hashtable for the load/store memory refs. */
417 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
419 /* Bitmap containing one bit for each register in the program.
420 Used when performing GCSE to track which registers have been set since
421 the start of the basic block. */
422 static regset reg_set_bitmap;
424 /* Array, indexed by basic block number for a list of insns which modify
425 memory within that block. */
426 static vec<rtx_insn *> *modify_mem_list;
427 static bitmap modify_mem_list_set;
429 /* This array parallels modify_mem_list, except that it stores MEMs
430 being set and their canonicalized memory addresses. */
431 static vec<modify_pair> *canon_modify_mem_list;
433 /* Bitmap indexed by block numbers to record which blocks contain
434 function calls. */
435 static bitmap blocks_with_calls;
437 /* Various variables for statistics gathering. */
439 /* Memory used in a pass.
440 This isn't intended to be absolutely precise. Its intent is only
441 to keep an eye on memory usage. */
442 static int bytes_used;
444 /* GCSE substitutions made. */
445 static int gcse_subst_count;
446 /* Number of copy instructions created. */
447 static int gcse_create_count;
449 /* Doing code hoisting. */
450 static bool doing_code_hoisting_p = false;
452 /* For available exprs */
453 static sbitmap *ae_kill;
455 /* Data stored for each basic block. */
456 struct bb_data
458 /* Maximal register pressure inside basic block for given register class
459 (defined only for the pressure classes). */
460 int max_reg_pressure[N_REG_CLASSES];
461 /* Recorded register pressure of basic block before trying to hoist
462 an expression. Will be used to restore the register pressure
463 if the expression should not be hoisted. */
464 int old_pressure;
465 /* Recorded register live_in info of basic block during code hoisting
466 process. BACKUP is used to record live_in info before trying to
467 hoist an expression, and will be used to restore LIVE_IN if the
468 expression should not be hoisted. */
469 bitmap live_in, backup;
472 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
474 static basic_block curr_bb;
476 /* Current register pressure for each pressure class. */
477 static int curr_reg_pressure[N_REG_CLASSES];
480 static void compute_can_copy (void);
481 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
482 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
483 static void *gcse_alloc (unsigned long);
484 static void alloc_gcse_mem (void);
485 static void free_gcse_mem (void);
486 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
487 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
488 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
489 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
490 static int want_to_gcse_p (rtx, int *);
491 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
492 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
493 static int oprs_available_p (const_rtx, const rtx_insn *);
494 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
495 int, struct gcse_hash_table_d *);
496 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
497 static void record_last_reg_set_info (rtx_insn *, int);
498 static void record_last_mem_set_info (rtx_insn *);
499 static void record_last_set_info (rtx, const_rtx, void *);
500 static void compute_hash_table (struct gcse_hash_table_d *);
501 static void alloc_hash_table (struct gcse_hash_table_d *);
502 static void free_hash_table (struct gcse_hash_table_d *);
503 static void compute_hash_table_work (struct gcse_hash_table_d *);
504 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
505 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
506 struct gcse_hash_table_d *);
507 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
508 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
509 static void alloc_pre_mem (int, int);
510 static void free_pre_mem (void);
511 static struct edge_list *compute_pre_data (void);
512 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
513 basic_block);
514 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
515 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
516 static void pre_insert_copies (void);
517 static int pre_delete (void);
518 static int pre_gcse (struct edge_list *);
519 static int one_pre_gcse_pass (void);
520 static void add_label_notes (rtx, rtx_insn *);
521 static void alloc_code_hoist_mem (int, int);
522 static void free_code_hoist_mem (void);
523 static void compute_code_hoist_vbeinout (void);
524 static void compute_code_hoist_data (void);
525 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
526 sbitmap, int, int *, enum reg_class,
527 int *, bitmap, rtx_insn *);
528 static int hoist_code (void);
529 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
530 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
531 static int one_code_hoisting_pass (void);
532 static rtx_insn *process_insert_insn (struct gcse_expr *);
533 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
534 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
535 basic_block, char *);
536 static struct ls_expr * ldst_entry (rtx);
537 static void free_ldst_entry (struct ls_expr *);
538 static void free_ld_motion_mems (void);
539 static void print_ldst_list (FILE *);
540 static struct ls_expr * find_rtx_in_ldst (rtx);
541 static int simple_mem (const_rtx);
542 static void invalidate_any_buried_refs (rtx);
543 static void compute_ld_motion_mems (void);
544 static void trim_ld_motion_mems (void);
545 static void update_ld_motion_stores (struct gcse_expr *);
546 static void clear_modify_mem_tables (void);
547 static void free_modify_mem_tables (void);
548 static rtx gcse_emit_move_after (rtx, rtx, rtx_insn *);
549 static bool is_too_expensive (const char *);
551 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
552 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
554 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
555 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
557 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
558 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
560 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
561 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
563 /* Misc. utilities. */
565 #define can_copy \
566 (this_target_gcse->x_can_copy)
567 #define can_copy_init_p \
568 (this_target_gcse->x_can_copy_init_p)
570 /* Compute which modes support reg/reg copy operations. */
572 static void
573 compute_can_copy (void)
575 int i;
576 #ifndef AVOID_CCMODE_COPIES
577 rtx reg;
578 rtx_insn *insn;
579 #endif
580 memset (can_copy, 0, NUM_MACHINE_MODES);
582 start_sequence ();
583 for (i = 0; i < NUM_MACHINE_MODES; i++)
584 if (GET_MODE_CLASS (i) == MODE_CC)
586 #ifdef AVOID_CCMODE_COPIES
587 can_copy[i] = 0;
588 #else
589 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
590 insn = emit_insn (gen_rtx_SET (reg, reg));
591 if (recog (PATTERN (insn), insn, NULL) >= 0)
592 can_copy[i] = 1;
593 #endif
595 else
596 can_copy[i] = 1;
598 end_sequence ();
601 /* Returns whether the mode supports reg/reg copy operations. */
603 bool
604 can_copy_p (machine_mode mode)
606 if (! can_copy_init_p)
608 compute_can_copy ();
609 can_copy_init_p = true;
612 return can_copy[mode] != 0;
615 /* Cover function to xmalloc to record bytes allocated. */
617 static void *
618 gmalloc (size_t size)
620 bytes_used += size;
621 return xmalloc (size);
624 /* Cover function to xcalloc to record bytes allocated. */
626 static void *
627 gcalloc (size_t nelem, size_t elsize)
629 bytes_used += nelem * elsize;
630 return xcalloc (nelem, elsize);
633 /* Cover function to obstack_alloc. */
635 static void *
636 gcse_alloc (unsigned long size)
638 bytes_used += size;
639 return obstack_alloc (&gcse_obstack, size);
642 /* Allocate memory for the reg/memory set tracking tables.
643 This is called at the start of each pass. */
645 static void
646 alloc_gcse_mem (void)
648 /* Allocate vars to track sets of regs. */
649 reg_set_bitmap = ALLOC_REG_SET (NULL);
651 /* Allocate array to keep a list of insns which modify memory in each
652 basic block. The two typedefs are needed to work around the
653 pre-processor limitation with template types in macro arguments. */
654 typedef vec<rtx_insn *> vec_rtx_heap;
655 typedef vec<modify_pair> vec_modify_pair_heap;
656 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
657 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
658 last_basic_block_for_fn (cfun));
659 modify_mem_list_set = BITMAP_ALLOC (NULL);
660 blocks_with_calls = BITMAP_ALLOC (NULL);
663 /* Free memory allocated by alloc_gcse_mem. */
665 static void
666 free_gcse_mem (void)
668 FREE_REG_SET (reg_set_bitmap);
670 free_modify_mem_tables ();
671 BITMAP_FREE (modify_mem_list_set);
672 BITMAP_FREE (blocks_with_calls);
675 /* Compute the local properties of each recorded expression.
677 Local properties are those that are defined by the block, irrespective of
678 other blocks.
680 An expression is transparent in a block if its operands are not modified
681 in the block.
683 An expression is computed (locally available) in a block if it is computed
684 at least once and expression would contain the same value if the
685 computation was moved to the end of the block.
687 An expression is locally anticipatable in a block if it is computed at
688 least once and expression would contain the same value if the computation
689 was moved to the beginning of the block.
691 We call this routine for pre and code hoisting. They all compute
692 basically the same information and thus can easily share this code.
694 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
695 properties. If NULL, then it is not necessary to compute or record that
696 particular property.
698 TABLE controls which hash table to look at. */
700 static void
701 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
702 struct gcse_hash_table_d *table)
704 unsigned int i;
706 /* Initialize any bitmaps that were passed in. */
707 if (transp)
709 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
712 if (comp)
713 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
714 if (antloc)
715 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
717 for (i = 0; i < table->size; i++)
719 struct gcse_expr *expr;
721 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
723 int indx = expr->bitmap_index;
724 struct gcse_occr *occr;
726 /* The expression is transparent in this block if it is not killed.
727 We start by assuming all are transparent [none are killed], and
728 then reset the bits for those that are. */
729 if (transp)
730 compute_transp (expr->expr, indx, transp,
731 blocks_with_calls,
732 modify_mem_list_set,
733 canon_modify_mem_list);
735 /* The occurrences recorded in antic_occr are exactly those that
736 we want to set to nonzero in ANTLOC. */
737 if (antloc)
738 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
740 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
742 /* While we're scanning the table, this is a good place to
743 initialize this. */
744 occr->deleted_p = 0;
747 /* The occurrences recorded in avail_occr are exactly those that
748 we want to set to nonzero in COMP. */
749 if (comp)
750 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
752 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
754 /* While we're scanning the table, this is a good place to
755 initialize this. */
756 occr->copied_p = 0;
759 /* While we're scanning the table, this is a good place to
760 initialize this. */
761 expr->reaching_reg = 0;
766 /* Hash table support. */
768 struct reg_avail_info
770 basic_block last_bb;
771 int first_set;
772 int last_set;
775 static struct reg_avail_info *reg_avail_info;
776 static basic_block current_bb;
778 /* See whether X, the source of a set, is something we want to consider for
779 GCSE. */
781 static int
782 want_to_gcse_p (rtx x, int *max_distance_ptr)
784 #ifdef STACK_REGS
785 /* On register stack architectures, don't GCSE constants from the
786 constant pool, as the benefits are often swamped by the overhead
787 of shuffling the register stack between basic blocks. */
788 if (IS_STACK_MODE (GET_MODE (x)))
789 x = avoid_constant_pool_reference (x);
790 #endif
792 /* GCSE'ing constants:
794 We do not specifically distinguish between constant and non-constant
795 expressions in PRE and Hoist. We use set_src_cost below to limit
796 the maximum distance simple expressions can travel.
798 Nevertheless, constants are much easier to GCSE, and, hence,
799 it is easy to overdo the optimizations. Usually, excessive PRE and
800 Hoisting of constant leads to increased register pressure.
802 RA can deal with this by rematerialing some of the constants.
803 Therefore, it is important that the back-end generates sets of constants
804 in a way that allows reload rematerialize them under high register
805 pressure, i.e., a pseudo register with REG_EQUAL to constant
806 is set only once. Failing to do so will result in IRA/reload
807 spilling such constants under high register pressure instead of
808 rematerializing them. */
810 switch (GET_CODE (x))
812 case REG:
813 case SUBREG:
814 case CALL:
815 return 0;
817 CASE_CONST_ANY:
818 if (!doing_code_hoisting_p)
819 /* Do not PRE constants. */
820 return 0;
822 /* FALLTHRU */
824 default:
825 if (doing_code_hoisting_p)
826 /* PRE doesn't implement max_distance restriction. */
828 int cost;
829 int max_distance;
831 gcc_assert (!optimize_function_for_speed_p (cfun)
832 && optimize_function_for_size_p (cfun));
833 cost = set_src_cost (x, 0);
835 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
837 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
838 if (max_distance == 0)
839 return 0;
841 gcc_assert (max_distance > 0);
843 else
844 max_distance = 0;
846 if (max_distance_ptr)
847 *max_distance_ptr = max_distance;
850 return can_assign_to_reg_without_clobbers_p (x);
854 /* Used internally by can_assign_to_reg_without_clobbers_p. */
856 static GTY(()) rtx_insn *test_insn;
858 /* Return true if we can assign X to a pseudo register such that the
859 resulting insn does not result in clobbering a hard register as a
860 side-effect.
862 Additionally, if the target requires it, check that the resulting insn
863 can be copied. If it cannot, this means that X is special and probably
864 has hidden side-effects we don't want to mess with.
866 This function is typically used by code motion passes, to verify
867 that it is safe to insert an insn without worrying about clobbering
868 maybe live hard regs. */
870 bool
871 can_assign_to_reg_without_clobbers_p (rtx x)
873 int num_clobbers = 0;
874 int icode;
875 bool can_assign = false;
877 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
878 if (general_operand (x, GET_MODE (x)))
879 return 1;
880 else if (GET_MODE (x) == VOIDmode)
881 return 0;
883 /* Otherwise, check if we can make a valid insn from it. First initialize
884 our test insn if we haven't already. */
885 if (test_insn == 0)
887 test_insn
888 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
889 FIRST_PSEUDO_REGISTER * 2),
890 const0_rtx));
891 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
892 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
895 /* Now make an insn like the one we would make when GCSE'ing and see if
896 valid. */
897 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
898 SET_SRC (PATTERN (test_insn)) = x;
900 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
902 /* If the test insn is valid and doesn't need clobbers, and the target also
903 has no objections, we're good. */
904 if (icode >= 0
905 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
906 && ! (targetm.cannot_copy_insn_p
907 && targetm.cannot_copy_insn_p (test_insn)))
908 can_assign = true;
910 /* Make sure test_insn doesn't have any pointers into GC space. */
911 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
913 return can_assign;
916 /* Return nonzero if the operands of expression X are unchanged from the
917 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
918 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
920 static int
921 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
923 int i, j;
924 enum rtx_code code;
925 const char *fmt;
927 if (x == 0)
928 return 1;
930 code = GET_CODE (x);
931 switch (code)
933 case REG:
935 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
937 if (info->last_bb != current_bb)
938 return 1;
939 if (avail_p)
940 return info->last_set < DF_INSN_LUID (insn);
941 else
942 return info->first_set >= DF_INSN_LUID (insn);
945 case MEM:
946 if (! flag_gcse_lm
947 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
948 x, avail_p))
949 return 0;
950 else
951 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
953 case PRE_DEC:
954 case PRE_INC:
955 case POST_DEC:
956 case POST_INC:
957 case PRE_MODIFY:
958 case POST_MODIFY:
959 return 0;
961 case PC:
962 case CC0: /*FIXME*/
963 case CONST:
964 CASE_CONST_ANY:
965 case SYMBOL_REF:
966 case LABEL_REF:
967 case ADDR_VEC:
968 case ADDR_DIFF_VEC:
969 return 1;
971 default:
972 break;
975 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
977 if (fmt[i] == 'e')
979 /* If we are about to do the last recursive call needed at this
980 level, change it into iteration. This function is called enough
981 to be worth it. */
982 if (i == 0)
983 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
985 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
986 return 0;
988 else if (fmt[i] == 'E')
989 for (j = 0; j < XVECLEN (x, i); j++)
990 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
991 return 0;
994 return 1;
997 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
999 struct mem_conflict_info
1001 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
1002 see if a memory store conflicts with this memory load. */
1003 const_rtx mem;
1005 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
1006 references. */
1007 bool conflict;
1010 /* DEST is the output of an instruction. If it is a memory reference and
1011 possibly conflicts with the load found in DATA, then communicate this
1012 information back through DATA. */
1014 static void
1015 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1016 void *data)
1018 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
1020 while (GET_CODE (dest) == SUBREG
1021 || GET_CODE (dest) == ZERO_EXTRACT
1022 || GET_CODE (dest) == STRICT_LOW_PART)
1023 dest = XEXP (dest, 0);
1025 /* If DEST is not a MEM, then it will not conflict with the load. Note
1026 that function calls are assumed to clobber memory, but are handled
1027 elsewhere. */
1028 if (! MEM_P (dest))
1029 return;
1031 /* If we are setting a MEM in our list of specially recognized MEMs,
1032 don't mark as killed this time. */
1033 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1035 if (!find_rtx_in_ldst (dest))
1036 mci->conflict = true;
1037 return;
1040 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1041 mci->conflict = true;
1044 /* Return nonzero if the expression in X (a memory reference) is killed
1045 in block BB before or after the insn with the LUID in UID_LIMIT.
1046 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1047 before UID_LIMIT.
1049 To check the entire block, set UID_LIMIT to max_uid + 1 and
1050 AVAIL_P to 0. */
1052 static int
1053 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1054 int avail_p)
1056 vec<rtx_insn *> list = modify_mem_list[bb->index];
1057 rtx_insn *setter;
1058 unsigned ix;
1060 /* If this is a readonly then we aren't going to be changing it. */
1061 if (MEM_READONLY_P (x))
1062 return 0;
1064 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1066 struct mem_conflict_info mci;
1068 /* Ignore entries in the list that do not apply. */
1069 if ((avail_p
1070 && DF_INSN_LUID (setter) < uid_limit)
1071 || (! avail_p
1072 && DF_INSN_LUID (setter) > uid_limit))
1073 continue;
1075 /* If SETTER is a call everything is clobbered. Note that calls
1076 to pure functions are never put on the list, so we need not
1077 worry about them. */
1078 if (CALL_P (setter))
1079 return 1;
1081 /* SETTER must be an INSN of some kind that sets memory. Call
1082 note_stores to examine each hunk of memory that is modified. */
1083 mci.mem = x;
1084 mci.conflict = false;
1085 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1086 if (mci.conflict)
1087 return 1;
1089 return 0;
1092 /* Return nonzero if the operands of expression X are unchanged from
1093 the start of INSN's basic block up to but not including INSN. */
1095 static int
1096 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1098 return oprs_unchanged_p (x, insn, 0);
1101 /* Return nonzero if the operands of expression X are unchanged from
1102 INSN to the end of INSN's basic block. */
1104 static int
1105 oprs_available_p (const_rtx x, const rtx_insn *insn)
1107 return oprs_unchanged_p (x, insn, 1);
1110 /* Hash expression X.
1112 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1113 indicating if a volatile operand is found or if the expression contains
1114 something we don't want to insert in the table. HASH_TABLE_SIZE is
1115 the current size of the hash table to be probed. */
1117 static unsigned int
1118 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1119 int hash_table_size)
1121 unsigned int hash;
1123 *do_not_record_p = 0;
1125 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1126 return hash % hash_table_size;
1129 /* Return nonzero if exp1 is equivalent to exp2. */
1131 static int
1132 expr_equiv_p (const_rtx x, const_rtx y)
1134 return exp_equiv_p (x, y, 0, true);
1137 /* Insert expression X in INSN in the hash TABLE.
1138 If it is already present, record it as the last occurrence in INSN's
1139 basic block.
1141 MODE is the mode of the value X is being stored into.
1142 It is only used if X is a CONST_INT.
1144 ANTIC_P is nonzero if X is an anticipatable expression.
1145 AVAIL_P is nonzero if X is an available expression.
1147 MAX_DISTANCE is the maximum distance in instructions this expression can
1148 be moved. */
1150 static void
1151 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1152 int antic_p,
1153 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1155 int found, do_not_record_p;
1156 unsigned int hash;
1157 struct gcse_expr *cur_expr, *last_expr = NULL;
1158 struct gcse_occr *antic_occr, *avail_occr;
1160 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1162 /* Do not insert expression in table if it contains volatile operands,
1163 or if hash_expr determines the expression is something we don't want
1164 to or can't handle. */
1165 if (do_not_record_p)
1166 return;
1168 cur_expr = table->table[hash];
1169 found = 0;
1171 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1173 /* If the expression isn't found, save a pointer to the end of
1174 the list. */
1175 last_expr = cur_expr;
1176 cur_expr = cur_expr->next_same_hash;
1179 if (! found)
1181 cur_expr = GOBNEW (struct gcse_expr);
1182 bytes_used += sizeof (struct gcse_expr);
1183 if (table->table[hash] == NULL)
1184 /* This is the first pattern that hashed to this index. */
1185 table->table[hash] = cur_expr;
1186 else
1187 /* Add EXPR to end of this hash chain. */
1188 last_expr->next_same_hash = cur_expr;
1190 /* Set the fields of the expr element. */
1191 cur_expr->expr = x;
1192 cur_expr->bitmap_index = table->n_elems++;
1193 cur_expr->next_same_hash = NULL;
1194 cur_expr->antic_occr = NULL;
1195 cur_expr->avail_occr = NULL;
1196 gcc_assert (max_distance >= 0);
1197 cur_expr->max_distance = max_distance;
1199 else
1200 gcc_assert (cur_expr->max_distance == max_distance);
1202 /* Now record the occurrence(s). */
1203 if (antic_p)
1205 antic_occr = cur_expr->antic_occr;
1207 if (antic_occr
1208 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1209 antic_occr = NULL;
1211 if (antic_occr)
1212 /* Found another instance of the expression in the same basic block.
1213 Prefer the currently recorded one. We want the first one in the
1214 block and the block is scanned from start to end. */
1215 ; /* nothing to do */
1216 else
1218 /* First occurrence of this expression in this basic block. */
1219 antic_occr = GOBNEW (struct gcse_occr);
1220 bytes_used += sizeof (struct gcse_occr);
1221 antic_occr->insn = insn;
1222 antic_occr->next = cur_expr->antic_occr;
1223 antic_occr->deleted_p = 0;
1224 cur_expr->antic_occr = antic_occr;
1228 if (avail_p)
1230 avail_occr = cur_expr->avail_occr;
1232 if (avail_occr
1233 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1235 /* Found another instance of the expression in the same basic block.
1236 Prefer this occurrence to the currently recorded one. We want
1237 the last one in the block and the block is scanned from start
1238 to end. */
1239 avail_occr->insn = insn;
1241 else
1243 /* First occurrence of this expression in this basic block. */
1244 avail_occr = GOBNEW (struct gcse_occr);
1245 bytes_used += sizeof (struct gcse_occr);
1246 avail_occr->insn = insn;
1247 avail_occr->next = cur_expr->avail_occr;
1248 avail_occr->deleted_p = 0;
1249 cur_expr->avail_occr = avail_occr;
1254 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1256 static void
1257 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1259 rtx src = SET_SRC (set);
1260 rtx dest = SET_DEST (set);
1261 rtx note;
1263 if (GET_CODE (src) == CALL)
1264 hash_scan_call (src, insn, table);
1266 else if (REG_P (dest))
1268 unsigned int regno = REGNO (dest);
1269 int max_distance = 0;
1271 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1273 This allows us to do a single GCSE pass and still eliminate
1274 redundant constants, addresses or other expressions that are
1275 constructed with multiple instructions.
1277 However, keep the original SRC if INSN is a simple reg-reg move.
1278 In this case, there will almost always be a REG_EQUAL note on the
1279 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1280 for INSN, we miss copy propagation opportunities and we perform the
1281 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1282 do more than one PRE GCSE pass.
1284 Note that this does not impede profitable constant propagations. We
1285 "look through" reg-reg sets in lookup_avail_set. */
1286 note = find_reg_equal_equiv_note (insn);
1287 if (note != 0
1288 && REG_NOTE_KIND (note) == REG_EQUAL
1289 && !REG_P (src)
1290 && want_to_gcse_p (XEXP (note, 0), NULL))
1291 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1293 /* Only record sets of pseudo-regs in the hash table. */
1294 if (regno >= FIRST_PSEUDO_REGISTER
1295 /* Don't GCSE something if we can't do a reg/reg copy. */
1296 && can_copy_p (GET_MODE (dest))
1297 /* GCSE commonly inserts instruction after the insn. We can't
1298 do that easily for EH edges so disable GCSE on these for now. */
1299 /* ??? We can now easily create new EH landing pads at the
1300 gimple level, for splitting edges; there's no reason we
1301 can't do the same thing at the rtl level. */
1302 && !can_throw_internal (insn)
1303 /* Is SET_SRC something we want to gcse? */
1304 && want_to_gcse_p (src, &max_distance)
1305 /* Don't CSE a nop. */
1306 && ! set_noop_p (set)
1307 /* Don't GCSE if it has attached REG_EQUIV note.
1308 At this point this only function parameters should have
1309 REG_EQUIV notes and if the argument slot is used somewhere
1310 explicitly, it means address of parameter has been taken,
1311 so we should not extend the lifetime of the pseudo. */
1312 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1314 /* An expression is not anticipatable if its operands are
1315 modified before this insn or if this is not the only SET in
1316 this insn. The latter condition does not have to mean that
1317 SRC itself is not anticipatable, but we just will not be
1318 able to handle code motion of insns with multiple sets. */
1319 int antic_p = oprs_anticipatable_p (src, insn)
1320 && !multiple_sets (insn);
1321 /* An expression is not available if its operands are
1322 subsequently modified, including this insn. It's also not
1323 available if this is a branch, because we can't insert
1324 a set after the branch. */
1325 int avail_p = (oprs_available_p (src, insn)
1326 && ! JUMP_P (insn));
1328 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1329 max_distance, table);
1332 /* In case of store we want to consider the memory value as available in
1333 the REG stored in that memory. This makes it possible to remove
1334 redundant loads from due to stores to the same location. */
1335 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1337 unsigned int regno = REGNO (src);
1338 int max_distance = 0;
1340 /* Only record sets of pseudo-regs in the hash table. */
1341 if (regno >= FIRST_PSEUDO_REGISTER
1342 /* Don't GCSE something if we can't do a reg/reg copy. */
1343 && can_copy_p (GET_MODE (src))
1344 /* GCSE commonly inserts instruction after the insn. We can't
1345 do that easily for EH edges so disable GCSE on these for now. */
1346 && !can_throw_internal (insn)
1347 /* Is SET_DEST something we want to gcse? */
1348 && want_to_gcse_p (dest, &max_distance)
1349 /* Don't CSE a nop. */
1350 && ! set_noop_p (set)
1351 /* Don't GCSE if it has attached REG_EQUIV note.
1352 At this point this only function parameters should have
1353 REG_EQUIV notes and if the argument slot is used somewhere
1354 explicitly, it means address of parameter has been taken,
1355 so we should not extend the lifetime of the pseudo. */
1356 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1357 || ! MEM_P (XEXP (note, 0))))
1359 /* Stores are never anticipatable. */
1360 int antic_p = 0;
1361 /* An expression is not available if its operands are
1362 subsequently modified, including this insn. It's also not
1363 available if this is a branch, because we can't insert
1364 a set after the branch. */
1365 int avail_p = oprs_available_p (dest, insn)
1366 && ! JUMP_P (insn);
1368 /* Record the memory expression (DEST) in the hash table. */
1369 insert_expr_in_table (dest, GET_MODE (dest), insn,
1370 antic_p, avail_p, max_distance, table);
1375 static void
1376 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1377 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1379 /* Currently nothing to do. */
1382 static void
1383 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1384 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1386 /* Currently nothing to do. */
1389 /* Process INSN and add hash table entries as appropriate. */
1391 static void
1392 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1394 rtx pat = PATTERN (insn);
1395 int i;
1397 /* Pick out the sets of INSN and for other forms of instructions record
1398 what's been modified. */
1400 if (GET_CODE (pat) == SET)
1401 hash_scan_set (pat, insn, table);
1403 else if (GET_CODE (pat) == CLOBBER)
1404 hash_scan_clobber (pat, insn, table);
1406 else if (GET_CODE (pat) == CALL)
1407 hash_scan_call (pat, insn, table);
1409 else if (GET_CODE (pat) == PARALLEL)
1410 for (i = 0; i < XVECLEN (pat, 0); i++)
1412 rtx x = XVECEXP (pat, 0, i);
1414 if (GET_CODE (x) == SET)
1415 hash_scan_set (x, insn, table);
1416 else if (GET_CODE (x) == CLOBBER)
1417 hash_scan_clobber (x, insn, table);
1418 else if (GET_CODE (x) == CALL)
1419 hash_scan_call (x, insn, table);
1423 /* Dump the hash table TABLE to file FILE under the name NAME. */
1425 static void
1426 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1428 int i;
1429 /* Flattened out table, so it's printed in proper order. */
1430 struct gcse_expr **flat_table;
1431 unsigned int *hash_val;
1432 struct gcse_expr *expr;
1434 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1435 hash_val = XNEWVEC (unsigned int, table->n_elems);
1437 for (i = 0; i < (int) table->size; i++)
1438 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1440 flat_table[expr->bitmap_index] = expr;
1441 hash_val[expr->bitmap_index] = i;
1444 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1445 name, table->size, table->n_elems);
1447 for (i = 0; i < (int) table->n_elems; i++)
1448 if (flat_table[i] != 0)
1450 expr = flat_table[i];
1451 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1452 expr->bitmap_index, hash_val[i], expr->max_distance);
1453 print_rtl (file, expr->expr);
1454 fprintf (file, "\n");
1457 fprintf (file, "\n");
1459 free (flat_table);
1460 free (hash_val);
1463 /* Record register first/last/block set information for REGNO in INSN.
1465 first_set records the first place in the block where the register
1466 is set and is used to compute "anticipatability".
1468 last_set records the last place in the block where the register
1469 is set and is used to compute "availability".
1471 last_bb records the block for which first_set and last_set are
1472 valid, as a quick test to invalidate them. */
1474 static void
1475 record_last_reg_set_info (rtx_insn *insn, int regno)
1477 struct reg_avail_info *info = &reg_avail_info[regno];
1478 int luid = DF_INSN_LUID (insn);
1480 info->last_set = luid;
1481 if (info->last_bb != current_bb)
1483 info->last_bb = current_bb;
1484 info->first_set = luid;
1488 /* Record memory modification information for INSN. We do not actually care
1489 about the memory location(s) that are set, or even how they are set (consider
1490 a CALL_INSN). We merely need to record which insns modify memory. */
1492 static void
1493 record_last_mem_set_info (rtx_insn *insn)
1495 if (! flag_gcse_lm)
1496 return;
1498 record_last_mem_set_info_common (insn, modify_mem_list,
1499 canon_modify_mem_list,
1500 modify_mem_list_set,
1501 blocks_with_calls);
1504 /* Called from compute_hash_table via note_stores to handle one
1505 SET or CLOBBER in an insn. DATA is really the instruction in which
1506 the SET is taking place. */
1508 static void
1509 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1511 rtx_insn *last_set_insn = (rtx_insn *) data;
1513 if (GET_CODE (dest) == SUBREG)
1514 dest = SUBREG_REG (dest);
1516 if (REG_P (dest))
1517 record_last_reg_set_info (last_set_insn, REGNO (dest));
1518 else if (MEM_P (dest)
1519 /* Ignore pushes, they clobber nothing. */
1520 && ! push_operand (dest, GET_MODE (dest)))
1521 record_last_mem_set_info (last_set_insn);
1524 /* Top level function to create an expression hash table.
1526 Expression entries are placed in the hash table if
1527 - they are of the form (set (pseudo-reg) src),
1528 - src is something we want to perform GCSE on,
1529 - none of the operands are subsequently modified in the block
1531 Currently src must be a pseudo-reg or a const_int.
1533 TABLE is the table computed. */
1535 static void
1536 compute_hash_table_work (struct gcse_hash_table_d *table)
1538 int i;
1540 /* re-Cache any INSN_LIST nodes we have allocated. */
1541 clear_modify_mem_tables ();
1542 /* Some working arrays used to track first and last set in each block. */
1543 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1545 for (i = 0; i < max_reg_num (); ++i)
1546 reg_avail_info[i].last_bb = NULL;
1548 FOR_EACH_BB_FN (current_bb, cfun)
1550 rtx_insn *insn;
1551 unsigned int regno;
1553 /* First pass over the instructions records information used to
1554 determine when registers and memory are first and last set. */
1555 FOR_BB_INSNS (current_bb, insn)
1557 if (!NONDEBUG_INSN_P (insn))
1558 continue;
1560 if (CALL_P (insn))
1562 hard_reg_set_iterator hrsi;
1563 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1564 0, regno, hrsi)
1565 record_last_reg_set_info (insn, regno);
1567 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1568 record_last_mem_set_info (insn);
1571 note_stores (PATTERN (insn), record_last_set_info, insn);
1574 /* The next pass builds the hash table. */
1575 FOR_BB_INSNS (current_bb, insn)
1576 if (NONDEBUG_INSN_P (insn))
1577 hash_scan_insn (insn, table);
1580 free (reg_avail_info);
1581 reg_avail_info = NULL;
1584 /* Allocate space for the set/expr hash TABLE.
1585 It is used to determine the number of buckets to use. */
1587 static void
1588 alloc_hash_table (struct gcse_hash_table_d *table)
1590 int n;
1592 n = get_max_insn_count ();
1594 table->size = n / 4;
1595 if (table->size < 11)
1596 table->size = 11;
1598 /* Attempt to maintain efficient use of hash table.
1599 Making it an odd number is simplest for now.
1600 ??? Later take some measurements. */
1601 table->size |= 1;
1602 n = table->size * sizeof (struct gcse_expr *);
1603 table->table = GNEWVAR (struct gcse_expr *, n);
1606 /* Free things allocated by alloc_hash_table. */
1608 static void
1609 free_hash_table (struct gcse_hash_table_d *table)
1611 free (table->table);
1614 /* Compute the expression hash table TABLE. */
1616 static void
1617 compute_hash_table (struct gcse_hash_table_d *table)
1619 /* Initialize count of number of entries in hash table. */
1620 table->n_elems = 0;
1621 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1623 compute_hash_table_work (table);
1626 /* Expression tracking support. */
1628 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1629 static void
1630 clear_modify_mem_tables (void)
1632 unsigned i;
1633 bitmap_iterator bi;
1635 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1637 modify_mem_list[i].release ();
1638 canon_modify_mem_list[i].release ();
1640 bitmap_clear (modify_mem_list_set);
1641 bitmap_clear (blocks_with_calls);
1644 /* Release memory used by modify_mem_list_set. */
1646 static void
1647 free_modify_mem_tables (void)
1649 clear_modify_mem_tables ();
1650 free (modify_mem_list);
1651 free (canon_modify_mem_list);
1652 modify_mem_list = 0;
1653 canon_modify_mem_list = 0;
1656 /* Compute PRE+LCM working variables. */
1658 /* Local properties of expressions. */
1660 /* Nonzero for expressions that are transparent in the block. */
1661 static sbitmap *transp;
1663 /* Nonzero for expressions that are computed (available) in the block. */
1664 static sbitmap *comp;
1666 /* Nonzero for expressions that are locally anticipatable in the block. */
1667 static sbitmap *antloc;
1669 /* Nonzero for expressions where this block is an optimal computation
1670 point. */
1671 static sbitmap *pre_optimal;
1673 /* Nonzero for expressions which are redundant in a particular block. */
1674 static sbitmap *pre_redundant;
1676 /* Nonzero for expressions which should be inserted on a specific edge. */
1677 static sbitmap *pre_insert_map;
1679 /* Nonzero for expressions which should be deleted in a specific block. */
1680 static sbitmap *pre_delete_map;
1682 /* Allocate vars used for PRE analysis. */
1684 static void
1685 alloc_pre_mem (int n_blocks, int n_exprs)
1687 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1688 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1689 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1691 pre_optimal = NULL;
1692 pre_redundant = NULL;
1693 pre_insert_map = NULL;
1694 pre_delete_map = NULL;
1695 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1697 /* pre_insert and pre_delete are allocated later. */
1700 /* Free vars used for PRE analysis. */
1702 static void
1703 free_pre_mem (void)
1705 sbitmap_vector_free (transp);
1706 sbitmap_vector_free (comp);
1708 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1710 if (pre_optimal)
1711 sbitmap_vector_free (pre_optimal);
1712 if (pre_redundant)
1713 sbitmap_vector_free (pre_redundant);
1714 if (pre_insert_map)
1715 sbitmap_vector_free (pre_insert_map);
1716 if (pre_delete_map)
1717 sbitmap_vector_free (pre_delete_map);
1719 transp = comp = NULL;
1720 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1723 /* Remove certain expressions from anticipatable and transparent
1724 sets of basic blocks that have incoming abnormal edge.
1725 For PRE remove potentially trapping expressions to avoid placing
1726 them on abnormal edges. For hoisting remove memory references that
1727 can be clobbered by calls. */
1729 static void
1730 prune_expressions (bool pre_p)
1732 sbitmap prune_exprs;
1733 struct gcse_expr *expr;
1734 unsigned int ui;
1735 basic_block bb;
1737 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1738 bitmap_clear (prune_exprs);
1739 for (ui = 0; ui < expr_hash_table.size; ui++)
1741 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1743 /* Note potentially trapping expressions. */
1744 if (may_trap_p (expr->expr))
1746 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1747 continue;
1750 if (!pre_p && MEM_P (expr->expr))
1751 /* Note memory references that can be clobbered by a call.
1752 We do not split abnormal edges in hoisting, so would
1753 a memory reference get hoisted along an abnormal edge,
1754 it would be placed /before/ the call. Therefore, only
1755 constant memory references can be hoisted along abnormal
1756 edges. */
1758 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1759 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1760 continue;
1762 if (MEM_READONLY_P (expr->expr)
1763 && !MEM_VOLATILE_P (expr->expr)
1764 && MEM_NOTRAP_P (expr->expr))
1765 /* Constant memory reference, e.g., a PIC address. */
1766 continue;
1768 /* ??? Optimally, we would use interprocedural alias
1769 analysis to determine if this mem is actually killed
1770 by this call. */
1772 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1777 FOR_EACH_BB_FN (bb, cfun)
1779 edge e;
1780 edge_iterator ei;
1782 /* If the current block is the destination of an abnormal edge, we
1783 kill all trapping (for PRE) and memory (for hoist) expressions
1784 because we won't be able to properly place the instruction on
1785 the edge. So make them neither anticipatable nor transparent.
1786 This is fairly conservative.
1788 ??? For hoisting it may be necessary to check for set-and-jump
1789 instructions here, not just for abnormal edges. The general problem
1790 is that when an expression cannot not be placed right at the end of
1791 a basic block we should account for any side-effects of a subsequent
1792 jump instructions that could clobber the expression. It would
1793 be best to implement this check along the lines of
1794 should_hoist_expr_to_dom where the target block is already known
1795 and, hence, there's no need to conservatively prune expressions on
1796 "intermediate" set-and-jump instructions. */
1797 FOR_EACH_EDGE (e, ei, bb->preds)
1798 if ((e->flags & EDGE_ABNORMAL)
1799 && (pre_p || CALL_P (BB_END (e->src))))
1801 bitmap_and_compl (antloc[bb->index],
1802 antloc[bb->index], prune_exprs);
1803 bitmap_and_compl (transp[bb->index],
1804 transp[bb->index], prune_exprs);
1805 break;
1809 sbitmap_free (prune_exprs);
1812 /* It may be necessary to insert a large number of insns on edges to
1813 make the existing occurrences of expressions fully redundant. This
1814 routine examines the set of insertions and deletions and if the ratio
1815 of insertions to deletions is too high for a particular expression, then
1816 the expression is removed from the insertion/deletion sets.
1818 N_ELEMS is the number of elements in the hash table. */
1820 static void
1821 prune_insertions_deletions (int n_elems)
1823 sbitmap_iterator sbi;
1824 sbitmap prune_exprs;
1826 /* We always use I to iterate over blocks/edges and J to iterate over
1827 expressions. */
1828 unsigned int i, j;
1830 /* Counts for the number of times an expression needs to be inserted and
1831 number of times an expression can be removed as a result. */
1832 int *insertions = GCNEWVEC (int, n_elems);
1833 int *deletions = GCNEWVEC (int, n_elems);
1835 /* Set of expressions which require too many insertions relative to
1836 the number of deletions achieved. We will prune these out of the
1837 insertion/deletion sets. */
1838 prune_exprs = sbitmap_alloc (n_elems);
1839 bitmap_clear (prune_exprs);
1841 /* Iterate over the edges counting the number of times each expression
1842 needs to be inserted. */
1843 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1845 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1846 insertions[j]++;
1849 /* Similarly for deletions, but those occur in blocks rather than on
1850 edges. */
1851 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1853 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1854 deletions[j]++;
1857 /* Now that we have accurate counts, iterate over the elements in the
1858 hash table and see if any need too many insertions relative to the
1859 number of evaluations that can be removed. If so, mark them in
1860 PRUNE_EXPRS. */
1861 for (j = 0; j < (unsigned) n_elems; j++)
1862 if (deletions[j]
1863 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1864 bitmap_set_bit (prune_exprs, j);
1866 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1867 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1869 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1870 bitmap_clear_bit (pre_insert_map[i], j);
1872 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1873 bitmap_clear_bit (pre_delete_map[i], j);
1876 sbitmap_free (prune_exprs);
1877 free (insertions);
1878 free (deletions);
1881 /* Top level routine to do the dataflow analysis needed by PRE. */
1883 static struct edge_list *
1884 compute_pre_data (void)
1886 struct edge_list *edge_list;
1887 basic_block bb;
1889 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1890 prune_expressions (true);
1891 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1893 /* Compute ae_kill for each basic block using:
1895 ~(TRANSP | COMP)
1898 FOR_EACH_BB_FN (bb, cfun)
1900 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1901 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1904 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1905 ae_kill, &pre_insert_map, &pre_delete_map);
1906 sbitmap_vector_free (antloc);
1907 antloc = NULL;
1908 sbitmap_vector_free (ae_kill);
1909 ae_kill = NULL;
1911 prune_insertions_deletions (expr_hash_table.n_elems);
1913 return edge_list;
1916 /* PRE utilities */
1918 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1919 block BB.
1921 VISITED is a pointer to a working buffer for tracking which BB's have
1922 been visited. It is NULL for the top-level call.
1924 We treat reaching expressions that go through blocks containing the same
1925 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1926 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1927 2 as not reaching. The intent is to improve the probability of finding
1928 only one reaching expression and to reduce register lifetimes by picking
1929 the closest such expression. */
1931 static int
1932 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1933 basic_block bb, char *visited)
1935 edge pred;
1936 edge_iterator ei;
1938 FOR_EACH_EDGE (pred, ei, bb->preds)
1940 basic_block pred_bb = pred->src;
1942 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1943 /* Has predecessor has already been visited? */
1944 || visited[pred_bb->index])
1945 ;/* Nothing to do. */
1947 /* Does this predecessor generate this expression? */
1948 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1950 /* Is this the occurrence we're looking for?
1951 Note that there's only one generating occurrence per block
1952 so we just need to check the block number. */
1953 if (occr_bb == pred_bb)
1954 return 1;
1956 visited[pred_bb->index] = 1;
1958 /* Ignore this predecessor if it kills the expression. */
1959 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1960 visited[pred_bb->index] = 1;
1962 /* Neither gen nor kill. */
1963 else
1965 visited[pred_bb->index] = 1;
1966 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1967 return 1;
1971 /* All paths have been checked. */
1972 return 0;
1975 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1976 memory allocated for that function is returned. */
1978 static int
1979 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1981 int rval;
1982 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1984 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1986 free (visited);
1987 return rval;
1990 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1992 static rtx_insn *
1993 process_insert_insn (struct gcse_expr *expr)
1995 rtx reg = expr->reaching_reg;
1996 /* Copy the expression to make sure we don't have any sharing issues. */
1997 rtx exp = copy_rtx (expr->expr);
1998 rtx_insn *pat;
2000 start_sequence ();
2002 /* If the expression is something that's an operand, like a constant,
2003 just copy it to a register. */
2004 if (general_operand (exp, GET_MODE (reg)))
2005 emit_move_insn (reg, exp);
2007 /* Otherwise, make a new insn to compute this expression and make sure the
2008 insn will be recognized (this also adds any needed CLOBBERs). */
2009 else
2011 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
2013 if (insn_invalid_p (insn, false))
2014 gcc_unreachable ();
2017 pat = get_insns ();
2018 end_sequence ();
2020 return pat;
2023 /* Add EXPR to the end of basic block BB.
2025 This is used by both the PRE and code hoisting. */
2027 static void
2028 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2030 rtx_insn *insn = BB_END (bb);
2031 rtx_insn *new_insn;
2032 rtx reg = expr->reaching_reg;
2033 int regno = REGNO (reg);
2034 rtx_insn *pat, *pat_end;
2036 pat = process_insert_insn (expr);
2037 gcc_assert (pat && INSN_P (pat));
2039 pat_end = pat;
2040 while (NEXT_INSN (pat_end) != NULL_RTX)
2041 pat_end = NEXT_INSN (pat_end);
2043 /* If the last insn is a jump, insert EXPR in front [taking care to
2044 handle cc0, etc. properly]. Similarly we need to care trapping
2045 instructions in presence of non-call exceptions. */
2047 if (JUMP_P (insn)
2048 || (NONJUMP_INSN_P (insn)
2049 && (!single_succ_p (bb)
2050 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2052 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2053 if cc0 isn't set. */
2054 if (HAVE_cc0)
2056 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2057 if (note)
2058 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2059 else
2061 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2062 if (maybe_cc0_setter
2063 && INSN_P (maybe_cc0_setter)
2064 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2065 insn = maybe_cc0_setter;
2069 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2070 new_insn = emit_insn_before_noloc (pat, insn, bb);
2073 /* Likewise if the last insn is a call, as will happen in the presence
2074 of exception handling. */
2075 else if (CALL_P (insn)
2076 && (!single_succ_p (bb)
2077 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2079 /* Keeping in mind targets with small register classes and parameters
2080 in registers, we search backward and place the instructions before
2081 the first parameter is loaded. Do this for everyone for consistency
2082 and a presumption that we'll get better code elsewhere as well. */
2084 /* Since different machines initialize their parameter registers
2085 in different orders, assume nothing. Collect the set of all
2086 parameter registers. */
2087 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2089 /* If we found all the parameter loads, then we want to insert
2090 before the first parameter load.
2092 If we did not find all the parameter loads, then we might have
2093 stopped on the head of the block, which could be a CODE_LABEL.
2094 If we inserted before the CODE_LABEL, then we would be putting
2095 the insn in the wrong basic block. In that case, put the insn
2096 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2097 while (LABEL_P (insn)
2098 || NOTE_INSN_BASIC_BLOCK_P (insn))
2099 insn = NEXT_INSN (insn);
2101 new_insn = emit_insn_before_noloc (pat, insn, bb);
2103 else
2104 new_insn = emit_insn_after_noloc (pat, insn, bb);
2106 while (1)
2108 if (INSN_P (pat))
2109 add_label_notes (PATTERN (pat), new_insn);
2110 if (pat == pat_end)
2111 break;
2112 pat = NEXT_INSN (pat);
2115 gcse_create_count++;
2117 if (dump_file)
2119 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2120 bb->index, INSN_UID (new_insn));
2121 fprintf (dump_file, "copying expression %d to reg %d\n",
2122 expr->bitmap_index, regno);
2126 /* Insert partially redundant expressions on edges in the CFG to make
2127 the expressions fully redundant. */
2129 static int
2130 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2132 int e, i, j, num_edges, set_size, did_insert = 0;
2133 sbitmap *inserted;
2135 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2136 if it reaches any of the deleted expressions. */
2138 set_size = pre_insert_map[0]->size;
2139 num_edges = NUM_EDGES (edge_list);
2140 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2141 bitmap_vector_clear (inserted, num_edges);
2143 for (e = 0; e < num_edges; e++)
2145 int indx;
2146 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2148 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2150 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2152 for (j = indx;
2153 insert && j < (int) expr_hash_table.n_elems;
2154 j++, insert >>= 1)
2155 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2157 struct gcse_expr *expr = index_map[j];
2158 struct gcse_occr *occr;
2160 /* Now look at each deleted occurrence of this expression. */
2161 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2163 if (! occr->deleted_p)
2164 continue;
2166 /* Insert this expression on this edge if it would
2167 reach the deleted occurrence in BB. */
2168 if (!bitmap_bit_p (inserted[e], j))
2170 rtx_insn *insn;
2171 edge eg = INDEX_EDGE (edge_list, e);
2173 /* We can't insert anything on an abnormal and
2174 critical edge, so we insert the insn at the end of
2175 the previous block. There are several alternatives
2176 detailed in Morgans book P277 (sec 10.5) for
2177 handling this situation. This one is easiest for
2178 now. */
2180 if (eg->flags & EDGE_ABNORMAL)
2181 insert_insn_end_basic_block (index_map[j], bb);
2182 else
2184 insn = process_insert_insn (index_map[j]);
2185 insert_insn_on_edge (insn, eg);
2188 if (dump_file)
2190 fprintf (dump_file, "PRE: edge (%d,%d), ",
2191 bb->index,
2192 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2193 fprintf (dump_file, "copy expression %d\n",
2194 expr->bitmap_index);
2197 update_ld_motion_stores (expr);
2198 bitmap_set_bit (inserted[e], j);
2199 did_insert = 1;
2200 gcse_create_count++;
2207 sbitmap_vector_free (inserted);
2208 return did_insert;
2211 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2212 Given "old_reg <- expr" (INSN), instead of adding after it
2213 reaching_reg <- old_reg
2214 it's better to do the following:
2215 reaching_reg <- expr
2216 old_reg <- reaching_reg
2217 because this way copy propagation can discover additional PRE
2218 opportunities. But if this fails, we try the old way.
2219 When "expr" is a store, i.e.
2220 given "MEM <- old_reg", instead of adding after it
2221 reaching_reg <- old_reg
2222 it's better to add it before as follows:
2223 reaching_reg <- old_reg
2224 MEM <- reaching_reg. */
2226 static void
2227 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2229 rtx reg = expr->reaching_reg;
2230 int regno = REGNO (reg);
2231 int indx = expr->bitmap_index;
2232 rtx pat = PATTERN (insn);
2233 rtx set, first_set;
2234 rtx_insn *new_insn;
2235 rtx old_reg;
2236 int i;
2238 /* This block matches the logic in hash_scan_insn. */
2239 switch (GET_CODE (pat))
2241 case SET:
2242 set = pat;
2243 break;
2245 case PARALLEL:
2246 /* Search through the parallel looking for the set whose
2247 source was the expression that we're interested in. */
2248 first_set = NULL_RTX;
2249 set = NULL_RTX;
2250 for (i = 0; i < XVECLEN (pat, 0); i++)
2252 rtx x = XVECEXP (pat, 0, i);
2253 if (GET_CODE (x) == SET)
2255 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2256 may not find an equivalent expression, but in this
2257 case the PARALLEL will have a single set. */
2258 if (first_set == NULL_RTX)
2259 first_set = x;
2260 if (expr_equiv_p (SET_SRC (x), expr->expr))
2262 set = x;
2263 break;
2268 gcc_assert (first_set);
2269 if (set == NULL_RTX)
2270 set = first_set;
2271 break;
2273 default:
2274 gcc_unreachable ();
2277 if (REG_P (SET_DEST (set)))
2279 old_reg = SET_DEST (set);
2280 /* Check if we can modify the set destination in the original insn. */
2281 if (validate_change (insn, &SET_DEST (set), reg, 0))
2283 new_insn = gen_move_insn (old_reg, reg);
2284 new_insn = emit_insn_after (new_insn, insn);
2286 else
2288 new_insn = gen_move_insn (reg, old_reg);
2289 new_insn = emit_insn_after (new_insn, insn);
2292 else /* This is possible only in case of a store to memory. */
2294 old_reg = SET_SRC (set);
2295 new_insn = gen_move_insn (reg, old_reg);
2297 /* Check if we can modify the set source in the original insn. */
2298 if (validate_change (insn, &SET_SRC (set), reg, 0))
2299 new_insn = emit_insn_before (new_insn, insn);
2300 else
2301 new_insn = emit_insn_after (new_insn, insn);
2304 gcse_create_count++;
2306 if (dump_file)
2307 fprintf (dump_file,
2308 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2309 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2310 INSN_UID (insn), regno);
2313 /* Copy available expressions that reach the redundant expression
2314 to `reaching_reg'. */
2316 static void
2317 pre_insert_copies (void)
2319 unsigned int i, added_copy;
2320 struct gcse_expr *expr;
2321 struct gcse_occr *occr;
2322 struct gcse_occr *avail;
2324 /* For each available expression in the table, copy the result to
2325 `reaching_reg' if the expression reaches a deleted one.
2327 ??? The current algorithm is rather brute force.
2328 Need to do some profiling. */
2330 for (i = 0; i < expr_hash_table.size; i++)
2331 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2333 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2334 we don't want to insert a copy here because the expression may not
2335 really be redundant. So only insert an insn if the expression was
2336 deleted. This test also avoids further processing if the
2337 expression wasn't deleted anywhere. */
2338 if (expr->reaching_reg == NULL)
2339 continue;
2341 /* Set when we add a copy for that expression. */
2342 added_copy = 0;
2344 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2346 if (! occr->deleted_p)
2347 continue;
2349 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2351 rtx_insn *insn = avail->insn;
2353 /* No need to handle this one if handled already. */
2354 if (avail->copied_p)
2355 continue;
2357 /* Don't handle this one if it's a redundant one. */
2358 if (insn->deleted ())
2359 continue;
2361 /* Or if the expression doesn't reach the deleted one. */
2362 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2363 expr,
2364 BLOCK_FOR_INSN (occr->insn)))
2365 continue;
2367 added_copy = 1;
2369 /* Copy the result of avail to reaching_reg. */
2370 pre_insert_copy_insn (expr, insn);
2371 avail->copied_p = 1;
2375 if (added_copy)
2376 update_ld_motion_stores (expr);
2380 struct set_data
2382 rtx_insn *insn;
2383 const_rtx set;
2384 int nsets;
2387 /* Increment number of sets and record set in DATA. */
2389 static void
2390 record_set_data (rtx dest, const_rtx set, void *data)
2392 struct set_data *s = (struct set_data *)data;
2394 if (GET_CODE (set) == SET)
2396 /* We allow insns having multiple sets, where all but one are
2397 dead as single set insns. In the common case only a single
2398 set is present, so we want to avoid checking for REG_UNUSED
2399 notes unless necessary. */
2400 if (s->nsets == 1
2401 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2402 && !side_effects_p (s->set))
2403 s->nsets = 0;
2405 if (!s->nsets)
2407 /* Record this set. */
2408 s->nsets += 1;
2409 s->set = set;
2411 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2412 || side_effects_p (set))
2413 s->nsets += 1;
2417 static const_rtx
2418 single_set_gcse (rtx_insn *insn)
2420 struct set_data s;
2421 rtx pattern;
2423 gcc_assert (INSN_P (insn));
2425 /* Optimize common case. */
2426 pattern = PATTERN (insn);
2427 if (GET_CODE (pattern) == SET)
2428 return pattern;
2430 s.insn = insn;
2431 s.nsets = 0;
2432 note_stores (pattern, record_set_data, &s);
2434 /* Considered invariant insns have exactly one set. */
2435 gcc_assert (s.nsets == 1);
2436 return s.set;
2439 /* Emit move from SRC to DEST noting the equivalence with expression computed
2440 in INSN. */
2442 static rtx
2443 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2445 rtx_insn *new_rtx;
2446 const_rtx set = single_set_gcse (insn);
2447 rtx set2;
2448 rtx note;
2449 rtx eqv = NULL_RTX;
2451 /* This should never fail since we're creating a reg->reg copy
2452 we've verified to be valid. */
2454 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2456 /* Note the equivalence for local CSE pass. Take the note from the old
2457 set if there was one. Otherwise record the SET_SRC from the old set
2458 unless DEST is also an operand of the SET_SRC. */
2459 set2 = single_set (new_rtx);
2460 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2461 return new_rtx;
2462 if ((note = find_reg_equal_equiv_note (insn)))
2463 eqv = XEXP (note, 0);
2464 else if (! REG_P (dest)
2465 || ! reg_mentioned_p (dest, SET_SRC (set)))
2466 eqv = SET_SRC (set);
2468 if (eqv != NULL_RTX)
2469 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2471 return new_rtx;
2474 /* Delete redundant computations.
2475 Deletion is done by changing the insn to copy the `reaching_reg' of
2476 the expression into the result of the SET. It is left to later passes
2477 to propagate the copy or eliminate it.
2479 Return nonzero if a change is made. */
2481 static int
2482 pre_delete (void)
2484 unsigned int i;
2485 int changed;
2486 struct gcse_expr *expr;
2487 struct gcse_occr *occr;
2489 changed = 0;
2490 for (i = 0; i < expr_hash_table.size; i++)
2491 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2493 int indx = expr->bitmap_index;
2495 /* We only need to search antic_occr since we require ANTLOC != 0. */
2496 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2498 rtx_insn *insn = occr->insn;
2499 rtx set;
2500 basic_block bb = BLOCK_FOR_INSN (insn);
2502 /* We only delete insns that have a single_set. */
2503 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2504 && (set = single_set (insn)) != 0
2505 && dbg_cnt (pre_insn))
2507 /* Create a pseudo-reg to store the result of reaching
2508 expressions into. Get the mode for the new pseudo from
2509 the mode of the original destination pseudo. */
2510 if (expr->reaching_reg == NULL)
2511 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2513 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2514 delete_insn (insn);
2515 occr->deleted_p = 1;
2516 changed = 1;
2517 gcse_subst_count++;
2519 if (dump_file)
2521 fprintf (dump_file,
2522 "PRE: redundant insn %d (expression %d) in ",
2523 INSN_UID (insn), indx);
2524 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2525 bb->index, REGNO (expr->reaching_reg));
2531 return changed;
2534 /* Perform GCSE optimizations using PRE.
2535 This is called by one_pre_gcse_pass after all the dataflow analysis
2536 has been done.
2538 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2539 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2540 Compiler Design and Implementation.
2542 ??? A new pseudo reg is created to hold the reaching expression. The nice
2543 thing about the classical approach is that it would try to use an existing
2544 reg. If the register can't be adequately optimized [i.e. we introduce
2545 reload problems], one could add a pass here to propagate the new register
2546 through the block.
2548 ??? We don't handle single sets in PARALLELs because we're [currently] not
2549 able to copy the rest of the parallel when we insert copies to create full
2550 redundancies from partial redundancies. However, there's no reason why we
2551 can't handle PARALLELs in the cases where there are no partial
2552 redundancies. */
2554 static int
2555 pre_gcse (struct edge_list *edge_list)
2557 unsigned int i;
2558 int did_insert, changed;
2559 struct gcse_expr **index_map;
2560 struct gcse_expr *expr;
2562 /* Compute a mapping from expression number (`bitmap_index') to
2563 hash table entry. */
2565 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2566 for (i = 0; i < expr_hash_table.size; i++)
2567 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2568 index_map[expr->bitmap_index] = expr;
2570 /* Delete the redundant insns first so that
2571 - we know what register to use for the new insns and for the other
2572 ones with reaching expressions
2573 - we know which insns are redundant when we go to create copies */
2575 changed = pre_delete ();
2576 did_insert = pre_edge_insert (edge_list, index_map);
2578 /* In other places with reaching expressions, copy the expression to the
2579 specially allocated pseudo-reg that reaches the redundant expr. */
2580 pre_insert_copies ();
2581 if (did_insert)
2583 commit_edge_insertions ();
2584 changed = 1;
2587 free (index_map);
2588 return changed;
2591 /* Top level routine to perform one PRE GCSE pass.
2593 Return nonzero if a change was made. */
2595 static int
2596 one_pre_gcse_pass (void)
2598 int changed = 0;
2600 gcse_subst_count = 0;
2601 gcse_create_count = 0;
2603 /* Return if there's nothing to do, or it is too expensive. */
2604 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2605 || is_too_expensive (_("PRE disabled")))
2606 return 0;
2608 /* We need alias. */
2609 init_alias_analysis ();
2611 bytes_used = 0;
2612 gcc_obstack_init (&gcse_obstack);
2613 alloc_gcse_mem ();
2615 alloc_hash_table (&expr_hash_table);
2616 add_noreturn_fake_exit_edges ();
2617 if (flag_gcse_lm)
2618 compute_ld_motion_mems ();
2620 compute_hash_table (&expr_hash_table);
2621 if (flag_gcse_lm)
2622 trim_ld_motion_mems ();
2623 if (dump_file)
2624 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2626 if (expr_hash_table.n_elems > 0)
2628 struct edge_list *edge_list;
2629 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2630 edge_list = compute_pre_data ();
2631 changed |= pre_gcse (edge_list);
2632 free_edge_list (edge_list);
2633 free_pre_mem ();
2636 if (flag_gcse_lm)
2637 free_ld_motion_mems ();
2638 remove_fake_exit_edges ();
2639 free_hash_table (&expr_hash_table);
2641 free_gcse_mem ();
2642 obstack_free (&gcse_obstack, NULL);
2644 /* We are finished with alias. */
2645 end_alias_analysis ();
2647 if (dump_file)
2649 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2650 current_function_name (), n_basic_blocks_for_fn (cfun),
2651 bytes_used);
2652 fprintf (dump_file, "%d substs, %d insns created\n",
2653 gcse_subst_count, gcse_create_count);
2656 return changed;
2659 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2660 to INSN. If such notes are added to an insn which references a
2661 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2662 that note, because the following loop optimization pass requires
2663 them. */
2665 /* ??? If there was a jump optimization pass after gcse and before loop,
2666 then we would not need to do this here, because jump would add the
2667 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2669 static void
2670 add_label_notes (rtx x, rtx_insn *insn)
2672 enum rtx_code code = GET_CODE (x);
2673 int i, j;
2674 const char *fmt;
2676 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2678 /* This code used to ignore labels that referred to dispatch tables to
2679 avoid flow generating (slightly) worse code.
2681 We no longer ignore such label references (see LABEL_REF handling in
2682 mark_jump_label for additional information). */
2684 /* There's no reason for current users to emit jump-insns with
2685 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2686 notes. */
2687 gcc_assert (!JUMP_P (insn));
2688 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2690 if (LABEL_P (LABEL_REF_LABEL (x)))
2691 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2693 return;
2696 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2698 if (fmt[i] == 'e')
2699 add_label_notes (XEXP (x, i), insn);
2700 else if (fmt[i] == 'E')
2701 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2702 add_label_notes (XVECEXP (x, i, j), insn);
2706 /* Code Hoisting variables and subroutines. */
2708 /* Very busy expressions. */
2709 static sbitmap *hoist_vbein;
2710 static sbitmap *hoist_vbeout;
2712 /* ??? We could compute post dominators and run this algorithm in
2713 reverse to perform tail merging, doing so would probably be
2714 more effective than the tail merging code in jump.c.
2716 It's unclear if tail merging could be run in parallel with
2717 code hoisting. It would be nice. */
2719 /* Allocate vars used for code hoisting analysis. */
2721 static void
2722 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2724 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2725 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2726 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2728 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2729 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2732 /* Free vars used for code hoisting analysis. */
2734 static void
2735 free_code_hoist_mem (void)
2737 sbitmap_vector_free (antloc);
2738 sbitmap_vector_free (transp);
2739 sbitmap_vector_free (comp);
2741 sbitmap_vector_free (hoist_vbein);
2742 sbitmap_vector_free (hoist_vbeout);
2744 free_dominance_info (CDI_DOMINATORS);
2747 /* Compute the very busy expressions at entry/exit from each block.
2749 An expression is very busy if all paths from a given point
2750 compute the expression. */
2752 static void
2753 compute_code_hoist_vbeinout (void)
2755 int changed, passes;
2756 basic_block bb;
2758 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2759 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2761 passes = 0;
2762 changed = 1;
2764 while (changed)
2766 changed = 0;
2768 /* We scan the blocks in the reverse order to speed up
2769 the convergence. */
2770 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2772 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2774 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2775 hoist_vbein, bb);
2777 /* Include expressions in VBEout that are calculated
2778 in BB and available at its end. */
2779 bitmap_ior (hoist_vbeout[bb->index],
2780 hoist_vbeout[bb->index], comp[bb->index]);
2783 changed |= bitmap_or_and (hoist_vbein[bb->index],
2784 antloc[bb->index],
2785 hoist_vbeout[bb->index],
2786 transp[bb->index]);
2789 passes++;
2792 if (dump_file)
2794 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2796 FOR_EACH_BB_FN (bb, cfun)
2798 fprintf (dump_file, "vbein (%d): ", bb->index);
2799 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2800 fprintf (dump_file, "vbeout(%d): ", bb->index);
2801 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2806 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2808 static void
2809 compute_code_hoist_data (void)
2811 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2812 prune_expressions (false);
2813 compute_code_hoist_vbeinout ();
2814 calculate_dominance_info (CDI_DOMINATORS);
2815 if (dump_file)
2816 fprintf (dump_file, "\n");
2819 /* Update register pressure for BB when hoisting an expression from
2820 instruction FROM, if live ranges of inputs are shrunk. Also
2821 maintain live_in information if live range of register referred
2822 in FROM is shrunk.
2824 Return 0 if register pressure doesn't change, otherwise return
2825 the number by which register pressure is decreased.
2827 NOTE: Register pressure won't be increased in this function. */
2829 static int
2830 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2832 rtx dreg;
2833 rtx_insn *insn;
2834 basic_block succ_bb;
2835 df_ref use, op_ref;
2836 edge succ;
2837 edge_iterator ei;
2838 int decreased_pressure = 0;
2839 int nregs;
2840 enum reg_class pressure_class;
2842 FOR_EACH_INSN_USE (use, from)
2844 dreg = DF_REF_REAL_REG (use);
2845 /* The live range of register is shrunk only if it isn't:
2846 1. referred on any path from the end of this block to EXIT, or
2847 2. referred by insns other than FROM in this block. */
2848 FOR_EACH_EDGE (succ, ei, bb->succs)
2850 succ_bb = succ->dest;
2851 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2852 continue;
2854 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2855 break;
2857 if (succ != NULL)
2858 continue;
2860 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2861 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2863 if (!DF_REF_INSN_INFO (op_ref))
2864 continue;
2866 insn = DF_REF_INSN (op_ref);
2867 if (BLOCK_FOR_INSN (insn) == bb
2868 && NONDEBUG_INSN_P (insn) && insn != from)
2869 break;
2872 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2873 /* Decrease register pressure and update live_in information for
2874 this block. */
2875 if (!op_ref && pressure_class != NO_REGS)
2877 decreased_pressure += nregs;
2878 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2879 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2882 return decreased_pressure;
2885 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2886 flow graph, if it can reach BB unimpared. Stop the search if the
2887 expression would need to be moved more than DISTANCE instructions.
2889 DISTANCE is the number of instructions through which EXPR can be
2890 hoisted up in flow graph.
2892 BB_SIZE points to an array which contains the number of instructions
2893 for each basic block.
2895 PRESSURE_CLASS and NREGS are register class and number of hard registers
2896 for storing EXPR.
2898 HOISTED_BBS points to a bitmap indicating basic blocks through which
2899 EXPR is hoisted.
2901 FROM is the instruction from which EXPR is hoisted.
2903 It's unclear exactly what Muchnick meant by "unimpared". It seems
2904 to me that the expression must either be computed or transparent in
2905 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2906 would allow the expression to be hoisted out of loops, even if
2907 the expression wasn't a loop invariant.
2909 Contrast this to reachability for PRE where an expression is
2910 considered reachable if *any* path reaches instead of *all*
2911 paths. */
2913 static int
2914 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2915 basic_block bb, sbitmap visited, int distance,
2916 int *bb_size, enum reg_class pressure_class,
2917 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2919 unsigned int i;
2920 edge pred;
2921 edge_iterator ei;
2922 sbitmap_iterator sbi;
2923 int visited_allocated_locally = 0;
2924 int decreased_pressure = 0;
2926 if (flag_ira_hoist_pressure)
2928 /* Record old information of basic block BB when it is visited
2929 at the first time. */
2930 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2932 struct bb_data *data = BB_DATA (bb);
2933 bitmap_copy (data->backup, data->live_in);
2934 data->old_pressure = data->max_reg_pressure[pressure_class];
2936 decreased_pressure = update_bb_reg_pressure (bb, from);
2938 /* Terminate the search if distance, for which EXPR is allowed to move,
2939 is exhausted. */
2940 if (distance > 0)
2942 if (flag_ira_hoist_pressure)
2944 /* Prefer to hoist EXPR if register pressure is decreased. */
2945 if (decreased_pressure > *nregs)
2946 distance += bb_size[bb->index];
2947 /* Let EXPR be hoisted through basic block at no cost if one
2948 of following conditions is satisfied:
2950 1. The basic block has low register pressure.
2951 2. Register pressure won't be increases after hoisting EXPR.
2953 Constant expressions is handled conservatively, because
2954 hoisting constant expression aggressively results in worse
2955 code. This decision is made by the observation of CSiBE
2956 on ARM target, while it has no obvious effect on other
2957 targets like x86, x86_64, mips and powerpc. */
2958 else if (CONST_INT_P (expr->expr)
2959 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2960 >= ira_class_hard_regs_num[pressure_class]
2961 && decreased_pressure < *nregs))
2962 distance -= bb_size[bb->index];
2964 else
2965 distance -= bb_size[bb->index];
2967 if (distance <= 0)
2968 return 0;
2970 else
2971 gcc_assert (distance == 0);
2973 if (visited == NULL)
2975 visited_allocated_locally = 1;
2976 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2977 bitmap_clear (visited);
2980 FOR_EACH_EDGE (pred, ei, bb->preds)
2982 basic_block pred_bb = pred->src;
2984 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2985 break;
2986 else if (pred_bb == expr_bb)
2987 continue;
2988 else if (bitmap_bit_p (visited, pred_bb->index))
2989 continue;
2990 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2991 break;
2992 /* Not killed. */
2993 else
2995 bitmap_set_bit (visited, pred_bb->index);
2996 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2997 visited, distance, bb_size,
2998 pressure_class, nregs,
2999 hoisted_bbs, from))
3000 break;
3003 if (visited_allocated_locally)
3005 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3006 which EXPR is hoisted in hoisted_bbs. */
3007 if (flag_ira_hoist_pressure && !pred)
3009 /* Record the basic block from which EXPR is hoisted. */
3010 bitmap_set_bit (visited, bb->index);
3011 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3012 bitmap_set_bit (hoisted_bbs, i);
3014 sbitmap_free (visited);
3017 return (pred == NULL);
3020 /* Find occurrence in BB. */
3022 static struct gcse_occr *
3023 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3025 /* Find the right occurrence of this expression. */
3026 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3027 occr = occr->next;
3029 return occr;
3032 /* Actually perform code hoisting.
3034 The code hoisting pass can hoist multiple computations of the same
3035 expression along dominated path to a dominating basic block, like
3036 from b2/b3 to b1 as depicted below:
3038 b1 ------
3039 /\ |
3040 / \ |
3041 bx by distance
3042 / \ |
3043 / \ |
3044 b2 b3 ------
3046 Unfortunately code hoisting generally extends the live range of an
3047 output pseudo register, which increases register pressure and hurts
3048 register allocation. To address this issue, an attribute MAX_DISTANCE
3049 is computed and attached to each expression. The attribute is computed
3050 from rtx cost of the corresponding expression and it's used to control
3051 how long the expression can be hoisted up in flow graph. As the
3052 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3053 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3054 register pressure if live ranges of inputs are shrunk.
3056 Option "-fira-hoist-pressure" implements register pressure directed
3057 hoist based on upper method. The rationale is:
3058 1. Calculate register pressure for each basic block by reusing IRA
3059 facility.
3060 2. When expression is hoisted through one basic block, GCC checks
3061 the change of live ranges for inputs/output. The basic block's
3062 register pressure will be increased because of extended live
3063 range of output. However, register pressure will be decreased
3064 if the live ranges of inputs are shrunk.
3065 3. After knowing how hoisting affects register pressure, GCC prefers
3066 to hoist the expression if it can decrease register pressure, by
3067 increasing DISTANCE of the corresponding expression.
3068 4. If hoisting the expression increases register pressure, GCC checks
3069 register pressure of the basic block and decrease DISTANCE only if
3070 the register pressure is high. In other words, expression will be
3071 hoisted through at no cost if the basic block has low register
3072 pressure.
3073 5. Update register pressure information for basic blocks through
3074 which expression is hoisted. */
3076 static int
3077 hoist_code (void)
3079 basic_block bb, dominated;
3080 vec<basic_block> dom_tree_walk;
3081 unsigned int dom_tree_walk_index;
3082 vec<basic_block> domby;
3083 unsigned int i, j, k;
3084 struct gcse_expr **index_map;
3085 struct gcse_expr *expr;
3086 int *to_bb_head;
3087 int *bb_size;
3088 int changed = 0;
3089 struct bb_data *data;
3090 /* Basic blocks that have occurrences reachable from BB. */
3091 bitmap from_bbs;
3092 /* Basic blocks through which expr is hoisted. */
3093 bitmap hoisted_bbs = NULL;
3094 bitmap_iterator bi;
3096 /* Compute a mapping from expression number (`bitmap_index') to
3097 hash table entry. */
3099 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3100 for (i = 0; i < expr_hash_table.size; i++)
3101 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3102 index_map[expr->bitmap_index] = expr;
3104 /* Calculate sizes of basic blocks and note how far
3105 each instruction is from the start of its block. We then use this
3106 data to restrict distance an expression can travel. */
3108 to_bb_head = XCNEWVEC (int, get_max_uid ());
3109 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3111 FOR_EACH_BB_FN (bb, cfun)
3113 rtx_insn *insn;
3114 int to_head;
3116 to_head = 0;
3117 FOR_BB_INSNS (bb, insn)
3119 /* Don't count debug instructions to avoid them affecting
3120 decision choices. */
3121 if (NONDEBUG_INSN_P (insn))
3122 to_bb_head[INSN_UID (insn)] = to_head++;
3125 bb_size[bb->index] = to_head;
3128 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3129 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3130 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3132 from_bbs = BITMAP_ALLOC (NULL);
3133 if (flag_ira_hoist_pressure)
3134 hoisted_bbs = BITMAP_ALLOC (NULL);
3136 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3137 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3139 /* Walk over each basic block looking for potentially hoistable
3140 expressions, nothing gets hoisted from the entry block. */
3141 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3143 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3145 if (domby.length () == 0)
3146 continue;
3148 /* Examine each expression that is very busy at the exit of this
3149 block. These are the potentially hoistable expressions. */
3150 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3152 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3154 int nregs = 0;
3155 enum reg_class pressure_class = NO_REGS;
3156 /* Current expression. */
3157 struct gcse_expr *expr = index_map[i];
3158 /* Number of occurrences of EXPR that can be hoisted to BB. */
3159 int hoistable = 0;
3160 /* Occurrences reachable from BB. */
3161 vec<occr_t> occrs_to_hoist = vNULL;
3162 /* We want to insert the expression into BB only once, so
3163 note when we've inserted it. */
3164 int insn_inserted_p;
3165 occr_t occr;
3167 /* If an expression is computed in BB and is available at end of
3168 BB, hoist all occurrences dominated by BB to BB. */
3169 if (bitmap_bit_p (comp[bb->index], i))
3171 occr = find_occr_in_bb (expr->antic_occr, bb);
3173 if (occr)
3175 /* An occurrence might've been already deleted
3176 while processing a dominator of BB. */
3177 if (!occr->deleted_p)
3179 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3180 hoistable++;
3183 else
3184 hoistable++;
3187 /* We've found a potentially hoistable expression, now
3188 we look at every block BB dominates to see if it
3189 computes the expression. */
3190 FOR_EACH_VEC_ELT (domby, j, dominated)
3192 int max_distance;
3194 /* Ignore self dominance. */
3195 if (bb == dominated)
3196 continue;
3197 /* We've found a dominated block, now see if it computes
3198 the busy expression and whether or not moving that
3199 expression to the "beginning" of that block is safe. */
3200 if (!bitmap_bit_p (antloc[dominated->index], i))
3201 continue;
3203 occr = find_occr_in_bb (expr->antic_occr, dominated);
3204 gcc_assert (occr);
3206 /* An occurrence might've been already deleted
3207 while processing a dominator of BB. */
3208 if (occr->deleted_p)
3209 continue;
3210 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3212 max_distance = expr->max_distance;
3213 if (max_distance > 0)
3214 /* Adjust MAX_DISTANCE to account for the fact that
3215 OCCR won't have to travel all of DOMINATED, but
3216 only part of it. */
3217 max_distance += (bb_size[dominated->index]
3218 - to_bb_head[INSN_UID (occr->insn)]);
3220 pressure_class = get_pressure_class_and_nregs (occr->insn,
3221 &nregs);
3223 /* Note if the expression should be hoisted from the dominated
3224 block to BB if it can reach DOMINATED unimpared.
3226 Keep track of how many times this expression is hoistable
3227 from a dominated block into BB. */
3228 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3229 max_distance, bb_size,
3230 pressure_class, &nregs,
3231 hoisted_bbs, occr->insn))
3233 hoistable++;
3234 occrs_to_hoist.safe_push (occr);
3235 bitmap_set_bit (from_bbs, dominated->index);
3239 /* If we found more than one hoistable occurrence of this
3240 expression, then note it in the vector of expressions to
3241 hoist. It makes no sense to hoist things which are computed
3242 in only one BB, and doing so tends to pessimize register
3243 allocation. One could increase this value to try harder
3244 to avoid any possible code expansion due to register
3245 allocation issues; however experiments have shown that
3246 the vast majority of hoistable expressions are only movable
3247 from two successors, so raising this threshold is likely
3248 to nullify any benefit we get from code hoisting. */
3249 if (hoistable > 1 && dbg_cnt (hoist_insn))
3251 /* If (hoistable != vec::length), then there is
3252 an occurrence of EXPR in BB itself. Don't waste
3253 time looking for LCA in this case. */
3254 if ((unsigned) hoistable == occrs_to_hoist.length ())
3256 basic_block lca;
3258 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3259 from_bbs);
3260 if (lca != bb)
3261 /* Punt, it's better to hoist these occurrences to
3262 LCA. */
3263 occrs_to_hoist.release ();
3266 else
3267 /* Punt, no point hoisting a single occurrence. */
3268 occrs_to_hoist.release ();
3270 if (flag_ira_hoist_pressure
3271 && !occrs_to_hoist.is_empty ())
3273 /* Increase register pressure of basic blocks to which
3274 expr is hoisted because of extended live range of
3275 output. */
3276 data = BB_DATA (bb);
3277 data->max_reg_pressure[pressure_class] += nregs;
3278 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3280 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3281 data->max_reg_pressure[pressure_class] += nregs;
3284 else if (flag_ira_hoist_pressure)
3286 /* Restore register pressure and live_in info for basic
3287 blocks recorded in hoisted_bbs when expr will not be
3288 hoisted. */
3289 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3291 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3292 bitmap_copy (data->live_in, data->backup);
3293 data->max_reg_pressure[pressure_class]
3294 = data->old_pressure;
3298 if (flag_ira_hoist_pressure)
3299 bitmap_clear (hoisted_bbs);
3301 insn_inserted_p = 0;
3303 /* Walk through occurrences of I'th expressions we want
3304 to hoist to BB and make the transformations. */
3305 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3307 rtx_insn *insn;
3308 const_rtx set;
3310 gcc_assert (!occr->deleted_p);
3312 insn = occr->insn;
3313 set = single_set_gcse (insn);
3315 /* Create a pseudo-reg to store the result of reaching
3316 expressions into. Get the mode for the new pseudo
3317 from the mode of the original destination pseudo.
3319 It is important to use new pseudos whenever we
3320 emit a set. This will allow reload to use
3321 rematerialization for such registers. */
3322 if (!insn_inserted_p)
3323 expr->reaching_reg
3324 = gen_reg_rtx_and_attrs (SET_DEST (set));
3326 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3327 insn);
3328 delete_insn (insn);
3329 occr->deleted_p = 1;
3330 changed = 1;
3331 gcse_subst_count++;
3333 if (!insn_inserted_p)
3335 insert_insn_end_basic_block (expr, bb);
3336 insn_inserted_p = 1;
3340 occrs_to_hoist.release ();
3341 bitmap_clear (from_bbs);
3344 domby.release ();
3347 dom_tree_walk.release ();
3348 BITMAP_FREE (from_bbs);
3349 if (flag_ira_hoist_pressure)
3350 BITMAP_FREE (hoisted_bbs);
3352 free (bb_size);
3353 free (to_bb_head);
3354 free (index_map);
3356 return changed;
3359 /* Return pressure class and number of needed hard registers (through
3360 *NREGS) of register REGNO. */
3361 static enum reg_class
3362 get_regno_pressure_class (int regno, int *nregs)
3364 if (regno >= FIRST_PSEUDO_REGISTER)
3366 enum reg_class pressure_class;
3368 pressure_class = reg_allocno_class (regno);
3369 pressure_class = ira_pressure_class_translate[pressure_class];
3370 *nregs
3371 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3372 return pressure_class;
3374 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3375 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3377 *nregs = 1;
3378 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3380 else
3382 *nregs = 0;
3383 return NO_REGS;
3387 /* Return pressure class and number of hard registers (through *NREGS)
3388 for destination of INSN. */
3389 static enum reg_class
3390 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3392 rtx reg;
3393 enum reg_class pressure_class;
3394 const_rtx set = single_set_gcse (insn);
3396 reg = SET_DEST (set);
3397 if (GET_CODE (reg) == SUBREG)
3398 reg = SUBREG_REG (reg);
3399 if (MEM_P (reg))
3401 *nregs = 0;
3402 pressure_class = NO_REGS;
3404 else
3406 gcc_assert (REG_P (reg));
3407 pressure_class = reg_allocno_class (REGNO (reg));
3408 pressure_class = ira_pressure_class_translate[pressure_class];
3409 *nregs
3410 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3412 return pressure_class;
3415 /* Increase (if INCR_P) or decrease current register pressure for
3416 register REGNO. */
3417 static void
3418 change_pressure (int regno, bool incr_p)
3420 int nregs;
3421 enum reg_class pressure_class;
3423 pressure_class = get_regno_pressure_class (regno, &nregs);
3424 if (! incr_p)
3425 curr_reg_pressure[pressure_class] -= nregs;
3426 else
3428 curr_reg_pressure[pressure_class] += nregs;
3429 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3430 < curr_reg_pressure[pressure_class])
3431 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3432 = curr_reg_pressure[pressure_class];
3436 /* Calculate register pressure for each basic block by walking insns
3437 from last to first. */
3438 static void
3439 calculate_bb_reg_pressure (void)
3441 int i;
3442 unsigned int j;
3443 rtx_insn *insn;
3444 basic_block bb;
3445 bitmap curr_regs_live;
3446 bitmap_iterator bi;
3449 ira_setup_eliminable_regset ();
3450 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3451 FOR_EACH_BB_FN (bb, cfun)
3453 curr_bb = bb;
3454 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3455 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3456 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3457 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3458 for (i = 0; i < ira_pressure_classes_num; i++)
3459 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3460 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3461 change_pressure (j, true);
3463 FOR_BB_INSNS_REVERSE (bb, insn)
3465 rtx dreg;
3466 int regno;
3467 df_ref def, use;
3469 if (! NONDEBUG_INSN_P (insn))
3470 continue;
3472 FOR_EACH_INSN_DEF (def, insn)
3474 dreg = DF_REF_REAL_REG (def);
3475 gcc_assert (REG_P (dreg));
3476 regno = REGNO (dreg);
3477 if (!(DF_REF_FLAGS (def)
3478 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3480 if (bitmap_clear_bit (curr_regs_live, regno))
3481 change_pressure (regno, false);
3485 FOR_EACH_INSN_USE (use, insn)
3487 dreg = DF_REF_REAL_REG (use);
3488 gcc_assert (REG_P (dreg));
3489 regno = REGNO (dreg);
3490 if (bitmap_set_bit (curr_regs_live, regno))
3491 change_pressure (regno, true);
3495 BITMAP_FREE (curr_regs_live);
3497 if (dump_file == NULL)
3498 return;
3500 fprintf (dump_file, "\nRegister Pressure: \n");
3501 FOR_EACH_BB_FN (bb, cfun)
3503 fprintf (dump_file, " Basic block %d: \n", bb->index);
3504 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3506 enum reg_class pressure_class;
3508 pressure_class = ira_pressure_classes[i];
3509 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3510 continue;
3512 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3513 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3516 fprintf (dump_file, "\n");
3519 /* Top level routine to perform one code hoisting (aka unification) pass
3521 Return nonzero if a change was made. */
3523 static int
3524 one_code_hoisting_pass (void)
3526 int changed = 0;
3528 gcse_subst_count = 0;
3529 gcse_create_count = 0;
3531 /* Return if there's nothing to do, or it is too expensive. */
3532 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3533 || is_too_expensive (_("GCSE disabled")))
3534 return 0;
3536 doing_code_hoisting_p = true;
3538 /* Calculate register pressure for each basic block. */
3539 if (flag_ira_hoist_pressure)
3541 regstat_init_n_sets_and_refs ();
3542 ira_set_pseudo_classes (false, dump_file);
3543 alloc_aux_for_blocks (sizeof (struct bb_data));
3544 calculate_bb_reg_pressure ();
3545 regstat_free_n_sets_and_refs ();
3548 /* We need alias. */
3549 init_alias_analysis ();
3551 bytes_used = 0;
3552 gcc_obstack_init (&gcse_obstack);
3553 alloc_gcse_mem ();
3555 alloc_hash_table (&expr_hash_table);
3556 compute_hash_table (&expr_hash_table);
3557 if (dump_file)
3558 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3560 if (expr_hash_table.n_elems > 0)
3562 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3563 expr_hash_table.n_elems);
3564 compute_code_hoist_data ();
3565 changed = hoist_code ();
3566 free_code_hoist_mem ();
3569 if (flag_ira_hoist_pressure)
3571 free_aux_for_blocks ();
3572 free_reg_info ();
3574 free_hash_table (&expr_hash_table);
3575 free_gcse_mem ();
3576 obstack_free (&gcse_obstack, NULL);
3578 /* We are finished with alias. */
3579 end_alias_analysis ();
3581 if (dump_file)
3583 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3584 current_function_name (), n_basic_blocks_for_fn (cfun),
3585 bytes_used);
3586 fprintf (dump_file, "%d substs, %d insns created\n",
3587 gcse_subst_count, gcse_create_count);
3590 doing_code_hoisting_p = false;
3592 return changed;
3595 /* Here we provide the things required to do store motion towards the exit.
3596 In order for this to be effective, gcse also needed to be taught how to
3597 move a load when it is killed only by a store to itself.
3599 int i;
3600 float a[10];
3602 void foo(float scale)
3604 for (i=0; i<10; i++)
3605 a[i] *= scale;
3608 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3609 the load out since its live around the loop, and stored at the bottom
3610 of the loop.
3612 The 'Load Motion' referred to and implemented in this file is
3613 an enhancement to gcse which when using edge based LCM, recognizes
3614 this situation and allows gcse to move the load out of the loop.
3616 Once gcse has hoisted the load, store motion can then push this
3617 load towards the exit, and we end up with no loads or stores of 'i'
3618 in the loop. */
3620 /* This will search the ldst list for a matching expression. If it
3621 doesn't find one, we create one and initialize it. */
3623 static struct ls_expr *
3624 ldst_entry (rtx x)
3626 int do_not_record_p = 0;
3627 struct ls_expr * ptr;
3628 unsigned int hash;
3629 ls_expr **slot;
3630 struct ls_expr e;
3632 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3633 NULL, /*have_reg_qty=*/false);
3635 e.pattern = x;
3636 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3637 if (*slot)
3638 return *slot;
3640 ptr = XNEW (struct ls_expr);
3642 ptr->next = pre_ldst_mems;
3643 ptr->expr = NULL;
3644 ptr->pattern = x;
3645 ptr->pattern_regs = NULL_RTX;
3646 ptr->loads = NULL;
3647 ptr->stores = NULL;
3648 ptr->reaching_reg = NULL_RTX;
3649 ptr->invalid = 0;
3650 ptr->index = 0;
3651 ptr->hash_index = hash;
3652 pre_ldst_mems = ptr;
3653 *slot = ptr;
3655 return ptr;
3658 /* Free up an individual ldst entry. */
3660 static void
3661 free_ldst_entry (struct ls_expr * ptr)
3663 free_INSN_LIST_list (& ptr->loads);
3664 free_INSN_LIST_list (& ptr->stores);
3666 free (ptr);
3669 /* Free up all memory associated with the ldst list. */
3671 static void
3672 free_ld_motion_mems (void)
3674 delete pre_ldst_table;
3675 pre_ldst_table = NULL;
3677 while (pre_ldst_mems)
3679 struct ls_expr * tmp = pre_ldst_mems;
3681 pre_ldst_mems = pre_ldst_mems->next;
3683 free_ldst_entry (tmp);
3686 pre_ldst_mems = NULL;
3689 /* Dump debugging info about the ldst list. */
3691 static void
3692 print_ldst_list (FILE * file)
3694 struct ls_expr * ptr;
3696 fprintf (file, "LDST list: \n");
3698 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3700 fprintf (file, " Pattern (%3d): ", ptr->index);
3702 print_rtl (file, ptr->pattern);
3704 fprintf (file, "\n Loads : ");
3706 if (ptr->loads)
3707 print_rtl (file, ptr->loads);
3708 else
3709 fprintf (file, "(nil)");
3711 fprintf (file, "\n Stores : ");
3713 if (ptr->stores)
3714 print_rtl (file, ptr->stores);
3715 else
3716 fprintf (file, "(nil)");
3718 fprintf (file, "\n\n");
3721 fprintf (file, "\n");
3724 /* Returns 1 if X is in the list of ldst only expressions. */
3726 static struct ls_expr *
3727 find_rtx_in_ldst (rtx x)
3729 struct ls_expr e;
3730 ls_expr **slot;
3731 if (!pre_ldst_table)
3732 return NULL;
3733 e.pattern = x;
3734 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3735 if (!slot || (*slot)->invalid)
3736 return NULL;
3737 return *slot;
3740 /* Load Motion for loads which only kill themselves. */
3742 /* Return true if x, a MEM, is a simple access with no side effects.
3743 These are the types of loads we consider for the ld_motion list,
3744 otherwise we let the usual aliasing take care of it. */
3746 static int
3747 simple_mem (const_rtx x)
3749 if (MEM_VOLATILE_P (x))
3750 return 0;
3752 if (GET_MODE (x) == BLKmode)
3753 return 0;
3755 /* If we are handling exceptions, we must be careful with memory references
3756 that may trap. If we are not, the behavior is undefined, so we may just
3757 continue. */
3758 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3759 return 0;
3761 if (side_effects_p (x))
3762 return 0;
3764 /* Do not consider function arguments passed on stack. */
3765 if (reg_mentioned_p (stack_pointer_rtx, x))
3766 return 0;
3768 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3769 return 0;
3771 return 1;
3774 /* Make sure there isn't a buried reference in this pattern anywhere.
3775 If there is, invalidate the entry for it since we're not capable
3776 of fixing it up just yet.. We have to be sure we know about ALL
3777 loads since the aliasing code will allow all entries in the
3778 ld_motion list to not-alias itself. If we miss a load, we will get
3779 the wrong value since gcse might common it and we won't know to
3780 fix it up. */
3782 static void
3783 invalidate_any_buried_refs (rtx x)
3785 const char * fmt;
3786 int i, j;
3787 struct ls_expr * ptr;
3789 /* Invalidate it in the list. */
3790 if (MEM_P (x) && simple_mem (x))
3792 ptr = ldst_entry (x);
3793 ptr->invalid = 1;
3796 /* Recursively process the insn. */
3797 fmt = GET_RTX_FORMAT (GET_CODE (x));
3799 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3801 if (fmt[i] == 'e')
3802 invalidate_any_buried_refs (XEXP (x, i));
3803 else if (fmt[i] == 'E')
3804 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3805 invalidate_any_buried_refs (XVECEXP (x, i, j));
3809 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3810 being defined as MEM loads and stores to symbols, with no side effects
3811 and no registers in the expression. For a MEM destination, we also
3812 check that the insn is still valid if we replace the destination with a
3813 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3814 which don't match this criteria, they are invalidated and trimmed out
3815 later. */
3817 static void
3818 compute_ld_motion_mems (void)
3820 struct ls_expr * ptr;
3821 basic_block bb;
3822 rtx_insn *insn;
3824 pre_ldst_mems = NULL;
3825 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3827 FOR_EACH_BB_FN (bb, cfun)
3829 FOR_BB_INSNS (bb, insn)
3831 if (NONDEBUG_INSN_P (insn))
3833 if (GET_CODE (PATTERN (insn)) == SET)
3835 rtx src = SET_SRC (PATTERN (insn));
3836 rtx dest = SET_DEST (PATTERN (insn));
3837 rtx note = find_reg_equal_equiv_note (insn);
3838 rtx src_eq;
3840 /* Check for a simple LOAD... */
3841 if (MEM_P (src) && simple_mem (src))
3843 ptr = ldst_entry (src);
3844 if (REG_P (dest))
3845 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3846 else
3847 ptr->invalid = 1;
3849 else
3851 /* Make sure there isn't a buried load somewhere. */
3852 invalidate_any_buried_refs (src);
3855 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3856 src_eq = XEXP (note, 0);
3857 else
3858 src_eq = NULL_RTX;
3860 if (src_eq != NULL_RTX
3861 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3862 invalidate_any_buried_refs (src_eq);
3864 /* Check for stores. Don't worry about aliased ones, they
3865 will block any movement we might do later. We only care
3866 about this exact pattern since those are the only
3867 circumstance that we will ignore the aliasing info. */
3868 if (MEM_P (dest) && simple_mem (dest))
3870 ptr = ldst_entry (dest);
3872 if (! MEM_P (src)
3873 && GET_CODE (src) != ASM_OPERANDS
3874 /* Check for REG manually since want_to_gcse_p
3875 returns 0 for all REGs. */
3876 && can_assign_to_reg_without_clobbers_p (src))
3877 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3878 else
3879 ptr->invalid = 1;
3882 else
3883 invalidate_any_buried_refs (PATTERN (insn));
3889 /* Remove any references that have been either invalidated or are not in the
3890 expression list for pre gcse. */
3892 static void
3893 trim_ld_motion_mems (void)
3895 struct ls_expr * * last = & pre_ldst_mems;
3896 struct ls_expr * ptr = pre_ldst_mems;
3898 while (ptr != NULL)
3900 struct gcse_expr * expr;
3902 /* Delete if entry has been made invalid. */
3903 if (! ptr->invalid)
3905 /* Delete if we cannot find this mem in the expression list. */
3906 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3908 for (expr = expr_hash_table.table[hash];
3909 expr != NULL;
3910 expr = expr->next_same_hash)
3911 if (expr_equiv_p (expr->expr, ptr->pattern))
3912 break;
3914 else
3915 expr = (struct gcse_expr *) 0;
3917 if (expr)
3919 /* Set the expression field if we are keeping it. */
3920 ptr->expr = expr;
3921 last = & ptr->next;
3922 ptr = ptr->next;
3924 else
3926 *last = ptr->next;
3927 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3928 free_ldst_entry (ptr);
3929 ptr = * last;
3933 /* Show the world what we've found. */
3934 if (dump_file && pre_ldst_mems != NULL)
3935 print_ldst_list (dump_file);
3938 /* This routine will take an expression which we are replacing with
3939 a reaching register, and update any stores that are needed if
3940 that expression is in the ld_motion list. Stores are updated by
3941 copying their SRC to the reaching register, and then storing
3942 the reaching register into the store location. These keeps the
3943 correct value in the reaching register for the loads. */
3945 static void
3946 update_ld_motion_stores (struct gcse_expr * expr)
3948 struct ls_expr * mem_ptr;
3950 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3952 /* We can try to find just the REACHED stores, but is shouldn't
3953 matter to set the reaching reg everywhere... some might be
3954 dead and should be eliminated later. */
3956 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3957 where reg is the reaching reg used in the load. We checked in
3958 compute_ld_motion_mems that we can replace (set mem expr) with
3959 (set reg expr) in that insn. */
3960 rtx list = mem_ptr->stores;
3962 for ( ; list != NULL_RTX; list = XEXP (list, 1))
3964 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3965 rtx pat = PATTERN (insn);
3966 rtx src = SET_SRC (pat);
3967 rtx reg = expr->reaching_reg;
3968 rtx copy;
3970 /* If we've already copied it, continue. */
3971 if (expr->reaching_reg == src)
3972 continue;
3974 if (dump_file)
3976 fprintf (dump_file, "PRE: store updated with reaching reg ");
3977 print_rtl (dump_file, reg);
3978 fprintf (dump_file, ":\n ");
3979 print_inline_rtx (dump_file, insn, 8);
3980 fprintf (dump_file, "\n");
3983 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3984 emit_insn_before (copy, insn);
3985 SET_SRC (pat) = reg;
3986 df_insn_rescan (insn);
3988 /* un-recognize this pattern since it's probably different now. */
3989 INSN_CODE (insn) = -1;
3990 gcse_create_count++;
3995 /* Return true if the graph is too expensive to optimize. PASS is the
3996 optimization about to be performed. */
3998 static bool
3999 is_too_expensive (const char *pass)
4001 /* Trying to perform global optimizations on flow graphs which have
4002 a high connectivity will take a long time and is unlikely to be
4003 particularly useful.
4005 In normal circumstances a cfg should have about twice as many
4006 edges as blocks. But we do not want to punish small functions
4007 which have a couple switch statements. Rather than simply
4008 threshold the number of blocks, uses something with a more
4009 graceful degradation. */
4010 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4012 warning (OPT_Wdisabled_optimization,
4013 "%s: %d basic blocks and %d edges/basic block",
4014 pass, n_basic_blocks_for_fn (cfun),
4015 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4017 return true;
4020 /* If allocating memory for the dataflow bitmaps would take up too much
4021 storage it's better just to disable the optimization. */
4022 if ((n_basic_blocks_for_fn (cfun)
4023 * SBITMAP_SET_SIZE (max_reg_num ())
4024 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4026 warning (OPT_Wdisabled_optimization,
4027 "%s: %d basic blocks and %d registers",
4028 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4030 return true;
4033 return false;
4036 static unsigned int
4037 execute_rtl_pre (void)
4039 int changed;
4040 delete_unreachable_blocks ();
4041 df_analyze ();
4042 changed = one_pre_gcse_pass ();
4043 flag_rerun_cse_after_global_opts |= changed;
4044 if (changed)
4045 cleanup_cfg (0);
4046 return 0;
4049 static unsigned int
4050 execute_rtl_hoist (void)
4052 int changed;
4053 delete_unreachable_blocks ();
4054 df_analyze ();
4055 changed = one_code_hoisting_pass ();
4056 flag_rerun_cse_after_global_opts |= changed;
4057 if (changed)
4058 cleanup_cfg (0);
4059 return 0;
4062 namespace {
4064 const pass_data pass_data_rtl_pre =
4066 RTL_PASS, /* type */
4067 "rtl pre", /* name */
4068 OPTGROUP_NONE, /* optinfo_flags */
4069 TV_PRE, /* tv_id */
4070 PROP_cfglayout, /* properties_required */
4071 0, /* properties_provided */
4072 0, /* properties_destroyed */
4073 0, /* todo_flags_start */
4074 TODO_df_finish, /* todo_flags_finish */
4077 class pass_rtl_pre : public rtl_opt_pass
4079 public:
4080 pass_rtl_pre (gcc::context *ctxt)
4081 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4084 /* opt_pass methods: */
4085 virtual bool gate (function *);
4086 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4088 }; // class pass_rtl_pre
4090 /* We do not construct an accurate cfg in functions which call
4091 setjmp, so none of these passes runs if the function calls
4092 setjmp.
4093 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4095 bool
4096 pass_rtl_pre::gate (function *fun)
4098 return optimize > 0 && flag_gcse
4099 && !fun->calls_setjmp
4100 && optimize_function_for_speed_p (fun)
4101 && dbg_cnt (pre);
4104 } // anon namespace
4106 rtl_opt_pass *
4107 make_pass_rtl_pre (gcc::context *ctxt)
4109 return new pass_rtl_pre (ctxt);
4112 namespace {
4114 const pass_data pass_data_rtl_hoist =
4116 RTL_PASS, /* type */
4117 "hoist", /* name */
4118 OPTGROUP_NONE, /* optinfo_flags */
4119 TV_HOIST, /* tv_id */
4120 PROP_cfglayout, /* properties_required */
4121 0, /* properties_provided */
4122 0, /* properties_destroyed */
4123 0, /* todo_flags_start */
4124 TODO_df_finish, /* todo_flags_finish */
4127 class pass_rtl_hoist : public rtl_opt_pass
4129 public:
4130 pass_rtl_hoist (gcc::context *ctxt)
4131 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4134 /* opt_pass methods: */
4135 virtual bool gate (function *);
4136 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4138 }; // class pass_rtl_hoist
4140 bool
4141 pass_rtl_hoist::gate (function *)
4143 return optimize > 0 && flag_gcse
4144 && !cfun->calls_setjmp
4145 /* It does not make sense to run code hoisting unless we are optimizing
4146 for code size -- it rarely makes programs faster, and can make then
4147 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4148 && optimize_function_for_size_p (cfun)
4149 && dbg_cnt (hoist);
4152 } // anon namespace
4154 rtl_opt_pass *
4155 make_pass_rtl_hoist (gcc::context *ctxt)
4157 return new pass_rtl_hoist (ctxt);
4160 /* Reset all state within gcse.c so that we can rerun the compiler
4161 within the same process. For use by toplev::finalize. */
4163 void
4164 gcse_c_finalize (void)
4166 test_insn = NULL;
4169 #include "gt-gcse.h"