* target.h (targetm.calls.arg_partial_bytes): New.
[official-gcc.git] / gcc / config / mn10300 / mn10300.h
blob121d087a1e545d5ea47a4124238360a11e09e746
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
25 #undef ASM_SPEC
26 #undef LIB_SPEC
27 #undef ENDFILE_SPEC
28 #undef LINK_SPEC
29 #define LINK_SPEC "%{mrelax:--relax}"
30 #undef STARTFILE_SPEC
31 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
33 /* Names to predefine in the preprocessor for this target machine. */
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do \
37 { \
38 builtin_define ("__mn10300__"); \
39 builtin_define ("__MN10300__"); \
40 } \
41 while (0)
43 #define CPP_SPEC "%{mam33:-D__AM33__} %{mam33-2:-D__AM33__=2 -D__AM33_2__}"
45 /* Run-time compilation parameters selecting different hardware subsets. */
47 extern int target_flags;
49 extern GTY(()) int mn10300_unspec_int_label_counter;
51 /* Macros used in the machine description to test the flags. */
53 /* Macro to define tables used to set the flags.
54 This is a list in braces of pairs in braces,
55 each pair being { "NAME", VALUE }
56 where VALUE is the bits to set or minus the bits to clear.
57 An empty string NAME is used to identify the default VALUE. */
59 /* Generate code to work around mul/mulq bugs on the mn10300. */
60 #define TARGET_MULT_BUG (target_flags & 0x1)
62 /* Generate code for the AM33 processor. */
63 #define TARGET_AM33 (target_flags & 0x2)
65 /* Generate code for the AM33/2.0 processor. */
66 #define TARGET_AM33_2 (target_flags & 0x4)
68 #define TARGET_SWITCHES \
69 {{ "mult-bug", 0x1, N_("Work around hardware multiply bug")}, \
70 { "no-mult-bug", -0x1, N_("Do not work around hardware multiply bug")},\
71 { "am33", 0x2, N_("Target the AM33 processor")}, \
72 { "am33", -(0x1), ""},\
73 { "no-am33", -0x2, ""}, \
74 { "no-crt0", 0, N_("No default crt0.o") }, \
75 { "am33-2", 0x6, N_("Target the AM33/2.0 processor")}, \
76 { "am33-2", -(0x1), ""},\
77 { "no-am33-2", -0x4, ""}, \
78 { "relax", 0, N_("Enable linker relaxations") }, \
79 { "", TARGET_DEFAULT, NULL}}
81 #ifndef TARGET_DEFAULT
82 #define TARGET_DEFAULT 0x1
83 #endif
85 /* Print subsidiary information on the compiler version in use. */
87 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
90 /* Target machine storage layout */
92 /* Define this if most significant bit is lowest numbered
93 in instructions that operate on numbered bit-fields.
94 This is not true on the Matsushita MN1003. */
95 #define BITS_BIG_ENDIAN 0
97 /* Define this if most significant byte of a word is the lowest numbered. */
98 /* This is not true on the Matsushita MN10300. */
99 #define BYTES_BIG_ENDIAN 0
101 /* Define this if most significant word of a multiword number is lowest
102 numbered.
103 This is not true on the Matsushita MN10300. */
104 #define WORDS_BIG_ENDIAN 0
106 /* Width of a word, in units (bytes). */
107 #define UNITS_PER_WORD 4
109 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
110 #define PARM_BOUNDARY 32
112 /* The stack goes in 32 bit lumps. */
113 #define STACK_BOUNDARY 32
115 /* Allocation boundary (in *bits*) for the code of a function.
116 8 is the minimum boundary; it's unclear if bigger alignments
117 would improve performance. */
118 #define FUNCTION_BOUNDARY 8
120 /* No data type wants to be aligned rounder than this. */
121 #define BIGGEST_ALIGNMENT 32
123 /* Alignment of field after `int : 0' in a structure. */
124 #define EMPTY_FIELD_BOUNDARY 32
126 /* Define this if move instructions will actually fail to work
127 when given unaligned data. */
128 #define STRICT_ALIGNMENT 1
130 /* Define this as 1 if `char' should by default be signed; else as 0. */
131 #define DEFAULT_SIGNED_CHAR 0
133 /* Standard register usage. */
135 /* Number of actual hardware registers.
136 The hardware registers are assigned numbers for the compiler
137 from 0 to just below FIRST_PSEUDO_REGISTER.
139 All registers that the compiler knows about must be given numbers,
140 even those that are not normally considered general registers. */
142 #define FIRST_PSEUDO_REGISTER 50
144 /* Specify machine-specific register numbers. */
145 #define FIRST_DATA_REGNUM 0
146 #define LAST_DATA_REGNUM 3
147 #define FIRST_ADDRESS_REGNUM 4
148 #define LAST_ADDRESS_REGNUM 8
149 #define FIRST_EXTENDED_REGNUM 10
150 #define LAST_EXTENDED_REGNUM 17
151 #define FIRST_FP_REGNUM 18
152 #define LAST_FP_REGNUM 49
154 /* Specify the registers used for certain standard purposes.
155 The values of these macros are register numbers. */
157 /* Register to use for pushing function arguments. */
158 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM+1)
160 /* Base register for access to local variables of the function. */
161 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM-1)
163 /* Base register for access to arguments of the function. This
164 is a fake register and will be eliminated into either the frame
165 pointer or stack pointer. */
166 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
168 /* Register in which static-chain is passed to a function. */
169 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM+1)
171 /* 1 for registers that have pervasive standard uses
172 and are not available for the register allocator. */
174 #define FIXED_REGISTERS \
175 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \
176 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
177 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
180 /* 1 for registers not available across function calls.
181 These must include the FIXED_REGISTERS and also any
182 registers that can be used without being saved.
183 The latter must include the registers where values are returned
184 and the register where structure-value addresses are passed.
185 Aside from that, you can include as many other registers as you
186 like. */
188 #define CALL_USED_REGISTERS \
189 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \
190 , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
191 , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
194 #define REG_ALLOC_ORDER \
195 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
196 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
197 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 \
200 #define CONDITIONAL_REGISTER_USAGE \
202 unsigned int i; \
204 if (!TARGET_AM33) \
206 for (i = FIRST_EXTENDED_REGNUM; \
207 i <= LAST_EXTENDED_REGNUM; i++) \
208 fixed_regs[i] = call_used_regs[i] = 1; \
210 if (!TARGET_AM33_2) \
212 for (i = FIRST_FP_REGNUM; \
213 i <= LAST_FP_REGNUM; \
214 i++) \
215 fixed_regs[i] = call_used_regs[i] = 1; \
217 if (flag_pic) \
218 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = \
219 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;\
222 /* Return number of consecutive hard regs needed starting at reg REGNO
223 to hold something of mode MODE.
225 This is ordinarily the length in words of a value of mode MODE
226 but can be less for certain modes in special long registers. */
228 #define HARD_REGNO_NREGS(REGNO, MODE) \
229 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
231 /* Value is 1 if hard register REGNO can hold a value of machine-mode
232 MODE. */
234 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
235 ((REGNO_REG_CLASS (REGNO) == DATA_REGS \
236 || (TARGET_AM33 && REGNO_REG_CLASS (REGNO) == ADDRESS_REGS) \
237 || REGNO_REG_CLASS (REGNO) == EXTENDED_REGS) \
238 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
239 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
241 /* Value is 1 if it is a good idea to tie two pseudo registers
242 when one has mode MODE1 and one has mode MODE2.
243 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
244 for any hard reg, then this must be 0 for correct output. */
245 #define MODES_TIEABLE_P(MODE1, MODE2) \
246 (TARGET_AM33 \
247 || MODE1 == MODE2 \
248 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
250 /* 4 data, and effectively 3 address registers is small as far as I'm
251 concerned. */
252 #define SMALL_REGISTER_CLASSES 1
254 /* Define the classes of registers for register constraints in the
255 machine description. Also define ranges of constants.
257 One of the classes must always be named ALL_REGS and include all hard regs.
258 If there is more than one class, another class must be named NO_REGS
259 and contain no registers.
261 The name GENERAL_REGS must be the name of a class (or an alias for
262 another name such as ALL_REGS). This is the class of registers
263 that is allowed by "g" or "r" in a register constraint.
264 Also, registers outside this class are allocated only when
265 instructions express preferences for them.
267 The classes must be numbered in nondecreasing order; that is,
268 a larger-numbered class must never be contained completely
269 in a smaller-numbered class.
271 For any two classes, it is very desirable that there be another
272 class that represents their union. */
274 enum reg_class {
275 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
276 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
277 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
278 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
279 FP_REGS, FP_ACC_REGS,
280 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
283 #define N_REG_CLASSES (int) LIM_REG_CLASSES
285 /* Give names of register classes as strings for dump file. */
287 #define REG_CLASS_NAMES \
288 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
289 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
290 "EXTENDED_REGS", \
291 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
292 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
293 "FP_REGS", "FP_ACC_REGS", \
294 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
296 /* Define which registers fit in which classes.
297 This is an initializer for a vector of HARD_REG_SET
298 of length N_REG_CLASSES. */
300 #define REG_CLASS_CONTENTS \
301 { { 0, 0 }, /* No regs */ \
302 { 0x0000f, 0 }, /* DATA_REGS */ \
303 { 0x001f0, 0 }, /* ADDRESS_REGS */ \
304 { 0x00200, 0 }, /* SP_REGS */ \
305 { 0x001ff, 0 }, /* DATA_OR_ADDRESS_REGS */\
306 { 0x003f0, 0 }, /* SP_OR_ADDRESS_REGS */\
307 { 0x3fc00, 0 }, /* EXTENDED_REGS */ \
308 { 0x3fc0f, 0 }, /* DATA_OR_EXTENDED_REGS */ \
309 { 0x3fdf0, 0 }, /* ADDRESS_OR_EXTENDED_REGS */ \
310 { 0x3fe00, 0 }, /* SP_OR_EXTENDED_REGS */ \
311 { 0x3fff0, 0 }, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
312 { 0xfffc0000, 0x3ffff }, /* FP_REGS */ \
313 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
314 { 0x3fdff, 0 }, /* GENERAL_REGS */ \
315 { 0xffffffff, 0x3ffff } /* ALL_REGS */ \
318 /* The same information, inverted:
319 Return the class number of the smallest class containing
320 reg number REGNO. This could be a conditional expression
321 or could index an array. */
323 #define REGNO_REG_CLASS(REGNO) \
324 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
325 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
326 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
327 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
328 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
329 NO_REGS)
331 /* The class value for index registers, and the one for base regs. */
332 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
333 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
335 /* Get reg_class from a letter such as appears in the machine description. */
337 #define REG_CLASS_FROM_LETTER(C) \
338 ((C) == 'd' ? DATA_REGS : \
339 (C) == 'a' ? ADDRESS_REGS : \
340 (C) == 'y' ? SP_REGS : \
341 ! TARGET_AM33 ? NO_REGS : \
342 (C) == 'x' ? EXTENDED_REGS : \
343 ! TARGET_AM33_2 ? NO_REGS : \
344 (C) == 'f' ? FP_REGS : \
345 (C) == 'A' ? FP_ACC_REGS : \
346 NO_REGS)
348 /* Macros to check register numbers against specific register classes. */
350 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
351 and check its validity for a certain class.
352 We have two alternate definitions for each of them.
353 The usual definition accepts all pseudo regs; the other rejects
354 them unless they have been allocated suitable hard regs.
355 The symbol REG_OK_STRICT causes the latter definition to be used.
357 Most source files want to accept pseudo regs in the hope that
358 they will get allocated to the class that the insn wants them to be in.
359 Source files for reload pass need to be strict.
360 After reload, it makes no difference, since pseudo regs have
361 been eliminated by then. */
363 /* These assume that REGNO is a hard or pseudo reg number.
364 They give nonzero only if REGNO is a hard reg of the suitable class
365 or a pseudo reg currently allocated to a suitable hard reg.
366 Since they use reg_renumber, they are safe only once reg_renumber
367 has been allocated, which happens in local-alloc.c. */
369 #ifndef REG_OK_STRICT
370 # define REG_STRICT 0
371 #else
372 # define REG_STRICT 1
373 #endif
375 # define REGNO_IN_RANGE_P(regno,min,max,strict) \
376 (IN_RANGE ((regno), (min), (max)) \
377 || ((strict) \
378 ? (reg_renumber \
379 && reg_renumber[(regno)] >= (min) \
380 && reg_renumber[(regno)] <= (max)) \
381 : (regno) >= FIRST_PSEUDO_REGISTER))
383 #define REGNO_DATA_P(regno, strict) \
384 (REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM, \
385 (strict)))
386 #define REGNO_ADDRESS_P(regno, strict) \
387 (REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM, \
388 (strict)))
389 #define REGNO_SP_P(regno, strict) \
390 (REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, \
391 (strict)))
392 #define REGNO_EXTENDED_P(regno, strict) \
393 (REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM, \
394 (strict)))
395 #define REGNO_AM33_P(regno, strict) \
396 (REGNO_DATA_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)) \
397 || REGNO_EXTENDED_P ((regno), (strict)))
398 #define REGNO_FP_P(regno, strict) \
399 (REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM, (strict)))
401 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
402 (REGNO_SP_P ((regno), (strict)) \
403 || REGNO_ADDRESS_P ((regno), (strict)) \
404 || REGNO_EXTENDED_P ((regno), (strict)))
405 #define REGNO_OK_FOR_BASE_P(regno) \
406 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
407 #define REG_OK_FOR_BASE_P(X) \
408 (REGNO_OK_FOR_BASE_P (REGNO (X)))
410 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
411 (REGNO_SP_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)))
412 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
413 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
414 #define REG_OK_FOR_BIT_BASE_P(X) \
415 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
417 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
418 (REGNO_DATA_P ((regno), (strict)) || REGNO_EXTENDED_P ((regno), (strict)))
419 #define REGNO_OK_FOR_INDEX_P(regno) \
420 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
421 #define REG_OK_FOR_INDEX_P(X) \
422 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
424 /* Given an rtx X being reloaded into a reg required to be
425 in class CLASS, return the class of reg to actually use.
426 In general this is just CLASS; but on some machines
427 in some cases it is preferable to use a more restrictive class. */
429 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
430 ((X) == stack_pointer_rtx && (CLASS) != SP_REGS \
431 ? ADDRESS_OR_EXTENDED_REGS \
432 : (GET_CODE (X) == MEM \
433 || (GET_CODE (X) == REG \
434 && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
435 || (GET_CODE (X) == SUBREG \
436 && GET_CODE (SUBREG_REG (X)) == REG \
437 && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER) \
438 ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS) \
439 : (CLASS)))
441 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
442 (X == stack_pointer_rtx && CLASS != SP_REGS \
443 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
445 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
446 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
448 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
449 secondary_reload_class(CLASS,MODE,IN)
451 /* Return the maximum number of consecutive registers
452 needed to represent mode MODE in a register of class CLASS. */
454 #define CLASS_MAX_NREGS(CLASS, MODE) \
455 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
457 /* A class that contains registers which the compiler must always
458 access in a mode that is the same size as the mode in which it
459 loaded the register. */
460 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
462 /* The letters I, J, K, L, M, N, O, P in a register constraint string
463 can be used to stand for particular ranges of immediate operands.
464 This macro defines what the ranges are.
465 C is the letter, and VALUE is a constant value.
466 Return 1 if VALUE is in the range specified by C. */
468 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
469 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
471 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
472 #define CONST_OK_FOR_J(VALUE) ((VALUE) == 1)
473 #define CONST_OK_FOR_K(VALUE) ((VALUE) == 2)
474 #define CONST_OK_FOR_L(VALUE) ((VALUE) == 4)
475 #define CONST_OK_FOR_M(VALUE) ((VALUE) == 3)
476 #define CONST_OK_FOR_N(VALUE) ((VALUE) == 255 || (VALUE) == 65535)
478 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
479 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
480 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
481 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
482 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
483 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
484 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : 0)
487 /* Similar, but for floating constants, and defining letters G and H.
488 Here VALUE is the CONST_DOUBLE rtx itself.
490 `G' is a floating-point zero. */
492 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
493 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
494 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) : 0)
497 /* Stack layout; function entry, exit and calling. */
499 /* Define this if pushing a word on the stack
500 makes the stack pointer a smaller address. */
502 #define STACK_GROWS_DOWNWARD
504 /* Define this if the nominal address of the stack frame
505 is at the high-address end of the local variables;
506 that is, each additional local variable allocated
507 goes at a more negative offset in the frame. */
509 #define FRAME_GROWS_DOWNWARD
511 /* Offset within stack frame to start allocating local variables at.
512 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
513 first local allocated. Otherwise, it is the offset to the BEGINNING
514 of the first local allocated. */
516 #define STARTING_FRAME_OFFSET 0
518 /* Offset of first parameter from the argument pointer register value. */
519 /* Is equal to the size of the saved fp + pc, even if an fp isn't
520 saved since the value is used before we know. */
522 #define FIRST_PARM_OFFSET(FNDECL) 4
524 #define ELIMINABLE_REGS \
525 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
526 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
527 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
529 #define CAN_ELIMINATE(FROM, TO) 1
531 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
532 OFFSET = initial_offset (FROM, TO)
534 /* We can debug without frame pointers on the mn10300, so eliminate
535 them whenever possible. */
536 #define FRAME_POINTER_REQUIRED 0
537 #define CAN_DEBUG_WITHOUT_FP
539 /* Value is the number of bytes of arguments automatically
540 popped when returning from a subroutine call.
541 FUNDECL is the declaration node of the function (as a tree),
542 FUNTYPE is the data type of the function (as a tree),
543 or for a library call it is an identifier node for the subroutine name.
544 SIZE is the number of bytes of arguments passed on the stack. */
546 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
548 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
549 for a register flushback area. */
550 #define REG_PARM_STACK_SPACE(DECL) 8
551 #define OUTGOING_REG_PARM_STACK_SPACE
552 #define ACCUMULATE_OUTGOING_ARGS 1
554 /* So we can allocate space for return pointers once for the function
555 instead of around every call. */
556 #define STACK_POINTER_OFFSET 4
558 /* 1 if N is a possible register number for function argument passing.
559 On the MN10300, no registers are used in this way. */
561 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
564 /* Define a data type for recording info about an argument list
565 during the scan of that argument list. This data type should
566 hold all necessary information about the function itself
567 and about the args processed so far, enough to enable macros
568 such as FUNCTION_ARG to determine where the next arg should go.
570 On the MN10300, this is a single integer, which is a number of bytes
571 of arguments scanned so far. */
573 #define CUMULATIVE_ARGS struct cum_arg
574 struct cum_arg {int nbytes; };
576 /* Initialize a variable CUM of type CUMULATIVE_ARGS
577 for a call to a function whose data type is FNTYPE.
578 For a library call, FNTYPE is 0.
580 On the MN10300, the offset starts at 0. */
582 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
583 ((CUM).nbytes = 0)
585 /* Update the data in CUM to advance over an argument
586 of mode MODE and data type TYPE.
587 (TYPE is null for libcalls where that information may not be available.) */
589 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
590 ((CUM).nbytes += ((MODE) != BLKmode \
591 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
592 : (int_size_in_bytes (TYPE) + 3) & ~3))
594 /* Define where to put the arguments to a function.
595 Value is zero to push the argument on the stack,
596 or a hard register in which to store the argument.
598 MODE is the argument's machine mode.
599 TYPE is the data type of the argument (as a tree).
600 This is null for libcalls where that information may
601 not be available.
602 CUM is a variable of type CUMULATIVE_ARGS which gives info about
603 the preceding args and about the function being called.
604 NAMED is nonzero if this argument is a named parameter
605 (otherwise it is an extra parameter matching an ellipsis). */
607 /* On the MN10300 all args are pushed. */
609 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
610 function_arg (&CUM, MODE, TYPE, NAMED)
612 /* Define how to find the value returned by a function.
613 VALTYPE is the data type of the value (as a tree).
614 If the precise function being called is known, FUNC is its FUNCTION_DECL;
615 otherwise, FUNC is 0. */
617 #define FUNCTION_VALUE(VALTYPE, FUNC) \
618 gen_rtx_REG (TYPE_MODE (VALTYPE), POINTER_TYPE_P (VALTYPE) \
619 ? FIRST_ADDRESS_REGNUM : FIRST_DATA_REGNUM)
621 /* Define how to find the value returned by a library function
622 assuming the value has mode MODE. */
624 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
626 /* 1 if N is a possible register number for a function value. */
628 #define FUNCTION_VALUE_REGNO_P(N) \
629 ((N) == FIRST_DATA_REGNUM || (N) == FIRST_ADDRESS_REGNUM)
631 #define DEFAULT_PCC_STRUCT_RETURN 0
633 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
634 the stack pointer does not matter. The value is tested only in
635 functions that have frame pointers.
636 No definition is equivalent to always zero. */
638 #define EXIT_IGNORE_STACK 1
640 /* Output assembler code to FILE to increment profiler label # LABELNO
641 for profiling a function entry. */
643 #define FUNCTION_PROFILER(FILE, LABELNO) ;
645 #define TRAMPOLINE_TEMPLATE(FILE) \
646 do { \
647 fprintf (FILE, "\tadd -4,sp\n"); \
648 fprintf (FILE, "\t.long 0x0004fffa\n"); \
649 fprintf (FILE, "\tmov (0,sp),a0\n"); \
650 fprintf (FILE, "\tadd 4,sp\n"); \
651 fprintf (FILE, "\tmov (13,a0),a1\n"); \
652 fprintf (FILE, "\tmov (17,a0),a0\n"); \
653 fprintf (FILE, "\tjmp (a0)\n"); \
654 fprintf (FILE, "\t.long 0\n"); \
655 fprintf (FILE, "\t.long 0\n"); \
656 } while (0)
658 /* Length in units of the trampoline for entering a nested function. */
660 #define TRAMPOLINE_SIZE 0x1b
662 #define TRAMPOLINE_ALIGNMENT 32
664 /* Emit RTL insns to initialize the variable parts of a trampoline.
665 FNADDR is an RTX for the address of the function's pure code.
666 CXT is an RTX for the static chain value for the function. */
668 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
670 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
671 (CXT)); \
672 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
673 (FNADDR)); \
675 /* A C expression whose value is RTL representing the value of the return
676 address for the frame COUNT steps up from the current frame.
678 On the mn10300, the return address is not at a constant location
679 due to the frame layout. Luckily, it is at a constant offset from
680 the argument pointer, so we define RETURN_ADDR_RTX to return a
681 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
682 with a reference to the stack/frame pointer + an appropriate offset. */
684 #define RETURN_ADDR_RTX(COUNT, FRAME) \
685 ((COUNT == 0) \
686 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
687 : (rtx) 0)
689 /* Implement `va_start' for varargs and stdarg. */
690 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
691 mn10300_va_start (valist, nextarg)
693 /* 1 if X is an rtx for a constant that is a valid address. */
695 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
697 /* Extra constraints. */
699 #define OK_FOR_Q(OP) \
700 (GET_CODE (OP) == MEM && ! CONSTANT_ADDRESS_P (XEXP (OP, 0)))
702 #define OK_FOR_R(OP) \
703 (GET_CODE (OP) == MEM \
704 && GET_MODE (OP) == QImode \
705 && (CONSTANT_ADDRESS_P (XEXP (OP, 0)) \
706 || (GET_CODE (XEXP (OP, 0)) == REG \
707 && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \
708 && XEXP (OP, 0) != stack_pointer_rtx) \
709 || (GET_CODE (XEXP (OP, 0)) == PLUS \
710 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
711 && REG_OK_FOR_BIT_BASE_P (XEXP (XEXP (OP, 0), 0)) \
712 && XEXP (XEXP (OP, 0), 0) != stack_pointer_rtx \
713 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT \
714 && INT_8_BITS (INTVAL (XEXP (XEXP (OP, 0), 1))))))
716 #define OK_FOR_T(OP) \
717 (GET_CODE (OP) == MEM \
718 && GET_MODE (OP) == QImode \
719 && (GET_CODE (XEXP (OP, 0)) == REG \
720 && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \
721 && XEXP (OP, 0) != stack_pointer_rtx))
723 #define EXTRA_CONSTRAINT(OP, C) \
724 ((C) == 'R' ? OK_FOR_R (OP) \
725 : (C) == 'Q' ? OK_FOR_Q (OP) \
726 : (C) == 'S' && flag_pic \
727 ? GET_CODE (OP) == UNSPEC && (XINT (OP, 1) == UNSPEC_PLT \
728 || XINT (OP, 1) == UNSPEC_PIC) \
729 : (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF \
730 : (C) == 'T' ? OK_FOR_T (OP) \
731 : 0)
733 /* Maximum number of registers that can appear in a valid memory address. */
735 #define MAX_REGS_PER_ADDRESS 2
738 #define HAVE_POST_INCREMENT (TARGET_AM33)
740 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
741 that is a valid memory address for an instruction.
742 The MODE argument is the machine mode for the MEM expression
743 that wants to use this address.
745 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
746 except for CONSTANT_ADDRESS_P which is actually
747 machine-independent.
749 On the mn10300, the value in the address register must be
750 in the same memory space/segment as the effective address.
752 This is problematical for reload since it does not understand
753 that base+index != index+base in a memory reference.
755 Note it is still possible to use reg+reg addressing modes,
756 it's just much more difficult. For a discussion of a possible
757 workaround and solution, see the comments in pa.c before the
758 function record_unscaled_index_insn_codes. */
760 /* Accept either REG or SUBREG where a register is valid. */
762 #define RTX_OK_FOR_BASE_P(X, strict) \
763 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
764 (strict))) \
765 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
766 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
767 (strict))))
769 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
770 do \
772 if (legitimate_address_p ((MODE), (X), REG_STRICT)) \
773 goto ADDR; \
775 while (0)
778 /* Try machine-dependent ways of modifying an illegitimate address
779 to be legitimate. If we find one, return the new, valid address.
780 This macro is used in only one place: `memory_address' in explow.c.
782 OLDX is the address as it was before break_out_memory_refs was called.
783 In some cases it is useful to look at this to decide what needs to be done.
785 MODE and WIN are passed so that this macro can use
786 GO_IF_LEGITIMATE_ADDRESS.
788 It is always safe for this macro to do nothing. It exists to recognize
789 opportunities to optimize the output. */
791 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
792 { rtx orig_x = (X); \
793 (X) = legitimize_address (X, OLDX, MODE); \
794 if ((X) != orig_x && memory_address_p (MODE, X)) \
795 goto WIN; }
797 /* Go to LABEL if ADDR (a legitimate address expression)
798 has an effect that depends on the machine mode it is used for. */
800 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
801 if (GET_CODE (ADDR) == POST_INC) \
802 goto LABEL
804 /* Nonzero if the constant value X is a legitimate general operand.
805 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
807 #define LEGITIMATE_CONSTANT_P(X) 1
809 /* Zero if this needs fixing up to become PIC. */
811 #define LEGITIMATE_PIC_OPERAND_P(X) (legitimate_pic_operand_p (X))
813 /* Register to hold the addressing base for
814 position independent code access to data items. */
815 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
817 /* The name of the pseudo-symbol representing the Global Offset Table. */
818 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
820 #define SYMBOLIC_CONST_P(X) \
821 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
822 && ! LEGITIMATE_PIC_OPERAND_P (X))
824 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
825 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
827 /* Recognize machine-specific patterns that may appear within
828 constants. Used for PIC-specific UNSPECs. */
829 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
830 do \
831 if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
833 switch (XINT ((X), 1)) \
835 case UNSPEC_INT_LABEL: \
836 asm_fprintf ((STREAM), ".%LLIL%d", \
837 INTVAL (XVECEXP ((X), 0, 0))); \
838 break; \
839 case UNSPEC_PIC: \
840 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
841 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
842 break; \
843 case UNSPEC_GOT: \
844 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
845 fputs ("@GOT", (STREAM)); \
846 break; \
847 case UNSPEC_GOTOFF: \
848 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
849 fputs ("@GOTOFF", (STREAM)); \
850 break; \
851 case UNSPEC_PLT: \
852 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
853 fputs ("@PLT", (STREAM)); \
854 break; \
855 default: \
856 goto FAIL; \
858 break; \
860 else \
861 goto FAIL; \
862 while (0)
864 /* Tell final.c how to eliminate redundant test instructions. */
866 /* Here we define machine-dependent flags and fields in cc_status
867 (see `conditions.h'). No extra ones are needed for the VAX. */
869 /* Store in cc_status the expressions
870 that the condition codes will describe
871 after execution of an instruction whose pattern is EXP.
872 Do not alter them if the instruction would not alter the cc's. */
874 #define CC_OVERFLOW_UNUSABLE 0x200
875 #define CC_NO_CARRY CC_NO_OVERFLOW
876 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
878 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
879 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
880 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
881 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
882 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
883 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
884 ! TARGET_AM33 ? 6 : \
885 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
886 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
887 (CLASS1 == FP_REGS || CLASS2 == FP_REGS) ? 6 : \
888 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
891 /* Nonzero if access to memory by bytes or half words is no faster
892 than accessing full words. */
893 #define SLOW_BYTE_ACCESS 1
895 /* Dispatch tables on the mn10300 are extremely expensive in terms of code
896 and readonly data size. So we crank up the case threshold value to
897 encourage a series of if/else comparisons to implement many small switch
898 statements. In theory, this value could be increased much more if we
899 were solely optimizing for space, but we keep it "reasonable" to avoid
900 serious code efficiency lossage. */
901 #define CASE_VALUES_THRESHOLD 6
903 #define NO_FUNCTION_CSE
905 /* According expr.c, a value of around 6 should minimize code size, and
906 for the MN10300 series, that's our primary concern. */
907 #define MOVE_RATIO 6
909 #define TEXT_SECTION_ASM_OP "\t.section .text"
910 #define DATA_SECTION_ASM_OP "\t.section .data"
911 #define BSS_SECTION_ASM_OP "\t.section .bss"
913 #define ASM_COMMENT_START "#"
915 /* Output to assembler file text saying following lines
916 may contain character constants, extra white space, comments, etc. */
918 #define ASM_APP_ON "#APP\n"
920 /* Output to assembler file text saying following lines
921 no longer contain unusual constructs. */
923 #define ASM_APP_OFF "#NO_APP\n"
925 /* This says how to output the assembler to define a global
926 uninitialized but not common symbol.
927 Try to use asm_output_bss to implement this macro. */
929 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
930 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
932 /* Globalizing directive for a label. */
933 #define GLOBAL_ASM_OP "\t.global "
935 /* This is how to output a reference to a user-level label named NAME.
936 `assemble_name' uses this. */
938 #undef ASM_OUTPUT_LABELREF
939 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
940 fprintf (FILE, "_%s", (*targetm.strip_name_encoding) (NAME))
942 #define ASM_PN_FORMAT "%s___%lu"
944 /* This is how we tell the assembler that two symbols have the same value. */
946 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
947 do { assemble_name(FILE, NAME1); \
948 fputs(" = ", FILE); \
949 assemble_name(FILE, NAME2); \
950 fputc('\n', FILE); } while (0)
953 /* How to refer to registers in assembler output.
954 This sequence is indexed by compiler's hard-register-number (see above). */
956 #define REGISTER_NAMES \
957 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
958 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
959 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
960 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
961 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
962 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
965 #define ADDITIONAL_REGISTER_NAMES \
966 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
967 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
968 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
969 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
970 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
971 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
972 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
973 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
976 /* Print an instruction operand X on file FILE.
977 look in mn10300.c for details */
979 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
981 /* Print a memory operand whose address is X, on file FILE.
982 This uses a function in output-vax.c. */
984 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
986 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
987 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
989 /* This is how to output an element of a case-vector that is absolute. */
991 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
992 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
994 /* This is how to output an element of a case-vector that is relative. */
996 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
997 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
999 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1000 if ((LOG) != 0) \
1001 fprintf (FILE, "\t.align %d\n", (LOG))
1003 /* We don't have to worry about dbx compatibility for the mn10300. */
1004 #define DEFAULT_GDB_EXTENSIONS 1
1006 /* Use dwarf2 debugging info by default. */
1007 #undef PREFERRED_DEBUGGING_TYPE
1008 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1010 #define DWARF2_ASM_LINE_DEBUG_INFO 1
1012 /* GDB always assumes the current function's frame begins at the value
1013 of the stack pointer upon entry to the current function. Accessing
1014 local variables and parameters passed on the stack is done using the
1015 base of the frame + an offset provided by GCC.
1017 For functions which have frame pointers this method works fine;
1018 the (frame pointer) == (stack pointer at function entry) and GCC provides
1019 an offset relative to the frame pointer.
1021 This loses for functions without a frame pointer; GCC provides an offset
1022 which is relative to the stack pointer after adjusting for the function's
1023 frame size. GDB would prefer the offset to be relative to the value of
1024 the stack pointer at the function's entry. Yuk! */
1025 #define DEBUGGER_AUTO_OFFSET(X) \
1026 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
1027 + (frame_pointer_needed \
1028 ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1030 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1031 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
1032 + (frame_pointer_needed \
1033 ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1035 /* Specify the machine mode that this machine uses
1036 for the index in the tablejump instruction. */
1037 #define CASE_VECTOR_MODE Pmode
1039 /* Define if operations between registers always perform the operation
1040 on the full register even if a narrower mode is specified. */
1041 #define WORD_REGISTER_OPERATIONS
1043 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1045 /* This flag, if defined, says the same insns that convert to a signed fixnum
1046 also convert validly to an unsigned one. */
1047 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1049 /* Max number of bytes we can move from memory to memory
1050 in one reasonably fast instruction. */
1051 #define MOVE_MAX 4
1053 /* Define if shifts truncate the shift count
1054 which implies one can omit a sign-extension or zero-extension
1055 of a shift count. */
1056 #define SHIFT_COUNT_TRUNCATED 1
1058 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1059 is done just by pretending it is already truncated. */
1060 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1062 /* Specify the machine mode that pointers have.
1063 After generation of rtl, the compiler makes no further distinction
1064 between pointers and any other objects of this machine mode. */
1065 #define Pmode SImode
1067 /* A function address in a call instruction
1068 is a byte address (for indexing purposes)
1069 so give the MEM rtx a byte's mode. */
1070 #define FUNCTION_MODE QImode
1072 /* The assembler op to get a word. */
1074 #define FILE_ASM_OP "\t.file\n"
1076 #define PREDICATE_CODES \
1077 {"const_1f_operand", {CONST_INT, CONST_DOUBLE}}, \
1078 {"const_8bit_operand", {CONST_INT}}, \
1079 {"call_address_operand", {SYMBOL_REF, REG, UNSPEC}},
1081 typedef struct mn10300_cc_status_mdep
1083 int fpCC;
1085 cc_status_mdep;
1087 #define CC_STATUS_MDEP cc_status_mdep
1089 #define CC_STATUS_MDEP_INIT (cc_status.mdep.fpCC = 0)