* target.h (targetm.calls.arg_partial_bytes): New.
[official-gcc.git] / gcc / config / frv / frv.h
blobed62183f66e9981d5d7ed131b8b1eb49988a99f0
1 /* Target macros for the FRV port of GCC.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by Red Hat Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 2, or (at your
11 option) any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 #ifndef __FRV_H__
24 #define __FRV_H__
26 /* Frv general purpose macros. */
27 /* Align an address. */
28 #define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
30 /* Return true if a value is inside a range. */
31 #define IN_RANGE_P(VALUE, LOW, HIGH) \
32 ( (((HOST_WIDE_INT)(VALUE)) >= (HOST_WIDE_INT)(LOW)) \
33 && (((HOST_WIDE_INT)(VALUE)) <= ((HOST_WIDE_INT)(HIGH))))
36 /* Driver configuration. */
38 /* A C expression which determines whether the option `-CHAR' takes arguments.
39 The value should be the number of arguments that option takes-zero, for many
40 options.
42 By default, this macro is defined to handle the standard options properly.
43 You need not define it unless you wish to add additional options which take
44 arguments.
46 Defined in svr4.h. */
47 #undef SWITCH_TAKES_ARG
48 #define SWITCH_TAKES_ARG(CHAR) \
49 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
51 /* A C expression which determines whether the option `-NAME' takes arguments.
52 The value should be the number of arguments that option takes-zero, for many
53 options. This macro rather than `SWITCH_TAKES_ARG' is used for
54 multi-character option names.
56 By default, this macro is defined as `DEFAULT_WORD_SWITCH_TAKES_ARG', which
57 handles the standard options properly. You need not define
58 `WORD_SWITCH_TAKES_ARG' unless you wish to add additional options which take
59 arguments. Any redefinition should call `DEFAULT_WORD_SWITCH_TAKES_ARG' and
60 then check for additional options.
62 Defined in svr4.h. */
63 #undef WORD_SWITCH_TAKES_ARG
65 /* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
66 FDPIC which multilib to use depends on whether FDPIC is in use or
67 not. The trick we use is to introduce -multilib-library-pic as a
68 pseudo-flag that selects the library-pic multilib, and map fpic
69 and fPIC to it only if fdpic is not selected. Also, if fdpic is
70 selected and no PIC/PIE options are present, we imply -fPIE.
71 Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
72 speed, or if we have -On with n>=3, enable inlining of PLTs. As
73 for -mgprel-ro, we want to enable it by default, but not for -fpic or
74 -fpie. */
76 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
77 "%{mno-pack:\
78 %{!mhard-float:-msoft-float}\
79 %{!mmedia:-mno-media}}\
80 %{!mfdpic:%{fpic|fPIC: -multilib-library-pic}}\
81 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
82 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
83 %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{fpic|fPIC:-minline-plt} \
84 %{!fpic:%{!fPIC:%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}}} \
85 %{!mno-gprel-ro:%{!fpic:%{!fpie:-mgprel-ro}}}} \
87 #ifndef SUBTARGET_DRIVER_SELF_SPECS
88 # define SUBTARGET_DRIVER_SELF_SPECS
89 #endif
91 /* A C string constant that tells the GCC driver program options to pass to
92 the assembler. It can also specify how to translate options you give to GNU
93 CC into options for GCC to pass to the assembler. See the file `sun3.h'
94 for an example of this.
96 Do not define this macro if it does not need to do anything.
98 Defined in svr4.h. */
99 #undef ASM_SPEC
100 #define ASM_SPEC "\
101 %{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
102 %{mtomcat-stats} \
103 %{!mno-eflags: \
104 %{mcpu=*} \
105 %{mgpr-*} %{mfpr-*} \
106 %{msoft-float} %{mhard-float} \
107 %{mdword} %{mno-dword} \
108 %{mdouble} %{mno-double} \
109 %{mmedia} %{mno-media} \
110 %{mmuladd} %{mno-muladd} \
111 %{mpack} %{mno-pack} \
112 %{mno-fdpic:-mnopic} %{mfdpic} \
113 %{fpic|fpie: -mpic} %{fPIC|fPIE: -mPIC} %{mlibrary-pic}}"
115 /* Another C string constant used much like `LINK_SPEC'. The difference
116 between the two is that `STARTFILE_SPEC' is used at the very beginning of
117 the command given to the linker.
119 If this macro is not defined, a default is provided that loads the standard
120 C startup file from the usual place. See `gcc.c'.
122 Defined in svr4.h. */
123 #undef STARTFILE_SPEC
124 #define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
126 /* Another C string constant used much like `LINK_SPEC'. The difference
127 between the two is that `ENDFILE_SPEC' is used at the very end of the
128 command given to the linker.
130 Do not define this macro if it does not need to do anything.
132 Defined in svr4.h. */
133 #undef ENDFILE_SPEC
134 #define ENDFILE_SPEC "frvend%O%s"
137 #define MASK_DEFAULT_FRV \
138 (MASK_MEDIA \
139 | MASK_DOUBLE \
140 | MASK_MULADD \
141 | MASK_DWORD \
142 | MASK_PACK)
144 #define MASK_DEFAULT_FR500 \
145 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
147 #define MASK_DEFAULT_FR550 \
148 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
150 #define MASK_DEFAULT_FR450 \
151 (MASK_GPR_32 \
152 | MASK_FPR_32 \
153 | MASK_MEDIA \
154 | MASK_SOFT_FLOAT \
155 | MASK_DWORD \
156 | MASK_PACK)
158 #define MASK_DEFAULT_FR400 \
159 (MASK_GPR_32 \
160 | MASK_FPR_32 \
161 | MASK_MEDIA \
162 | MASK_ACC_4 \
163 | MASK_SOFT_FLOAT \
164 | MASK_DWORD \
165 | MASK_PACK)
167 #define MASK_DEFAULT_SIMPLE \
168 (MASK_GPR_32 | MASK_SOFT_FLOAT)
170 /* A C string constant that tells the GCC driver program options to pass to
171 `cc1'. It can also specify how to translate options you give to GCC into
172 options for GCC to pass to the `cc1'.
174 Do not define this macro if it does not need to do anything. */
175 /* For ABI compliance, we need to put bss data into the normal data section. */
176 #define CC1_SPEC "%{G*}"
178 /* A C string constant that tells the GCC driver program options to pass to
179 the linker. It can also specify how to translate options you give to GCC
180 into options for GCC to pass to the linker.
182 Do not define this macro if it does not need to do anything.
184 Defined in svr4.h. */
185 /* Override the svr4.h version with one that dispenses without the svr4
186 shared library options, notably -G. */
187 #undef LINK_SPEC
188 #define LINK_SPEC "\
189 %{h*} %{v:-V} \
190 %{b} %{Wl,*:%*} \
191 %{mfdpic:-melf32frvfd -z text} \
192 %{static:-dn -Bstatic} \
193 %{shared:-Bdynamic} \
194 %{symbolic:-Bsymbolic} \
195 %{G*} \
196 %{YP,*} \
197 %{Qy:} %{!Qn:-Qy}"
199 /* Another C string constant used much like `LINK_SPEC'. The difference
200 between the two is that `LIB_SPEC' is used at the end of the command given
201 to the linker.
203 If this macro is not defined, a default is provided that loads the standard
204 C library from the usual place. See `gcc.c'.
206 Defined in svr4.h. */
208 #undef LIB_SPEC
209 #define LIB_SPEC "--start-group -lc -lsim --end-group"
211 #ifndef CPU_TYPE
212 #define CPU_TYPE FRV_CPU_FR500
213 #endif
215 /* Allow us to easily change the default for -malloc-cc. */
216 #ifndef DEFAULT_NO_ALLOC_CC
217 #define MASK_DEFAULT_ALLOC_CC MASK_ALLOC_CC
218 #else
219 #define MASK_DEFAULT_ALLOC_CC 0
220 #endif
222 /* Run-time target specifications */
224 #define TARGET_CPU_CPP_BUILTINS() \
225 do \
227 int issue_rate; \
229 builtin_define ("__frv__"); \
230 builtin_assert ("machine=frv"); \
232 issue_rate = frv_issue_rate (); \
233 if (issue_rate > 1) \
234 builtin_define_with_int_value ("__FRV_VLIW__", issue_rate); \
235 builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS); \
236 builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS); \
237 builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS); \
239 switch (frv_cpu_type) \
241 case FRV_CPU_GENERIC: \
242 builtin_define ("__CPU_GENERIC__"); \
243 break; \
244 case FRV_CPU_FR550: \
245 builtin_define ("__CPU_FR550__"); \
246 break; \
247 case FRV_CPU_FR500: \
248 case FRV_CPU_TOMCAT: \
249 builtin_define ("__CPU_FR500__"); \
250 break; \
251 case FRV_CPU_FR450: \
252 builtin_define ("__CPU_FR450__"); \
253 break; \
254 case FRV_CPU_FR405: \
255 builtin_define ("__CPU_FR405__"); \
256 break; \
257 case FRV_CPU_FR400: \
258 builtin_define ("__CPU_FR400__"); \
259 break; \
260 case FRV_CPU_FR300: \
261 case FRV_CPU_SIMPLE: \
262 builtin_define ("__CPU_FR300__"); \
263 break; \
266 if (TARGET_HARD_FLOAT) \
267 builtin_define ("__FRV_HARD_FLOAT__"); \
268 if (TARGET_DWORD) \
269 builtin_define ("__FRV_DWORD__"); \
270 if (TARGET_FDPIC) \
271 builtin_define ("__FRV_FDPIC__"); \
272 if (flag_leading_underscore > 0) \
273 builtin_define ("__FRV_UNDERSCORE__"); \
275 while (0)
278 /* This declaration should be present. */
279 extern int target_flags;
281 /* This series of macros is to allow compiler command arguments to enable or
282 disable the use of optional features of the target machine. For example,
283 one machine description serves both the 68000 and the 68020; a command
284 argument tells the compiler whether it should use 68020-only instructions or
285 not. This command argument works by means of a macro `TARGET_68020' that
286 tests a bit in `target_flags'.
288 Define a macro `TARGET_FEATURENAME' for each such option. Its definition
289 should test a bit in `target_flags'; for example:
291 #define TARGET_68020 (target_flags & 1)
293 One place where these macros are used is in the condition-expressions of
294 instruction patterns. Note how `TARGET_68020' appears frequently in the
295 68000 machine description file, `m68k.md'. Another place they are used is
296 in the definitions of the other macros in the `MACHINE.h' file. */
298 #define MASK_GPR_32 0x00000001 /* Limit gprs to 32 registers */
299 #define MASK_FPR_32 0x00000002 /* Limit fprs to 32 registers */
300 #define MASK_SOFT_FLOAT 0x00000004 /* Use software floating point */
301 #define MASK_ALLOC_CC 0x00000008 /* Dynamically allocate icc/fcc's */
302 #define MASK_DWORD 0x00000010 /* Change ABi to allow dbl word insns*/
303 #define MASK_DOUBLE 0x00000020 /* Use double precision instructions */
304 #define MASK_MEDIA 0x00000040 /* Use media instructions */
305 #define MASK_MULADD 0x00000080 /* Use multiply add/subtract insns */
306 #define MASK_LIBPIC 0x00000100 /* -fpic that can be linked w/o pic */
307 #define MASK_ACC_4 0x00000200 /* Only use four media accumulators */
308 #define MASK_PACK 0x00000400 /* Set to enable packed output */
309 #define MASK_LONG_CALLS 0x00000800 /* Use indirect calls */
310 #define MASK_ALIGN_LABELS 0x00001000 /* Optimize label alignments */
311 #define MASK_LINKED_FP 0x00002000 /* Follow ABI linkage requirements. */
313 /* put debug masks up high */
314 #define MASK_DEBUG_ARG 0x40000000 /* debug argument handling */
315 #define MASK_DEBUG_ADDR 0x20000000 /* debug go_if_legitimate_address */
316 #define MASK_DEBUG_STACK 0x10000000 /* debug stack frame */
317 #define MASK_DEBUG 0x08000000 /* general debugging switch */
318 #define MASK_DEBUG_LOC 0x04000000 /* optimize line # table */
319 #define MASK_DEBUG_COND_EXEC 0x02000000 /* debug cond exec code */
320 #define MASK_NO_COND_MOVE 0x01000000 /* disable conditional moves */
321 #define MASK_NO_SCC 0x00800000 /* disable set conditional codes */
322 #define MASK_NO_COND_EXEC 0x00400000 /* disable conditional execution */
323 #define MASK_NO_VLIW_BRANCH 0x00200000 /* disable repacking branches */
324 #define MASK_NO_MULTI_CE 0x00100000 /* disable multi-level cond exec */
325 #define MASK_NO_NESTED_CE 0x00080000 /* disable nested cond exec */
326 #define MASK_FDPIC 0x00040000 /* Follow the new uClinux ABI. */
327 #define MASK_INLINE_PLT 0x00020000 /* Inline FDPIC PLTs. */
328 #define MASK_GPREL_RO 0x00010000 /* Use GPREL for read-only data. */
330 #define MASK_DEFAULT MASK_DEFAULT_ALLOC_CC
332 #define TARGET_GPR_32 ((target_flags & MASK_GPR_32) != 0)
333 #define TARGET_FPR_32 ((target_flags & MASK_FPR_32) != 0)
334 #define TARGET_SOFT_FLOAT ((target_flags & MASK_SOFT_FLOAT) != 0)
335 #define TARGET_ALLOC_CC ((target_flags & MASK_ALLOC_CC) != 0)
336 #define TARGET_DWORD ((target_flags & MASK_DWORD) != 0)
337 #define TARGET_DOUBLE ((target_flags & MASK_DOUBLE) != 0)
338 #define TARGET_MEDIA ((target_flags & MASK_MEDIA) != 0)
339 #define TARGET_MULADD ((target_flags & MASK_MULADD) != 0)
340 #define TARGET_LIBPIC ((target_flags & MASK_LIBPIC) != 0)
341 #define TARGET_ACC_4 ((target_flags & MASK_ACC_4) != 0)
342 #define TARGET_DEBUG_ARG ((target_flags & MASK_DEBUG_ARG) != 0)
343 #define TARGET_DEBUG_ADDR ((target_flags & MASK_DEBUG_ADDR) != 0)
344 #define TARGET_DEBUG_STACK ((target_flags & MASK_DEBUG_STACK) != 0)
345 #define TARGET_DEBUG ((target_flags & MASK_DEBUG) != 0)
346 #define TARGET_DEBUG_LOC ((target_flags & MASK_DEBUG_LOC) != 0)
347 #define TARGET_DEBUG_COND_EXEC ((target_flags & MASK_DEBUG_COND_EXEC) != 0)
348 #define TARGET_NO_COND_MOVE ((target_flags & MASK_NO_COND_MOVE) != 0)
349 #define TARGET_NO_SCC ((target_flags & MASK_NO_SCC) != 0)
350 #define TARGET_NO_COND_EXEC ((target_flags & MASK_NO_COND_EXEC) != 0)
351 #define TARGET_NO_VLIW_BRANCH ((target_flags & MASK_NO_VLIW_BRANCH) != 0)
352 #define TARGET_NO_MULTI_CE ((target_flags & MASK_NO_MULTI_CE) != 0)
353 #define TARGET_NO_NESTED_CE ((target_flags & MASK_NO_NESTED_CE) != 0)
354 #define TARGET_FDPIC ((target_flags & MASK_FDPIC) != 0)
355 #define TARGET_INLINE_PLT ((target_flags & MASK_INLINE_PLT) != 0)
356 #define TARGET_GPREL_RO ((target_flags & MASK_GPREL_RO) != 0)
357 #define TARGET_PACK ((target_flags & MASK_PACK) != 0)
358 #define TARGET_LONG_CALLS ((target_flags & MASK_LONG_CALLS) != 0)
359 #define TARGET_ALIGN_LABELS ((target_flags & MASK_ALIGN_LABELS) != 0)
360 #define TARGET_LINKED_FP ((target_flags & MASK_LINKED_FP) != 0)
362 #define TARGET_GPR_64 (! TARGET_GPR_32)
363 #define TARGET_FPR_64 (! TARGET_FPR_32)
364 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
365 #define TARGET_FIXED_CC (! TARGET_ALLOC_CC)
366 #define TARGET_COND_MOVE (! TARGET_NO_COND_MOVE)
367 #define TARGET_SCC (! TARGET_NO_SCC)
368 #define TARGET_COND_EXEC (! TARGET_NO_COND_EXEC)
369 #define TARGET_VLIW_BRANCH (! TARGET_NO_VLIW_BRANCH)
370 #define TARGET_MULTI_CE (! TARGET_NO_MULTI_CE)
371 #define TARGET_NESTED_CE (! TARGET_NO_NESTED_CE)
372 #define TARGET_ACC_8 (! TARGET_ACC_4)
374 #define TARGET_HAS_FPRS (TARGET_HARD_FLOAT || TARGET_MEDIA)
376 #define NUM_GPRS (TARGET_GPR_32? 32 : 64)
377 #define NUM_FPRS (!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
378 #define NUM_ACCS (!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
380 /* X is a valid accumulator number if (X & ACC_MASK) == X. */
381 #define ACC_MASK \
382 (!TARGET_MEDIA ? 0 \
383 : TARGET_ACC_4 ? 3 \
384 : frv_cpu_type == FRV_CPU_FR450 ? 11 \
385 : 7)
387 /* Macros to identify the blend of media instructions available. Revision 1
388 is the one found on the FR500. Revision 2 includes the changes made for
389 the FR400.
391 Treat the generic processor as a revision 1 machine for now, for
392 compatibility with earlier releases. */
394 #define TARGET_MEDIA_REV1 \
395 (TARGET_MEDIA \
396 && (frv_cpu_type == FRV_CPU_GENERIC \
397 || frv_cpu_type == FRV_CPU_FR500))
399 #define TARGET_MEDIA_REV2 \
400 (TARGET_MEDIA \
401 && (frv_cpu_type == FRV_CPU_FR400 \
402 || frv_cpu_type == FRV_CPU_FR405 \
403 || frv_cpu_type == FRV_CPU_FR450 \
404 || frv_cpu_type == FRV_CPU_FR550))
406 #define TARGET_MEDIA_FR450 \
407 (frv_cpu_type == FRV_CPU_FR450)
409 #define TARGET_FR500_FR550_BUILTINS \
410 (frv_cpu_type == FRV_CPU_FR500 \
411 || frv_cpu_type == FRV_CPU_FR550)
413 #define TARGET_FR405_BUILTINS \
414 (frv_cpu_type == FRV_CPU_FR405 \
415 || frv_cpu_type == FRV_CPU_FR450)
417 /* This macro defines names of command options to set and clear bits in
418 `target_flags'. Its definition is an initializer with a subgrouping for
419 each command option.
421 Each subgrouping contains a string constant, that defines the option name,
422 a number, which contains the bits to set in `target_flags', and an optional
423 second string which is the textual description that will be displayed when
424 the user passes --help on the command line. If the number entry is negative
425 then the specified bits will be cleared instead of being set. If the second
426 string entry is present but empty, then no help information will be displayed
427 for that option, but it will not count as an undocumented option. The actual
428 option name, asseen on the command line is made by appending `-m' to the
429 specified name.
431 One of the subgroupings should have a null string. The number in this
432 grouping is the default value for `target_flags'. Any target options act
433 starting with that value.
435 Here is an example which defines `-m68000' and `-m68020' with opposite
436 meanings, and picks the latter as the default:
438 #define TARGET_SWITCHES \
439 { { "68020", 1, ""}, \
440 { "68000", -1, "Compile for the m68000"}, \
441 { "", 1, }}
443 This declaration must be present. */
445 #define TARGET_SWITCHES \
446 {{ "gpr-32", MASK_GPR_32, "Only use 32 gprs"}, \
447 { "gpr-64", -MASK_GPR_32, "Use 64 gprs"}, \
448 { "fpr-32", MASK_FPR_32, "Only use 32 fprs"}, \
449 { "fpr-64", -MASK_FPR_32, "Use 64 fprs"}, \
450 { "hard-float", -MASK_SOFT_FLOAT, "Use hardware floating point" },\
451 { "soft-float", MASK_SOFT_FLOAT, "Use software floating point" },\
452 { "alloc-cc", MASK_ALLOC_CC, "Dynamically allocate cc's" }, \
453 { "fixed-cc", -MASK_ALLOC_CC, "Just use icc0/fcc0" }, \
454 { "dword", MASK_DWORD, "Change ABI to allow double word insns" }, \
455 { "no-dword", -MASK_DWORD, "Do not use double word insns" }, \
456 { "double", MASK_DOUBLE, "Use fp double instructions" }, \
457 { "no-double", -MASK_DOUBLE, "Do not use fp double insns" }, \
458 { "media", MASK_MEDIA, "Use media instructions" }, \
459 { "no-media", -MASK_MEDIA, "Do not use media insns" }, \
460 { "muladd", MASK_MULADD, "Use multiply add/subtract instructions" }, \
461 { "no-muladd", -MASK_MULADD, "Do not use multiply add/subtract insns" }, \
462 { "ultilib-library-pic", 0, "Link with the library-pic libraries" }, \
463 { "library-pic", MASK_LIBPIC, "PIC support for building libraries" }, \
464 { "acc-4", MASK_ACC_4, "Use 4 media accumulators" }, \
465 { "acc-8", -MASK_ACC_4, "Use 8 media accumulators" }, \
466 { "pack", MASK_PACK, "Pack VLIW instructions" }, \
467 { "no-pack", -MASK_PACK, "Do not pack VLIW instructions" }, \
468 { "no-eflags", 0, "Do not mark ABI switches in e_flags" }, \
469 { "debug-arg", MASK_DEBUG_ARG, "Internal debug switch" }, \
470 { "debug-addr", MASK_DEBUG_ADDR, "Internal debug switch" }, \
471 { "debug-stack", MASK_DEBUG_STACK, "Internal debug switch" }, \
472 { "debug", MASK_DEBUG, "Internal debug switch" }, \
473 { "debug-cond-exec", MASK_DEBUG_COND_EXEC, "Internal debug switch" }, \
474 { "debug-loc", MASK_DEBUG_LOC, "Internal debug switch" }, \
475 { "align-labels", MASK_ALIGN_LABELS, "Enable label alignment optimizations" }, \
476 { "no-align-labels", -MASK_ALIGN_LABELS, "Disable label alignment optimizations" }, \
477 { "cond-move", -MASK_NO_COND_MOVE, "Enable conditional moves" }, \
478 { "no-cond-move", MASK_NO_COND_MOVE, "Disable conditional moves" }, \
479 { "scc", -MASK_NO_SCC, "Enable setting gprs to the result of comparisons" }, \
480 { "no-scc", MASK_NO_SCC, "Disable setting gprs to the result of comparisons" }, \
481 { "cond-exec", -MASK_NO_COND_EXEC, "Enable conditional execution other than moves/scc" }, \
482 { "no-cond-exec", MASK_NO_COND_EXEC, "Disable conditional execution other than moves/scc" }, \
483 { "vliw-branch", -MASK_NO_VLIW_BRANCH, "Run pass to pack branches into VLIW insns" }, \
484 { "no-vliw-branch", MASK_NO_VLIW_BRANCH, "Do not run pass to pack branches into VLIW insns" }, \
485 { "multi-cond-exec", -MASK_NO_MULTI_CE, "Disable optimizing &&/|| in conditional execution" }, \
486 { "no-multi-cond-exec", MASK_NO_MULTI_CE, "Enable optimizing &&/|| in conditional execution" }, \
487 { "nested-cond-exec", -MASK_NO_NESTED_CE, "Enable nested conditional execution optimizations" }, \
488 { "no-nested-cond-exec" ,MASK_NO_NESTED_CE, "Disable nested conditional execution optimizations" }, \
489 { "long-calls", MASK_LONG_CALLS, "Disallow direct calls to global functions" }, \
490 { "no-long-calls", -MASK_LONG_CALLS, "Allow direct calls to global functions" }, \
491 { "linked-fp", MASK_LINKED_FP, "Follow the EABI linkage requirements" }, \
492 { "no-linked-fp", -MASK_LINKED_FP, "Don't follow the EABI linkage requirements" }, \
493 { "fdpic", MASK_FDPIC, "Enable file descriptor PIC mode" }, \
494 { "no-fdpic", -MASK_FDPIC, "Disable file descriptor PIC mode" }, \
495 { "inline-plt", MASK_INLINE_PLT, "Enable inlining of PLT in function calls" }, \
496 { "no-inline-plt", -MASK_INLINE_PLT, "Disable inlining of PLT in function calls" }, \
497 { "gprel-ro", MASK_GPREL_RO, "Enable use of GPREL for read-only data in FDPIC" }, \
498 { "no-gprel-ro", -MASK_GPREL_RO, "Disable use of GPREL for read-only data in FDPIC" }, \
499 { "tomcat-stats", 0, "Cause gas to print tomcat statistics" }, \
500 { "", MASK_DEFAULT, "" }} \
502 /* This macro is similar to `TARGET_SWITCHES' but defines names of command
503 options that have values. Its definition is an initializer with a
504 subgrouping for each command option.
506 Each subgrouping contains a string constant, that defines the fixed part of
507 the option name, the address of a variable, and an optional description string.
508 The variable, of type `char *', is set to the text following the fixed part of
509 the option as it is specified on the command line. The actual option name is
510 made by appending `-m' to the specified name.
512 Here is an example which defines `-mshort-data-NUMBER'. If the given option
513 is `-mshort-data-512', the variable `m88k_short_data' will be set to the
514 string `"512"'.
516 extern char *m88k_short_data;
517 #define TARGET_OPTIONS \
518 { { "short-data-", & m88k_short_data, \
519 "Specify the size of the short data section" } }
521 This declaration is optional. */
522 #define TARGET_OPTIONS \
524 { "cpu=", &frv_cpu_string, "Set cpu type", 0}, \
525 { "branch-cost=", &frv_branch_cost_string, "Internal debug switch", 0}, \
526 { "cond-exec-insns=", &frv_condexec_insns_str, "Internal debug switch", 0}, \
527 { "cond-exec-temps=", &frv_condexec_temps_str, "Internal debug switch", 0}, \
528 { "sched-lookahead=", &frv_sched_lookahead_str,"Internal debug switch", 0}, \
531 /* This macro is a C statement to print on `stderr' a string describing the
532 particular machine description choice. Every machine description should
533 define `TARGET_VERSION'. For example:
535 #ifdef MOTOROLA
536 #define TARGET_VERSION \
537 fprintf (stderr, " (68k, Motorola syntax)");
538 #else
539 #define TARGET_VERSION \
540 fprintf (stderr, " (68k, MIT syntax)");
541 #endif */
542 #define TARGET_VERSION fprintf (stderr, _(" (frv)"))
544 /* Sometimes certain combinations of command options do not make sense on a
545 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
546 take account of this. This macro, if defined, is executed once just after
547 all the command options have been parsed.
549 Don't use this macro to turn on various extra optimizations for `-O'. That
550 is what `OPTIMIZATION_OPTIONS' is for. */
552 #define OVERRIDE_OPTIONS frv_override_options ()
554 /* Some machines may desire to change what optimizations are performed for
555 various optimization levels. This macro, if defined, is executed once just
556 after the optimization level is determined and before the remainder of the
557 command options have been parsed. Values set in this macro are used as the
558 default values for the other command line options.
560 LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
561 `-O' is specified, and 0 if neither is specified.
563 SIZE is nonzero if `-Os' is specified, 0 otherwise.
565 You should not use this macro to change options that are not
566 machine-specific. These should uniformly selected by the same optimization
567 level on all supported machines. Use this macro to enable machbine-specific
568 optimizations.
570 *Do not examine `write_symbols' in this macro!* The debugging options are
571 *not supposed to alter the generated code. */
572 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) frv_optimization_options (LEVEL, SIZE)
575 /* Define this macro if debugging can be performed even without a frame
576 pointer. If this macro is defined, GCC will turn on the
577 `-fomit-frame-pointer' option whenever `-O' is specified. */
578 /* Frv needs a specific frame layout that includes the frame pointer. */
580 #define CAN_DEBUG_WITHOUT_FP
582 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
584 /* Small Data Area Support. */
585 /* Maximum size of variables that go in .sdata/.sbss.
586 The -msdata=foo switch also controls how small variables are handled. */
587 #ifndef SDATA_DEFAULT_SIZE
588 #define SDATA_DEFAULT_SIZE 8
589 #endif
592 /* Storage Layout */
594 /* Define this macro to have the value 1 if the most significant bit in a byte
595 has the lowest number; otherwise define it to have the value zero. This
596 means that bit-field instructions count from the most significant bit. If
597 the machine has no bit-field instructions, then this must still be defined,
598 but it doesn't matter which value it is defined to. This macro need not be
599 a constant.
601 This macro does not affect the way structure fields are packed into bytes or
602 words; that is controlled by `BYTES_BIG_ENDIAN'. */
603 #define BITS_BIG_ENDIAN 1
605 /* Define this macro to have the value 1 if the most significant byte in a word
606 has the lowest number. This macro need not be a constant. */
607 #define BYTES_BIG_ENDIAN 1
609 /* Define this macro to have the value 1 if, in a multiword object, the most
610 significant word has the lowest number. This applies to both memory
611 locations and registers; GCC fundamentally assumes that the order of
612 words in memory is the same as the order in registers. This macro need not
613 be a constant. */
614 #define WORDS_BIG_ENDIAN 1
616 /* Number of storage units in a word; normally 4. */
617 #define UNITS_PER_WORD 4
619 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
620 which has the specified mode and signedness is to be stored in a register.
621 This macro is only called when TYPE is a scalar type.
623 On most RISC machines, which only have operations that operate on a full
624 register, define this macro to set M to `word_mode' if M is an integer mode
625 narrower than `BITS_PER_WORD'. In most cases, only integer modes should be
626 widened because wider-precision floating-point operations are usually more
627 expensive than their narrower counterparts.
629 For most machines, the macro definition does not change UNSIGNEDP. However,
630 some machines, have instructions that preferentially handle either signed or
631 unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
632 loads from memory and 32-bit add instructions sign-extend the result to 64
633 bits. On such machines, set UNSIGNEDP according to which kind of extension
634 is more efficient.
636 Do not define this macro if it would never modify MODE. */
637 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
638 do \
640 if (GET_MODE_CLASS (MODE) == MODE_INT \
641 && GET_MODE_SIZE (MODE) < 4) \
642 (MODE) = SImode; \
644 while (0)
646 /* Normal alignment required for function parameters on the stack, in bits.
647 All stack parameters receive at least this much alignment regardless of data
648 type. On most machines, this is the same as the size of an integer. */
649 #define PARM_BOUNDARY 32
651 /* Define this macro if you wish to preserve a certain alignment for the stack
652 pointer. The definition is a C expression for the desired alignment
653 (measured in bits).
655 If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
656 specified boundary. If `PUSH_ROUNDING' is defined and specifies a less
657 strict alignment than `STACK_BOUNDARY', the stack may be momentarily
658 unaligned while pushing arguments. */
659 #define STACK_BOUNDARY 64
661 /* Alignment required for a function entry point, in bits. */
662 #define FUNCTION_BOUNDARY 128
664 /* Biggest alignment that any data type can require on this machine,
665 in bits. */
666 #define BIGGEST_ALIGNMENT 64
668 /* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
669 some reason. */
670 #ifdef IN_TARGET_LIBS
671 #define BIGGEST_FIELD_ALIGNMENT 64
672 #else
673 /* An expression for the alignment of a structure field FIELD if the
674 alignment computed in the usual way is COMPUTED. GCC uses this
675 value instead of the value in `BIGGEST_ALIGNMENT' or
676 `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
677 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
678 frv_adjust_field_align (FIELD, COMPUTED)
679 #endif
681 /* If defined, a C expression to compute the alignment for a static variable.
682 TYPE is the data type, and ALIGN is the alignment that the object
683 would ordinarily have. The value of this macro is used instead of that
684 alignment to align the object.
686 If this macro is not defined, then ALIGN is used.
688 One use of this macro is to increase alignment of medium-size data to make
689 it all fit in fewer cache lines. Another is to cause character arrays to be
690 word-aligned so that `strcpy' calls that copy constants to character arrays
691 can be done inline. */
692 #define DATA_ALIGNMENT(TYPE, ALIGN) \
693 (TREE_CODE (TYPE) == ARRAY_TYPE \
694 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
695 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
697 /* If defined, a C expression to compute the alignment given to a constant that
698 is being placed in memory. CONSTANT is the constant and ALIGN is the
699 alignment that the object would ordinarily have. The value of this macro is
700 used instead of that alignment to align the object.
702 If this macro is not defined, then ALIGN is used.
704 The typical use of this macro is to increase alignment for string constants
705 to be word aligned so that `strcpy' calls that copy constants can be done
706 inline. */
707 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
708 (TREE_CODE (EXP) == STRING_CST \
709 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
711 /* Define this macro to be the value 1 if instructions will fail to work if
712 given data not on the nominal alignment. If instructions will merely go
713 slower in that case, define this macro as 0. */
714 #define STRICT_ALIGNMENT 1
716 /* Define this if you wish to imitate the way many other C compilers handle
717 alignment of bitfields and the structures that contain them.
719 The behavior is that the type written for a bit-field (`int', `short', or
720 other integer type) imposes an alignment for the entire structure, as if the
721 structure really did contain an ordinary field of that type. In addition,
722 the bit-field is placed within the structure so that it would fit within such
723 a field, not crossing a boundary for it.
725 Thus, on most machines, a bit-field whose type is written as `int' would not
726 cross a four-byte boundary, and would force four-byte alignment for the
727 whole structure. (The alignment used may not be four bytes; it is
728 controlled by the other alignment parameters.)
730 If the macro is defined, its definition should be a C expression; a nonzero
731 value for the expression enables this behavior.
733 Note that if this macro is not defined, or its value is zero, some bitfields
734 may cross more than one alignment boundary. The compiler can support such
735 references if there are `insv', `extv', and `extzv' insns that can directly
736 reference memory.
738 The other known way of making bitfields work is to define
739 `STRUCTURE_SIZE_BOUNDARY' as large as `BIGGEST_ALIGNMENT'. Then every
740 structure can be accessed with fullwords.
742 Unless the machine has bit-field instructions or you define
743 `STRUCTURE_SIZE_BOUNDARY' that way, you must define
744 `PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
746 If your aim is to make GCC use the same conventions for laying out
747 bitfields as are used by another compiler, here is how to investigate what
748 the other compiler does. Compile and run this program:
750 struct foo1
752 char x;
753 char :0;
754 char y;
757 struct foo2
759 char x;
760 int :0;
761 char y;
764 main ()
766 printf ("Size of foo1 is %d\n",
767 sizeof (struct foo1));
768 printf ("Size of foo2 is %d\n",
769 sizeof (struct foo2));
770 exit (0);
773 If this prints 2 and 5, then the compiler's behavior is what you would get
774 from `PCC_BITFIELD_TYPE_MATTERS'.
776 Defined in svr4.h. */
777 #define PCC_BITFIELD_TYPE_MATTERS 1
780 /* Layout of Source Language Data Types. */
782 #define CHAR_TYPE_SIZE 8
783 #define SHORT_TYPE_SIZE 16
784 #define INT_TYPE_SIZE 32
785 #define LONG_TYPE_SIZE 32
786 #define LONG_LONG_TYPE_SIZE 64
787 #define FLOAT_TYPE_SIZE 32
788 #define DOUBLE_TYPE_SIZE 64
789 #define LONG_DOUBLE_TYPE_SIZE 64
791 /* An expression whose value is 1 or 0, according to whether the type `char'
792 should be signed or unsigned by default. The user can always override this
793 default with the options `-fsigned-char' and `-funsigned-char'. */
794 #define DEFAULT_SIGNED_CHAR 1
797 /* General purpose registers. */
798 #define GPR_FIRST 0 /* First gpr */
799 #define GPR_LAST (GPR_FIRST + 63) /* Last gpr */
800 #define GPR_R0 GPR_FIRST /* R0, constant 0 */
801 #define GPR_FP (GPR_FIRST + 2) /* Frame pointer */
802 #define GPR_SP (GPR_FIRST + 1) /* Stack pointer */
803 /* small data register */
804 #define SDA_BASE_REG ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
805 #define PIC_REGNO (GPR_FIRST + (TARGET_FDPIC?15:17)) /* PIC register. */
806 #define FDPIC_FPTR_REGNO (GPR_FIRST + 14) /* uClinux PIC function pointer register. */
807 #define FDPIC_REGNO (GPR_FIRST + 15) /* uClinux PIC register. */
809 #define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
811 #define FPR_FIRST 64 /* First FP reg */
812 #define FPR_LAST 127 /* Last FP reg */
814 #define DEFAULT_CONDEXEC_TEMPS 4 /* reserve 4 regs by default */
815 #define GPR_TEMP_NUM frv_condexec_temps /* # gprs to reserve for temps */
817 /* We reserve the last CR and CCR in each category to be used as a reload
818 register to reload the CR/CCR registers. This is a kludge. */
819 #define CC_FIRST 128 /* First ICC/FCC reg */
820 #define CC_LAST 135 /* Last ICC/FCC reg */
821 #define ICC_FIRST (CC_FIRST + 4) /* First ICC reg */
822 #define ICC_LAST (CC_FIRST + 7) /* Last ICC reg */
823 #define ICC_TEMP (CC_FIRST + 7) /* Temporary ICC reg */
824 #define FCC_FIRST (CC_FIRST) /* First FCC reg */
825 #define FCC_LAST (CC_FIRST + 3) /* Last FCC reg */
827 /* Amount to shift a value to locate a ICC or FCC register in the CCR
828 register and shift it to the bottom 4 bits. */
829 #define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
831 /* Mask to isolate a single ICC/FCC value. */
832 #define CC_MASK 0xf
834 /* Masks to isolate the various bits in an ICC field. */
835 #define ICC_MASK_N 0x8 /* negative */
836 #define ICC_MASK_Z 0x4 /* zero */
837 #define ICC_MASK_V 0x2 /* overflow */
838 #define ICC_MASK_C 0x1 /* carry */
840 /* Mask to isolate the N/Z flags in an ICC. */
841 #define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
843 /* Mask to isolate the Z/C flags in an ICC. */
844 #define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
846 /* Masks to isolate the various bits in a FCC field. */
847 #define FCC_MASK_E 0x8 /* equal */
848 #define FCC_MASK_L 0x4 /* less than */
849 #define FCC_MASK_G 0x2 /* greater than */
850 #define FCC_MASK_U 0x1 /* unordered */
852 /* For CCR registers, the machine wants CR4..CR7 to be used for integer
853 code and CR0..CR3 to be used for floating point. */
854 #define CR_FIRST 136 /* First CCR */
855 #define CR_LAST 143 /* Last CCR */
856 #define CR_NUM (CR_LAST-CR_FIRST+1) /* # of CCRs (8) */
857 #define ICR_FIRST (CR_FIRST + 4) /* First integer CCR */
858 #define ICR_LAST (CR_FIRST + 7) /* Last integer CCR */
859 #define ICR_TEMP ICR_LAST /* Temp integer CCR */
860 #define FCR_FIRST (CR_FIRST + 0) /* First float CCR */
861 #define FCR_LAST (CR_FIRST + 3) /* Last float CCR */
863 /* Amount to shift a value to locate a CR register in the CCCR special purpose
864 register and shift it to the bottom 2 bits. */
865 #define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
867 /* Mask to isolate a single CR value. */
868 #define CR_MASK 0x3
870 #define ACC_FIRST 144 /* First acc register */
871 #define ACC_LAST 155 /* Last acc register */
873 #define ACCG_FIRST 156 /* First accg register */
874 #define ACCG_LAST 167 /* Last accg register */
876 #define AP_FIRST 168 /* fake argument pointer */
878 #define SPR_FIRST 169
879 #define SPR_LAST 172
880 #define LR_REGNO (SPR_FIRST)
881 #define LCR_REGNO (SPR_FIRST + 1)
882 #define IACC_FIRST (SPR_FIRST + 2)
883 #define IACC_LAST (SPR_FIRST + 3)
885 #define GPR_P(R) IN_RANGE_P (R, GPR_FIRST, GPR_LAST)
886 #define GPR_OR_AP_P(R) (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
887 #define FPR_P(R) IN_RANGE_P (R, FPR_FIRST, FPR_LAST)
888 #define CC_P(R) IN_RANGE_P (R, CC_FIRST, CC_LAST)
889 #define ICC_P(R) IN_RANGE_P (R, ICC_FIRST, ICC_LAST)
890 #define FCC_P(R) IN_RANGE_P (R, FCC_FIRST, FCC_LAST)
891 #define CR_P(R) IN_RANGE_P (R, CR_FIRST, CR_LAST)
892 #define ICR_P(R) IN_RANGE_P (R, ICR_FIRST, ICR_LAST)
893 #define FCR_P(R) IN_RANGE_P (R, FCR_FIRST, FCR_LAST)
894 #define ACC_P(R) IN_RANGE_P (R, ACC_FIRST, ACC_LAST)
895 #define ACCG_P(R) IN_RANGE_P (R, ACCG_FIRST, ACCG_LAST)
896 #define SPR_P(R) IN_RANGE_P (R, SPR_FIRST, SPR_LAST)
898 #define GPR_OR_PSEUDO_P(R) (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
899 #define FPR_OR_PSEUDO_P(R) (FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
900 #define GPR_AP_OR_PSEUDO_P(R) (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
901 #define CC_OR_PSEUDO_P(R) (CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
902 #define ICC_OR_PSEUDO_P(R) (ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
903 #define FCC_OR_PSEUDO_P(R) (FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
904 #define CR_OR_PSEUDO_P(R) (CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
905 #define ICR_OR_PSEUDO_P(R) (ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
906 #define FCR_OR_PSEUDO_P(R) (FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
907 #define ACC_OR_PSEUDO_P(R) (ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
908 #define ACCG_OR_PSEUDO_P(R) (ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
910 #define MAX_STACK_IMMEDIATE_OFFSET 2047
913 /* Register Basics. */
915 /* Number of hardware registers known to the compiler. They receive numbers 0
916 through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
917 really is assigned the number `FIRST_PSEUDO_REGISTER'. */
918 #define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
920 /* The first/last register that can contain the arguments to a function. */
921 #define FIRST_ARG_REGNUM (GPR_FIRST + 8)
922 #define LAST_ARG_REGNUM (FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
924 /* Registers used by the exception handling functions. These should be
925 registers that are not otherwise used by the calling sequence. */
926 #define FIRST_EH_REGNUM 14
927 #define LAST_EH_REGNUM 15
929 /* Scratch registers used in the prologue, epilogue and thunks.
930 OFFSET_REGNO is for loading constant addends that are too big for a
931 single instruction. TEMP_REGNO is used for transferring SPRs to and from
932 the stack, and various other activities. */
933 #define OFFSET_REGNO 4
934 #define TEMP_REGNO 5
936 /* Registers used in the prologue. OLD_SP_REGNO is the old stack pointer,
937 which is sometimes used to set up the frame pointer. */
938 #define OLD_SP_REGNO 6
940 /* Registers used in the epilogue. STACKADJ_REGNO stores the exception
941 handler's stack adjustment. */
942 #define STACKADJ_REGNO 6
944 /* Registers used in thunks. JMP_REGNO is used for loading the target
945 address. */
946 #define JUMP_REGNO 6
948 #define EH_RETURN_DATA_REGNO(N) ((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
949 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
950 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, STACKADJ_REGNO)
951 #define EH_RETURN_HANDLER_RTX RETURN_ADDR_RTX (0, frame_pointer_rtx)
953 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
955 /* An initializer that says which registers are used for fixed purposes all
956 throughout the compiled code and are therefore not available for general
957 allocation. These would include the stack pointer, the frame pointer
958 (except on machines where that can be used as a general register when no
959 frame pointer is needed), the program counter on machines where that is
960 considered one of the addressable registers, and any other numbered register
961 with a standard use.
963 This information is expressed as a sequence of numbers, separated by commas
964 and surrounded by braces. The Nth number is 1 if register N is fixed, 0
965 otherwise.
967 The table initialized from this macro, and the table initialized by the
968 following one, may be overridden at run time either automatically, by the
969 actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
970 command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
972 /* gr0 -- Hard Zero
973 gr1 -- Stack Pointer
974 gr2 -- Frame Pointer
975 gr3 -- Hidden Parameter
976 gr16 -- Small Data reserved
977 gr17 -- Pic reserved
978 gr28 -- OS reserved
979 gr29 -- OS reserved
980 gr30 -- OS reserved
981 gr31 -- OS reserved
982 cr3 -- reserved to reload FCC registers.
983 cr7 -- reserved to reload ICC registers. */
984 #define FIXED_REGISTERS \
985 { /* Integer Registers */ \
986 1, 1, 1, 1, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
987 0, 0, 0, 0, 0, 0, 0, 0, /* 008-015, gr8 - gr15 */ \
988 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
989 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
990 0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr39 */ \
991 0, 0, 0, 0, 0, 0, 0, 0, /* 040-040, gr48 - gr47 */ \
992 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
993 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
994 /* Float Registers */ \
995 0, 0, 0, 0, 0, 0, 0, 0, /* 064-071, fr0 - fr7 */ \
996 0, 0, 0, 0, 0, 0, 0, 0, /* 072-079, fr8 - fr15 */ \
997 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
998 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
999 0, 0, 0, 0, 0, 0, 0, 0, /* 096-103, fr32 - fr39 */ \
1000 0, 0, 0, 0, 0, 0, 0, 0, /* 104-111, fr48 - fr47 */ \
1001 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
1002 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
1003 /* Condition Code Registers */ \
1004 0, 0, 0, 0, /* 128-131, fcc0 - fcc3 */ \
1005 0, 0, 0, 1, /* 132-135, icc0 - icc3 */ \
1006 /* Conditional execution Registers (CCR) */ \
1007 0, 0, 0, 0, 0, 0, 0, 1, /* 136-143, cr0 - cr7 */ \
1008 /* Accumulators */ \
1009 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
1010 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
1011 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
1012 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
1013 /* Other registers */ \
1014 1, /* 168, AP - fake arg ptr */ \
1015 0, /* 169, LR - Link register*/ \
1016 0, /* 170, LCR - Loop count reg*/ \
1017 1, 1 /* 171-172, iacc0 */ \
1020 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
1021 general) by function calls as well as for fixed registers. This macro
1022 therefore identifies the registers that are not available for general
1023 allocation of values that must live across function calls.
1025 If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
1026 saves it on function entry and restores it on function exit, if the register
1027 is used within the function. */
1028 #define CALL_USED_REGISTERS \
1029 { /* Integer Registers */ \
1030 1, 1, 1, 1, 1, 1, 1, 1, /* 000-007, gr0 - gr7 */ \
1031 1, 1, 1, 1, 1, 1, 1, 1, /* 008-015, gr8 - gr15 */ \
1032 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
1033 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
1034 1, 1, 1, 1, 1, 1, 1, 1, /* 032-039, gr32 - gr39 */ \
1035 1, 1, 1, 1, 1, 1, 1, 1, /* 040-040, gr48 - gr47 */ \
1036 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
1037 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
1038 /* Float Registers */ \
1039 1, 1, 1, 1, 1, 1, 1, 1, /* 064-071, fr0 - fr7 */ \
1040 1, 1, 1, 1, 1, 1, 1, 1, /* 072-079, fr8 - fr15 */ \
1041 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
1042 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
1043 1, 1, 1, 1, 1, 1, 1, 1, /* 096-103, fr32 - fr39 */ \
1044 1, 1, 1, 1, 1, 1, 1, 1, /* 104-111, fr48 - fr47 */ \
1045 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
1046 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
1047 /* Condition Code Registers */ \
1048 1, 1, 1, 1, /* 128-131, fcc0 - fcc3 */ \
1049 1, 1, 1, 1, /* 132-135, icc0 - icc3 */ \
1050 /* Conditional execution Registers (CCR) */ \
1051 1, 1, 1, 1, 1, 1, 1, 1, /* 136-143, cr0 - cr7 */ \
1052 /* Accumulators */ \
1053 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
1054 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
1055 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
1056 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
1057 /* Other registers */ \
1058 1, /* 168, AP - fake arg ptr */ \
1059 1, /* 169, LR - Link register*/ \
1060 1, /* 170, LCR - Loop count reg */ \
1061 1, 1 /* 171-172, iacc0 */ \
1064 /* Zero or more C statements that may conditionally modify two variables
1065 `fixed_regs' and `call_used_regs' (both of type `char []') after they have
1066 been initialized from the two preceding macros.
1068 This is necessary in case the fixed or call-clobbered registers depend on
1069 target flags.
1071 You need not define this macro if it has no work to do.
1073 If the usage of an entire class of registers depends on the target flags,
1074 you may indicate this to GCC by using this macro to modify `fixed_regs' and
1075 `call_used_regs' to 1 for each of the registers in the classes which should
1076 not be used by GCC. Also define the macro `REG_CLASS_FROM_LETTER' to return
1077 `NO_REGS' if it is called with a letter for a class that shouldn't be used.
1079 (However, if this class is not included in `GENERAL_REGS' and all of the
1080 insn patterns whose constraints permit this class are controlled by target
1081 switches, then GCC will automatically avoid using these registers when the
1082 target switches are opposed to them.) */
1084 #define CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage ()
1087 /* Order of allocation of registers. */
1089 /* If defined, an initializer for a vector of integers, containing the numbers
1090 of hard registers in the order in which GCC should prefer to use them
1091 (from most preferred to least).
1093 If this macro is not defined, registers are used lowest numbered first (all
1094 else being equal).
1096 One use of this macro is on machines where the highest numbered registers
1097 must always be saved and the save-multiple-registers instruction supports
1098 only sequences of consecutive registers. On such machines, define
1099 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
1100 allocatable register first. */
1102 /* On the FRV, allocate GR16 and GR17 after other saved registers so that we
1103 have a better chance of allocating 2 registers at a time and can use the
1104 double word load/store instructions in the prologue. */
1105 #define REG_ALLOC_ORDER \
1107 /* volatile registers */ \
1108 GPR_FIRST + 4, GPR_FIRST + 5, GPR_FIRST + 6, GPR_FIRST + 7, \
1109 GPR_FIRST + 8, GPR_FIRST + 9, GPR_FIRST + 10, GPR_FIRST + 11, \
1110 GPR_FIRST + 12, GPR_FIRST + 13, GPR_FIRST + 14, GPR_FIRST + 15, \
1111 GPR_FIRST + 32, GPR_FIRST + 33, GPR_FIRST + 34, GPR_FIRST + 35, \
1112 GPR_FIRST + 36, GPR_FIRST + 37, GPR_FIRST + 38, GPR_FIRST + 39, \
1113 GPR_FIRST + 40, GPR_FIRST + 41, GPR_FIRST + 42, GPR_FIRST + 43, \
1114 GPR_FIRST + 44, GPR_FIRST + 45, GPR_FIRST + 46, GPR_FIRST + 47, \
1116 FPR_FIRST + 0, FPR_FIRST + 1, FPR_FIRST + 2, FPR_FIRST + 3, \
1117 FPR_FIRST + 4, FPR_FIRST + 5, FPR_FIRST + 6, FPR_FIRST + 7, \
1118 FPR_FIRST + 8, FPR_FIRST + 9, FPR_FIRST + 10, FPR_FIRST + 11, \
1119 FPR_FIRST + 12, FPR_FIRST + 13, FPR_FIRST + 14, FPR_FIRST + 15, \
1120 FPR_FIRST + 32, FPR_FIRST + 33, FPR_FIRST + 34, FPR_FIRST + 35, \
1121 FPR_FIRST + 36, FPR_FIRST + 37, FPR_FIRST + 38, FPR_FIRST + 39, \
1122 FPR_FIRST + 40, FPR_FIRST + 41, FPR_FIRST + 42, FPR_FIRST + 43, \
1123 FPR_FIRST + 44, FPR_FIRST + 45, FPR_FIRST + 46, FPR_FIRST + 47, \
1125 ICC_FIRST + 0, ICC_FIRST + 1, ICC_FIRST + 2, ICC_FIRST + 3, \
1126 FCC_FIRST + 0, FCC_FIRST + 1, FCC_FIRST + 2, FCC_FIRST + 3, \
1127 CR_FIRST + 0, CR_FIRST + 1, CR_FIRST + 2, CR_FIRST + 3, \
1128 CR_FIRST + 4, CR_FIRST + 5, CR_FIRST + 6, CR_FIRST + 7, \
1130 /* saved registers */ \
1131 GPR_FIRST + 18, GPR_FIRST + 19, \
1132 GPR_FIRST + 20, GPR_FIRST + 21, GPR_FIRST + 22, GPR_FIRST + 23, \
1133 GPR_FIRST + 24, GPR_FIRST + 25, GPR_FIRST + 26, GPR_FIRST + 27, \
1134 GPR_FIRST + 48, GPR_FIRST + 49, GPR_FIRST + 50, GPR_FIRST + 51, \
1135 GPR_FIRST + 52, GPR_FIRST + 53, GPR_FIRST + 54, GPR_FIRST + 55, \
1136 GPR_FIRST + 56, GPR_FIRST + 57, GPR_FIRST + 58, GPR_FIRST + 59, \
1137 GPR_FIRST + 60, GPR_FIRST + 61, GPR_FIRST + 62, GPR_FIRST + 63, \
1138 GPR_FIRST + 16, GPR_FIRST + 17, \
1140 FPR_FIRST + 16, FPR_FIRST + 17, FPR_FIRST + 18, FPR_FIRST + 19, \
1141 FPR_FIRST + 20, FPR_FIRST + 21, FPR_FIRST + 22, FPR_FIRST + 23, \
1142 FPR_FIRST + 24, FPR_FIRST + 25, FPR_FIRST + 26, FPR_FIRST + 27, \
1143 FPR_FIRST + 28, FPR_FIRST + 29, FPR_FIRST + 30, FPR_FIRST + 31, \
1144 FPR_FIRST + 48, FPR_FIRST + 49, FPR_FIRST + 50, FPR_FIRST + 51, \
1145 FPR_FIRST + 52, FPR_FIRST + 53, FPR_FIRST + 54, FPR_FIRST + 55, \
1146 FPR_FIRST + 56, FPR_FIRST + 57, FPR_FIRST + 58, FPR_FIRST + 59, \
1147 FPR_FIRST + 60, FPR_FIRST + 61, FPR_FIRST + 62, FPR_FIRST + 63, \
1149 /* special or fixed registers */ \
1150 GPR_FIRST + 0, GPR_FIRST + 1, GPR_FIRST + 2, GPR_FIRST + 3, \
1151 GPR_FIRST + 28, GPR_FIRST + 29, GPR_FIRST + 30, GPR_FIRST + 31, \
1152 ACC_FIRST + 0, ACC_FIRST + 1, ACC_FIRST + 2, ACC_FIRST + 3, \
1153 ACC_FIRST + 4, ACC_FIRST + 5, ACC_FIRST + 6, ACC_FIRST + 7, \
1154 ACC_FIRST + 8, ACC_FIRST + 9, ACC_FIRST + 10, ACC_FIRST + 11, \
1155 ACCG_FIRST + 0, ACCG_FIRST + 1, ACCG_FIRST + 2, ACCG_FIRST + 3, \
1156 ACCG_FIRST + 4, ACCG_FIRST + 5, ACCG_FIRST + 6, ACCG_FIRST + 7, \
1157 ACCG_FIRST + 8, ACCG_FIRST + 9, ACCG_FIRST + 10, ACCG_FIRST + 11, \
1158 AP_FIRST, LR_REGNO, LCR_REGNO, \
1159 IACC_FIRST + 0, IACC_FIRST + 1 \
1163 /* How Values Fit in Registers. */
1165 /* A C expression for the number of consecutive hard registers, starting at
1166 register number REGNO, required to hold a value of mode MODE.
1168 On a machine where all registers are exactly one word, a suitable definition
1169 of this macro is
1171 #define HARD_REGNO_NREGS(REGNO, MODE) \
1172 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
1173 / UNITS_PER_WORD)) */
1175 /* On the FRV, make the CC modes take 3 words in the integer registers, so that
1176 we can build the appropriate instructions to properly reload the values. */
1177 #define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
1179 /* A C expression that is nonzero if it is permissible to store a value of mode
1180 MODE in hard register number REGNO (or in several registers starting with
1181 that one). For a machine where all registers are equivalent, a suitable
1182 definition is
1184 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
1186 It is not necessary for this macro to check for the numbers of fixed
1187 registers, because the allocation mechanism considers them to be always
1188 occupied.
1190 On some machines, double-precision values must be kept in even/odd register
1191 pairs. The way to implement that is to define this macro to reject odd
1192 register numbers for such modes.
1194 The minimum requirement for a mode to be OK in a register is that the
1195 `movMODE' instruction pattern support moves between the register and any
1196 other hard register for which the mode is OK; and that moving a value into
1197 the register and back out not alter it.
1199 Since the same instruction used to move `SImode' will work for all narrower
1200 integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
1201 to distinguish between these modes, provided you define patterns `movhi',
1202 etc., to take advantage of this. This is useful because of the interaction
1203 between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
1204 all integer modes to be tieable.
1206 Many machines have special registers for floating point arithmetic. Often
1207 people assume that floating point machine modes are allowed only in floating
1208 point registers. This is not true. Any registers that can hold integers
1209 can safely *hold* a floating point machine mode, whether or not floating
1210 arithmetic can be done on it in those registers. Integer move instructions
1211 can be used to move the values.
1213 On some machines, though, the converse is true: fixed-point machine modes
1214 may not go in floating registers. This is true if the floating registers
1215 normalize any value stored in them, because storing a non-floating value
1216 there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
1217 fixed-point machine modes in floating registers. But if the floating
1218 registers do not automatically normalize, if you can store any bit pattern
1219 in one and retrieve it unchanged without a trap, then any machine mode may
1220 go in a floating register, so you can define this macro to say so.
1222 The primary significance of special floating registers is rather that they
1223 are the registers acceptable in floating point arithmetic instructions.
1224 However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
1225 writing the proper constraints for those instructions.
1227 On some machines, the floating registers are especially slow to access, so
1228 that it is better to store a value in a stack frame than in such a register
1229 if floating point arithmetic is not being done. As long as the floating
1230 registers are not in class `GENERAL_REGS', they will not be used unless some
1231 pattern's constraint asks for one. */
1232 #define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
1234 /* A C expression that is nonzero if it is desirable to choose register
1235 allocation so as to avoid move instructions between a value of mode MODE1
1236 and a value of mode MODE2.
1238 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
1239 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
1240 zero. */
1241 #define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
1243 /* Define this macro if the compiler should avoid copies to/from CCmode
1244 registers. You should only define this macro if support fo copying to/from
1245 CCmode is incomplete. */
1246 #define AVOID_CCMODE_COPIES
1249 /* Register Classes. */
1251 /* An enumeral type that must be defined with all the register class names as
1252 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
1253 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
1254 which is not a register class but rather tells how many classes there are.
1256 Each register class has a number, which is the value of casting the class
1257 name to type `int'. The number serves as an index in many of the tables
1258 described below. */
1259 enum reg_class
1261 NO_REGS,
1262 ICC_REGS,
1263 FCC_REGS,
1264 CC_REGS,
1265 ICR_REGS,
1266 FCR_REGS,
1267 CR_REGS,
1268 LCR_REG,
1269 LR_REG,
1270 FDPIC_REGS,
1271 FDPIC_FPTR_REGS,
1272 FDPIC_CALL_REGS,
1273 SPR_REGS,
1274 QUAD_ACC_REGS,
1275 EVEN_ACC_REGS,
1276 ACC_REGS,
1277 ACCG_REGS,
1278 QUAD_FPR_REGS,
1279 FEVEN_REGS,
1280 FPR_REGS,
1281 QUAD_REGS,
1282 EVEN_REGS,
1283 GPR_REGS,
1284 ALL_REGS,
1285 LIM_REG_CLASSES
1288 #define GENERAL_REGS GPR_REGS
1290 /* The number of distinct register classes, defined as follows:
1292 #define N_REG_CLASSES (int) LIM_REG_CLASSES */
1293 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1295 /* An initializer containing the names of the register classes as C string
1296 constants. These names are used in writing some of the debugging dumps. */
1297 #define REG_CLASS_NAMES { \
1298 "NO_REGS", \
1299 "ICC_REGS", \
1300 "FCC_REGS", \
1301 "CC_REGS", \
1302 "ICR_REGS", \
1303 "FCR_REGS", \
1304 "CR_REGS", \
1305 "LCR_REG", \
1306 "LR_REG", \
1307 "FDPIC_REGS", \
1308 "FDPIC_FPTR_REGS", \
1309 "FDPIC_CALL_REGS", \
1310 "SPR_REGS", \
1311 "QUAD_ACC_REGS", \
1312 "EVEN_ACC_REGS", \
1313 "ACC_REGS", \
1314 "ACCG_REGS", \
1315 "QUAD_FPR_REGS", \
1316 "FEVEN_REGS", \
1317 "FPR_REGS", \
1318 "QUAD_REGS", \
1319 "EVEN_REGS", \
1320 "GPR_REGS", \
1321 "ALL_REGS" \
1324 /* An initializer containing the contents of the register classes, as integers
1325 which are bit masks. The Nth integer specifies the contents of class N.
1326 The way the integer MASK is interpreted is that register R is in the class
1327 if `MASK & (1 << R)' is 1.
1329 When the machine has more than 32 registers, an integer does not suffice.
1330 Then the integers are replaced by sub-initializers, braced groupings
1331 containing several integers. Each sub-initializer must be suitable as an
1332 initializer for the type `HARD_REG_SET' which is defined in
1333 `hard-reg-set.h'. */
1334 #define REG_CLASS_CONTENTS \
1335 { /* gr0-gr31 gr32-gr63 fr0-fr31 fr32-fr-63 cc/ccr/acc ap/spr */ \
1336 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS */\
1337 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
1338 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
1339 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS */\
1340 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
1341 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
1342 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS */\
1343 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
1344 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS */\
1345 { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
1346 { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
1347 { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
1348 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
1349 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
1350 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* EVEN_ACC */\
1351 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* ACC_REGS */\
1352 { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
1353 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
1354 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FEVEN_REG*/\
1355 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FPR_REGS */\
1356 { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
1357 { 0xfffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* EVEN_REGS*/\
1358 { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
1359 { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
1362 /* A C expression whose value is a register class containing hard register
1363 REGNO. In general there is more than one such class; choose a class which
1364 is "minimal", meaning that no smaller class also contains the register. */
1366 extern enum reg_class regno_reg_class[];
1367 #define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
1369 /* A macro whose definition is the name of the class to which a valid base
1370 register must belong. A base register is one used in an address which is
1371 the register value plus a displacement. */
1372 #define BASE_REG_CLASS GPR_REGS
1374 /* A macro whose definition is the name of the class to which a valid index
1375 register must belong. An index register is one used in an address where its
1376 value is either multiplied by a scale factor or added to another register
1377 (as well as added to a displacement). */
1378 #define INDEX_REG_CLASS GPR_REGS
1380 /* A C expression which defines the machine-dependent operand constraint
1381 letters for register classes. If CHAR is such a letter, the value should be
1382 the register class corresponding to it. Otherwise, the value should be
1383 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
1384 will not be passed to this macro; you do not need to handle it.
1386 The following letters are unavailable, due to being used as
1387 constraints:
1388 '0'..'9'
1389 '<', '>'
1390 'E', 'F', 'G', 'H'
1391 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
1392 'Q', 'R', 'S', 'T', 'U'
1393 'V', 'X'
1394 'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
1396 extern enum reg_class reg_class_from_letter[];
1397 #define REG_CLASS_FROM_LETTER(CHAR) reg_class_from_letter [(unsigned char)(CHAR)]
1399 /* A C expression which is nonzero if register number NUM is suitable for use
1400 as a base register in operand addresses. It may be either a suitable hard
1401 register or a pseudo register that has been allocated such a hard register. */
1402 #define REGNO_OK_FOR_BASE_P(NUM) \
1403 ((NUM) < FIRST_PSEUDO_REGISTER \
1404 ? GPR_P (NUM) \
1405 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1407 /* A C expression which is nonzero if register number NUM is suitable for use
1408 as an index register in operand addresses. It may be either a suitable hard
1409 register or a pseudo register that has been allocated such a hard register.
1411 The difference between an index register and a base register is that the
1412 index register may be scaled. If an address involves the sum of two
1413 registers, neither one of them scaled, then either one may be labeled the
1414 "base" and the other the "index"; but whichever labeling is used must fit
1415 the machine's constraints of which registers may serve in each capacity.
1416 The compiler will try both labelings, looking for one that is valid, and
1417 will reload one or both registers only if neither labeling works. */
1418 #define REGNO_OK_FOR_INDEX_P(NUM) \
1419 ((NUM) < FIRST_PSEUDO_REGISTER \
1420 ? GPR_P (NUM) \
1421 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1423 /* A C expression that places additional restrictions on the register class to
1424 use when it is necessary to copy value X into a register in class CLASS.
1425 The value is a register class; perhaps CLASS, or perhaps another, smaller
1426 class. On many machines, the following definition is safe:
1428 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
1430 Sometimes returning a more restrictive class makes better code. For
1431 example, on the 68000, when X is an integer constant that is in range for a
1432 `moveq' instruction, the value of this macro is always `DATA_REGS' as long
1433 as CLASS includes the data registers. Requiring a data register guarantees
1434 that a `moveq' will be used.
1436 If X is a `const_double', by returning `NO_REGS' you can force X into a
1437 memory constant. This is useful on certain machines where immediate
1438 floating values cannot be loaded into certain kinds of registers.
1440 This declaration must be present. */
1441 #define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
1443 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1444 frv_secondary_reload_class (CLASS, MODE, X, TRUE)
1446 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1447 frv_secondary_reload_class (CLASS, MODE, X, FALSE)
1449 /* A C expression whose value is nonzero if pseudos that have been assigned to
1450 registers of class CLASS would likely be spilled because registers of CLASS
1451 are needed for spill registers.
1453 The default value of this macro returns 1 if CLASS has exactly one register
1454 and zero otherwise. On most machines, this default should be used. Only
1455 define this macro to some other expression if pseudo allocated by
1456 `local-alloc.c' end up in memory because their hard registers were needed
1457 for spill registers. If this macro returns nonzero for those classes, those
1458 pseudos will only be allocated by `global.c', which knows how to reallocate
1459 the pseudo to another register. If there would not be another register
1460 available for reallocation, you should not change the definition of this
1461 macro since the only effect of such a definition would be to slow down
1462 register allocation. */
1463 #define CLASS_LIKELY_SPILLED_P(CLASS) frv_class_likely_spilled_p (CLASS)
1465 /* A C expression for the maximum number of consecutive registers of
1466 class CLASS needed to hold a value of mode MODE.
1468 This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
1469 of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
1470 `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
1472 This macro helps control the handling of multiple-word values in
1473 the reload pass.
1475 This declaration is required. */
1476 #define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
1478 #define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
1480 /* 6 bit signed immediate. */
1481 #define CONST_OK_FOR_I(VALUE) IN_RANGE_P(VALUE, -32, 31)
1482 /* 10 bit signed immediate. */
1483 #define CONST_OK_FOR_J(VALUE) IN_RANGE_P(VALUE, -512, 511)
1484 /* Unused */
1485 #define CONST_OK_FOR_K(VALUE) 0
1486 /* 16 bit signed immediate. */
1487 #define CONST_OK_FOR_L(VALUE) IN_RANGE_P(VALUE, -32768, 32767)
1488 /* 16 bit unsigned immediate. */
1489 #define CONST_OK_FOR_M(VALUE) IN_RANGE_P (VALUE, 0, 65535)
1490 /* 12 bit signed immediate that is negative. */
1491 #define CONST_OK_FOR_N(VALUE) IN_RANGE_P(VALUE, -2048, -1)
1492 /* Zero */
1493 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1494 /* 12 bit signed immediate that is negative. */
1495 #define CONST_OK_FOR_P(VALUE) IN_RANGE_P(VALUE, 1, 2047)
1497 /* A C expression that defines the machine-dependent operand constraint letters
1498 (`I', `J', `K', .. 'P') that specify particular ranges of integer values.
1499 If C is one of those letters, the expression should check that VALUE, an
1500 integer, is in the appropriate range and return 1 if so, 0 otherwise. If C
1501 is not one of those letters, the value should be 0 regardless of VALUE. */
1502 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1503 ( (C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1504 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1505 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1506 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1507 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1508 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1509 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1510 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1511 : 0)
1514 /* A C expression that defines the machine-dependent operand constraint letters
1515 (`G', `H') that specify particular ranges of `const_double' values.
1517 If C is one of those letters, the expression should check that VALUE, an RTX
1518 of code `const_double', is in the appropriate range and return 1 if so, 0
1519 otherwise. If C is not one of those letters, the value should be 0
1520 regardless of VALUE.
1522 `const_double' is used for all floating-point constants and for `DImode'
1523 fixed-point constants. A given letter can accept either or both kinds of
1524 values. It can use `GET_MODE' to distinguish between these kinds. */
1526 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
1527 ((GET_MODE (VALUE) == VOIDmode \
1528 && CONST_DOUBLE_LOW (VALUE) == 0 \
1529 && CONST_DOUBLE_HIGH (VALUE) == 0) \
1530 || ((GET_MODE (VALUE) == SFmode \
1531 || GET_MODE (VALUE) == DFmode) \
1532 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))))
1534 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
1536 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1537 ( (C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
1538 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
1539 : 0)
1541 /* A C expression that defines the optional machine-dependent constraint
1542 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1543 types of operands, usually memory references, for the target machine.
1544 Normally this macro will not be defined. If it is required for a particular
1545 target machine, it should return 1 if VALUE corresponds to the operand type
1546 represented by the constraint letter C. If C is not defined as an extra
1547 constraint, the value returned should be 0 regardless of VALUE.
1549 For example, on the ROMP, load instructions cannot have their output in r0
1550 if the memory reference contains a symbolic address. Constraint letter `Q'
1551 is defined as representing a memory address that does *not* contain a
1552 symbolic address. An alternative is specified with a `Q' constraint on the
1553 input and `r' on the output. The next alternative specifies `m' on the
1554 input and a register class that does not include r0 on the output. */
1556 /* 12-bit relocations. */
1557 #define EXTRA_CONSTRAINT_FOR_Q(VALUE) \
1558 (got12_operand (VALUE, GET_MODE (VALUE)))
1560 /* Double word memory ops that take one instruction. */
1561 #define EXTRA_CONSTRAINT_FOR_R(VALUE) \
1562 (dbl_memory_one_insn_operand (VALUE, GET_MODE (VALUE)))
1564 /* SYMBOL_REF */
1565 #define EXTRA_CONSTRAINT_FOR_S(VALUE) \
1566 (CONSTANT_P (VALUE) && call_operand (VALUE, VOIDmode))
1568 /* Double word memory ops that take two instructions. */
1569 #define EXTRA_CONSTRAINT_FOR_T(VALUE) \
1570 (dbl_memory_two_insn_operand (VALUE, GET_MODE (VALUE)))
1572 /* Memory operand for conditional execution. */
1573 #define EXTRA_CONSTRAINT_FOR_U(VALUE) \
1574 (condexec_memory_operand (VALUE, GET_MODE (VALUE)))
1576 #define EXTRA_CONSTRAINT(VALUE, C) \
1577 ( (C) == 'Q' ? EXTRA_CONSTRAINT_FOR_Q (VALUE) \
1578 : (C) == 'R' ? EXTRA_CONSTRAINT_FOR_R (VALUE) \
1579 : (C) == 'S' ? EXTRA_CONSTRAINT_FOR_S (VALUE) \
1580 : (C) == 'T' ? EXTRA_CONSTRAINT_FOR_T (VALUE) \
1581 : (C) == 'U' ? EXTRA_CONSTRAINT_FOR_U (VALUE) \
1582 : 0)
1585 /* Basic Stack Layout. */
1587 /* Structure to describe information about a saved range of registers */
1589 typedef struct frv_stack_regs {
1590 const char * name; /* name of the register ranges */
1591 int first; /* first register in the range */
1592 int last; /* last register in the range */
1593 int size_1word; /* # of bytes to be stored via 1 word stores */
1594 int size_2words; /* # of bytes to be stored via 2 word stores */
1595 unsigned char field_p; /* true if the registers are a single SPR */
1596 unsigned char dword_p; /* true if we can do dword stores */
1597 unsigned char special_p; /* true if the regs have a fixed save loc. */
1598 } frv_stack_regs_t;
1600 /* Register ranges to look into saving. */
1601 #define STACK_REGS_GPR 0 /* Gprs (normally gr16..gr31, gr48..gr63) */
1602 #define STACK_REGS_FPR 1 /* Fprs (normally fr16..fr31, fr48..fr63) */
1603 #define STACK_REGS_LR 2 /* LR register */
1604 #define STACK_REGS_CC 3 /* CCrs (normally not saved) */
1605 #define STACK_REGS_LCR 5 /* lcr register */
1606 #define STACK_REGS_STDARG 6 /* stdarg registers */
1607 #define STACK_REGS_STRUCT 7 /* structure return (gr3) */
1608 #define STACK_REGS_FP 8 /* FP register */
1609 #define STACK_REGS_MAX 9 /* # of register ranges */
1611 /* Values for save_p field. */
1612 #define REG_SAVE_NO_SAVE 0 /* register not saved */
1613 #define REG_SAVE_1WORD 1 /* save the register */
1614 #define REG_SAVE_2WORDS 2 /* save register and register+1 */
1616 /* Structure used to define the frv stack. */
1618 typedef struct frv_stack {
1619 int total_size; /* total bytes allocated for stack */
1620 int vars_size; /* variable save area size */
1621 int parameter_size; /* outgoing parameter size */
1622 int stdarg_size; /* size of regs needed to be saved for stdarg */
1623 int regs_size; /* size of the saved registers */
1624 int regs_size_1word; /* # of bytes to be stored via 1 word stores */
1625 int regs_size_2words; /* # of bytes to be stored via 2 word stores */
1626 int header_size; /* size of the old FP, struct ret., LR save */
1627 int pretend_size; /* size of pretend args */
1628 int vars_offset; /* offset to save local variables from new SP*/
1629 int regs_offset; /* offset to save registers from new SP */
1630 /* register range information */
1631 frv_stack_regs_t regs[STACK_REGS_MAX];
1632 /* offset to store each register */
1633 int reg_offset[FIRST_PSEUDO_REGISTER];
1634 /* whether to save register (& reg+1) */
1635 unsigned char save_p[FIRST_PSEUDO_REGISTER];
1636 } frv_stack_t;
1638 /* Define this macro if pushing a word onto the stack moves the stack pointer
1639 to a smaller address. */
1640 #define STACK_GROWS_DOWNWARD 1
1642 /* Define this macro if the addresses of local variable slots are at negative
1643 offsets from the frame pointer. */
1644 #define FRAME_GROWS_DOWNWARD
1646 /* Offset from the frame pointer to the first local variable slot to be
1647 allocated.
1649 If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
1650 first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by
1651 adding the length of the first slot to the value `STARTING_FRAME_OFFSET'. */
1652 #define STARTING_FRAME_OFFSET 0
1654 /* Offset from the stack pointer register to the first location at which
1655 outgoing arguments are placed. If not specified, the default value of zero
1656 is used. This is the proper value for most machines.
1658 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1659 location at which outgoing arguments are placed. */
1660 #define STACK_POINTER_OFFSET 0
1662 /* Offset from the argument pointer register to the first argument's address.
1663 On some machines it may depend on the data type of the function.
1665 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1666 argument's address. */
1667 #define FIRST_PARM_OFFSET(FUNDECL) 0
1669 /* A C expression whose value is RTL representing the address in a stack frame
1670 where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
1671 an RTL expression for the address of the stack frame itself.
1673 If you don't define this macro, the default is to return the value of
1674 FRAMEADDR--that is, the stack frame address is also the address of the stack
1675 word that points to the previous frame. */
1676 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
1678 /* A C expression whose value is RTL representing the value of the return
1679 address for the frame COUNT steps up from the current frame, after the
1680 prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1681 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1682 defined.
1684 The value of the expression must always be the correct address when COUNT is
1685 zero, but may be `NULL_RTX' if there is not way to determine the return
1686 address of other frames. */
1687 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1689 /* This function contains machine specific function data. */
1690 struct machine_function GTY(())
1692 /* True if we have created an rtx that relies on the stack frame. */
1693 int frame_needed;
1696 #define RETURN_POINTER_REGNUM LR_REGNO
1698 /* A C expression whose value is RTL representing the location of the incoming
1699 return address at the beginning of any function, before the prologue. This
1700 RTL is either a `REG', indicating that the return value is saved in `REG',
1701 or a `MEM' representing a location in the stack.
1703 You only need to define this macro if you want to support call frame
1704 debugging information like that provided by DWARF 2. */
1705 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1708 /* Register That Address the Stack Frame. */
1710 /* The register number of the stack pointer register, which must also be a
1711 fixed register according to `FIXED_REGISTERS'. On most machines, the
1712 hardware determines which register this is. */
1713 #define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1715 /* The register number of the frame pointer register, which is used to access
1716 automatic variables in the stack frame. On some machines, the hardware
1717 determines which register this is. On other machines, you can choose any
1718 register you wish for this purpose. */
1719 #define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1721 /* The register number of the arg pointer register, which is used to access the
1722 function's argument list. On some machines, this is the same as the frame
1723 pointer register. On some machines, the hardware determines which register
1724 this is. On other machines, you can choose any register you wish for this
1725 purpose. If this is not the same register as the frame pointer register,
1726 then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1727 arrange to be able to eliminate it. */
1729 /* On frv this is a fake register that is eliminated in
1730 terms of either the frame pointer or stack pointer. */
1731 #define ARG_POINTER_REGNUM AP_FIRST
1733 /* Register numbers used for passing a function's static chain pointer. If
1734 register windows are used, the register number as seen by the called
1735 function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1736 seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
1737 are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1739 The static chain register need not be a fixed register.
1741 If the static chain is passed in memory, these macros should not be defined;
1742 instead, the next two macros should be defined. */
1743 #define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1744 #define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1747 /* Eliminating the Frame Pointer and the Arg Pointer. */
1749 /* A C expression which is nonzero if a function must have and use a frame
1750 pointer. This expression is evaluated in the reload pass. If its value is
1751 nonzero the function will have a frame pointer.
1753 The expression can in principle examine the current function and decide
1754 according to the facts, but on most machines the constant 0 or the constant
1755 1 suffices. Use 0 when the machine allows code to be generated with no
1756 frame pointer, and doing so saves some time or space. Use 1 when there is
1757 no possible advantage to avoiding a frame pointer.
1759 In certain cases, the compiler does not know how to produce valid code
1760 without a frame pointer. The compiler recognizes those cases and
1761 automatically gives the function a frame pointer regardless of what
1762 `FRAME_POINTER_REQUIRED' says. You don't need to worry about them.
1764 In a function that does not require a frame pointer, the frame pointer
1765 register can be allocated for ordinary usage, unless you mark it as a fixed
1766 register. See `FIXED_REGISTERS' for more information. */
1767 #define FRAME_POINTER_REQUIRED frv_frame_pointer_required ()
1769 /* If defined, this macro specifies a table of register pairs used to eliminate
1770 unneeded registers that point into the stack frame. If it is not defined,
1771 the only elimination attempted by the compiler is to replace references to
1772 the frame pointer with references to the stack pointer.
1774 The definition of this macro is a list of structure initializations, each of
1775 which specifies an original and replacement register.
1777 On some machines, the position of the argument pointer is not known until
1778 the compilation is completed. In such a case, a separate hard register must
1779 be used for the argument pointer. This register can be eliminated by
1780 replacing it with either the frame pointer or the argument pointer,
1781 depending on whether or not the frame pointer has been eliminated.
1783 In this case, you might specify:
1784 #define ELIMINABLE_REGS \
1785 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1786 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1787 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1789 Note that the elimination of the argument pointer with the stack pointer is
1790 specified first since that is the preferred elimination. */
1792 #define ELIMINABLE_REGS \
1794 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1795 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1796 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
1799 /* A C expression that returns nonzero if the compiler is allowed to try to
1800 replace register number FROM with register number TO. This macro need only
1801 be defined if `ELIMINABLE_REGS' is defined, and will usually be the constant
1802 1, since most of the cases preventing register elimination are things that
1803 the compiler already knows about. */
1805 #define CAN_ELIMINATE(FROM, TO) \
1806 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1807 ? ! frame_pointer_needed \
1808 : 1)
1810 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
1811 initial difference between the specified pair of registers. This macro must
1812 be defined if `ELIMINABLE_REGS' is defined. */
1814 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1815 (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1818 /* Passing Function Arguments on the Stack. */
1820 /* If defined, the maximum amount of space required for outgoing arguments will
1821 be computed and placed into the variable
1822 `current_function_outgoing_args_size'. No space will be pushed onto the
1823 stack for each call; instead, the function prologue should increase the
1824 stack frame size by this amount.
1826 Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1827 proper. */
1828 #define ACCUMULATE_OUTGOING_ARGS 1
1830 /* A C expression that should indicate the number of bytes of its own arguments
1831 that a function pops on returning, or 0 if the function pops no arguments
1832 and the caller must therefore pop them all after the function returns.
1834 FUNDECL is a C variable whose value is a tree node that describes the
1835 function in question. Normally it is a node of type `FUNCTION_DECL' that
1836 describes the declaration of the function. From this it is possible to
1837 obtain the DECL_ATTRIBUTES of the function.
1839 FUNTYPE is a C variable whose value is a tree node that describes the
1840 function in question. Normally it is a node of type `FUNCTION_TYPE' that
1841 describes the data type of the function. From this it is possible to obtain
1842 the data types of the value and arguments (if known).
1844 When a call to a library function is being considered, FUNTYPE will contain
1845 an identifier node for the library function. Thus, if you need to
1846 distinguish among various library functions, you can do so by their names.
1847 Note that "library function" in this context means a function used to
1848 perform arithmetic, whose name is known specially in the compiler and was
1849 not mentioned in the C code being compiled.
1851 STACK-SIZE is the number of bytes of arguments passed on the stack. If a
1852 variable number of bytes is passed, it is zero, and argument popping will
1853 always be the responsibility of the calling function.
1855 On the VAX, all functions always pop their arguments, so the definition of
1856 this macro is STACK-SIZE. On the 68000, using the standard calling
1857 convention, no functions pop their arguments, so the value of the macro is
1858 always 0 in this case. But an alternative calling convention is available
1859 in which functions that take a fixed number of arguments pop them but other
1860 functions (such as `printf') pop nothing (the caller pops all). When this
1861 convention is in use, FUNTYPE is examined to determine whether a function
1862 takes a fixed number of arguments. */
1863 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1866 /* The number of register assigned to holding function arguments. */
1868 #define FRV_NUM_ARG_REGS 6
1870 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1871 frv_function_arg (&CUM, MODE, TYPE, NAMED, FALSE)
1873 /* Define this macro if the target machine has "register windows", so that the
1874 register in which a function sees an arguments is not necessarily the same
1875 as the one in which the caller passed the argument.
1877 For such machines, `FUNCTION_ARG' computes the register in which the caller
1878 passes the value, and `FUNCTION_INCOMING_ARG' should be defined in a similar
1879 fashion to tell the function being called where the arguments will arrive.
1881 If `FUNCTION_INCOMING_ARG' is not defined, `FUNCTION_ARG' serves both
1882 purposes. */
1884 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1885 frv_function_arg (&CUM, MODE, TYPE, NAMED, TRUE)
1887 /* A C type for declaring a variable that is used as the first argument of
1888 `FUNCTION_ARG' and other related values. For some target machines, the type
1889 `int' suffices and can hold the number of bytes of argument so far.
1891 There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1892 that have been passed on the stack. The compiler has other variables to
1893 keep track of that. For target machines on which all arguments are passed
1894 on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1895 however, the data structure must exist and should not be empty, so use
1896 `int'. */
1897 #define CUMULATIVE_ARGS int
1899 /* A C statement (sans semicolon) for initializing the variable CUM for the
1900 state at the beginning of the argument list. The variable has type
1901 `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
1902 of the function which will receive the args, or 0 if the args are to a
1903 compiler support library function. The value of INDIRECT is nonzero when
1904 processing an indirect call, for example a call through a function pointer.
1905 The value of INDIRECT is zero for a call to an explicitly named function, a
1906 library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1907 arguments for the function being compiled.
1909 When processing a call to a compiler support library function, LIBNAME
1910 identifies which one. It is a `symbol_ref' rtx which contains the name of
1911 the function, as a string. LIBNAME is 0 when an ordinary C function call is
1912 being processed. Thus, each time this macro is called, either LIBNAME or
1913 FNTYPE is nonzero, but never both of them at once. */
1915 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1916 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1918 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1919 arguments for the function being compiled. If this macro is undefined,
1920 `INIT_CUMULATIVE_ARGS' is used instead.
1922 The value passed for LIBNAME is always 0, since library routines with
1923 special calling conventions are never compiled with GCC. The argument
1924 LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. */
1926 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1927 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1929 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1930 advance past an argument in the argument list. The values MODE, TYPE and
1931 NAMED describe that argument. Once this is done, the variable CUM is
1932 suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
1934 This macro need not do anything if the argument in question was passed on
1935 the stack. The compiler knows how to track the amount of stack space used
1936 for arguments without any special help. */
1937 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1938 frv_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1940 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1941 argument with the specified mode and type. If it is not defined,
1942 `PARM_BOUNDARY' is used for all arguments. */
1944 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1945 frv_function_arg_boundary (MODE, TYPE)
1947 /* A C expression that is nonzero if REGNO is the number of a hard register in
1948 which function arguments are sometimes passed. This does *not* include
1949 implicit arguments such as the static chain and the structure-value address.
1950 On many machines, no registers can be used for this purpose since all
1951 function arguments are pushed on the stack. */
1952 #define FUNCTION_ARG_REGNO_P(REGNO) \
1953 ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1956 /* How Scalar Function Values are Returned. */
1958 /* The number of the hard register that is used to return a scalar value from a
1959 function call. */
1960 #define RETURN_VALUE_REGNUM (GPR_FIRST + 8)
1962 /* A C expression to create an RTX representing the place where a function
1963 returns a value of data type VALTYPE. VALTYPE is a tree node representing a
1964 data type. Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
1965 represent that type. On many machines, only the mode is relevant.
1966 (Actually, on most machines, scalar values are returned in the same place
1967 regardless of mode).
1969 If `TARGET_PROMOTE_FUNCTION_RETURN' is defined to return true, you
1970 must apply the same promotion rules specified in `PROMOTE_MODE' if
1971 VALTYPE is a scalar type.
1973 If the precise function being called is known, FUNC is a tree node
1974 (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This makes it
1975 possible to use a different value-returning convention for specific
1976 functions when all their calls are known.
1978 `FUNCTION_VALUE' is not used for return vales with aggregate data types,
1979 because these are returned in another way. See
1980 `TARGET_STRUCT_VALUE_RTX' and related macros, below. */
1981 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1982 gen_rtx_REG (TYPE_MODE (VALTYPE), RETURN_VALUE_REGNUM)
1984 /* A C expression to create an RTX representing the place where a library
1985 function returns a value of mode MODE.
1987 Note that "library function" in this context means a compiler support
1988 routine, used to perform arithmetic, whose name is known specially by the
1989 compiler and was not mentioned in the C code being compiled.
1991 The definition of `LIBRARY_VALUE' need not be concerned aggregate data
1992 types, because none of the library functions returns such types. */
1993 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, RETURN_VALUE_REGNUM)
1995 /* A C expression that is nonzero if REGNO is the number of a hard register in
1996 which the values of called function may come back.
1998 A register whose use for returning values is limited to serving as the
1999 second of a pair (for a value of type `double', say) need not be recognized
2000 by this macro. So for most machines, this definition suffices:
2002 #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN)
2004 If the machine has register windows, so that the caller and the called
2005 function use different registers for the return value, this macro should
2006 recognize only the caller's register numbers. */
2007 #define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RETURN_VALUE_REGNUM)
2010 /* How Large Values are Returned. */
2012 /* The number of the register that is used to to pass the structure
2013 value address. */
2014 #define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
2017 /* Function Entry and Exit. */
2019 /* Define this macro as a C expression that is nonzero if the return
2020 instruction or the function epilogue ignores the value of the stack pointer;
2021 in other words, if it is safe to delete an instruction to adjust the stack
2022 pointer before a return from the function.
2024 Note that this macro's value is relevant only for functions for which frame
2025 pointers are maintained. It is never safe to delete a final stack
2026 adjustment in a function that has no frame pointer, and the compiler knows
2027 this regardless of `EXIT_IGNORE_STACK'. */
2028 #define EXIT_IGNORE_STACK 1
2030 /* Generating Code for Profiling. */
2032 /* A C statement or compound statement to output to FILE some assembler code to
2033 call the profiling subroutine `mcount'. Before calling, the assembler code
2034 must load the address of a counter variable into a register where `mcount'
2035 expects to find the address. The name of this variable is `LP' followed by
2036 the number LABELNO, so you would generate the name using `LP%d' in a
2037 `fprintf'.
2039 The details of how the address should be passed to `mcount' are determined
2040 by your operating system environment, not by GCC. To figure them out,
2041 compile a small program for profiling using the system's installed C
2042 compiler and look at the assembler code that results.
2044 This declaration must be present, but it can be an abort if profiling is
2045 not implemented. */
2047 #define FUNCTION_PROFILER(FILE, LABELNO)
2050 /* Implementing the Varargs Macros. */
2052 /* Implement the stdarg/varargs va_start macro. STDARG_P is nonzero if this
2053 is stdarg.h instead of varargs.h. VALIST is the tree of the va_list
2054 variable to initialize. NEXTARG is the machine independent notion of the
2055 'next' argument after the variable arguments. If not defined, a standard
2056 implementation will be defined that works for arguments passed on the stack. */
2058 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
2059 (frv_expand_builtin_va_start(VALIST, NEXTARG))
2062 /* Trampolines for Nested Functions. */
2064 /* A C expression for the size in bytes of the trampoline, as an integer. */
2065 #define TRAMPOLINE_SIZE frv_trampoline_size ()
2067 /* Alignment required for trampolines, in bits.
2069 If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
2070 aligning trampolines. */
2071 #define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
2073 /* A C statement to initialize the variable parts of a trampoline. ADDR is an
2074 RTX for the address of the trampoline; FNADDR is an RTX for the address of
2075 the nested function; STATIC_CHAIN is an RTX for the static chain value that
2076 should be passed to the function when it is called. */
2077 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
2078 frv_initialize_trampoline (ADDR, FNADDR, STATIC_CHAIN)
2080 /* Define this macro if trampolines need a special subroutine to do their work.
2081 The macro should expand to a series of `asm' statements which will be
2082 compiled with GCC. They go in a library function named
2083 `__transfer_from_trampoline'.
2085 If you need to avoid executing the ordinary prologue code of a compiled C
2086 function when you jump to the subroutine, you can do so by placing a special
2087 label of your own in the assembler code. Use one `asm' statement to
2088 generate an assembler label, and another to make the label global. Then
2089 trampolines can use that label to jump directly to your special assembler
2090 code. */
2092 #ifdef __FRV_UNDERSCORE__
2093 #define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
2094 #else
2095 #define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
2096 #endif
2098 #define Twrite _write
2100 #if ! __FRV_FDPIC__
2101 #define TRANSFER_FROM_TRAMPOLINE \
2102 extern int Twrite (int, const void *, unsigned); \
2104 void \
2105 __trampoline_setup (short * addr, int size, int fnaddr, int sc) \
2107 extern short __trampoline_template[]; \
2108 short * to = addr; \
2109 short * from = &__trampoline_template[0]; \
2110 int i; \
2112 if (size < 20) \
2114 Twrite (2, "__trampoline_setup bad size\n", \
2115 sizeof ("__trampoline_setup bad size\n") - 1); \
2116 exit (-1); \
2119 to[0] = from[0]; \
2120 to[1] = (short)(fnaddr); \
2121 to[2] = from[2]; \
2122 to[3] = (short)(sc); \
2123 to[4] = from[4]; \
2124 to[5] = (short)(fnaddr >> 16); \
2125 to[6] = from[6]; \
2126 to[7] = (short)(sc >> 16); \
2127 to[8] = from[8]; \
2128 to[9] = from[9]; \
2130 for (i = 0; i < 20; i++) \
2131 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
2134 __asm__("\n" \
2135 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
2136 "\t.text\n" \
2137 TRAMPOLINE_TEMPLATE_NAME ":\n" \
2138 "\tsetlos #0, gr6\n" /* jump register */ \
2139 "\tsetlos #0, gr7\n" /* static chain */ \
2140 "\tsethi #0, gr6\n" \
2141 "\tsethi #0, gr7\n" \
2142 "\tjmpl @(gr0,gr6)\n");
2143 #else
2144 #define TRANSFER_FROM_TRAMPOLINE \
2145 extern int Twrite (int, const void *, unsigned); \
2147 void \
2148 __trampoline_setup (addr, size, fnaddr, sc) \
2149 short * addr; \
2150 int size; \
2151 int fnaddr; \
2152 int sc; \
2154 extern short __trampoline_template[]; \
2155 short * from = &__trampoline_template[0]; \
2156 int i; \
2157 short **desc = (short **)addr; \
2158 short * to = addr + 4; \
2160 if (size != 32) \
2162 Twrite (2, "__trampoline_setup bad size\n", \
2163 sizeof ("__trampoline_setup bad size\n") - 1); \
2164 exit (-1); \
2167 /* Create a function descriptor with the address of the code below
2168 and NULL as the FDPIC value. We don't need the real GOT value
2169 here, since we don't use it, so we use NULL, that is just as
2170 good. */ \
2171 desc[0] = to; \
2172 desc[1] = NULL; \
2173 size -= 8; \
2175 to[0] = from[0]; \
2176 to[1] = (short)(fnaddr); \
2177 to[2] = from[2]; \
2178 to[3] = (short)(sc); \
2179 to[4] = from[4]; \
2180 to[5] = (short)(fnaddr >> 16); \
2181 to[6] = from[6]; \
2182 to[7] = (short)(sc >> 16); \
2183 to[8] = from[8]; \
2184 to[9] = from[9]; \
2185 to[10] = from[10]; \
2186 to[11] = from[11]; \
2188 for (i = 0; i < size; i++) \
2189 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
2192 __asm__("\n" \
2193 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
2194 "\t.text\n" \
2195 TRAMPOLINE_TEMPLATE_NAME ":\n" \
2196 "\tsetlos #0, gr6\n" /* Jump register. */ \
2197 "\tsetlos #0, gr7\n" /* Static chain. */ \
2198 "\tsethi #0, gr6\n" \
2199 "\tsethi #0, gr7\n" \
2200 "\tldd @(gr6,gr0),gr14\n" \
2201 "\tjmpl @(gr14,gr0)\n" \
2203 #endif
2206 /* Addressing Modes. */
2208 /* A C expression that is 1 if the RTX X is a constant which is a valid
2209 address. On most machines, this can be defined as `CONSTANT_P (X)', but a
2210 few machines are more restrictive in which constant addresses are supported.
2212 `CONSTANT_P' accepts integer-values expressions whose values are not
2213 explicitly known, such as `symbol_ref', `label_ref', and `high' expressions
2214 and `const' arithmetic expressions, in addition to `const_int' and
2215 `const_double' expressions. */
2216 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
2218 /* A number, the maximum number of registers that can appear in a valid memory
2219 address. Note that it is up to you to specify a value equal to the maximum
2220 number that `GO_IF_LEGITIMATE_ADDRESS' would ever accept. */
2221 #define MAX_REGS_PER_ADDRESS 2
2223 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
2224 RTX) is a legitimate memory address on the target machine for a memory
2225 operand of mode MODE.
2227 It usually pays to define several simpler macros to serve as subroutines for
2228 this one. Otherwise it may be too complicated to understand.
2230 This macro must exist in two variants: a strict variant and a non-strict
2231 one. The strict variant is used in the reload pass. It must be defined so
2232 that any pseudo-register that has not been allocated a hard register is
2233 considered a memory reference. In contexts where some kind of register is
2234 required, a pseudo-register with no hard register must be rejected.
2236 The non-strict variant is used in other passes. It must be defined to
2237 accept all pseudo-registers in every context where some kind of register is
2238 required.
2240 Compiler source files that want to use the strict variant of this macro
2241 define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
2242 conditional to define the strict variant in that case and the non-strict
2243 variant otherwise.
2245 Subroutines to check for acceptable registers for various purposes (one for
2246 base registers, one for index registers, and so on) are typically among the
2247 subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
2248 subroutine macros need have two variants; the higher levels of macros may be
2249 the same whether strict or not.
2251 Normally, constant addresses which are the sum of a `symbol_ref' and an
2252 integer are stored inside a `const' RTX to mark them as constant.
2253 Therefore, there is no need to recognize such sums specifically as
2254 legitimate addresses. Normally you would simply recognize any `const' as
2255 legitimate.
2257 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
2258 are not marked with `const'. It assumes that a naked `plus' indicates
2259 indexing. If so, then you *must* reject such naked constant sums as
2260 illegitimate addresses, so that none of them will be given to
2261 `PRINT_OPERAND_ADDRESS'.
2263 On some machines, whether a symbolic address is legitimate depends on the
2264 section that the address refers to. On these machines, define the macro
2265 `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2266 then check for it here. When you see a `const', you will have to look
2267 inside it to find the `symbol_ref' in order to determine the section.
2269 The best way to modify the name string is by adding text to the beginning,
2270 with suitable punctuation to prevent any ambiguity. Allocate the new name
2271 in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
2272 remove and decode the added text and output the name accordingly, and define
2273 `(* targetm.strip_name_encoding)' to access the original name string.
2275 You can check the information stored here into the `symbol_ref' in the
2276 definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
2277 `PRINT_OPERAND_ADDRESS'. */
2279 #ifdef REG_OK_STRICT
2280 #define REG_OK_STRICT_P 1
2281 #else
2282 #define REG_OK_STRICT_P 0
2283 #endif
2285 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
2286 do \
2288 if (frv_legitimate_address_p (MODE, X, REG_OK_STRICT_P, \
2289 FALSE, FALSE)) \
2290 goto LABEL; \
2292 while (0)
2294 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2295 use as a base register. For hard registers, it should always accept those
2296 which the hardware permits and reject the others. Whether the macro accepts
2297 or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
2298 described above. This usually requires two variant definitions, of which
2299 `REG_OK_STRICT' controls the one actually used. */
2300 #ifdef REG_OK_STRICT
2301 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
2302 #else
2303 #define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
2304 #endif
2306 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2307 use as an index register.
2309 The difference between an index register and a base register is that the
2310 index register may be scaled. If an address involves the sum of two
2311 registers, neither one of them scaled, then either one may be labeled the
2312 "base" and the other the "index"; but whichever labeling is used must fit
2313 the machine's constraints of which registers may serve in each capacity.
2314 The compiler will try both labelings, looking for one that is valid, and
2315 will reload one or both registers only if neither labeling works. */
2316 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
2318 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2319 do { \
2320 rtx new_x = frv_legitimize_address (X, OLDX, MODE); \
2321 if (new_x) \
2323 (X) = new_x; \
2324 goto WIN; \
2326 } while (0)
2328 #define FIND_BASE_TERM frv_find_base_term
2330 /* A C statement or compound statement with a conditional `goto LABEL;'
2331 executed if memory address X (an RTX) can have different meanings depending
2332 on the machine mode of the memory reference it is used for or if the address
2333 is valid for some modes but not others.
2335 Autoincrement and autodecrement addresses typically have mode-dependent
2336 effects because the amount of the increment or decrement is the size of the
2337 operand being addressed. Some machines have other mode-dependent addresses.
2338 Many RISC machines have no mode-dependent addresses.
2340 You may assume that ADDR is a valid address for the machine. */
2341 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
2343 /* A C expression that is nonzero if X is a legitimate constant for an
2344 immediate operand on the target machine. You can assume that X satisfies
2345 `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
2346 definition for this macro on machines where anything `CONSTANT_P' is valid. */
2347 #define LEGITIMATE_CONSTANT_P(X) frv_legitimate_constant_p (X)
2349 /* The load-and-update commands allow pre-modification in addresses.
2350 The index has to be in a register. */
2351 #define HAVE_PRE_MODIFY_REG 1
2354 /* Returns a mode from class `MODE_CC' to be used when comparison operation
2355 code OP is applied to rtx X and Y. For example, on the SPARC,
2356 `SELECT_CC_MODE' is defined as (see *note Jump Patterns::. for a
2357 description of the reason for this definition)
2359 #define SELECT_CC_MODE(OP,X,Y) \
2360 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2361 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
2362 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
2363 || GET_CODE (X) == NEG) \
2364 ? CC_NOOVmode : CCmode))
2366 You need not define this macro if `EXTRA_CC_MODES' is not defined. */
2367 #define SELECT_CC_MODE frv_select_cc_mode
2369 /* A C expression whose value is one if it is always safe to reverse a
2370 comparison whose mode is MODE. If `SELECT_CC_MODE' can ever return MODE for
2371 a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
2372 must be zero.
2374 You need not define this macro if it would always returns zero or if the
2375 floating-point format is anything other than `IEEE_FLOAT_FORMAT'. For
2376 example, here is the definition used on the SPARC, where floating-point
2377 inequality comparisons are always given `CCFPEmode':
2379 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) */
2381 /* On frv, don't consider floating point comparisons to be reversible. In
2382 theory, fp equality comparisons can be reversible. */
2383 #define REVERSIBLE_CC_MODE(MODE) \
2384 ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
2386 /* Frv CCR_MODE's are not reversible. */
2387 #define REVERSE_CONDEXEC_PREDICATES_P(x,y) 0
2390 /* Describing Relative Costs of Operations. */
2392 /* A C expression for the cost of moving data from a register in class FROM to
2393 one in class TO. The classes are expressed using the enumeration values
2394 such as `GENERAL_REGS'. A value of 4 is the default; other values are
2395 interpreted relative to that.
2397 It is not required that the cost always equal 2 when FROM is the same as TO;
2398 on some machines it is expensive to move between registers if they are not
2399 general registers.
2401 If reload sees an insn consisting of a single `set' between two hard
2402 registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
2403 value of 2, reload does not check to ensure that the constraints of the insn
2404 are met. Setting a cost of other than 2 will allow reload to verify that
2405 the constraints are met. You should do this if the `movM' pattern's
2406 constraints do not allow such copying. */
2407 #define REGISTER_MOVE_COST(MODE, FROM, TO) frv_register_move_cost (FROM, TO)
2409 /* A C expression for the cost of moving data of mode M between a register and
2410 memory. A value of 2 is the default; this cost is relative to those in
2411 `REGISTER_MOVE_COST'.
2413 If moving between registers and memory is more expensive than between two
2414 registers, you should define this macro to express the relative cost. */
2415 #define MEMORY_MOVE_COST(M,C,I) 4
2417 /* A C expression for the cost of a branch instruction. A value of 1 is the
2418 default; other values are interpreted relative to that. */
2420 /* Here are additional macros which do not specify precise relative costs, but
2421 only that certain actions are more expensive than GCC would ordinarily
2422 expect. */
2424 /* We used to default the branch cost to 2, but I changed it to 1, to avoid
2425 generating SCC instructions and or/and-ing them together, and then doing the
2426 branch on the result, which collectively generate much worse code. */
2427 #ifndef DEFAULT_BRANCH_COST
2428 #define DEFAULT_BRANCH_COST 1
2429 #endif
2431 #define BRANCH_COST frv_branch_cost_int
2433 /* Define this macro as a C expression which is nonzero if accessing less than
2434 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
2435 word of memory, i.e., if such access require more than one instruction or if
2436 there is no difference in cost between byte and (aligned) word loads.
2438 When this macro is not defined, the compiler will access a field by finding
2439 the smallest containing object; when it is defined, a fullword load will be
2440 used if alignment permits. Unless bytes accesses are faster than word
2441 accesses, using word accesses is preferable since it may eliminate
2442 subsequent memory access if subsequent accesses occur to other fields in the
2443 same word of the structure, but to different bytes. */
2444 #define SLOW_BYTE_ACCESS 1
2446 /* Define this macro if it is as good or better to call a constant function
2447 address than to call an address kept in a register. */
2448 #define NO_FUNCTION_CSE
2451 /* Dividing the output into sections. */
2453 /* A C expression whose value is a string containing the assembler operation
2454 that should precede instructions and read-only data. Normally `".text"' is
2455 right. */
2456 #define TEXT_SECTION_ASM_OP "\t.text"
2458 /* A C expression whose value is a string containing the assembler operation to
2459 identify the following data as writable initialized data. Normally
2460 `".data"' is right. */
2461 #define DATA_SECTION_ASM_OP "\t.data"
2463 /* If defined, a C expression whose value is a string containing the
2464 assembler operation to identify the following data as
2465 uninitialized global data. If not defined, and neither
2466 `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2467 uninitialized global data will be output in the data section if
2468 `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2469 used. */
2470 #define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
2472 /* Short Data Support */
2473 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
2475 /* On svr4, we *do* have support for the .init and .fini sections, and we
2476 can put stuff in there to be executed before and after `main'. We let
2477 crtstuff.c and other files know this by defining the following symbols.
2478 The definitions say how to change sections to the .init and .fini
2479 sections. This is the same for all known svr4 assemblers.
2481 The standard System V.4 macros will work, but they look ugly in the
2482 assembly output, so redefine them. */
2484 #undef INIT_SECTION_ASM_OP
2485 #undef FINI_SECTION_ASM_OP
2486 #define INIT_SECTION_ASM_OP "\t.section .init,\"ax\""
2487 #define FINI_SECTION_ASM_OP "\t.section .fini,\"ax\""
2489 #undef CTORS_SECTION_ASM_OP
2490 #undef DTORS_SECTION_ASM_OP
2491 #define CTORS_SECTION_ASM_OP "\t.section\t.ctors,\"a\""
2492 #define DTORS_SECTION_ASM_OP "\t.section\t.dtors,\"a\""
2494 /* A C expression whose value is a string containing the assembler operation to
2495 switch to the fixup section that records all initialized pointers in a -fpic
2496 program so they can be changed program startup time if the program is loaded
2497 at a different address than linked for. */
2498 #define FIXUP_SECTION_ASM_OP "\t.section .rofixup,\"a\""
2500 /* A list of names for sections other than the standard two, which are
2501 `in_text' and `in_data'. You need not define this macro
2502 on a system with no other sections (that GCC needs to use). */
2503 #undef EXTRA_SECTIONS
2504 #define EXTRA_SECTIONS in_sdata, in_const, in_fixup
2506 /* One or more functions to be defined in "varasm.c". These
2507 functions should do jobs analogous to those of `text_section' and
2508 `data_section', for your additional sections. Do not define this
2509 macro if you do not define `EXTRA_SECTIONS'. */
2510 #undef EXTRA_SECTION_FUNCTIONS
2511 #define EXTRA_SECTION_FUNCTIONS \
2512 SDATA_SECTION_FUNCTION \
2513 FIXUP_SECTION_FUNCTION
2515 #define SDATA_SECTION_FUNCTION \
2516 void \
2517 sdata_section (void) \
2519 if (in_section != in_sdata) \
2521 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
2522 in_section = in_sdata; \
2526 #define FIXUP_SECTION_FUNCTION \
2527 void \
2528 fixup_section (void) \
2530 if (in_section != in_fixup) \
2532 fprintf (asm_out_file, "%s\n", FIXUP_SECTION_ASM_OP); \
2533 in_section = in_fixup; \
2537 /* Position Independent Code. */
2539 /* A C expression that is nonzero if X is a legitimate immediate operand on the
2540 target machine when generating position independent code. You can assume
2541 that X satisfies `CONSTANT_P', so you need not check this. You can also
2542 assume FLAG_PIC is true, so you need not check it either. You need not
2543 define this macro if all constants (including `SYMBOL_REF') can be immediate
2544 operands when generating position independent code. */
2545 #define LEGITIMATE_PIC_OPERAND_P(X) \
2546 ( GET_CODE (X) == CONST_INT \
2547 || GET_CODE (X) == CONST_DOUBLE \
2548 || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT) \
2549 || got12_operand (X, VOIDmode)) \
2552 /* The Overall Framework of an Assembler File. */
2554 /* A C string constant describing how to begin a comment in the target
2555 assembler language. The compiler assumes that the comment will end at the
2556 end of the line. */
2557 #define ASM_COMMENT_START ";"
2559 /* A C string constant for text to be output before each `asm' statement or
2560 group of consecutive ones. Normally this is `"#APP"', which is a comment
2561 that has no effect on most assemblers but tells the GNU assembler that it
2562 must check the lines that follow for all valid assembler constructs. */
2563 #define ASM_APP_ON "#APP\n"
2565 /* A C string constant for text to be output after each `asm' statement or
2566 group of consecutive ones. Normally this is `"#NO_APP"', which tells the
2567 GNU assembler to resume making the time-saving assumptions that are valid
2568 for ordinary compiler output. */
2569 #define ASM_APP_OFF "#NO_APP\n"
2572 /* Output of Data. */
2574 /* This is how to output a label to dwarf/dwarf2. */
2575 #define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL) \
2576 do { \
2577 fprintf (STREAM, "\t.picptr\t"); \
2578 assemble_name (STREAM, LABEL); \
2579 } while (0)
2581 /* Whether to emit the gas specific dwarf2 line number support. */
2582 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
2584 /* Output of Uninitialized Variables. */
2586 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2587 assembler definition of a local-common-label named NAME whose size is SIZE
2588 bytes. The variable ROUNDED is the size rounded up to whatever alignment
2589 the caller wants.
2591 Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
2592 before and after that, output the additional assembler syntax for defining
2593 the name, and a newline.
2595 This macro controls how the assembler definitions of uninitialized static
2596 variables are output. */
2597 #undef ASM_OUTPUT_LOCAL
2599 /* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate,
2600 explicit argument. If you define this macro, it is used in place of
2601 `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required
2602 alignment of the variable. The alignment is specified as the number of
2603 bits.
2605 Defined in svr4.h. */
2606 #undef ASM_OUTPUT_ALIGNED_LOCAL
2608 /* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME. */
2609 extern int size_directive_output;
2611 /* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
2612 parameter - the DECL of variable to be output, if there is one.
2613 This macro can be called with DECL == NULL_TREE. If you define
2614 this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
2615 `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
2616 handling the destination of the variable. */
2617 #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
2618 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN) \
2619 do { \
2620 if ((SIZE) > 0 && (SIZE) <= g_switch_value) \
2621 named_section (0, ".sbss", 0); \
2622 else \
2623 bss_section (); \
2624 ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT)); \
2625 ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL); \
2626 ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1); \
2627 } while (0)
2630 /* Output and Generation of Labels. */
2632 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2633 assembler definition of a label named NAME. Use the expression
2634 `assemble_name (STREAM, NAME)' to output the name itself; before and after
2635 that, output the additional assembler syntax for defining the name, and a
2636 newline. */
2637 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
2638 do { \
2639 assemble_name (STREAM, NAME); \
2640 fputs (":\n", STREAM); \
2641 } while (0)
2643 /* Globalizing directive for a label. */
2644 #define GLOBAL_ASM_OP "\t.globl "
2646 /* A C statement to store into the string STRING a label whose name is made
2647 from the string PREFIX and the number NUM.
2649 This string, when output subsequently by `assemble_name', should produce the
2650 output that `(*targetm.asm_out.internal_label)' would produce with the same PREFIX
2651 and NUM.
2653 If the string begins with `*', then `assemble_name' will output the rest of
2654 the string unchanged. It is often convenient for
2655 `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the string doesn't
2656 start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and
2657 may change it. (Of course, `ASM_OUTPUT_LABELREF' is also part of your
2658 machine description, so you should know what it does on your machine.)
2660 Defined in svr4.h. */
2661 #undef ASM_GENERATE_INTERNAL_LABEL
2662 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
2663 do { \
2664 sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM); \
2665 } while (0)
2668 /* Macros Controlling Initialization Routines. */
2670 /* If defined, a C string constant for the assembler operation to identify the
2671 following data as initialization code. If not defined, GCC will assume
2672 such a section does not exist. When you are using special sections for
2673 initialization and termination functions, this macro also controls how
2674 `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions.
2676 Defined in svr4.h. */
2677 #undef INIT_SECTION_ASM_OP
2679 /* If defined, `main' will call `__main' despite the presence of
2680 `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the
2681 init section is not actually run automatically, but is still useful for
2682 collecting the lists of constructors and destructors. */
2683 #define INVOKE__main
2685 /* Output of Assembler Instructions. */
2687 /* A C initializer containing the assembler's names for the machine registers,
2688 each one as a C string constant. This is what translates register numbers
2689 in the compiler into assembler language. */
2690 #define REGISTER_NAMES \
2692 "gr0", "sp", "fp", "gr3", "gr4", "gr5", "gr6", "gr7", \
2693 "gr8", "gr9", "gr10", "gr11", "gr12", "gr13", "gr14", "gr15", \
2694 "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23", \
2695 "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31", \
2696 "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39", \
2697 "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47", \
2698 "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55", \
2699 "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63", \
2701 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
2702 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
2703 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
2704 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
2705 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
2706 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
2707 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
2708 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
2710 "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3", \
2711 "cc0", "cc1", "cc2", "cc3", "cc4", "cc5", "cc6", "cc7", \
2712 "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7", \
2713 "acc8", "acc9", "acc10", "acc11", \
2714 "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7", \
2715 "accg8", "accg9", "accg10", "accg11", \
2716 "ap", "lr", "lcr", "iacc0h", "iacc0l" \
2719 /* Define this macro if you are using an unusual assembler that
2720 requires different names for the machine instructions.
2722 The definition is a C statement or statements which output an
2723 assembler instruction opcode to the stdio stream STREAM. The
2724 macro-operand PTR is a variable of type `char *' which points to
2725 the opcode name in its "internal" form--the form that is written
2726 in the machine description. The definition should output the
2727 opcode name to STREAM, performing any translation you desire, and
2728 increment the variable PTR to point at the end of the opcode so
2729 that it will not be output twice.
2731 In fact, your macro definition may process less than the entire
2732 opcode name, or more than the opcode name; but if you want to
2733 process text that includes `%'-sequences to substitute operands,
2734 you must take care of the substitution yourself. Just be sure to
2735 increment PTR over whatever text should not be output normally.
2737 If you need to look at the operand values, they can be found as the
2738 elements of `recog_operand'.
2740 If the macro definition does nothing, the instruction is output in
2741 the usual way. */
2743 #define ASM_OUTPUT_OPCODE(STREAM, PTR)\
2744 (PTR) = frv_asm_output_opcode (STREAM, PTR)
2746 /* If defined, a C statement to be executed just prior to the output
2747 of assembler code for INSN, to modify the extracted operands so
2748 they will be output differently.
2750 Here the argument OPVEC is the vector containing the operands
2751 extracted from INSN, and NOPERANDS is the number of elements of
2752 the vector which contain meaningful data for this insn. The
2753 contents of this vector are what will be used to convert the insn
2754 template into assembler code, so you can change the assembler
2755 output by changing the contents of the vector.
2757 This macro is useful when various assembler syntaxes share a single
2758 file of instruction patterns; by defining this macro differently,
2759 you can cause a large class of instructions to be output
2760 differently (such as with rearranged operands). Naturally,
2761 variations in assembler syntax affecting individual insn patterns
2762 ought to be handled by writing conditional output routines in
2763 those patterns.
2765 If this macro is not defined, it is equivalent to a null statement. */
2767 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
2768 frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2771 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2772 for an instruction operand X. X is an RTL expression.
2774 CODE is a value that can be used to specify one of several ways of printing
2775 the operand. It is used when identical operands must be printed differently
2776 depending on the context. CODE comes from the `%' specification that was
2777 used to request printing of the operand. If the specification was just
2778 `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
2779 the ASCII code for LTR.
2781 If X is a register, this macro should print the register's name. The names
2782 can be found in an array `reg_names' whose type is `char *[]'. `reg_names'
2783 is initialized from `REGISTER_NAMES'.
2785 When the machine description has a specification `%PUNCT' (a `%' followed by
2786 a punctuation character), this macro is called with a null pointer for X and
2787 the punctuation character for CODE. */
2788 #define PRINT_OPERAND(STREAM, X, CODE) frv_print_operand (STREAM, X, CODE)
2790 /* A C expression which evaluates to true if CODE is a valid punctuation
2791 character for use in the `PRINT_OPERAND' macro. If
2792 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
2793 characters (except for the standard one, `%') are used in this way. */
2794 /* . == gr0
2795 # == hint operand -- always zero for now
2796 @ == small data base register (gr16)
2797 ~ == pic register (gr17)
2798 * == temporary integer CCR register (cr3)
2799 & == temporary integer ICC register (icc3) */
2800 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2801 ((CODE) == '.' || (CODE) == '#' || (CODE) == '@' || (CODE) == '~' \
2802 || (CODE) == '*' || (CODE) == '&')
2804 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2805 for an instruction operand that is a memory reference whose address is X. X
2806 is an RTL expression.
2808 On some machines, the syntax for a symbolic address depends on the section
2809 that the address refers to. On these machines, define the macro
2810 `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2811 then check for it here.
2813 This declaration must be present. */
2814 #define PRINT_OPERAND_ADDRESS(STREAM, X) frv_print_operand_address (STREAM, X)
2816 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2817 `%I' options of `asm_fprintf' (see `final.c'). These are useful when a
2818 single `md' file must support multiple assembler formats. In that case, the
2819 various `tm.h' files can define these macros differently.
2821 USER_LABEL_PREFIX is defined in svr4.h. */
2822 #undef USER_LABEL_PREFIX
2823 #define USER_LABEL_PREFIX ""
2824 #define REGISTER_PREFIX ""
2825 #define LOCAL_LABEL_PREFIX "."
2826 #define IMMEDIATE_PREFIX "#"
2829 /* Output of dispatch tables. */
2831 /* This macro should be provided on machines where the addresses in a dispatch
2832 table are relative to the table's own address.
2834 The definition should be a C statement to output to the stdio stream STREAM
2835 an assembler pseudo-instruction to generate a difference between two labels.
2836 VALUE and REL are the numbers of two internal labels. The definitions of
2837 these labels are output using `(*targetm.asm_out.internal_label)', and they must be
2838 printed in the same way here. For example,
2840 fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
2841 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2842 fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
2844 /* This macro should be provided on machines where the addresses in a dispatch
2845 table are absolute.
2847 The definition should be a C statement to output to the stdio stream STREAM
2848 an assembler pseudo-instruction to generate a reference to a label. VALUE
2849 is the number of an internal label whose definition is output using
2850 `(*targetm.asm_out.internal_label)'. For example,
2852 fprintf (STREAM, "\t.word L%d\n", VALUE) */
2853 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2854 fprintf (STREAM, "\t.word .L%d\n", VALUE)
2856 /* Define this if the label before a jump-table needs to be output specially.
2857 The first three arguments are the same as for `(*targetm.asm_out.internal_label)';
2858 the fourth argument is the jump-table which follows (a `jump_insn'
2859 containing an `addr_vec' or `addr_diff_vec').
2861 This feature is used on system V to output a `swbeg' statement for the
2862 table.
2864 If this macro is not defined, these labels are output with
2865 `(*targetm.asm_out.internal_label)'.
2867 Defined in svr4.h. */
2868 /* When generating embedded PIC or mips16 code we want to put the jump
2869 table in the .text section. In all other cases, we want to put the
2870 jump table in the .rdata section. Unfortunately, we can't use
2871 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
2872 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
2873 section if appropriate. */
2875 #undef ASM_OUTPUT_CASE_LABEL
2876 #define ASM_OUTPUT_CASE_LABEL(STREAM, PREFIX, NUM, TABLE) \
2877 do { \
2878 if (flag_pic) \
2879 function_section (current_function_decl); \
2880 (*targetm.asm_out.internal_label) (STREAM, PREFIX, NUM); \
2881 } while (0)
2884 /* Assembler Commands for Exception Regions. */
2886 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
2887 information, but it does not yet work with exception handling. Otherwise,
2888 if your target supports this information (if it defines
2889 `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
2890 `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
2892 If this macro is defined to 1, the DWARF 2 unwinder will be the default
2893 exception handling mechanism; otherwise, setjmp/longjmp will be used by
2894 default.
2896 If this macro is defined to anything, the DWARF 2 unwinder will be used
2897 instead of inline unwinders and __unwind_function in the non-setjmp case. */
2898 #define DWARF2_UNWIND_INFO 1
2900 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2902 /* Assembler Commands for Alignment. */
2904 /* A C statement to output to the stdio stream STREAM an assembler instruction
2905 to advance the location counter by NBYTES bytes. Those bytes should be zero
2906 when loaded. NBYTES will be a C expression of type `int'.
2908 Defined in svr4.h. */
2909 #undef ASM_OUTPUT_SKIP
2910 #define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
2911 fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
2913 /* A C statement to output to the stdio stream STREAM an assembler command to
2914 advance the location counter to a multiple of 2 to the POWER bytes. POWER
2915 will be a C expression of type `int'. */
2916 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2917 fprintf ((STREAM), "\t.p2align %d\n", (POWER))
2919 /* Inside the text section, align with unpacked nops rather than zeros. */
2920 #define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
2921 fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
2923 /* Macros Affecting all Debug Formats. */
2925 /* A C expression that returns the DBX register number for the compiler
2926 register number REGNO. In simple cases, the value of this expression may be
2927 REGNO itself. But sometimes there are some registers that the compiler
2928 knows about and DBX does not, or vice versa. In such cases, some register
2929 may need to have one number in the compiler and another for DBX.
2931 If two registers have consecutive numbers inside GCC, and they can be
2932 used as a pair to hold a multiword value, then they *must* have consecutive
2933 numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
2934 will be unable to access such a pair, because they expect register pairs to
2935 be consecutive in their own numbering scheme.
2937 If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
2938 preserve register pairs, then what you must do instead is redefine the
2939 actual register numbering scheme.
2941 This declaration is required. */
2942 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2944 /* A C expression that returns the type of debugging output GCC produces
2945 when the user specifies `-g' or `-ggdb'. Define this if you have arranged
2946 for GCC to support more than one format of debugging output. Currently,
2947 the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
2948 `DWARF2_DEBUG', and `XCOFF_DEBUG'.
2950 The value of this macro only affects the default debugging output; the user
2951 can always get a specific type of output by using `-gstabs', `-gcoff',
2952 `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
2954 Defined in svr4.h. */
2955 #undef PREFERRED_DEBUGGING_TYPE
2956 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
2958 /* Miscellaneous Parameters. */
2960 /* Define this if you have defined special-purpose predicates in the file
2961 `MACHINE.c'. This macro is called within an initializer of an array of
2962 structures. The first field in the structure is the name of a predicate and
2963 the second field is an array of rtl codes. For each predicate, list all rtl
2964 codes that can be in expressions matched by the predicate. The list should
2965 have a trailing comma. Here is an example of two entries in the list for a
2966 typical RISC machine:
2968 #define PREDICATE_CODES \
2969 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
2970 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
2972 Defining this macro does not affect the generated code (however, incorrect
2973 definitions that omit an rtl code that may be matched by the predicate can
2974 cause the compiler to malfunction). Instead, it allows the table built by
2975 `genrecog' to be more compact and efficient, thus speeding up the compiler.
2976 The most important predicates to include in the list specified by this macro
2977 are thoses used in the most insn patterns. */
2978 #define PREDICATE_CODES \
2979 { "integer_register_operand", { REG, SUBREG }}, \
2980 { "frv_load_operand", { REG, SUBREG, MEM }}, \
2981 { "gpr_no_subreg_operand", { REG }}, \
2982 { "gpr_or_fpr_operand", { REG, SUBREG }}, \
2983 { "gpr_or_int12_operand", { REG, SUBREG, CONST_INT }}, \
2984 { "gpr_fpr_or_int12_operand", { REG, SUBREG, CONST_INT }}, \
2985 { "gpr_or_int10_operand", { REG, SUBREG, CONST_INT }}, \
2986 { "gpr_or_int_operand", { REG, SUBREG, CONST_INT }}, \
2987 { "move_source_operand", { REG, SUBREG, CONST_INT, MEM, \
2988 CONST_DOUBLE, CONST, \
2989 SYMBOL_REF, LABEL_REF }}, \
2990 { "move_destination_operand", { REG, SUBREG, MEM }}, \
2991 { "condexec_source_operand", { REG, SUBREG, CONST_INT, MEM, \
2992 CONST_DOUBLE }}, \
2993 { "condexec_dest_operand", { REG, SUBREG, MEM }}, \
2994 { "reg_or_0_operand", { REG, SUBREG, CONST_INT }}, \
2995 { "lr_operand", { REG }}, \
2996 { "gpr_or_memory_operand", { REG, SUBREG, MEM }}, \
2997 { "fpr_or_memory_operand", { REG, SUBREG, MEM }}, \
2998 { "int12_operand", { CONST_INT }}, \
2999 { "int_2word_operand", { CONST_INT, CONST_DOUBLE, \
3000 SYMBOL_REF, LABEL_REF, CONST }}, \
3001 { "fdpic_operand", { REG }}, \
3002 { "fdpic_fptr_operand", { REG }}, \
3003 { "ldd_address_operand", { REG, SUBREG, PLUS }}, \
3004 { "got12_operand", { CONST }}, \
3005 { "const_unspec_operand", { CONST }}, \
3006 { "icc_operand", { REG }}, \
3007 { "fcc_operand", { REG }}, \
3008 { "cc_operand", { REG }}, \
3009 { "icr_operand", { REG }}, \
3010 { "fcr_operand", { REG }}, \
3011 { "cr_operand", { REG }}, \
3012 { "fpr_operand", { REG, SUBREG }}, \
3013 { "even_reg_operand", { REG, SUBREG }}, \
3014 { "odd_reg_operand", { REG, SUBREG }}, \
3015 { "even_gpr_operand", { REG, SUBREG }}, \
3016 { "odd_gpr_operand", { REG, SUBREG }}, \
3017 { "quad_fpr_operand", { REG, SUBREG }}, \
3018 { "even_fpr_operand", { REG, SUBREG }}, \
3019 { "odd_fpr_operand", { REG, SUBREG }}, \
3020 { "dbl_memory_one_insn_operand", { MEM }}, \
3021 { "dbl_memory_two_insn_operand", { MEM }}, \
3022 { "call_operand", { REG, SUBREG, CONST_INT, \
3023 CONST, SYMBOL_REF }}, \
3024 { "sibcall_operand", { REG, SUBREG, CONST_INT, \
3025 CONST }}, \
3026 { "upper_int16_operand", { CONST_INT }}, \
3027 { "uint16_operand", { CONST_INT }}, \
3028 { "relational_operator", { EQ, NE, LE, LT, GE, GT, \
3029 LEU, LTU, GEU, GTU }}, \
3030 { "integer_relational_operator", { EQ, NE, LE, LT, GE, GT, \
3031 LEU, LTU, GEU, GTU }}, \
3032 { "float_relational_operator", { EQ, NE, LE, LT, GE, GT }}, \
3033 { "ccr_eqne_operator", { EQ, NE }}, \
3034 { "minmax_operator", { SMIN, SMAX, UMIN, UMAX }}, \
3035 { "condexec_si_binary_operator", { PLUS, MINUS, AND, IOR, XOR, \
3036 ASHIFT, ASHIFTRT, LSHIFTRT }}, \
3037 { "condexec_si_media_operator", { AND, IOR, XOR }}, \
3038 { "condexec_si_divide_operator", { DIV, UDIV }}, \
3039 { "condexec_si_unary_operator", { NOT, NEG }}, \
3040 { "condexec_sf_add_operator", { PLUS, MINUS }}, \
3041 { "condexec_sf_conv_operator", { ABS, NEG }}, \
3042 { "intop_compare_operator", { PLUS, MINUS, AND, IOR, XOR, \
3043 ASHIFT, ASHIFTRT, LSHIFTRT }}, \
3044 { "fpr_or_int6_operand", { REG, SUBREG, CONST_INT }}, \
3045 { "int6_operand", { CONST_INT }}, \
3046 { "int5_operand", { CONST_INT }}, \
3047 { "uint5_operand", { CONST_INT }}, \
3048 { "uint4_operand", { CONST_INT }}, \
3049 { "uint1_operand", { CONST_INT }}, \
3050 { "acc_operand", { REG, SUBREG }}, \
3051 { "even_acc_operand", { REG, SUBREG }}, \
3052 { "quad_acc_operand", { REG, SUBREG }}, \
3053 { "accg_operand", { REG, SUBREG }},
3055 /* An alias for a machine mode name. This is the machine mode that elements of
3056 a jump-table should have. */
3057 #define CASE_VECTOR_MODE SImode
3059 /* Define this macro if operations between registers with integral mode smaller
3060 than a word are always performed on the entire register. Most RISC machines
3061 have this property and most CISC machines do not. */
3062 #define WORD_REGISTER_OPERATIONS
3064 /* Define this macro to be a C expression indicating when insns that read
3065 memory in MODE, an integral mode narrower than a word, set the bits outside
3066 of MODE to be either the sign-extension or the zero-extension of the data
3067 read. Return `SIGN_EXTEND' for values of MODE for which the insn
3068 sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
3069 modes.
3071 This macro is not called with MODE non-integral or with a width greater than
3072 or equal to `BITS_PER_WORD', so you may return any value in this case. Do
3073 not define this macro if it would always return `UNKNOWN'. On machines where
3074 this macro is defined, you will normally define it as the constant
3075 `SIGN_EXTEND' or `ZERO_EXTEND'. */
3076 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
3078 /* Define if loading short immediate values into registers sign extends. */
3079 #define SHORT_IMMEDIATES_SIGN_EXTEND
3081 /* The maximum number of bytes that a single instruction can move quickly from
3082 memory to memory. */
3083 #define MOVE_MAX 8
3085 /* A C expression which is nonzero if on this machine it is safe to "convert"
3086 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
3087 than INPREC) by merely operating on it as if it had only OUTPREC bits.
3089 On many machines, this expression can be 1.
3091 When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
3092 which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
3093 case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
3094 things. */
3095 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
3097 /* An alias for the machine mode for pointers. On most machines, define this
3098 to be the integer mode corresponding to the width of a hardware pointer;
3099 `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines
3100 you must define this to be one of the partial integer modes, such as
3101 `PSImode'.
3103 The width of `Pmode' must be at least as large as the value of
3104 `POINTER_SIZE'. If it is not equal, you must define the macro
3105 `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'. */
3106 #define Pmode SImode
3108 /* An alias for the machine mode used for memory references to functions being
3109 called, in `call' RTL expressions. On most machines this should be
3110 `QImode'. */
3111 #define FUNCTION_MODE QImode
3113 /* Define this macro to handle System V style pragmas: #pragma pack and
3114 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
3115 defined.
3117 Defined in svr4.h. */
3118 #define HANDLE_SYSV_PRAGMA 1
3120 /* A C expression for the maximum number of instructions to execute via
3121 conditional execution instructions instead of a branch. A value of
3122 BRANCH_COST+1 is the default if the machine does not use
3123 cc0, and 1 if it does use cc0. */
3124 #define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
3126 /* Default value of MAX_CONDITIONAL_EXECUTE if no -mcond-exec-insns= */
3127 #define DEFAULT_CONDEXEC_INSNS 8
3129 /* A C expression to modify the code described by the conditional if
3130 information CE_INFO, possibly updating the tests in TRUE_EXPR, and
3131 FALSE_EXPR for converting if-then and if-then-else code to conditional
3132 instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
3133 tests cannot be converted. */
3134 #define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR) \
3135 frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
3137 /* A C expression to modify the code described by the conditional if
3138 information CE_INFO, for the basic block BB, possibly updating the tests in
3139 TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
3140 if-then-else code to conditional instructions. OLD_TRUE and OLD_FALSE are
3141 the previous tests. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
3142 the tests cannot be converted. */
3143 #define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
3144 frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
3146 /* A C expression to modify the code described by the conditional if
3147 information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
3148 pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
3149 insn cannot be converted to be executed conditionally. */
3150 #define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
3151 (PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
3153 /* A C expression to perform any final machine dependent modifications in
3154 converting code to conditional execution in the code described by the
3155 conditional if information CE_INFO. */
3156 #define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
3158 /* A C expression to cancel any machine dependent modifications in converting
3159 code to conditional execution in the code described by the conditional if
3160 information CE_INFO. */
3161 #define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
3163 /* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */
3164 #define IFCVT_INIT_EXTRA_FIELDS(CE_INFO) frv_ifcvt_init_extra_fields (CE_INFO)
3166 /* The definition of the following macro results in that the 2nd jump
3167 optimization (after the 2nd insn scheduling) is minimal. It is
3168 necessary to define when start cycle marks of insns (TImode is used
3169 for this) is used for VLIW insn packing. Some jump optimizations
3170 make such marks invalid. These marks are corrected for some
3171 (minimal) optimizations. ??? Probably the macro is temporary.
3172 Final solution could making the 2nd jump optimizations before the
3173 2nd instruction scheduling or corrections of the marks for all jump
3174 optimizations. Although some jump optimizations are actually
3175 deoptimizations for VLIW (super-scalar) processors. */
3177 #define MINIMAL_SECOND_JUMP_OPTIMIZATION
3180 /* If the following macro is defined and nonzero and deterministic
3181 finite state automata are used for pipeline hazard recognition, the
3182 code making resource-constrained software pipelining is on. */
3183 #define RCSP_SOFTWARE_PIPELINING 1
3185 /* If the following macro is defined and nonzero and deterministic
3186 finite state automata are used for pipeline hazard recognition, we
3187 will try to exchange insns in queue ready to improve the schedule.
3188 The more macro value, the more tries will be made. */
3189 #define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
3191 /* The following macro is used only when value of
3192 FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero. The more macro value,
3193 the more tries will be made to choose better schedule. If the
3194 macro value is zero or negative there will be no multi-pass
3195 scheduling. */
3196 #define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
3198 enum frv_builtins
3200 FRV_BUILTIN_MAND,
3201 FRV_BUILTIN_MOR,
3202 FRV_BUILTIN_MXOR,
3203 FRV_BUILTIN_MNOT,
3204 FRV_BUILTIN_MAVEH,
3205 FRV_BUILTIN_MSATHS,
3206 FRV_BUILTIN_MSATHU,
3207 FRV_BUILTIN_MADDHSS,
3208 FRV_BUILTIN_MADDHUS,
3209 FRV_BUILTIN_MSUBHSS,
3210 FRV_BUILTIN_MSUBHUS,
3211 FRV_BUILTIN_MPACKH,
3212 FRV_BUILTIN_MQADDHSS,
3213 FRV_BUILTIN_MQADDHUS,
3214 FRV_BUILTIN_MQSUBHSS,
3215 FRV_BUILTIN_MQSUBHUS,
3216 FRV_BUILTIN_MUNPACKH,
3217 FRV_BUILTIN_MDPACKH,
3218 FRV_BUILTIN_MBTOH,
3219 FRV_BUILTIN_MHTOB,
3220 FRV_BUILTIN_MCOP1,
3221 FRV_BUILTIN_MCOP2,
3222 FRV_BUILTIN_MROTLI,
3223 FRV_BUILTIN_MROTRI,
3224 FRV_BUILTIN_MWCUT,
3225 FRV_BUILTIN_MSLLHI,
3226 FRV_BUILTIN_MSRLHI,
3227 FRV_BUILTIN_MSRAHI,
3228 FRV_BUILTIN_MEXPDHW,
3229 FRV_BUILTIN_MEXPDHD,
3230 FRV_BUILTIN_MMULHS,
3231 FRV_BUILTIN_MMULHU,
3232 FRV_BUILTIN_MMULXHS,
3233 FRV_BUILTIN_MMULXHU,
3234 FRV_BUILTIN_MMACHS,
3235 FRV_BUILTIN_MMACHU,
3236 FRV_BUILTIN_MMRDHS,
3237 FRV_BUILTIN_MMRDHU,
3238 FRV_BUILTIN_MQMULHS,
3239 FRV_BUILTIN_MQMULHU,
3240 FRV_BUILTIN_MQMULXHU,
3241 FRV_BUILTIN_MQMULXHS,
3242 FRV_BUILTIN_MQMACHS,
3243 FRV_BUILTIN_MQMACHU,
3244 FRV_BUILTIN_MCPXRS,
3245 FRV_BUILTIN_MCPXRU,
3246 FRV_BUILTIN_MCPXIS,
3247 FRV_BUILTIN_MCPXIU,
3248 FRV_BUILTIN_MQCPXRS,
3249 FRV_BUILTIN_MQCPXRU,
3250 FRV_BUILTIN_MQCPXIS,
3251 FRV_BUILTIN_MQCPXIU,
3252 FRV_BUILTIN_MCUT,
3253 FRV_BUILTIN_MCUTSS,
3254 FRV_BUILTIN_MWTACC,
3255 FRV_BUILTIN_MWTACCG,
3256 FRV_BUILTIN_MRDACC,
3257 FRV_BUILTIN_MRDACCG,
3258 FRV_BUILTIN_MTRAP,
3259 FRV_BUILTIN_MCLRACC,
3260 FRV_BUILTIN_MCLRACCA,
3261 FRV_BUILTIN_MDUNPACKH,
3262 FRV_BUILTIN_MBTOHE,
3263 FRV_BUILTIN_MQXMACHS,
3264 FRV_BUILTIN_MQXMACXHS,
3265 FRV_BUILTIN_MQMACXHS,
3266 FRV_BUILTIN_MADDACCS,
3267 FRV_BUILTIN_MSUBACCS,
3268 FRV_BUILTIN_MASACCS,
3269 FRV_BUILTIN_MDADDACCS,
3270 FRV_BUILTIN_MDSUBACCS,
3271 FRV_BUILTIN_MDASACCS,
3272 FRV_BUILTIN_MABSHS,
3273 FRV_BUILTIN_MDROTLI,
3274 FRV_BUILTIN_MCPLHI,
3275 FRV_BUILTIN_MCPLI,
3276 FRV_BUILTIN_MDCUTSSI,
3277 FRV_BUILTIN_MQSATHS,
3278 FRV_BUILTIN_MQLCLRHS,
3279 FRV_BUILTIN_MQLMTHS,
3280 FRV_BUILTIN_MQSLLHI,
3281 FRV_BUILTIN_MQSRAHI,
3282 FRV_BUILTIN_MHSETLOS,
3283 FRV_BUILTIN_MHSETLOH,
3284 FRV_BUILTIN_MHSETHIS,
3285 FRV_BUILTIN_MHSETHIH,
3286 FRV_BUILTIN_MHDSETS,
3287 FRV_BUILTIN_MHDSETH,
3288 FRV_BUILTIN_SMUL,
3289 FRV_BUILTIN_UMUL,
3290 FRV_BUILTIN_PREFETCH0,
3291 FRV_BUILTIN_PREFETCH,
3292 FRV_BUILTIN_SMASS,
3293 FRV_BUILTIN_SMSSS,
3294 FRV_BUILTIN_SMU,
3295 FRV_BUILTIN_SCUTSS,
3296 FRV_BUILTIN_ADDSS,
3297 FRV_BUILTIN_SUBSS,
3298 FRV_BUILTIN_SLASS,
3299 FRV_BUILTIN_IACCreadll,
3300 FRV_BUILTIN_IACCreadl,
3301 FRV_BUILTIN_IACCsetll,
3302 FRV_BUILTIN_IACCsetl,
3303 FRV_BUILTIN_SCAN
3305 #define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
3307 /* Enable prototypes on the call rtl functions. */
3308 #define MD_CALL_PROTOTYPES 1
3310 extern GTY(()) rtx frv_compare_op0; /* operand save for */
3311 extern GTY(()) rtx frv_compare_op1; /* comparison generation */
3313 #define CPU_UNITS_QUERY 1
3315 #ifdef __FRV_FDPIC__
3316 #define CRT_GET_RFIB_DATA(dbase) \
3317 ({ extern void *_GLOBAL_OFFSET_TABLE_; (dbase) = &_GLOBAL_OFFSET_TABLE_; })
3318 #endif
3320 #endif /* __FRV_H__ */