* reload1.c (eliminate_regs_1): Call gen_rtx_raw_SUBREG for SUBREGs
[official-gcc.git] / libgo / runtime / malloc.h
blob00e4166d812b0c41f28e442deabc9c27d7d58838
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Memory allocator, based on tcmalloc.
6 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
8 // The main allocator works in runs of pages.
9 // Small allocation sizes (up to and including 32 kB) are
10 // rounded to one of about 100 size classes, each of which
11 // has its own free list of objects of exactly that size.
12 // Any free page of memory can be split into a set of objects
13 // of one size class, which are then managed using free list
14 // allocators.
16 // The allocator's data structures are:
18 // FixAlloc: a free-list allocator for fixed-size objects,
19 // used to manage storage used by the allocator.
20 // MHeap: the malloc heap, managed at page (4096-byte) granularity.
21 // MSpan: a run of pages managed by the MHeap.
22 // MCentral: a shared free list for a given size class.
23 // MCache: a per-thread (in Go, per-P) cache for small objects.
24 // MStats: allocation statistics.
26 // Allocating a small object proceeds up a hierarchy of caches:
28 // 1. Round the size up to one of the small size classes
29 // and look in the corresponding MCache free list.
30 // If the list is not empty, allocate an object from it.
31 // This can all be done without acquiring a lock.
33 // 2. If the MCache free list is empty, replenish it by
34 // taking a bunch of objects from the MCentral free list.
35 // Moving a bunch amortizes the cost of acquiring the MCentral lock.
37 // 3. If the MCentral free list is empty, replenish it by
38 // allocating a run of pages from the MHeap and then
39 // chopping that memory into a objects of the given size.
40 // Allocating many objects amortizes the cost of locking
41 // the heap.
43 // 4. If the MHeap is empty or has no page runs large enough,
44 // allocate a new group of pages (at least 1MB) from the
45 // operating system. Allocating a large run of pages
46 // amortizes the cost of talking to the operating system.
48 // Freeing a small object proceeds up the same hierarchy:
50 // 1. Look up the size class for the object and add it to
51 // the MCache free list.
53 // 2. If the MCache free list is too long or the MCache has
54 // too much memory, return some to the MCentral free lists.
56 // 3. If all the objects in a given span have returned to
57 // the MCentral list, return that span to the page heap.
59 // 4. If the heap has too much memory, return some to the
60 // operating system.
62 // TODO(rsc): Step 4 is not implemented.
64 // Allocating and freeing a large object uses the page heap
65 // directly, bypassing the MCache and MCentral free lists.
67 // The small objects on the MCache and MCentral free lists
68 // may or may not be zeroed. They are zeroed if and only if
69 // the second word of the object is zero. A span in the
70 // page heap is zeroed unless s->needzero is set. When a span
71 // is allocated to break into small objects, it is zeroed if needed
72 // and s->needzero is set. There are two main benefits to delaying the
73 // zeroing this way:
75 // 1. stack frames allocated from the small object lists
76 // or the page heap can avoid zeroing altogether.
77 // 2. the cost of zeroing when reusing a small object is
78 // charged to the mutator, not the garbage collector.
80 // This C code was written with an eye toward translating to Go
81 // in the future. Methods have the form Type_Method(Type *t, ...).
83 typedef struct MCentral MCentral;
84 typedef struct MHeap MHeap;
85 typedef struct mspan MSpan;
86 typedef struct mstats MStats;
87 typedef struct mlink MLink;
88 typedef struct mtypes MTypes;
89 typedef struct gcstats GCStats;
91 enum
93 PageShift = 13,
94 PageSize = 1<<PageShift,
95 PageMask = PageSize - 1,
97 typedef uintptr PageID; // address >> PageShift
99 enum
101 // Computed constant. The definition of MaxSmallSize and the
102 // algorithm in msize.c produce some number of different allocation
103 // size classes. _NumSizeClasses is that number. It's needed here
104 // because there are static arrays of this length; when msize runs its
105 // size choosing algorithm it double-checks that NumSizeClasses agrees.
106 // _NumSizeClasses is defined in runtime2.go as 67.
108 // Tunable constants.
109 MaxSmallSize = 32<<10,
111 // Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc.
112 TinySize = 16,
113 TinySizeClass = 2,
115 FixAllocChunk = 16<<10, // Chunk size for FixAlloc
116 MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap.
117 HeapAllocChunk = 1<<20, // Chunk size for heap growth
119 // Number of bits in page to span calculations (4k pages).
120 // On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason).
121 // On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
122 // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
123 #if __SIZEOF_POINTER__ == 8
124 #ifdef GOOS_windows
125 // Windows counts memory used by page table into committed memory
126 // of the process, so we can't reserve too much memory.
127 // See http://golang.org/issue/5402 and http://golang.org/issue/5236.
128 MHeapMap_Bits = 35 - PageShift,
129 #else
130 MHeapMap_Bits = 37 - PageShift,
131 #endif
132 #else
133 MHeapMap_Bits = 32 - PageShift,
134 #endif
137 // Maximum memory allocation size, a hint for callers.
138 // This must be a #define instead of an enum because it
139 // is so large.
140 #if __SIZEOF_POINTER__ == 8
141 #define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB or 32 GB */
142 #else
143 #define MaxMem ((uintptr)-1)
144 #endif
145 // SysAlloc obtains a large chunk of zeroed memory from the
146 // operating system, typically on the order of a hundred kilobytes
147 // or a megabyte.
148 // NOTE: SysAlloc returns OS-aligned memory, but the heap allocator
149 // may use larger alignment, so the caller must be careful to realign the
150 // memory obtained by SysAlloc.
152 // SysUnused notifies the operating system that the contents
153 // of the memory region are no longer needed and can be reused
154 // for other purposes.
155 // SysUsed notifies the operating system that the contents
156 // of the memory region are needed again.
158 // SysFree returns it unconditionally; this is only used if
159 // an out-of-memory error has been detected midway through
160 // an allocation. It is okay if SysFree is a no-op.
162 // SysReserve reserves address space without allocating memory.
163 // If the pointer passed to it is non-nil, the caller wants the
164 // reservation there, but SysReserve can still choose another
165 // location if that one is unavailable. On some systems and in some
166 // cases SysReserve will simply check that the address space is
167 // available and not actually reserve it. If SysReserve returns
168 // non-nil, it sets *reserved to true if the address space is
169 // reserved, false if it has merely been checked.
170 // NOTE: SysReserve returns OS-aligned memory, but the heap allocator
171 // may use larger alignment, so the caller must be careful to realign the
172 // memory obtained by SysAlloc.
174 // SysMap maps previously reserved address space for use.
175 // The reserved argument is true if the address space was really
176 // reserved, not merely checked.
178 // SysFault marks a (already SysAlloc'd) region to fault
179 // if accessed. Used only for debugging the runtime.
181 void* runtime_SysAlloc(uintptr nbytes, uint64 *stat)
182 __asm__ (GOSYM_PREFIX "runtime.sysAlloc");
183 void runtime_SysFree(void *v, uintptr nbytes, uint64 *stat)
184 __asm__ (GOSYM_PREFIX "runtime.sysFree");
185 void runtime_SysUnused(void *v, uintptr nbytes);
186 void runtime_SysUsed(void *v, uintptr nbytes);
187 void runtime_SysMap(void *v, uintptr nbytes, bool reserved, uint64 *stat);
188 void* runtime_SysReserve(void *v, uintptr nbytes, bool *reserved);
189 void runtime_SysFault(void *v, uintptr nbytes);
191 // FixAlloc is a simple free-list allocator for fixed size objects.
192 // Malloc uses a FixAlloc wrapped around SysAlloc to manages its
193 // MCache and MSpan objects.
195 // Memory returned by FixAlloc_Alloc is not zeroed.
196 // The caller is responsible for locking around FixAlloc calls.
197 // Callers can keep state in the object but the first word is
198 // smashed by freeing and reallocating.
199 struct FixAlloc
201 uintptr size;
202 void (*first)(void *arg, byte *p); // called first time p is returned
203 void* arg;
204 MLink* list;
205 byte* chunk;
206 uint32 nchunk;
207 uintptr inuse; // in-use bytes now
208 uint64* stat;
211 void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*), void *arg, uint64 *stat);
212 void* runtime_FixAlloc_Alloc(FixAlloc *f);
213 void runtime_FixAlloc_Free(FixAlloc *f, void *p);
215 extern MStats *mstats(void)
216 __asm__ (GOSYM_PREFIX "runtime.getMstats");
217 void runtime_updatememstats(GCStats *stats)
218 __asm__ (GOSYM_PREFIX "runtime.updatememstats");
220 // Size classes. Computed and initialized by InitSizes.
222 // SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
223 // 1 <= sizeclass < _NumSizeClasses, for n.
224 // Size class 0 is reserved to mean "not small".
226 // class_to_size[i] = largest size in class i
227 // class_to_allocnpages[i] = number of pages to allocate when
228 // making new objects in class i
230 int32 runtime_SizeToClass(int32);
231 uintptr runtime_roundupsize(uintptr)
232 __asm__(GOSYM_PREFIX "runtime.roundupsize");
233 extern int32 runtime_class_to_size[_NumSizeClasses];
234 extern int32 runtime_class_to_allocnpages[_NumSizeClasses];
235 extern int8 runtime_size_to_class8[1024/8 + 1];
236 extern int8 runtime_size_to_class128[(MaxSmallSize-1024)/128 + 1];
237 extern void runtime_InitSizes(void);
240 typedef struct mcachelist MCacheList;
242 MSpan* runtime_MCache_Refill(MCache *c, int32 sizeclass);
243 void runtime_MCache_Free(MCache *c, MLink *p, int32 sizeclass, uintptr size);
244 void runtime_MCache_ReleaseAll(MCache *c);
246 // MTypes describes the types of blocks allocated within a span.
247 // The compression field describes the layout of the data.
249 // MTypes_Empty:
250 // All blocks are free, or no type information is available for
251 // allocated blocks.
252 // The data field has no meaning.
253 // MTypes_Single:
254 // The span contains just one block.
255 // The data field holds the type information.
256 // The sysalloc field has no meaning.
257 // MTypes_Words:
258 // The span contains multiple blocks.
259 // The data field points to an array of type [NumBlocks]uintptr,
260 // and each element of the array holds the type of the corresponding
261 // block.
262 // MTypes_Bytes:
263 // The span contains at most seven different types of blocks.
264 // The data field points to the following structure:
265 // struct {
266 // type [8]uintptr // type[0] is always 0
267 // index [NumBlocks]byte
268 // }
269 // The type of the i-th block is: data.type[data.index[i]]
270 enum
272 MTypes_Empty = 0,
273 MTypes_Single = 1,
274 MTypes_Words = 2,
275 MTypes_Bytes = 3,
278 enum
280 KindSpecialFinalizer = 1,
281 KindSpecialProfile = 2,
282 // Note: The finalizer special must be first because if we're freeing
283 // an object, a finalizer special will cause the freeing operation
284 // to abort, and we want to keep the other special records around
285 // if that happens.
288 typedef struct special Special;
290 // The described object has a finalizer set for it.
291 typedef struct SpecialFinalizer SpecialFinalizer;
292 struct SpecialFinalizer
294 Special;
295 FuncVal* fn;
296 const FuncType* ft;
297 const PtrType* ot;
300 // The described object is being heap profiled.
301 typedef struct bucket Bucket; // from mprof.go
302 typedef struct SpecialProfile SpecialProfile;
303 struct SpecialProfile
305 Special;
306 Bucket* b;
309 // An MSpan is a run of pages.
310 enum
312 MSpanInUse = 0,
313 MSpanFree,
314 MSpanListHead,
315 MSpanDead,
318 void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages);
319 void runtime_MSpan_EnsureSwept(MSpan *span);
320 bool runtime_MSpan_Sweep(MSpan *span);
322 // Every MSpan is in one doubly-linked list,
323 // either one of the MHeap's free lists or one of the
324 // MCentral's span lists. We use empty MSpan structures as list heads.
325 void runtime_MSpanList_Init(MSpan *list);
326 bool runtime_MSpanList_IsEmpty(MSpan *list);
327 void runtime_MSpanList_Insert(MSpan *list, MSpan *span);
328 void runtime_MSpanList_InsertBack(MSpan *list, MSpan *span);
329 void runtime_MSpanList_Remove(MSpan *span); // from whatever list it is in
332 // Central list of free objects of a given size.
333 struct MCentral
335 Lock;
336 int32 sizeclass;
337 MSpan nonempty; // list of spans with a free object
338 MSpan mempty; // list of spans with no free objects (or cached in an MCache)
339 int32 nfree; // # of objects available in nonempty spans
342 void runtime_MCentral_Init(MCentral *c, int32 sizeclass);
343 MSpan* runtime_MCentral_CacheSpan(MCentral *c);
344 void runtime_MCentral_UncacheSpan(MCentral *c, MSpan *s);
345 bool runtime_MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end);
346 void runtime_MCentral_FreeList(MCentral *c, MLink *start); // TODO: need this?
348 // Main malloc heap.
349 // The heap itself is the "free[]" and "large" arrays,
350 // but all the other global data is here too.
351 struct MHeap
353 Lock;
354 MSpan free[MaxMHeapList]; // free lists of given length
355 MSpan freelarge; // free lists length >= MaxMHeapList
356 MSpan busy[MaxMHeapList]; // busy lists of large objects of given length
357 MSpan busylarge; // busy lists of large objects length >= MaxMHeapList
358 MSpan **allspans; // all spans out there
359 MSpan **sweepspans; // copy of allspans referenced by sweeper
360 uint32 nspan;
361 uint32 nspancap;
362 uint32 sweepgen; // sweep generation, see comment in MSpan
363 uint32 sweepdone; // all spans are swept
365 // span lookup
366 MSpan** spans;
367 uintptr spans_mapped;
369 // range of addresses we might see in the heap
370 byte *bitmap;
371 uintptr bitmap_mapped;
372 byte *arena_start;
373 byte *arena_used;
374 byte *arena_end;
375 bool arena_reserved;
377 // central free lists for small size classes.
378 // the padding makes sure that the MCentrals are
379 // spaced CacheLineSize bytes apart, so that each MCentral.Lock
380 // gets its own cache line.
381 struct {
382 MCentral;
383 byte pad[64];
384 } central[_NumSizeClasses];
386 FixAlloc spanalloc; // allocator for Span*
387 FixAlloc cachealloc; // allocator for MCache*
388 FixAlloc specialfinalizeralloc; // allocator for SpecialFinalizer*
389 FixAlloc specialprofilealloc; // allocator for SpecialProfile*
390 Lock speciallock; // lock for sepcial record allocators.
392 // Malloc stats.
393 uint64 largefree; // bytes freed for large objects (>MaxSmallSize)
394 uint64 nlargefree; // number of frees for large objects (>MaxSmallSize)
395 uint64 nsmallfree[_NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
397 extern MHeap runtime_mheap;
399 void runtime_MHeap_Init(MHeap *h);
400 MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero);
401 void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct);
402 MSpan* runtime_MHeap_Lookup(MHeap *h, void *v);
403 MSpan* runtime_MHeap_LookupMaybe(MHeap *h, void *v);
404 void runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj);
405 void* runtime_MHeap_SysAlloc(MHeap *h, uintptr n);
406 void runtime_MHeap_MapBits(MHeap *h);
407 void runtime_MHeap_MapSpans(MHeap *h);
408 void runtime_MHeap_Scavenger(void*);
409 void runtime_MHeap_SplitSpan(MHeap *h, MSpan *s);
411 void* runtime_mallocgc(uintptr size, uintptr typ, uint32 flag);
412 void* runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat)
413 __asm__(GOSYM_PREFIX "runtime.persistentalloc");
414 int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s);
415 void runtime_gc(int32 force);
416 uintptr runtime_sweepone(void);
417 void runtime_markscan(void *v);
418 void runtime_marknogc(void *v);
419 void runtime_checkallocated(void *v, uintptr n);
420 void runtime_markfreed(void *v);
421 void runtime_checkfreed(void *v, uintptr n);
422 extern int32 runtime_checking;
423 void runtime_markspan(void *v, uintptr size, uintptr n, bool leftover);
424 void runtime_unmarkspan(void *v, uintptr size);
425 void runtime_purgecachedstats(MCache*);
426 void* runtime_cnew(const Type*)
427 __asm__(GOSYM_PREFIX "runtime.newobject");
428 void* runtime_cnewarray(const Type*, intgo)
429 __asm__(GOSYM_PREFIX "runtime.newarray");
430 void runtime_tracealloc(void*, uintptr, uintptr)
431 __asm__ (GOSYM_PREFIX "runtime.tracealloc");
432 void runtime_tracefree(void*, uintptr)
433 __asm__ (GOSYM_PREFIX "runtime.tracefree");
434 void runtime_tracegc(void)
435 __asm__ (GOSYM_PREFIX "runtime.tracegc");
437 uintptr runtime_gettype(void*);
439 enum
441 // flags to malloc
442 FlagNoScan = 1<<0, // GC doesn't have to scan object
443 FlagNoProfiling = 1<<1, // must not profile
444 FlagNoGC = 1<<2, // must not free or scan for pointers
445 FlagNoZero = 1<<3, // don't zero memory
446 FlagNoInvokeGC = 1<<4, // don't invoke GC
449 typedef struct Obj Obj;
450 struct Obj
452 byte *p; // data pointer
453 uintptr n; // size of data in bytes
454 uintptr ti; // type info
457 void runtime_MProf_Malloc(void*, uintptr)
458 __asm__ (GOSYM_PREFIX "runtime.mProf_Malloc");
459 void runtime_MProf_Free(Bucket*, uintptr, bool)
460 __asm__ (GOSYM_PREFIX "runtime.mProf_Free");
461 void runtime_MProf_GC(void)
462 __asm__ (GOSYM_PREFIX "runtime.mProf_GC");
463 void runtime_iterate_memprof(FuncVal* callback)
464 __asm__ (GOSYM_PREFIX "runtime.iterate_memprof");
465 int32 runtime_gcprocs(void)
466 __asm__ (GOSYM_PREFIX "runtime.gcprocs");
467 void runtime_helpgc(int32 nproc)
468 __asm__ (GOSYM_PREFIX "runtime.helpgc");
469 void runtime_gchelper(void)
470 __asm__ (GOSYM_PREFIX "runtime.gchelper");
471 void runtime_createfing(void);
472 G* runtime_wakefing(void)
473 __asm__ (GOSYM_PREFIX "runtime.wakefing");
474 extern bool runtime_fingwait;
475 extern bool runtime_fingwake;
477 void runtime_setprofilebucket(void *p, Bucket *b)
478 __asm__ (GOSYM_PREFIX "runtime.setprofilebucket");
480 struct __go_func_type;
481 struct __go_ptr_type;
482 bool runtime_addfinalizer(void *p, FuncVal *fn, const struct __go_func_type*, const struct __go_ptr_type*);
483 void runtime_removefinalizer(void*);
484 void runtime_queuefinalizer(void *p, FuncVal *fn, const struct __go_func_type *ft, const struct __go_ptr_type *ot);
486 void runtime_freeallspecials(MSpan *span, void *p, uintptr size);
487 bool runtime_freespecial(Special *s, void *p, uintptr size, bool freed);
489 enum
491 TypeInfo_SingleObject = 0,
492 TypeInfo_Array = 1,
493 TypeInfo_Chan = 2,
495 // Enables type information at the end of blocks allocated from heap
496 DebugTypeAtBlockEnd = 0,
499 // Information from the compiler about the layout of stack frames.
500 typedef struct BitVector BitVector;
501 struct BitVector
503 int32 n; // # of bits
504 uint32 *data;
506 typedef struct StackMap StackMap;
507 struct StackMap
509 int32 n; // number of bitmaps
510 int32 nbit; // number of bits in each bitmap
511 uint32 data[];
513 enum {
514 // Pointer map
515 BitsPerPointer = 2,
516 BitsDead = 0,
517 BitsScalar = 1,
518 BitsPointer = 2,
519 BitsMultiWord = 3,
520 // BitsMultiWord will be set for the first word of a multi-word item.
521 // When it is set, one of the following will be set for the second word.
522 BitsString = 0,
523 BitsSlice = 1,
524 BitsIface = 2,
525 BitsEface = 3,
527 // Returns pointer map data for the given stackmap index
528 // (the index is encoded in PCDATA_StackMapIndex).
529 BitVector runtime_stackmapdata(StackMap *stackmap, int32 n);
531 // defined in mgc0.go
532 void runtime_gc_m_ptr(Eface*);
533 void runtime_gc_g_ptr(Eface*);
534 void runtime_gc_itab_ptr(Eface*);
536 void runtime_memorydump(void);
537 int32 runtime_setgcpercent(int32)
538 __asm__ (GOSYM_PREFIX "runtime.setgcpercent");
540 // Value we use to mark dead pointers when GODEBUG=gcdead=1.
541 #define PoisonGC ((uintptr)0xf969696969696969ULL)
542 #define PoisonStack ((uintptr)0x6868686868686868ULL)
544 struct Workbuf;