PR c++/33620
[official-gcc.git] / gcc / tree-ssa-propagate.c
blob17eec7421387ec3f819bd7a17ef187c9d91b3fda
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "diagnostic.h"
35 #include "timevar.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
38 #include "tree-pass.h"
39 #include "tree-ssa-propagate.h"
40 #include "langhooks.h"
41 #include "varray.h"
42 #include "vec.h"
44 /* This file implements a generic value propagation engine based on
45 the same propagation used by the SSA-CCP algorithm [1].
47 Propagation is performed by simulating the execution of every
48 statement that produces the value being propagated. Simulation
49 proceeds as follows:
51 1- Initially, all edges of the CFG are marked not executable and
52 the CFG worklist is seeded with all the statements in the entry
53 basic block (block 0).
55 2- Every statement S is simulated with a call to the call-back
56 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
57 results:
59 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
60 interest and does not affect any of the work lists.
62 SSA_PROP_VARYING: The value produced by S cannot be determined
63 at compile time. Further simulation of S is not required.
64 If S is a conditional jump, all the outgoing edges for the
65 block are considered executable and added to the work
66 list.
68 SSA_PROP_INTERESTING: S produces a value that can be computed
69 at compile time. Its result can be propagated into the
70 statements that feed from S. Furthermore, if S is a
71 conditional jump, only the edge known to be taken is added
72 to the work list. Edges that are known not to execute are
73 never simulated.
75 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
76 return value from SSA_PROP_VISIT_PHI has the same semantics as
77 described in #2.
79 4- Three work lists are kept. Statements are only added to these
80 lists if they produce one of SSA_PROP_INTERESTING or
81 SSA_PROP_VARYING.
83 CFG_BLOCKS contains the list of blocks to be simulated.
84 Blocks are added to this list if their incoming edges are
85 found executable.
87 VARYING_SSA_EDGES contains the list of statements that feed
88 from statements that produce an SSA_PROP_VARYING result.
89 These are simulated first to speed up processing.
91 INTERESTING_SSA_EDGES contains the list of statements that
92 feed from statements that produce an SSA_PROP_INTERESTING
93 result.
95 5- Simulation terminates when all three work lists are drained.
97 Before calling ssa_propagate, it is important to clear
98 DONT_SIMULATE_AGAIN for all the statements in the program that
99 should be simulated. This initialization allows an implementation
100 to specify which statements should never be simulated.
102 It is also important to compute def-use information before calling
103 ssa_propagate.
105 References:
107 [1] Constant propagation with conditional branches,
108 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
110 [2] Building an Optimizing Compiler,
111 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
113 [3] Advanced Compiler Design and Implementation,
114 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
116 /* Function pointers used to parameterize the propagation engine. */
117 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
118 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
120 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
121 added to one of the SSA edges worklists. This flag is used to
122 avoid visiting statements unnecessarily when draining an SSA edge
123 worklist. If while simulating a basic block, we find a statement with
124 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
125 processing from visiting it again. */
126 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
128 /* A bitmap to keep track of executable blocks in the CFG. */
129 static sbitmap executable_blocks;
131 /* Array of control flow edges on the worklist. */
132 static VEC(basic_block,heap) *cfg_blocks;
134 static unsigned int cfg_blocks_num = 0;
135 static int cfg_blocks_tail;
136 static int cfg_blocks_head;
138 static sbitmap bb_in_list;
140 /* Worklist of SSA edges which will need reexamination as their
141 definition has changed. SSA edges are def-use edges in the SSA
142 web. For each D-U edge, we store the target statement or PHI node
143 U. */
144 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
146 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
147 list of SSA edges is split into two. One contains all SSA edges
148 who need to be reexamined because their lattice value changed to
149 varying (this worklist), and the other contains all other SSA edges
150 to be reexamined (INTERESTING_SSA_EDGES).
152 Since most values in the program are VARYING, the ideal situation
153 is to move them to that lattice value as quickly as possible.
154 Thus, it doesn't make sense to process any other type of lattice
155 value until all VARYING values are propagated fully, which is one
156 thing using the VARYING worklist achieves. In addition, if we
157 don't use a separate worklist for VARYING edges, we end up with
158 situations where lattice values move from
159 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
160 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
163 /* Return true if the block worklist empty. */
165 static inline bool
166 cfg_blocks_empty_p (void)
168 return (cfg_blocks_num == 0);
172 /* Add a basic block to the worklist. The block must not be already
173 in the worklist, and it must not be the ENTRY or EXIT block. */
175 static void
176 cfg_blocks_add (basic_block bb)
178 bool head = false;
180 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
181 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
183 if (cfg_blocks_empty_p ())
185 cfg_blocks_tail = cfg_blocks_head = 0;
186 cfg_blocks_num = 1;
188 else
190 cfg_blocks_num++;
191 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
193 /* We have to grow the array now. Adjust to queue to occupy
194 the full space of the original array. We do not need to
195 initialize the newly allocated portion of the array
196 because we keep track of CFG_BLOCKS_HEAD and
197 CFG_BLOCKS_HEAD. */
198 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
199 cfg_blocks_head = 0;
200 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
202 /* Minor optimization: we prefer to see blocks with more
203 predecessors later, because there is more of a chance that
204 the incoming edges will be executable. */
205 else if (EDGE_COUNT (bb->preds)
206 >= EDGE_COUNT (VEC_index (basic_block, cfg_blocks,
207 cfg_blocks_head)->preds))
208 cfg_blocks_tail = ((cfg_blocks_tail + 1)
209 % VEC_length (basic_block, cfg_blocks));
210 else
212 if (cfg_blocks_head == 0)
213 cfg_blocks_head = VEC_length (basic_block, cfg_blocks);
214 --cfg_blocks_head;
215 head = true;
219 VEC_replace (basic_block, cfg_blocks,
220 head ? cfg_blocks_head : cfg_blocks_tail,
221 bb);
222 SET_BIT (bb_in_list, bb->index);
226 /* Remove a block from the worklist. */
228 static basic_block
229 cfg_blocks_get (void)
231 basic_block bb;
233 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
235 gcc_assert (!cfg_blocks_empty_p ());
236 gcc_assert (bb);
238 cfg_blocks_head = ((cfg_blocks_head + 1)
239 % VEC_length (basic_block, cfg_blocks));
240 --cfg_blocks_num;
241 RESET_BIT (bb_in_list, bb->index);
243 return bb;
247 /* We have just defined a new value for VAR. If IS_VARYING is true,
248 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
249 them to INTERESTING_SSA_EDGES. */
251 static void
252 add_ssa_edge (tree var, bool is_varying)
254 imm_use_iterator iter;
255 use_operand_p use_p;
257 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
259 tree use_stmt = USE_STMT (use_p);
261 if (!DONT_SIMULATE_AGAIN (use_stmt)
262 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
264 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
265 if (is_varying)
266 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
267 else
268 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
274 /* Add edge E to the control flow worklist. */
276 static void
277 add_control_edge (edge e)
279 basic_block bb = e->dest;
280 if (bb == EXIT_BLOCK_PTR)
281 return;
283 /* If the edge had already been executed, skip it. */
284 if (e->flags & EDGE_EXECUTABLE)
285 return;
287 e->flags |= EDGE_EXECUTABLE;
289 /* If the block is already in the list, we're done. */
290 if (TEST_BIT (bb_in_list, bb->index))
291 return;
293 cfg_blocks_add (bb);
295 if (dump_file && (dump_flags & TDF_DETAILS))
296 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
297 e->src->index, e->dest->index);
301 /* Simulate the execution of STMT and update the work lists accordingly. */
303 static void
304 simulate_stmt (tree stmt)
306 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
307 edge taken_edge = NULL;
308 tree output_name = NULL_TREE;
310 /* Don't bother visiting statements that are already
311 considered varying by the propagator. */
312 if (DONT_SIMULATE_AGAIN (stmt))
313 return;
315 if (TREE_CODE (stmt) == PHI_NODE)
317 val = ssa_prop_visit_phi (stmt);
318 output_name = PHI_RESULT (stmt);
320 else
321 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
323 if (val == SSA_PROP_VARYING)
325 DONT_SIMULATE_AGAIN (stmt) = 1;
327 /* If the statement produced a new varying value, add the SSA
328 edges coming out of OUTPUT_NAME. */
329 if (output_name)
330 add_ssa_edge (output_name, true);
332 /* If STMT transfers control out of its basic block, add
333 all outgoing edges to the work list. */
334 if (stmt_ends_bb_p (stmt))
336 edge e;
337 edge_iterator ei;
338 basic_block bb = bb_for_stmt (stmt);
339 FOR_EACH_EDGE (e, ei, bb->succs)
340 add_control_edge (e);
343 else if (val == SSA_PROP_INTERESTING)
345 /* If the statement produced new value, add the SSA edges coming
346 out of OUTPUT_NAME. */
347 if (output_name)
348 add_ssa_edge (output_name, false);
350 /* If we know which edge is going to be taken out of this block,
351 add it to the CFG work list. */
352 if (taken_edge)
353 add_control_edge (taken_edge);
357 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
358 drain. This pops statements off the given WORKLIST and processes
359 them until there are no more statements on WORKLIST.
360 We take a pointer to WORKLIST because it may be reallocated when an
361 SSA edge is added to it in simulate_stmt. */
363 static void
364 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
366 /* Drain the entire worklist. */
367 while (VEC_length (tree, *worklist) > 0)
369 basic_block bb;
371 /* Pull the statement to simulate off the worklist. */
372 tree stmt = VEC_pop (tree, *worklist);
374 /* If this statement was already visited by simulate_block, then
375 we don't need to visit it again here. */
376 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
377 continue;
379 /* STMT is no longer in a worklist. */
380 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
382 if (dump_file && (dump_flags & TDF_DETAILS))
384 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
385 print_generic_stmt (dump_file, stmt, dump_flags);
388 bb = bb_for_stmt (stmt);
390 /* PHI nodes are always visited, regardless of whether or not
391 the destination block is executable. Otherwise, visit the
392 statement only if its block is marked executable. */
393 if (TREE_CODE (stmt) == PHI_NODE
394 || TEST_BIT (executable_blocks, bb->index))
395 simulate_stmt (stmt);
400 /* Simulate the execution of BLOCK. Evaluate the statement associated
401 with each variable reference inside the block. */
403 static void
404 simulate_block (basic_block block)
406 tree phi;
408 /* There is nothing to do for the exit block. */
409 if (block == EXIT_BLOCK_PTR)
410 return;
412 if (dump_file && (dump_flags & TDF_DETAILS))
413 fprintf (dump_file, "\nSimulating block %d\n", block->index);
415 /* Always simulate PHI nodes, even if we have simulated this block
416 before. */
417 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
418 simulate_stmt (phi);
420 /* If this is the first time we've simulated this block, then we
421 must simulate each of its statements. */
422 if (!TEST_BIT (executable_blocks, block->index))
424 block_stmt_iterator j;
425 unsigned int normal_edge_count;
426 edge e, normal_edge;
427 edge_iterator ei;
429 /* Note that we have simulated this block. */
430 SET_BIT (executable_blocks, block->index);
432 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
434 tree stmt = bsi_stmt (j);
436 /* If this statement is already in the worklist then
437 "cancel" it. The reevaluation implied by the worklist
438 entry will produce the same value we generate here and
439 thus reevaluating it again from the worklist is
440 pointless. */
441 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
442 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
444 simulate_stmt (stmt);
447 /* We can not predict when abnormal edges will be executed, so
448 once a block is considered executable, we consider any
449 outgoing abnormal edges as executable.
451 At the same time, if this block has only one successor that is
452 reached by non-abnormal edges, then add that successor to the
453 worklist. */
454 normal_edge_count = 0;
455 normal_edge = NULL;
456 FOR_EACH_EDGE (e, ei, block->succs)
458 if (e->flags & EDGE_ABNORMAL)
459 add_control_edge (e);
460 else
462 normal_edge_count++;
463 normal_edge = e;
467 if (normal_edge_count == 1)
468 add_control_edge (normal_edge);
473 /* Initialize local data structures and work lists. */
475 static void
476 ssa_prop_init (void)
478 edge e;
479 edge_iterator ei;
480 basic_block bb;
481 size_t i;
483 /* Worklists of SSA edges. */
484 interesting_ssa_edges = VEC_alloc (tree, gc, 20);
485 varying_ssa_edges = VEC_alloc (tree, gc, 20);
487 executable_blocks = sbitmap_alloc (last_basic_block);
488 sbitmap_zero (executable_blocks);
490 bb_in_list = sbitmap_alloc (last_basic_block);
491 sbitmap_zero (bb_in_list);
493 if (dump_file && (dump_flags & TDF_DETAILS))
494 dump_immediate_uses (dump_file);
496 cfg_blocks = VEC_alloc (basic_block, heap, 20);
497 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
499 /* Initialize the values for every SSA_NAME. */
500 for (i = 1; i < num_ssa_names; i++)
501 if (ssa_name (i))
502 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
504 /* Initially assume that every edge in the CFG is not executable.
505 (including the edges coming out of ENTRY_BLOCK_PTR). */
506 FOR_ALL_BB (bb)
508 block_stmt_iterator si;
510 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
511 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
513 FOR_EACH_EDGE (e, ei, bb->succs)
514 e->flags &= ~EDGE_EXECUTABLE;
517 /* Seed the algorithm by adding the successors of the entry block to the
518 edge worklist. */
519 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
520 add_control_edge (e);
524 /* Free allocated storage. */
526 static void
527 ssa_prop_fini (void)
529 VEC_free (tree, gc, interesting_ssa_edges);
530 VEC_free (tree, gc, varying_ssa_edges);
531 VEC_free (basic_block, heap, cfg_blocks);
532 cfg_blocks = NULL;
533 sbitmap_free (bb_in_list);
534 sbitmap_free (executable_blocks);
538 /* Get the main expression from statement STMT. */
540 tree
541 get_rhs (tree stmt)
543 enum tree_code code = TREE_CODE (stmt);
545 switch (code)
547 case RETURN_EXPR:
548 stmt = TREE_OPERAND (stmt, 0);
549 if (!stmt || TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
550 return stmt;
551 /* FALLTHRU */
553 case GIMPLE_MODIFY_STMT:
554 stmt = GENERIC_TREE_OPERAND (stmt, 1);
555 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
556 return TREE_OPERAND (stmt, 0);
557 else
558 return stmt;
560 case COND_EXPR:
561 return COND_EXPR_COND (stmt);
562 case SWITCH_EXPR:
563 return SWITCH_COND (stmt);
564 case GOTO_EXPR:
565 return GOTO_DESTINATION (stmt);
566 case LABEL_EXPR:
567 return LABEL_EXPR_LABEL (stmt);
569 default:
570 return stmt;
575 /* Return true if EXPR is a valid GIMPLE expression. */
577 bool
578 valid_gimple_expression_p (tree expr)
580 enum tree_code code = TREE_CODE (expr);
582 switch (TREE_CODE_CLASS (code))
584 case tcc_declaration:
585 if (!is_gimple_variable (expr))
586 return false;
587 break;
589 case tcc_constant:
590 break;
592 case tcc_binary:
593 case tcc_comparison:
594 if (!is_gimple_val (TREE_OPERAND (expr, 0))
595 || !is_gimple_val (TREE_OPERAND (expr, 1)))
596 return false;
597 break;
599 case tcc_unary:
600 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
601 return false;
602 break;
604 case tcc_expression:
605 switch (code)
607 case ADDR_EXPR:
609 tree t = TREE_OPERAND (expr, 0);
610 while (handled_component_p (t))
612 /* ??? More checks needed, see the GIMPLE verifier. */
613 if ((TREE_CODE (t) == ARRAY_REF
614 || TREE_CODE (t) == ARRAY_RANGE_REF)
615 && !is_gimple_val (TREE_OPERAND (t, 1)))
616 return false;
617 t = TREE_OPERAND (t, 0);
619 if (!is_gimple_id (t))
620 return false;
621 break;
624 case TRUTH_NOT_EXPR:
625 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
626 return false;
627 break;
629 case TRUTH_AND_EXPR:
630 case TRUTH_XOR_EXPR:
631 case TRUTH_OR_EXPR:
632 if (!is_gimple_val (TREE_OPERAND (expr, 0))
633 || !is_gimple_val (TREE_OPERAND (expr, 1)))
634 return false;
635 break;
637 case EXC_PTR_EXPR:
638 case FILTER_EXPR:
639 break;
641 default:
642 return false;
644 break;
646 case tcc_vl_exp:
647 switch (code)
649 case CALL_EXPR:
650 break;
651 default:
652 return false;
654 break;
656 case tcc_exceptional:
657 switch (code)
659 case SSA_NAME:
660 break;
662 default:
663 return false;
665 break;
667 default:
668 return false;
671 return true;
675 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
676 GIMPLE expression no changes are done and the function returns
677 false. */
679 bool
680 set_rhs (tree *stmt_p, tree expr)
682 tree stmt = *stmt_p, op;
683 stmt_ann_t ann;
684 tree var;
685 ssa_op_iter iter;
687 if (!valid_gimple_expression_p (expr))
688 return false;
690 if (EXPR_HAS_LOCATION (stmt)
691 && (EXPR_P (expr)
692 || GIMPLE_STMT_P (expr))
693 && ! EXPR_HAS_LOCATION (expr)
694 && TREE_SIDE_EFFECTS (expr)
695 && TREE_CODE (expr) != LABEL_EXPR)
696 SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt));
698 switch (TREE_CODE (stmt))
700 case RETURN_EXPR:
701 op = TREE_OPERAND (stmt, 0);
702 if (TREE_CODE (op) != GIMPLE_MODIFY_STMT)
704 GIMPLE_STMT_OPERAND (stmt, 0) = expr;
705 break;
707 stmt = op;
708 /* FALLTHRU */
710 case GIMPLE_MODIFY_STMT:
711 op = GIMPLE_STMT_OPERAND (stmt, 1);
712 if (TREE_CODE (op) == WITH_SIZE_EXPR)
714 stmt = op;
715 TREE_OPERAND (stmt, 1) = expr;
717 else
718 GIMPLE_STMT_OPERAND (stmt, 1) = expr;
719 break;
721 case COND_EXPR:
722 if (!is_gimple_condexpr (expr))
723 return false;
724 COND_EXPR_COND (stmt) = expr;
725 break;
726 case SWITCH_EXPR:
727 SWITCH_COND (stmt) = expr;
728 break;
729 case GOTO_EXPR:
730 GOTO_DESTINATION (stmt) = expr;
731 break;
732 case LABEL_EXPR:
733 LABEL_EXPR_LABEL (stmt) = expr;
734 break;
736 default:
737 /* Replace the whole statement with EXPR. If EXPR has no side
738 effects, then replace *STMT_P with an empty statement. */
739 ann = stmt_ann (stmt);
740 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
741 (*stmt_p)->base.ann = (tree_ann_t) ann;
743 if (gimple_in_ssa_p (cfun)
744 && TREE_SIDE_EFFECTS (expr))
746 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
747 replacement. */
748 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
750 if (TREE_CODE (var) == SSA_NAME)
751 SSA_NAME_DEF_STMT (var) = *stmt_p;
754 stmt->base.ann = NULL;
755 break;
758 return true;
762 /* Entry point to the propagation engine.
764 VISIT_STMT is called for every statement visited.
765 VISIT_PHI is called for every PHI node visited. */
767 void
768 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
769 ssa_prop_visit_phi_fn visit_phi)
771 ssa_prop_visit_stmt = visit_stmt;
772 ssa_prop_visit_phi = visit_phi;
774 ssa_prop_init ();
776 /* Iterate until the worklists are empty. */
777 while (!cfg_blocks_empty_p ()
778 || VEC_length (tree, interesting_ssa_edges) > 0
779 || VEC_length (tree, varying_ssa_edges) > 0)
781 if (!cfg_blocks_empty_p ())
783 /* Pull the next block to simulate off the worklist. */
784 basic_block dest_block = cfg_blocks_get ();
785 simulate_block (dest_block);
788 /* In order to move things to varying as quickly as
789 possible,process the VARYING_SSA_EDGES worklist first. */
790 process_ssa_edge_worklist (&varying_ssa_edges);
792 /* Now process the INTERESTING_SSA_EDGES worklist. */
793 process_ssa_edge_worklist (&interesting_ssa_edges);
796 ssa_prop_fini ();
800 /* Return the first VDEF operand for STMT. */
802 tree
803 first_vdef (tree stmt)
805 ssa_op_iter iter;
806 tree op;
808 /* Simply return the first operand we arrive at. */
809 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
810 return (op);
812 gcc_unreachable ();
816 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
817 is a non-volatile pointer dereference, a structure reference or a
818 reference to a single _DECL. Ignore volatile memory references
819 because they are not interesting for the optimizers. */
821 bool
822 stmt_makes_single_load (tree stmt)
824 tree rhs;
826 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
827 return false;
829 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF|SSA_OP_VUSE))
830 return false;
832 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
833 STRIP_NOPS (rhs);
835 return (!TREE_THIS_VOLATILE (rhs)
836 && (DECL_P (rhs)
837 || REFERENCE_CLASS_P (rhs)));
841 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
842 is a non-volatile pointer dereference, a structure reference or a
843 reference to a single _DECL. Ignore volatile memory references
844 because they are not interesting for the optimizers. */
846 bool
847 stmt_makes_single_store (tree stmt)
849 tree lhs;
851 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
852 return false;
854 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
855 return false;
857 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
858 STRIP_NOPS (lhs);
860 return (!TREE_THIS_VOLATILE (lhs)
861 && (DECL_P (lhs)
862 || REFERENCE_CLASS_P (lhs)));
866 /* If STMT makes a single memory load and all the virtual use operands
867 have the same value in array VALUES, return it. Otherwise, return
868 NULL. */
870 prop_value_t *
871 get_value_loaded_by (tree stmt, prop_value_t *values)
873 ssa_op_iter i;
874 tree vuse;
875 prop_value_t *prev_val = NULL;
876 prop_value_t *val = NULL;
878 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
880 val = &values[SSA_NAME_VERSION (vuse)];
881 if (prev_val && prev_val->value != val->value)
882 return NULL;
883 prev_val = val;
886 return val;
890 /* Propagation statistics. */
891 struct prop_stats_d
893 long num_const_prop;
894 long num_copy_prop;
895 long num_pred_folded;
898 static struct prop_stats_d prop_stats;
900 /* Replace USE references in statement STMT with the values stored in
901 PROP_VALUE. Return true if at least one reference was replaced. If
902 REPLACED_ADDRESSES_P is given, it will be set to true if an address
903 constant was replaced. */
905 bool
906 replace_uses_in (tree stmt, bool *replaced_addresses_p,
907 prop_value_t *prop_value)
909 bool replaced = false;
910 use_operand_p use;
911 ssa_op_iter iter;
913 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
915 tree tuse = USE_FROM_PTR (use);
916 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
918 if (val == tuse || val == NULL_TREE)
919 continue;
921 if (TREE_CODE (stmt) == ASM_EXPR
922 && !may_propagate_copy_into_asm (tuse))
923 continue;
925 if (!may_propagate_copy (tuse, val))
926 continue;
928 if (TREE_CODE (val) != SSA_NAME)
929 prop_stats.num_const_prop++;
930 else
931 prop_stats.num_copy_prop++;
933 propagate_value (use, val);
935 replaced = true;
936 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
937 *replaced_addresses_p = true;
940 return replaced;
944 /* Replace the VUSE references in statement STMT with the values
945 stored in PROP_VALUE. Return true if a reference was replaced. If
946 REPLACED_ADDRESSES_P is given, it will be set to true if an address
947 constant was replaced.
949 Replacing VUSE operands is slightly more complex than replacing
950 regular USEs. We are only interested in two types of replacements
951 here:
953 1- If the value to be replaced is a constant or an SSA name for a
954 GIMPLE register, then we are making a copy/constant propagation
955 from a memory store. For instance,
957 # a_3 = VDEF <a_2>
958 a.b = x_1;
960 # VUSE <a_3>
961 y_4 = a.b;
963 This replacement is only possible iff STMT is an assignment
964 whose RHS is identical to the LHS of the statement that created
965 the VUSE(s) that we are replacing. Otherwise, we may do the
966 wrong replacement:
968 # a_3 = VDEF <a_2>
969 # b_5 = VDEF <b_4>
970 *p = 10;
972 # VUSE <b_5>
973 x_8 = b;
975 Even though 'b_5' acquires the value '10' during propagation,
976 there is no way for the propagator to tell whether the
977 replacement is correct in every reached use, because values are
978 computed at definition sites. Therefore, when doing final
979 substitution of propagated values, we have to check each use
980 site. Since the RHS of STMT ('b') is different from the LHS of
981 the originating statement ('*p'), we cannot replace 'b' with
982 '10'.
984 Similarly, when merging values from PHI node arguments,
985 propagators need to take care not to merge the same values
986 stored in different locations:
988 if (...)
989 # a_3 = VDEF <a_2>
990 a.b = 3;
991 else
992 # a_4 = VDEF <a_2>
993 a.c = 3;
994 # a_5 = PHI <a_3, a_4>
996 It would be wrong to propagate '3' into 'a_5' because that
997 operation merges two stores to different memory locations.
1000 2- If the value to be replaced is an SSA name for a virtual
1001 register, then we simply replace each VUSE operand with its
1002 value from PROP_VALUE. This is the same replacement done by
1003 replace_uses_in. */
1005 static bool
1006 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
1007 prop_value_t *prop_value)
1009 bool replaced = false;
1010 ssa_op_iter iter;
1011 use_operand_p vuse;
1013 if (stmt_makes_single_load (stmt))
1015 /* If STMT is an assignment whose RHS is a single memory load,
1016 see if we are trying to propagate a constant or a GIMPLE
1017 register (case #1 above). */
1018 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
1019 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
1021 if (val
1022 && val->value
1023 && (is_gimple_reg (val->value)
1024 || is_gimple_min_invariant (val->value))
1025 && simple_cst_equal (rhs, val->mem_ref) == 1)
1028 /* If we are replacing a constant address, inform our
1029 caller. */
1030 if (TREE_CODE (val->value) != SSA_NAME
1031 && POINTER_TYPE_P (TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 1)))
1032 && replaced_addresses_p)
1033 *replaced_addresses_p = true;
1035 /* We can only perform the substitution if the load is done
1036 from the same memory location as the original store.
1037 Since we already know that there are no intervening
1038 stores between DEF_STMT and STMT, we only need to check
1039 that the RHS of STMT is the same as the memory reference
1040 propagated together with the value. */
1041 GIMPLE_STMT_OPERAND (stmt, 1) = val->value;
1043 if (TREE_CODE (val->value) != SSA_NAME)
1044 prop_stats.num_const_prop++;
1045 else
1046 prop_stats.num_copy_prop++;
1048 /* Since we have replaced the whole RHS of STMT, there
1049 is no point in checking the other VUSEs, as they will
1050 all have the same value. */
1051 return true;
1055 /* Otherwise, the values for every VUSE operand must be other
1056 SSA_NAMEs that can be propagated into STMT. */
1057 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
1059 tree var = USE_FROM_PTR (vuse);
1060 tree val = prop_value[SSA_NAME_VERSION (var)].value;
1062 if (val == NULL_TREE || var == val)
1063 continue;
1065 /* Constants and copies propagated between real and virtual
1066 operands are only possible in the cases handled above. They
1067 should be ignored in any other context. */
1068 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
1069 continue;
1071 propagate_value (vuse, val);
1072 prop_stats.num_copy_prop++;
1073 replaced = true;
1076 return replaced;
1080 /* Replace propagated values into all the arguments for PHI using the
1081 values from PROP_VALUE. */
1083 static void
1084 replace_phi_args_in (tree phi, prop_value_t *prop_value)
1086 int i;
1087 bool replaced = false;
1088 tree prev_phi = NULL;
1090 if (dump_file && (dump_flags & TDF_DETAILS))
1091 prev_phi = unshare_expr (phi);
1093 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1095 tree arg = PHI_ARG_DEF (phi, i);
1097 if (TREE_CODE (arg) == SSA_NAME)
1099 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
1101 if (val && val != arg && may_propagate_copy (arg, val))
1103 if (TREE_CODE (val) != SSA_NAME)
1104 prop_stats.num_const_prop++;
1105 else
1106 prop_stats.num_copy_prop++;
1108 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
1109 replaced = true;
1111 /* If we propagated a copy and this argument flows
1112 through an abnormal edge, update the replacement
1113 accordingly. */
1114 if (TREE_CODE (val) == SSA_NAME
1115 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1116 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1121 if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1123 fprintf (dump_file, "Folded PHI node: ");
1124 print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1125 fprintf (dump_file, " into: ");
1126 print_generic_stmt (dump_file, phi, TDF_SLIM);
1127 fprintf (dump_file, "\n");
1132 /* If STMT has a predicate whose value can be computed using the value
1133 range information computed by VRP, compute its value and return true.
1134 Otherwise, return false. */
1136 static bool
1137 fold_predicate_in (tree stmt)
1139 tree *pred_p = NULL;
1140 bool modify_stmt_p = false;
1141 tree val;
1143 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1144 && COMPARISON_CLASS_P (GIMPLE_STMT_OPERAND (stmt, 1)))
1146 modify_stmt_p = true;
1147 pred_p = &GIMPLE_STMT_OPERAND (stmt, 1);
1149 else if (TREE_CODE (stmt) == COND_EXPR)
1150 pred_p = &COND_EXPR_COND (stmt);
1151 else
1152 return false;
1154 val = vrp_evaluate_conditional (*pred_p, stmt);
1155 if (val)
1157 if (modify_stmt_p)
1158 val = fold_convert (TREE_TYPE (*pred_p), val);
1160 if (dump_file)
1162 fprintf (dump_file, "Folding predicate ");
1163 print_generic_expr (dump_file, *pred_p, 0);
1164 fprintf (dump_file, " to ");
1165 print_generic_expr (dump_file, val, 0);
1166 fprintf (dump_file, "\n");
1169 prop_stats.num_pred_folded++;
1170 *pred_p = val;
1171 return true;
1174 return false;
1178 /* Perform final substitution and folding of propagated values.
1180 PROP_VALUE[I] contains the single value that should be substituted
1181 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1182 substituted.
1184 If USE_RANGES_P is true, statements that contain predicate
1185 expressions are evaluated with a call to vrp_evaluate_conditional.
1186 This will only give meaningful results when called from tree-vrp.c
1187 (the information used by vrp_evaluate_conditional is built by the
1188 VRP pass).
1190 Return TRUE when something changed. */
1192 bool
1193 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1195 basic_block bb;
1196 bool something_changed = false;
1198 if (prop_value == NULL && !use_ranges_p)
1199 return false;
1201 if (dump_file && (dump_flags & TDF_DETAILS))
1202 fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1204 memset (&prop_stats, 0, sizeof (prop_stats));
1206 /* Substitute values in every statement of every basic block. */
1207 FOR_EACH_BB (bb)
1209 block_stmt_iterator i;
1210 tree phi;
1212 /* Propagate known values into PHI nodes. */
1213 if (prop_value)
1214 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1215 replace_phi_args_in (phi, prop_value);
1217 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1219 bool replaced_address, did_replace;
1220 tree prev_stmt = NULL;
1221 tree stmt = bsi_stmt (i);
1223 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1224 range information for names and they are discarded
1225 afterwards. */
1226 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1227 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
1228 continue;
1230 /* Record the state of the statement before replacements. */
1231 push_stmt_changes (bsi_stmt_ptr (i));
1233 /* Replace the statement with its folded version and mark it
1234 folded. */
1235 did_replace = false;
1236 replaced_address = false;
1237 if (dump_file && (dump_flags & TDF_DETAILS))
1238 prev_stmt = unshare_expr (stmt);
1240 /* If we have range information, see if we can fold
1241 predicate expressions. */
1242 if (use_ranges_p)
1243 did_replace = fold_predicate_in (stmt);
1245 if (prop_value)
1247 /* Only replace real uses if we couldn't fold the
1248 statement using value range information (value range
1249 information is not collected on virtuals, so we only
1250 need to check this for real uses). */
1251 if (!did_replace)
1252 did_replace |= replace_uses_in (stmt, &replaced_address,
1253 prop_value);
1255 did_replace |= replace_vuses_in (stmt, &replaced_address,
1256 prop_value);
1259 /* If we made a replacement, fold and cleanup the statement. */
1260 if (did_replace)
1262 tree old_stmt = stmt;
1263 tree rhs;
1265 fold_stmt (bsi_stmt_ptr (i));
1266 stmt = bsi_stmt (i);
1268 /* If we cleaned up EH information from the statement,
1269 remove EH edges. */
1270 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1271 tree_purge_dead_eh_edges (bb);
1273 rhs = get_rhs (stmt);
1274 if (TREE_CODE (rhs) == ADDR_EXPR)
1275 recompute_tree_invariant_for_addr_expr (rhs);
1277 if (dump_file && (dump_flags & TDF_DETAILS))
1279 fprintf (dump_file, "Folded statement: ");
1280 print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1281 fprintf (dump_file, " into: ");
1282 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1283 fprintf (dump_file, "\n");
1286 /* Determine what needs to be done to update the SSA form. */
1287 pop_stmt_changes (bsi_stmt_ptr (i));
1288 something_changed = true;
1290 else
1292 /* The statement was not modified, discard the change buffer. */
1293 discard_stmt_changes (bsi_stmt_ptr (i));
1296 /* Some statements may be simplified using ranges. For
1297 example, division may be replaced by shifts, modulo
1298 replaced with bitwise and, etc. Do this after
1299 substituting constants, folding, etc so that we're
1300 presented with a fully propagated, canonicalized
1301 statement. */
1302 if (use_ranges_p)
1303 simplify_stmt_using_ranges (stmt);
1307 if (dump_file && (dump_flags & TDF_STATS))
1309 fprintf (dump_file, "Constants propagated: %6ld\n",
1310 prop_stats.num_const_prop);
1311 fprintf (dump_file, "Copies propagated: %6ld\n",
1312 prop_stats.num_copy_prop);
1313 fprintf (dump_file, "Predicates folded: %6ld\n",
1314 prop_stats.num_pred_folded);
1316 return something_changed;
1319 #include "gt-tree-ssa-propagate.h"