1 /* Type based alias analysis.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass determines which types in the program contain only
22 instances that are completely encapsulated by the compilation unit.
23 Those types that are encapsulated must also pass the further
24 requirement that there be no bad operations on any instances of
27 A great deal of freedom in compilation is allowed for the instances
28 of those types that pass these conditions.
31 /* The code in this module is called by the ipa pass manager. It
32 should be one of the later passes since its information is used by
33 the rest of the compilation. */
37 #include "coretypes.h"
40 #include "tree-flow.h"
41 #include "tree-inline.h"
42 #include "tree-pass.h"
43 #include "langhooks.h"
44 #include "pointer-set.h"
46 #include "ipa-utils.h"
47 #include "ipa-type-escape.h"
49 #include "tree-gimple.h"
54 #include "diagnostic.h"
55 #include "langhooks.h"
57 /* Some of the aliasing is called very early, before this phase is
58 called. To assure that this is not a problem, we keep track of if
59 this phase has been run. */
60 static bool initialized
= false;
62 /* Scratch bitmap for avoiding work. */
63 static bitmap been_there_done_that
;
64 static bitmap bitmap_tmp
;
66 /* There are two levels of escape that types can undergo.
68 EXPOSED_PARAMETER - some instance of the variable is
69 passed by value into an externally visible function or some
70 instance of the variable is passed out of an externally visible
71 function as a return value. In this case any of the fields of the
72 variable that are pointer types end up having their types marked as
75 FULL_ESCAPE - when bad things happen to good types. One of the
76 following things happens to the type: (a) either an instance of the
77 variable has its address passed to an externally visible function,
78 (b) the address is taken and some bad cast happens to the address
79 or (c) explicit arithmetic is done to the address.
88 /* The following two bit vectors global_types_* correspond to
89 previous cases above. During the analysis phase, a bit is set in
90 one of these vectors if an operation of the offending class is
91 discovered to happen on the associated type. */
93 static bitmap global_types_exposed_parameter
;
94 static bitmap global_types_full_escape
;
96 /* All of the types seen in this compilation unit. */
97 static bitmap global_types_seen
;
98 /* Reverse map to take a canon uid and map it to a canon type. Uid's
99 are never manipulated unless they are associated with a canon
101 static splay_tree uid_to_canon_type
;
103 /* Internal structure of type mapping code. This maps a canon type
104 name to its canon type. */
105 static splay_tree all_canon_types
;
107 /* Map from type clones to the single canon type. */
108 static splay_tree type_to_canon_type
;
110 /* A splay tree of bitmaps. An element X in the splay tree has a bit
111 set in its bitmap at TYPE_UID (TYPE_MAIN_VARIANT (Y)) if there was
112 an operation in the program of the form "&X.Y". */
113 static splay_tree uid_to_addressof_down_map
;
115 /* A splay tree of bitmaps. An element Y in the splay tree has a bit
116 set in its bitmap at TYPE_UID (TYPE_MAIN_VARIANT (X)) if there was
117 an operation in the program of the form "&X.Y". */
118 static splay_tree uid_to_addressof_up_map
;
120 /* Tree to hold the subtype maps used to mark subtypes of escaped
122 static splay_tree uid_to_subtype_map
;
124 /* Records tree nodes seen in cgraph_create_edges. Simply using
125 walk_tree_without_duplicates doesn't guarantee each node is visited
126 once because it gets a new htab upon each recursive call from
128 static struct pointer_set_t
*visited_nodes
;
130 /* Visited stmts by walk_use_def_chains function because it's called
132 static struct pointer_set_t
*visited_stmts
;
134 static bitmap_obstack ipa_obstack
;
136 /* Static functions from this file that are used
137 before being defined. */
138 static unsigned int look_for_casts (tree lhs ATTRIBUTE_UNUSED
, tree
);
139 static bool is_cast_from_non_pointer (tree
, tree
, void *);
141 /* Get the name of TYPE or return the string "<UNNAMED>". */
143 get_name_of_type (tree type
)
145 tree name
= TYPE_NAME (type
);
148 /* Unnamed type, do what you like here. */
151 /* It will be a TYPE_DECL in the case of a typedef, otherwise, an
153 if (TREE_CODE (name
) == TYPE_DECL
)
155 /* Each DECL has a DECL_NAME field which contains an
156 IDENTIFIER_NODE. (Some decls, most often labels, may have
157 zero as the DECL_NAME). */
158 if (DECL_NAME (name
))
159 return IDENTIFIER_POINTER (DECL_NAME (name
));
161 /* Unnamed type, do what you like here. */
164 else if (TREE_CODE (name
) == IDENTIFIER_NODE
)
165 return IDENTIFIER_POINTER (name
);
176 /* Splay tree comparison function on type_brand_s structures. */
179 compare_type_brand (splay_tree_key sk1
, splay_tree_key sk2
)
181 struct type_brand_s
* k1
= (struct type_brand_s
*) sk1
;
182 struct type_brand_s
* k2
= (struct type_brand_s
*) sk2
;
184 int value
= strcmp(k1
->name
, k2
->name
);
186 return k2
->seq
- k1
->seq
;
191 /* All of the "unique_type" code is a hack to get around the sleazy
192 implementation used to compile more than file. Currently gcc does
193 not get rid of multiple instances of the same type that have been
194 collected from different compilation units. */
195 /* This is a trivial algorithm for removing duplicate types. This
196 would not work for any language that used structural equivalence as
197 the basis of its type system. */
198 /* Return TYPE if no type compatible with TYPE has been seen so far,
199 otherwise return a type compatible with TYPE that has already been
203 discover_unique_type (tree type
)
205 struct type_brand_s
* brand
= XNEW (struct type_brand_s
);
207 splay_tree_node result
;
209 brand
->name
= get_name_of_type (type
);
214 result
= splay_tree_lookup (all_canon_types
, (splay_tree_key
) brand
);
218 /* Create an alias since this is just the same as
220 tree other_type
= (tree
) result
->value
;
221 if (types_compatible_p (type
, other_type
))
224 /* Insert this new type as an alias for other_type. */
225 splay_tree_insert (type_to_canon_type
,
226 (splay_tree_key
) type
,
227 (splay_tree_value
) other_type
);
230 /* Not compatible, look for next instance with same name. */
234 /* No more instances, create new one since this is the first
235 time we saw this type. */
237 /* Insert the new brand. */
238 splay_tree_insert (all_canon_types
,
239 (splay_tree_key
) brand
,
240 (splay_tree_value
) type
);
242 /* Insert this new type as an alias for itself. */
243 splay_tree_insert (type_to_canon_type
,
244 (splay_tree_key
) type
,
245 (splay_tree_value
) type
);
247 /* Insert the uid for reverse lookup; */
248 splay_tree_insert (uid_to_canon_type
,
249 (splay_tree_key
) TYPE_UID (type
),
250 (splay_tree_value
) type
);
252 bitmap_set_bit (global_types_seen
, TYPE_UID (type
));
258 /* Return true if TYPE is one of the type classes that we are willing
259 to analyze. This skips the goofy types like arrays of pointers to
262 type_to_consider (tree type
)
264 /* Strip the *'s off. */
265 type
= TYPE_MAIN_VARIANT (type
);
266 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
267 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
269 switch (TREE_CODE (type
))
275 case QUAL_UNION_TYPE
:
277 case FIXED_POINT_TYPE
:
289 /* Get the canon type of TYPE. If SEE_THRU_PTRS is true, remove all
290 the POINTER_TOs and if SEE_THRU_ARRAYS is true, remove all of the
291 ARRAY_OFs and POINTER_TOs. */
294 get_canon_type (tree type
, bool see_thru_ptrs
, bool see_thru_arrays
)
296 splay_tree_node result
;
297 /* Strip the *'s off. */
298 if (!type
|| !type_to_consider (type
))
301 type
= TYPE_MAIN_VARIANT (type
);
303 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
304 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
306 else if (see_thru_ptrs
)
307 while (POINTER_TYPE_P (type
))
308 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
310 result
= splay_tree_lookup(type_to_canon_type
, (splay_tree_key
) type
);
313 return discover_unique_type (type
);
314 else return (tree
) result
->value
;
317 /* Same as GET_CANON_TYPE, except return the TYPE_ID rather than the
321 get_canon_type_uid (tree type
, bool see_thru_ptrs
, bool see_thru_arrays
)
323 type
= get_canon_type (type
, see_thru_ptrs
, see_thru_arrays
);
325 return TYPE_UID(type
);
329 /* Return 0 if TYPE is a record or union type. Return a positive
330 number if TYPE is a pointer to a record or union. The number is
331 the number of pointer types stripped to get to the record or union
332 type. Return -1 if TYPE is none of the above. */
335 ipa_type_escape_star_count_of_interesting_type (tree type
)
338 /* Strip the *'s off. */
341 type
= TYPE_MAIN_VARIANT (type
);
342 while (POINTER_TYPE_P (type
))
344 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
348 /* We are interested in records, and unions only. */
349 if (TREE_CODE (type
) == RECORD_TYPE
350 || TREE_CODE (type
) == QUAL_UNION_TYPE
351 || TREE_CODE (type
) == UNION_TYPE
)
358 /* Return 0 if TYPE is a record or union type. Return a positive
359 number if TYPE is a pointer to a record or union. The number is
360 the number of pointer types stripped to get to the record or union
361 type. Return -1 if TYPE is none of the above. */
364 ipa_type_escape_star_count_of_interesting_or_array_type (tree type
)
367 /* Strip the *'s off. */
370 type
= TYPE_MAIN_VARIANT (type
);
371 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
373 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
377 /* We are interested in records, and unions only. */
378 if (TREE_CODE (type
) == RECORD_TYPE
379 || TREE_CODE (type
) == QUAL_UNION_TYPE
380 || TREE_CODE (type
) == UNION_TYPE
)
387 /* Return true if the record, or union TYPE passed in escapes this
388 compilation unit. Note that all of the pointer-to's are removed
389 before testing since these may not be correct. */
392 ipa_type_escape_type_contained_p (tree type
)
396 return !bitmap_bit_p (global_types_full_escape
,
397 get_canon_type_uid (type
, true, false));
400 /* Return true if a modification to a field of type FIELD_TYPE cannot
401 clobber a record of RECORD_TYPE. */
404 ipa_type_escape_field_does_not_clobber_p (tree record_type
, tree field_type
)
406 splay_tree_node result
;
412 /* Strip off all of the pointer tos on the record type. Strip the
413 same number of pointer tos from the field type. If the field
414 type has fewer, it could not have been aliased. */
415 record_type
= TYPE_MAIN_VARIANT (record_type
);
416 field_type
= TYPE_MAIN_VARIANT (field_type
);
417 while (POINTER_TYPE_P (record_type
))
419 record_type
= TYPE_MAIN_VARIANT (TREE_TYPE (record_type
));
420 if (POINTER_TYPE_P (field_type
))
421 field_type
= TYPE_MAIN_VARIANT (TREE_TYPE (field_type
));
423 /* However, if field_type is a union, this quick test is not
424 correct since one of the variants of the union may be a
425 pointer to type and we cannot see across that here. So we
426 just strip the remaining pointer tos off the record type
427 and fall thru to the more precise code. */
428 if (TREE_CODE (field_type
) == QUAL_UNION_TYPE
429 || TREE_CODE (field_type
) == UNION_TYPE
)
431 while (POINTER_TYPE_P (record_type
))
432 record_type
= TYPE_MAIN_VARIANT (TREE_TYPE (record_type
));
439 record_type
= get_canon_type (record_type
, true, true);
440 /* The record type must be contained. The field type may
442 if (!ipa_type_escape_type_contained_p (record_type
))
445 uid
= TYPE_UID (record_type
);
446 result
= splay_tree_lookup (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
450 bitmap field_type_map
= (bitmap
) result
->value
;
451 uid
= get_canon_type_uid (field_type
, true, true);
452 /* If the bit is there, the address was taken. If not, it
454 return !bitmap_bit_p (field_type_map
, uid
);
457 /* No bitmap means no addresses were taken. */
462 /* Add TYPE to the suspect type set. Return true if the bit needed to
466 mark_type (tree type
, enum escape_t escape_status
)
471 type
= get_canon_type (type
, true, true);
475 switch (escape_status
)
477 case EXPOSED_PARAMETER
:
478 map
= global_types_exposed_parameter
;
481 map
= global_types_full_escape
;
485 uid
= TYPE_UID (type
);
486 if (bitmap_bit_p (map
, uid
))
490 bitmap_set_bit (map
, uid
);
491 if (escape_status
== FULL_ESCAPE
)
493 /* Efficiency hack. When things are bad, do not mess around
494 with this type anymore. */
495 bitmap_set_bit (global_types_exposed_parameter
, uid
);
501 /* Add interesting TYPE to the suspect type set. If the set is
502 EXPOSED_PARAMETER and the TYPE is a pointer type, the set is
503 changed to FULL_ESCAPE. */
506 mark_interesting_type (tree type
, enum escape_t escape_status
)
509 if (ipa_type_escape_star_count_of_interesting_type (type
) >= 0)
511 if ((escape_status
== EXPOSED_PARAMETER
)
512 && POINTER_TYPE_P (type
))
513 /* EXPOSED_PARAMETERs are only structs or unions are passed by
514 value. Anything passed by reference to an external
515 function fully exposes the type. */
516 mark_type (type
, FULL_ESCAPE
);
518 mark_type (type
, escape_status
);
522 /* Return true if PARENT is supertype of CHILD. Both types must be
523 known to be structures or unions. */
526 parent_type_p (tree parent
, tree child
)
529 tree binfo
, base_binfo
;
530 if (TYPE_BINFO (parent
))
531 for (binfo
= TYPE_BINFO (parent
), i
= 0;
532 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
534 tree binfotype
= BINFO_TYPE (base_binfo
);
535 if (binfotype
== child
)
537 else if (parent_type_p (binfotype
, child
))
540 if (TREE_CODE (parent
) == UNION_TYPE
541 || TREE_CODE (parent
) == QUAL_UNION_TYPE
)
544 /* Search all of the variants in the union to see if one of them
546 for (field
= TYPE_FIELDS (parent
);
548 field
= TREE_CHAIN (field
))
551 if (TREE_CODE (field
) != FIELD_DECL
)
554 field_type
= TREE_TYPE (field
);
555 if (field_type
== child
)
559 /* If we did not find it, recursively ask the variants if one of
560 their children is the child type. */
561 for (field
= TYPE_FIELDS (parent
);
563 field
= TREE_CHAIN (field
))
566 if (TREE_CODE (field
) != FIELD_DECL
)
569 field_type
= TREE_TYPE (field
);
570 if (TREE_CODE (field_type
) == RECORD_TYPE
571 || TREE_CODE (field_type
) == QUAL_UNION_TYPE
572 || TREE_CODE (field_type
) == UNION_TYPE
)
573 if (parent_type_p (field_type
, child
))
578 if (TREE_CODE (parent
) == RECORD_TYPE
)
581 for (field
= TYPE_FIELDS (parent
);
583 field
= TREE_CHAIN (field
))
586 if (TREE_CODE (field
) != FIELD_DECL
)
589 field_type
= TREE_TYPE (field
);
590 if (field_type
== child
)
592 /* You can only cast to the first field so if it does not
594 if (TREE_CODE (field_type
) == RECORD_TYPE
595 || TREE_CODE (field_type
) == QUAL_UNION_TYPE
596 || TREE_CODE (field_type
) == UNION_TYPE
)
598 if (parent_type_p (field_type
, child
))
608 /* Return the number of pointer tos for TYPE and return TYPE with all
609 of these stripped off. */
612 count_stars (tree
* type_ptr
)
614 tree type
= *type_ptr
;
616 type
= TYPE_MAIN_VARIANT (type
);
617 while (POINTER_TYPE_P (type
))
619 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
632 CT_FROM_P_BAD
= 0x10,
633 CT_FROM_NON_P
= 0x20,
634 CT_TO_NON_INTER
= 0x40,
635 CT_FROM_MALLOC
= 0x80,
639 /* Check the cast FROM_TYPE to TO_TYPE. This function requires that
640 the two types have already passed the
641 ipa_type_escape_star_count_of_interesting_type test. */
643 static enum cast_type
644 check_cast_type (tree to_type
, tree from_type
)
646 int to_stars
= count_stars (&to_type
);
647 int from_stars
= count_stars (&from_type
);
648 if (to_stars
!= from_stars
)
651 if (to_type
== from_type
)
654 if (parent_type_p (to_type
, from_type
)) return CT_UP
;
655 if (parent_type_p (from_type
, to_type
)) return CT_DOWN
;
659 /* This function returns nonzero if VAR is result of call
660 to malloc function. */
663 is_malloc_result (tree var
)
672 if (SSA_NAME_IS_DEFAULT_DEF (var
))
675 def_stmt
= SSA_NAME_DEF_STMT (var
);
677 if (TREE_CODE (def_stmt
) != GIMPLE_MODIFY_STMT
)
680 if (var
!= GIMPLE_STMT_OPERAND (def_stmt
, 0))
683 rhs
= get_call_expr_in (def_stmt
);
688 flags
= call_expr_flags (rhs
);
690 return ((flags
& ECF_MALLOC
) != 0);
694 /* Check a cast FROM this variable, TO_TYPE. Mark the escaping types
695 if appropriate. Returns cast_type as detected. */
697 static enum cast_type
698 check_cast (tree to_type
, tree from
)
700 tree from_type
= get_canon_type (TREE_TYPE (from
), false, false);
701 bool to_interesting_type
, from_interesting_type
;
702 enum cast_type cast
= CT_NO_CAST
;
704 to_type
= get_canon_type (to_type
, false, false);
705 if (!from_type
|| !to_type
|| from_type
== to_type
)
708 to_interesting_type
=
709 ipa_type_escape_star_count_of_interesting_type (to_type
) >= 0;
710 from_interesting_type
=
711 ipa_type_escape_star_count_of_interesting_type (from_type
) >= 0;
713 if (to_interesting_type
)
714 if (from_interesting_type
)
716 /* Both types are interesting. This can be one of four types
717 of cast: useless, up, down, or sideways. We do not care
718 about up or useless. Sideways casts are always bad and
719 both sides get marked as escaping. Downcasts are not
720 interesting here because if type is marked as escaping, all
721 of its subtypes escape. */
722 cast
= check_cast_type (to_type
, from_type
);
731 mark_type (to_type
, FULL_ESCAPE
);
732 mark_type (from_type
, FULL_ESCAPE
);
741 /* This code excludes two cases from marking as escaped:
743 1. if this is a cast of index of array of structures/unions
744 that happens before accessing array element, we should not
746 2. if this is a cast from the local that is a result from a
747 call to malloc, do not mark the cast as bad.
751 if (POINTER_TYPE_P (to_type
) && !POINTER_TYPE_P (from_type
))
752 cast
= CT_FROM_NON_P
;
753 else if (TREE_CODE (from
) == SSA_NAME
754 && is_malloc_result (from
))
755 cast
= CT_FROM_MALLOC
;
758 cast
= CT_FROM_P_BAD
;
759 mark_type (to_type
, FULL_ESCAPE
);
762 else if (from_interesting_type
)
764 mark_type (from_type
, FULL_ESCAPE
);
765 cast
= CT_TO_NON_INTER
;
777 /* This function is a callback for walk_tree called from
778 is_cast_from_non_pointer. The data->type is set to be:
780 0 - if there is no cast
781 number - the number of casts from non-pointer type
782 -1 - if there is a cast that makes the type to escape
784 If data->type = number, then data->stmt will contain the
785 last casting stmt met in traversing. */
788 is_cast_from_non_pointer_1 (tree
*tp
, int *walk_subtrees
, void *data
)
793 if (pointer_set_insert (visited_stmts
, def_stmt
))
799 switch (TREE_CODE (def_stmt
))
801 case GIMPLE_MODIFY_STMT
:
805 tree lhs
= GIMPLE_STMT_OPERAND (def_stmt
, 0);
806 tree rhs
= GIMPLE_STMT_OPERAND (def_stmt
, 1);
808 unsigned int cast
= look_for_casts (lhs
, rhs
);
809 /* Check that only one cast happened, and it's of
811 if ((cast
& CT_FROM_NON_P
) == (CT_FROM_NON_P
)
812 && (cast
& ~(CT_FROM_NON_P
)) == 0)
814 ((cast_t
*)data
)->stmt
= def_stmt
;
815 ((cast_t
*)data
)->type
++;
817 FOR_EACH_SSA_USE_OPERAND (use_p
, def_stmt
, iter
, SSA_OP_ALL_USES
)
819 walk_use_def_chains (USE_FROM_PTR (use_p
), is_cast_from_non_pointer
,
821 if (((cast_t
*)data
)->type
== -1)
826 /* Check that there is no cast, or cast is not harmful. */
827 else if ((cast
& CT_NO_CAST
) == (CT_NO_CAST
)
828 || (cast
& CT_DOWN
) == (CT_DOWN
)
829 || (cast
& CT_UP
) == (CT_UP
)
830 || (cast
& CT_USELESS
) == (CT_USELESS
)
831 || (cast
& CT_FROM_MALLOC
) == (CT_FROM_MALLOC
))
833 FOR_EACH_SSA_USE_OPERAND (use_p
, def_stmt
, iter
, SSA_OP_ALL_USES
)
835 walk_use_def_chains (USE_FROM_PTR (use_p
), is_cast_from_non_pointer
,
837 if (((cast_t
*)data
)->type
== -1)
842 /* The cast is harmful. */
845 ((cast_t
*)data
)->type
= -1;
863 /* This function is a callback for walk_use_def_chains function called
864 from is_array_access_through_pointer_and_index. */
867 is_cast_from_non_pointer (tree var
, tree def_stmt
, void *data
)
870 if (!def_stmt
|| !var
)
873 if (TREE_CODE (def_stmt
) == PHI_NODE
)
876 if (SSA_NAME_IS_DEFAULT_DEF (var
))
879 walk_tree (&def_stmt
, is_cast_from_non_pointer_1
, data
, NULL
);
880 if (((cast_t
*)data
)->type
== -1)
886 /* When array element a_p[i] is accessed through the pointer a_p
887 and index i, it's translated into the following sequence
890 i.1_5 = (unsigned int) i_1;
891 D.1605_6 = i.1_5 * 16;
892 D.1606_7 = (struct str_t *) D.1605_6;
894 D.1608_9 = D.1606_7 + a_p.2_8;
896 OP0 and OP1 are of the same pointer types and stand for
897 D.1606_7 and a_p.2_8 or vise versa.
899 This function checks that:
901 1. one of OP0 and OP1 (D.1606_7) has passed only one cast from
902 non-pointer type (D.1606_7 = (struct str_t *) D.1605_6;).
904 2. one of OP0 and OP1 which has passed the cast from
905 non-pointer type (D.1606_7), is actually generated by multiplication of
906 index by size of type to which both OP0 and OP1 point to
907 (in this case D.1605_6 = i.1_5 * 16; ).
909 3. an address of def of the var to which was made cast (D.1605_6)
910 was not taken.(How can it happen?)
912 The following items are checked implicitly by the end of algorithm:
914 4. one of OP0 and OP1 (a_p.2_8) have never been cast
915 (because if it was cast to pointer type, its type, that is also
916 the type of OP0 and OP1, will be marked as escaped during
917 analysis of casting stmt (when check_cast() is called
918 from scan_for_refs for this stmt)).
920 5. defs of OP0 and OP1 are not passed into externally visible function
921 (because if they are passed then their type, that is also the type of OP0
922 and OP1, will be marked and escaped during check_call function called from
923 scan_for_refs with call stmt).
925 In total, 1-5 guaranty that it's an access to array by pointer and index.
930 is_array_access_through_pointer_and_index (tree op0
, tree op1
)
932 tree base
, offset
, offset_cast_stmt
;
933 tree before_cast
, before_cast_def_stmt
;
934 cast_t op0_cast
, op1_cast
;
938 /* Init data for walk_use_def_chains function. */
939 op0_cast
.type
= op1_cast
.type
= 0;
940 op0_cast
.stmt
= op1_cast
.stmt
= NULL
;
942 visited_stmts
= pointer_set_create ();
943 walk_use_def_chains (op0
, is_cast_from_non_pointer
,(void *)(&op0_cast
), false);
944 pointer_set_destroy (visited_stmts
);
946 visited_stmts
= pointer_set_create ();
947 walk_use_def_chains (op1
, is_cast_from_non_pointer
,(void *)(&op1_cast
), false);
948 pointer_set_destroy (visited_stmts
);
950 if (op0_cast
.type
== 1 && op1_cast
.type
== 0)
954 offset_cast_stmt
= op0_cast
.stmt
;
956 else if (op0_cast
.type
== 0 && op1_cast
.type
== 1)
960 offset_cast_stmt
= op1_cast
.stmt
;
966 offset_cast_stmt is of the form:
967 D.1606_7 = (struct str_t *) D.1605_6; */
969 before_cast
= SINGLE_SSA_TREE_OPERAND (offset_cast_stmt
, SSA_OP_USE
);
973 if (SSA_NAME_IS_DEFAULT_DEF(before_cast
))
976 before_cast_def_stmt
= SSA_NAME_DEF_STMT (before_cast
);
977 if (!before_cast_def_stmt
)
980 /* before_cast_def_stmt should be of the form:
981 D.1605_6 = i.1_5 * 16; */
983 if (TREE_CODE (before_cast_def_stmt
) == GIMPLE_MODIFY_STMT
)
985 tree lhs
= GIMPLE_STMT_OPERAND (before_cast_def_stmt
,0);
986 tree rhs
= GIMPLE_STMT_OPERAND (before_cast_def_stmt
,1);
988 /* We expect temporary here. */
989 if (!is_gimple_reg (lhs
))
992 if (TREE_CODE (rhs
) == MULT_EXPR
)
994 tree arg0
= TREE_OPERAND (rhs
, 0);
995 tree arg1
= TREE_OPERAND (rhs
, 1);
997 TYPE_SIZE_UNIT (TREE_TYPE (TYPE_MAIN_VARIANT (TREE_TYPE (op0
))));
999 if (!(CONSTANT_CLASS_P (arg0
)
1000 && simple_cst_equal (arg0
,unit_size
))
1001 && !(CONSTANT_CLASS_P (arg1
)
1002 && simple_cst_equal (arg1
,unit_size
)))
1012 check that address of D.1605_6 was not taken.
1013 FIXME: if D.1605_6 is gimple reg than it cannot be addressable. */
1018 /* Register the parameter and return types of function FN. The type
1019 ESCAPES if the function is visible outside of the compilation
1022 check_function_parameter_and_return_types (tree fn
, bool escapes
)
1026 if (TYPE_ARG_TYPES (TREE_TYPE (fn
)))
1028 for (arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1029 arg
&& TREE_VALUE (arg
) != void_type_node
;
1030 arg
= TREE_CHAIN (arg
))
1032 tree type
= get_canon_type (TREE_VALUE (arg
), false, false);
1034 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1039 /* FIXME - According to Geoff Keating, we should never have to
1040 do this; the front ends should always process the arg list
1041 from the TYPE_ARG_LIST. However, Geoff is wrong, this code
1042 does seem to be live. */
1044 for (arg
= DECL_ARGUMENTS (fn
); arg
; arg
= TREE_CHAIN (arg
))
1046 tree type
= get_canon_type (TREE_TYPE (arg
), false, false);
1048 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1053 tree type
= get_canon_type (TREE_TYPE (TREE_TYPE (fn
)), false, false);
1054 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1058 /* Return true if the variable T is the right kind of static variable to
1059 perform compilation unit scope escape analysis. */
1062 has_proper_scope_for_analysis (tree t
)
1064 /* If the variable has the "used" attribute, treat it as if it had a
1065 been touched by the devil. */
1066 tree type
= get_canon_type (TREE_TYPE (t
), false, false);
1069 if (lookup_attribute ("used", DECL_ATTRIBUTES (t
)))
1071 mark_interesting_type (type
, FULL_ESCAPE
);
1075 /* Do not want to do anything with volatile except mark any
1076 function that uses one to be not const or pure. */
1077 if (TREE_THIS_VOLATILE (t
))
1080 /* Do not care about a local automatic that is not static. */
1081 if (!TREE_STATIC (t
) && !DECL_EXTERNAL (t
))
1084 if (DECL_EXTERNAL (t
) || TREE_PUBLIC (t
))
1086 /* If the front end set the variable to be READONLY and
1087 constant, we can allow this variable in pure or const
1088 functions but the scope is too large for our analysis to set
1089 these bits ourselves. */
1091 if (TREE_READONLY (t
)
1093 && is_gimple_min_invariant (DECL_INITIAL (t
)))
1094 ; /* Read of a constant, do not change the function state. */
1097 /* The type escapes for all public and externs. */
1098 mark_interesting_type (type
, FULL_ESCAPE
);
1103 /* If T is a VAR_DECL for a static that we are interested in, add the
1104 uid to the bitmap. */
1107 check_operand (tree t
)
1111 /* This is an assignment from a function, register the types as
1113 if (TREE_CODE (t
) == FUNCTION_DECL
)
1114 check_function_parameter_and_return_types (t
, true);
1116 else if (TREE_CODE (t
) == VAR_DECL
)
1117 has_proper_scope_for_analysis (t
);
1120 /* Examine tree T for references. */
1125 if ((TREE_CODE (t
) == EXC_PTR_EXPR
) || (TREE_CODE (t
) == FILTER_EXPR
))
1128 /* We want to catch here also REALPART_EXPR and IMAGEPART_EXPR,
1129 but they already included in handled_component_p. */
1130 while (handled_component_p (t
))
1132 if (TREE_CODE (t
) == ARRAY_REF
)
1133 check_operand (TREE_OPERAND (t
, 1));
1134 t
= TREE_OPERAND (t
, 0);
1137 if (INDIRECT_REF_P (t
))
1138 /* || TREE_CODE (t) == MEM_REF) */
1139 check_tree (TREE_OPERAND (t
, 0));
1141 if (SSA_VAR_P (t
) || (TREE_CODE (t
) == FUNCTION_DECL
))
1145 /* Create an address_of edge FROM_TYPE.TO_TYPE. */
1147 mark_interesting_addressof (tree to_type
, tree from_type
)
1152 splay_tree_node result
;
1154 from_type
= get_canon_type (from_type
, false, false);
1155 to_type
= get_canon_type (to_type
, false, false);
1157 if (!from_type
|| !to_type
)
1160 from_uid
= TYPE_UID (from_type
);
1161 to_uid
= TYPE_UID (to_type
);
1163 gcc_assert (ipa_type_escape_star_count_of_interesting_type (from_type
) == 0);
1165 /* Process the Y into X map pointer. */
1166 result
= splay_tree_lookup (uid_to_addressof_down_map
,
1167 (splay_tree_key
) from_uid
);
1170 type_map
= (bitmap
) result
->value
;
1173 type_map
= BITMAP_ALLOC (&ipa_obstack
);
1174 splay_tree_insert (uid_to_addressof_down_map
,
1176 (splay_tree_value
)type_map
);
1178 bitmap_set_bit (type_map
, TYPE_UID (to_type
));
1180 /* Process the X into Y reverse map pointer. */
1182 splay_tree_lookup (uid_to_addressof_up_map
, (splay_tree_key
) to_uid
);
1185 type_map
= (bitmap
) result
->value
;
1188 type_map
= BITMAP_ALLOC (&ipa_obstack
);
1189 splay_tree_insert (uid_to_addressof_up_map
,
1191 (splay_tree_value
)type_map
);
1193 bitmap_set_bit (type_map
, TYPE_UID (from_type
));
1196 /* Scan tree T to see if there are any addresses taken in within T. */
1199 look_for_address_of (tree t
)
1201 if (TREE_CODE (t
) == ADDR_EXPR
)
1203 tree x
= get_base_var (t
);
1204 tree cref
= TREE_OPERAND (t
, 0);
1206 /* If we have an expression of the form "&a.b.c.d", mark a.b,
1207 b.c and c.d. as having its address taken. */
1208 tree fielddecl
= NULL_TREE
;
1211 if (TREE_CODE (cref
) == COMPONENT_REF
)
1213 fielddecl
= TREE_OPERAND (cref
, 1);
1214 mark_interesting_addressof (TREE_TYPE (fielddecl
),
1215 DECL_FIELD_CONTEXT (fielddecl
));
1217 else if (TREE_CODE (cref
) == ARRAY_REF
)
1218 get_canon_type (TREE_TYPE (cref
), false, false);
1220 cref
= TREE_OPERAND (cref
, 0);
1223 if (TREE_CODE (x
) == VAR_DECL
)
1224 has_proper_scope_for_analysis (x
);
1229 /* Scan tree T to see if there are any casts within it.
1230 LHS Is the LHS of the expression involving the cast. */
1233 look_for_casts (tree lhs ATTRIBUTE_UNUSED
, tree t
)
1235 unsigned int cast
= 0;
1238 if (is_gimple_cast (t
) || TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
1240 tree castfromvar
= TREE_OPERAND (t
, 0);
1241 cast
= cast
| check_cast (TREE_TYPE (t
), castfromvar
);
1244 while (handled_component_p (t
))
1246 t
= TREE_OPERAND (t
, 0);
1247 if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
1249 /* This may be some part of a component ref.
1250 IE it may be a.b.VIEW_CONVERT_EXPR<weird_type>(c).d, AFAIK.
1251 castfromref will give you a.b.c, not a. */
1252 tree castfromref
= TREE_OPERAND (t
, 0);
1253 cast
= cast
| check_cast (TREE_TYPE (t
), castfromref
);
1255 else if (TREE_CODE (t
) == COMPONENT_REF
)
1256 get_canon_type (TREE_TYPE (TREE_OPERAND (t
, 1)), false, false);
1264 /* Check to see if T is a read or address of operation on a static var
1265 we are interested in analyzing. */
1268 check_rhs_var (tree t
)
1270 look_for_address_of (t
);
1274 /* Check to see if T is an assignment to a static var we are
1275 interested in analyzing. */
1278 check_lhs_var (tree t
)
1283 /* This is a scaled down version of get_asm_expr_operands from
1284 tree_ssa_operands.c. The version there runs much later and assumes
1285 that aliasing information is already available. Here we are just
1286 trying to find if the set of inputs and outputs contain references
1287 or address of operations to local. FN is the function being
1288 analyzed and STMT is the actual asm statement. */
1291 get_asm_expr_operands (tree stmt
)
1293 int noutputs
= list_length (ASM_OUTPUTS (stmt
));
1294 const char **oconstraints
1295 = (const char **) alloca ((noutputs
) * sizeof (const char *));
1298 const char *constraint
;
1299 bool allows_mem
, allows_reg
, is_inout
;
1301 for (i
=0, link
= ASM_OUTPUTS (stmt
); link
; ++i
, link
= TREE_CHAIN (link
))
1303 oconstraints
[i
] = constraint
1304 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
1305 parse_output_constraint (&constraint
, i
, 0, 0,
1306 &allows_mem
, &allows_reg
, &is_inout
);
1308 check_lhs_var (TREE_VALUE (link
));
1311 for (link
= ASM_INPUTS (stmt
); link
; link
= TREE_CHAIN (link
))
1314 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
1315 parse_input_constraint (&constraint
, 0, 0, noutputs
, 0,
1316 oconstraints
, &allows_mem
, &allows_reg
);
1318 check_rhs_var (TREE_VALUE (link
));
1321 /* There is no code here to check for asm memory clobbers. The
1322 casual maintainer might think that such code would be necessary,
1323 but that appears to be wrong. In other parts of the compiler,
1324 the asm memory clobbers are assumed to only clobber variables
1325 that are addressable. All types with addressable instances are
1326 assumed to already escape. So, we are protected here. */
1329 /* Check the parameters of a function call to CALL_EXPR to mark the
1330 types that pass across the function boundary. Also check to see if
1331 this is either an indirect call, a call outside the compilation
1335 check_call (tree call_expr
)
1338 tree callee_t
= get_callee_fndecl (call_expr
);
1339 struct cgraph_node
* callee
;
1340 enum availability avail
= AVAIL_NOT_AVAILABLE
;
1341 call_expr_arg_iterator iter
;
1343 FOR_EACH_CALL_EXPR_ARG (operand
, iter
, call_expr
)
1344 check_rhs_var (operand
);
1349 tree last_arg_type
= NULL
;
1350 callee
= cgraph_node(callee_t
);
1351 avail
= cgraph_function_body_availability (callee
);
1353 /* Check that there are no implicit casts in the passing of
1355 if (TYPE_ARG_TYPES (TREE_TYPE (callee_t
)))
1357 for (arg_type
= TYPE_ARG_TYPES (TREE_TYPE (callee_t
)),
1358 operand
= first_call_expr_arg (call_expr
, &iter
);
1359 arg_type
&& TREE_VALUE (arg_type
) != void_type_node
;
1360 arg_type
= TREE_CHAIN (arg_type
),
1361 operand
= next_call_expr_arg (&iter
))
1365 last_arg_type
= TREE_VALUE(arg_type
);
1366 check_cast (last_arg_type
, operand
);
1369 /* The code reaches here for some unfortunate
1370 builtin functions that do not have a list of
1377 /* FIXME - According to Geoff Keating, we should never
1378 have to do this; the front ends should always process
1379 the arg list from the TYPE_ARG_LIST. */
1380 for (arg_type
= DECL_ARGUMENTS (callee_t
),
1381 operand
= first_call_expr_arg (call_expr
, &iter
);
1383 arg_type
= TREE_CHAIN (arg_type
),
1384 operand
= next_call_expr_arg (&iter
))
1388 last_arg_type
= TREE_TYPE(arg_type
);
1389 check_cast (last_arg_type
, operand
);
1392 /* The code reaches here for some unfortunate
1393 builtin functions that do not have a list of
1399 /* In the case where we have a var_args function, we need to
1400 check the remaining parameters against the last argument. */
1401 arg_type
= last_arg_type
;
1403 operand
!= NULL_TREE
;
1404 operand
= next_call_expr_arg (&iter
))
1407 check_cast (arg_type
, operand
);
1410 /* The code reaches here for some unfortunate
1411 builtin functions that do not have a list of
1412 argument types. Most of these functions have
1413 been marked as having their parameters not
1414 escape, but for the rest, the type is doomed. */
1415 tree type
= get_canon_type (TREE_TYPE (operand
), false, false);
1416 mark_interesting_type (type
, FULL_ESCAPE
);
1421 /* The callee is either unknown (indirect call) or there is just no
1422 scannable code for it (external call) . We look to see if there
1423 are any bits available for the callee (such as by declaration or
1424 because it is builtin) and process solely on the basis of those
1427 if (avail
== AVAIL_NOT_AVAILABLE
|| avail
== AVAIL_OVERWRITABLE
)
1429 /* If this is a direct call to an external function, mark all of
1430 the parameter and return types. */
1431 FOR_EACH_CALL_EXPR_ARG (operand
, iter
, call_expr
)
1433 tree type
= get_canon_type (TREE_TYPE (operand
), false, false);
1434 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1440 get_canon_type (TREE_TYPE (TREE_TYPE (callee_t
)), false, false);
1441 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1446 /* CODE is the operation on OP0 and OP1. OP0 is the operand that we
1447 *know* is a pointer type. OP1 may be a pointer type. */
1449 okay_pointer_operation (enum tree_code code
, tree op0
, tree op1
)
1451 tree op0type
= TYPE_MAIN_VARIANT (TREE_TYPE (op0
));
1452 tree op1type
= TYPE_MAIN_VARIANT (TREE_TYPE (op1
));
1457 /* Multiplication does not change alignment. */
1463 if (POINTER_TYPE_P (op1type
)
1464 && TREE_CODE (op0
) == SSA_NAME
1465 && TREE_CODE (op1
) == SSA_NAME
1466 && is_array_access_through_pointer_and_index (op0
, op1
))
1470 tree size_of_op0_points_to
= TYPE_SIZE_UNIT (TREE_TYPE (op0type
));
1472 if (CONSTANT_CLASS_P (op1
)
1473 && size_of_op0_points_to
1474 && multiple_of_p (TREE_TYPE (size_of_op0_points_to
),
1475 op1
, size_of_op0_points_to
))
1478 if (CONSTANT_CLASS_P (op0
)
1479 && size_of_op0_points_to
1480 && multiple_of_p (TREE_TYPE (size_of_op0_points_to
),
1481 op0
, size_of_op0_points_to
))
1492 /* TP is the part of the tree currently under the microscope.
1493 WALK_SUBTREES is part of the walk_tree api but is unused here.
1494 DATA is cgraph_node of the function being walked. */
1496 /* FIXME: When this is converted to run over SSA form, this code
1497 should be converted to use the operand scanner. */
1500 scan_for_refs (tree
*tp
, int *walk_subtrees
, void *data
)
1502 struct cgraph_node
*fn
= (struct cgraph_node
*) data
;
1505 switch (TREE_CODE (t
))
1508 if (DECL_INITIAL (t
))
1509 walk_tree (&DECL_INITIAL (t
), scan_for_refs
, fn
, visited_nodes
);
1513 case GIMPLE_MODIFY_STMT
:
1515 /* First look on the lhs and see what variable is stored to */
1516 tree lhs
= GIMPLE_STMT_OPERAND (t
, 0);
1517 tree rhs
= GIMPLE_STMT_OPERAND (t
, 1);
1519 check_lhs_var (lhs
);
1520 check_cast (TREE_TYPE (lhs
), rhs
);
1522 /* For the purposes of figuring out what the cast affects */
1524 /* Next check the operands on the rhs to see if they are ok. */
1525 switch (TREE_CODE_CLASS (TREE_CODE (rhs
)))
1529 tree op0
= TREE_OPERAND (rhs
, 0);
1530 tree type0
= get_canon_type (TREE_TYPE (op0
), false, false);
1531 tree op1
= TREE_OPERAND (rhs
, 1);
1532 tree type1
= get_canon_type (TREE_TYPE (op1
), false, false);
1534 /* If this is pointer arithmetic of any bad sort, then
1535 we need to mark the types as bad. For binary
1536 operations, no binary operator we currently support
1537 is always "safe" in regard to what it would do to
1538 pointers for purposes of determining which types
1539 escape, except operations of the size of the type.
1540 It is possible that min and max under the right set
1541 of circumstances and if the moon is in the correct
1542 place could be safe, but it is hard to see how this
1543 is worth the effort. */
1545 if (type0
&& POINTER_TYPE_P (type0
)
1546 && !okay_pointer_operation (TREE_CODE (rhs
), op0
, op1
))
1547 mark_interesting_type (type0
, FULL_ESCAPE
);
1548 if (type1
&& POINTER_TYPE_P (type1
)
1549 && !okay_pointer_operation (TREE_CODE (rhs
), op1
, op0
))
1550 mark_interesting_type (type1
, FULL_ESCAPE
);
1552 look_for_casts (lhs
, op0
);
1553 look_for_casts (lhs
, op1
);
1554 check_rhs_var (op0
);
1555 check_rhs_var (op1
);
1560 tree op0
= TREE_OPERAND (rhs
, 0);
1561 tree type0
= get_canon_type (TREE_TYPE (op0
), false, false);
1562 /* For unary operations, if the operation is NEGATE or
1563 ABS on a pointer, this is also considered pointer
1564 arithmetic and thus, bad for business. */
1565 if (type0
&& (TREE_CODE (op0
) == NEGATE_EXPR
1566 || TREE_CODE (op0
) == ABS_EXPR
)
1567 && POINTER_TYPE_P (type0
))
1569 mark_interesting_type (type0
, FULL_ESCAPE
);
1571 check_rhs_var (op0
);
1572 look_for_casts (lhs
, op0
);
1573 look_for_casts (lhs
, rhs
);
1578 look_for_casts (lhs
, rhs
);
1579 check_rhs_var (rhs
);
1581 case tcc_declaration
:
1582 check_rhs_var (rhs
);
1584 case tcc_expression
:
1585 switch (TREE_CODE (rhs
))
1588 look_for_casts (lhs
, TREE_OPERAND (rhs
, 0));
1589 check_rhs_var (rhs
);
1596 switch (TREE_CODE (rhs
))
1599 /* If this is a call to malloc, squirrel away the
1600 result so we do mark the resulting cast as being
1616 /* This case is here to find addresses on rhs of constructors in
1617 decl_initial of static variables. */
1628 get_asm_expr_operands (t
);
1639 /* The init routine for analyzing global static variable usage. See
1640 comments at top for description. */
1644 bitmap_obstack_initialize (&ipa_obstack
);
1645 global_types_exposed_parameter
= BITMAP_ALLOC (&ipa_obstack
);
1646 global_types_full_escape
= BITMAP_ALLOC (&ipa_obstack
);
1647 global_types_seen
= BITMAP_ALLOC (&ipa_obstack
);
1649 uid_to_canon_type
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1650 all_canon_types
= splay_tree_new (compare_type_brand
, 0, 0);
1651 type_to_canon_type
= splay_tree_new (splay_tree_compare_pointers
, 0, 0);
1652 uid_to_subtype_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1653 uid_to_addressof_down_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1654 uid_to_addressof_up_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1656 /* There are some shared nodes, in particular the initializers on
1657 static declarations. We do not need to scan them more than once
1658 since all we would be interested in are the addressof
1660 visited_nodes
= pointer_set_create ();
1664 /* Check out the rhs of a static or global initialization VNODE to see
1665 if any of them contain addressof operations. Note that some of
1666 these variables may not even be referenced in the code in this
1667 compilation unit but their right hand sides may contain references
1668 to variables defined within this unit. */
1671 analyze_variable (struct varpool_node
*vnode
)
1673 tree global
= vnode
->decl
;
1674 tree type
= get_canon_type (TREE_TYPE (global
), false, false);
1676 /* If this variable has exposure beyond the compilation unit, add
1677 its type to the global types. */
1679 if (vnode
->externally_visible
)
1680 mark_interesting_type (type
, FULL_ESCAPE
);
1682 gcc_assert (TREE_CODE (global
) == VAR_DECL
);
1684 if (DECL_INITIAL (global
))
1685 walk_tree (&DECL_INITIAL (global
), scan_for_refs
, NULL
, visited_nodes
);
1688 /* This is the main routine for finding the reference patterns for
1689 global variables within a function FN. */
1692 analyze_function (struct cgraph_node
*fn
)
1694 tree decl
= fn
->decl
;
1695 check_function_parameter_and_return_types (decl
,
1696 fn
->local
.externally_visible
);
1698 fprintf (dump_file
, "\n local analysis of %s", cgraph_node_name (fn
));
1701 struct function
*this_cfun
= DECL_STRUCT_FUNCTION (decl
);
1702 basic_block this_block
;
1704 FOR_EACH_BB_FN (this_block
, this_cfun
)
1706 block_stmt_iterator bsi
;
1707 for (bsi
= bsi_start (this_block
); !bsi_end_p (bsi
); bsi_next (&bsi
))
1708 walk_tree (bsi_stmt_ptr (bsi
), scan_for_refs
,
1713 /* There may be const decls with interesting right hand sides. */
1714 if (DECL_STRUCT_FUNCTION (decl
))
1717 for (step
= DECL_STRUCT_FUNCTION (decl
)->unexpanded_var_list
;
1719 step
= TREE_CHAIN (step
))
1721 tree var
= TREE_VALUE (step
);
1722 if (TREE_CODE (var
) == VAR_DECL
1723 && DECL_INITIAL (var
)
1724 && !TREE_STATIC (var
))
1725 walk_tree (&DECL_INITIAL (var
), scan_for_refs
,
1727 get_canon_type (TREE_TYPE (var
), false, false);
1734 /* Convert a type_UID into a type. */
1736 type_for_uid (int uid
)
1738 splay_tree_node result
=
1739 splay_tree_lookup (uid_to_canon_type
, (splay_tree_key
) uid
);
1742 return (tree
) result
->value
;
1746 /* Return the a bitmap with the subtypes of the type for UID. If it
1747 does not exist, return either NULL or a new bitmap depending on the
1751 subtype_map_for_uid (int uid
, bool create
)
1753 splay_tree_node result
= splay_tree_lookup (uid_to_subtype_map
,
1754 (splay_tree_key
) uid
);
1757 return (bitmap
) result
->value
;
1760 bitmap subtype_map
= BITMAP_ALLOC (&ipa_obstack
);
1761 splay_tree_insert (uid_to_subtype_map
,
1763 (splay_tree_value
)subtype_map
);
1769 /* Mark all of the supertypes and field types of TYPE as being seen.
1770 Also accumulate the subtypes for each type so that
1771 close_types_full_escape can mark a subtype as escaping if the
1772 supertype escapes. */
1775 close_type_seen (tree type
)
1779 tree binfo
, base_binfo
;
1781 /* See thru all pointer tos and array ofs. */
1782 type
= get_canon_type (type
, true, true);
1786 uid
= TYPE_UID (type
);
1788 if (bitmap_bit_p (been_there_done_that
, uid
))
1790 bitmap_set_bit (been_there_done_that
, uid
);
1792 /* If we are doing a language with a type hierarchy, mark all of
1793 the superclasses. */
1794 if (TYPE_BINFO (type
))
1795 for (binfo
= TYPE_BINFO (type
), i
= 0;
1796 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1798 tree binfo_type
= BINFO_TYPE (base_binfo
);
1799 bitmap subtype_map
= subtype_map_for_uid
1800 (TYPE_UID (TYPE_MAIN_VARIANT (binfo_type
)), true);
1801 bitmap_set_bit (subtype_map
, uid
);
1802 close_type_seen (get_canon_type (binfo_type
, true, true));
1805 /* If the field is a struct or union type, mark all of the
1807 for (field
= TYPE_FIELDS (type
);
1809 field
= TREE_CHAIN (field
))
1812 if (TREE_CODE (field
) != FIELD_DECL
)
1815 field_type
= TREE_TYPE (field
);
1816 if (ipa_type_escape_star_count_of_interesting_or_array_type (field_type
) >= 0)
1817 close_type_seen (get_canon_type (field_type
, true, true));
1821 /* Take a TYPE that has been passed by value to an external function
1822 and mark all of the fields that have pointer types as escaping. For
1823 any of the non pointer types that are structures or unions,
1824 recurse. TYPE is never a pointer type. */
1827 close_type_exposed_parameter (tree type
)
1832 type
= get_canon_type (type
, false, false);
1835 uid
= TYPE_UID (type
);
1836 gcc_assert (!POINTER_TYPE_P (type
));
1838 if (bitmap_bit_p (been_there_done_that
, uid
))
1840 bitmap_set_bit (been_there_done_that
, uid
);
1842 /* If the field is a struct or union type, mark all of the
1844 for (field
= TYPE_FIELDS (type
);
1846 field
= TREE_CHAIN (field
))
1850 if (TREE_CODE (field
) != FIELD_DECL
)
1853 field_type
= get_canon_type (TREE_TYPE (field
), false, false);
1854 mark_interesting_type (field_type
, EXPOSED_PARAMETER
);
1856 /* Only recurse for non pointer types of structures and unions. */
1857 if (ipa_type_escape_star_count_of_interesting_type (field_type
) == 0)
1858 close_type_exposed_parameter (field_type
);
1862 /* The next function handles the case where a type fully escapes.
1863 This means that not only does the type itself escape,
1865 a) the type of every field recursively escapes
1866 b) the type of every subtype escapes as well as the super as well
1867 as all of the pointer to types for each field.
1869 Note that pointer to types are not marked as escaping. If the
1870 pointed to type escapes, the pointer to type also escapes.
1872 Take a TYPE that has had the address taken for an instance of it
1873 and mark all of the types for its fields as having their addresses
1877 close_type_full_escape (tree type
)
1882 tree binfo
, base_binfo
;
1885 splay_tree_node address_result
;
1887 /* Strip off any pointer or array types. */
1888 type
= get_canon_type (type
, true, true);
1891 uid
= TYPE_UID (type
);
1893 if (bitmap_bit_p (been_there_done_that
, uid
))
1895 bitmap_set_bit (been_there_done_that
, uid
);
1897 subtype_map
= subtype_map_for_uid (uid
, false);
1899 /* If we are doing a language with a type hierarchy, mark all of
1900 the superclasses. */
1901 if (TYPE_BINFO (type
))
1902 for (binfo
= TYPE_BINFO (type
), i
= 0;
1903 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1905 tree binfotype
= BINFO_TYPE (base_binfo
);
1906 binfotype
= mark_type (binfotype
, FULL_ESCAPE
);
1907 close_type_full_escape (binfotype
);
1910 /* Mark as escaped any types that have been down casted to
1913 EXECUTE_IF_SET_IN_BITMAP (subtype_map
, 0, i
, bi
)
1915 tree subtype
= type_for_uid (i
);
1916 subtype
= mark_type (subtype
, FULL_ESCAPE
);
1917 close_type_full_escape (subtype
);
1920 /* If the field is a struct or union type, mark all of the
1922 for (field
= TYPE_FIELDS (type
);
1924 field
= TREE_CHAIN (field
))
1927 if (TREE_CODE (field
) != FIELD_DECL
)
1930 field_type
= TREE_TYPE (field
);
1931 if (ipa_type_escape_star_count_of_interesting_or_array_type (field_type
) >= 0)
1933 field_type
= mark_type (field_type
, FULL_ESCAPE
);
1934 close_type_full_escape (field_type
);
1938 /* For all of the types A that contain this type B and were part of
1939 an expression like "&...A.B...", mark the A's as escaping. */
1940 address_result
= splay_tree_lookup (uid_to_addressof_up_map
,
1941 (splay_tree_key
) uid
);
1944 bitmap containing_classes
= (bitmap
) address_result
->value
;
1945 EXECUTE_IF_SET_IN_BITMAP (containing_classes
, 0, i
, bi
)
1947 close_type_full_escape (type_for_uid (i
));
1952 /* Transitively close the addressof bitmap for the type with UID.
1953 This means that if we had a.b and b.c, a would have both b and c in
1957 close_addressof_down (int uid
)
1960 splay_tree_node result
=
1961 splay_tree_lookup (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
1967 map
= (bitmap
) result
->value
;
1971 if (bitmap_bit_p (been_there_done_that
, uid
))
1973 bitmap_set_bit (been_there_done_that
, uid
);
1975 /* If the type escapes, get rid of the addressof map, it will not be
1977 if (bitmap_bit_p (global_types_full_escape
, uid
))
1980 splay_tree_remove (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
1984 /* The new_map will have all of the bits for the enclosed fields and
1985 will have the unique id version of the old map. */
1986 new_map
= BITMAP_ALLOC (&ipa_obstack
);
1988 EXECUTE_IF_SET_IN_BITMAP (map
, 0, i
, bi
)
1990 bitmap submap
= close_addressof_down (i
);
1991 bitmap_set_bit (new_map
, i
);
1993 bitmap_ior_into (new_map
, submap
);
1995 result
->value
= (splay_tree_value
) new_map
;
2002 /* The main entry point for type escape analysis. */
2005 type_escape_execute (void)
2007 struct cgraph_node
*node
;
2008 struct varpool_node
*vnode
;
2011 splay_tree_node result
;
2015 /* Process all of the variables first. */
2016 FOR_EACH_STATIC_VARIABLE (vnode
)
2017 analyze_variable (vnode
);
2019 /* Process all of the functions. next
2021 We do not want to process any of the clones so we check that this
2022 is a master clone. However, we do need to process any
2023 AVAIL_OVERWRITABLE functions (these are never clones) because
2024 they may cause a type variable to escape.
2026 for (node
= cgraph_nodes
; node
; node
= node
->next
)
2028 && (cgraph_is_master_clone (node
)
2029 || (cgraph_function_body_availability (node
) == AVAIL_OVERWRITABLE
)))
2030 analyze_function (node
);
2033 pointer_set_destroy (visited_nodes
);
2034 visited_nodes
= NULL
;
2036 /* Do all of the closures to discover which types escape the
2037 compilation unit. */
2039 been_there_done_that
= BITMAP_ALLOC (&ipa_obstack
);
2040 bitmap_tmp
= BITMAP_ALLOC (&ipa_obstack
);
2042 /* Examine the types that we have directly seen in scanning the code
2043 and add to that any contained types or superclasses. */
2045 bitmap_copy (bitmap_tmp
, global_types_seen
);
2046 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
2048 tree type
= type_for_uid (i
);
2049 /* Only look at records and unions and pointer tos. */
2050 if (ipa_type_escape_star_count_of_interesting_or_array_type (type
) >= 0)
2051 close_type_seen (type
);
2053 bitmap_clear (been_there_done_that
);
2055 /* Examine all of the types passed by value and mark any enclosed
2056 pointer types as escaping. */
2057 bitmap_copy (bitmap_tmp
, global_types_exposed_parameter
);
2058 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
2060 close_type_exposed_parameter (type_for_uid (i
));
2062 bitmap_clear (been_there_done_that
);
2064 /* Close the types for escape. If something escapes, then any
2065 enclosed types escape as well as any subtypes. */
2066 bitmap_copy (bitmap_tmp
, global_types_full_escape
);
2067 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
2069 close_type_full_escape (type_for_uid (i
));
2071 bitmap_clear (been_there_done_that
);
2073 /* Before this pass, the uid_to_addressof_down_map for type X
2074 contained an entry for Y if there had been an operation of the
2075 form &X.Y. This step adds all of the fields contained within Y
2076 (recursively) to X's map. */
2078 result
= splay_tree_min (uid_to_addressof_down_map
);
2081 int uid
= result
->key
;
2082 /* Close the addressof map, i.e. copy all of the transitive
2083 substructures up to this level. */
2084 close_addressof_down (uid
);
2085 result
= splay_tree_successor (uid_to_addressof_down_map
, uid
);
2088 /* Do not need the array types and pointer types in the persistent
2090 result
= splay_tree_min (all_canon_types
);
2093 tree type
= (tree
) result
->value
;
2094 tree key
= (tree
) result
->key
;
2095 if (POINTER_TYPE_P (type
)
2096 || TREE_CODE (type
) == ARRAY_TYPE
)
2098 splay_tree_remove (all_canon_types
, (splay_tree_key
) result
->key
);
2099 splay_tree_remove (type_to_canon_type
, (splay_tree_key
) type
);
2100 splay_tree_remove (uid_to_canon_type
, (splay_tree_key
) TYPE_UID (type
));
2101 bitmap_clear_bit (global_types_seen
, TYPE_UID (type
));
2103 result
= splay_tree_successor (all_canon_types
, (splay_tree_key
) key
);
2108 EXECUTE_IF_SET_IN_BITMAP (global_types_seen
, 0, i
, bi
)
2110 /* The pointer types are in the global_types_full_escape
2111 bitmap but not in the backwards map. They also contain
2112 no useful information since they are not marked. */
2113 tree type
= type_for_uid (i
);
2114 fprintf(dump_file
, "type %d ", i
);
2115 print_generic_expr (dump_file
, type
, 0);
2116 if (bitmap_bit_p (global_types_full_escape
, i
))
2117 fprintf(dump_file
, " escaped\n");
2119 fprintf(dump_file
, " contained\n");
2123 /* Get rid of uid_to_addressof_up_map and its bitmaps. */
2124 result
= splay_tree_min (uid_to_addressof_up_map
);
2127 int uid
= (int)result
->key
;
2128 bitmap bm
= (bitmap
)result
->value
;
2131 splay_tree_remove (uid_to_addressof_up_map
, (splay_tree_key
) uid
);
2132 result
= splay_tree_successor (uid_to_addressof_up_map
, uid
);
2135 /* Get rid of the subtype map. */
2136 result
= splay_tree_min (uid_to_subtype_map
);
2139 bitmap b
= (bitmap
)result
->value
;
2141 splay_tree_remove (uid_to_subtype_map
, result
->key
);
2142 result
= splay_tree_min (uid_to_subtype_map
);
2144 splay_tree_delete (uid_to_subtype_map
);
2145 uid_to_subtype_map
= NULL
;
2147 BITMAP_FREE (global_types_exposed_parameter
);
2148 BITMAP_FREE (been_there_done_that
);
2149 BITMAP_FREE (bitmap_tmp
);
2154 gate_type_escape_vars (void)
2156 return (flag_unit_at_a_time
!= 0 && flag_ipa_type_escape
2157 /* Don't bother doing anything if the program has errors. */
2158 && !(errorcount
|| sorrycount
));
2161 struct tree_opt_pass pass_ipa_type_escape
=
2163 "type-escape-var", /* name */
2164 gate_type_escape_vars
, /* gate */
2165 type_escape_execute
, /* execute */
2168 0, /* static_pass_number */
2169 TV_IPA_TYPE_ESCAPE
, /* tv_id */
2170 0, /* properties_required */
2171 0, /* properties_provided */
2172 0, /* properties_destroyed */
2173 0, /* todo_flags_start */
2174 0, /* todo_flags_finish */