PR c++/33620
[official-gcc.git] / gcc / alias.c
blob6bf67f3574ff332066c1cb1b505feb725c3e4680
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "varray.h"
46 #include "tree-pass.h"
47 #include "ipa-type-escape.h"
48 #include "df.h"
50 /* The aliasing API provided here solves related but different problems:
52 Say there exists (in c)
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
59 struct Y y2, *py;
60 struct Z z2, *pz;
63 py = &px1.y1;
64 px2 = &x1;
66 Consider the four questions:
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
74 The answer to these questions can be yes, yes, yes, and maybe.
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
78 a store thru a pointer to an X can overwrite any field that is
79 contained (recursively) in an X (unless we know that px1 != px2).
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
89 The pass ipa-type-escape does this analysis for the types whose
90 instances do not escape across the compilation boundary.
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
101 /* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
106 struct S { int i; double d; };
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
112 struct S
115 |/_ _\|
116 int double
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
124 past immediate descendants, however, since we propagate all
125 grandchildren up one level.
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
131 struct alias_set_entry GTY(())
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 alias_set_type alias_set;
136 /* The children of the alias set. These are not just the immediate
137 children, but, in fact, all descendants. So, if we have:
139 struct T { struct S s; float f; }
141 continuing our example above, the children here will be all of
142 `int', `double', `float', and `struct S'. */
143 splay_tree GTY((param1_is (int), param2_is (int))) children;
145 /* Nonzero if would have a child of zero: this effectively makes this
146 alias set the same as alias set zero. */
147 int has_zero_child;
149 typedef struct alias_set_entry *alias_set_entry;
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static tree find_base_decl (tree);
160 static alias_set_entry get_alias_set_entry (alias_set_type);
161 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
162 bool (*) (const_rtx, bool));
163 static int aliases_everything_p (const_rtx);
164 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
165 static tree decl_for_component_ref (tree);
166 static rtx adjust_offset_for_component_ref (tree, rtx);
167 static int nonoverlapping_memrefs_p (const_rtx, const_rtx);
168 static int write_dependence_p (const_rtx, const_rtx, int);
170 static void memory_modified_1 (rtx, const_rtx, void *);
171 static void record_alias_subset (alias_set_type, alias_set_type);
173 /* Set up all info needed to perform alias analysis on memory references. */
175 /* Returns the size in bytes of the mode of X. */
176 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
178 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
179 different alias sets. We ignore alias sets in functions making use
180 of variable arguments because the va_arg macros on some systems are
181 not legal ANSI C. */
182 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
183 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
185 /* Cap the number of passes we make over the insns propagating alias
186 information through set chains. 10 is a completely arbitrary choice. */
187 #define MAX_ALIAS_LOOP_PASSES 10
189 /* reg_base_value[N] gives an address to which register N is related.
190 If all sets after the first add or subtract to the current value
191 or otherwise modify it so it does not point to a different top level
192 object, reg_base_value[N] is equal to the address part of the source
193 of the first set.
195 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
196 expressions represent certain special values: function arguments and
197 the stack, frame, and argument pointers.
199 The contents of an ADDRESS is not normally used, the mode of the
200 ADDRESS determines whether the ADDRESS is a function argument or some
201 other special value. Pointer equality, not rtx_equal_p, determines whether
202 two ADDRESS expressions refer to the same base address.
204 The only use of the contents of an ADDRESS is for determining if the
205 current function performs nonlocal memory memory references for the
206 purposes of marking the function as a constant function. */
208 static GTY(()) VEC(rtx,gc) *reg_base_value;
209 static rtx *new_reg_base_value;
211 /* We preserve the copy of old array around to avoid amount of garbage
212 produced. About 8% of garbage produced were attributed to this
213 array. */
214 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
216 /* Static hunks of RTL used by the aliasing code; these are initialized
217 once per function to avoid unnecessary RTL allocations. */
218 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
220 #define REG_BASE_VALUE(X) \
221 (REGNO (X) < VEC_length (rtx, reg_base_value) \
222 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
224 /* Vector indexed by N giving the initial (unchanging) value known for
225 pseudo-register N. This array is initialized in init_alias_analysis,
226 and does not change until end_alias_analysis is called. */
227 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
229 /* Indicates number of valid entries in reg_known_value. */
230 static GTY(()) unsigned int reg_known_value_size;
232 /* Vector recording for each reg_known_value whether it is due to a
233 REG_EQUIV note. Future passes (viz., reload) may replace the
234 pseudo with the equivalent expression and so we account for the
235 dependences that would be introduced if that happens.
237 The REG_EQUIV notes created in assign_parms may mention the arg
238 pointer, and there are explicit insns in the RTL that modify the
239 arg pointer. Thus we must ensure that such insns don't get
240 scheduled across each other because that would invalidate the
241 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
242 wrong, but solving the problem in the scheduler will likely give
243 better code, so we do it here. */
244 static bool *reg_known_equiv_p;
246 /* True when scanning insns from the start of the rtl to the
247 NOTE_INSN_FUNCTION_BEG note. */
248 static bool copying_arguments;
250 DEF_VEC_P(alias_set_entry);
251 DEF_VEC_ALLOC_P(alias_set_entry,gc);
253 /* The splay-tree used to store the various alias set entries. */
254 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
256 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
257 such an entry, or NULL otherwise. */
259 static inline alias_set_entry
260 get_alias_set_entry (alias_set_type alias_set)
262 return VEC_index (alias_set_entry, alias_sets, alias_set);
265 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
266 the two MEMs cannot alias each other. */
268 static inline int
269 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
271 /* Perform a basic sanity check. Namely, that there are no alias sets
272 if we're not using strict aliasing. This helps to catch bugs
273 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
274 where a MEM is allocated in some way other than by the use of
275 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
276 use alias sets to indicate that spilled registers cannot alias each
277 other, we might need to remove this check. */
278 gcc_assert (flag_strict_aliasing
279 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
281 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
284 /* Insert the NODE into the splay tree given by DATA. Used by
285 record_alias_subset via splay_tree_foreach. */
287 static int
288 insert_subset_children (splay_tree_node node, void *data)
290 splay_tree_insert ((splay_tree) data, node->key, node->value);
292 return 0;
295 /* Return true if the first alias set is a subset of the second. */
297 bool
298 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
300 alias_set_entry ase;
302 /* Everything is a subset of the "aliases everything" set. */
303 if (set2 == 0)
304 return true;
306 /* Otherwise, check if set1 is a subset of set2. */
307 ase = get_alias_set_entry (set2);
308 if (ase != 0
309 && (splay_tree_lookup (ase->children,
310 (splay_tree_key) set1)))
311 return true;
312 return false;
315 /* Return 1 if the two specified alias sets may conflict. */
318 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
320 alias_set_entry ase;
322 /* The easy case. */
323 if (alias_sets_must_conflict_p (set1, set2))
324 return 1;
326 /* See if the first alias set is a subset of the second. */
327 ase = get_alias_set_entry (set1);
328 if (ase != 0
329 && (ase->has_zero_child
330 || splay_tree_lookup (ase->children,
331 (splay_tree_key) set2)))
332 return 1;
334 /* Now do the same, but with the alias sets reversed. */
335 ase = get_alias_set_entry (set2);
336 if (ase != 0
337 && (ase->has_zero_child
338 || splay_tree_lookup (ase->children,
339 (splay_tree_key) set1)))
340 return 1;
342 /* The two alias sets are distinct and neither one is the
343 child of the other. Therefore, they cannot conflict. */
344 return 0;
347 /* Return 1 if the two specified alias sets will always conflict. */
350 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
352 if (set1 == 0 || set2 == 0 || set1 == set2)
353 return 1;
355 return 0;
358 /* Return 1 if any MEM object of type T1 will always conflict (using the
359 dependency routines in this file) with any MEM object of type T2.
360 This is used when allocating temporary storage. If T1 and/or T2 are
361 NULL_TREE, it means we know nothing about the storage. */
364 objects_must_conflict_p (tree t1, tree t2)
366 alias_set_type set1, set2;
368 /* If neither has a type specified, we don't know if they'll conflict
369 because we may be using them to store objects of various types, for
370 example the argument and local variables areas of inlined functions. */
371 if (t1 == 0 && t2 == 0)
372 return 0;
374 /* If they are the same type, they must conflict. */
375 if (t1 == t2
376 /* Likewise if both are volatile. */
377 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
378 return 1;
380 set1 = t1 ? get_alias_set (t1) : 0;
381 set2 = t2 ? get_alias_set (t2) : 0;
383 /* We can't use alias_sets_conflict_p because we must make sure
384 that every subtype of t1 will conflict with every subtype of
385 t2 for which a pair of subobjects of these respective subtypes
386 overlaps on the stack. */
387 return alias_sets_must_conflict_p (set1, set2);
390 /* T is an expression with pointer type. Find the DECL on which this
391 expression is based. (For example, in `a[i]' this would be `a'.)
392 If there is no such DECL, or a unique decl cannot be determined,
393 NULL_TREE is returned. */
395 static tree
396 find_base_decl (tree t)
398 tree d0, d1;
400 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
401 return 0;
403 /* If this is a declaration, return it. If T is based on a restrict
404 qualified decl, return that decl. */
405 if (DECL_P (t))
407 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
408 t = DECL_GET_RESTRICT_BASE (t);
409 return t;
412 /* Handle general expressions. It would be nice to deal with
413 COMPONENT_REFs here. If we could tell that `a' and `b' were the
414 same, then `a->f' and `b->f' are also the same. */
415 switch (TREE_CODE_CLASS (TREE_CODE (t)))
417 case tcc_unary:
418 return find_base_decl (TREE_OPERAND (t, 0));
420 case tcc_binary:
421 /* Return 0 if found in neither or both are the same. */
422 d0 = find_base_decl (TREE_OPERAND (t, 0));
423 d1 = find_base_decl (TREE_OPERAND (t, 1));
424 if (d0 == d1)
425 return d0;
426 else if (d0 == 0)
427 return d1;
428 else if (d1 == 0)
429 return d0;
430 else
431 return 0;
433 default:
434 return 0;
438 /* Return true if all nested component references handled by
439 get_inner_reference in T are such that we should use the alias set
440 provided by the object at the heart of T.
442 This is true for non-addressable components (which don't have their
443 own alias set), as well as components of objects in alias set zero.
444 This later point is a special case wherein we wish to override the
445 alias set used by the component, but we don't have per-FIELD_DECL
446 assignable alias sets. */
448 bool
449 component_uses_parent_alias_set (const_tree t)
451 while (1)
453 /* If we're at the end, it vacuously uses its own alias set. */
454 if (!handled_component_p (t))
455 return false;
457 switch (TREE_CODE (t))
459 case COMPONENT_REF:
460 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
461 return true;
462 break;
464 case ARRAY_REF:
465 case ARRAY_RANGE_REF:
466 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
467 return true;
468 break;
470 case REALPART_EXPR:
471 case IMAGPART_EXPR:
472 break;
474 default:
475 /* Bitfields and casts are never addressable. */
476 return true;
479 t = TREE_OPERAND (t, 0);
480 if (get_alias_set (TREE_TYPE (t)) == 0)
481 return true;
485 /* Return the alias set for T, which may be either a type or an
486 expression. Call language-specific routine for help, if needed. */
488 alias_set_type
489 get_alias_set (tree t)
491 alias_set_type set;
493 /* If we're not doing any alias analysis, just assume everything
494 aliases everything else. Also return 0 if this or its type is
495 an error. */
496 if (! flag_strict_aliasing || t == error_mark_node
497 || (! TYPE_P (t)
498 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
499 return 0;
501 /* We can be passed either an expression or a type. This and the
502 language-specific routine may make mutually-recursive calls to each other
503 to figure out what to do. At each juncture, we see if this is a tree
504 that the language may need to handle specially. First handle things that
505 aren't types. */
506 if (! TYPE_P (t))
508 tree inner = t;
510 /* Remove any nops, then give the language a chance to do
511 something with this tree before we look at it. */
512 STRIP_NOPS (t);
513 set = lang_hooks.get_alias_set (t);
514 if (set != -1)
515 return set;
517 /* First see if the actual object referenced is an INDIRECT_REF from a
518 restrict-qualified pointer or a "void *". */
519 while (handled_component_p (inner))
521 inner = TREE_OPERAND (inner, 0);
522 STRIP_NOPS (inner);
525 /* Check for accesses through restrict-qualified pointers. */
526 if (INDIRECT_REF_P (inner))
528 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
530 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
532 /* If we haven't computed the actual alias set, do it now. */
533 if (DECL_POINTER_ALIAS_SET (decl) == -2)
535 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
537 /* No two restricted pointers can point at the same thing.
538 However, a restricted pointer can point at the same thing
539 as an unrestricted pointer, if that unrestricted pointer
540 is based on the restricted pointer. So, we make the
541 alias set for the restricted pointer a subset of the
542 alias set for the type pointed to by the type of the
543 decl. */
544 alias_set_type pointed_to_alias_set
545 = get_alias_set (pointed_to_type);
547 if (pointed_to_alias_set == 0)
548 /* It's not legal to make a subset of alias set zero. */
549 DECL_POINTER_ALIAS_SET (decl) = 0;
550 else if (AGGREGATE_TYPE_P (pointed_to_type))
551 /* For an aggregate, we must treat the restricted
552 pointer the same as an ordinary pointer. If we
553 were to make the type pointed to by the
554 restricted pointer a subset of the pointed-to
555 type, then we would believe that other subsets
556 of the pointed-to type (such as fields of that
557 type) do not conflict with the type pointed to
558 by the restricted pointer. */
559 DECL_POINTER_ALIAS_SET (decl)
560 = pointed_to_alias_set;
561 else
563 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
564 record_alias_subset (pointed_to_alias_set,
565 DECL_POINTER_ALIAS_SET (decl));
569 /* We use the alias set indicated in the declaration. */
570 return DECL_POINTER_ALIAS_SET (decl);
573 /* If we have an INDIRECT_REF via a void pointer, we don't
574 know anything about what that might alias. Likewise if the
575 pointer is marked that way. */
576 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
577 || (TYPE_REF_CAN_ALIAS_ALL
578 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
579 return 0;
582 /* For non-addressable fields we return the alias set of the
583 outermost object that could have its address taken. If this
584 is an SFT use the precomputed value. */
585 if (TREE_CODE (t) == STRUCT_FIELD_TAG
586 && SFT_NONADDRESSABLE_P (t))
587 return SFT_ALIAS_SET (t);
589 /* Otherwise, pick up the outermost object that we could have a pointer
590 to, processing conversions as above. */
591 while (component_uses_parent_alias_set (t))
593 t = TREE_OPERAND (t, 0);
594 STRIP_NOPS (t);
597 /* If we've already determined the alias set for a decl, just return
598 it. This is necessary for C++ anonymous unions, whose component
599 variables don't look like union members (boo!). */
600 if (TREE_CODE (t) == VAR_DECL
601 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
602 return MEM_ALIAS_SET (DECL_RTL (t));
604 /* Now all we care about is the type. */
605 t = TREE_TYPE (t);
608 /* Variant qualifiers don't affect the alias set, so get the main
609 variant. If this is a type with a known alias set, return it. */
610 t = TYPE_MAIN_VARIANT (t);
611 if (TYPE_ALIAS_SET_KNOWN_P (t))
612 return TYPE_ALIAS_SET (t);
614 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
615 if (!COMPLETE_TYPE_P (t))
617 /* For arrays with unknown size the conservative answer is the
618 alias set of the element type. */
619 if (TREE_CODE (t) == ARRAY_TYPE)
620 return get_alias_set (TREE_TYPE (t));
622 /* But return zero as a conservative answer for incomplete types. */
623 return 0;
626 /* See if the language has special handling for this type. */
627 set = lang_hooks.get_alias_set (t);
628 if (set != -1)
629 return set;
631 /* There are no objects of FUNCTION_TYPE, so there's no point in
632 using up an alias set for them. (There are, of course, pointers
633 and references to functions, but that's different.) */
634 else if (TREE_CODE (t) == FUNCTION_TYPE
635 || TREE_CODE (t) == METHOD_TYPE)
636 set = 0;
638 /* Unless the language specifies otherwise, let vector types alias
639 their components. This avoids some nasty type punning issues in
640 normal usage. And indeed lets vectors be treated more like an
641 array slice. */
642 else if (TREE_CODE (t) == VECTOR_TYPE)
643 set = get_alias_set (TREE_TYPE (t));
645 else
646 /* Otherwise make a new alias set for this type. */
647 set = new_alias_set ();
649 TYPE_ALIAS_SET (t) = set;
651 /* If this is an aggregate type, we must record any component aliasing
652 information. */
653 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
654 record_component_aliases (t);
656 return set;
659 /* Return a brand-new alias set. */
661 alias_set_type
662 new_alias_set (void)
664 if (flag_strict_aliasing)
666 if (alias_sets == 0)
667 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
668 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
669 return VEC_length (alias_set_entry, alias_sets) - 1;
671 else
672 return 0;
675 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
676 not everything that aliases SUPERSET also aliases SUBSET. For example,
677 in C, a store to an `int' can alias a load of a structure containing an
678 `int', and vice versa. But it can't alias a load of a 'double' member
679 of the same structure. Here, the structure would be the SUPERSET and
680 `int' the SUBSET. This relationship is also described in the comment at
681 the beginning of this file.
683 This function should be called only once per SUPERSET/SUBSET pair.
685 It is illegal for SUPERSET to be zero; everything is implicitly a
686 subset of alias set zero. */
688 static void
689 record_alias_subset (alias_set_type superset, alias_set_type subset)
691 alias_set_entry superset_entry;
692 alias_set_entry subset_entry;
694 /* It is possible in complex type situations for both sets to be the same,
695 in which case we can ignore this operation. */
696 if (superset == subset)
697 return;
699 gcc_assert (superset);
701 superset_entry = get_alias_set_entry (superset);
702 if (superset_entry == 0)
704 /* Create an entry for the SUPERSET, so that we have a place to
705 attach the SUBSET. */
706 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
707 superset_entry->alias_set = superset;
708 superset_entry->children
709 = splay_tree_new_ggc (splay_tree_compare_ints);
710 superset_entry->has_zero_child = 0;
711 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
714 if (subset == 0)
715 superset_entry->has_zero_child = 1;
716 else
718 subset_entry = get_alias_set_entry (subset);
719 /* If there is an entry for the subset, enter all of its children
720 (if they are not already present) as children of the SUPERSET. */
721 if (subset_entry)
723 if (subset_entry->has_zero_child)
724 superset_entry->has_zero_child = 1;
726 splay_tree_foreach (subset_entry->children, insert_subset_children,
727 superset_entry->children);
730 /* Enter the SUBSET itself as a child of the SUPERSET. */
731 splay_tree_insert (superset_entry->children,
732 (splay_tree_key) subset, 0);
736 /* Record that component types of TYPE, if any, are part of that type for
737 aliasing purposes. For record types, we only record component types
738 for fields that are marked addressable. For array types, we always
739 record the component types, so the front end should not call this
740 function if the individual component aren't addressable. */
742 void
743 record_component_aliases (tree type)
745 alias_set_type superset = get_alias_set (type);
746 tree field;
748 if (superset == 0)
749 return;
751 switch (TREE_CODE (type))
753 case ARRAY_TYPE:
754 if (! TYPE_NONALIASED_COMPONENT (type))
755 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
756 break;
758 case RECORD_TYPE:
759 case UNION_TYPE:
760 case QUAL_UNION_TYPE:
761 /* Recursively record aliases for the base classes, if there are any. */
762 if (TYPE_BINFO (type))
764 int i;
765 tree binfo, base_binfo;
767 for (binfo = TYPE_BINFO (type), i = 0;
768 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
769 record_alias_subset (superset,
770 get_alias_set (BINFO_TYPE (base_binfo)));
772 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
773 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
774 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
775 break;
777 case COMPLEX_TYPE:
778 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
779 break;
781 default:
782 break;
786 /* Allocate an alias set for use in storing and reading from the varargs
787 spill area. */
789 static GTY(()) alias_set_type varargs_set = -1;
791 alias_set_type
792 get_varargs_alias_set (void)
794 #if 1
795 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
796 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
797 consistently use the varargs alias set for loads from the varargs
798 area. So don't use it anywhere. */
799 return 0;
800 #else
801 if (varargs_set == -1)
802 varargs_set = new_alias_set ();
804 return varargs_set;
805 #endif
808 /* Likewise, but used for the fixed portions of the frame, e.g., register
809 save areas. */
811 static GTY(()) alias_set_type frame_set = -1;
813 alias_set_type
814 get_frame_alias_set (void)
816 if (frame_set == -1)
817 frame_set = new_alias_set ();
819 return frame_set;
822 /* Inside SRC, the source of a SET, find a base address. */
824 static rtx
825 find_base_value (rtx src)
827 unsigned int regno;
829 switch (GET_CODE (src))
831 case SYMBOL_REF:
832 case LABEL_REF:
833 return src;
835 case REG:
836 regno = REGNO (src);
837 /* At the start of a function, argument registers have known base
838 values which may be lost later. Returning an ADDRESS
839 expression here allows optimization based on argument values
840 even when the argument registers are used for other purposes. */
841 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
842 return new_reg_base_value[regno];
844 /* If a pseudo has a known base value, return it. Do not do this
845 for non-fixed hard regs since it can result in a circular
846 dependency chain for registers which have values at function entry.
848 The test above is not sufficient because the scheduler may move
849 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
850 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
851 && regno < VEC_length (rtx, reg_base_value))
853 /* If we're inside init_alias_analysis, use new_reg_base_value
854 to reduce the number of relaxation iterations. */
855 if (new_reg_base_value && new_reg_base_value[regno]
856 && DF_REG_DEF_COUNT (regno) == 1)
857 return new_reg_base_value[regno];
859 if (VEC_index (rtx, reg_base_value, regno))
860 return VEC_index (rtx, reg_base_value, regno);
863 return 0;
865 case MEM:
866 /* Check for an argument passed in memory. Only record in the
867 copying-arguments block; it is too hard to track changes
868 otherwise. */
869 if (copying_arguments
870 && (XEXP (src, 0) == arg_pointer_rtx
871 || (GET_CODE (XEXP (src, 0)) == PLUS
872 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
873 return gen_rtx_ADDRESS (VOIDmode, src);
874 return 0;
876 case CONST:
877 src = XEXP (src, 0);
878 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
879 break;
881 /* ... fall through ... */
883 case PLUS:
884 case MINUS:
886 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
888 /* If either operand is a REG that is a known pointer, then it
889 is the base. */
890 if (REG_P (src_0) && REG_POINTER (src_0))
891 return find_base_value (src_0);
892 if (REG_P (src_1) && REG_POINTER (src_1))
893 return find_base_value (src_1);
895 /* If either operand is a REG, then see if we already have
896 a known value for it. */
897 if (REG_P (src_0))
899 temp = find_base_value (src_0);
900 if (temp != 0)
901 src_0 = temp;
904 if (REG_P (src_1))
906 temp = find_base_value (src_1);
907 if (temp!= 0)
908 src_1 = temp;
911 /* If either base is named object or a special address
912 (like an argument or stack reference), then use it for the
913 base term. */
914 if (src_0 != 0
915 && (GET_CODE (src_0) == SYMBOL_REF
916 || GET_CODE (src_0) == LABEL_REF
917 || (GET_CODE (src_0) == ADDRESS
918 && GET_MODE (src_0) != VOIDmode)))
919 return src_0;
921 if (src_1 != 0
922 && (GET_CODE (src_1) == SYMBOL_REF
923 || GET_CODE (src_1) == LABEL_REF
924 || (GET_CODE (src_1) == ADDRESS
925 && GET_MODE (src_1) != VOIDmode)))
926 return src_1;
928 /* Guess which operand is the base address:
929 If either operand is a symbol, then it is the base. If
930 either operand is a CONST_INT, then the other is the base. */
931 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
932 return find_base_value (src_0);
933 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
934 return find_base_value (src_1);
936 return 0;
939 case LO_SUM:
940 /* The standard form is (lo_sum reg sym) so look only at the
941 second operand. */
942 return find_base_value (XEXP (src, 1));
944 case AND:
945 /* If the second operand is constant set the base
946 address to the first operand. */
947 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
948 return find_base_value (XEXP (src, 0));
949 return 0;
951 case TRUNCATE:
952 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
953 break;
954 /* Fall through. */
955 case HIGH:
956 case PRE_INC:
957 case PRE_DEC:
958 case POST_INC:
959 case POST_DEC:
960 case PRE_MODIFY:
961 case POST_MODIFY:
962 return find_base_value (XEXP (src, 0));
964 case ZERO_EXTEND:
965 case SIGN_EXTEND: /* used for NT/Alpha pointers */
967 rtx temp = find_base_value (XEXP (src, 0));
969 if (temp != 0 && CONSTANT_P (temp))
970 temp = convert_memory_address (Pmode, temp);
972 return temp;
975 default:
976 break;
979 return 0;
982 /* Called from init_alias_analysis indirectly through note_stores. */
984 /* While scanning insns to find base values, reg_seen[N] is nonzero if
985 register N has been set in this function. */
986 static char *reg_seen;
988 /* Addresses which are known not to alias anything else are identified
989 by a unique integer. */
990 static int unique_id;
992 static void
993 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
995 unsigned regno;
996 rtx src;
997 int n;
999 if (!REG_P (dest))
1000 return;
1002 regno = REGNO (dest);
1004 gcc_assert (regno < VEC_length (rtx, reg_base_value));
1006 /* If this spans multiple hard registers, then we must indicate that every
1007 register has an unusable value. */
1008 if (regno < FIRST_PSEUDO_REGISTER)
1009 n = hard_regno_nregs[regno][GET_MODE (dest)];
1010 else
1011 n = 1;
1012 if (n != 1)
1014 while (--n >= 0)
1016 reg_seen[regno + n] = 1;
1017 new_reg_base_value[regno + n] = 0;
1019 return;
1022 if (set)
1024 /* A CLOBBER wipes out any old value but does not prevent a previously
1025 unset register from acquiring a base address (i.e. reg_seen is not
1026 set). */
1027 if (GET_CODE (set) == CLOBBER)
1029 new_reg_base_value[regno] = 0;
1030 return;
1032 src = SET_SRC (set);
1034 else
1036 if (reg_seen[regno])
1038 new_reg_base_value[regno] = 0;
1039 return;
1041 reg_seen[regno] = 1;
1042 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1043 GEN_INT (unique_id++));
1044 return;
1047 /* If this is not the first set of REGNO, see whether the new value
1048 is related to the old one. There are two cases of interest:
1050 (1) The register might be assigned an entirely new value
1051 that has the same base term as the original set.
1053 (2) The set might be a simple self-modification that
1054 cannot change REGNO's base value.
1056 If neither case holds, reject the original base value as invalid.
1057 Note that the following situation is not detected:
1059 extern int x, y; int *p = &x; p += (&y-&x);
1061 ANSI C does not allow computing the difference of addresses
1062 of distinct top level objects. */
1063 if (new_reg_base_value[regno] != 0
1064 && find_base_value (src) != new_reg_base_value[regno])
1065 switch (GET_CODE (src))
1067 case LO_SUM:
1068 case MINUS:
1069 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1070 new_reg_base_value[regno] = 0;
1071 break;
1072 case PLUS:
1073 /* If the value we add in the PLUS is also a valid base value,
1074 this might be the actual base value, and the original value
1075 an index. */
1077 rtx other = NULL_RTX;
1079 if (XEXP (src, 0) == dest)
1080 other = XEXP (src, 1);
1081 else if (XEXP (src, 1) == dest)
1082 other = XEXP (src, 0);
1084 if (! other || find_base_value (other))
1085 new_reg_base_value[regno] = 0;
1086 break;
1088 case AND:
1089 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1090 new_reg_base_value[regno] = 0;
1091 break;
1092 default:
1093 new_reg_base_value[regno] = 0;
1094 break;
1096 /* If this is the first set of a register, record the value. */
1097 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1098 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1099 new_reg_base_value[regno] = find_base_value (src);
1101 reg_seen[regno] = 1;
1104 /* If a value is known for REGNO, return it. */
1107 get_reg_known_value (unsigned int regno)
1109 if (regno >= FIRST_PSEUDO_REGISTER)
1111 regno -= FIRST_PSEUDO_REGISTER;
1112 if (regno < reg_known_value_size)
1113 return reg_known_value[regno];
1115 return NULL;
1118 /* Set it. */
1120 static void
1121 set_reg_known_value (unsigned int regno, rtx val)
1123 if (regno >= FIRST_PSEUDO_REGISTER)
1125 regno -= FIRST_PSEUDO_REGISTER;
1126 if (regno < reg_known_value_size)
1127 reg_known_value[regno] = val;
1131 /* Similarly for reg_known_equiv_p. */
1133 bool
1134 get_reg_known_equiv_p (unsigned int regno)
1136 if (regno >= FIRST_PSEUDO_REGISTER)
1138 regno -= FIRST_PSEUDO_REGISTER;
1139 if (regno < reg_known_value_size)
1140 return reg_known_equiv_p[regno];
1142 return false;
1145 static void
1146 set_reg_known_equiv_p (unsigned int regno, bool val)
1148 if (regno >= FIRST_PSEUDO_REGISTER)
1150 regno -= FIRST_PSEUDO_REGISTER;
1151 if (regno < reg_known_value_size)
1152 reg_known_equiv_p[regno] = val;
1157 /* Returns a canonical version of X, from the point of view alias
1158 analysis. (For example, if X is a MEM whose address is a register,
1159 and the register has a known value (say a SYMBOL_REF), then a MEM
1160 whose address is the SYMBOL_REF is returned.) */
1163 canon_rtx (rtx x)
1165 /* Recursively look for equivalences. */
1166 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1168 rtx t = get_reg_known_value (REGNO (x));
1169 if (t == x)
1170 return x;
1171 if (t)
1172 return canon_rtx (t);
1175 if (GET_CODE (x) == PLUS)
1177 rtx x0 = canon_rtx (XEXP (x, 0));
1178 rtx x1 = canon_rtx (XEXP (x, 1));
1180 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1182 if (GET_CODE (x0) == CONST_INT)
1183 return plus_constant (x1, INTVAL (x0));
1184 else if (GET_CODE (x1) == CONST_INT)
1185 return plus_constant (x0, INTVAL (x1));
1186 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1190 /* This gives us much better alias analysis when called from
1191 the loop optimizer. Note we want to leave the original
1192 MEM alone, but need to return the canonicalized MEM with
1193 all the flags with their original values. */
1194 else if (MEM_P (x))
1195 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1197 return x;
1200 /* Return 1 if X and Y are identical-looking rtx's.
1201 Expect that X and Y has been already canonicalized.
1203 We use the data in reg_known_value above to see if two registers with
1204 different numbers are, in fact, equivalent. */
1206 static int
1207 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1209 int i;
1210 int j;
1211 enum rtx_code code;
1212 const char *fmt;
1214 if (x == 0 && y == 0)
1215 return 1;
1216 if (x == 0 || y == 0)
1217 return 0;
1219 if (x == y)
1220 return 1;
1222 code = GET_CODE (x);
1223 /* Rtx's of different codes cannot be equal. */
1224 if (code != GET_CODE (y))
1225 return 0;
1227 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1228 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1230 if (GET_MODE (x) != GET_MODE (y))
1231 return 0;
1233 /* Some RTL can be compared without a recursive examination. */
1234 switch (code)
1236 case REG:
1237 return REGNO (x) == REGNO (y);
1239 case LABEL_REF:
1240 return XEXP (x, 0) == XEXP (y, 0);
1242 case SYMBOL_REF:
1243 return XSTR (x, 0) == XSTR (y, 0);
1245 case VALUE:
1246 case CONST_INT:
1247 case CONST_DOUBLE:
1248 case CONST_FIXED:
1249 /* There's no need to compare the contents of CONST_DOUBLEs or
1250 CONST_INTs because pointer equality is a good enough
1251 comparison for these nodes. */
1252 return 0;
1254 default:
1255 break;
1258 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1259 if (code == PLUS)
1260 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1261 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1262 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1263 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1264 /* For commutative operations, the RTX match if the operand match in any
1265 order. Also handle the simple binary and unary cases without a loop. */
1266 if (COMMUTATIVE_P (x))
1268 rtx xop0 = canon_rtx (XEXP (x, 0));
1269 rtx yop0 = canon_rtx (XEXP (y, 0));
1270 rtx yop1 = canon_rtx (XEXP (y, 1));
1272 return ((rtx_equal_for_memref_p (xop0, yop0)
1273 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1274 || (rtx_equal_for_memref_p (xop0, yop1)
1275 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1277 else if (NON_COMMUTATIVE_P (x))
1279 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1280 canon_rtx (XEXP (y, 0)))
1281 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1282 canon_rtx (XEXP (y, 1))));
1284 else if (UNARY_P (x))
1285 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1286 canon_rtx (XEXP (y, 0)));
1288 /* Compare the elements. If any pair of corresponding elements
1289 fail to match, return 0 for the whole things.
1291 Limit cases to types which actually appear in addresses. */
1293 fmt = GET_RTX_FORMAT (code);
1294 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1296 switch (fmt[i])
1298 case 'i':
1299 if (XINT (x, i) != XINT (y, i))
1300 return 0;
1301 break;
1303 case 'E':
1304 /* Two vectors must have the same length. */
1305 if (XVECLEN (x, i) != XVECLEN (y, i))
1306 return 0;
1308 /* And the corresponding elements must match. */
1309 for (j = 0; j < XVECLEN (x, i); j++)
1310 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1311 canon_rtx (XVECEXP (y, i, j))) == 0)
1312 return 0;
1313 break;
1315 case 'e':
1316 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1317 canon_rtx (XEXP (y, i))) == 0)
1318 return 0;
1319 break;
1321 /* This can happen for asm operands. */
1322 case 's':
1323 if (strcmp (XSTR (x, i), XSTR (y, i)))
1324 return 0;
1325 break;
1327 /* This can happen for an asm which clobbers memory. */
1328 case '0':
1329 break;
1331 /* It is believed that rtx's at this level will never
1332 contain anything but integers and other rtx's,
1333 except for within LABEL_REFs and SYMBOL_REFs. */
1334 default:
1335 gcc_unreachable ();
1338 return 1;
1342 find_base_term (rtx x)
1344 cselib_val *val;
1345 struct elt_loc_list *l;
1347 #if defined (FIND_BASE_TERM)
1348 /* Try machine-dependent ways to find the base term. */
1349 x = FIND_BASE_TERM (x);
1350 #endif
1352 switch (GET_CODE (x))
1354 case REG:
1355 return REG_BASE_VALUE (x);
1357 case TRUNCATE:
1358 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1359 return 0;
1360 /* Fall through. */
1361 case HIGH:
1362 case PRE_INC:
1363 case PRE_DEC:
1364 case POST_INC:
1365 case POST_DEC:
1366 case PRE_MODIFY:
1367 case POST_MODIFY:
1368 return find_base_term (XEXP (x, 0));
1370 case ZERO_EXTEND:
1371 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1373 rtx temp = find_base_term (XEXP (x, 0));
1375 if (temp != 0 && CONSTANT_P (temp))
1376 temp = convert_memory_address (Pmode, temp);
1378 return temp;
1381 case VALUE:
1382 val = CSELIB_VAL_PTR (x);
1383 if (!val)
1384 return 0;
1385 for (l = val->locs; l; l = l->next)
1386 if ((x = find_base_term (l->loc)) != 0)
1387 return x;
1388 return 0;
1390 case CONST:
1391 x = XEXP (x, 0);
1392 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1393 return 0;
1394 /* Fall through. */
1395 case LO_SUM:
1396 case PLUS:
1397 case MINUS:
1399 rtx tmp1 = XEXP (x, 0);
1400 rtx tmp2 = XEXP (x, 1);
1402 /* This is a little bit tricky since we have to determine which of
1403 the two operands represents the real base address. Otherwise this
1404 routine may return the index register instead of the base register.
1406 That may cause us to believe no aliasing was possible, when in
1407 fact aliasing is possible.
1409 We use a few simple tests to guess the base register. Additional
1410 tests can certainly be added. For example, if one of the operands
1411 is a shift or multiply, then it must be the index register and the
1412 other operand is the base register. */
1414 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1415 return find_base_term (tmp2);
1417 /* If either operand is known to be a pointer, then use it
1418 to determine the base term. */
1419 if (REG_P (tmp1) && REG_POINTER (tmp1))
1420 return find_base_term (tmp1);
1422 if (REG_P (tmp2) && REG_POINTER (tmp2))
1423 return find_base_term (tmp2);
1425 /* Neither operand was known to be a pointer. Go ahead and find the
1426 base term for both operands. */
1427 tmp1 = find_base_term (tmp1);
1428 tmp2 = find_base_term (tmp2);
1430 /* If either base term is named object or a special address
1431 (like an argument or stack reference), then use it for the
1432 base term. */
1433 if (tmp1 != 0
1434 && (GET_CODE (tmp1) == SYMBOL_REF
1435 || GET_CODE (tmp1) == LABEL_REF
1436 || (GET_CODE (tmp1) == ADDRESS
1437 && GET_MODE (tmp1) != VOIDmode)))
1438 return tmp1;
1440 if (tmp2 != 0
1441 && (GET_CODE (tmp2) == SYMBOL_REF
1442 || GET_CODE (tmp2) == LABEL_REF
1443 || (GET_CODE (tmp2) == ADDRESS
1444 && GET_MODE (tmp2) != VOIDmode)))
1445 return tmp2;
1447 /* We could not determine which of the two operands was the
1448 base register and which was the index. So we can determine
1449 nothing from the base alias check. */
1450 return 0;
1453 case AND:
1454 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1455 return find_base_term (XEXP (x, 0));
1456 return 0;
1458 case SYMBOL_REF:
1459 case LABEL_REF:
1460 return x;
1462 default:
1463 return 0;
1467 /* Return 0 if the addresses X and Y are known to point to different
1468 objects, 1 if they might be pointers to the same object. */
1470 static int
1471 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1472 enum machine_mode y_mode)
1474 rtx x_base = find_base_term (x);
1475 rtx y_base = find_base_term (y);
1477 /* If the address itself has no known base see if a known equivalent
1478 value has one. If either address still has no known base, nothing
1479 is known about aliasing. */
1480 if (x_base == 0)
1482 rtx x_c;
1484 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1485 return 1;
1487 x_base = find_base_term (x_c);
1488 if (x_base == 0)
1489 return 1;
1492 if (y_base == 0)
1494 rtx y_c;
1495 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1496 return 1;
1498 y_base = find_base_term (y_c);
1499 if (y_base == 0)
1500 return 1;
1503 /* If the base addresses are equal nothing is known about aliasing. */
1504 if (rtx_equal_p (x_base, y_base))
1505 return 1;
1507 /* The base addresses of the read and write are different expressions.
1508 If they are both symbols and they are not accessed via AND, there is
1509 no conflict. We can bring knowledge of object alignment into play
1510 here. For example, on alpha, "char a, b;" can alias one another,
1511 though "char a; long b;" cannot. */
1512 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1514 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1515 return 1;
1516 if (GET_CODE (x) == AND
1517 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1518 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1519 return 1;
1520 if (GET_CODE (y) == AND
1521 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1522 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1523 return 1;
1524 /* Differing symbols never alias. */
1525 return 0;
1528 /* If one address is a stack reference there can be no alias:
1529 stack references using different base registers do not alias,
1530 a stack reference can not alias a parameter, and a stack reference
1531 can not alias a global. */
1532 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1533 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1534 return 0;
1536 if (! flag_argument_noalias)
1537 return 1;
1539 if (flag_argument_noalias > 1)
1540 return 0;
1542 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1543 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1546 /* Convert the address X into something we can use. This is done by returning
1547 it unchanged unless it is a value; in the latter case we call cselib to get
1548 a more useful rtx. */
1551 get_addr (rtx x)
1553 cselib_val *v;
1554 struct elt_loc_list *l;
1556 if (GET_CODE (x) != VALUE)
1557 return x;
1558 v = CSELIB_VAL_PTR (x);
1559 if (v)
1561 for (l = v->locs; l; l = l->next)
1562 if (CONSTANT_P (l->loc))
1563 return l->loc;
1564 for (l = v->locs; l; l = l->next)
1565 if (!REG_P (l->loc) && !MEM_P (l->loc))
1566 return l->loc;
1567 if (v->locs)
1568 return v->locs->loc;
1570 return x;
1573 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1574 where SIZE is the size in bytes of the memory reference. If ADDR
1575 is not modified by the memory reference then ADDR is returned. */
1577 static rtx
1578 addr_side_effect_eval (rtx addr, int size, int n_refs)
1580 int offset = 0;
1582 switch (GET_CODE (addr))
1584 case PRE_INC:
1585 offset = (n_refs + 1) * size;
1586 break;
1587 case PRE_DEC:
1588 offset = -(n_refs + 1) * size;
1589 break;
1590 case POST_INC:
1591 offset = n_refs * size;
1592 break;
1593 case POST_DEC:
1594 offset = -n_refs * size;
1595 break;
1597 default:
1598 return addr;
1601 if (offset)
1602 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1603 GEN_INT (offset));
1604 else
1605 addr = XEXP (addr, 0);
1606 addr = canon_rtx (addr);
1608 return addr;
1611 /* Return nonzero if X and Y (memory addresses) could reference the
1612 same location in memory. C is an offset accumulator. When
1613 C is nonzero, we are testing aliases between X and Y + C.
1614 XSIZE is the size in bytes of the X reference,
1615 similarly YSIZE is the size in bytes for Y.
1616 Expect that canon_rtx has been already called for X and Y.
1618 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1619 referenced (the reference was BLKmode), so make the most pessimistic
1620 assumptions.
1622 If XSIZE or YSIZE is negative, we may access memory outside the object
1623 being referenced as a side effect. This can happen when using AND to
1624 align memory references, as is done on the Alpha.
1626 Nice to notice that varying addresses cannot conflict with fp if no
1627 local variables had their addresses taken, but that's too hard now. */
1629 static int
1630 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1632 if (GET_CODE (x) == VALUE)
1633 x = get_addr (x);
1634 if (GET_CODE (y) == VALUE)
1635 y = get_addr (y);
1636 if (GET_CODE (x) == HIGH)
1637 x = XEXP (x, 0);
1638 else if (GET_CODE (x) == LO_SUM)
1639 x = XEXP (x, 1);
1640 else
1641 x = addr_side_effect_eval (x, xsize, 0);
1642 if (GET_CODE (y) == HIGH)
1643 y = XEXP (y, 0);
1644 else if (GET_CODE (y) == LO_SUM)
1645 y = XEXP (y, 1);
1646 else
1647 y = addr_side_effect_eval (y, ysize, 0);
1649 if (rtx_equal_for_memref_p (x, y))
1651 if (xsize <= 0 || ysize <= 0)
1652 return 1;
1653 if (c >= 0 && xsize > c)
1654 return 1;
1655 if (c < 0 && ysize+c > 0)
1656 return 1;
1657 return 0;
1660 /* This code used to check for conflicts involving stack references and
1661 globals but the base address alias code now handles these cases. */
1663 if (GET_CODE (x) == PLUS)
1665 /* The fact that X is canonicalized means that this
1666 PLUS rtx is canonicalized. */
1667 rtx x0 = XEXP (x, 0);
1668 rtx x1 = XEXP (x, 1);
1670 if (GET_CODE (y) == PLUS)
1672 /* The fact that Y is canonicalized means that this
1673 PLUS rtx is canonicalized. */
1674 rtx y0 = XEXP (y, 0);
1675 rtx y1 = XEXP (y, 1);
1677 if (rtx_equal_for_memref_p (x1, y1))
1678 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1679 if (rtx_equal_for_memref_p (x0, y0))
1680 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1681 if (GET_CODE (x1) == CONST_INT)
1683 if (GET_CODE (y1) == CONST_INT)
1684 return memrefs_conflict_p (xsize, x0, ysize, y0,
1685 c - INTVAL (x1) + INTVAL (y1));
1686 else
1687 return memrefs_conflict_p (xsize, x0, ysize, y,
1688 c - INTVAL (x1));
1690 else if (GET_CODE (y1) == CONST_INT)
1691 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1693 return 1;
1695 else if (GET_CODE (x1) == CONST_INT)
1696 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1698 else if (GET_CODE (y) == PLUS)
1700 /* The fact that Y is canonicalized means that this
1701 PLUS rtx is canonicalized. */
1702 rtx y0 = XEXP (y, 0);
1703 rtx y1 = XEXP (y, 1);
1705 if (GET_CODE (y1) == CONST_INT)
1706 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1707 else
1708 return 1;
1711 if (GET_CODE (x) == GET_CODE (y))
1712 switch (GET_CODE (x))
1714 case MULT:
1716 /* Handle cases where we expect the second operands to be the
1717 same, and check only whether the first operand would conflict
1718 or not. */
1719 rtx x0, y0;
1720 rtx x1 = canon_rtx (XEXP (x, 1));
1721 rtx y1 = canon_rtx (XEXP (y, 1));
1722 if (! rtx_equal_for_memref_p (x1, y1))
1723 return 1;
1724 x0 = canon_rtx (XEXP (x, 0));
1725 y0 = canon_rtx (XEXP (y, 0));
1726 if (rtx_equal_for_memref_p (x0, y0))
1727 return (xsize == 0 || ysize == 0
1728 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1730 /* Can't properly adjust our sizes. */
1731 if (GET_CODE (x1) != CONST_INT)
1732 return 1;
1733 xsize /= INTVAL (x1);
1734 ysize /= INTVAL (x1);
1735 c /= INTVAL (x1);
1736 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1739 default:
1740 break;
1743 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1744 as an access with indeterminate size. Assume that references
1745 besides AND are aligned, so if the size of the other reference is
1746 at least as large as the alignment, assume no other overlap. */
1747 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1749 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1750 xsize = -1;
1751 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1753 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1755 /* ??? If we are indexing far enough into the array/structure, we
1756 may yet be able to determine that we can not overlap. But we
1757 also need to that we are far enough from the end not to overlap
1758 a following reference, so we do nothing with that for now. */
1759 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1760 ysize = -1;
1761 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1764 if (CONSTANT_P (x))
1766 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1768 c += (INTVAL (y) - INTVAL (x));
1769 return (xsize <= 0 || ysize <= 0
1770 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1773 if (GET_CODE (x) == CONST)
1775 if (GET_CODE (y) == CONST)
1776 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1777 ysize, canon_rtx (XEXP (y, 0)), c);
1778 else
1779 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1780 ysize, y, c);
1782 if (GET_CODE (y) == CONST)
1783 return memrefs_conflict_p (xsize, x, ysize,
1784 canon_rtx (XEXP (y, 0)), c);
1786 if (CONSTANT_P (y))
1787 return (xsize <= 0 || ysize <= 0
1788 || (rtx_equal_for_memref_p (x, y)
1789 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1791 return 1;
1793 return 1;
1796 /* Functions to compute memory dependencies.
1798 Since we process the insns in execution order, we can build tables
1799 to keep track of what registers are fixed (and not aliased), what registers
1800 are varying in known ways, and what registers are varying in unknown
1801 ways.
1803 If both memory references are volatile, then there must always be a
1804 dependence between the two references, since their order can not be
1805 changed. A volatile and non-volatile reference can be interchanged
1806 though.
1808 A MEM_IN_STRUCT reference at a non-AND varying address can never
1809 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1810 also must allow AND addresses, because they may generate accesses
1811 outside the object being referenced. This is used to generate
1812 aligned addresses from unaligned addresses, for instance, the alpha
1813 storeqi_unaligned pattern. */
1815 /* Read dependence: X is read after read in MEM takes place. There can
1816 only be a dependence here if both reads are volatile. */
1819 read_dependence (const_rtx mem, const_rtx x)
1821 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1824 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1825 MEM2 is a reference to a structure at a varying address, or returns
1826 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1827 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1828 to decide whether or not an address may vary; it should return
1829 nonzero whenever variation is possible.
1830 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1832 static const_rtx
1833 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
1834 rtx mem2_addr,
1835 bool (*varies_p) (const_rtx, bool))
1837 if (! flag_strict_aliasing)
1838 return NULL_RTX;
1840 if (MEM_ALIAS_SET (mem2)
1841 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1842 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1843 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1844 varying address. */
1845 return mem1;
1847 if (MEM_ALIAS_SET (mem1)
1848 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1849 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1850 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1851 varying address. */
1852 return mem2;
1854 return NULL_RTX;
1857 /* Returns nonzero if something about the mode or address format MEM1
1858 indicates that it might well alias *anything*. */
1860 static int
1861 aliases_everything_p (const_rtx mem)
1863 if (GET_CODE (XEXP (mem, 0)) == AND)
1864 /* If the address is an AND, it's very hard to know at what it is
1865 actually pointing. */
1866 return 1;
1868 return 0;
1871 /* Return true if we can determine that the fields referenced cannot
1872 overlap for any pair of objects. */
1874 static bool
1875 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1877 const_tree fieldx, fieldy, typex, typey, orig_y;
1881 /* The comparison has to be done at a common type, since we don't
1882 know how the inheritance hierarchy works. */
1883 orig_y = y;
1886 fieldx = TREE_OPERAND (x, 1);
1887 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
1889 y = orig_y;
1892 fieldy = TREE_OPERAND (y, 1);
1893 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
1895 if (typex == typey)
1896 goto found;
1898 y = TREE_OPERAND (y, 0);
1900 while (y && TREE_CODE (y) == COMPONENT_REF);
1902 x = TREE_OPERAND (x, 0);
1904 while (x && TREE_CODE (x) == COMPONENT_REF);
1905 /* Never found a common type. */
1906 return false;
1908 found:
1909 /* If we're left with accessing different fields of a structure,
1910 then no overlap. */
1911 if (TREE_CODE (typex) == RECORD_TYPE
1912 && fieldx != fieldy)
1913 return true;
1915 /* The comparison on the current field failed. If we're accessing
1916 a very nested structure, look at the next outer level. */
1917 x = TREE_OPERAND (x, 0);
1918 y = TREE_OPERAND (y, 0);
1920 while (x && y
1921 && TREE_CODE (x) == COMPONENT_REF
1922 && TREE_CODE (y) == COMPONENT_REF);
1924 return false;
1927 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1929 static tree
1930 decl_for_component_ref (tree x)
1934 x = TREE_OPERAND (x, 0);
1936 while (x && TREE_CODE (x) == COMPONENT_REF);
1938 return x && DECL_P (x) ? x : NULL_TREE;
1941 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1942 offset of the field reference. */
1944 static rtx
1945 adjust_offset_for_component_ref (tree x, rtx offset)
1947 HOST_WIDE_INT ioffset;
1949 if (! offset)
1950 return NULL_RTX;
1952 ioffset = INTVAL (offset);
1955 tree offset = component_ref_field_offset (x);
1956 tree field = TREE_OPERAND (x, 1);
1958 if (! host_integerp (offset, 1))
1959 return NULL_RTX;
1960 ioffset += (tree_low_cst (offset, 1)
1961 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1962 / BITS_PER_UNIT));
1964 x = TREE_OPERAND (x, 0);
1966 while (x && TREE_CODE (x) == COMPONENT_REF);
1968 return GEN_INT (ioffset);
1971 /* Return nonzero if we can determine the exprs corresponding to memrefs
1972 X and Y and they do not overlap. */
1974 static int
1975 nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
1977 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1978 rtx rtlx, rtly;
1979 rtx basex, basey;
1980 rtx moffsetx, moffsety;
1981 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1983 /* Unless both have exprs, we can't tell anything. */
1984 if (exprx == 0 || expry == 0)
1985 return 0;
1987 /* If both are field references, we may be able to determine something. */
1988 if (TREE_CODE (exprx) == COMPONENT_REF
1989 && TREE_CODE (expry) == COMPONENT_REF
1990 && nonoverlapping_component_refs_p (exprx, expry))
1991 return 1;
1994 /* If the field reference test failed, look at the DECLs involved. */
1995 moffsetx = MEM_OFFSET (x);
1996 if (TREE_CODE (exprx) == COMPONENT_REF)
1998 if (TREE_CODE (expry) == VAR_DECL
1999 && POINTER_TYPE_P (TREE_TYPE (expry)))
2001 tree field = TREE_OPERAND (exprx, 1);
2002 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2003 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2004 TREE_TYPE (field)))
2005 return 1;
2008 tree t = decl_for_component_ref (exprx);
2009 if (! t)
2010 return 0;
2011 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2012 exprx = t;
2015 else if (INDIRECT_REF_P (exprx))
2017 exprx = TREE_OPERAND (exprx, 0);
2018 if (flag_argument_noalias < 2
2019 || TREE_CODE (exprx) != PARM_DECL)
2020 return 0;
2023 moffsety = MEM_OFFSET (y);
2024 if (TREE_CODE (expry) == COMPONENT_REF)
2026 if (TREE_CODE (exprx) == VAR_DECL
2027 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2029 tree field = TREE_OPERAND (expry, 1);
2030 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2031 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2032 TREE_TYPE (field)))
2033 return 1;
2036 tree t = decl_for_component_ref (expry);
2037 if (! t)
2038 return 0;
2039 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2040 expry = t;
2043 else if (INDIRECT_REF_P (expry))
2045 expry = TREE_OPERAND (expry, 0);
2046 if (flag_argument_noalias < 2
2047 || TREE_CODE (expry) != PARM_DECL)
2048 return 0;
2051 if (! DECL_P (exprx) || ! DECL_P (expry))
2052 return 0;
2054 rtlx = DECL_RTL (exprx);
2055 rtly = DECL_RTL (expry);
2057 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2058 can't overlap unless they are the same because we never reuse that part
2059 of the stack frame used for locals for spilled pseudos. */
2060 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2061 && ! rtx_equal_p (rtlx, rtly))
2062 return 1;
2064 /* Get the base and offsets of both decls. If either is a register, we
2065 know both are and are the same, so use that as the base. The only
2066 we can avoid overlap is if we can deduce that they are nonoverlapping
2067 pieces of that decl, which is very rare. */
2068 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2069 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2070 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2072 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2073 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2074 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2076 /* If the bases are different, we know they do not overlap if both
2077 are constants or if one is a constant and the other a pointer into the
2078 stack frame. Otherwise a different base means we can't tell if they
2079 overlap or not. */
2080 if (! rtx_equal_p (basex, basey))
2081 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2082 || (CONSTANT_P (basex) && REG_P (basey)
2083 && REGNO_PTR_FRAME_P (REGNO (basey)))
2084 || (CONSTANT_P (basey) && REG_P (basex)
2085 && REGNO_PTR_FRAME_P (REGNO (basex))));
2087 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2088 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2089 : -1);
2090 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2091 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2092 -1);
2094 /* If we have an offset for either memref, it can update the values computed
2095 above. */
2096 if (moffsetx)
2097 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2098 if (moffsety)
2099 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2101 /* If a memref has both a size and an offset, we can use the smaller size.
2102 We can't do this if the offset isn't known because we must view this
2103 memref as being anywhere inside the DECL's MEM. */
2104 if (MEM_SIZE (x) && moffsetx)
2105 sizex = INTVAL (MEM_SIZE (x));
2106 if (MEM_SIZE (y) && moffsety)
2107 sizey = INTVAL (MEM_SIZE (y));
2109 /* Put the values of the memref with the lower offset in X's values. */
2110 if (offsetx > offsety)
2112 tem = offsetx, offsetx = offsety, offsety = tem;
2113 tem = sizex, sizex = sizey, sizey = tem;
2116 /* If we don't know the size of the lower-offset value, we can't tell
2117 if they conflict. Otherwise, we do the test. */
2118 return sizex >= 0 && offsety >= offsetx + sizex;
2121 /* True dependence: X is read after store in MEM takes place. */
2124 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2125 bool (*varies) (const_rtx, bool))
2127 rtx x_addr, mem_addr;
2128 rtx base;
2130 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2131 return 1;
2133 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2134 This is used in epilogue deallocation functions, and in cselib. */
2135 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2136 return 1;
2137 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2138 return 1;
2139 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2140 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2141 return 1;
2143 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2144 return 0;
2146 /* Read-only memory is by definition never modified, and therefore can't
2147 conflict with anything. We don't expect to find read-only set on MEM,
2148 but stupid user tricks can produce them, so don't die. */
2149 if (MEM_READONLY_P (x))
2150 return 0;
2152 if (nonoverlapping_memrefs_p (mem, x))
2153 return 0;
2155 if (mem_mode == VOIDmode)
2156 mem_mode = GET_MODE (mem);
2158 x_addr = get_addr (XEXP (x, 0));
2159 mem_addr = get_addr (XEXP (mem, 0));
2161 base = find_base_term (x_addr);
2162 if (base && (GET_CODE (base) == LABEL_REF
2163 || (GET_CODE (base) == SYMBOL_REF
2164 && CONSTANT_POOL_ADDRESS_P (base))))
2165 return 0;
2167 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2168 return 0;
2170 x_addr = canon_rtx (x_addr);
2171 mem_addr = canon_rtx (mem_addr);
2173 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2174 SIZE_FOR_MODE (x), x_addr, 0))
2175 return 0;
2177 if (aliases_everything_p (x))
2178 return 1;
2180 /* We cannot use aliases_everything_p to test MEM, since we must look
2181 at MEM_MODE, rather than GET_MODE (MEM). */
2182 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2183 return 1;
2185 /* In true_dependence we also allow BLKmode to alias anything. Why
2186 don't we do this in anti_dependence and output_dependence? */
2187 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2188 return 1;
2190 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2191 varies);
2194 /* Canonical true dependence: X is read after store in MEM takes place.
2195 Variant of true_dependence which assumes MEM has already been
2196 canonicalized (hence we no longer do that here).
2197 The mem_addr argument has been added, since true_dependence computed
2198 this value prior to canonicalizing. */
2201 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2202 const_rtx x, bool (*varies) (const_rtx, bool))
2204 rtx x_addr;
2206 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2207 return 1;
2209 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2210 This is used in epilogue deallocation functions. */
2211 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2212 return 1;
2213 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2214 return 1;
2215 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2216 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2217 return 1;
2219 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2220 return 0;
2222 /* Read-only memory is by definition never modified, and therefore can't
2223 conflict with anything. We don't expect to find read-only set on MEM,
2224 but stupid user tricks can produce them, so don't die. */
2225 if (MEM_READONLY_P (x))
2226 return 0;
2228 if (nonoverlapping_memrefs_p (x, mem))
2229 return 0;
2231 x_addr = get_addr (XEXP (x, 0));
2233 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2234 return 0;
2236 x_addr = canon_rtx (x_addr);
2237 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2238 SIZE_FOR_MODE (x), x_addr, 0))
2239 return 0;
2241 if (aliases_everything_p (x))
2242 return 1;
2244 /* We cannot use aliases_everything_p to test MEM, since we must look
2245 at MEM_MODE, rather than GET_MODE (MEM). */
2246 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2247 return 1;
2249 /* In true_dependence we also allow BLKmode to alias anything. Why
2250 don't we do this in anti_dependence and output_dependence? */
2251 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2252 return 1;
2254 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2255 varies);
2258 /* Returns nonzero if a write to X might alias a previous read from
2259 (or, if WRITEP is nonzero, a write to) MEM. */
2261 static int
2262 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2264 rtx x_addr, mem_addr;
2265 const_rtx fixed_scalar;
2266 rtx base;
2268 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2269 return 1;
2271 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2272 This is used in epilogue deallocation functions. */
2273 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2274 return 1;
2275 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2276 return 1;
2277 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2278 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2279 return 1;
2281 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2282 return 0;
2284 /* A read from read-only memory can't conflict with read-write memory. */
2285 if (!writep && MEM_READONLY_P (mem))
2286 return 0;
2288 if (nonoverlapping_memrefs_p (x, mem))
2289 return 0;
2291 x_addr = get_addr (XEXP (x, 0));
2292 mem_addr = get_addr (XEXP (mem, 0));
2294 if (! writep)
2296 base = find_base_term (mem_addr);
2297 if (base && (GET_CODE (base) == LABEL_REF
2298 || (GET_CODE (base) == SYMBOL_REF
2299 && CONSTANT_POOL_ADDRESS_P (base))))
2300 return 0;
2303 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2304 GET_MODE (mem)))
2305 return 0;
2307 x_addr = canon_rtx (x_addr);
2308 mem_addr = canon_rtx (mem_addr);
2310 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2311 SIZE_FOR_MODE (x), x_addr, 0))
2312 return 0;
2314 fixed_scalar
2315 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2316 rtx_addr_varies_p);
2318 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2319 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2322 /* Anti dependence: X is written after read in MEM takes place. */
2325 anti_dependence (const_rtx mem, const_rtx x)
2327 return write_dependence_p (mem, x, /*writep=*/0);
2330 /* Output dependence: X is written after store in MEM takes place. */
2333 output_dependence (const_rtx mem, const_rtx x)
2335 return write_dependence_p (mem, x, /*writep=*/1);
2339 void
2340 init_alias_target (void)
2342 int i;
2344 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2346 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2347 /* Check whether this register can hold an incoming pointer
2348 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2349 numbers, so translate if necessary due to register windows. */
2350 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2351 && HARD_REGNO_MODE_OK (i, Pmode))
2352 static_reg_base_value[i]
2353 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2355 static_reg_base_value[STACK_POINTER_REGNUM]
2356 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2357 static_reg_base_value[ARG_POINTER_REGNUM]
2358 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2359 static_reg_base_value[FRAME_POINTER_REGNUM]
2360 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2361 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2362 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2363 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2364 #endif
2367 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2368 to be memory reference. */
2369 static bool memory_modified;
2370 static void
2371 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2373 if (MEM_P (x))
2375 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2376 memory_modified = true;
2381 /* Return true when INSN possibly modify memory contents of MEM
2382 (i.e. address can be modified). */
2383 bool
2384 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2386 if (!INSN_P (insn))
2387 return false;
2388 memory_modified = false;
2389 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2390 return memory_modified;
2393 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2394 array. */
2396 void
2397 init_alias_analysis (void)
2399 unsigned int maxreg = max_reg_num ();
2400 int changed, pass;
2401 int i;
2402 unsigned int ui;
2403 rtx insn;
2405 timevar_push (TV_ALIAS_ANALYSIS);
2407 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2408 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2409 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2411 /* If we have memory allocated from the previous run, use it. */
2412 if (old_reg_base_value)
2413 reg_base_value = old_reg_base_value;
2415 if (reg_base_value)
2416 VEC_truncate (rtx, reg_base_value, 0);
2418 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2420 new_reg_base_value = XNEWVEC (rtx, maxreg);
2421 reg_seen = XNEWVEC (char, maxreg);
2423 /* The basic idea is that each pass through this loop will use the
2424 "constant" information from the previous pass to propagate alias
2425 information through another level of assignments.
2427 This could get expensive if the assignment chains are long. Maybe
2428 we should throttle the number of iterations, possibly based on
2429 the optimization level or flag_expensive_optimizations.
2431 We could propagate more information in the first pass by making use
2432 of DF_REG_DEF_COUNT to determine immediately that the alias information
2433 for a pseudo is "constant".
2435 A program with an uninitialized variable can cause an infinite loop
2436 here. Instead of doing a full dataflow analysis to detect such problems
2437 we just cap the number of iterations for the loop.
2439 The state of the arrays for the set chain in question does not matter
2440 since the program has undefined behavior. */
2442 pass = 0;
2445 /* Assume nothing will change this iteration of the loop. */
2446 changed = 0;
2448 /* We want to assign the same IDs each iteration of this loop, so
2449 start counting from zero each iteration of the loop. */
2450 unique_id = 0;
2452 /* We're at the start of the function each iteration through the
2453 loop, so we're copying arguments. */
2454 copying_arguments = true;
2456 /* Wipe the potential alias information clean for this pass. */
2457 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2459 /* Wipe the reg_seen array clean. */
2460 memset (reg_seen, 0, maxreg);
2462 /* Mark all hard registers which may contain an address.
2463 The stack, frame and argument pointers may contain an address.
2464 An argument register which can hold a Pmode value may contain
2465 an address even if it is not in BASE_REGS.
2467 The address expression is VOIDmode for an argument and
2468 Pmode for other registers. */
2470 memcpy (new_reg_base_value, static_reg_base_value,
2471 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2473 /* Walk the insns adding values to the new_reg_base_value array. */
2474 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2476 if (INSN_P (insn))
2478 rtx note, set;
2480 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2481 /* The prologue/epilogue insns are not threaded onto the
2482 insn chain until after reload has completed. Thus,
2483 there is no sense wasting time checking if INSN is in
2484 the prologue/epilogue until after reload has completed. */
2485 if (reload_completed
2486 && prologue_epilogue_contains (insn))
2487 continue;
2488 #endif
2490 /* If this insn has a noalias note, process it, Otherwise,
2491 scan for sets. A simple set will have no side effects
2492 which could change the base value of any other register. */
2494 if (GET_CODE (PATTERN (insn)) == SET
2495 && REG_NOTES (insn) != 0
2496 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2497 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2498 else
2499 note_stores (PATTERN (insn), record_set, NULL);
2501 set = single_set (insn);
2503 if (set != 0
2504 && REG_P (SET_DEST (set))
2505 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2507 unsigned int regno = REGNO (SET_DEST (set));
2508 rtx src = SET_SRC (set);
2509 rtx t;
2511 note = find_reg_equal_equiv_note (insn);
2512 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2513 && DF_REG_DEF_COUNT (regno) != 1)
2514 note = NULL_RTX;
2516 if (note != NULL_RTX
2517 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2518 && ! rtx_varies_p (XEXP (note, 0), 1)
2519 && ! reg_overlap_mentioned_p (SET_DEST (set),
2520 XEXP (note, 0)))
2522 set_reg_known_value (regno, XEXP (note, 0));
2523 set_reg_known_equiv_p (regno,
2524 REG_NOTE_KIND (note) == REG_EQUIV);
2526 else if (DF_REG_DEF_COUNT (regno) == 1
2527 && GET_CODE (src) == PLUS
2528 && REG_P (XEXP (src, 0))
2529 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2530 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2532 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2533 set_reg_known_value (regno, t);
2534 set_reg_known_equiv_p (regno, 0);
2536 else if (DF_REG_DEF_COUNT (regno) == 1
2537 && ! rtx_varies_p (src, 1))
2539 set_reg_known_value (regno, src);
2540 set_reg_known_equiv_p (regno, 0);
2544 else if (NOTE_P (insn)
2545 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2546 copying_arguments = false;
2549 /* Now propagate values from new_reg_base_value to reg_base_value. */
2550 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2552 for (ui = 0; ui < maxreg; ui++)
2554 if (new_reg_base_value[ui]
2555 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2556 && ! rtx_equal_p (new_reg_base_value[ui],
2557 VEC_index (rtx, reg_base_value, ui)))
2559 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2560 changed = 1;
2564 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2566 /* Fill in the remaining entries. */
2567 for (i = 0; i < (int)reg_known_value_size; i++)
2568 if (reg_known_value[i] == 0)
2569 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2571 /* Clean up. */
2572 free (new_reg_base_value);
2573 new_reg_base_value = 0;
2574 free (reg_seen);
2575 reg_seen = 0;
2576 timevar_pop (TV_ALIAS_ANALYSIS);
2579 void
2580 end_alias_analysis (void)
2582 old_reg_base_value = reg_base_value;
2583 ggc_free (reg_known_value);
2584 reg_known_value = 0;
2585 reg_known_value_size = 0;
2586 free (reg_known_equiv_p);
2587 reg_known_equiv_p = 0;
2590 #include "gt-alias.h"