* lib/target-supports.exp
[official-gcc.git] / gcc / ifcvt.c
blob99228a8fa7e39e7fb2bbd36a3c575ce2a4a26955
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "real.h"
38 #include "output.h"
39 #include "optabs.h"
40 #include "toplev.h"
41 #include "tm_p.h"
42 #include "cfgloop.h"
43 #include "target.h"
44 #include "timevar.h"
45 #include "tree-pass.h"
46 #include "vec.h"
47 #include "vecprim.h"
50 #ifndef HAVE_conditional_execution
51 #define HAVE_conditional_execution 0
52 #endif
53 #ifndef HAVE_conditional_move
54 #define HAVE_conditional_move 0
55 #endif
56 #ifndef HAVE_incscc
57 #define HAVE_incscc 0
58 #endif
59 #ifndef HAVE_decscc
60 #define HAVE_decscc 0
61 #endif
62 #ifndef HAVE_trap
63 #define HAVE_trap 0
64 #endif
65 #ifndef HAVE_conditional_trap
66 #define HAVE_conditional_trap 0
67 #endif
69 #ifndef MAX_CONDITIONAL_EXECUTE
70 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
71 #endif
73 #define NULL_BLOCK ((basic_block) NULL)
75 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
76 static int num_possible_if_blocks;
78 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
79 execution. */
80 static int num_updated_if_blocks;
82 /* # of changes made which require life information to be updated. */
83 static int num_true_changes;
85 /* Whether conditional execution changes were made. */
86 static int cond_exec_changed_p;
88 /* True if life data ok at present. */
89 static bool life_data_ok;
91 /* Forward references. */
92 static int count_bb_insns (basic_block);
93 static bool cheap_bb_rtx_cost_p (basic_block, int);
94 static rtx first_active_insn (basic_block);
95 static rtx last_active_insn (basic_block, int);
96 static basic_block block_fallthru (basic_block);
97 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
98 static rtx cond_exec_get_condition (rtx);
99 static int cond_exec_process_if_block (ce_if_block_t *, int);
100 static rtx noce_get_condition (rtx, rtx *);
101 static int noce_operand_ok (rtx);
102 static int noce_process_if_block (ce_if_block_t *);
103 static int process_if_block (ce_if_block_t *);
104 static void merge_if_block (ce_if_block_t *);
105 static int find_cond_trap (basic_block, edge, edge);
106 static basic_block find_if_header (basic_block, int);
107 static int block_jumps_and_fallthru_p (basic_block, basic_block);
108 static int find_if_block (ce_if_block_t *);
109 static int find_if_case_1 (basic_block, edge, edge);
110 static int find_if_case_2 (basic_block, edge, edge);
111 static int find_memory (rtx *, void *);
112 static int dead_or_predicable (basic_block, basic_block, basic_block,
113 basic_block, int);
114 static void noce_emit_move_insn (rtx, rtx);
115 static rtx block_has_only_trap (basic_block);
117 /* Count the number of non-jump active insns in BB. */
119 static int
120 count_bb_insns (basic_block bb)
122 int count = 0;
123 rtx insn = BB_HEAD (bb);
125 while (1)
127 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
128 count++;
130 if (insn == BB_END (bb))
131 break;
132 insn = NEXT_INSN (insn);
135 return count;
138 /* Determine whether the total insn_rtx_cost on non-jump insns in
139 basic block BB is less than MAX_COST. This function returns
140 false if the cost of any instruction could not be estimated. */
142 static bool
143 cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
145 int count = 0;
146 rtx insn = BB_HEAD (bb);
148 while (1)
150 if (NONJUMP_INSN_P (insn))
152 int cost = insn_rtx_cost (PATTERN (insn));
153 if (cost == 0)
154 return false;
156 /* If this instruction is the load or set of a "stack" register,
157 such as a floating point register on x87, then the cost of
158 speculatively executing this insn may need to include
159 the additional cost of popping its result off of the
160 register stack. Unfortunately, correctly recognizing and
161 accounting for this additional overhead is tricky, so for
162 now we simply prohibit such speculative execution. */
163 #ifdef STACK_REGS
165 rtx set = single_set (insn);
166 if (set && STACK_REG_P (SET_DEST (set)))
167 return false;
169 #endif
171 count += cost;
172 if (count >= max_cost)
173 return false;
175 else if (CALL_P (insn))
176 return false;
178 if (insn == BB_END (bb))
179 break;
180 insn = NEXT_INSN (insn);
183 return true;
186 /* Return the first non-jump active insn in the basic block. */
188 static rtx
189 first_active_insn (basic_block bb)
191 rtx insn = BB_HEAD (bb);
193 if (LABEL_P (insn))
195 if (insn == BB_END (bb))
196 return NULL_RTX;
197 insn = NEXT_INSN (insn);
200 while (NOTE_P (insn))
202 if (insn == BB_END (bb))
203 return NULL_RTX;
204 insn = NEXT_INSN (insn);
207 if (JUMP_P (insn))
208 return NULL_RTX;
210 return insn;
213 /* Return the last non-jump active (non-jump) insn in the basic block. */
215 static rtx
216 last_active_insn (basic_block bb, int skip_use_p)
218 rtx insn = BB_END (bb);
219 rtx head = BB_HEAD (bb);
221 while (NOTE_P (insn)
222 || JUMP_P (insn)
223 || (skip_use_p
224 && NONJUMP_INSN_P (insn)
225 && GET_CODE (PATTERN (insn)) == USE))
227 if (insn == head)
228 return NULL_RTX;
229 insn = PREV_INSN (insn);
232 if (LABEL_P (insn))
233 return NULL_RTX;
235 return insn;
238 /* Return the basic block reached by falling though the basic block BB. */
240 static basic_block
241 block_fallthru (basic_block bb)
243 edge e;
244 edge_iterator ei;
246 FOR_EACH_EDGE (e, ei, bb->succs)
247 if (e->flags & EDGE_FALLTHRU)
248 break;
250 return (e) ? e->dest : NULL_BLOCK;
253 /* Go through a bunch of insns, converting them to conditional
254 execution format if possible. Return TRUE if all of the non-note
255 insns were processed. */
257 static int
258 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
259 /* if block information */rtx start,
260 /* first insn to look at */rtx end,
261 /* last insn to look at */rtx test,
262 /* conditional execution test */rtx prob_val,
263 /* probability of branch taken. */int mod_ok)
265 int must_be_last = FALSE;
266 rtx insn;
267 rtx xtest;
268 rtx pattern;
270 if (!start || !end)
271 return FALSE;
273 for (insn = start; ; insn = NEXT_INSN (insn))
275 if (NOTE_P (insn))
276 goto insn_done;
278 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
280 /* Remove USE insns that get in the way. */
281 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
283 /* ??? Ug. Actually unlinking the thing is problematic,
284 given what we'd have to coordinate with our callers. */
285 SET_INSN_DELETED (insn);
286 goto insn_done;
289 /* Last insn wasn't last? */
290 if (must_be_last)
291 return FALSE;
293 if (modified_in_p (test, insn))
295 if (!mod_ok)
296 return FALSE;
297 must_be_last = TRUE;
300 /* Now build the conditional form of the instruction. */
301 pattern = PATTERN (insn);
302 xtest = copy_rtx (test);
304 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
305 two conditions. */
306 if (GET_CODE (pattern) == COND_EXEC)
308 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
309 return FALSE;
311 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
312 COND_EXEC_TEST (pattern));
313 pattern = COND_EXEC_CODE (pattern);
316 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
318 /* If the machine needs to modify the insn being conditionally executed,
319 say for example to force a constant integer operand into a temp
320 register, do so here. */
321 #ifdef IFCVT_MODIFY_INSN
322 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
323 if (! pattern)
324 return FALSE;
325 #endif
327 validate_change (insn, &PATTERN (insn), pattern, 1);
329 if (CALL_P (insn) && prob_val)
330 validate_change (insn, &REG_NOTES (insn),
331 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
332 REG_NOTES (insn)), 1);
334 insn_done:
335 if (insn == end)
336 break;
339 return TRUE;
342 /* Return the condition for a jump. Do not do any special processing. */
344 static rtx
345 cond_exec_get_condition (rtx jump)
347 rtx test_if, cond;
349 if (any_condjump_p (jump))
350 test_if = SET_SRC (pc_set (jump));
351 else
352 return NULL_RTX;
353 cond = XEXP (test_if, 0);
355 /* If this branches to JUMP_LABEL when the condition is false,
356 reverse the condition. */
357 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
358 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
360 enum rtx_code rev = reversed_comparison_code (cond, jump);
361 if (rev == UNKNOWN)
362 return NULL_RTX;
364 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
365 XEXP (cond, 1));
368 return cond;
371 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
372 to conditional execution. Return TRUE if we were successful at
373 converting the block. */
375 static int
376 cond_exec_process_if_block (ce_if_block_t * ce_info,
377 /* if block information */int do_multiple_p)
379 basic_block test_bb = ce_info->test_bb; /* last test block */
380 basic_block then_bb = ce_info->then_bb; /* THEN */
381 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
382 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
383 rtx then_start; /* first insn in THEN block */
384 rtx then_end; /* last insn + 1 in THEN block */
385 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
386 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
387 int max; /* max # of insns to convert. */
388 int then_mod_ok; /* whether conditional mods are ok in THEN */
389 rtx true_expr; /* test for else block insns */
390 rtx false_expr; /* test for then block insns */
391 rtx true_prob_val; /* probability of else block */
392 rtx false_prob_val; /* probability of then block */
393 int n_insns;
394 enum rtx_code false_code;
396 /* If test is comprised of && or || elements, and we've failed at handling
397 all of them together, just use the last test if it is the special case of
398 && elements without an ELSE block. */
399 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
401 if (else_bb || ! ce_info->and_and_p)
402 return FALSE;
404 ce_info->test_bb = test_bb = ce_info->last_test_bb;
405 ce_info->num_multiple_test_blocks = 0;
406 ce_info->num_and_and_blocks = 0;
407 ce_info->num_or_or_blocks = 0;
410 /* Find the conditional jump to the ELSE or JOIN part, and isolate
411 the test. */
412 test_expr = cond_exec_get_condition (BB_END (test_bb));
413 if (! test_expr)
414 return FALSE;
416 /* If the conditional jump is more than just a conditional jump,
417 then we can not do conditional execution conversion on this block. */
418 if (! onlyjump_p (BB_END (test_bb)))
419 return FALSE;
421 /* Collect the bounds of where we're to search, skipping any labels, jumps
422 and notes at the beginning and end of the block. Then count the total
423 number of insns and see if it is small enough to convert. */
424 then_start = first_active_insn (then_bb);
425 then_end = last_active_insn (then_bb, TRUE);
426 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
427 max = MAX_CONDITIONAL_EXECUTE;
429 if (else_bb)
431 max *= 2;
432 else_start = first_active_insn (else_bb);
433 else_end = last_active_insn (else_bb, TRUE);
434 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
437 if (n_insns > max)
438 return FALSE;
440 /* Map test_expr/test_jump into the appropriate MD tests to use on
441 the conditionally executed code. */
443 true_expr = test_expr;
445 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
446 if (false_code != UNKNOWN)
447 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
448 XEXP (true_expr, 0), XEXP (true_expr, 1));
449 else
450 false_expr = NULL_RTX;
452 #ifdef IFCVT_MODIFY_TESTS
453 /* If the machine description needs to modify the tests, such as setting a
454 conditional execution register from a comparison, it can do so here. */
455 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
457 /* See if the conversion failed. */
458 if (!true_expr || !false_expr)
459 goto fail;
460 #endif
462 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
463 if (true_prob_val)
465 true_prob_val = XEXP (true_prob_val, 0);
466 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
468 else
469 false_prob_val = NULL_RTX;
471 /* If we have && or || tests, do them here. These tests are in the adjacent
472 blocks after the first block containing the test. */
473 if (ce_info->num_multiple_test_blocks > 0)
475 basic_block bb = test_bb;
476 basic_block last_test_bb = ce_info->last_test_bb;
478 if (! false_expr)
479 goto fail;
483 rtx start, end;
484 rtx t, f;
485 enum rtx_code f_code;
487 bb = block_fallthru (bb);
488 start = first_active_insn (bb);
489 end = last_active_insn (bb, TRUE);
490 if (start
491 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
492 false_prob_val, FALSE))
493 goto fail;
495 /* If the conditional jump is more than just a conditional jump, then
496 we can not do conditional execution conversion on this block. */
497 if (! onlyjump_p (BB_END (bb)))
498 goto fail;
500 /* Find the conditional jump and isolate the test. */
501 t = cond_exec_get_condition (BB_END (bb));
502 if (! t)
503 goto fail;
505 f_code = reversed_comparison_code (t, BB_END (bb));
506 if (f_code == UNKNOWN)
507 goto fail;
509 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
510 if (ce_info->and_and_p)
512 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
513 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
515 else
517 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
518 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
521 /* If the machine description needs to modify the tests, such as
522 setting a conditional execution register from a comparison, it can
523 do so here. */
524 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
525 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
527 /* See if the conversion failed. */
528 if (!t || !f)
529 goto fail;
530 #endif
532 true_expr = t;
533 false_expr = f;
535 while (bb != last_test_bb);
538 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
539 on then THEN block. */
540 then_mod_ok = (else_bb == NULL_BLOCK);
542 /* Go through the THEN and ELSE blocks converting the insns if possible
543 to conditional execution. */
545 if (then_end
546 && (! false_expr
547 || ! cond_exec_process_insns (ce_info, then_start, then_end,
548 false_expr, false_prob_val,
549 then_mod_ok)))
550 goto fail;
552 if (else_bb && else_end
553 && ! cond_exec_process_insns (ce_info, else_start, else_end,
554 true_expr, true_prob_val, TRUE))
555 goto fail;
557 /* If we cannot apply the changes, fail. Do not go through the normal fail
558 processing, since apply_change_group will call cancel_changes. */
559 if (! apply_change_group ())
561 #ifdef IFCVT_MODIFY_CANCEL
562 /* Cancel any machine dependent changes. */
563 IFCVT_MODIFY_CANCEL (ce_info);
564 #endif
565 return FALSE;
568 #ifdef IFCVT_MODIFY_FINAL
569 /* Do any machine dependent final modifications. */
570 IFCVT_MODIFY_FINAL (ce_info);
571 #endif
573 /* Conversion succeeded. */
574 if (dump_file)
575 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
576 n_insns, (n_insns == 1) ? " was" : "s were");
578 /* Merge the blocks! */
579 merge_if_block (ce_info);
580 cond_exec_changed_p = TRUE;
581 return TRUE;
583 fail:
584 #ifdef IFCVT_MODIFY_CANCEL
585 /* Cancel any machine dependent changes. */
586 IFCVT_MODIFY_CANCEL (ce_info);
587 #endif
589 cancel_changes (0);
590 return FALSE;
593 /* Used by noce_process_if_block to communicate with its subroutines.
595 The subroutines know that A and B may be evaluated freely. They
596 know that X is a register. They should insert new instructions
597 before cond_earliest. */
599 struct noce_if_info
601 /* A basic block that ends in a simple conditional jump. */
602 basic_block test_bb;
604 /* The jump that ends TEST_BB. */
605 rtx jump;
607 /* The jump condition. */
608 rtx cond;
610 /* New insns should be inserted before this one. */
611 rtx cond_earliest;
613 /* Insns in the THEN and ELSE block. There is always just this
614 one insns in those blocks. The insns are single_set insns.
615 If there was no ELSE block, INSN_B is the last insn before
616 COND_EARLIEST, or NULL_RTX. In the former case, the insn
617 operands are still valid, as if INSN_B was moved down below
618 the jump. */
619 rtx insn_a, insn_b;
621 /* The SET_SRC of INSN_A and INSN_B. */
622 rtx a, b;
624 /* The SET_DEST of INSN_A. */
625 rtx x;
628 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
629 static int noce_try_move (struct noce_if_info *);
630 static int noce_try_store_flag (struct noce_if_info *);
631 static int noce_try_addcc (struct noce_if_info *);
632 static int noce_try_store_flag_constants (struct noce_if_info *);
633 static int noce_try_store_flag_mask (struct noce_if_info *);
634 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
635 rtx, rtx, rtx);
636 static int noce_try_cmove (struct noce_if_info *);
637 static int noce_try_cmove_arith (struct noce_if_info *);
638 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
639 static int noce_try_minmax (struct noce_if_info *);
640 static int noce_try_abs (struct noce_if_info *);
641 static int noce_try_sign_mask (struct noce_if_info *);
643 /* Helper function for noce_try_store_flag*. */
645 static rtx
646 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
647 int normalize)
649 rtx cond = if_info->cond;
650 int cond_complex;
651 enum rtx_code code;
653 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
654 || ! general_operand (XEXP (cond, 1), VOIDmode));
656 /* If earliest == jump, or when the condition is complex, try to
657 build the store_flag insn directly. */
659 if (cond_complex)
660 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
662 if (reversep)
663 code = reversed_comparison_code (cond, if_info->jump);
664 else
665 code = GET_CODE (cond);
667 if ((if_info->cond_earliest == if_info->jump || cond_complex)
668 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
670 rtx tmp;
672 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
673 XEXP (cond, 1));
674 tmp = gen_rtx_SET (VOIDmode, x, tmp);
676 start_sequence ();
677 tmp = emit_insn (tmp);
679 if (recog_memoized (tmp) >= 0)
681 tmp = get_insns ();
682 end_sequence ();
683 emit_insn (tmp);
685 if_info->cond_earliest = if_info->jump;
687 return x;
690 end_sequence ();
693 /* Don't even try if the comparison operands or the mode of X are weird. */
694 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
695 return NULL_RTX;
697 return emit_store_flag (x, code, XEXP (cond, 0),
698 XEXP (cond, 1), VOIDmode,
699 (code == LTU || code == LEU
700 || code == GEU || code == GTU), normalize);
703 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
704 X is the destination/target and Y is the value to copy. */
706 static void
707 noce_emit_move_insn (rtx x, rtx y)
709 enum machine_mode outmode;
710 rtx outer, inner;
711 int bitpos;
713 if (GET_CODE (x) != STRICT_LOW_PART)
715 rtx seq, insn, target;
716 optab ot;
718 start_sequence ();
719 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
720 otherwise construct a suitable SET pattern ourselves. */
721 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
722 ? emit_move_insn (x, y)
723 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
724 seq = get_insns ();
725 end_sequence();
727 if (recog_memoized (insn) <= 0)
729 if (GET_CODE (x) == ZERO_EXTRACT)
731 rtx op = XEXP (x, 0);
732 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
733 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
735 /* store_bit_field expects START to be relative to
736 BYTES_BIG_ENDIAN and adjusts this value for machines with
737 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
738 invoke store_bit_field again it is necessary to have the START
739 value from the first call. */
740 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
742 if (MEM_P (op))
743 start = BITS_PER_UNIT - start - size;
744 else
746 gcc_assert (REG_P (op));
747 start = BITS_PER_WORD - start - size;
751 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
752 store_bit_field (op, size, start, GET_MODE (x), y);
753 return;
756 switch (GET_RTX_CLASS (GET_CODE (y)))
758 case RTX_UNARY:
759 ot = code_to_optab[GET_CODE (y)];
760 if (ot)
762 start_sequence ();
763 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
764 if (target != NULL_RTX)
766 if (target != x)
767 emit_move_insn (x, target);
768 seq = get_insns ();
770 end_sequence ();
772 break;
774 case RTX_BIN_ARITH:
775 case RTX_COMM_ARITH:
776 ot = code_to_optab[GET_CODE (y)];
777 if (ot)
779 start_sequence ();
780 target = expand_binop (GET_MODE (y), ot,
781 XEXP (y, 0), XEXP (y, 1),
782 x, 0, OPTAB_DIRECT);
783 if (target != NULL_RTX)
785 if (target != x)
786 emit_move_insn (x, target);
787 seq = get_insns ();
789 end_sequence ();
791 break;
793 default:
794 break;
798 emit_insn (seq);
799 return;
802 outer = XEXP (x, 0);
803 inner = XEXP (outer, 0);
804 outmode = GET_MODE (outer);
805 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
806 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
809 /* Return sequence of instructions generated by if conversion. This
810 function calls end_sequence() to end the current stream, ensures
811 that are instructions are unshared, recognizable non-jump insns.
812 On failure, this function returns a NULL_RTX. */
814 static rtx
815 end_ifcvt_sequence (struct noce_if_info *if_info)
817 rtx insn;
818 rtx seq = get_insns ();
820 set_used_flags (if_info->x);
821 set_used_flags (if_info->cond);
822 unshare_all_rtl_in_chain (seq);
823 end_sequence ();
825 /* Make sure that all of the instructions emitted are recognizable,
826 and that we haven't introduced a new jump instruction.
827 As an exercise for the reader, build a general mechanism that
828 allows proper placement of required clobbers. */
829 for (insn = seq; insn; insn = NEXT_INSN (insn))
830 if (JUMP_P (insn)
831 || recog_memoized (insn) == -1)
832 return NULL_RTX;
834 return seq;
837 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
838 "if (a == b) x = a; else x = b" into "x = b". */
840 static int
841 noce_try_move (struct noce_if_info *if_info)
843 rtx cond = if_info->cond;
844 enum rtx_code code = GET_CODE (cond);
845 rtx y, seq;
847 if (code != NE && code != EQ)
848 return FALSE;
850 /* This optimization isn't valid if either A or B could be a NaN
851 or a signed zero. */
852 if (HONOR_NANS (GET_MODE (if_info->x))
853 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
854 return FALSE;
856 /* Check whether the operands of the comparison are A and in
857 either order. */
858 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
859 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
860 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
861 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
863 y = (code == EQ) ? if_info->a : if_info->b;
865 /* Avoid generating the move if the source is the destination. */
866 if (! rtx_equal_p (if_info->x, y))
868 start_sequence ();
869 noce_emit_move_insn (if_info->x, y);
870 seq = end_ifcvt_sequence (if_info);
871 if (!seq)
872 return FALSE;
874 emit_insn_before_setloc (seq, if_info->jump,
875 INSN_LOCATOR (if_info->insn_a));
877 return TRUE;
879 return FALSE;
882 /* Convert "if (test) x = 1; else x = 0".
884 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
885 tried in noce_try_store_flag_constants after noce_try_cmove has had
886 a go at the conversion. */
888 static int
889 noce_try_store_flag (struct noce_if_info *if_info)
891 int reversep;
892 rtx target, seq;
894 if (GET_CODE (if_info->b) == CONST_INT
895 && INTVAL (if_info->b) == STORE_FLAG_VALUE
896 && if_info->a == const0_rtx)
897 reversep = 0;
898 else if (if_info->b == const0_rtx
899 && GET_CODE (if_info->a) == CONST_INT
900 && INTVAL (if_info->a) == STORE_FLAG_VALUE
901 && (reversed_comparison_code (if_info->cond, if_info->jump)
902 != UNKNOWN))
903 reversep = 1;
904 else
905 return FALSE;
907 start_sequence ();
909 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
910 if (target)
912 if (target != if_info->x)
913 noce_emit_move_insn (if_info->x, target);
915 seq = end_ifcvt_sequence (if_info);
916 if (! seq)
917 return FALSE;
919 emit_insn_before_setloc (seq, if_info->jump,
920 INSN_LOCATOR (if_info->insn_a));
921 return TRUE;
923 else
925 end_sequence ();
926 return FALSE;
930 /* Convert "if (test) x = a; else x = b", for A and B constant. */
932 static int
933 noce_try_store_flag_constants (struct noce_if_info *if_info)
935 rtx target, seq;
936 int reversep;
937 HOST_WIDE_INT itrue, ifalse, diff, tmp;
938 int normalize, can_reverse;
939 enum machine_mode mode;
941 if (! no_new_pseudos
942 && GET_CODE (if_info->a) == CONST_INT
943 && GET_CODE (if_info->b) == CONST_INT)
945 mode = GET_MODE (if_info->x);
946 ifalse = INTVAL (if_info->a);
947 itrue = INTVAL (if_info->b);
949 /* Make sure we can represent the difference between the two values. */
950 if ((itrue - ifalse > 0)
951 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
952 return FALSE;
954 diff = trunc_int_for_mode (itrue - ifalse, mode);
956 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
957 != UNKNOWN);
959 reversep = 0;
960 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
961 normalize = 0;
962 else if (ifalse == 0 && exact_log2 (itrue) >= 0
963 && (STORE_FLAG_VALUE == 1
964 || BRANCH_COST >= 2))
965 normalize = 1;
966 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
967 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
968 normalize = 1, reversep = 1;
969 else if (itrue == -1
970 && (STORE_FLAG_VALUE == -1
971 || BRANCH_COST >= 2))
972 normalize = -1;
973 else if (ifalse == -1 && can_reverse
974 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
975 normalize = -1, reversep = 1;
976 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
977 || BRANCH_COST >= 3)
978 normalize = -1;
979 else
980 return FALSE;
982 if (reversep)
984 tmp = itrue; itrue = ifalse; ifalse = tmp;
985 diff = trunc_int_for_mode (-diff, mode);
988 start_sequence ();
989 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
990 if (! target)
992 end_sequence ();
993 return FALSE;
996 /* if (test) x = 3; else x = 4;
997 => x = 3 + (test == 0); */
998 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1000 target = expand_simple_binop (mode,
1001 (diff == STORE_FLAG_VALUE
1002 ? PLUS : MINUS),
1003 GEN_INT (ifalse), target, if_info->x, 0,
1004 OPTAB_WIDEN);
1007 /* if (test) x = 8; else x = 0;
1008 => x = (test != 0) << 3; */
1009 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1011 target = expand_simple_binop (mode, ASHIFT,
1012 target, GEN_INT (tmp), if_info->x, 0,
1013 OPTAB_WIDEN);
1016 /* if (test) x = -1; else x = b;
1017 => x = -(test != 0) | b; */
1018 else if (itrue == -1)
1020 target = expand_simple_binop (mode, IOR,
1021 target, GEN_INT (ifalse), if_info->x, 0,
1022 OPTAB_WIDEN);
1025 /* if (test) x = a; else x = b;
1026 => x = (-(test != 0) & (b - a)) + a; */
1027 else
1029 target = expand_simple_binop (mode, AND,
1030 target, GEN_INT (diff), if_info->x, 0,
1031 OPTAB_WIDEN);
1032 if (target)
1033 target = expand_simple_binop (mode, PLUS,
1034 target, GEN_INT (ifalse),
1035 if_info->x, 0, OPTAB_WIDEN);
1038 if (! target)
1040 end_sequence ();
1041 return FALSE;
1044 if (target != if_info->x)
1045 noce_emit_move_insn (if_info->x, target);
1047 seq = end_ifcvt_sequence (if_info);
1048 if (!seq)
1049 return FALSE;
1051 emit_insn_before_setloc (seq, if_info->jump,
1052 INSN_LOCATOR (if_info->insn_a));
1053 return TRUE;
1056 return FALSE;
1059 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1060 similarly for "foo--". */
1062 static int
1063 noce_try_addcc (struct noce_if_info *if_info)
1065 rtx target, seq;
1066 int subtract, normalize;
1068 if (! no_new_pseudos
1069 && GET_CODE (if_info->a) == PLUS
1070 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1071 && (reversed_comparison_code (if_info->cond, if_info->jump)
1072 != UNKNOWN))
1074 rtx cond = if_info->cond;
1075 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1077 /* First try to use addcc pattern. */
1078 if (general_operand (XEXP (cond, 0), VOIDmode)
1079 && general_operand (XEXP (cond, 1), VOIDmode))
1081 start_sequence ();
1082 target = emit_conditional_add (if_info->x, code,
1083 XEXP (cond, 0),
1084 XEXP (cond, 1),
1085 VOIDmode,
1086 if_info->b,
1087 XEXP (if_info->a, 1),
1088 GET_MODE (if_info->x),
1089 (code == LTU || code == GEU
1090 || code == LEU || code == GTU));
1091 if (target)
1093 if (target != if_info->x)
1094 noce_emit_move_insn (if_info->x, target);
1096 seq = end_ifcvt_sequence (if_info);
1097 if (!seq)
1098 return FALSE;
1100 emit_insn_before_setloc (seq, if_info->jump,
1101 INSN_LOCATOR (if_info->insn_a));
1102 return TRUE;
1104 end_sequence ();
1107 /* If that fails, construct conditional increment or decrement using
1108 setcc. */
1109 if (BRANCH_COST >= 2
1110 && (XEXP (if_info->a, 1) == const1_rtx
1111 || XEXP (if_info->a, 1) == constm1_rtx))
1113 start_sequence ();
1114 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1115 subtract = 0, normalize = 0;
1116 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1117 subtract = 1, normalize = 0;
1118 else
1119 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1122 target = noce_emit_store_flag (if_info,
1123 gen_reg_rtx (GET_MODE (if_info->x)),
1124 1, normalize);
1126 if (target)
1127 target = expand_simple_binop (GET_MODE (if_info->x),
1128 subtract ? MINUS : PLUS,
1129 if_info->b, target, if_info->x,
1130 0, OPTAB_WIDEN);
1131 if (target)
1133 if (target != if_info->x)
1134 noce_emit_move_insn (if_info->x, target);
1136 seq = end_ifcvt_sequence (if_info);
1137 if (!seq)
1138 return FALSE;
1140 emit_insn_before_setloc (seq, if_info->jump,
1141 INSN_LOCATOR (if_info->insn_a));
1142 return TRUE;
1144 end_sequence ();
1148 return FALSE;
1151 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1153 static int
1154 noce_try_store_flag_mask (struct noce_if_info *if_info)
1156 rtx target, seq;
1157 int reversep;
1159 reversep = 0;
1160 if (! no_new_pseudos
1161 && (BRANCH_COST >= 2
1162 || STORE_FLAG_VALUE == -1)
1163 && ((if_info->a == const0_rtx
1164 && rtx_equal_p (if_info->b, if_info->x))
1165 || ((reversep = (reversed_comparison_code (if_info->cond,
1166 if_info->jump)
1167 != UNKNOWN))
1168 && if_info->b == const0_rtx
1169 && rtx_equal_p (if_info->a, if_info->x))))
1171 start_sequence ();
1172 target = noce_emit_store_flag (if_info,
1173 gen_reg_rtx (GET_MODE (if_info->x)),
1174 reversep, -1);
1175 if (target)
1176 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1177 if_info->x,
1178 target, if_info->x, 0,
1179 OPTAB_WIDEN);
1181 if (target)
1183 if (target != if_info->x)
1184 noce_emit_move_insn (if_info->x, target);
1186 seq = end_ifcvt_sequence (if_info);
1187 if (!seq)
1188 return FALSE;
1190 emit_insn_before_setloc (seq, if_info->jump,
1191 INSN_LOCATOR (if_info->insn_a));
1192 return TRUE;
1195 end_sequence ();
1198 return FALSE;
1201 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1203 static rtx
1204 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1205 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1207 /* If earliest == jump, try to build the cmove insn directly.
1208 This is helpful when combine has created some complex condition
1209 (like for alpha's cmovlbs) that we can't hope to regenerate
1210 through the normal interface. */
1212 if (if_info->cond_earliest == if_info->jump)
1214 rtx tmp;
1216 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1217 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1218 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1220 start_sequence ();
1221 tmp = emit_insn (tmp);
1223 if (recog_memoized (tmp) >= 0)
1225 tmp = get_insns ();
1226 end_sequence ();
1227 emit_insn (tmp);
1229 return x;
1232 end_sequence ();
1235 /* Don't even try if the comparison operands are weird. */
1236 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1237 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1238 return NULL_RTX;
1240 #if HAVE_conditional_move
1241 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1242 vtrue, vfalse, GET_MODE (x),
1243 (code == LTU || code == GEU
1244 || code == LEU || code == GTU));
1245 #else
1246 /* We'll never get here, as noce_process_if_block doesn't call the
1247 functions involved. Ifdef code, however, should be discouraged
1248 because it leads to typos in the code not selected. However,
1249 emit_conditional_move won't exist either. */
1250 return NULL_RTX;
1251 #endif
1254 /* Try only simple constants and registers here. More complex cases
1255 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1256 has had a go at it. */
1258 static int
1259 noce_try_cmove (struct noce_if_info *if_info)
1261 enum rtx_code code;
1262 rtx target, seq;
1264 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1265 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1267 start_sequence ();
1269 code = GET_CODE (if_info->cond);
1270 target = noce_emit_cmove (if_info, if_info->x, code,
1271 XEXP (if_info->cond, 0),
1272 XEXP (if_info->cond, 1),
1273 if_info->a, if_info->b);
1275 if (target)
1277 if (target != if_info->x)
1278 noce_emit_move_insn (if_info->x, target);
1280 seq = end_ifcvt_sequence (if_info);
1281 if (!seq)
1282 return FALSE;
1284 emit_insn_before_setloc (seq, if_info->jump,
1285 INSN_LOCATOR (if_info->insn_a));
1286 return TRUE;
1288 else
1290 end_sequence ();
1291 return FALSE;
1295 return FALSE;
1298 /* Try more complex cases involving conditional_move. */
1300 static int
1301 noce_try_cmove_arith (struct noce_if_info *if_info)
1303 rtx a = if_info->a;
1304 rtx b = if_info->b;
1305 rtx x = if_info->x;
1306 rtx orig_a, orig_b;
1307 rtx insn_a, insn_b;
1308 rtx tmp, target;
1309 int is_mem = 0;
1310 int insn_cost;
1311 enum rtx_code code;
1313 /* A conditional move from two memory sources is equivalent to a
1314 conditional on their addresses followed by a load. Don't do this
1315 early because it'll screw alias analysis. Note that we've
1316 already checked for no side effects. */
1317 if (! no_new_pseudos && cse_not_expected
1318 && MEM_P (a) && MEM_P (b)
1319 && BRANCH_COST >= 5)
1321 a = XEXP (a, 0);
1322 b = XEXP (b, 0);
1323 x = gen_reg_rtx (Pmode);
1324 is_mem = 1;
1327 /* ??? We could handle this if we knew that a load from A or B could
1328 not fault. This is also true if we've already loaded
1329 from the address along the path from ENTRY. */
1330 else if (may_trap_p (a) || may_trap_p (b))
1331 return FALSE;
1333 /* if (test) x = a + b; else x = c - d;
1334 => y = a + b;
1335 x = c - d;
1336 if (test)
1337 x = y;
1340 code = GET_CODE (if_info->cond);
1341 insn_a = if_info->insn_a;
1342 insn_b = if_info->insn_b;
1344 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1345 if insn_rtx_cost can't be estimated. */
1346 if (insn_a)
1348 insn_cost = insn_rtx_cost (PATTERN (insn_a));
1349 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1350 return FALSE;
1352 else
1353 insn_cost = 0;
1355 if (insn_b)
1357 insn_cost += insn_rtx_cost (PATTERN (insn_b));
1358 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1359 return FALSE;
1362 /* Possibly rearrange operands to make things come out more natural. */
1363 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1365 int reversep = 0;
1366 if (rtx_equal_p (b, x))
1367 reversep = 1;
1368 else if (general_operand (b, GET_MODE (b)))
1369 reversep = 1;
1371 if (reversep)
1373 code = reversed_comparison_code (if_info->cond, if_info->jump);
1374 tmp = a, a = b, b = tmp;
1375 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1379 start_sequence ();
1381 orig_a = a;
1382 orig_b = b;
1384 /* If either operand is complex, load it into a register first.
1385 The best way to do this is to copy the original insn. In this
1386 way we preserve any clobbers etc that the insn may have had.
1387 This is of course not possible in the IS_MEM case. */
1388 if (! general_operand (a, GET_MODE (a)))
1390 rtx set;
1392 if (no_new_pseudos)
1393 goto end_seq_and_fail;
1395 if (is_mem)
1397 tmp = gen_reg_rtx (GET_MODE (a));
1398 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1400 else if (! insn_a)
1401 goto end_seq_and_fail;
1402 else
1404 a = gen_reg_rtx (GET_MODE (a));
1405 tmp = copy_rtx (insn_a);
1406 set = single_set (tmp);
1407 SET_DEST (set) = a;
1408 tmp = emit_insn (PATTERN (tmp));
1410 if (recog_memoized (tmp) < 0)
1411 goto end_seq_and_fail;
1413 if (! general_operand (b, GET_MODE (b)))
1415 rtx set, last;
1417 if (no_new_pseudos)
1418 goto end_seq_and_fail;
1420 if (is_mem)
1422 tmp = gen_reg_rtx (GET_MODE (b));
1423 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1425 else if (! insn_b)
1426 goto end_seq_and_fail;
1427 else
1429 b = gen_reg_rtx (GET_MODE (b));
1430 tmp = copy_rtx (insn_b);
1431 set = single_set (tmp);
1432 SET_DEST (set) = b;
1433 tmp = PATTERN (tmp);
1436 /* If insn to set up A clobbers any registers B depends on, try to
1437 swap insn that sets up A with the one that sets up B. If even
1438 that doesn't help, punt. */
1439 last = get_last_insn ();
1440 if (last && modified_in_p (orig_b, last))
1442 tmp = emit_insn_before (tmp, get_insns ());
1443 if (modified_in_p (orig_a, tmp))
1444 goto end_seq_and_fail;
1446 else
1447 tmp = emit_insn (tmp);
1449 if (recog_memoized (tmp) < 0)
1450 goto end_seq_and_fail;
1453 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1454 XEXP (if_info->cond, 1), a, b);
1456 if (! target)
1457 goto end_seq_and_fail;
1459 /* If we're handling a memory for above, emit the load now. */
1460 if (is_mem)
1462 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1464 /* Copy over flags as appropriate. */
1465 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1466 MEM_VOLATILE_P (tmp) = 1;
1467 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1468 MEM_IN_STRUCT_P (tmp) = 1;
1469 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1470 MEM_SCALAR_P (tmp) = 1;
1471 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1472 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1473 set_mem_align (tmp,
1474 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1476 noce_emit_move_insn (if_info->x, tmp);
1478 else if (target != x)
1479 noce_emit_move_insn (x, target);
1481 tmp = end_ifcvt_sequence (if_info);
1482 if (!tmp)
1483 return FALSE;
1485 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1486 return TRUE;
1488 end_seq_and_fail:
1489 end_sequence ();
1490 return FALSE;
1493 /* For most cases, the simplified condition we found is the best
1494 choice, but this is not the case for the min/max/abs transforms.
1495 For these we wish to know that it is A or B in the condition. */
1497 static rtx
1498 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1499 rtx *earliest)
1501 rtx cond, set, insn;
1502 int reverse;
1504 /* If target is already mentioned in the known condition, return it. */
1505 if (reg_mentioned_p (target, if_info->cond))
1507 *earliest = if_info->cond_earliest;
1508 return if_info->cond;
1511 set = pc_set (if_info->jump);
1512 cond = XEXP (SET_SRC (set), 0);
1513 reverse
1514 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1515 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1517 /* If we're looking for a constant, try to make the conditional
1518 have that constant in it. There are two reasons why it may
1519 not have the constant we want:
1521 1. GCC may have needed to put the constant in a register, because
1522 the target can't compare directly against that constant. For
1523 this case, we look for a SET immediately before the comparison
1524 that puts a constant in that register.
1526 2. GCC may have canonicalized the conditional, for example
1527 replacing "if x < 4" with "if x <= 3". We can undo that (or
1528 make equivalent types of changes) to get the constants we need
1529 if they're off by one in the right direction. */
1531 if (GET_CODE (target) == CONST_INT)
1533 enum rtx_code code = GET_CODE (if_info->cond);
1534 rtx op_a = XEXP (if_info->cond, 0);
1535 rtx op_b = XEXP (if_info->cond, 1);
1536 rtx prev_insn;
1538 /* First, look to see if we put a constant in a register. */
1539 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1540 if (prev_insn
1541 && INSN_P (prev_insn)
1542 && GET_CODE (PATTERN (prev_insn)) == SET)
1544 rtx src = find_reg_equal_equiv_note (prev_insn);
1545 if (!src)
1546 src = SET_SRC (PATTERN (prev_insn));
1547 if (GET_CODE (src) == CONST_INT)
1549 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1550 op_a = src;
1551 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1552 op_b = src;
1554 if (GET_CODE (op_a) == CONST_INT)
1556 rtx tmp = op_a;
1557 op_a = op_b;
1558 op_b = tmp;
1559 code = swap_condition (code);
1564 /* Now, look to see if we can get the right constant by
1565 adjusting the conditional. */
1566 if (GET_CODE (op_b) == CONST_INT)
1568 HOST_WIDE_INT desired_val = INTVAL (target);
1569 HOST_WIDE_INT actual_val = INTVAL (op_b);
1571 switch (code)
1573 case LT:
1574 if (actual_val == desired_val + 1)
1576 code = LE;
1577 op_b = GEN_INT (desired_val);
1579 break;
1580 case LE:
1581 if (actual_val == desired_val - 1)
1583 code = LT;
1584 op_b = GEN_INT (desired_val);
1586 break;
1587 case GT:
1588 if (actual_val == desired_val - 1)
1590 code = GE;
1591 op_b = GEN_INT (desired_val);
1593 break;
1594 case GE:
1595 if (actual_val == desired_val + 1)
1597 code = GT;
1598 op_b = GEN_INT (desired_val);
1600 break;
1601 default:
1602 break;
1606 /* If we made any changes, generate a new conditional that is
1607 equivalent to what we started with, but has the right
1608 constants in it. */
1609 if (code != GET_CODE (if_info->cond)
1610 || op_a != XEXP (if_info->cond, 0)
1611 || op_b != XEXP (if_info->cond, 1))
1613 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1614 *earliest = if_info->cond_earliest;
1615 return cond;
1619 cond = canonicalize_condition (if_info->jump, cond, reverse,
1620 earliest, target, false, true);
1621 if (! cond || ! reg_mentioned_p (target, cond))
1622 return NULL;
1624 /* We almost certainly searched back to a different place.
1625 Need to re-verify correct lifetimes. */
1627 /* X may not be mentioned in the range (cond_earliest, jump]. */
1628 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1629 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1630 return NULL;
1632 /* A and B may not be modified in the range [cond_earliest, jump). */
1633 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1634 if (INSN_P (insn)
1635 && (modified_in_p (if_info->a, insn)
1636 || modified_in_p (if_info->b, insn)))
1637 return NULL;
1639 return cond;
1642 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1644 static int
1645 noce_try_minmax (struct noce_if_info *if_info)
1647 rtx cond, earliest, target, seq;
1648 enum rtx_code code, op;
1649 int unsignedp;
1651 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1652 if (no_new_pseudos)
1653 return FALSE;
1655 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1656 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1657 to get the target to tell us... */
1658 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1659 || HONOR_NANS (GET_MODE (if_info->x)))
1660 return FALSE;
1662 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1663 if (!cond)
1664 return FALSE;
1666 /* Verify the condition is of the form we expect, and canonicalize
1667 the comparison code. */
1668 code = GET_CODE (cond);
1669 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1671 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1672 return FALSE;
1674 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1676 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1677 return FALSE;
1678 code = swap_condition (code);
1680 else
1681 return FALSE;
1683 /* Determine what sort of operation this is. Note that the code is for
1684 a taken branch, so the code->operation mapping appears backwards. */
1685 switch (code)
1687 case LT:
1688 case LE:
1689 case UNLT:
1690 case UNLE:
1691 op = SMAX;
1692 unsignedp = 0;
1693 break;
1694 case GT:
1695 case GE:
1696 case UNGT:
1697 case UNGE:
1698 op = SMIN;
1699 unsignedp = 0;
1700 break;
1701 case LTU:
1702 case LEU:
1703 op = UMAX;
1704 unsignedp = 1;
1705 break;
1706 case GTU:
1707 case GEU:
1708 op = UMIN;
1709 unsignedp = 1;
1710 break;
1711 default:
1712 return FALSE;
1715 start_sequence ();
1717 target = expand_simple_binop (GET_MODE (if_info->x), op,
1718 if_info->a, if_info->b,
1719 if_info->x, unsignedp, OPTAB_WIDEN);
1720 if (! target)
1722 end_sequence ();
1723 return FALSE;
1725 if (target != if_info->x)
1726 noce_emit_move_insn (if_info->x, target);
1728 seq = end_ifcvt_sequence (if_info);
1729 if (!seq)
1730 return FALSE;
1732 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1733 if_info->cond = cond;
1734 if_info->cond_earliest = earliest;
1736 return TRUE;
1739 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1741 static int
1742 noce_try_abs (struct noce_if_info *if_info)
1744 rtx cond, earliest, target, seq, a, b, c;
1745 int negate;
1747 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1748 if (no_new_pseudos)
1749 return FALSE;
1751 /* Recognize A and B as constituting an ABS or NABS. The canonical
1752 form is a branch around the negation, taken when the object is the
1753 first operand of a comparison against 0 that evaluates to true. */
1754 a = if_info->a;
1755 b = if_info->b;
1756 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1757 negate = 0;
1758 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1760 c = a; a = b; b = c;
1761 negate = 1;
1763 else
1764 return FALSE;
1766 cond = noce_get_alt_condition (if_info, b, &earliest);
1767 if (!cond)
1768 return FALSE;
1770 /* Verify the condition is of the form we expect. */
1771 if (rtx_equal_p (XEXP (cond, 0), b))
1772 c = XEXP (cond, 1);
1773 else if (rtx_equal_p (XEXP (cond, 1), b))
1775 c = XEXP (cond, 0);
1776 negate = !negate;
1778 else
1779 return FALSE;
1781 /* Verify that C is zero. Search one step backward for a
1782 REG_EQUAL note or a simple source if necessary. */
1783 if (REG_P (c))
1785 rtx set, insn = prev_nonnote_insn (earliest);
1786 if (insn
1787 && (set = single_set (insn))
1788 && rtx_equal_p (SET_DEST (set), c))
1790 rtx note = find_reg_equal_equiv_note (insn);
1791 if (note)
1792 c = XEXP (note, 0);
1793 else
1794 c = SET_SRC (set);
1796 else
1797 return FALSE;
1799 if (MEM_P (c)
1800 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1801 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1802 c = get_pool_constant (XEXP (c, 0));
1804 /* Work around funny ideas get_condition has wrt canonicalization.
1805 Note that these rtx constants are known to be CONST_INT, and
1806 therefore imply integer comparisons. */
1807 if (c == constm1_rtx && GET_CODE (cond) == GT)
1809 else if (c == const1_rtx && GET_CODE (cond) == LT)
1811 else if (c != CONST0_RTX (GET_MODE (b)))
1812 return FALSE;
1814 /* Determine what sort of operation this is. */
1815 switch (GET_CODE (cond))
1817 case LT:
1818 case LE:
1819 case UNLT:
1820 case UNLE:
1821 negate = !negate;
1822 break;
1823 case GT:
1824 case GE:
1825 case UNGT:
1826 case UNGE:
1827 break;
1828 default:
1829 return FALSE;
1832 start_sequence ();
1834 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1836 /* ??? It's a quandary whether cmove would be better here, especially
1837 for integers. Perhaps combine will clean things up. */
1838 if (target && negate)
1839 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1841 if (! target)
1843 end_sequence ();
1844 return FALSE;
1847 if (target != if_info->x)
1848 noce_emit_move_insn (if_info->x, target);
1850 seq = end_ifcvt_sequence (if_info);
1851 if (!seq)
1852 return FALSE;
1854 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1855 if_info->cond = cond;
1856 if_info->cond_earliest = earliest;
1858 return TRUE;
1861 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1863 static int
1864 noce_try_sign_mask (struct noce_if_info *if_info)
1866 rtx cond, t, m, c, seq;
1867 enum machine_mode mode;
1868 enum rtx_code code;
1869 bool b_unconditional;
1871 if (no_new_pseudos)
1872 return FALSE;
1874 cond = if_info->cond;
1875 code = GET_CODE (cond);
1876 m = XEXP (cond, 0);
1877 c = XEXP (cond, 1);
1879 t = NULL_RTX;
1880 if (if_info->a == const0_rtx)
1882 if ((code == LT && c == const0_rtx)
1883 || (code == LE && c == constm1_rtx))
1884 t = if_info->b;
1886 else if (if_info->b == const0_rtx)
1888 if ((code == GE && c == const0_rtx)
1889 || (code == GT && c == constm1_rtx))
1890 t = if_info->a;
1893 if (! t || side_effects_p (t))
1894 return FALSE;
1896 /* We currently don't handle different modes. */
1897 mode = GET_MODE (t);
1898 if (GET_MODE (m) != mode)
1899 return FALSE;
1901 /* This is only profitable if T is cheap, or T is unconditionally
1902 executed/evaluated in the original insn sequence. The latter
1903 happens if INSN_B was taken from TEST_BB, or if there was no
1904 INSN_B which can happen for e.g. conditional stores to memory. */
1905 b_unconditional = (if_info->insn_b == NULL_RTX
1906 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb);
1907 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1908 && (!b_unconditional
1909 || t != if_info->b))
1910 return FALSE;
1912 start_sequence ();
1913 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1914 "(signed) m >> 31" directly. This benefits targets with specialized
1915 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1916 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1917 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1918 : NULL_RTX;
1920 if (!t)
1922 end_sequence ();
1923 return FALSE;
1926 noce_emit_move_insn (if_info->x, t);
1928 seq = end_ifcvt_sequence (if_info);
1929 if (!seq)
1930 return FALSE;
1932 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1933 return TRUE;
1937 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
1938 transformations. */
1940 static int
1941 noce_try_bitop (struct noce_if_info *if_info)
1943 rtx cond, x, a, result, seq;
1944 enum machine_mode mode;
1945 enum rtx_code code;
1946 int bitnum;
1948 x = if_info->x;
1949 cond = if_info->cond;
1950 code = GET_CODE (cond);
1952 /* Check for no else condition. */
1953 if (! rtx_equal_p (x, if_info->b))
1954 return FALSE;
1956 /* Check for a suitable condition. */
1957 if (code != NE && code != EQ)
1958 return FALSE;
1959 if (XEXP (cond, 1) != const0_rtx)
1960 return FALSE;
1961 cond = XEXP (cond, 0);
1963 /* ??? We could also handle AND here. */
1964 if (GET_CODE (cond) == ZERO_EXTRACT)
1966 if (XEXP (cond, 1) != const1_rtx
1967 || GET_CODE (XEXP (cond, 2)) != CONST_INT
1968 || ! rtx_equal_p (x, XEXP (cond, 0)))
1969 return FALSE;
1970 bitnum = INTVAL (XEXP (cond, 2));
1971 mode = GET_MODE (x);
1972 if (BITS_BIG_ENDIAN)
1973 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
1974 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
1975 return FALSE;
1977 else
1978 return FALSE;
1980 a = if_info->a;
1981 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
1983 /* Check for "if (X & C) x = x op C". */
1984 if (! rtx_equal_p (x, XEXP (a, 0))
1985 || GET_CODE (XEXP (a, 1)) != CONST_INT
1986 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1987 != (unsigned HOST_WIDE_INT) 1 << bitnum)
1988 return FALSE;
1990 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
1991 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
1992 if (GET_CODE (a) == IOR)
1993 result = (code == NE) ? a : NULL_RTX;
1994 else if (code == NE)
1996 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
1997 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
1998 result = simplify_gen_binary (IOR, mode, x, result);
2000 else
2002 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2003 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2004 result = simplify_gen_binary (AND, mode, x, result);
2007 else if (GET_CODE (a) == AND)
2009 /* Check for "if (X & C) x &= ~C". */
2010 if (! rtx_equal_p (x, XEXP (a, 0))
2011 || GET_CODE (XEXP (a, 1)) != CONST_INT
2012 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2013 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2014 return FALSE;
2016 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2017 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2018 result = (code == EQ) ? a : NULL_RTX;
2020 else
2021 return FALSE;
2023 if (result)
2025 start_sequence ();
2026 noce_emit_move_insn (x, result);
2027 seq = end_ifcvt_sequence (if_info);
2028 if (!seq)
2029 return FALSE;
2031 emit_insn_before_setloc (seq, if_info->jump,
2032 INSN_LOCATOR (if_info->insn_a));
2034 return TRUE;
2038 /* Similar to get_condition, only the resulting condition must be
2039 valid at JUMP, instead of at EARLIEST. */
2041 static rtx
2042 noce_get_condition (rtx jump, rtx *earliest)
2044 rtx cond, set, tmp;
2045 bool reverse;
2047 if (! any_condjump_p (jump))
2048 return NULL_RTX;
2050 set = pc_set (jump);
2052 /* If this branches to JUMP_LABEL when the condition is false,
2053 reverse the condition. */
2054 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2055 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2057 /* If the condition variable is a register and is MODE_INT, accept it. */
2059 cond = XEXP (SET_SRC (set), 0);
2060 tmp = XEXP (cond, 0);
2061 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2063 *earliest = jump;
2065 if (reverse)
2066 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2067 GET_MODE (cond), tmp, XEXP (cond, 1));
2068 return cond;
2071 /* Otherwise, fall back on canonicalize_condition to do the dirty
2072 work of manipulating MODE_CC values and COMPARE rtx codes. */
2073 return canonicalize_condition (jump, cond, reverse, earliest,
2074 NULL_RTX, false, true);
2077 /* Initialize for a simple IF-THEN or IF-THEN-ELSE block. We will not
2078 be using conditional execution. Set some fields of IF_INFO based
2079 on CE_INFO: test_bb, cond, jump, cond_earliest. Return TRUE if
2080 things look OK. */
2082 static int
2083 noce_init_if_info (struct ce_if_block *ce_info, struct noce_if_info *if_info)
2085 basic_block test_bb = ce_info->test_bb;
2086 rtx cond, jump;
2088 /* If test is comprised of && or || elements, don't handle it unless
2089 it is the special case of && elements without an ELSE block. */
2090 if (ce_info->num_multiple_test_blocks)
2092 if (ce_info->else_bb || !ce_info->and_and_p)
2093 return FALSE;
2095 ce_info->test_bb = test_bb = ce_info->last_test_bb;
2096 ce_info->num_multiple_test_blocks = 0;
2097 ce_info->num_and_and_blocks = 0;
2098 ce_info->num_or_or_blocks = 0;
2101 /* If this is not a standard conditional jump, we can't parse it. */
2102 jump = BB_END (test_bb);
2103 cond = noce_get_condition (jump, &if_info->cond_earliest);
2104 if (!cond)
2105 return FALSE;
2107 /* If the conditional jump is more than just a conditional
2108 jump, then we can not do if-conversion on this block. */
2109 if (! onlyjump_p (jump))
2110 return FALSE;
2112 /* We must be comparing objects whose modes imply the size. */
2113 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2114 return FALSE;
2116 if_info->test_bb = test_bb;
2117 if_info->cond = cond;
2118 if_info->jump = jump;
2120 return TRUE;
2123 /* Return true if OP is ok for if-then-else processing. */
2125 static int
2126 noce_operand_ok (rtx op)
2128 /* We special-case memories, so handle any of them with
2129 no address side effects. */
2130 if (MEM_P (op))
2131 return ! side_effects_p (XEXP (op, 0));
2133 if (side_effects_p (op))
2134 return FALSE;
2136 return ! may_trap_p (op);
2139 /* Return true if a write into MEM may trap or fault. */
2141 static bool
2142 noce_mem_write_may_trap_or_fault_p (rtx mem)
2144 rtx addr;
2146 if (MEM_READONLY_P (mem))
2147 return true;
2149 if (may_trap_or_fault_p (mem))
2150 return true;
2152 addr = XEXP (mem, 0);
2154 /* Call target hook to avoid the effects of -fpic etc.... */
2155 addr = targetm.delegitimize_address (addr);
2157 while (addr)
2158 switch (GET_CODE (addr))
2160 case CONST:
2161 case PRE_DEC:
2162 case PRE_INC:
2163 case POST_DEC:
2164 case POST_INC:
2165 case POST_MODIFY:
2166 addr = XEXP (addr, 0);
2167 break;
2168 case LO_SUM:
2169 case PRE_MODIFY:
2170 addr = XEXP (addr, 1);
2171 break;
2172 case PLUS:
2173 if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2174 addr = XEXP (addr, 0);
2175 else
2176 return false;
2177 break;
2178 case LABEL_REF:
2179 return true;
2180 case SYMBOL_REF:
2181 if (SYMBOL_REF_DECL (addr)
2182 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2183 return true;
2184 return false;
2185 default:
2186 return false;
2189 return false;
2192 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
2193 without using conditional execution. Return TRUE if we were
2194 successful at converting the block. */
2196 static int
2197 noce_process_if_block (struct ce_if_block * ce_info)
2199 basic_block test_bb = ce_info->test_bb; /* test block */
2200 basic_block then_bb = ce_info->then_bb; /* THEN */
2201 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2202 basic_block join_bb;
2203 struct noce_if_info if_info;
2204 rtx insn_a, insn_b;
2205 rtx set_a, set_b;
2206 rtx orig_x, x, a, b;
2207 rtx jump, cond;
2209 /* We're looking for patterns of the form
2211 (1) if (...) x = a; else x = b;
2212 (2) x = b; if (...) x = a;
2213 (3) if (...) x = a; // as if with an initial x = x.
2215 The later patterns require jumps to be more expensive.
2217 ??? For future expansion, look for multiple X in such patterns. */
2219 if (!noce_init_if_info (ce_info, &if_info))
2220 return FALSE;
2222 cond = if_info.cond;
2223 jump = if_info.jump;
2225 /* Look for one of the potential sets. */
2226 insn_a = first_active_insn (then_bb);
2227 if (! insn_a
2228 || insn_a != last_active_insn (then_bb, FALSE)
2229 || (set_a = single_set (insn_a)) == NULL_RTX)
2230 return FALSE;
2232 x = SET_DEST (set_a);
2233 a = SET_SRC (set_a);
2235 /* Look for the other potential set. Make sure we've got equivalent
2236 destinations. */
2237 /* ??? This is overconservative. Storing to two different mems is
2238 as easy as conditionally computing the address. Storing to a
2239 single mem merely requires a scratch memory to use as one of the
2240 destination addresses; often the memory immediately below the
2241 stack pointer is available for this. */
2242 set_b = NULL_RTX;
2243 if (else_bb)
2245 insn_b = first_active_insn (else_bb);
2246 if (! insn_b
2247 || insn_b != last_active_insn (else_bb, FALSE)
2248 || (set_b = single_set (insn_b)) == NULL_RTX
2249 || ! rtx_equal_p (x, SET_DEST (set_b)))
2250 return FALSE;
2252 else
2254 insn_b = prev_nonnote_insn (if_info.cond_earliest);
2255 /* We're going to be moving the evaluation of B down from above
2256 COND_EARLIEST to JUMP. Make sure the relevant data is still
2257 intact. */
2258 if (! insn_b
2259 || !NONJUMP_INSN_P (insn_b)
2260 || (set_b = single_set (insn_b)) == NULL_RTX
2261 || ! rtx_equal_p (x, SET_DEST (set_b))
2262 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2263 || modified_between_p (SET_SRC (set_b),
2264 PREV_INSN (if_info.cond_earliest), jump)
2265 /* Likewise with X. In particular this can happen when
2266 noce_get_condition looks farther back in the instruction
2267 stream than one might expect. */
2268 || reg_overlap_mentioned_p (x, cond)
2269 || reg_overlap_mentioned_p (x, a)
2270 || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
2271 insn_b = set_b = NULL_RTX;
2274 /* If x has side effects then only the if-then-else form is safe to
2275 convert. But even in that case we would need to restore any notes
2276 (such as REG_INC) at then end. That can be tricky if
2277 noce_emit_move_insn expands to more than one insn, so disable the
2278 optimization entirely for now if there are side effects. */
2279 if (side_effects_p (x))
2280 return FALSE;
2282 b = (set_b ? SET_SRC (set_b) : x);
2284 /* Only operate on register destinations, and even then avoid extending
2285 the lifetime of hard registers on small register class machines. */
2286 orig_x = x;
2287 if (!REG_P (x)
2288 || (SMALL_REGISTER_CLASSES
2289 && REGNO (x) < FIRST_PSEUDO_REGISTER))
2291 if (no_new_pseudos || GET_MODE (x) == BLKmode)
2292 return FALSE;
2294 if (GET_MODE (x) == ZERO_EXTRACT
2295 && (GET_CODE (XEXP (x, 1)) != CONST_INT
2296 || GET_CODE (XEXP (x, 2)) != CONST_INT))
2297 return FALSE;
2299 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2300 ? XEXP (x, 0) : x));
2303 /* Don't operate on sources that may trap or are volatile. */
2304 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2305 return FALSE;
2307 /* Set up the info block for our subroutines. */
2308 if_info.insn_a = insn_a;
2309 if_info.insn_b = insn_b;
2310 if_info.x = x;
2311 if_info.a = a;
2312 if_info.b = b;
2314 /* Try optimizations in some approximation of a useful order. */
2315 /* ??? Should first look to see if X is live incoming at all. If it
2316 isn't, we don't need anything but an unconditional set. */
2318 /* Look and see if A and B are really the same. Avoid creating silly
2319 cmove constructs that no one will fix up later. */
2320 if (rtx_equal_p (a, b))
2322 /* If we have an INSN_B, we don't have to create any new rtl. Just
2323 move the instruction that we already have. If we don't have an
2324 INSN_B, that means that A == X, and we've got a noop move. In
2325 that case don't do anything and let the code below delete INSN_A. */
2326 if (insn_b && else_bb)
2328 rtx note;
2330 if (else_bb && insn_b == BB_END (else_bb))
2331 BB_END (else_bb) = PREV_INSN (insn_b);
2332 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2334 /* If there was a REG_EQUAL note, delete it since it may have been
2335 true due to this insn being after a jump. */
2336 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2337 remove_note (insn_b, note);
2339 insn_b = NULL_RTX;
2341 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2342 x must be executed twice. */
2343 else if (insn_b && side_effects_p (orig_x))
2344 return FALSE;
2346 x = orig_x;
2347 goto success;
2350 /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
2351 for optimizations if writing to x may trap or fault, i.e. it's a memory
2352 other than a static var or a stack slot, is misaligned on strict
2353 aligned machines or is read-only.
2354 If x is a read-only memory, then the program is valid only if we
2355 avoid the store into it. If there are stores on both the THEN and
2356 ELSE arms, then we can go ahead with the conversion; either the
2357 program is broken, or the condition is always false such that the
2358 other memory is selected. */
2359 if (!set_b && MEM_P (orig_x) && noce_mem_write_may_trap_or_fault_p (orig_x))
2360 return FALSE;
2362 if (noce_try_move (&if_info))
2363 goto success;
2364 if (noce_try_store_flag (&if_info))
2365 goto success;
2366 if (noce_try_bitop (&if_info))
2367 goto success;
2368 if (noce_try_minmax (&if_info))
2369 goto success;
2370 if (noce_try_abs (&if_info))
2371 goto success;
2372 if (HAVE_conditional_move
2373 && noce_try_cmove (&if_info))
2374 goto success;
2375 if (! HAVE_conditional_execution)
2377 if (noce_try_store_flag_constants (&if_info))
2378 goto success;
2379 if (noce_try_addcc (&if_info))
2380 goto success;
2381 if (noce_try_store_flag_mask (&if_info))
2382 goto success;
2383 if (HAVE_conditional_move
2384 && noce_try_cmove_arith (&if_info))
2385 goto success;
2386 if (noce_try_sign_mask (&if_info))
2387 goto success;
2390 return FALSE;
2392 success:
2394 /* If we used a temporary, fix it up now. */
2395 if (orig_x != x)
2397 rtx seq;
2399 start_sequence ();
2400 noce_emit_move_insn (orig_x, x);
2401 seq = get_insns ();
2402 set_used_flags (orig_x);
2403 unshare_all_rtl_in_chain (seq);
2404 end_sequence ();
2406 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2409 /* The original THEN and ELSE blocks may now be removed. The test block
2410 must now jump to the join block. If the test block and the join block
2411 can be merged, do so. */
2413 join_bb = single_succ (then_bb);
2414 if (else_bb)
2416 delete_basic_block (else_bb);
2417 num_true_changes++;
2419 else
2420 remove_edge (find_edge (test_bb, join_bb));
2422 remove_edge (find_edge (then_bb, join_bb));
2423 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2424 delete_basic_block (then_bb);
2425 num_true_changes++;
2427 if (can_merge_blocks_p (test_bb, join_bb))
2429 merge_blocks (test_bb, join_bb);
2430 num_true_changes++;
2433 num_updated_if_blocks++;
2434 return TRUE;
2437 /* Check whether a block is suitable for conditional move conversion.
2438 Every insn must be a simple set of a register to a constant or a
2439 register. For each assignment, store the value in the array VALS,
2440 indexed by register number, then store the register number in
2441 REGS. COND is the condition we will test. */
2443 static int
2444 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) *regs, rtx cond)
2446 rtx insn;
2448 /* We can only handle simple jumps at the end of the basic block.
2449 It is almost impossible to update the CFG otherwise. */
2450 insn = BB_END (bb);
2451 if (JUMP_P (insn) && !onlyjump_p (insn))
2452 return FALSE;
2454 FOR_BB_INSNS (bb, insn)
2456 rtx set, dest, src;
2458 if (!INSN_P (insn) || JUMP_P (insn))
2459 continue;
2460 set = single_set (insn);
2461 if (!set)
2462 return FALSE;
2464 dest = SET_DEST (set);
2465 src = SET_SRC (set);
2466 if (!REG_P (dest)
2467 || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
2468 return FALSE;
2470 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2471 return FALSE;
2473 if (side_effects_p (src) || side_effects_p (dest))
2474 return FALSE;
2476 if (may_trap_p (src) || may_trap_p (dest))
2477 return FALSE;
2479 /* Don't try to handle this if the source register was
2480 modified earlier in the block. */
2481 if ((REG_P (src)
2482 && vals[REGNO (src)] != NULL)
2483 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2484 && vals[REGNO (SUBREG_REG (src))] != NULL))
2485 return FALSE;
2487 /* Don't try to handle this if the destination register was
2488 modified earlier in the block. */
2489 if (vals[REGNO (dest)] != NULL)
2490 return FALSE;
2492 /* Don't try to handle this if the condition uses the
2493 destination register. */
2494 if (reg_overlap_mentioned_p (dest, cond))
2495 return FALSE;
2497 /* Don't try to handle this if the source register is modified
2498 later in the block. */
2499 if (!CONSTANT_P (src)
2500 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2501 return FALSE;
2503 vals[REGNO (dest)] = src;
2505 VEC_safe_push (int, heap, regs, REGNO (dest));
2508 return TRUE;
2511 /* Given a basic block BB suitable for conditional move conversion,
2512 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2513 register values depending on COND, emit the insns in the block as
2514 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2515 processed. The caller has started a sequence for the conversion.
2516 Return true if successful, false if something goes wrong. */
2518 static bool
2519 cond_move_convert_if_block (struct noce_if_info *if_infop,
2520 basic_block bb, rtx cond,
2521 rtx *then_vals, rtx *else_vals,
2522 bool else_block_p)
2524 enum rtx_code code;
2525 rtx insn, cond_arg0, cond_arg1;
2527 code = GET_CODE (cond);
2528 cond_arg0 = XEXP (cond, 0);
2529 cond_arg1 = XEXP (cond, 1);
2531 FOR_BB_INSNS (bb, insn)
2533 rtx set, target, dest, t, e;
2534 unsigned int regno;
2536 if (!INSN_P (insn) || JUMP_P (insn))
2537 continue;
2538 set = single_set (insn);
2539 gcc_assert (set && REG_P (SET_DEST (set)));
2541 dest = SET_DEST (set);
2542 regno = REGNO (dest);
2544 t = then_vals[regno];
2545 e = else_vals[regno];
2547 if (else_block_p)
2549 /* If this register was set in the then block, we already
2550 handled this case there. */
2551 if (t)
2552 continue;
2553 t = dest;
2554 gcc_assert (e);
2556 else
2558 gcc_assert (t);
2559 if (!e)
2560 e = dest;
2563 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2564 t, e);
2565 if (!target)
2566 return false;
2568 if (target != dest)
2569 noce_emit_move_insn (dest, target);
2572 return true;
2575 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
2576 using only conditional moves. Return TRUE if we were successful at
2577 converting the block. */
2579 static int
2580 cond_move_process_if_block (struct ce_if_block *ce_info)
2582 basic_block test_bb = ce_info->test_bb;
2583 basic_block then_bb = ce_info->then_bb;
2584 basic_block else_bb = ce_info->else_bb;
2585 basic_block join_bb;
2586 struct noce_if_info if_info;
2587 rtx jump, cond, seq, loc_insn;
2588 int max_reg, size, c, reg;
2589 rtx *then_vals;
2590 rtx *else_vals;
2591 VEC (int, heap) *then_regs = NULL;
2592 VEC (int, heap) *else_regs = NULL;
2593 unsigned int i;
2595 if (!HAVE_conditional_move || no_new_pseudos)
2596 return FALSE;
2598 memset (&if_info, 0, sizeof if_info);
2600 if (!noce_init_if_info (ce_info, &if_info))
2601 return FALSE;
2603 cond = if_info.cond;
2604 jump = if_info.jump;
2606 /* Build a mapping for each block to the value used for each
2607 register. */
2608 max_reg = max_reg_num ();
2609 size = (max_reg + 1) * sizeof (rtx);
2610 then_vals = (rtx *) alloca (size);
2611 else_vals = (rtx *) alloca (size);
2612 memset (then_vals, 0, size);
2613 memset (else_vals, 0, size);
2615 /* Make sure the blocks are suitable. */
2616 if (!check_cond_move_block (then_bb, then_vals, then_regs, cond)
2617 || (else_bb && !check_cond_move_block (else_bb, else_vals, else_regs, cond)))
2618 return FALSE;
2620 /* Make sure the blocks can be used together. If the same register
2621 is set in both blocks, and is not set to a constant in both
2622 cases, then both blocks must set it to the same register. We
2623 have already verified that if it is set to a register, that the
2624 source register does not change after the assignment. Also count
2625 the number of registers set in only one of the blocks. */
2626 c = 0;
2627 for (i = 0; VEC_iterate (int, then_regs, i, reg); i++)
2629 if (!then_vals[reg] && !else_vals[reg])
2630 continue;
2632 if (!else_vals[reg])
2633 ++c;
2634 else
2636 if (!CONSTANT_P (then_vals[reg])
2637 && !CONSTANT_P (else_vals[reg])
2638 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2639 return FALSE;
2643 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2644 for (i = 0; VEC_iterate (int, else_regs, i, reg); ++i)
2645 if (!then_vals[reg])
2646 ++c;
2648 /* Make sure it is reasonable to convert this block. What matters
2649 is the number of assignments currently made in only one of the
2650 branches, since if we convert we are going to always execute
2651 them. */
2652 if (c > MAX_CONDITIONAL_EXECUTE)
2653 return FALSE;
2655 /* Try to emit the conditional moves. First do the then block,
2656 then do anything left in the else blocks. */
2657 start_sequence ();
2658 if (!cond_move_convert_if_block (&if_info, then_bb, cond,
2659 then_vals, else_vals, false)
2660 || (else_bb
2661 && !cond_move_convert_if_block (&if_info, else_bb, cond,
2662 then_vals, else_vals, true)))
2664 end_sequence ();
2665 return FALSE;
2667 seq = end_ifcvt_sequence (&if_info);
2668 if (!seq)
2669 return FALSE;
2671 loc_insn = first_active_insn (then_bb);
2672 if (!loc_insn)
2674 loc_insn = first_active_insn (else_bb);
2675 gcc_assert (loc_insn);
2677 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2679 join_bb = single_succ (then_bb);
2680 if (else_bb)
2682 delete_basic_block (else_bb);
2683 num_true_changes++;
2685 else
2686 remove_edge (find_edge (test_bb, join_bb));
2688 remove_edge (find_edge (then_bb, join_bb));
2689 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2690 delete_basic_block (then_bb);
2691 num_true_changes++;
2693 if (can_merge_blocks_p (test_bb, join_bb))
2695 merge_blocks (test_bb, join_bb);
2696 num_true_changes++;
2699 num_updated_if_blocks++;
2701 VEC_free (int, heap, then_regs);
2702 VEC_free (int, heap, else_regs);
2704 return TRUE;
2708 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
2709 straight line code. Return true if successful. */
2711 static int
2712 process_if_block (struct ce_if_block * ce_info)
2714 if (! reload_completed
2715 && noce_process_if_block (ce_info))
2716 return TRUE;
2718 if (HAVE_conditional_move
2719 && cond_move_process_if_block (ce_info))
2720 return TRUE;
2722 if (HAVE_conditional_execution && reload_completed)
2724 /* If we have && and || tests, try to first handle combining the && and
2725 || tests into the conditional code, and if that fails, go back and
2726 handle it without the && and ||, which at present handles the && case
2727 if there was no ELSE block. */
2728 if (cond_exec_process_if_block (ce_info, TRUE))
2729 return TRUE;
2731 if (ce_info->num_multiple_test_blocks)
2733 cancel_changes (0);
2735 if (cond_exec_process_if_block (ce_info, FALSE))
2736 return TRUE;
2740 return FALSE;
2743 /* Merge the blocks and mark for local life update. */
2745 static void
2746 merge_if_block (struct ce_if_block * ce_info)
2748 basic_block test_bb = ce_info->test_bb; /* last test block */
2749 basic_block then_bb = ce_info->then_bb; /* THEN */
2750 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2751 basic_block join_bb = ce_info->join_bb; /* join block */
2752 basic_block combo_bb;
2754 /* All block merging is done into the lower block numbers. */
2756 combo_bb = test_bb;
2758 /* Merge any basic blocks to handle && and || subtests. Each of
2759 the blocks are on the fallthru path from the predecessor block. */
2760 if (ce_info->num_multiple_test_blocks > 0)
2762 basic_block bb = test_bb;
2763 basic_block last_test_bb = ce_info->last_test_bb;
2764 basic_block fallthru = block_fallthru (bb);
2768 bb = fallthru;
2769 fallthru = block_fallthru (bb);
2770 merge_blocks (combo_bb, bb);
2771 num_true_changes++;
2773 while (bb != last_test_bb);
2776 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2777 label, but it might if there were || tests. That label's count should be
2778 zero, and it normally should be removed. */
2780 if (then_bb)
2782 merge_blocks (combo_bb, then_bb);
2783 num_true_changes++;
2786 /* The ELSE block, if it existed, had a label. That label count
2787 will almost always be zero, but odd things can happen when labels
2788 get their addresses taken. */
2789 if (else_bb)
2791 merge_blocks (combo_bb, else_bb);
2792 num_true_changes++;
2795 /* If there was no join block reported, that means it was not adjacent
2796 to the others, and so we cannot merge them. */
2798 if (! join_bb)
2800 rtx last = BB_END (combo_bb);
2802 /* The outgoing edge for the current COMBO block should already
2803 be correct. Verify this. */
2804 if (EDGE_COUNT (combo_bb->succs) == 0)
2805 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2806 || (NONJUMP_INSN_P (last)
2807 && GET_CODE (PATTERN (last)) == TRAP_IF
2808 && (TRAP_CONDITION (PATTERN (last))
2809 == const_true_rtx)));
2811 else
2812 /* There should still be something at the end of the THEN or ELSE
2813 blocks taking us to our final destination. */
2814 gcc_assert (JUMP_P (last)
2815 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2816 && CALL_P (last)
2817 && SIBLING_CALL_P (last))
2818 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2819 && can_throw_internal (last)));
2822 /* The JOIN block may have had quite a number of other predecessors too.
2823 Since we've already merged the TEST, THEN and ELSE blocks, we should
2824 have only one remaining edge from our if-then-else diamond. If there
2825 is more than one remaining edge, it must come from elsewhere. There
2826 may be zero incoming edges if the THEN block didn't actually join
2827 back up (as with a call to a non-return function). */
2828 else if (EDGE_COUNT (join_bb->preds) < 2
2829 && join_bb != EXIT_BLOCK_PTR)
2831 /* We can merge the JOIN. */
2832 merge_blocks (combo_bb, join_bb);
2833 num_true_changes++;
2835 else
2837 /* We cannot merge the JOIN. */
2839 /* The outgoing edge for the current COMBO block should already
2840 be correct. Verify this. */
2841 gcc_assert (single_succ_p (combo_bb)
2842 && single_succ (combo_bb) == join_bb);
2844 /* Remove the jump and cruft from the end of the COMBO block. */
2845 if (join_bb != EXIT_BLOCK_PTR)
2846 tidy_fallthru_edge (single_succ_edge (combo_bb));
2849 num_updated_if_blocks++;
2852 /* Find a block ending in a simple IF condition and try to transform it
2853 in some way. When converting a multi-block condition, put the new code
2854 in the first such block and delete the rest. Return a pointer to this
2855 first block if some transformation was done. Return NULL otherwise. */
2857 static basic_block
2858 find_if_header (basic_block test_bb, int pass)
2860 ce_if_block_t ce_info;
2861 edge then_edge;
2862 edge else_edge;
2864 /* The kind of block we're looking for has exactly two successors. */
2865 if (EDGE_COUNT (test_bb->succs) != 2)
2866 return NULL;
2868 then_edge = EDGE_SUCC (test_bb, 0);
2869 else_edge = EDGE_SUCC (test_bb, 1);
2871 /* Neither edge should be abnormal. */
2872 if ((then_edge->flags & EDGE_COMPLEX)
2873 || (else_edge->flags & EDGE_COMPLEX))
2874 return NULL;
2876 /* Nor exit the loop. */
2877 if ((then_edge->flags & EDGE_LOOP_EXIT)
2878 || (else_edge->flags & EDGE_LOOP_EXIT))
2879 return NULL;
2881 /* The THEN edge is canonically the one that falls through. */
2882 if (then_edge->flags & EDGE_FALLTHRU)
2884 else if (else_edge->flags & EDGE_FALLTHRU)
2886 edge e = else_edge;
2887 else_edge = then_edge;
2888 then_edge = e;
2890 else
2891 /* Otherwise this must be a multiway branch of some sort. */
2892 return NULL;
2894 memset (&ce_info, '\0', sizeof (ce_info));
2895 ce_info.test_bb = test_bb;
2896 ce_info.then_bb = then_edge->dest;
2897 ce_info.else_bb = else_edge->dest;
2898 ce_info.pass = pass;
2900 #ifdef IFCVT_INIT_EXTRA_FIELDS
2901 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2902 #endif
2904 if (find_if_block (&ce_info))
2905 goto success;
2907 if (HAVE_trap && HAVE_conditional_trap
2908 && find_cond_trap (test_bb, then_edge, else_edge))
2909 goto success;
2911 if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
2912 && (! HAVE_conditional_execution || reload_completed))
2914 if (find_if_case_1 (test_bb, then_edge, else_edge))
2915 goto success;
2916 if (find_if_case_2 (test_bb, then_edge, else_edge))
2917 goto success;
2920 return NULL;
2922 success:
2923 if (dump_file)
2924 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2925 return ce_info.test_bb;
2928 /* Return true if a block has two edges, one of which falls through to the next
2929 block, and the other jumps to a specific block, so that we can tell if the
2930 block is part of an && test or an || test. Returns either -1 or the number
2931 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
2933 static int
2934 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2936 edge cur_edge;
2937 int fallthru_p = FALSE;
2938 int jump_p = FALSE;
2939 rtx insn;
2940 rtx end;
2941 int n_insns = 0;
2942 edge_iterator ei;
2944 if (!cur_bb || !target_bb)
2945 return -1;
2947 /* If no edges, obviously it doesn't jump or fallthru. */
2948 if (EDGE_COUNT (cur_bb->succs) == 0)
2949 return FALSE;
2951 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
2953 if (cur_edge->flags & EDGE_COMPLEX)
2954 /* Anything complex isn't what we want. */
2955 return -1;
2957 else if (cur_edge->flags & EDGE_FALLTHRU)
2958 fallthru_p = TRUE;
2960 else if (cur_edge->dest == target_bb)
2961 jump_p = TRUE;
2963 else
2964 return -1;
2967 if ((jump_p & fallthru_p) == 0)
2968 return -1;
2970 /* Don't allow calls in the block, since this is used to group && and ||
2971 together for conditional execution support. ??? we should support
2972 conditional execution support across calls for IA-64 some day, but
2973 for now it makes the code simpler. */
2974 end = BB_END (cur_bb);
2975 insn = BB_HEAD (cur_bb);
2977 while (insn != NULL_RTX)
2979 if (CALL_P (insn))
2980 return -1;
2982 if (INSN_P (insn)
2983 && !JUMP_P (insn)
2984 && GET_CODE (PATTERN (insn)) != USE
2985 && GET_CODE (PATTERN (insn)) != CLOBBER)
2986 n_insns++;
2988 if (insn == end)
2989 break;
2991 insn = NEXT_INSN (insn);
2994 return n_insns;
2997 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
2998 block. If so, we'll try to convert the insns to not require the branch.
2999 Return TRUE if we were successful at converting the block. */
3001 static int
3002 find_if_block (struct ce_if_block * ce_info)
3004 basic_block test_bb = ce_info->test_bb;
3005 basic_block then_bb = ce_info->then_bb;
3006 basic_block else_bb = ce_info->else_bb;
3007 basic_block join_bb = NULL_BLOCK;
3008 edge cur_edge;
3009 basic_block next;
3010 edge_iterator ei;
3012 ce_info->last_test_bb = test_bb;
3014 /* Discover if any fall through predecessors of the current test basic block
3015 were && tests (which jump to the else block) or || tests (which jump to
3016 the then block). */
3017 if (HAVE_conditional_execution && reload_completed
3018 && single_pred_p (test_bb)
3019 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3021 basic_block bb = single_pred (test_bb);
3022 basic_block target_bb;
3023 int max_insns = MAX_CONDITIONAL_EXECUTE;
3024 int n_insns;
3026 /* Determine if the preceding block is an && or || block. */
3027 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3029 ce_info->and_and_p = TRUE;
3030 target_bb = else_bb;
3032 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3034 ce_info->and_and_p = FALSE;
3035 target_bb = then_bb;
3037 else
3038 target_bb = NULL_BLOCK;
3040 if (target_bb && n_insns <= max_insns)
3042 int total_insns = 0;
3043 int blocks = 0;
3045 ce_info->last_test_bb = test_bb;
3047 /* Found at least one && or || block, look for more. */
3050 ce_info->test_bb = test_bb = bb;
3051 total_insns += n_insns;
3052 blocks++;
3054 if (!single_pred_p (bb))
3055 break;
3057 bb = single_pred (bb);
3058 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3060 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3062 ce_info->num_multiple_test_blocks = blocks;
3063 ce_info->num_multiple_test_insns = total_insns;
3065 if (ce_info->and_and_p)
3066 ce_info->num_and_and_blocks = blocks;
3067 else
3068 ce_info->num_or_or_blocks = blocks;
3072 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3073 other than any || blocks which jump to the THEN block. */
3074 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3075 return FALSE;
3077 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3078 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3080 if (cur_edge->flags & EDGE_COMPLEX)
3081 return FALSE;
3084 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3086 if (cur_edge->flags & EDGE_COMPLEX)
3087 return FALSE;
3090 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3091 if (EDGE_COUNT (then_bb->succs) > 0
3092 && (!single_succ_p (then_bb)
3093 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3094 || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
3095 return FALSE;
3097 /* If the THEN block has no successors, conditional execution can still
3098 make a conditional call. Don't do this unless the ELSE block has
3099 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3100 Check for the last insn of the THEN block being an indirect jump, which
3101 is listed as not having any successors, but confuses the rest of the CE
3102 code processing. ??? we should fix this in the future. */
3103 if (EDGE_COUNT (then_bb->succs) == 0)
3105 if (single_pred_p (else_bb))
3107 rtx last_insn = BB_END (then_bb);
3109 while (last_insn
3110 && NOTE_P (last_insn)
3111 && last_insn != BB_HEAD (then_bb))
3112 last_insn = PREV_INSN (last_insn);
3114 if (last_insn
3115 && JUMP_P (last_insn)
3116 && ! simplejump_p (last_insn))
3117 return FALSE;
3119 join_bb = else_bb;
3120 else_bb = NULL_BLOCK;
3122 else
3123 return FALSE;
3126 /* If the THEN block's successor is the other edge out of the TEST block,
3127 then we have an IF-THEN combo without an ELSE. */
3128 else if (single_succ (then_bb) == else_bb)
3130 join_bb = else_bb;
3131 else_bb = NULL_BLOCK;
3134 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3135 has exactly one predecessor and one successor, and the outgoing edge
3136 is not complex, then we have an IF-THEN-ELSE combo. */
3137 else if (single_succ_p (else_bb)
3138 && single_succ (then_bb) == single_succ (else_bb)
3139 && single_pred_p (else_bb)
3140 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3141 && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
3142 join_bb = single_succ (else_bb);
3144 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3145 else
3146 return FALSE;
3148 num_possible_if_blocks++;
3150 if (dump_file)
3152 fprintf (dump_file,
3153 "\nIF-THEN%s block found, pass %d, start block %d "
3154 "[insn %d], then %d [%d]",
3155 (else_bb) ? "-ELSE" : "",
3156 ce_info->pass,
3157 test_bb->index,
3158 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3159 then_bb->index,
3160 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3162 if (else_bb)
3163 fprintf (dump_file, ", else %d [%d]",
3164 else_bb->index,
3165 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3167 fprintf (dump_file, ", join %d [%d]",
3168 join_bb->index,
3169 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3171 if (ce_info->num_multiple_test_blocks > 0)
3172 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3173 ce_info->num_multiple_test_blocks,
3174 (ce_info->and_and_p) ? "&&" : "||",
3175 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3176 ce_info->last_test_bb->index,
3177 ((BB_HEAD (ce_info->last_test_bb))
3178 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3179 : -1));
3181 fputc ('\n', dump_file);
3184 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3185 first condition for free, since we've already asserted that there's a
3186 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3187 we checked the FALLTHRU flag, those are already adjacent to the last IF
3188 block. */
3189 /* ??? As an enhancement, move the ELSE block. Have to deal with
3190 BLOCK notes, if by no other means than backing out the merge if they
3191 exist. Sticky enough I don't want to think about it now. */
3192 next = then_bb;
3193 if (else_bb && (next = next->next_bb) != else_bb)
3194 return FALSE;
3195 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3197 if (else_bb)
3198 join_bb = NULL;
3199 else
3200 return FALSE;
3203 /* Do the real work. */
3204 ce_info->else_bb = else_bb;
3205 ce_info->join_bb = join_bb;
3207 return process_if_block (ce_info);
3210 /* Convert a branch over a trap, or a branch
3211 to a trap, into a conditional trap. */
3213 static int
3214 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3216 basic_block then_bb = then_edge->dest;
3217 basic_block else_bb = else_edge->dest;
3218 basic_block other_bb, trap_bb;
3219 rtx trap, jump, cond, cond_earliest, seq;
3220 enum rtx_code code;
3222 /* Locate the block with the trap instruction. */
3223 /* ??? While we look for no successors, we really ought to allow
3224 EH successors. Need to fix merge_if_block for that to work. */
3225 if ((trap = block_has_only_trap (then_bb)) != NULL)
3226 trap_bb = then_bb, other_bb = else_bb;
3227 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3228 trap_bb = else_bb, other_bb = then_bb;
3229 else
3230 return FALSE;
3232 if (dump_file)
3234 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3235 test_bb->index, trap_bb->index);
3238 /* If this is not a standard conditional jump, we can't parse it. */
3239 jump = BB_END (test_bb);
3240 cond = noce_get_condition (jump, &cond_earliest);
3241 if (! cond)
3242 return FALSE;
3244 /* If the conditional jump is more than just a conditional jump, then
3245 we can not do if-conversion on this block. */
3246 if (! onlyjump_p (jump))
3247 return FALSE;
3249 /* We must be comparing objects whose modes imply the size. */
3250 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3251 return FALSE;
3253 /* Reverse the comparison code, if necessary. */
3254 code = GET_CODE (cond);
3255 if (then_bb == trap_bb)
3257 code = reversed_comparison_code (cond, jump);
3258 if (code == UNKNOWN)
3259 return FALSE;
3262 /* Attempt to generate the conditional trap. */
3263 seq = gen_cond_trap (code, XEXP (cond, 0),
3264 XEXP (cond, 1),
3265 TRAP_CODE (PATTERN (trap)));
3266 if (seq == NULL)
3267 return FALSE;
3269 /* Emit the new insns before cond_earliest. */
3270 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3272 /* Delete the trap block if possible. */
3273 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3274 if (EDGE_COUNT (trap_bb->preds) == 0)
3276 delete_basic_block (trap_bb);
3277 num_true_changes++;
3280 /* Wire together the blocks again. */
3281 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3282 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3283 else
3285 rtx lab, newjump;
3287 lab = JUMP_LABEL (jump);
3288 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3289 LABEL_NUSES (lab) += 1;
3290 JUMP_LABEL (newjump) = lab;
3291 emit_barrier_after (newjump);
3293 delete_insn (jump);
3295 if (can_merge_blocks_p (test_bb, other_bb))
3297 merge_blocks (test_bb, other_bb);
3298 num_true_changes++;
3301 num_updated_if_blocks++;
3302 return TRUE;
3305 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3306 return it. */
3308 static rtx
3309 block_has_only_trap (basic_block bb)
3311 rtx trap;
3313 /* We're not the exit block. */
3314 if (bb == EXIT_BLOCK_PTR)
3315 return NULL_RTX;
3317 /* The block must have no successors. */
3318 if (EDGE_COUNT (bb->succs) > 0)
3319 return NULL_RTX;
3321 /* The only instruction in the THEN block must be the trap. */
3322 trap = first_active_insn (bb);
3323 if (! (trap == BB_END (bb)
3324 && GET_CODE (PATTERN (trap)) == TRAP_IF
3325 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3326 return NULL_RTX;
3328 return trap;
3331 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3332 transformable, but not necessarily the other. There need be no
3333 JOIN block.
3335 Return TRUE if we were successful at converting the block.
3337 Cases we'd like to look at:
3340 if (test) goto over; // x not live
3341 x = a;
3342 goto label;
3343 over:
3345 becomes
3347 x = a;
3348 if (! test) goto label;
3351 if (test) goto E; // x not live
3352 x = big();
3353 goto L;
3355 x = b;
3356 goto M;
3358 becomes
3360 x = b;
3361 if (test) goto M;
3362 x = big();
3363 goto L;
3365 (3) // This one's really only interesting for targets that can do
3366 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3367 // it results in multiple branches on a cache line, which often
3368 // does not sit well with predictors.
3370 if (test1) goto E; // predicted not taken
3371 x = a;
3372 if (test2) goto F;
3375 x = b;
3378 becomes
3380 x = a;
3381 if (test1) goto E;
3382 if (test2) goto F;
3384 Notes:
3386 (A) Don't do (2) if the branch is predicted against the block we're
3387 eliminating. Do it anyway if we can eliminate a branch; this requires
3388 that the sole successor of the eliminated block postdominate the other
3389 side of the if.
3391 (B) With CE, on (3) we can steal from both sides of the if, creating
3393 if (test1) x = a;
3394 if (!test1) x = b;
3395 if (test1) goto J;
3396 if (test2) goto F;
3400 Again, this is most useful if J postdominates.
3402 (C) CE substitutes for helpful life information.
3404 (D) These heuristics need a lot of work. */
3406 /* Tests for case 1 above. */
3408 static int
3409 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3411 basic_block then_bb = then_edge->dest;
3412 basic_block else_bb = else_edge->dest, new_bb;
3413 int then_bb_index;
3415 /* If we are partitioning hot/cold basic blocks, we don't want to
3416 mess up unconditional or indirect jumps that cross between hot
3417 and cold sections.
3419 Basic block partitioning may result in some jumps that appear to
3420 be optimizable (or blocks that appear to be mergeable), but which really
3421 must be left untouched (they are required to make it safely across
3422 partition boundaries). See the comments at the top of
3423 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3425 if ((BB_END (then_bb)
3426 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3427 || (BB_END (test_bb)
3428 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3429 || (BB_END (else_bb)
3430 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3431 NULL_RTX)))
3432 return FALSE;
3434 /* THEN has one successor. */
3435 if (!single_succ_p (then_bb))
3436 return FALSE;
3438 /* THEN does not fall through, but is not strange either. */
3439 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3440 return FALSE;
3442 /* THEN has one predecessor. */
3443 if (!single_pred_p (then_bb))
3444 return FALSE;
3446 /* THEN must do something. */
3447 if (forwarder_block_p (then_bb))
3448 return FALSE;
3450 num_possible_if_blocks++;
3451 if (dump_file)
3452 fprintf (dump_file,
3453 "\nIF-CASE-1 found, start %d, then %d\n",
3454 test_bb->index, then_bb->index);
3456 /* THEN is small. */
3457 if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
3458 return FALSE;
3460 /* Registers set are dead, or are predicable. */
3461 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3462 single_succ (then_bb), 1))
3463 return FALSE;
3465 /* Conversion went ok, including moving the insns and fixing up the
3466 jump. Adjust the CFG to match. */
3468 bitmap_ior (test_bb->il.rtl->global_live_at_end,
3469 else_bb->il.rtl->global_live_at_start,
3470 then_bb->il.rtl->global_live_at_end);
3473 /* We can avoid creating a new basic block if then_bb is immediately
3474 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3475 thru to else_bb. */
3477 if (then_bb->next_bb == else_bb
3478 && then_bb->prev_bb == test_bb
3479 && else_bb != EXIT_BLOCK_PTR)
3481 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3482 new_bb = 0;
3484 else
3485 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3486 else_bb);
3488 then_bb_index = then_bb->index;
3489 delete_basic_block (then_bb);
3491 /* Make rest of code believe that the newly created block is the THEN_BB
3492 block we removed. */
3493 if (new_bb)
3495 new_bb->index = then_bb_index;
3496 SET_BASIC_BLOCK (then_bb_index, new_bb);
3497 /* Since the fallthru edge was redirected from test_bb to new_bb,
3498 we need to ensure that new_bb is in the same partition as
3499 test bb (you can not fall through across section boundaries). */
3500 BB_COPY_PARTITION (new_bb, test_bb);
3502 /* We've possibly created jump to next insn, cleanup_cfg will solve that
3503 later. */
3505 num_true_changes++;
3506 num_updated_if_blocks++;
3508 return TRUE;
3511 /* Test for case 2 above. */
3513 static int
3514 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3516 basic_block then_bb = then_edge->dest;
3517 basic_block else_bb = else_edge->dest;
3518 edge else_succ;
3519 rtx note;
3521 /* If we are partitioning hot/cold basic blocks, we don't want to
3522 mess up unconditional or indirect jumps that cross between hot
3523 and cold sections.
3525 Basic block partitioning may result in some jumps that appear to
3526 be optimizable (or blocks that appear to be mergeable), but which really
3527 must be left untouched (they are required to make it safely across
3528 partition boundaries). See the comments at the top of
3529 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3531 if ((BB_END (then_bb)
3532 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3533 || (BB_END (test_bb)
3534 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3535 || (BB_END (else_bb)
3536 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3537 NULL_RTX)))
3538 return FALSE;
3540 /* ELSE has one successor. */
3541 if (!single_succ_p (else_bb))
3542 return FALSE;
3543 else
3544 else_succ = single_succ_edge (else_bb);
3546 /* ELSE outgoing edge is not complex. */
3547 if (else_succ->flags & EDGE_COMPLEX)
3548 return FALSE;
3550 /* ELSE has one predecessor. */
3551 if (!single_pred_p (else_bb))
3552 return FALSE;
3554 /* THEN is not EXIT. */
3555 if (then_bb->index < NUM_FIXED_BLOCKS)
3556 return FALSE;
3558 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3559 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3560 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3562 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3563 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3564 else_succ->dest))
3566 else
3567 return FALSE;
3569 num_possible_if_blocks++;
3570 if (dump_file)
3571 fprintf (dump_file,
3572 "\nIF-CASE-2 found, start %d, else %d\n",
3573 test_bb->index, else_bb->index);
3575 /* ELSE is small. */
3576 if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
3577 return FALSE;
3579 /* Registers set are dead, or are predicable. */
3580 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3581 return FALSE;
3583 /* Conversion went ok, including moving the insns and fixing up the
3584 jump. Adjust the CFG to match. */
3586 bitmap_ior (test_bb->il.rtl->global_live_at_end,
3587 then_bb->il.rtl->global_live_at_start,
3588 else_bb->il.rtl->global_live_at_end);
3590 delete_basic_block (else_bb);
3592 num_true_changes++;
3593 num_updated_if_blocks++;
3595 /* ??? We may now fallthru from one of THEN's successors into a join
3596 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3598 return TRUE;
3601 /* A subroutine of dead_or_predicable called through for_each_rtx.
3602 Return 1 if a memory is found. */
3604 static int
3605 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3607 return MEM_P (*px);
3610 /* Used by the code above to perform the actual rtl transformations.
3611 Return TRUE if successful.
3613 TEST_BB is the block containing the conditional branch. MERGE_BB
3614 is the block containing the code to manipulate. NEW_DEST is the
3615 label TEST_BB should be branching to after the conversion.
3616 REVERSEP is true if the sense of the branch should be reversed. */
3618 static int
3619 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3620 basic_block other_bb, basic_block new_dest, int reversep)
3622 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3624 jump = BB_END (test_bb);
3626 /* Find the extent of the real code in the merge block. */
3627 head = BB_HEAD (merge_bb);
3628 end = BB_END (merge_bb);
3630 /* If merge_bb ends with a tablejump, predicating/moving insn's
3631 into test_bb and then deleting merge_bb will result in the jumptable
3632 that follows merge_bb being removed along with merge_bb and then we
3633 get an unresolved reference to the jumptable. */
3634 if (tablejump_p (end, NULL, NULL))
3635 return FALSE;
3637 if (LABEL_P (head))
3638 head = NEXT_INSN (head);
3639 if (NOTE_P (head))
3641 if (head == end)
3643 head = end = NULL_RTX;
3644 goto no_body;
3646 head = NEXT_INSN (head);
3649 if (JUMP_P (end))
3651 if (head == end)
3653 head = end = NULL_RTX;
3654 goto no_body;
3656 end = PREV_INSN (end);
3659 /* Disable handling dead code by conditional execution if the machine needs
3660 to do anything funny with the tests, etc. */
3661 #ifndef IFCVT_MODIFY_TESTS
3662 if (HAVE_conditional_execution)
3664 /* In the conditional execution case, we have things easy. We know
3665 the condition is reversible. We don't have to check life info
3666 because we're going to conditionally execute the code anyway.
3667 All that's left is making sure the insns involved can actually
3668 be predicated. */
3670 rtx cond, prob_val;
3672 cond = cond_exec_get_condition (jump);
3673 if (! cond)
3674 return FALSE;
3676 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3677 if (prob_val)
3678 prob_val = XEXP (prob_val, 0);
3680 if (reversep)
3682 enum rtx_code rev = reversed_comparison_code (cond, jump);
3683 if (rev == UNKNOWN)
3684 return FALSE;
3685 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3686 XEXP (cond, 1));
3687 if (prob_val)
3688 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3691 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3692 prob_val, 0))
3693 goto cancel;
3695 earliest = jump;
3697 else
3698 #endif
3700 /* In the non-conditional execution case, we have to verify that there
3701 are no trapping operations, no calls, no references to memory, and
3702 that any registers modified are dead at the branch site. */
3704 rtx insn, cond, prev;
3705 regset merge_set, tmp, test_live, test_set;
3706 struct propagate_block_info *pbi;
3707 unsigned i, fail = 0;
3708 bitmap_iterator bi;
3710 /* Check for no calls or trapping operations. */
3711 for (insn = head; ; insn = NEXT_INSN (insn))
3713 if (CALL_P (insn))
3714 return FALSE;
3715 if (INSN_P (insn))
3717 if (may_trap_p (PATTERN (insn)))
3718 return FALSE;
3720 /* ??? Even non-trapping memories such as stack frame
3721 references must be avoided. For stores, we collect
3722 no lifetime info; for reads, we'd have to assert
3723 true_dependence false against every store in the
3724 TEST range. */
3725 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3726 return FALSE;
3728 if (insn == end)
3729 break;
3732 if (! any_condjump_p (jump))
3733 return FALSE;
3735 /* Find the extent of the conditional. */
3736 cond = noce_get_condition (jump, &earliest);
3737 if (! cond)
3738 return FALSE;
3740 /* Collect:
3741 MERGE_SET = set of registers set in MERGE_BB
3742 TEST_LIVE = set of registers live at EARLIEST
3743 TEST_SET = set of registers set between EARLIEST and the
3744 end of the block. */
3746 tmp = ALLOC_REG_SET (&reg_obstack);
3747 merge_set = ALLOC_REG_SET (&reg_obstack);
3748 test_live = ALLOC_REG_SET (&reg_obstack);
3749 test_set = ALLOC_REG_SET (&reg_obstack);
3751 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3752 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3753 since we've already asserted that MERGE_BB is small. */
3754 /* If we allocated new pseudos (e.g. in the conditional move
3755 expander called from noce_emit_cmove), we must resize the
3756 array first. */
3757 if (max_regno < max_reg_num ())
3759 max_regno = max_reg_num ();
3760 allocate_reg_info (max_regno, FALSE, FALSE);
3762 propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3764 /* For small register class machines, don't lengthen lifetimes of
3765 hard registers before reload. */
3766 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3768 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3770 if (i < FIRST_PSEUDO_REGISTER
3771 && ! fixed_regs[i]
3772 && ! global_regs[i])
3773 fail = 1;
3777 /* For TEST, we're interested in a range of insns, not a whole block.
3778 Moreover, we're interested in the insns live from OTHER_BB. */
3780 COPY_REG_SET (test_live, other_bb->il.rtl->global_live_at_start);
3781 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3784 for (insn = jump; ; insn = prev)
3786 prev = propagate_one_insn (pbi, insn);
3787 if (insn == earliest)
3788 break;
3791 free_propagate_block_info (pbi);
3793 /* We can perform the transformation if
3794 MERGE_SET & (TEST_SET | TEST_LIVE)
3796 TEST_SET & merge_bb->il.rtl->global_live_at_start
3797 are empty. */
3799 if (bitmap_intersect_p (test_set, merge_set)
3800 || bitmap_intersect_p (test_live, merge_set)
3801 || bitmap_intersect_p (test_set,
3802 merge_bb->il.rtl->global_live_at_start))
3803 fail = 1;
3805 FREE_REG_SET (tmp);
3806 FREE_REG_SET (merge_set);
3807 FREE_REG_SET (test_live);
3808 FREE_REG_SET (test_set);
3810 if (fail)
3811 return FALSE;
3814 no_body:
3815 /* We don't want to use normal invert_jump or redirect_jump because
3816 we don't want to delete_insn called. Also, we want to do our own
3817 change group management. */
3819 old_dest = JUMP_LABEL (jump);
3820 if (other_bb != new_dest)
3822 new_label = block_label (new_dest);
3823 if (reversep
3824 ? ! invert_jump_1 (jump, new_label)
3825 : ! redirect_jump_1 (jump, new_label))
3826 goto cancel;
3829 if (! apply_change_group ())
3830 return FALSE;
3832 if (other_bb != new_dest)
3834 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
3836 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3837 if (reversep)
3839 gcov_type count, probability;
3840 count = BRANCH_EDGE (test_bb)->count;
3841 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3842 FALLTHRU_EDGE (test_bb)->count = count;
3843 probability = BRANCH_EDGE (test_bb)->probability;
3844 BRANCH_EDGE (test_bb)->probability
3845 = FALLTHRU_EDGE (test_bb)->probability;
3846 FALLTHRU_EDGE (test_bb)->probability = probability;
3847 update_br_prob_note (test_bb);
3851 /* Move the insns out of MERGE_BB to before the branch. */
3852 if (head != NULL)
3854 rtx insn;
3856 if (end == BB_END (merge_bb))
3857 BB_END (merge_bb) = PREV_INSN (head);
3859 if (squeeze_notes (&head, &end))
3860 return TRUE;
3862 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
3863 notes might become invalid. */
3864 insn = head;
3867 rtx note, set;
3869 if (! INSN_P (insn))
3870 continue;
3871 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3872 if (! note)
3873 continue;
3874 set = single_set (insn);
3875 if (!set || !function_invariant_p (SET_SRC (set)))
3876 remove_note (insn, note);
3877 } while (insn != end && (insn = NEXT_INSN (insn)));
3879 reorder_insns (head, end, PREV_INSN (earliest));
3882 /* Remove the jump and edge if we can. */
3883 if (other_bb == new_dest)
3885 delete_insn (jump);
3886 remove_edge (BRANCH_EDGE (test_bb));
3887 /* ??? Can't merge blocks here, as then_bb is still in use.
3888 At minimum, the merge will get done just before bb-reorder. */
3891 return TRUE;
3893 cancel:
3894 cancel_changes (0);
3895 return FALSE;
3898 /* Main entry point for all if-conversion. */
3900 static void
3901 if_convert (int x_life_data_ok)
3903 basic_block bb;
3904 int pass;
3906 num_possible_if_blocks = 0;
3907 num_updated_if_blocks = 0;
3908 num_true_changes = 0;
3909 life_data_ok = (x_life_data_ok != 0);
3911 if ((! targetm.cannot_modify_jumps_p ())
3912 && (!flag_reorder_blocks_and_partition || !no_new_pseudos
3913 || !targetm.have_named_sections))
3915 loop_optimizer_init (0);
3916 if (current_loops)
3918 mark_loop_exit_edges ();
3919 loop_optimizer_finalize ();
3921 free_dominance_info (CDI_DOMINATORS);
3924 /* Compute postdominators if we think we'll use them. */
3925 if (HAVE_conditional_execution || life_data_ok)
3926 calculate_dominance_info (CDI_POST_DOMINATORS);
3928 if (life_data_ok)
3929 clear_bb_flags ();
3931 /* Go through each of the basic blocks looking for things to convert. If we
3932 have conditional execution, we make multiple passes to allow us to handle
3933 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
3934 pass = 0;
3937 cond_exec_changed_p = FALSE;
3938 pass++;
3940 #ifdef IFCVT_MULTIPLE_DUMPS
3941 if (dump_file && pass > 1)
3942 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3943 #endif
3945 FOR_EACH_BB (bb)
3947 basic_block new_bb;
3948 while ((new_bb = find_if_header (bb, pass)))
3949 bb = new_bb;
3952 #ifdef IFCVT_MULTIPLE_DUMPS
3953 if (dump_file && cond_exec_changed_p)
3954 print_rtl_with_bb (dump_file, get_insns ());
3955 #endif
3957 while (cond_exec_changed_p);
3959 #ifdef IFCVT_MULTIPLE_DUMPS
3960 if (dump_file)
3961 fprintf (dump_file, "\n\n========== no more changes\n");
3962 #endif
3964 free_dominance_info (CDI_POST_DOMINATORS);
3966 if (dump_file)
3967 fflush (dump_file);
3969 clear_aux_for_blocks ();
3971 /* Rebuild life info for basic blocks that require it. */
3972 if (num_true_changes && life_data_ok)
3974 /* If we allocated new pseudos, we must resize the array for sched1. */
3975 if (max_regno < max_reg_num ())
3977 max_regno = max_reg_num ();
3978 allocate_reg_info (max_regno, FALSE, FALSE);
3980 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
3981 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
3982 | PROP_KILL_DEAD_CODE);
3985 /* Write the final stats. */
3986 if (dump_file && num_possible_if_blocks > 0)
3988 fprintf (dump_file,
3989 "\n%d possible IF blocks searched.\n",
3990 num_possible_if_blocks);
3991 fprintf (dump_file,
3992 "%d IF blocks converted.\n",
3993 num_updated_if_blocks);
3994 fprintf (dump_file,
3995 "%d true changes made.\n\n\n",
3996 num_true_changes);
3999 #ifdef ENABLE_CHECKING
4000 verify_flow_info ();
4001 #endif
4004 static bool
4005 gate_handle_if_conversion (void)
4007 return (optimize > 0);
4010 /* If-conversion and CFG cleanup. */
4011 static unsigned int
4012 rest_of_handle_if_conversion (void)
4014 if (flag_if_conversion)
4016 if (dump_file)
4017 dump_flow_info (dump_file, dump_flags);
4018 cleanup_cfg (CLEANUP_EXPENSIVE);
4019 reg_scan (get_insns (), max_reg_num ());
4020 if_convert (0);
4023 timevar_push (TV_JUMP);
4024 cleanup_cfg (CLEANUP_EXPENSIVE);
4025 reg_scan (get_insns (), max_reg_num ());
4026 timevar_pop (TV_JUMP);
4027 return 0;
4030 struct tree_opt_pass pass_rtl_ifcvt =
4032 "ce1", /* name */
4033 gate_handle_if_conversion, /* gate */
4034 rest_of_handle_if_conversion, /* execute */
4035 NULL, /* sub */
4036 NULL, /* next */
4037 0, /* static_pass_number */
4038 TV_IFCVT, /* tv_id */
4039 0, /* properties_required */
4040 0, /* properties_provided */
4041 0, /* properties_destroyed */
4042 0, /* todo_flags_start */
4043 TODO_dump_func, /* todo_flags_finish */
4044 'C' /* letter */
4047 static bool
4048 gate_handle_if_after_combine (void)
4050 return (optimize > 0 && flag_if_conversion);
4054 /* Rerun if-conversion, as combine may have simplified things enough
4055 to now meet sequence length restrictions. */
4056 static unsigned int
4057 rest_of_handle_if_after_combine (void)
4059 no_new_pseudos = 0;
4060 if_convert (1);
4061 no_new_pseudos = 1;
4062 return 0;
4065 struct tree_opt_pass pass_if_after_combine =
4067 "ce2", /* name */
4068 gate_handle_if_after_combine, /* gate */
4069 rest_of_handle_if_after_combine, /* execute */
4070 NULL, /* sub */
4071 NULL, /* next */
4072 0, /* static_pass_number */
4073 TV_IFCVT, /* tv_id */
4074 0, /* properties_required */
4075 0, /* properties_provided */
4076 0, /* properties_destroyed */
4077 0, /* todo_flags_start */
4078 TODO_dump_func |
4079 TODO_ggc_collect, /* todo_flags_finish */
4080 'C' /* letter */
4084 static bool
4085 gate_handle_if_after_reload (void)
4087 return (optimize > 0);
4090 static unsigned int
4091 rest_of_handle_if_after_reload (void)
4093 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
4094 splitting possibly introduced more crossjumping opportunities. */
4095 cleanup_cfg (CLEANUP_EXPENSIVE
4096 | CLEANUP_UPDATE_LIFE
4097 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
4098 if (flag_if_conversion2)
4099 if_convert (1);
4100 return 0;
4104 struct tree_opt_pass pass_if_after_reload =
4106 "ce3", /* name */
4107 gate_handle_if_after_reload, /* gate */
4108 rest_of_handle_if_after_reload, /* execute */
4109 NULL, /* sub */
4110 NULL, /* next */
4111 0, /* static_pass_number */
4112 TV_IFCVT2, /* tv_id */
4113 0, /* properties_required */
4114 0, /* properties_provided */
4115 0, /* properties_destroyed */
4116 0, /* todo_flags_start */
4117 TODO_dump_func |
4118 TODO_ggc_collect, /* todo_flags_finish */
4119 'E' /* letter */