builtins.c (expand_builtin_alloca): Handle builtin alloca that is marked not to be...
[official-gcc.git] / libgfortran / intrinsics / erfc_scaled_inc.c
blob7e4ba7ec8aac039011fbd86ca95e32798af4bebe
1 /* Implementation of the ERFC_SCALED intrinsic, to be included by erfc_scaled.c
2 Copyright (c) 2008 Free Software Foundation, Inc.
4 This file is part of the GNU Fortran runtime library (libgfortran).
6 Libgfortran is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public
8 License as published by the Free Software Foundation; either
9 version 3 of the License, or (at your option) any later version.
11 Libgfortran is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR a PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
25 /* This implementation of ERFC_SCALED is based on the netlib algorithm
26 available at http://www.netlib.org/specfun/erf */
28 #define TYPE KIND_SUFFIX(GFC_REAL_,KIND)
29 #define CONCAT(x,y) x ## y
30 #define KIND_SUFFIX(x,y) CONCAT(x,y)
32 #if (KIND == 4)
34 # define EXP(x) expf(x)
35 # define TRUNC(x) truncf(x)
37 #elif (KIND == 8)
39 # define EXP(x) exp(x)
40 # define TRUNC(x) trunc(x)
42 #else
44 # ifdef HAVE_EXPL
45 # define EXP(x) expl(x)
46 # endif
47 # ifdef HAVE_TRUNCL
48 # define TRUNC(x) truncl(x)
49 # endif
51 #endif
53 #if defined(EXP) && defined(TRUNC)
55 extern TYPE KIND_SUFFIX(erfc_scaled_r,KIND) (TYPE);
56 export_proto(KIND_SUFFIX(erfc_scaled_r,KIND));
58 TYPE
59 KIND_SUFFIX(erfc_scaled_r,KIND) (TYPE x)
61 /* The main computation evaluates near-minimax approximations
62 from "Rational Chebyshev approximations for the error function"
63 by W. J. Cody, Math. Comp., 1969, PP. 631-638. This
64 transportable program uses rational functions that theoretically
65 approximate erf(x) and erfc(x) to at least 18 significant
66 decimal digits. The accuracy achieved depends on the arithmetic
67 system, the compiler, the intrinsic functions, and proper
68 selection of the machine-dependent constants. */
70 int i;
71 TYPE del, res, xden, xnum, y, ysq;
73 #if (KIND == 4)
74 static TYPE xneg = -9.382, xsmall = 5.96e-8,
75 xbig = 9.194, xhuge = 2.90e+3, xmax = 4.79e+37;
76 #else
77 static TYPE xneg = -26.628, xsmall = 1.11e-16,
78 xbig = 26.543, xhuge = 6.71e+7, xmax = 2.53e+307;
79 #endif
81 #define SQRPI ((TYPE) 0.56418958354775628695L)
82 #define THRESH ((TYPE) 0.46875L)
84 static TYPE a[5] = { 3.16112374387056560l, 113.864154151050156l,
85 377.485237685302021l, 3209.37758913846947l, 0.185777706184603153l };
87 static TYPE b[4] = { 23.6012909523441209l, 244.024637934444173l,
88 1282.61652607737228l, 2844.23683343917062l };
90 static TYPE c[9] = { 0.564188496988670089l, 8.88314979438837594l,
91 66.1191906371416295l, 298.635138197400131l, 881.952221241769090l,
92 1712.04761263407058l, 2051.07837782607147l, 1230.33935479799725l,
93 2.15311535474403846e-8l };
95 static TYPE d[8] = { 15.7449261107098347l, 117.693950891312499l,
96 537.181101862009858l, 1621.38957456669019l, 3290.79923573345963l,
97 4362.61909014324716l, 3439.36767414372164l, 1230.33935480374942l };
99 static TYPE p[6] = { 0.305326634961232344l, 0.360344899949804439l,
100 0.125781726111229246l, 0.0160837851487422766l,
101 0.000658749161529837803l, 0.0163153871373020978l };
103 static TYPE q[5] = { 2.56852019228982242l, 1.87295284992346047l,
104 0.527905102951428412l, 0.0605183413124413191l,
105 0.00233520497626869185l };
107 y = (x > 0 ? x : -x);
108 if (y <= THRESH)
110 ysq = 0;
111 if (y > xsmall)
112 ysq = y * y;
113 xnum = a[4]*ysq;
114 xden = ysq;
115 for (i = 0; i <= 2; i++)
117 xnum = (xnum + a[i]) * ysq;
118 xden = (xden + b[i]) * ysq;
120 res = x * (xnum + a[3]) / (xden + b[3]);
121 res = 1 - res;
122 res = EXP(ysq) * res;
123 return res;
125 else if (y <= 4)
127 xnum = c[8]*y;
128 xden = y;
129 for (i = 0; i <= 6; i++)
131 xnum = (xnum + c[i]) * y;
132 xden = (xden + d[i]) * y;
134 res = (xnum + c[7]) / (xden + d[7]);
136 else
138 res = 0;
139 if (y >= xbig)
141 if (y >= xmax)
142 goto finish;
143 if (y >= xhuge)
145 res = SQRPI / y;
146 goto finish;
149 ysq = ((TYPE) 1) / (y * y);
150 xnum = p[5]*ysq;
151 xden = ysq;
152 for (i = 0; i <= 3; i++)
154 xnum = (xnum + p[i]) * ysq;
155 xden = (xden + q[i]) * ysq;
157 res = ysq *(xnum + p[4]) / (xden + q[4]);
158 res = (SQRPI - res) / y;
161 finish:
162 if (x < 0)
164 if (x < xneg)
165 res = __builtin_inf ();
166 else
168 ysq = TRUNC (x*((TYPE) 16))/((TYPE) 16);
169 del = (x-ysq)*(x+ysq);
170 y = EXP(ysq*ysq) * EXP(del);
171 res = (y+y) - res;
174 return res;
177 #endif
179 #undef EXP
180 #undef TRUNC
182 #undef CONCAT
183 #undef TYPE
184 #undef KIND_SUFFIX