* config/xtensa/xtensa.h (ASM_OUTPUT_POOL_PROLOGUE): Emit a
[official-gcc.git] / gcc / tree.c
blobeda2fd63aeb985f986aa28c894a5dffde45fd83e
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
50 #define obstack_chunk_alloc xmalloc
51 #define obstack_chunk_free free
52 /* obstack.[ch] explicitly declined to prototype this. */
53 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
55 /* Objects allocated on this obstack last forever. */
57 struct obstack permanent_obstack;
59 /* Statistics-gathering stuff. */
60 typedef enum
62 d_kind,
63 t_kind,
64 b_kind,
65 s_kind,
66 r_kind,
67 e_kind,
68 c_kind,
69 id_kind,
70 perm_list_kind,
71 temp_list_kind,
72 vec_kind,
73 x_kind,
74 lang_decl,
75 lang_type,
76 all_kinds
77 } tree_node_kind;
79 int tree_node_counts[(int) all_kinds];
80 int tree_node_sizes[(int) all_kinds];
82 static const char * const tree_node_kind_names[] = {
83 "decls",
84 "types",
85 "blocks",
86 "stmts",
87 "refs",
88 "exprs",
89 "constants",
90 "identifiers",
91 "perm_tree_lists",
92 "temp_tree_lists",
93 "vecs",
94 "random kinds",
95 "lang_decl kinds",
96 "lang_type kinds"
99 /* Unique id for next decl created. */
100 static int next_decl_uid;
101 /* Unique id for next type created. */
102 static int next_type_uid = 1;
104 /* Since we cannot rehash a type after it is in the table, we have to
105 keep the hash code. */
107 struct type_hash
109 unsigned long hash;
110 tree type;
113 /* Initial size of the hash table (rounded to next prime). */
114 #define TYPE_HASH_INITIAL_SIZE 1000
116 /* Now here is the hash table. When recording a type, it is added to
117 the slot whose index is the hash code. Note that the hash table is
118 used for several kinds of types (function types, array types and
119 array index range types, for now). While all these live in the
120 same table, they are completely independent, and the hash code is
121 computed differently for each of these. */
123 htab_t type_hash_table;
125 static void build_real_from_int_cst_1 PARAMS ((PTR));
126 static void set_type_quals PARAMS ((tree, int));
127 static void append_random_chars PARAMS ((char *));
128 static int type_hash_eq PARAMS ((const void*, const void*));
129 static unsigned int type_hash_hash PARAMS ((const void*));
130 static void print_type_hash_statistics PARAMS((void));
131 static void finish_vector_type PARAMS((tree));
132 static tree make_vector PARAMS ((enum machine_mode, tree, int));
133 static int type_hash_marked_p PARAMS ((const void *));
134 static void type_hash_mark PARAMS ((const void *));
135 static int mark_tree_hashtable_entry PARAMS((void **, void *));
137 /* If non-null, these are language-specific helper functions for
138 unsafe_for_reeval. Return negative to not handle some tree. */
139 int (*lang_unsafe_for_reeval) PARAMS ((tree));
141 /* Set the DECL_ASSEMBLER_NAME for a node. If it is the sort of thing
142 that the assembler should talk about, set DECL_ASSEMBLER_NAME to an
143 appropriate IDENTIFIER_NODE. Otherwise, set it to the
144 ERROR_MARK_NODE to ensure that the assembler does not talk about
145 it. */
146 void (*lang_set_decl_assembler_name) PARAMS ((tree));
148 tree global_trees[TI_MAX];
149 tree integer_types[itk_none];
151 /* Set the DECL_ASSEMBLER_NAME for DECL. */
152 void
153 set_decl_assembler_name (decl)
154 tree decl;
156 /* The language-independent code should never use the
157 DECL_ASSEMBLER_NAME for lots of DECLs. Only FUNCTION_DECLs and
158 VAR_DECLs for variables with static storage duration need a real
159 DECL_ASSEMBLER_NAME. */
160 if (TREE_CODE (decl) == FUNCTION_DECL
161 || (TREE_CODE (decl) == VAR_DECL
162 && (TREE_STATIC (decl)
163 || DECL_EXTERNAL (decl)
164 || TREE_PUBLIC (decl))))
165 /* By default, assume the name to use in assembly code is the
166 same as that used in the source language. (That's correct
167 for C, and GCC used to set DECL_ASSEMBLER_NAME to the same
168 value as DECL_NAME in build_decl, so this choice provides
169 backwards compatibility with existing front-ends. */
170 SET_DECL_ASSEMBLER_NAME (decl, DECL_NAME (decl));
171 else
172 /* Nobody should ever be asking for the DECL_ASSEMBLER_NAME of
173 these DECLs -- unless they're in language-dependent code, in
174 which case lang_set_decl_assembler_name should handle things. */
175 abort ();
178 /* Init the principal obstacks. */
180 void
181 init_obstacks ()
183 gcc_obstack_init (&permanent_obstack);
185 /* Initialize the hash table of types. */
186 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
187 type_hash_eq, 0);
188 ggc_add_deletable_htab (type_hash_table, type_hash_marked_p,
189 type_hash_mark);
190 ggc_add_tree_root (global_trees, TI_MAX);
191 ggc_add_tree_root (integer_types, itk_none);
193 /* Set lang_set_decl_set_assembler_name to a default value. */
194 lang_set_decl_assembler_name = set_decl_assembler_name;
198 /* Allocate SIZE bytes in the permanent obstack
199 and return a pointer to them. */
201 char *
202 permalloc (size)
203 int size;
205 return (char *) obstack_alloc (&permanent_obstack, size);
208 /* Allocate NELEM items of SIZE bytes in the permanent obstack
209 and return a pointer to them. The storage is cleared before
210 returning the value. */
212 char *
213 perm_calloc (nelem, size)
214 int nelem;
215 long size;
217 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
218 memset (rval, 0, nelem * size);
219 return rval;
222 /* Compute the number of bytes occupied by 'node'. This routine only
223 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
224 size_t
225 tree_size (node)
226 tree node;
228 enum tree_code code = TREE_CODE (node);
230 switch (TREE_CODE_CLASS (code))
232 case 'd': /* A decl node */
233 return sizeof (struct tree_decl);
235 case 't': /* a type node */
236 return sizeof (struct tree_type);
238 case 'b': /* a lexical block node */
239 return sizeof (struct tree_block);
241 case 'r': /* a reference */
242 case 'e': /* an expression */
243 case 's': /* an expression with side effects */
244 case '<': /* a comparison expression */
245 case '1': /* a unary arithmetic expression */
246 case '2': /* a binary arithmetic expression */
247 return (sizeof (struct tree_exp)
248 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
250 case 'c': /* a constant */
251 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
252 words is machine-dependent due to varying length of HOST_WIDE_INT,
253 which might be wider than a pointer (e.g., long long). Similarly
254 for REAL_CST, since the number of words is machine-dependent due
255 to varying size and alignment of `double'. */
256 if (code == INTEGER_CST)
257 return sizeof (struct tree_int_cst);
258 else if (code == REAL_CST)
259 return sizeof (struct tree_real_cst);
260 else
261 return (sizeof (struct tree_common)
262 + TREE_CODE_LENGTH (code) * sizeof (char *));
264 case 'x': /* something random, like an identifier. */
266 size_t length;
267 length = (sizeof (struct tree_common)
268 + TREE_CODE_LENGTH (code) * sizeof (char *));
269 if (code == TREE_VEC)
270 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
271 return length;
274 default:
275 abort ();
279 /* Return a newly allocated node of code CODE.
280 For decl and type nodes, some other fields are initialized.
281 The rest of the node is initialized to zero.
283 Achoo! I got a code in the node. */
285 tree
286 make_node (code)
287 enum tree_code code;
289 tree t;
290 int type = TREE_CODE_CLASS (code);
291 size_t length;
292 #ifdef GATHER_STATISTICS
293 tree_node_kind kind;
294 #endif
295 struct tree_common ttmp;
297 /* We can't allocate a TREE_VEC without knowing how many elements
298 it will have. */
299 if (code == TREE_VEC)
300 abort ();
302 TREE_SET_CODE ((tree)&ttmp, code);
303 length = tree_size ((tree)&ttmp);
305 #ifdef GATHER_STATISTICS
306 switch (type)
308 case 'd': /* A decl node */
309 kind = d_kind;
310 break;
312 case 't': /* a type node */
313 kind = t_kind;
314 break;
316 case 'b': /* a lexical block */
317 kind = b_kind;
318 break;
320 case 's': /* an expression with side effects */
321 kind = s_kind;
322 break;
324 case 'r': /* a reference */
325 kind = r_kind;
326 break;
328 case 'e': /* an expression */
329 case '<': /* a comparison expression */
330 case '1': /* a unary arithmetic expression */
331 case '2': /* a binary arithmetic expression */
332 kind = e_kind;
333 break;
335 case 'c': /* a constant */
336 kind = c_kind;
337 break;
339 case 'x': /* something random, like an identifier. */
340 if (code == IDENTIFIER_NODE)
341 kind = id_kind;
342 else if (code == TREE_VEC)
343 kind = vec_kind;
344 else
345 kind = x_kind;
346 break;
348 default:
349 abort ();
352 tree_node_counts[(int) kind]++;
353 tree_node_sizes[(int) kind] += length;
354 #endif
356 t = ggc_alloc_tree (length);
358 memset ((PTR) t, 0, length);
360 TREE_SET_CODE (t, code);
362 switch (type)
364 case 's':
365 TREE_SIDE_EFFECTS (t) = 1;
366 TREE_TYPE (t) = void_type_node;
367 break;
369 case 'd':
370 if (code != FUNCTION_DECL)
371 DECL_ALIGN (t) = 1;
372 DECL_USER_ALIGN (t) = 0;
373 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
374 DECL_SOURCE_LINE (t) = lineno;
375 DECL_SOURCE_FILE (t) =
376 (input_filename) ? input_filename : "<built-in>";
377 DECL_UID (t) = next_decl_uid++;
379 /* We have not yet computed the alias set for this declaration. */
380 DECL_POINTER_ALIAS_SET (t) = -1;
381 break;
383 case 't':
384 TYPE_UID (t) = next_type_uid++;
385 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
386 TYPE_USER_ALIGN (t) = 0;
387 TYPE_MAIN_VARIANT (t) = t;
389 /* Default to no attributes for type, but let target change that. */
390 TYPE_ATTRIBUTES (t) = NULL_TREE;
391 (*targetm.set_default_type_attributes) (t);
393 /* We have not yet computed the alias set for this type. */
394 TYPE_ALIAS_SET (t) = -1;
395 break;
397 case 'c':
398 TREE_CONSTANT (t) = 1;
399 break;
401 case 'e':
402 switch (code)
404 case INIT_EXPR:
405 case MODIFY_EXPR:
406 case VA_ARG_EXPR:
407 case RTL_EXPR:
408 case PREDECREMENT_EXPR:
409 case PREINCREMENT_EXPR:
410 case POSTDECREMENT_EXPR:
411 case POSTINCREMENT_EXPR:
412 /* All of these have side-effects, no matter what their
413 operands are. */
414 TREE_SIDE_EFFECTS (t) = 1;
415 break;
417 default:
418 break;
420 break;
423 return t;
426 /* A front-end can reset this to an appropriate function if types need
427 special handling. */
429 tree (*make_lang_type_fn) PARAMS ((enum tree_code)) = make_node;
431 /* Return a new type (with the indicated CODE), doing whatever
432 language-specific processing is required. */
434 tree
435 make_lang_type (code)
436 enum tree_code code;
438 return (*make_lang_type_fn) (code);
441 /* Return a new node with the same contents as NODE except that its
442 TREE_CHAIN is zero and it has a fresh uid. */
444 tree
445 copy_node (node)
446 tree node;
448 tree t;
449 enum tree_code code = TREE_CODE (node);
450 size_t length;
452 length = tree_size (node);
453 t = ggc_alloc_tree (length);
454 memcpy (t, node, length);
456 TREE_CHAIN (t) = 0;
457 TREE_ASM_WRITTEN (t) = 0;
459 if (TREE_CODE_CLASS (code) == 'd')
460 DECL_UID (t) = next_decl_uid++;
461 else if (TREE_CODE_CLASS (code) == 't')
463 TYPE_UID (t) = next_type_uid++;
464 /* The following is so that the debug code for
465 the copy is different from the original type.
466 The two statements usually duplicate each other
467 (because they clear fields of the same union),
468 but the optimizer should catch that. */
469 TYPE_SYMTAB_POINTER (t) = 0;
470 TYPE_SYMTAB_ADDRESS (t) = 0;
473 return t;
476 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
477 For example, this can copy a list made of TREE_LIST nodes. */
479 tree
480 copy_list (list)
481 tree list;
483 tree head;
484 tree prev, next;
486 if (list == 0)
487 return 0;
489 head = prev = copy_node (list);
490 next = TREE_CHAIN (list);
491 while (next)
493 TREE_CHAIN (prev) = copy_node (next);
494 prev = TREE_CHAIN (prev);
495 next = TREE_CHAIN (next);
497 return head;
501 /* Return a newly constructed INTEGER_CST node whose constant value
502 is specified by the two ints LOW and HI.
503 The TREE_TYPE is set to `int'.
505 This function should be used via the `build_int_2' macro. */
507 tree
508 build_int_2_wide (low, hi)
509 unsigned HOST_WIDE_INT low;
510 HOST_WIDE_INT hi;
512 tree t = make_node (INTEGER_CST);
514 TREE_INT_CST_LOW (t) = low;
515 TREE_INT_CST_HIGH (t) = hi;
516 TREE_TYPE (t) = integer_type_node;
517 return t;
520 /* Return a new VECTOR_CST node whose type is TYPE and whose values
521 are in a list pointed by VALS. */
523 tree
524 build_vector (type, vals)
525 tree type, vals;
527 tree v = make_node (VECTOR_CST);
528 int over1 = 0, over2 = 0;
529 tree link;
531 TREE_VECTOR_CST_ELTS (v) = vals;
532 TREE_TYPE (v) = type;
534 /* Iterate through elements and check for overflow. */
535 for (link = vals; link; link = TREE_CHAIN (link))
537 tree value = TREE_VALUE (link);
539 over1 |= TREE_OVERFLOW (value);
540 over2 |= TREE_CONSTANT_OVERFLOW (value);
543 TREE_OVERFLOW (v) = over1;
544 TREE_CONSTANT_OVERFLOW (v) = over2;
546 return v;
549 /* Return a new REAL_CST node whose type is TYPE and value is D. */
551 tree
552 build_real (type, d)
553 tree type;
554 REAL_VALUE_TYPE d;
556 tree v;
557 int overflow = 0;
559 /* Check for valid float value for this type on this target machine;
560 if not, can print error message and store a valid value in D. */
561 #ifdef CHECK_FLOAT_VALUE
562 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
563 #endif
565 v = make_node (REAL_CST);
566 TREE_TYPE (v) = type;
567 TREE_REAL_CST (v) = d;
568 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
569 return v;
572 /* Return a new REAL_CST node whose type is TYPE
573 and whose value is the integer value of the INTEGER_CST node I. */
575 REAL_VALUE_TYPE
576 real_value_from_int_cst (type, i)
577 tree type ATTRIBUTE_UNUSED, i;
579 REAL_VALUE_TYPE d;
581 /* Clear all bits of the real value type so that we can later do
582 bitwise comparisons to see if two values are the same. */
583 memset ((char *) &d, 0, sizeof d);
585 if (! TREE_UNSIGNED (TREE_TYPE (i)))
586 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
587 TYPE_MODE (type));
588 else
589 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
590 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
591 return d;
594 /* Args to pass to and from build_real_from_int_cst_1. */
596 struct brfic_args
598 tree type; /* Input: type to conver to. */
599 tree i; /* Input: operand to convert. */
600 REAL_VALUE_TYPE d; /* Output: floating point value. */
603 /* Convert an integer to a floating point value while protected by a floating
604 point exception handler. */
606 static void
607 build_real_from_int_cst_1 (data)
608 PTR data;
610 struct brfic_args *args = (struct brfic_args *) data;
612 args->d = real_value_from_int_cst (args->type, args->i);
615 /* Given a tree representing an integer constant I, return a tree
616 representing the same value as a floating-point constant of type TYPE.
617 We cannot perform this operation if there is no way of doing arithmetic
618 on floating-point values. */
620 tree
621 build_real_from_int_cst (type, i)
622 tree type;
623 tree i;
625 tree v;
626 int overflow = TREE_OVERFLOW (i);
627 REAL_VALUE_TYPE d;
628 struct brfic_args args;
630 v = make_node (REAL_CST);
631 TREE_TYPE (v) = type;
633 /* Setup input for build_real_from_int_cst_1() */
634 args.type = type;
635 args.i = i;
637 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
638 /* Receive output from build_real_from_int_cst_1() */
639 d = args.d;
640 else
642 /* We got an exception from build_real_from_int_cst_1() */
643 d = dconst0;
644 overflow = 1;
647 /* Check for valid float value for this type on this target machine. */
649 #ifdef CHECK_FLOAT_VALUE
650 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
651 #endif
653 TREE_REAL_CST (v) = d;
654 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
655 return v;
658 /* Return a newly constructed STRING_CST node whose value is
659 the LEN characters at STR.
660 The TREE_TYPE is not initialized. */
662 tree
663 build_string (len, str)
664 int len;
665 const char *str;
667 tree s = make_node (STRING_CST);
669 TREE_STRING_LENGTH (s) = len;
670 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
672 return s;
675 /* Return a newly constructed COMPLEX_CST node whose value is
676 specified by the real and imaginary parts REAL and IMAG.
677 Both REAL and IMAG should be constant nodes. TYPE, if specified,
678 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
680 tree
681 build_complex (type, real, imag)
682 tree type;
683 tree real, imag;
685 tree t = make_node (COMPLEX_CST);
687 TREE_REALPART (t) = real;
688 TREE_IMAGPART (t) = imag;
689 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
690 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
691 TREE_CONSTANT_OVERFLOW (t)
692 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
693 return t;
696 /* Build a newly constructed TREE_VEC node of length LEN. */
698 tree
699 make_tree_vec (len)
700 int len;
702 tree t;
703 int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
705 #ifdef GATHER_STATISTICS
706 tree_node_counts[(int)vec_kind]++;
707 tree_node_sizes[(int)vec_kind] += length;
708 #endif
710 t = ggc_alloc_tree (length);
712 memset ((PTR) t, 0, length);
713 TREE_SET_CODE (t, TREE_VEC);
714 TREE_VEC_LENGTH (t) = len;
716 return t;
719 /* Return 1 if EXPR is the integer constant zero or a complex constant
720 of zero. */
723 integer_zerop (expr)
724 tree expr;
726 STRIP_NOPS (expr);
728 return ((TREE_CODE (expr) == INTEGER_CST
729 && ! TREE_CONSTANT_OVERFLOW (expr)
730 && TREE_INT_CST_LOW (expr) == 0
731 && TREE_INT_CST_HIGH (expr) == 0)
732 || (TREE_CODE (expr) == COMPLEX_CST
733 && integer_zerop (TREE_REALPART (expr))
734 && integer_zerop (TREE_IMAGPART (expr))));
737 /* Return 1 if EXPR is the integer constant one or the corresponding
738 complex constant. */
741 integer_onep (expr)
742 tree expr;
744 STRIP_NOPS (expr);
746 return ((TREE_CODE (expr) == INTEGER_CST
747 && ! TREE_CONSTANT_OVERFLOW (expr)
748 && TREE_INT_CST_LOW (expr) == 1
749 && TREE_INT_CST_HIGH (expr) == 0)
750 || (TREE_CODE (expr) == COMPLEX_CST
751 && integer_onep (TREE_REALPART (expr))
752 && integer_zerop (TREE_IMAGPART (expr))));
755 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
756 it contains. Likewise for the corresponding complex constant. */
759 integer_all_onesp (expr)
760 tree expr;
762 int prec;
763 int uns;
765 STRIP_NOPS (expr);
767 if (TREE_CODE (expr) == COMPLEX_CST
768 && integer_all_onesp (TREE_REALPART (expr))
769 && integer_zerop (TREE_IMAGPART (expr)))
770 return 1;
772 else if (TREE_CODE (expr) != INTEGER_CST
773 || TREE_CONSTANT_OVERFLOW (expr))
774 return 0;
776 uns = TREE_UNSIGNED (TREE_TYPE (expr));
777 if (!uns)
778 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
779 && TREE_INT_CST_HIGH (expr) == -1);
781 /* Note that using TYPE_PRECISION here is wrong. We care about the
782 actual bits, not the (arbitrary) range of the type. */
783 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
784 if (prec >= HOST_BITS_PER_WIDE_INT)
786 HOST_WIDE_INT high_value;
787 int shift_amount;
789 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
791 if (shift_amount > HOST_BITS_PER_WIDE_INT)
792 /* Can not handle precisions greater than twice the host int size. */
793 abort ();
794 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
795 /* Shifting by the host word size is undefined according to the ANSI
796 standard, so we must handle this as a special case. */
797 high_value = -1;
798 else
799 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
801 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
802 && TREE_INT_CST_HIGH (expr) == high_value);
804 else
805 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
808 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
809 one bit on). */
812 integer_pow2p (expr)
813 tree expr;
815 int prec;
816 HOST_WIDE_INT high, low;
818 STRIP_NOPS (expr);
820 if (TREE_CODE (expr) == COMPLEX_CST
821 && integer_pow2p (TREE_REALPART (expr))
822 && integer_zerop (TREE_IMAGPART (expr)))
823 return 1;
825 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
826 return 0;
828 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
829 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
830 high = TREE_INT_CST_HIGH (expr);
831 low = TREE_INT_CST_LOW (expr);
833 /* First clear all bits that are beyond the type's precision in case
834 we've been sign extended. */
836 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
838 else if (prec > HOST_BITS_PER_WIDE_INT)
839 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
840 else
842 high = 0;
843 if (prec < HOST_BITS_PER_WIDE_INT)
844 low &= ~((HOST_WIDE_INT) (-1) << prec);
847 if (high == 0 && low == 0)
848 return 0;
850 return ((high == 0 && (low & (low - 1)) == 0)
851 || (low == 0 && (high & (high - 1)) == 0));
854 /* Return the power of two represented by a tree node known to be a
855 power of two. */
858 tree_log2 (expr)
859 tree expr;
861 int prec;
862 HOST_WIDE_INT high, low;
864 STRIP_NOPS (expr);
866 if (TREE_CODE (expr) == COMPLEX_CST)
867 return tree_log2 (TREE_REALPART (expr));
869 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
870 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
872 high = TREE_INT_CST_HIGH (expr);
873 low = TREE_INT_CST_LOW (expr);
875 /* First clear all bits that are beyond the type's precision in case
876 we've been sign extended. */
878 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
880 else if (prec > HOST_BITS_PER_WIDE_INT)
881 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
882 else
884 high = 0;
885 if (prec < HOST_BITS_PER_WIDE_INT)
886 low &= ~((HOST_WIDE_INT) (-1) << prec);
889 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
890 : exact_log2 (low));
893 /* Similar, but return the largest integer Y such that 2 ** Y is less
894 than or equal to EXPR. */
897 tree_floor_log2 (expr)
898 tree expr;
900 int prec;
901 HOST_WIDE_INT high, low;
903 STRIP_NOPS (expr);
905 if (TREE_CODE (expr) == COMPLEX_CST)
906 return tree_log2 (TREE_REALPART (expr));
908 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
909 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
911 high = TREE_INT_CST_HIGH (expr);
912 low = TREE_INT_CST_LOW (expr);
914 /* First clear all bits that are beyond the type's precision in case
915 we've been sign extended. Ignore if type's precision hasn't been set
916 since what we are doing is setting it. */
918 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
920 else if (prec > HOST_BITS_PER_WIDE_INT)
921 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
922 else
924 high = 0;
925 if (prec < HOST_BITS_PER_WIDE_INT)
926 low &= ~((HOST_WIDE_INT) (-1) << prec);
929 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
930 : floor_log2 (low));
933 /* Return 1 if EXPR is the real constant zero. */
936 real_zerop (expr)
937 tree expr;
939 STRIP_NOPS (expr);
941 return ((TREE_CODE (expr) == REAL_CST
942 && ! TREE_CONSTANT_OVERFLOW (expr)
943 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
944 || (TREE_CODE (expr) == COMPLEX_CST
945 && real_zerop (TREE_REALPART (expr))
946 && real_zerop (TREE_IMAGPART (expr))));
949 /* Return 1 if EXPR is the real constant one in real or complex form. */
952 real_onep (expr)
953 tree expr;
955 STRIP_NOPS (expr);
957 return ((TREE_CODE (expr) == REAL_CST
958 && ! TREE_CONSTANT_OVERFLOW (expr)
959 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
960 || (TREE_CODE (expr) == COMPLEX_CST
961 && real_onep (TREE_REALPART (expr))
962 && real_zerop (TREE_IMAGPART (expr))));
965 /* Return 1 if EXPR is the real constant two. */
968 real_twop (expr)
969 tree expr;
971 STRIP_NOPS (expr);
973 return ((TREE_CODE (expr) == REAL_CST
974 && ! TREE_CONSTANT_OVERFLOW (expr)
975 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
976 || (TREE_CODE (expr) == COMPLEX_CST
977 && real_twop (TREE_REALPART (expr))
978 && real_zerop (TREE_IMAGPART (expr))));
981 /* Nonzero if EXP is a constant or a cast of a constant. */
984 really_constant_p (exp)
985 tree exp;
987 /* This is not quite the same as STRIP_NOPS. It does more. */
988 while (TREE_CODE (exp) == NOP_EXPR
989 || TREE_CODE (exp) == CONVERT_EXPR
990 || TREE_CODE (exp) == NON_LVALUE_EXPR)
991 exp = TREE_OPERAND (exp, 0);
992 return TREE_CONSTANT (exp);
995 /* Return first list element whose TREE_VALUE is ELEM.
996 Return 0 if ELEM is not in LIST. */
998 tree
999 value_member (elem, list)
1000 tree elem, list;
1002 while (list)
1004 if (elem == TREE_VALUE (list))
1005 return list;
1006 list = TREE_CHAIN (list);
1008 return NULL_TREE;
1011 /* Return first list element whose TREE_PURPOSE is ELEM.
1012 Return 0 if ELEM is not in LIST. */
1014 tree
1015 purpose_member (elem, list)
1016 tree elem, list;
1018 while (list)
1020 if (elem == TREE_PURPOSE (list))
1021 return list;
1022 list = TREE_CHAIN (list);
1024 return NULL_TREE;
1027 /* Return first list element whose BINFO_TYPE is ELEM.
1028 Return 0 if ELEM is not in LIST. */
1030 tree
1031 binfo_member (elem, list)
1032 tree elem, list;
1034 while (list)
1036 if (elem == BINFO_TYPE (list))
1037 return list;
1038 list = TREE_CHAIN (list);
1040 return NULL_TREE;
1043 /* Return nonzero if ELEM is part of the chain CHAIN. */
1046 chain_member (elem, chain)
1047 tree elem, chain;
1049 while (chain)
1051 if (elem == chain)
1052 return 1;
1053 chain = TREE_CHAIN (chain);
1056 return 0;
1059 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1060 chain CHAIN. This and the next function are currently unused, but
1061 are retained for completeness. */
1064 chain_member_value (elem, chain)
1065 tree elem, chain;
1067 while (chain)
1069 if (elem == TREE_VALUE (chain))
1070 return 1;
1071 chain = TREE_CHAIN (chain);
1074 return 0;
1077 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1078 for any piece of chain CHAIN. */
1081 chain_member_purpose (elem, chain)
1082 tree elem, chain;
1084 while (chain)
1086 if (elem == TREE_PURPOSE (chain))
1087 return 1;
1088 chain = TREE_CHAIN (chain);
1091 return 0;
1094 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1095 We expect a null pointer to mark the end of the chain.
1096 This is the Lisp primitive `length'. */
1099 list_length (t)
1100 tree t;
1102 tree tail;
1103 int len = 0;
1105 for (tail = t; tail; tail = TREE_CHAIN (tail))
1106 len++;
1108 return len;
1111 /* Returns the number of FIELD_DECLs in TYPE. */
1114 fields_length (type)
1115 tree type;
1117 tree t = TYPE_FIELDS (type);
1118 int count = 0;
1120 for (; t; t = TREE_CHAIN (t))
1121 if (TREE_CODE (t) == FIELD_DECL)
1122 ++count;
1124 return count;
1127 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1128 by modifying the last node in chain 1 to point to chain 2.
1129 This is the Lisp primitive `nconc'. */
1131 tree
1132 chainon (op1, op2)
1133 tree op1, op2;
1136 if (op1)
1138 tree t1;
1139 #ifdef ENABLE_TREE_CHECKING
1140 tree t2;
1141 #endif
1143 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1145 TREE_CHAIN (t1) = op2;
1146 #ifdef ENABLE_TREE_CHECKING
1147 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1148 if (t2 == t1)
1149 abort (); /* Circularity created. */
1150 #endif
1151 return op1;
1153 else
1154 return op2;
1157 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1159 tree
1160 tree_last (chain)
1161 tree chain;
1163 tree next;
1164 if (chain)
1165 while ((next = TREE_CHAIN (chain)))
1166 chain = next;
1167 return chain;
1170 /* Reverse the order of elements in the chain T,
1171 and return the new head of the chain (old last element). */
1173 tree
1174 nreverse (t)
1175 tree t;
1177 tree prev = 0, decl, next;
1178 for (decl = t; decl; decl = next)
1180 next = TREE_CHAIN (decl);
1181 TREE_CHAIN (decl) = prev;
1182 prev = decl;
1184 return prev;
1187 /* Given a chain CHAIN of tree nodes,
1188 construct and return a list of those nodes. */
1190 tree
1191 listify (chain)
1192 tree chain;
1194 tree result = NULL_TREE;
1195 tree in_tail = chain;
1196 tree out_tail = NULL_TREE;
1198 while (in_tail)
1200 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1201 if (out_tail)
1202 TREE_CHAIN (out_tail) = next;
1203 else
1204 result = next;
1205 out_tail = next;
1206 in_tail = TREE_CHAIN (in_tail);
1209 return result;
1212 /* Return a newly created TREE_LIST node whose
1213 purpose and value fields are PARM and VALUE. */
1215 tree
1216 build_tree_list (parm, value)
1217 tree parm, value;
1219 tree t = make_node (TREE_LIST);
1220 TREE_PURPOSE (t) = parm;
1221 TREE_VALUE (t) = value;
1222 return t;
1225 /* Return a newly created TREE_LIST node whose
1226 purpose and value fields are PARM and VALUE
1227 and whose TREE_CHAIN is CHAIN. */
1229 tree
1230 tree_cons (purpose, value, chain)
1231 tree purpose, value, chain;
1233 tree node;
1235 node = ggc_alloc_tree (sizeof (struct tree_list));
1237 memset (node, 0, sizeof (struct tree_common));
1239 #ifdef GATHER_STATISTICS
1240 tree_node_counts[(int) x_kind]++;
1241 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1242 #endif
1244 TREE_SET_CODE (node, TREE_LIST);
1245 TREE_CHAIN (node) = chain;
1246 TREE_PURPOSE (node) = purpose;
1247 TREE_VALUE (node) = value;
1248 return node;
1252 /* Return the size nominally occupied by an object of type TYPE
1253 when it resides in memory. The value is measured in units of bytes,
1254 and its data type is that normally used for type sizes
1255 (which is the first type created by make_signed_type or
1256 make_unsigned_type). */
1258 tree
1259 size_in_bytes (type)
1260 tree type;
1262 tree t;
1264 if (type == error_mark_node)
1265 return integer_zero_node;
1267 type = TYPE_MAIN_VARIANT (type);
1268 t = TYPE_SIZE_UNIT (type);
1270 if (t == 0)
1272 incomplete_type_error (NULL_TREE, type);
1273 return size_zero_node;
1276 if (TREE_CODE (t) == INTEGER_CST)
1277 force_fit_type (t, 0);
1279 return t;
1282 /* Return the size of TYPE (in bytes) as a wide integer
1283 or return -1 if the size can vary or is larger than an integer. */
1285 HOST_WIDE_INT
1286 int_size_in_bytes (type)
1287 tree type;
1289 tree t;
1291 if (type == error_mark_node)
1292 return 0;
1294 type = TYPE_MAIN_VARIANT (type);
1295 t = TYPE_SIZE_UNIT (type);
1296 if (t == 0
1297 || TREE_CODE (t) != INTEGER_CST
1298 || TREE_OVERFLOW (t)
1299 || TREE_INT_CST_HIGH (t) != 0
1300 /* If the result would appear negative, it's too big to represent. */
1301 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1302 return -1;
1304 return TREE_INT_CST_LOW (t);
1307 /* Return the bit position of FIELD, in bits from the start of the record.
1308 This is a tree of type bitsizetype. */
1310 tree
1311 bit_position (field)
1312 tree field;
1315 return bit_from_pos (DECL_FIELD_OFFSET (field),
1316 DECL_FIELD_BIT_OFFSET (field));
1319 /* Likewise, but return as an integer. Abort if it cannot be represented
1320 in that way (since it could be a signed value, we don't have the option
1321 of returning -1 like int_size_in_byte can. */
1323 HOST_WIDE_INT
1324 int_bit_position (field)
1325 tree field;
1327 return tree_low_cst (bit_position (field), 0);
1330 /* Return the byte position of FIELD, in bytes from the start of the record.
1331 This is a tree of type sizetype. */
1333 tree
1334 byte_position (field)
1335 tree field;
1337 return byte_from_pos (DECL_FIELD_OFFSET (field),
1338 DECL_FIELD_BIT_OFFSET (field));
1341 /* Likewise, but return as an integer. Abort if it cannot be represented
1342 in that way (since it could be a signed value, we don't have the option
1343 of returning -1 like int_size_in_byte can. */
1345 HOST_WIDE_INT
1346 int_byte_position (field)
1347 tree field;
1349 return tree_low_cst (byte_position (field), 0);
1352 /* Return the strictest alignment, in bits, that T is known to have. */
1354 unsigned int
1355 expr_align (t)
1356 tree t;
1358 unsigned int align0, align1;
1360 switch (TREE_CODE (t))
1362 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1363 /* If we have conversions, we know that the alignment of the
1364 object must meet each of the alignments of the types. */
1365 align0 = expr_align (TREE_OPERAND (t, 0));
1366 align1 = TYPE_ALIGN (TREE_TYPE (t));
1367 return MAX (align0, align1);
1369 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1370 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1371 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1372 /* These don't change the alignment of an object. */
1373 return expr_align (TREE_OPERAND (t, 0));
1375 case COND_EXPR:
1376 /* The best we can do is say that the alignment is the least aligned
1377 of the two arms. */
1378 align0 = expr_align (TREE_OPERAND (t, 1));
1379 align1 = expr_align (TREE_OPERAND (t, 2));
1380 return MIN (align0, align1);
1382 case LABEL_DECL: case CONST_DECL:
1383 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1384 if (DECL_ALIGN (t) != 0)
1385 return DECL_ALIGN (t);
1386 break;
1388 case FUNCTION_DECL:
1389 return FUNCTION_BOUNDARY;
1391 default:
1392 break;
1395 /* Otherwise take the alignment from that of the type. */
1396 return TYPE_ALIGN (TREE_TYPE (t));
1399 /* Return, as a tree node, the number of elements for TYPE (which is an
1400 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1402 tree
1403 array_type_nelts (type)
1404 tree type;
1406 tree index_type, min, max;
1408 /* If they did it with unspecified bounds, then we should have already
1409 given an error about it before we got here. */
1410 if (! TYPE_DOMAIN (type))
1411 return error_mark_node;
1413 index_type = TYPE_DOMAIN (type);
1414 min = TYPE_MIN_VALUE (index_type);
1415 max = TYPE_MAX_VALUE (index_type);
1417 return (integer_zerop (min)
1418 ? max
1419 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1422 /* Return nonzero if arg is static -- a reference to an object in
1423 static storage. This is not the same as the C meaning of `static'. */
1426 staticp (arg)
1427 tree arg;
1429 switch (TREE_CODE (arg))
1431 case FUNCTION_DECL:
1432 /* Nested functions aren't static, since taking their address
1433 involves a trampoline. */
1434 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1435 && ! DECL_NON_ADDR_CONST_P (arg);
1437 case VAR_DECL:
1438 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1439 && ! DECL_NON_ADDR_CONST_P (arg);
1441 case CONSTRUCTOR:
1442 return TREE_STATIC (arg);
1444 case LABEL_DECL:
1445 case STRING_CST:
1446 return 1;
1448 /* If we are referencing a bitfield, we can't evaluate an
1449 ADDR_EXPR at compile time and so it isn't a constant. */
1450 case COMPONENT_REF:
1451 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1452 && staticp (TREE_OPERAND (arg, 0)));
1454 case BIT_FIELD_REF:
1455 return 0;
1457 #if 0
1458 /* This case is technically correct, but results in setting
1459 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1460 compile time. */
1461 case INDIRECT_REF:
1462 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1463 #endif
1465 case ARRAY_REF:
1466 case ARRAY_RANGE_REF:
1467 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1468 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1469 return staticp (TREE_OPERAND (arg, 0));
1471 default:
1472 if ((unsigned int) TREE_CODE (arg)
1473 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1474 return (*lang_hooks.staticp) (arg);
1475 else
1476 return 0;
1480 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1481 Do this to any expression which may be used in more than one place,
1482 but must be evaluated only once.
1484 Normally, expand_expr would reevaluate the expression each time.
1485 Calling save_expr produces something that is evaluated and recorded
1486 the first time expand_expr is called on it. Subsequent calls to
1487 expand_expr just reuse the recorded value.
1489 The call to expand_expr that generates code that actually computes
1490 the value is the first call *at compile time*. Subsequent calls
1491 *at compile time* generate code to use the saved value.
1492 This produces correct result provided that *at run time* control
1493 always flows through the insns made by the first expand_expr
1494 before reaching the other places where the save_expr was evaluated.
1495 You, the caller of save_expr, must make sure this is so.
1497 Constants, and certain read-only nodes, are returned with no
1498 SAVE_EXPR because that is safe. Expressions containing placeholders
1499 are not touched; see tree.def for an explanation of what these
1500 are used for. */
1502 tree
1503 save_expr (expr)
1504 tree expr;
1506 tree t = fold (expr);
1507 tree inner;
1509 /* We don't care about whether this can be used as an lvalue in this
1510 context. */
1511 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1512 t = TREE_OPERAND (t, 0);
1514 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1515 a constant, it will be more efficient to not make another SAVE_EXPR since
1516 it will allow better simplification and GCSE will be able to merge the
1517 computations if they actualy occur. */
1518 for (inner = t;
1519 (TREE_CODE_CLASS (TREE_CODE (inner)) == '1'
1520 || (TREE_CODE_CLASS (TREE_CODE (inner)) == '2'
1521 && TREE_CONSTANT (TREE_OPERAND (inner, 1))));
1522 inner = TREE_OPERAND (inner, 0))
1525 /* If the tree evaluates to a constant, then we don't want to hide that
1526 fact (i.e. this allows further folding, and direct checks for constants).
1527 However, a read-only object that has side effects cannot be bypassed.
1528 Since it is no problem to reevaluate literals, we just return the
1529 literal node. */
1530 if (TREE_CONSTANT (inner)
1531 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1532 || TREE_CODE (inner) == SAVE_EXPR || TREE_CODE (inner) == ERROR_MARK)
1533 return t;
1535 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1536 it means that the size or offset of some field of an object depends on
1537 the value within another field.
1539 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1540 and some variable since it would then need to be both evaluated once and
1541 evaluated more than once. Front-ends must assure this case cannot
1542 happen by surrounding any such subexpressions in their own SAVE_EXPR
1543 and forcing evaluation at the proper time. */
1544 if (contains_placeholder_p (t))
1545 return t;
1547 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1549 /* This expression might be placed ahead of a jump to ensure that the
1550 value was computed on both sides of the jump. So make sure it isn't
1551 eliminated as dead. */
1552 TREE_SIDE_EFFECTS (t) = 1;
1553 TREE_READONLY (t) = 1;
1554 return t;
1557 /* Arrange for an expression to be expanded multiple independent
1558 times. This is useful for cleanup actions, as the backend can
1559 expand them multiple times in different places. */
1561 tree
1562 unsave_expr (expr)
1563 tree expr;
1565 tree t;
1567 /* If this is already protected, no sense in protecting it again. */
1568 if (TREE_CODE (expr) == UNSAVE_EXPR)
1569 return expr;
1571 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1572 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1573 return t;
1576 /* Returns the index of the first non-tree operand for CODE, or the number
1577 of operands if all are trees. */
1580 first_rtl_op (code)
1581 enum tree_code code;
1583 switch (code)
1585 case SAVE_EXPR:
1586 return 2;
1587 case GOTO_SUBROUTINE_EXPR:
1588 case RTL_EXPR:
1589 return 0;
1590 case WITH_CLEANUP_EXPR:
1591 return 2;
1592 case METHOD_CALL_EXPR:
1593 return 3;
1594 default:
1595 return TREE_CODE_LENGTH (code);
1599 /* Perform any modifications to EXPR required when it is unsaved. Does
1600 not recurse into EXPR's subtrees. */
1602 void
1603 unsave_expr_1 (expr)
1604 tree expr;
1606 switch (TREE_CODE (expr))
1608 case SAVE_EXPR:
1609 if (! SAVE_EXPR_PERSISTENT_P (expr))
1610 SAVE_EXPR_RTL (expr) = 0;
1611 break;
1613 case TARGET_EXPR:
1614 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1615 It's OK for this to happen if it was part of a subtree that
1616 isn't immediately expanded, such as operand 2 of another
1617 TARGET_EXPR. */
1618 if (TREE_OPERAND (expr, 1))
1619 break;
1621 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1622 TREE_OPERAND (expr, 3) = NULL_TREE;
1623 break;
1625 case RTL_EXPR:
1626 /* I don't yet know how to emit a sequence multiple times. */
1627 if (RTL_EXPR_SEQUENCE (expr) != 0)
1628 abort ();
1629 break;
1631 default:
1632 break;
1636 /* Default lang hook for "unsave_expr_now". */
1638 tree
1639 lhd_unsave_expr_now (expr)
1640 tree expr;
1642 enum tree_code code;
1644 /* There's nothing to do for NULL_TREE. */
1645 if (expr == 0)
1646 return expr;
1648 unsave_expr_1 (expr);
1650 code = TREE_CODE (expr);
1651 switch (TREE_CODE_CLASS (code))
1653 case 'c': /* a constant */
1654 case 't': /* a type node */
1655 case 'd': /* A decl node */
1656 case 'b': /* A block node */
1657 break;
1659 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1660 if (code == TREE_LIST)
1662 lhd_unsave_expr_now (TREE_VALUE (expr));
1663 lhd_unsave_expr_now (TREE_CHAIN (expr));
1665 break;
1667 case 'e': /* an expression */
1668 case 'r': /* a reference */
1669 case 's': /* an expression with side effects */
1670 case '<': /* a comparison expression */
1671 case '2': /* a binary arithmetic expression */
1672 case '1': /* a unary arithmetic expression */
1674 int i;
1676 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1677 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1679 break;
1681 default:
1682 abort ();
1685 return expr;
1688 /* Return 0 if it is safe to evaluate EXPR multiple times,
1689 return 1 if it is safe if EXPR is unsaved afterward, or
1690 return 2 if it is completely unsafe.
1692 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1693 an expression tree, so that it safe to unsave them and the surrounding
1694 context will be correct.
1696 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1697 occasionally across the whole of a function. It is therefore only
1698 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1699 below the UNSAVE_EXPR.
1701 RTL_EXPRs consume their rtl during evaluation. It is therefore
1702 never possible to unsave them. */
1705 unsafe_for_reeval (expr)
1706 tree expr;
1708 int unsafeness = 0;
1709 enum tree_code code;
1710 int i, tmp;
1711 tree exp;
1712 int first_rtl;
1714 if (expr == NULL_TREE)
1715 return 1;
1717 code = TREE_CODE (expr);
1718 first_rtl = first_rtl_op (code);
1720 switch (code)
1722 case SAVE_EXPR:
1723 case RTL_EXPR:
1724 return 2;
1726 case TREE_LIST:
1727 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1729 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1730 unsafeness = MAX (tmp, unsafeness);
1733 return unsafeness;
1735 case CALL_EXPR:
1736 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1737 return MAX (tmp, 1);
1739 case TARGET_EXPR:
1740 unsafeness = 1;
1741 break;
1743 default:
1744 if (lang_unsafe_for_reeval != 0)
1746 tmp = (*lang_unsafe_for_reeval) (expr);
1747 if (tmp >= 0)
1748 return tmp;
1750 break;
1753 switch (TREE_CODE_CLASS (code))
1755 case 'c': /* a constant */
1756 case 't': /* a type node */
1757 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1758 case 'd': /* A decl node */
1759 case 'b': /* A block node */
1760 return 0;
1762 case 'e': /* an expression */
1763 case 'r': /* a reference */
1764 case 's': /* an expression with side effects */
1765 case '<': /* a comparison expression */
1766 case '2': /* a binary arithmetic expression */
1767 case '1': /* a unary arithmetic expression */
1768 for (i = first_rtl - 1; i >= 0; i--)
1770 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1771 unsafeness = MAX (tmp, unsafeness);
1774 return unsafeness;
1776 default:
1777 return 2;
1781 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1782 or offset that depends on a field within a record. */
1785 contains_placeholder_p (exp)
1786 tree exp;
1788 enum tree_code code;
1789 int result;
1791 if (!exp)
1792 return 0;
1794 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1795 in it since it is supplying a value for it. */
1796 code = TREE_CODE (exp);
1797 if (code == WITH_RECORD_EXPR)
1798 return 0;
1799 else if (code == PLACEHOLDER_EXPR)
1800 return 1;
1802 switch (TREE_CODE_CLASS (code))
1804 case 'r':
1805 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1806 position computations since they will be converted into a
1807 WITH_RECORD_EXPR involving the reference, which will assume
1808 here will be valid. */
1809 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1811 case 'x':
1812 if (code == TREE_LIST)
1813 return (contains_placeholder_p (TREE_VALUE (exp))
1814 || (TREE_CHAIN (exp) != 0
1815 && contains_placeholder_p (TREE_CHAIN (exp))));
1816 break;
1818 case '1':
1819 case '2': case '<':
1820 case 'e':
1821 switch (code)
1823 case COMPOUND_EXPR:
1824 /* Ignoring the first operand isn't quite right, but works best. */
1825 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1827 case RTL_EXPR:
1828 case CONSTRUCTOR:
1829 return 0;
1831 case COND_EXPR:
1832 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1833 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1834 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1836 case SAVE_EXPR:
1837 /* If we already know this doesn't have a placeholder, don't
1838 check again. */
1839 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1840 return 0;
1842 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1843 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1844 if (result)
1845 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1847 return result;
1849 case CALL_EXPR:
1850 return (TREE_OPERAND (exp, 1) != 0
1851 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1853 default:
1854 break;
1857 switch (TREE_CODE_LENGTH (code))
1859 case 1:
1860 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1861 case 2:
1862 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1863 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1864 default:
1865 return 0;
1868 default:
1869 return 0;
1871 return 0;
1874 /* Return 1 if EXP contains any expressions that produce cleanups for an
1875 outer scope to deal with. Used by fold. */
1878 has_cleanups (exp)
1879 tree exp;
1881 int i, nops, cmp;
1883 if (! TREE_SIDE_EFFECTS (exp))
1884 return 0;
1886 switch (TREE_CODE (exp))
1888 case TARGET_EXPR:
1889 case GOTO_SUBROUTINE_EXPR:
1890 case WITH_CLEANUP_EXPR:
1891 return 1;
1893 case CLEANUP_POINT_EXPR:
1894 return 0;
1896 case CALL_EXPR:
1897 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1899 cmp = has_cleanups (TREE_VALUE (exp));
1900 if (cmp)
1901 return cmp;
1903 return 0;
1905 default:
1906 break;
1909 /* This general rule works for most tree codes. All exceptions should be
1910 handled above. If this is a language-specific tree code, we can't
1911 trust what might be in the operand, so say we don't know
1912 the situation. */
1913 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1914 return -1;
1916 nops = first_rtl_op (TREE_CODE (exp));
1917 for (i = 0; i < nops; i++)
1918 if (TREE_OPERAND (exp, i) != 0)
1920 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1921 if (type == 'e' || type == '<' || type == '1' || type == '2'
1922 || type == 'r' || type == 's')
1924 cmp = has_cleanups (TREE_OPERAND (exp, i));
1925 if (cmp)
1926 return cmp;
1930 return 0;
1933 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1934 return a tree with all occurrences of references to F in a
1935 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1936 contains only arithmetic expressions or a CALL_EXPR with a
1937 PLACEHOLDER_EXPR occurring only in its arglist. */
1939 tree
1940 substitute_in_expr (exp, f, r)
1941 tree exp;
1942 tree f;
1943 tree r;
1945 enum tree_code code = TREE_CODE (exp);
1946 tree op0, op1, op2;
1947 tree new;
1948 tree inner;
1950 switch (TREE_CODE_CLASS (code))
1952 case 'c':
1953 case 'd':
1954 return exp;
1956 case 'x':
1957 if (code == PLACEHOLDER_EXPR)
1958 return exp;
1959 else if (code == TREE_LIST)
1961 op0 = (TREE_CHAIN (exp) == 0
1962 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1963 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1964 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1965 return exp;
1967 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1970 abort ();
1972 case '1':
1973 case '2':
1974 case '<':
1975 case 'e':
1976 switch (TREE_CODE_LENGTH (code))
1978 case 1:
1979 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1980 if (op0 == TREE_OPERAND (exp, 0))
1981 return exp;
1983 if (code == NON_LVALUE_EXPR)
1984 return op0;
1986 new = fold (build1 (code, TREE_TYPE (exp), op0));
1987 break;
1989 case 2:
1990 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1991 could, but we don't support it. */
1992 if (code == RTL_EXPR)
1993 return exp;
1994 else if (code == CONSTRUCTOR)
1995 abort ();
1997 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1998 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1999 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2000 return exp;
2002 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2003 break;
2005 case 3:
2006 /* It cannot be that anything inside a SAVE_EXPR contains a
2007 PLACEHOLDER_EXPR. */
2008 if (code == SAVE_EXPR)
2009 return exp;
2011 else if (code == CALL_EXPR)
2013 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2014 if (op1 == TREE_OPERAND (exp, 1))
2015 return exp;
2017 return build (code, TREE_TYPE (exp),
2018 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2021 else if (code != COND_EXPR)
2022 abort ();
2024 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2025 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2026 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2027 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2028 && op2 == TREE_OPERAND (exp, 2))
2029 return exp;
2031 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2032 break;
2034 default:
2035 abort ();
2038 break;
2040 case 'r':
2041 switch (code)
2043 case COMPONENT_REF:
2044 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2045 and it is the right field, replace it with R. */
2046 for (inner = TREE_OPERAND (exp, 0);
2047 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2048 inner = TREE_OPERAND (inner, 0))
2050 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2051 && TREE_OPERAND (exp, 1) == f)
2052 return r;
2054 /* If this expression hasn't been completed let, leave it
2055 alone. */
2056 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2057 && TREE_TYPE (inner) == 0)
2058 return exp;
2060 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2061 if (op0 == TREE_OPERAND (exp, 0))
2062 return exp;
2064 new = fold (build (code, TREE_TYPE (exp), op0,
2065 TREE_OPERAND (exp, 1)));
2066 break;
2068 case BIT_FIELD_REF:
2069 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2070 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2071 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2072 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2073 && op2 == TREE_OPERAND (exp, 2))
2074 return exp;
2076 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2077 break;
2079 case INDIRECT_REF:
2080 case BUFFER_REF:
2081 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2082 if (op0 == TREE_OPERAND (exp, 0))
2083 return exp;
2085 new = fold (build1 (code, TREE_TYPE (exp), op0));
2086 break;
2088 default:
2089 abort ();
2091 break;
2093 default:
2094 abort ();
2097 TREE_READONLY (new) = TREE_READONLY (exp);
2098 return new;
2101 /* Stabilize a reference so that we can use it any number of times
2102 without causing its operands to be evaluated more than once.
2103 Returns the stabilized reference. This works by means of save_expr,
2104 so see the caveats in the comments about save_expr.
2106 Also allows conversion expressions whose operands are references.
2107 Any other kind of expression is returned unchanged. */
2109 tree
2110 stabilize_reference (ref)
2111 tree ref;
2113 tree result;
2114 enum tree_code code = TREE_CODE (ref);
2116 switch (code)
2118 case VAR_DECL:
2119 case PARM_DECL:
2120 case RESULT_DECL:
2121 /* No action is needed in this case. */
2122 return ref;
2124 case NOP_EXPR:
2125 case CONVERT_EXPR:
2126 case FLOAT_EXPR:
2127 case FIX_TRUNC_EXPR:
2128 case FIX_FLOOR_EXPR:
2129 case FIX_ROUND_EXPR:
2130 case FIX_CEIL_EXPR:
2131 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2132 break;
2134 case INDIRECT_REF:
2135 result = build_nt (INDIRECT_REF,
2136 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2137 break;
2139 case COMPONENT_REF:
2140 result = build_nt (COMPONENT_REF,
2141 stabilize_reference (TREE_OPERAND (ref, 0)),
2142 TREE_OPERAND (ref, 1));
2143 break;
2145 case BIT_FIELD_REF:
2146 result = build_nt (BIT_FIELD_REF,
2147 stabilize_reference (TREE_OPERAND (ref, 0)),
2148 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2149 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2150 break;
2152 case ARRAY_REF:
2153 result = build_nt (ARRAY_REF,
2154 stabilize_reference (TREE_OPERAND (ref, 0)),
2155 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2156 break;
2158 case ARRAY_RANGE_REF:
2159 result = build_nt (ARRAY_RANGE_REF,
2160 stabilize_reference (TREE_OPERAND (ref, 0)),
2161 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2162 break;
2164 case COMPOUND_EXPR:
2165 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2166 it wouldn't be ignored. This matters when dealing with
2167 volatiles. */
2168 return stabilize_reference_1 (ref);
2170 case RTL_EXPR:
2171 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2172 save_expr (build1 (ADDR_EXPR,
2173 build_pointer_type (TREE_TYPE (ref)),
2174 ref)));
2175 break;
2177 /* If arg isn't a kind of lvalue we recognize, make no change.
2178 Caller should recognize the error for an invalid lvalue. */
2179 default:
2180 return ref;
2182 case ERROR_MARK:
2183 return error_mark_node;
2186 TREE_TYPE (result) = TREE_TYPE (ref);
2187 TREE_READONLY (result) = TREE_READONLY (ref);
2188 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2189 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2191 return result;
2194 /* Subroutine of stabilize_reference; this is called for subtrees of
2195 references. Any expression with side-effects must be put in a SAVE_EXPR
2196 to ensure that it is only evaluated once.
2198 We don't put SAVE_EXPR nodes around everything, because assigning very
2199 simple expressions to temporaries causes us to miss good opportunities
2200 for optimizations. Among other things, the opportunity to fold in the
2201 addition of a constant into an addressing mode often gets lost, e.g.
2202 "y[i+1] += x;". In general, we take the approach that we should not make
2203 an assignment unless we are forced into it - i.e., that any non-side effect
2204 operator should be allowed, and that cse should take care of coalescing
2205 multiple utterances of the same expression should that prove fruitful. */
2207 tree
2208 stabilize_reference_1 (e)
2209 tree e;
2211 tree result;
2212 enum tree_code code = TREE_CODE (e);
2214 /* We cannot ignore const expressions because it might be a reference
2215 to a const array but whose index contains side-effects. But we can
2216 ignore things that are actual constant or that already have been
2217 handled by this function. */
2219 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2220 return e;
2222 switch (TREE_CODE_CLASS (code))
2224 case 'x':
2225 case 't':
2226 case 'd':
2227 case 'b':
2228 case '<':
2229 case 's':
2230 case 'e':
2231 case 'r':
2232 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2233 so that it will only be evaluated once. */
2234 /* The reference (r) and comparison (<) classes could be handled as
2235 below, but it is generally faster to only evaluate them once. */
2236 if (TREE_SIDE_EFFECTS (e))
2237 return save_expr (e);
2238 return e;
2240 case 'c':
2241 /* Constants need no processing. In fact, we should never reach
2242 here. */
2243 return e;
2245 case '2':
2246 /* Division is slow and tends to be compiled with jumps,
2247 especially the division by powers of 2 that is often
2248 found inside of an array reference. So do it just once. */
2249 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2250 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2251 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2252 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2253 return save_expr (e);
2254 /* Recursively stabilize each operand. */
2255 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2256 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2257 break;
2259 case '1':
2260 /* Recursively stabilize each operand. */
2261 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2262 break;
2264 default:
2265 abort ();
2268 TREE_TYPE (result) = TREE_TYPE (e);
2269 TREE_READONLY (result) = TREE_READONLY (e);
2270 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2271 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2273 return result;
2276 /* Low-level constructors for expressions. */
2278 /* Build an expression of code CODE, data type TYPE,
2279 and operands as specified by the arguments ARG1 and following arguments.
2280 Expressions and reference nodes can be created this way.
2281 Constants, decls, types and misc nodes cannot be. */
2283 tree
2284 build VPARAMS ((enum tree_code code, tree tt, ...))
2286 tree t;
2287 int length;
2288 int i;
2289 int fro;
2290 int constant;
2292 VA_OPEN (p, tt);
2293 VA_FIXEDARG (p, enum tree_code, code);
2294 VA_FIXEDARG (p, tree, tt);
2296 t = make_node (code);
2297 length = TREE_CODE_LENGTH (code);
2298 TREE_TYPE (t) = tt;
2300 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2301 result based on those same flags for the arguments. But if the
2302 arguments aren't really even `tree' expressions, we shouldn't be trying
2303 to do this. */
2304 fro = first_rtl_op (code);
2306 /* Expressions without side effects may be constant if their
2307 arguments are as well. */
2308 constant = (TREE_CODE_CLASS (code) == '<'
2309 || TREE_CODE_CLASS (code) == '1'
2310 || TREE_CODE_CLASS (code) == '2'
2311 || TREE_CODE_CLASS (code) == 'c');
2313 if (length == 2)
2315 /* This is equivalent to the loop below, but faster. */
2316 tree arg0 = va_arg (p, tree);
2317 tree arg1 = va_arg (p, tree);
2319 TREE_OPERAND (t, 0) = arg0;
2320 TREE_OPERAND (t, 1) = arg1;
2321 TREE_READONLY (t) = 1;
2322 if (arg0 && fro > 0)
2324 if (TREE_SIDE_EFFECTS (arg0))
2325 TREE_SIDE_EFFECTS (t) = 1;
2326 if (!TREE_READONLY (arg0))
2327 TREE_READONLY (t) = 0;
2328 if (!TREE_CONSTANT (arg0))
2329 constant = 0;
2332 if (arg1 && fro > 1)
2334 if (TREE_SIDE_EFFECTS (arg1))
2335 TREE_SIDE_EFFECTS (t) = 1;
2336 if (!TREE_READONLY (arg1))
2337 TREE_READONLY (t) = 0;
2338 if (!TREE_CONSTANT (arg1))
2339 constant = 0;
2342 else if (length == 1)
2344 tree arg0 = va_arg (p, tree);
2346 /* The only one-operand cases we handle here are those with side-effects.
2347 Others are handled with build1. So don't bother checked if the
2348 arg has side-effects since we'll already have set it.
2350 ??? This really should use build1 too. */
2351 if (TREE_CODE_CLASS (code) != 's')
2352 abort ();
2353 TREE_OPERAND (t, 0) = arg0;
2355 else
2357 for (i = 0; i < length; i++)
2359 tree operand = va_arg (p, tree);
2361 TREE_OPERAND (t, i) = operand;
2362 if (operand && fro > i)
2364 if (TREE_SIDE_EFFECTS (operand))
2365 TREE_SIDE_EFFECTS (t) = 1;
2366 if (!TREE_CONSTANT (operand))
2367 constant = 0;
2371 VA_CLOSE (p);
2373 TREE_CONSTANT (t) = constant;
2374 return t;
2377 /* Same as above, but only builds for unary operators.
2378 Saves lions share of calls to `build'; cuts down use
2379 of varargs, which is expensive for RISC machines. */
2381 tree
2382 build1 (code, type, node)
2383 enum tree_code code;
2384 tree type;
2385 tree node;
2387 int length;
2388 #ifdef GATHER_STATISTICS
2389 tree_node_kind kind;
2390 #endif
2391 tree t;
2393 #ifdef GATHER_STATISTICS
2394 if (TREE_CODE_CLASS (code) == 'r')
2395 kind = r_kind;
2396 else
2397 kind = e_kind;
2398 #endif
2400 #ifdef ENABLE_CHECKING
2401 if (TREE_CODE_CLASS (code) == '2'
2402 || TREE_CODE_CLASS (code) == '<'
2403 || TREE_CODE_LENGTH (code) != 1)
2404 abort ();
2405 #endif /* ENABLE_CHECKING */
2407 length = sizeof (struct tree_exp);
2409 t = ggc_alloc_tree (length);
2411 memset ((PTR) t, 0, sizeof (struct tree_common));
2413 #ifdef GATHER_STATISTICS
2414 tree_node_counts[(int) kind]++;
2415 tree_node_sizes[(int) kind] += length;
2416 #endif
2418 TREE_SET_CODE (t, code);
2420 TREE_TYPE (t) = type;
2421 TREE_COMPLEXITY (t) = 0;
2422 TREE_OPERAND (t, 0) = node;
2423 if (node && first_rtl_op (code) != 0)
2425 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2426 TREE_READONLY (t) = TREE_READONLY (node);
2429 switch (code)
2431 case INIT_EXPR:
2432 case MODIFY_EXPR:
2433 case VA_ARG_EXPR:
2434 case RTL_EXPR:
2435 case PREDECREMENT_EXPR:
2436 case PREINCREMENT_EXPR:
2437 case POSTDECREMENT_EXPR:
2438 case POSTINCREMENT_EXPR:
2439 /* All of these have side-effects, no matter what their
2440 operands are. */
2441 TREE_SIDE_EFFECTS (t) = 1;
2442 TREE_READONLY (t) = 0;
2443 break;
2445 case INDIRECT_REF:
2446 /* Whether a dereference is readonly has nothing to do with whether
2447 its operand is readonly. */
2448 TREE_READONLY (t) = 0;
2449 break;
2451 default:
2452 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2453 TREE_CONSTANT (t) = 1;
2454 break;
2457 return t;
2460 /* Similar except don't specify the TREE_TYPE
2461 and leave the TREE_SIDE_EFFECTS as 0.
2462 It is permissible for arguments to be null,
2463 or even garbage if their values do not matter. */
2465 tree
2466 build_nt VPARAMS ((enum tree_code code, ...))
2468 tree t;
2469 int length;
2470 int i;
2472 VA_OPEN (p, code);
2473 VA_FIXEDARG (p, enum tree_code, code);
2475 t = make_node (code);
2476 length = TREE_CODE_LENGTH (code);
2478 for (i = 0; i < length; i++)
2479 TREE_OPERAND (t, i) = va_arg (p, tree);
2481 VA_CLOSE (p);
2482 return t;
2485 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2486 We do NOT enter this node in any sort of symbol table.
2488 layout_decl is used to set up the decl's storage layout.
2489 Other slots are initialized to 0 or null pointers. */
2491 tree
2492 build_decl (code, name, type)
2493 enum tree_code code;
2494 tree name, type;
2496 tree t;
2498 t = make_node (code);
2500 /* if (type == error_mark_node)
2501 type = integer_type_node; */
2502 /* That is not done, deliberately, so that having error_mark_node
2503 as the type can suppress useless errors in the use of this variable. */
2505 DECL_NAME (t) = name;
2506 TREE_TYPE (t) = type;
2508 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2509 layout_decl (t, 0);
2510 else if (code == FUNCTION_DECL)
2511 DECL_MODE (t) = FUNCTION_MODE;
2513 return t;
2516 /* BLOCK nodes are used to represent the structure of binding contours
2517 and declarations, once those contours have been exited and their contents
2518 compiled. This information is used for outputting debugging info. */
2520 tree
2521 build_block (vars, tags, subblocks, supercontext, chain)
2522 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2524 tree block = make_node (BLOCK);
2526 BLOCK_VARS (block) = vars;
2527 BLOCK_SUBBLOCKS (block) = subblocks;
2528 BLOCK_SUPERCONTEXT (block) = supercontext;
2529 BLOCK_CHAIN (block) = chain;
2530 return block;
2533 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2534 location where an expression or an identifier were encountered. It
2535 is necessary for languages where the frontend parser will handle
2536 recursively more than one file (Java is one of them). */
2538 tree
2539 build_expr_wfl (node, file, line, col)
2540 tree node;
2541 const char *file;
2542 int line, col;
2544 static const char *last_file = 0;
2545 static tree last_filenode = NULL_TREE;
2546 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2548 EXPR_WFL_NODE (wfl) = node;
2549 EXPR_WFL_SET_LINECOL (wfl, line, col);
2550 if (file != last_file)
2552 last_file = file;
2553 last_filenode = file ? get_identifier (file) : NULL_TREE;
2556 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2557 if (node)
2559 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2560 TREE_TYPE (wfl) = TREE_TYPE (node);
2563 return wfl;
2566 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2567 is ATTRIBUTE. */
2569 tree
2570 build_decl_attribute_variant (ddecl, attribute)
2571 tree ddecl, attribute;
2573 DECL_ATTRIBUTES (ddecl) = attribute;
2574 return ddecl;
2577 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2578 is ATTRIBUTE.
2580 Record such modified types already made so we don't make duplicates. */
2582 tree
2583 build_type_attribute_variant (ttype, attribute)
2584 tree ttype, attribute;
2586 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2588 unsigned int hashcode;
2589 tree ntype;
2591 ntype = copy_node (ttype);
2593 TYPE_POINTER_TO (ntype) = 0;
2594 TYPE_REFERENCE_TO (ntype) = 0;
2595 TYPE_ATTRIBUTES (ntype) = attribute;
2597 /* Create a new main variant of TYPE. */
2598 TYPE_MAIN_VARIANT (ntype) = ntype;
2599 TYPE_NEXT_VARIANT (ntype) = 0;
2600 set_type_quals (ntype, TYPE_UNQUALIFIED);
2602 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2603 + TYPE_HASH (TREE_TYPE (ntype))
2604 + attribute_hash_list (attribute));
2606 switch (TREE_CODE (ntype))
2608 case FUNCTION_TYPE:
2609 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2610 break;
2611 case ARRAY_TYPE:
2612 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2613 break;
2614 case INTEGER_TYPE:
2615 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2616 break;
2617 case REAL_TYPE:
2618 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2619 break;
2620 default:
2621 break;
2624 ntype = type_hash_canon (hashcode, ntype);
2625 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2628 return ttype;
2631 /* Default value of targetm.comp_type_attributes that always returns 1. */
2634 default_comp_type_attributes (type1, type2)
2635 tree type1 ATTRIBUTE_UNUSED;
2636 tree type2 ATTRIBUTE_UNUSED;
2638 return 1;
2641 /* Default version of targetm.set_default_type_attributes that always does
2642 nothing. */
2644 void
2645 default_set_default_type_attributes (type)
2646 tree type ATTRIBUTE_UNUSED;
2650 /* Default version of targetm.insert_attributes that always does nothing. */
2651 void
2652 default_insert_attributes (decl, attr_ptr)
2653 tree decl ATTRIBUTE_UNUSED;
2654 tree *attr_ptr ATTRIBUTE_UNUSED;
2658 /* Default value of targetm.attribute_table that is empty. */
2659 const struct attribute_spec default_target_attribute_table[] =
2661 { NULL, 0, 0, false, false, false, NULL }
2664 /* Default value of targetm.function_attribute_inlinable_p that always
2665 returns false. */
2666 bool
2667 default_function_attribute_inlinable_p (fndecl)
2668 tree fndecl ATTRIBUTE_UNUSED;
2670 /* By default, functions with machine attributes cannot be inlined. */
2671 return false;
2674 /* Default value of targetm.ms_bitfield_layout_p that always returns
2675 false. */
2676 bool
2677 default_ms_bitfield_layout_p (record)
2678 tree record ATTRIBUTE_UNUSED;
2680 /* By default, GCC does not use the MS VC++ bitfield layout rules. */
2681 return false;
2684 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2685 or zero if not.
2687 We try both `text' and `__text__', ATTR may be either one. */
2688 /* ??? It might be a reasonable simplification to require ATTR to be only
2689 `text'. One might then also require attribute lists to be stored in
2690 their canonicalized form. */
2693 is_attribute_p (attr, ident)
2694 const char *attr;
2695 tree ident;
2697 int ident_len, attr_len;
2698 const char *p;
2700 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2701 return 0;
2703 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2704 return 1;
2706 p = IDENTIFIER_POINTER (ident);
2707 ident_len = strlen (p);
2708 attr_len = strlen (attr);
2710 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2711 if (attr[0] == '_')
2713 if (attr[1] != '_'
2714 || attr[attr_len - 2] != '_'
2715 || attr[attr_len - 1] != '_')
2716 abort ();
2717 if (ident_len == attr_len - 4
2718 && strncmp (attr + 2, p, attr_len - 4) == 0)
2719 return 1;
2721 else
2723 if (ident_len == attr_len + 4
2724 && p[0] == '_' && p[1] == '_'
2725 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2726 && strncmp (attr, p + 2, attr_len) == 0)
2727 return 1;
2730 return 0;
2733 /* Given an attribute name and a list of attributes, return a pointer to the
2734 attribute's list element if the attribute is part of the list, or NULL_TREE
2735 if not found. If the attribute appears more than once, this only
2736 returns the first occurrence; the TREE_CHAIN of the return value should
2737 be passed back in if further occurrences are wanted. */
2739 tree
2740 lookup_attribute (attr_name, list)
2741 const char *attr_name;
2742 tree list;
2744 tree l;
2746 for (l = list; l; l = TREE_CHAIN (l))
2748 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2749 abort ();
2750 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2751 return l;
2754 return NULL_TREE;
2757 /* Return an attribute list that is the union of a1 and a2. */
2759 tree
2760 merge_attributes (a1, a2)
2761 tree a1, a2;
2763 tree attributes;
2765 /* Either one unset? Take the set one. */
2767 if ((attributes = a1) == 0)
2768 attributes = a2;
2770 /* One that completely contains the other? Take it. */
2772 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2774 if (attribute_list_contained (a2, a1))
2775 attributes = a2;
2776 else
2778 /* Pick the longest list, and hang on the other list. */
2780 if (list_length (a1) < list_length (a2))
2781 attributes = a2, a2 = a1;
2783 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2785 tree a;
2786 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2787 attributes);
2788 a != NULL_TREE;
2789 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2790 TREE_CHAIN (a)))
2792 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2793 break;
2795 if (a == NULL_TREE)
2797 a1 = copy_node (a2);
2798 TREE_CHAIN (a1) = attributes;
2799 attributes = a1;
2804 return attributes;
2807 /* Given types T1 and T2, merge their attributes and return
2808 the result. */
2810 tree
2811 merge_type_attributes (t1, t2)
2812 tree t1, t2;
2814 return merge_attributes (TYPE_ATTRIBUTES (t1),
2815 TYPE_ATTRIBUTES (t2));
2818 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2819 the result. */
2821 tree
2822 merge_decl_attributes (olddecl, newdecl)
2823 tree olddecl, newdecl;
2825 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2826 DECL_ATTRIBUTES (newdecl));
2829 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2831 /* Specialization of merge_decl_attributes for various Windows targets.
2833 This handles the following situation:
2835 __declspec (dllimport) int foo;
2836 int foo;
2838 The second instance of `foo' nullifies the dllimport. */
2840 tree
2841 merge_dllimport_decl_attributes (old, new)
2842 tree old;
2843 tree new;
2845 tree a;
2846 int delete_dllimport_p;
2848 old = DECL_ATTRIBUTES (old);
2849 new = DECL_ATTRIBUTES (new);
2851 /* What we need to do here is remove from `old' dllimport if it doesn't
2852 appear in `new'. dllimport behaves like extern: if a declaration is
2853 marked dllimport and a definition appears later, then the object
2854 is not dllimport'd. */
2855 if (lookup_attribute ("dllimport", old) != NULL_TREE
2856 && lookup_attribute ("dllimport", new) == NULL_TREE)
2857 delete_dllimport_p = 1;
2858 else
2859 delete_dllimport_p = 0;
2861 a = merge_attributes (old, new);
2863 if (delete_dllimport_p)
2865 tree prev, t;
2867 /* Scan the list for dllimport and delete it. */
2868 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2870 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2872 if (prev == NULL_TREE)
2873 a = TREE_CHAIN (a);
2874 else
2875 TREE_CHAIN (prev) = TREE_CHAIN (t);
2876 break;
2881 return a;
2884 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2886 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2887 of the various TYPE_QUAL values. */
2889 static void
2890 set_type_quals (type, type_quals)
2891 tree type;
2892 int type_quals;
2894 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2895 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2896 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2899 /* Return a version of the TYPE, qualified as indicated by the
2900 TYPE_QUALS, if one exists. If no qualified version exists yet,
2901 return NULL_TREE. */
2903 tree
2904 get_qualified_type (type, type_quals)
2905 tree type;
2906 int type_quals;
2908 tree t;
2910 /* Search the chain of variants to see if there is already one there just
2911 like the one we need to have. If so, use that existing one. We must
2912 preserve the TYPE_NAME, since there is code that depends on this. */
2913 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2914 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
2915 return t;
2917 return NULL_TREE;
2920 /* Like get_qualified_type, but creates the type if it does not
2921 exist. This function never returns NULL_TREE. */
2923 tree
2924 build_qualified_type (type, type_quals)
2925 tree type;
2926 int type_quals;
2928 tree t;
2930 /* See if we already have the appropriate qualified variant. */
2931 t = get_qualified_type (type, type_quals);
2933 /* If not, build it. */
2934 if (!t)
2936 t = build_type_copy (type);
2937 set_type_quals (t, type_quals);
2940 return t;
2943 /* Create a new variant of TYPE, equivalent but distinct.
2944 This is so the caller can modify it. */
2946 tree
2947 build_type_copy (type)
2948 tree type;
2950 tree t, m = TYPE_MAIN_VARIANT (type);
2952 t = copy_node (type);
2954 TYPE_POINTER_TO (t) = 0;
2955 TYPE_REFERENCE_TO (t) = 0;
2957 /* Add this type to the chain of variants of TYPE. */
2958 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2959 TYPE_NEXT_VARIANT (m) = t;
2961 return t;
2964 /* Hashing of types so that we don't make duplicates.
2965 The entry point is `type_hash_canon'. */
2967 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2968 with types in the TREE_VALUE slots), by adding the hash codes
2969 of the individual types. */
2971 unsigned int
2972 type_hash_list (list)
2973 tree list;
2975 unsigned int hashcode;
2976 tree tail;
2978 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2979 hashcode += TYPE_HASH (TREE_VALUE (tail));
2981 return hashcode;
2984 /* These are the Hashtable callback functions. */
2986 /* Returns true if the types are equal. */
2988 static int
2989 type_hash_eq (va, vb)
2990 const void *va;
2991 const void *vb;
2993 const struct type_hash *a = va, *b = vb;
2994 if (a->hash == b->hash
2995 && TREE_CODE (a->type) == TREE_CODE (b->type)
2996 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2997 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2998 TYPE_ATTRIBUTES (b->type))
2999 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
3000 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3001 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3002 TYPE_MAX_VALUE (b->type)))
3003 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3004 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3005 TYPE_MIN_VALUE (b->type)))
3006 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3007 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
3008 || (TYPE_DOMAIN (a->type)
3009 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
3010 && TYPE_DOMAIN (b->type)
3011 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
3012 && type_list_equal (TYPE_DOMAIN (a->type),
3013 TYPE_DOMAIN (b->type)))))
3014 return 1;
3015 return 0;
3018 /* Return the cached hash value. */
3020 static unsigned int
3021 type_hash_hash (item)
3022 const void *item;
3024 return ((const struct type_hash *) item)->hash;
3027 /* Look in the type hash table for a type isomorphic to TYPE.
3028 If one is found, return it. Otherwise return 0. */
3030 tree
3031 type_hash_lookup (hashcode, type)
3032 unsigned int hashcode;
3033 tree type;
3035 struct type_hash *h, in;
3037 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3038 must call that routine before comparing TYPE_ALIGNs. */
3039 layout_type (type);
3041 in.hash = hashcode;
3042 in.type = type;
3044 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3045 if (h)
3046 return h->type;
3047 return NULL_TREE;
3050 /* Add an entry to the type-hash-table
3051 for a type TYPE whose hash code is HASHCODE. */
3053 void
3054 type_hash_add (hashcode, type)
3055 unsigned int hashcode;
3056 tree type;
3058 struct type_hash *h;
3059 void **loc;
3061 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
3062 h->hash = hashcode;
3063 h->type = type;
3064 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3065 *(struct type_hash **) loc = h;
3068 /* Given TYPE, and HASHCODE its hash code, return the canonical
3069 object for an identical type if one already exists.
3070 Otherwise, return TYPE, and record it as the canonical object
3071 if it is a permanent object.
3073 To use this function, first create a type of the sort you want.
3074 Then compute its hash code from the fields of the type that
3075 make it different from other similar types.
3076 Then call this function and use the value.
3077 This function frees the type you pass in if it is a duplicate. */
3079 /* Set to 1 to debug without canonicalization. Never set by program. */
3080 int debug_no_type_hash = 0;
3082 tree
3083 type_hash_canon (hashcode, type)
3084 unsigned int hashcode;
3085 tree type;
3087 tree t1;
3089 if (debug_no_type_hash)
3090 return type;
3092 /* See if the type is in the hash table already. If so, return it.
3093 Otherwise, add the type. */
3094 t1 = type_hash_lookup (hashcode, type);
3095 if (t1 != 0)
3097 #ifdef GATHER_STATISTICS
3098 tree_node_counts[(int) t_kind]--;
3099 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3100 #endif
3101 return t1;
3103 else
3105 type_hash_add (hashcode, type);
3106 return type;
3110 /* See if the data pointed to by the type hash table is marked. We consider
3111 it marked if the type is marked or if a debug type number or symbol
3112 table entry has been made for the type. This reduces the amount of
3113 debugging output and eliminates that dependency of the debug output on
3114 the number of garbage collections. */
3116 static int
3117 type_hash_marked_p (p)
3118 const void *p;
3120 tree type = ((struct type_hash *) p)->type;
3122 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3125 /* Mark the entry in the type hash table the type it points to is marked.
3126 Also mark the type in case we are considering this entry "marked" by
3127 virtue of TYPE_SYMTAB_POINTER being set. */
3129 static void
3130 type_hash_mark (p)
3131 const void *p;
3133 ggc_mark (p);
3134 ggc_mark_tree (((struct type_hash *) p)->type);
3137 /* Mark the hashtable slot pointed to by ENTRY (which is really a
3138 `tree**') for GC. */
3140 static int
3141 mark_tree_hashtable_entry (entry, data)
3142 void **entry;
3143 void *data ATTRIBUTE_UNUSED;
3145 ggc_mark_tree ((tree) *entry);
3146 return 1;
3149 /* Mark ARG (which is really a htab_t whose slots are trees) for
3150 GC. */
3152 void
3153 mark_tree_hashtable (arg)
3154 void *arg;
3156 htab_t t = *(htab_t *) arg;
3157 htab_traverse (t, mark_tree_hashtable_entry, 0);
3160 static void
3161 print_type_hash_statistics ()
3163 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3164 (long) htab_size (type_hash_table),
3165 (long) htab_elements (type_hash_table),
3166 htab_collisions (type_hash_table));
3169 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3170 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3171 by adding the hash codes of the individual attributes. */
3173 unsigned int
3174 attribute_hash_list (list)
3175 tree list;
3177 unsigned int hashcode;
3178 tree tail;
3180 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3181 /* ??? Do we want to add in TREE_VALUE too? */
3182 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3183 return hashcode;
3186 /* Given two lists of attributes, return true if list l2 is
3187 equivalent to l1. */
3190 attribute_list_equal (l1, l2)
3191 tree l1, l2;
3193 return attribute_list_contained (l1, l2)
3194 && attribute_list_contained (l2, l1);
3197 /* Given two lists of attributes, return true if list L2 is
3198 completely contained within L1. */
3199 /* ??? This would be faster if attribute names were stored in a canonicalized
3200 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3201 must be used to show these elements are equivalent (which they are). */
3202 /* ??? It's not clear that attributes with arguments will always be handled
3203 correctly. */
3206 attribute_list_contained (l1, l2)
3207 tree l1, l2;
3209 tree t1, t2;
3211 /* First check the obvious, maybe the lists are identical. */
3212 if (l1 == l2)
3213 return 1;
3215 /* Maybe the lists are similar. */
3216 for (t1 = l1, t2 = l2;
3217 t1 != 0 && t2 != 0
3218 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3219 && TREE_VALUE (t1) == TREE_VALUE (t2);
3220 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3222 /* Maybe the lists are equal. */
3223 if (t1 == 0 && t2 == 0)
3224 return 1;
3226 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3228 tree attr;
3229 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3230 attr != NULL_TREE;
3231 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3232 TREE_CHAIN (attr)))
3234 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3235 break;
3238 if (attr == 0)
3239 return 0;
3241 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3242 return 0;
3245 return 1;
3248 /* Given two lists of types
3249 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3250 return 1 if the lists contain the same types in the same order.
3251 Also, the TREE_PURPOSEs must match. */
3254 type_list_equal (l1, l2)
3255 tree l1, l2;
3257 tree t1, t2;
3259 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3260 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3261 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3262 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3263 && (TREE_TYPE (TREE_PURPOSE (t1))
3264 == TREE_TYPE (TREE_PURPOSE (t2))))))
3265 return 0;
3267 return t1 == t2;
3270 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3271 given by TYPE. If the argument list accepts variable arguments,
3272 then this function counts only the ordinary arguments. */
3275 type_num_arguments (type)
3276 tree type;
3278 int i = 0;
3279 tree t;
3281 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3282 /* If the function does not take a variable number of arguments,
3283 the last element in the list will have type `void'. */
3284 if (VOID_TYPE_P (TREE_VALUE (t)))
3285 break;
3286 else
3287 ++i;
3289 return i;
3292 /* Nonzero if integer constants T1 and T2
3293 represent the same constant value. */
3296 tree_int_cst_equal (t1, t2)
3297 tree t1, t2;
3299 if (t1 == t2)
3300 return 1;
3302 if (t1 == 0 || t2 == 0)
3303 return 0;
3305 if (TREE_CODE (t1) == INTEGER_CST
3306 && TREE_CODE (t2) == INTEGER_CST
3307 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3308 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3309 return 1;
3311 return 0;
3314 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3315 The precise way of comparison depends on their data type. */
3318 tree_int_cst_lt (t1, t2)
3319 tree t1, t2;
3321 if (t1 == t2)
3322 return 0;
3324 if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3325 return INT_CST_LT (t1, t2);
3327 return INT_CST_LT_UNSIGNED (t1, t2);
3330 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3333 tree_int_cst_compare (t1, t2)
3334 tree t1;
3335 tree t2;
3337 if (tree_int_cst_lt (t1, t2))
3338 return -1;
3339 else if (tree_int_cst_lt (t2, t1))
3340 return 1;
3341 else
3342 return 0;
3345 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3346 the host. If POS is zero, the value can be represented in a single
3347 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3348 be represented in a single unsigned HOST_WIDE_INT. */
3351 host_integerp (t, pos)
3352 tree t;
3353 int pos;
3355 return (TREE_CODE (t) == INTEGER_CST
3356 && ! TREE_OVERFLOW (t)
3357 && ((TREE_INT_CST_HIGH (t) == 0
3358 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3359 || (! pos && TREE_INT_CST_HIGH (t) == -1
3360 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3361 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3362 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3365 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3366 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3367 be positive. Abort if we cannot satisfy the above conditions. */
3369 HOST_WIDE_INT
3370 tree_low_cst (t, pos)
3371 tree t;
3372 int pos;
3374 if (host_integerp (t, pos))
3375 return TREE_INT_CST_LOW (t);
3376 else
3377 abort ();
3380 /* Return the most significant bit of the integer constant T. */
3383 tree_int_cst_msb (t)
3384 tree t;
3386 int prec;
3387 HOST_WIDE_INT h;
3388 unsigned HOST_WIDE_INT l;
3390 /* Note that using TYPE_PRECISION here is wrong. We care about the
3391 actual bits, not the (arbitrary) range of the type. */
3392 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3393 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3394 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3395 return (l & 1) == 1;
3398 /* Return an indication of the sign of the integer constant T.
3399 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3400 Note that -1 will never be returned it T's type is unsigned. */
3403 tree_int_cst_sgn (t)
3404 tree t;
3406 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3407 return 0;
3408 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3409 return 1;
3410 else if (TREE_INT_CST_HIGH (t) < 0)
3411 return -1;
3412 else
3413 return 1;
3416 /* Compare two constructor-element-type constants. Return 1 if the lists
3417 are known to be equal; otherwise return 0. */
3420 simple_cst_list_equal (l1, l2)
3421 tree l1, l2;
3423 while (l1 != NULL_TREE && l2 != NULL_TREE)
3425 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3426 return 0;
3428 l1 = TREE_CHAIN (l1);
3429 l2 = TREE_CHAIN (l2);
3432 return l1 == l2;
3435 /* Return truthvalue of whether T1 is the same tree structure as T2.
3436 Return 1 if they are the same.
3437 Return 0 if they are understandably different.
3438 Return -1 if either contains tree structure not understood by
3439 this function. */
3442 simple_cst_equal (t1, t2)
3443 tree t1, t2;
3445 enum tree_code code1, code2;
3446 int cmp;
3447 int i;
3449 if (t1 == t2)
3450 return 1;
3451 if (t1 == 0 || t2 == 0)
3452 return 0;
3454 code1 = TREE_CODE (t1);
3455 code2 = TREE_CODE (t2);
3457 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3459 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3460 || code2 == NON_LVALUE_EXPR)
3461 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3462 else
3463 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3466 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3467 || code2 == NON_LVALUE_EXPR)
3468 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3470 if (code1 != code2)
3471 return 0;
3473 switch (code1)
3475 case INTEGER_CST:
3476 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3477 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3479 case REAL_CST:
3480 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3482 case STRING_CST:
3483 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3484 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3485 TREE_STRING_LENGTH (t1)));
3487 case CONSTRUCTOR:
3488 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3489 return 1;
3490 else
3491 abort ();
3493 case SAVE_EXPR:
3494 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3496 case CALL_EXPR:
3497 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3498 if (cmp <= 0)
3499 return cmp;
3500 return
3501 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3503 case TARGET_EXPR:
3504 /* Special case: if either target is an unallocated VAR_DECL,
3505 it means that it's going to be unified with whatever the
3506 TARGET_EXPR is really supposed to initialize, so treat it
3507 as being equivalent to anything. */
3508 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3509 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3510 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3511 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3512 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3513 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3514 cmp = 1;
3515 else
3516 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3518 if (cmp <= 0)
3519 return cmp;
3521 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3523 case WITH_CLEANUP_EXPR:
3524 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3525 if (cmp <= 0)
3526 return cmp;
3528 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3530 case COMPONENT_REF:
3531 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3532 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3534 return 0;
3536 case VAR_DECL:
3537 case PARM_DECL:
3538 case CONST_DECL:
3539 case FUNCTION_DECL:
3540 return 0;
3542 default:
3543 break;
3546 /* This general rule works for most tree codes. All exceptions should be
3547 handled above. If this is a language-specific tree code, we can't
3548 trust what might be in the operand, so say we don't know
3549 the situation. */
3550 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3551 return -1;
3553 switch (TREE_CODE_CLASS (code1))
3555 case '1':
3556 case '2':
3557 case '<':
3558 case 'e':
3559 case 'r':
3560 case 's':
3561 cmp = 1;
3562 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3564 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3565 if (cmp <= 0)
3566 return cmp;
3569 return cmp;
3571 default:
3572 return -1;
3576 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3577 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3578 than U, respectively. */
3581 compare_tree_int (t, u)
3582 tree t;
3583 unsigned HOST_WIDE_INT u;
3585 if (tree_int_cst_sgn (t) < 0)
3586 return -1;
3587 else if (TREE_INT_CST_HIGH (t) != 0)
3588 return 1;
3589 else if (TREE_INT_CST_LOW (t) == u)
3590 return 0;
3591 else if (TREE_INT_CST_LOW (t) < u)
3592 return -1;
3593 else
3594 return 1;
3597 /* Constructors for pointer, array and function types.
3598 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3599 constructed by language-dependent code, not here.) */
3601 /* Construct, lay out and return the type of pointers to TO_TYPE.
3602 If such a type has already been constructed, reuse it. */
3604 tree
3605 build_pointer_type (to_type)
3606 tree to_type;
3608 tree t = TYPE_POINTER_TO (to_type);
3610 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3612 if (t != 0)
3613 return t;
3615 /* We need a new one. */
3616 t = make_node (POINTER_TYPE);
3618 TREE_TYPE (t) = to_type;
3620 /* Record this type as the pointer to TO_TYPE. */
3621 TYPE_POINTER_TO (to_type) = t;
3623 /* Lay out the type. This function has many callers that are concerned
3624 with expression-construction, and this simplifies them all.
3625 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3626 layout_type (t);
3628 return t;
3631 /* Build the node for the type of references-to-TO_TYPE. */
3633 tree
3634 build_reference_type (to_type)
3635 tree to_type;
3637 tree t = TYPE_REFERENCE_TO (to_type);
3639 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3641 if (t)
3642 return t;
3644 /* We need a new one. */
3645 t = make_node (REFERENCE_TYPE);
3647 TREE_TYPE (t) = to_type;
3649 /* Record this type as the pointer to TO_TYPE. */
3650 TYPE_REFERENCE_TO (to_type) = t;
3652 layout_type (t);
3654 return t;
3657 /* Build a type that is compatible with t but has no cv quals anywhere
3658 in its type, thus
3660 const char *const *const * -> char ***. */
3662 tree
3663 build_type_no_quals (t)
3664 tree t;
3666 switch (TREE_CODE (t))
3668 case POINTER_TYPE:
3669 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3670 case REFERENCE_TYPE:
3671 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3672 default:
3673 return TYPE_MAIN_VARIANT (t);
3677 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3678 MAXVAL should be the maximum value in the domain
3679 (one less than the length of the array).
3681 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3682 We don't enforce this limit, that is up to caller (e.g. language front end).
3683 The limit exists because the result is a signed type and we don't handle
3684 sizes that use more than one HOST_WIDE_INT. */
3686 tree
3687 build_index_type (maxval)
3688 tree maxval;
3690 tree itype = make_node (INTEGER_TYPE);
3692 TREE_TYPE (itype) = sizetype;
3693 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3694 TYPE_MIN_VALUE (itype) = size_zero_node;
3695 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3696 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3697 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3698 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3699 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3700 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3702 if (host_integerp (maxval, 1))
3703 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3704 else
3705 return itype;
3708 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3709 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3710 low bound LOWVAL and high bound HIGHVAL.
3711 if TYPE==NULL_TREE, sizetype is used. */
3713 tree
3714 build_range_type (type, lowval, highval)
3715 tree type, lowval, highval;
3717 tree itype = make_node (INTEGER_TYPE);
3719 TREE_TYPE (itype) = type;
3720 if (type == NULL_TREE)
3721 type = sizetype;
3723 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3724 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3726 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3727 TYPE_MODE (itype) = TYPE_MODE (type);
3728 TYPE_SIZE (itype) = TYPE_SIZE (type);
3729 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3730 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3731 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3733 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3734 return type_hash_canon (tree_low_cst (highval, 0)
3735 - tree_low_cst (lowval, 0),
3736 itype);
3737 else
3738 return itype;
3741 /* Just like build_index_type, but takes lowval and highval instead
3742 of just highval (maxval). */
3744 tree
3745 build_index_2_type (lowval, highval)
3746 tree lowval, highval;
3748 return build_range_type (sizetype, lowval, highval);
3751 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3752 Needed because when index types are not hashed, equal index types
3753 built at different times appear distinct, even though structurally,
3754 they are not. */
3757 index_type_equal (itype1, itype2)
3758 tree itype1, itype2;
3760 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3761 return 0;
3763 if (TREE_CODE (itype1) == INTEGER_TYPE)
3765 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3766 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3767 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3768 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3769 return 0;
3771 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3772 TYPE_MIN_VALUE (itype2))
3773 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3774 TYPE_MAX_VALUE (itype2)))
3775 return 1;
3778 return 0;
3781 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3782 and number of elements specified by the range of values of INDEX_TYPE.
3783 If such a type has already been constructed, reuse it. */
3785 tree
3786 build_array_type (elt_type, index_type)
3787 tree elt_type, index_type;
3789 tree t;
3790 unsigned int hashcode;
3792 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3794 error ("arrays of functions are not meaningful");
3795 elt_type = integer_type_node;
3798 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3799 build_pointer_type (elt_type);
3801 /* Allocate the array after the pointer type,
3802 in case we free it in type_hash_canon. */
3803 t = make_node (ARRAY_TYPE);
3804 TREE_TYPE (t) = elt_type;
3805 TYPE_DOMAIN (t) = index_type;
3807 if (index_type == 0)
3809 return t;
3812 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3813 t = type_hash_canon (hashcode, t);
3815 if (!COMPLETE_TYPE_P (t))
3816 layout_type (t);
3817 return t;
3820 /* Return the TYPE of the elements comprising
3821 the innermost dimension of ARRAY. */
3823 tree
3824 get_inner_array_type (array)
3825 tree array;
3827 tree type = TREE_TYPE (array);
3829 while (TREE_CODE (type) == ARRAY_TYPE)
3830 type = TREE_TYPE (type);
3832 return type;
3835 /* Construct, lay out and return
3836 the type of functions returning type VALUE_TYPE
3837 given arguments of types ARG_TYPES.
3838 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3839 are data type nodes for the arguments of the function.
3840 If such a type has already been constructed, reuse it. */
3842 tree
3843 build_function_type (value_type, arg_types)
3844 tree value_type, arg_types;
3846 tree t;
3847 unsigned int hashcode;
3849 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3851 error ("function return type cannot be function");
3852 value_type = integer_type_node;
3855 /* Make a node of the sort we want. */
3856 t = make_node (FUNCTION_TYPE);
3857 TREE_TYPE (t) = value_type;
3858 TYPE_ARG_TYPES (t) = arg_types;
3860 /* If we already have such a type, use the old one and free this one. */
3861 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3862 t = type_hash_canon (hashcode, t);
3864 if (!COMPLETE_TYPE_P (t))
3865 layout_type (t);
3866 return t;
3869 /* Construct, lay out and return the type of methods belonging to class
3870 BASETYPE and whose arguments and values are described by TYPE.
3871 If that type exists already, reuse it.
3872 TYPE must be a FUNCTION_TYPE node. */
3874 tree
3875 build_method_type (basetype, type)
3876 tree basetype, type;
3878 tree t;
3879 unsigned int hashcode;
3881 /* Make a node of the sort we want. */
3882 t = make_node (METHOD_TYPE);
3884 if (TREE_CODE (type) != FUNCTION_TYPE)
3885 abort ();
3887 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3888 TREE_TYPE (t) = TREE_TYPE (type);
3890 /* The actual arglist for this function includes a "hidden" argument
3891 which is "this". Put it into the list of argument types. */
3893 TYPE_ARG_TYPES (t)
3894 = tree_cons (NULL_TREE,
3895 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3897 /* If we already have such a type, use the old one and free this one. */
3898 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3899 t = type_hash_canon (hashcode, t);
3901 if (!COMPLETE_TYPE_P (t))
3902 layout_type (t);
3904 return t;
3907 /* Construct, lay out and return the type of offsets to a value
3908 of type TYPE, within an object of type BASETYPE.
3909 If a suitable offset type exists already, reuse it. */
3911 tree
3912 build_offset_type (basetype, type)
3913 tree basetype, type;
3915 tree t;
3916 unsigned int hashcode;
3918 /* Make a node of the sort we want. */
3919 t = make_node (OFFSET_TYPE);
3921 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3922 TREE_TYPE (t) = type;
3924 /* If we already have such a type, use the old one and free this one. */
3925 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3926 t = type_hash_canon (hashcode, t);
3928 if (!COMPLETE_TYPE_P (t))
3929 layout_type (t);
3931 return t;
3934 /* Create a complex type whose components are COMPONENT_TYPE. */
3936 tree
3937 build_complex_type (component_type)
3938 tree component_type;
3940 tree t;
3941 unsigned int hashcode;
3943 /* Make a node of the sort we want. */
3944 t = make_node (COMPLEX_TYPE);
3946 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3947 set_type_quals (t, TYPE_QUALS (component_type));
3949 /* If we already have such a type, use the old one and free this one. */
3950 hashcode = TYPE_HASH (component_type);
3951 t = type_hash_canon (hashcode, t);
3953 if (!COMPLETE_TYPE_P (t))
3954 layout_type (t);
3956 /* If we are writing Dwarf2 output we need to create a name,
3957 since complex is a fundamental type. */
3958 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3959 && ! TYPE_NAME (t))
3961 const char *name;
3962 if (component_type == char_type_node)
3963 name = "complex char";
3964 else if (component_type == signed_char_type_node)
3965 name = "complex signed char";
3966 else if (component_type == unsigned_char_type_node)
3967 name = "complex unsigned char";
3968 else if (component_type == short_integer_type_node)
3969 name = "complex short int";
3970 else if (component_type == short_unsigned_type_node)
3971 name = "complex short unsigned int";
3972 else if (component_type == integer_type_node)
3973 name = "complex int";
3974 else if (component_type == unsigned_type_node)
3975 name = "complex unsigned int";
3976 else if (component_type == long_integer_type_node)
3977 name = "complex long int";
3978 else if (component_type == long_unsigned_type_node)
3979 name = "complex long unsigned int";
3980 else if (component_type == long_long_integer_type_node)
3981 name = "complex long long int";
3982 else if (component_type == long_long_unsigned_type_node)
3983 name = "complex long long unsigned int";
3984 else
3985 name = 0;
3987 if (name != 0)
3988 TYPE_NAME (t) = get_identifier (name);
3991 return t;
3994 /* Return OP, stripped of any conversions to wider types as much as is safe.
3995 Converting the value back to OP's type makes a value equivalent to OP.
3997 If FOR_TYPE is nonzero, we return a value which, if converted to
3998 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4000 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4001 narrowest type that can hold the value, even if they don't exactly fit.
4002 Otherwise, bit-field references are changed to a narrower type
4003 only if they can be fetched directly from memory in that type.
4005 OP must have integer, real or enumeral type. Pointers are not allowed!
4007 There are some cases where the obvious value we could return
4008 would regenerate to OP if converted to OP's type,
4009 but would not extend like OP to wider types.
4010 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4011 For example, if OP is (unsigned short)(signed char)-1,
4012 we avoid returning (signed char)-1 if FOR_TYPE is int,
4013 even though extending that to an unsigned short would regenerate OP,
4014 since the result of extending (signed char)-1 to (int)
4015 is different from (int) OP. */
4017 tree
4018 get_unwidened (op, for_type)
4019 tree op;
4020 tree for_type;
4022 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4023 tree type = TREE_TYPE (op);
4024 unsigned final_prec
4025 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4026 int uns
4027 = (for_type != 0 && for_type != type
4028 && final_prec > TYPE_PRECISION (type)
4029 && TREE_UNSIGNED (type));
4030 tree win = op;
4032 while (TREE_CODE (op) == NOP_EXPR)
4034 int bitschange
4035 = TYPE_PRECISION (TREE_TYPE (op))
4036 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4038 /* Truncations are many-one so cannot be removed.
4039 Unless we are later going to truncate down even farther. */
4040 if (bitschange < 0
4041 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4042 break;
4044 /* See what's inside this conversion. If we decide to strip it,
4045 we will set WIN. */
4046 op = TREE_OPERAND (op, 0);
4048 /* If we have not stripped any zero-extensions (uns is 0),
4049 we can strip any kind of extension.
4050 If we have previously stripped a zero-extension,
4051 only zero-extensions can safely be stripped.
4052 Any extension can be stripped if the bits it would produce
4053 are all going to be discarded later by truncating to FOR_TYPE. */
4055 if (bitschange > 0)
4057 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4058 win = op;
4059 /* TREE_UNSIGNED says whether this is a zero-extension.
4060 Let's avoid computing it if it does not affect WIN
4061 and if UNS will not be needed again. */
4062 if ((uns || TREE_CODE (op) == NOP_EXPR)
4063 && TREE_UNSIGNED (TREE_TYPE (op)))
4065 uns = 1;
4066 win = op;
4071 if (TREE_CODE (op) == COMPONENT_REF
4072 /* Since type_for_size always gives an integer type. */
4073 && TREE_CODE (type) != REAL_TYPE
4074 /* Don't crash if field not laid out yet. */
4075 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4076 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4078 unsigned int innerprec
4079 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4081 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4083 /* We can get this structure field in the narrowest type it fits in.
4084 If FOR_TYPE is 0, do this only for a field that matches the
4085 narrower type exactly and is aligned for it
4086 The resulting extension to its nominal type (a fullword type)
4087 must fit the same conditions as for other extensions. */
4089 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4090 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4091 && (! uns || final_prec <= innerprec
4092 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4093 && type != 0)
4095 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4096 TREE_OPERAND (op, 1));
4097 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4098 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4102 return win;
4105 /* Return OP or a simpler expression for a narrower value
4106 which can be sign-extended or zero-extended to give back OP.
4107 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4108 or 0 if the value should be sign-extended. */
4110 tree
4111 get_narrower (op, unsignedp_ptr)
4112 tree op;
4113 int *unsignedp_ptr;
4115 int uns = 0;
4116 int first = 1;
4117 tree win = op;
4119 while (TREE_CODE (op) == NOP_EXPR)
4121 int bitschange
4122 = (TYPE_PRECISION (TREE_TYPE (op))
4123 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4125 /* Truncations are many-one so cannot be removed. */
4126 if (bitschange < 0)
4127 break;
4129 /* See what's inside this conversion. If we decide to strip it,
4130 we will set WIN. */
4131 op = TREE_OPERAND (op, 0);
4133 if (bitschange > 0)
4135 /* An extension: the outermost one can be stripped,
4136 but remember whether it is zero or sign extension. */
4137 if (first)
4138 uns = TREE_UNSIGNED (TREE_TYPE (op));
4139 /* Otherwise, if a sign extension has been stripped,
4140 only sign extensions can now be stripped;
4141 if a zero extension has been stripped, only zero-extensions. */
4142 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4143 break;
4144 first = 0;
4146 else /* bitschange == 0 */
4148 /* A change in nominal type can always be stripped, but we must
4149 preserve the unsignedness. */
4150 if (first)
4151 uns = TREE_UNSIGNED (TREE_TYPE (op));
4152 first = 0;
4155 win = op;
4158 if (TREE_CODE (op) == COMPONENT_REF
4159 /* Since type_for_size always gives an integer type. */
4160 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4161 /* Ensure field is laid out already. */
4162 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4164 unsigned HOST_WIDE_INT innerprec
4165 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4166 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4168 /* We can get this structure field in a narrower type that fits it,
4169 but the resulting extension to its nominal type (a fullword type)
4170 must satisfy the same conditions as for other extensions.
4172 Do this only for fields that are aligned (not bit-fields),
4173 because when bit-field insns will be used there is no
4174 advantage in doing this. */
4176 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4177 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4178 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4179 && type != 0)
4181 if (first)
4182 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4183 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4184 TREE_OPERAND (op, 1));
4185 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4186 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4189 *unsignedp_ptr = uns;
4190 return win;
4193 /* Nonzero if integer constant C has a value that is permissible
4194 for type TYPE (an INTEGER_TYPE). */
4197 int_fits_type_p (c, type)
4198 tree c, type;
4200 /* If the bounds of the type are integers, we can check ourselves.
4201 If not, but this type is a subtype, try checking against that.
4202 Otherwise, use force_fit_type, which checks against the precision. */
4203 if (TYPE_MAX_VALUE (type) != NULL_TREE
4204 && TYPE_MIN_VALUE (type) != NULL_TREE
4205 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4206 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4208 if (TREE_UNSIGNED (type))
4209 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4210 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4211 /* Negative ints never fit unsigned types. */
4212 && ! (TREE_INT_CST_HIGH (c) < 0
4213 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4214 else
4215 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4216 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4217 /* Unsigned ints with top bit set never fit signed types. */
4218 && ! (TREE_INT_CST_HIGH (c) < 0
4219 && TREE_UNSIGNED (TREE_TYPE (c))));
4221 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4222 return int_fits_type_p (c, TREE_TYPE (type));
4223 else
4225 c = copy_node (c);
4226 TREE_TYPE (c) = type;
4227 return !force_fit_type (c, 0);
4231 /* Given a DECL or TYPE, return the scope in which it was declared, or
4232 NULL_TREE if there is no containing scope. */
4234 tree
4235 get_containing_scope (t)
4236 tree t;
4238 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4241 /* Return the innermost context enclosing DECL that is
4242 a FUNCTION_DECL, or zero if none. */
4244 tree
4245 decl_function_context (decl)
4246 tree decl;
4248 tree context;
4250 if (TREE_CODE (decl) == ERROR_MARK)
4251 return 0;
4253 if (TREE_CODE (decl) == SAVE_EXPR)
4254 context = SAVE_EXPR_CONTEXT (decl);
4256 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4257 where we look up the function at runtime. Such functions always take
4258 a first argument of type 'pointer to real context'.
4260 C++ should really be fixed to use DECL_CONTEXT for the real context,
4261 and use something else for the "virtual context". */
4262 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4263 context
4264 = TYPE_MAIN_VARIANT
4265 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4266 else
4267 context = DECL_CONTEXT (decl);
4269 while (context && TREE_CODE (context) != FUNCTION_DECL)
4271 if (TREE_CODE (context) == BLOCK)
4272 context = BLOCK_SUPERCONTEXT (context);
4273 else
4274 context = get_containing_scope (context);
4277 return context;
4280 /* Return the innermost context enclosing DECL that is
4281 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4282 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4284 tree
4285 decl_type_context (decl)
4286 tree decl;
4288 tree context = DECL_CONTEXT (decl);
4290 while (context)
4292 if (TREE_CODE (context) == RECORD_TYPE
4293 || TREE_CODE (context) == UNION_TYPE
4294 || TREE_CODE (context) == QUAL_UNION_TYPE)
4295 return context;
4297 if (TREE_CODE (context) == TYPE_DECL
4298 || TREE_CODE (context) == FUNCTION_DECL)
4299 context = DECL_CONTEXT (context);
4301 else if (TREE_CODE (context) == BLOCK)
4302 context = BLOCK_SUPERCONTEXT (context);
4304 else
4305 /* Unhandled CONTEXT!? */
4306 abort ();
4308 return NULL_TREE;
4311 /* CALL is a CALL_EXPR. Return the declaration for the function
4312 called, or NULL_TREE if the called function cannot be
4313 determined. */
4315 tree
4316 get_callee_fndecl (call)
4317 tree call;
4319 tree addr;
4321 /* It's invalid to call this function with anything but a
4322 CALL_EXPR. */
4323 if (TREE_CODE (call) != CALL_EXPR)
4324 abort ();
4326 /* The first operand to the CALL is the address of the function
4327 called. */
4328 addr = TREE_OPERAND (call, 0);
4330 STRIP_NOPS (addr);
4332 /* If this is a readonly function pointer, extract its initial value. */
4333 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4334 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4335 && DECL_INITIAL (addr))
4336 addr = DECL_INITIAL (addr);
4338 /* If the address is just `&f' for some function `f', then we know
4339 that `f' is being called. */
4340 if (TREE_CODE (addr) == ADDR_EXPR
4341 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4342 return TREE_OPERAND (addr, 0);
4344 /* We couldn't figure out what was being called. */
4345 return NULL_TREE;
4348 /* Print debugging information about the obstack O, named STR. */
4350 void
4351 print_obstack_statistics (str, o)
4352 const char *str;
4353 struct obstack *o;
4355 struct _obstack_chunk *chunk = o->chunk;
4356 int n_chunks = 1;
4357 int n_alloc = 0;
4359 n_alloc += o->next_free - chunk->contents;
4360 chunk = chunk->prev;
4361 while (chunk)
4363 n_chunks += 1;
4364 n_alloc += chunk->limit - &chunk->contents[0];
4365 chunk = chunk->prev;
4367 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4368 str, n_alloc, n_chunks);
4371 /* Print debugging information about tree nodes generated during the compile,
4372 and any language-specific information. */
4374 void
4375 dump_tree_statistics ()
4377 #ifdef GATHER_STATISTICS
4378 int i;
4379 int total_nodes, total_bytes;
4380 #endif
4382 fprintf (stderr, "\n??? tree nodes created\n\n");
4383 #ifdef GATHER_STATISTICS
4384 fprintf (stderr, "Kind Nodes Bytes\n");
4385 fprintf (stderr, "-------------------------------------\n");
4386 total_nodes = total_bytes = 0;
4387 for (i = 0; i < (int) all_kinds; i++)
4389 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4390 tree_node_counts[i], tree_node_sizes[i]);
4391 total_nodes += tree_node_counts[i];
4392 total_bytes += tree_node_sizes[i];
4394 fprintf (stderr, "-------------------------------------\n");
4395 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4396 fprintf (stderr, "-------------------------------------\n");
4397 #else
4398 fprintf (stderr, "(No per-node statistics)\n");
4399 #endif
4400 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4401 print_type_hash_statistics ();
4402 (*lang_hooks.print_statistics) ();
4405 #define FILE_FUNCTION_PREFIX_LEN 9
4407 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4409 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4410 clashes in cases where we can't reliably choose a unique name.
4412 Derived from mkstemp.c in libiberty. */
4414 static void
4415 append_random_chars (template)
4416 char *template;
4418 static const char letters[]
4419 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4420 static unsigned HOST_WIDE_INT value;
4421 unsigned HOST_WIDE_INT v;
4423 if (! value)
4425 struct stat st;
4427 /* VALUE should be unique for each file and must not change between
4428 compiles since this can cause bootstrap comparison errors. */
4430 if (stat (main_input_filename, &st) < 0)
4432 /* This can happen when preprocessed text is shipped between
4433 machines, e.g. with bug reports. Assume that uniqueness
4434 isn't actually an issue. */
4435 value = 1;
4437 else
4439 /* In VMS, ino is an array, so we have to use both values. We
4440 conditionalize that. */
4441 #ifdef VMS
4442 #define INO_TO_INT(INO) ((int) (INO)[1] << 16 ^ (int) (INO)[2])
4443 #else
4444 #define INO_TO_INT(INO) INO
4445 #endif
4446 value = st.st_dev ^ INO_TO_INT (st.st_ino) ^ st.st_mtime;
4450 template += strlen (template);
4452 v = value;
4454 /* Fill in the random bits. */
4455 template[0] = letters[v % 62];
4456 v /= 62;
4457 template[1] = letters[v % 62];
4458 v /= 62;
4459 template[2] = letters[v % 62];
4460 v /= 62;
4461 template[3] = letters[v % 62];
4462 v /= 62;
4463 template[4] = letters[v % 62];
4464 v /= 62;
4465 template[5] = letters[v % 62];
4467 template[6] = '\0';
4470 /* P is a string that will be used in a symbol. Mask out any characters
4471 that are not valid in that context. */
4473 void
4474 clean_symbol_name (p)
4475 char *p;
4477 for (; *p; p++)
4478 if (! (ISALNUM (*p)
4479 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4480 || *p == '$'
4481 #endif
4482 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4483 || *p == '.'
4484 #endif
4486 *p = '_';
4489 /* Generate a name for a function unique to this translation unit.
4490 TYPE is some string to identify the purpose of this function to the
4491 linker or collect2. */
4493 tree
4494 get_file_function_name_long (type)
4495 const char *type;
4497 char *buf;
4498 const char *p;
4499 char *q;
4501 if (first_global_object_name)
4502 p = first_global_object_name;
4503 else
4505 /* We don't have anything that we know to be unique to this translation
4506 unit, so use what we do have and throw in some randomness. */
4508 const char *name = weak_global_object_name;
4509 const char *file = main_input_filename;
4511 if (! name)
4512 name = "";
4513 if (! file)
4514 file = input_filename;
4516 q = (char *) alloca (7 + strlen (name) + strlen (file));
4518 sprintf (q, "%s%s", name, file);
4519 append_random_chars (q);
4520 p = q;
4523 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4524 + strlen (type));
4526 /* Set up the name of the file-level functions we may need.
4527 Use a global object (which is already required to be unique over
4528 the program) rather than the file name (which imposes extra
4529 constraints). */
4530 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4532 /* Don't need to pull weird characters out of global names. */
4533 if (p != first_global_object_name)
4534 clean_symbol_name (buf + 11);
4536 return get_identifier (buf);
4539 /* If KIND=='I', return a suitable global initializer (constructor) name.
4540 If KIND=='D', return a suitable global clean-up (destructor) name. */
4542 tree
4543 get_file_function_name (kind)
4544 int kind;
4546 char p[2];
4548 p[0] = kind;
4549 p[1] = 0;
4551 return get_file_function_name_long (p);
4554 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4555 The result is placed in BUFFER (which has length BIT_SIZE),
4556 with one bit in each char ('\000' or '\001').
4558 If the constructor is constant, NULL_TREE is returned.
4559 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4561 tree
4562 get_set_constructor_bits (init, buffer, bit_size)
4563 tree init;
4564 char *buffer;
4565 int bit_size;
4567 int i;
4568 tree vals;
4569 HOST_WIDE_INT domain_min
4570 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4571 tree non_const_bits = NULL_TREE;
4573 for (i = 0; i < bit_size; i++)
4574 buffer[i] = 0;
4576 for (vals = TREE_OPERAND (init, 1);
4577 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4579 if (!host_integerp (TREE_VALUE (vals), 0)
4580 || (TREE_PURPOSE (vals) != NULL_TREE
4581 && !host_integerp (TREE_PURPOSE (vals), 0)))
4582 non_const_bits
4583 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4584 else if (TREE_PURPOSE (vals) != NULL_TREE)
4586 /* Set a range of bits to ones. */
4587 HOST_WIDE_INT lo_index
4588 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4589 HOST_WIDE_INT hi_index
4590 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4592 if (lo_index < 0 || lo_index >= bit_size
4593 || hi_index < 0 || hi_index >= bit_size)
4594 abort ();
4595 for (; lo_index <= hi_index; lo_index++)
4596 buffer[lo_index] = 1;
4598 else
4600 /* Set a single bit to one. */
4601 HOST_WIDE_INT index
4602 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4603 if (index < 0 || index >= bit_size)
4605 error ("invalid initializer for bit string");
4606 return NULL_TREE;
4608 buffer[index] = 1;
4611 return non_const_bits;
4614 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4615 The result is placed in BUFFER (which is an array of bytes).
4616 If the constructor is constant, NULL_TREE is returned.
4617 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4619 tree
4620 get_set_constructor_bytes (init, buffer, wd_size)
4621 tree init;
4622 unsigned char *buffer;
4623 int wd_size;
4625 int i;
4626 int set_word_size = BITS_PER_UNIT;
4627 int bit_size = wd_size * set_word_size;
4628 int bit_pos = 0;
4629 unsigned char *bytep = buffer;
4630 char *bit_buffer = (char *) alloca (bit_size);
4631 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4633 for (i = 0; i < wd_size; i++)
4634 buffer[i] = 0;
4636 for (i = 0; i < bit_size; i++)
4638 if (bit_buffer[i])
4640 if (BYTES_BIG_ENDIAN)
4641 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4642 else
4643 *bytep |= 1 << bit_pos;
4645 bit_pos++;
4646 if (bit_pos >= set_word_size)
4647 bit_pos = 0, bytep++;
4649 return non_const_bits;
4652 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4653 /* Complain that the tree code of NODE does not match the expected CODE.
4654 FILE, LINE, and FUNCTION are of the caller. */
4656 void
4657 tree_check_failed (node, code, file, line, function)
4658 const tree node;
4659 enum tree_code code;
4660 const char *file;
4661 int line;
4662 const char *function;
4664 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4665 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4666 function, trim_filename (file), line);
4669 /* Similar to above, except that we check for a class of tree
4670 code, given in CL. */
4672 void
4673 tree_class_check_failed (node, cl, file, line, function)
4674 const tree node;
4675 int cl;
4676 const char *file;
4677 int line;
4678 const char *function;
4680 internal_error
4681 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4682 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4683 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4686 #endif /* ENABLE_TREE_CHECKING */
4688 /* For a new vector type node T, build the information necessary for
4689 debuggint output. */
4691 static void
4692 finish_vector_type (t)
4693 tree t;
4695 layout_type (t);
4698 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4699 tree array = build_array_type (TREE_TYPE (t),
4700 build_index_type (index));
4701 tree rt = make_node (RECORD_TYPE);
4703 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4704 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4705 layout_type (rt);
4706 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4707 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4708 the representation type, and we want to find that die when looking up
4709 the vector type. This is most easily achieved by making the TYPE_UID
4710 numbers equal. */
4711 TYPE_UID (rt) = TYPE_UID (t);
4715 /* Create nodes for all integer types (and error_mark_node) using the sizes
4716 of C datatypes. The caller should call set_sizetype soon after calling
4717 this function to select one of the types as sizetype. */
4719 void
4720 build_common_tree_nodes (signed_char)
4721 int signed_char;
4723 error_mark_node = make_node (ERROR_MARK);
4724 TREE_TYPE (error_mark_node) = error_mark_node;
4726 initialize_sizetypes ();
4728 /* Define both `signed char' and `unsigned char'. */
4729 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4730 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4732 /* Define `char', which is like either `signed char' or `unsigned char'
4733 but not the same as either. */
4734 char_type_node
4735 = (signed_char
4736 ? make_signed_type (CHAR_TYPE_SIZE)
4737 : make_unsigned_type (CHAR_TYPE_SIZE));
4739 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4740 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4741 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4742 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4743 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4744 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4745 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4746 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4748 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4749 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4750 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4751 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4752 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4754 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4755 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4756 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4757 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4758 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4761 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4762 It will create several other common tree nodes. */
4764 void
4765 build_common_tree_nodes_2 (short_double)
4766 int short_double;
4768 /* Define these next since types below may used them. */
4769 integer_zero_node = build_int_2 (0, 0);
4770 integer_one_node = build_int_2 (1, 0);
4771 integer_minus_one_node = build_int_2 (-1, -1);
4773 size_zero_node = size_int (0);
4774 size_one_node = size_int (1);
4775 bitsize_zero_node = bitsize_int (0);
4776 bitsize_one_node = bitsize_int (1);
4777 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4779 void_type_node = make_node (VOID_TYPE);
4780 layout_type (void_type_node);
4782 /* We are not going to have real types in C with less than byte alignment,
4783 so we might as well not have any types that claim to have it. */
4784 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4785 TYPE_USER_ALIGN (void_type_node) = 0;
4787 null_pointer_node = build_int_2 (0, 0);
4788 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4789 layout_type (TREE_TYPE (null_pointer_node));
4791 ptr_type_node = build_pointer_type (void_type_node);
4792 const_ptr_type_node
4793 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4795 float_type_node = make_node (REAL_TYPE);
4796 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4797 layout_type (float_type_node);
4799 double_type_node = make_node (REAL_TYPE);
4800 if (short_double)
4801 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4802 else
4803 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4804 layout_type (double_type_node);
4806 long_double_type_node = make_node (REAL_TYPE);
4807 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4808 layout_type (long_double_type_node);
4810 complex_integer_type_node = make_node (COMPLEX_TYPE);
4811 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4812 layout_type (complex_integer_type_node);
4814 complex_float_type_node = make_node (COMPLEX_TYPE);
4815 TREE_TYPE (complex_float_type_node) = float_type_node;
4816 layout_type (complex_float_type_node);
4818 complex_double_type_node = make_node (COMPLEX_TYPE);
4819 TREE_TYPE (complex_double_type_node) = double_type_node;
4820 layout_type (complex_double_type_node);
4822 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4823 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4824 layout_type (complex_long_double_type_node);
4827 tree t;
4828 BUILD_VA_LIST_TYPE (t);
4830 /* Many back-ends define record types without seting TYPE_NAME.
4831 If we copied the record type here, we'd keep the original
4832 record type without a name. This breaks name mangling. So,
4833 don't copy record types and let c_common_nodes_and_builtins()
4834 declare the type to be __builtin_va_list. */
4835 if (TREE_CODE (t) != RECORD_TYPE)
4836 t = build_type_copy (t);
4838 va_list_type_node = t;
4841 unsigned_V4SI_type_node
4842 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4843 unsigned_V2SI_type_node
4844 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4845 unsigned_V4HI_type_node
4846 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4847 unsigned_V8QI_type_node
4848 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4849 unsigned_V8HI_type_node
4850 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4851 unsigned_V16QI_type_node
4852 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4854 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4855 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4856 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4857 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4858 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4859 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4860 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4861 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4862 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4865 /* Returns a vector tree node given a vector mode, the inner type, and
4866 the signness. */
4868 static tree
4869 make_vector (mode, innertype, unsignedp)
4870 enum machine_mode mode;
4871 tree innertype;
4872 int unsignedp;
4874 tree t;
4876 t = make_node (VECTOR_TYPE);
4877 TREE_TYPE (t) = innertype;
4878 TYPE_MODE (t) = mode;
4879 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4880 finish_vector_type (t);
4882 return t;
4885 /* Given an initializer INIT, return TRUE if INIT is zero or some
4886 aggregate of zeros. Otherwise return FALSE. */
4888 bool
4889 initializer_zerop (init)
4890 tree init;
4892 STRIP_NOPS (init);
4894 switch (TREE_CODE (init))
4896 case INTEGER_CST:
4897 return integer_zerop (init);
4898 case REAL_CST:
4899 return real_zerop (init)
4900 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4901 case COMPLEX_CST:
4902 return integer_zerop (init)
4903 || (real_zerop (init)
4904 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4905 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4906 case CONSTRUCTOR:
4908 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4910 tree aggr_init = TREE_OPERAND (init, 1);
4912 while (aggr_init)
4914 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4915 return false;
4916 aggr_init = TREE_CHAIN (aggr_init);
4918 return true;
4920 return false;
4922 default:
4923 return false;