* config/xtensa/xtensa.h (ASM_OUTPUT_POOL_PROLOGUE): Emit a
[official-gcc.git] / gcc / lcm.c
bloba7d1dac7b822552307b45fd725c0d656b90b0122
1 /* Generic partial redundancy elimination with lazy code motion support.
2 Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 /* These routines are meant to be used by various optimization
22 passes which can be modeled as lazy code motion problems.
23 Including, but not limited to:
25 * Traditional partial redundancy elimination.
27 * Placement of caller/caller register save/restores.
29 * Load/store motion.
31 * Copy motion.
33 * Conversion of flat register files to a stacked register
34 model.
36 * Dead load/store elimination.
38 These routines accept as input:
40 * Basic block information (number of blocks, lists of
41 predecessors and successors). Note the granularity
42 does not need to be basic block, they could be statements
43 or functions.
45 * Bitmaps of local properties (computed, transparent and
46 anticipatable expressions).
48 The output of these routines is bitmap of redundant computations
49 and a bitmap of optimal placement points. */
52 #include "config.h"
53 #include "system.h"
54 #include "rtl.h"
55 #include "regs.h"
56 #include "hard-reg-set.h"
57 #include "flags.h"
58 #include "real.h"
59 #include "insn-config.h"
60 #include "recog.h"
61 #include "basic-block.h"
62 #include "tm_p.h"
64 /* We want target macros for the mode switching code to be able to refer
65 to instruction attribute values. */
66 #include "insn-attr.h"
68 /* Edge based LCM routines. */
69 static void compute_antinout_edge PARAMS ((sbitmap *, sbitmap *,
70 sbitmap *, sbitmap *));
71 static void compute_earliest PARAMS ((struct edge_list *, int,
72 sbitmap *, sbitmap *,
73 sbitmap *, sbitmap *,
74 sbitmap *));
75 static void compute_laterin PARAMS ((struct edge_list *, sbitmap *,
76 sbitmap *, sbitmap *,
77 sbitmap *));
78 static void compute_insert_delete PARAMS ((struct edge_list *edge_list,
79 sbitmap *, sbitmap *,
80 sbitmap *, sbitmap *,
81 sbitmap *));
83 /* Edge based LCM routines on a reverse flowgraph. */
84 static void compute_farthest PARAMS ((struct edge_list *, int,
85 sbitmap *, sbitmap *,
86 sbitmap*, sbitmap *,
87 sbitmap *));
88 static void compute_nearerout PARAMS ((struct edge_list *, sbitmap *,
89 sbitmap *, sbitmap *,
90 sbitmap *));
91 static void compute_rev_insert_delete PARAMS ((struct edge_list *edge_list,
92 sbitmap *, sbitmap *,
93 sbitmap *, sbitmap *,
94 sbitmap *));
96 /* Edge based lcm routines. */
98 /* Compute expression anticipatability at entrance and exit of each block.
99 This is done based on the flow graph, and not on the pred-succ lists.
100 Other than that, its pretty much identical to compute_antinout. */
102 static void
103 compute_antinout_edge (antloc, transp, antin, antout)
104 sbitmap *antloc;
105 sbitmap *transp;
106 sbitmap *antin;
107 sbitmap *antout;
109 int bb;
110 edge e;
111 basic_block *worklist, *qin, *qout, *qend;
112 unsigned int qlen;
114 /* Allocate a worklist array/queue. Entries are only added to the
115 list if they were not already on the list. So the size is
116 bounded by the number of basic blocks. */
117 qin = qout = worklist
118 = (basic_block *) xmalloc (sizeof (basic_block) * n_basic_blocks);
120 /* We want a maximal solution, so make an optimistic initialization of
121 ANTIN. */
122 sbitmap_vector_ones (antin, n_basic_blocks);
124 /* Put every block on the worklist; this is necessary because of the
125 optimistic initialization of ANTIN above. */
126 for (bb = n_basic_blocks - 1; bb >= 0; bb--)
128 *qin++ = BASIC_BLOCK (bb);
129 BASIC_BLOCK (bb)->aux = BASIC_BLOCK (bb);
132 qin = worklist;
133 qend = &worklist[n_basic_blocks];
134 qlen = n_basic_blocks;
136 /* Mark blocks which are predecessors of the exit block so that we
137 can easily identify them below. */
138 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
139 e->src->aux = EXIT_BLOCK_PTR;
141 /* Iterate until the worklist is empty. */
142 while (qlen)
144 /* Take the first entry off the worklist. */
145 basic_block b = *qout++;
146 bb = b->index;
147 qlen--;
149 if (qout >= qend)
150 qout = worklist;
152 if (b->aux == EXIT_BLOCK_PTR)
153 /* Do not clear the aux field for blocks which are predecessors of
154 the EXIT block. That way we never add then to the worklist
155 again. */
156 sbitmap_zero (antout[bb]);
157 else
159 /* Clear the aux field of this block so that it can be added to
160 the worklist again if necessary. */
161 b->aux = NULL;
162 sbitmap_intersection_of_succs (antout[bb], antin, bb);
165 if (sbitmap_a_or_b_and_c (antin[bb], antloc[bb], transp[bb], antout[bb]))
166 /* If the in state of this block changed, then we need
167 to add the predecessors of this block to the worklist
168 if they are not already on the worklist. */
169 for (e = b->pred; e; e = e->pred_next)
170 if (!e->src->aux && e->src != ENTRY_BLOCK_PTR)
172 *qin++ = e->src;
173 e->src->aux = e;
174 qlen++;
175 if (qin >= qend)
176 qin = worklist;
180 clear_aux_for_edges ();
181 clear_aux_for_blocks ();
182 free (worklist);
185 /* Compute the earliest vector for edge based lcm. */
187 static void
188 compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest)
189 struct edge_list *edge_list;
190 int n_exprs;
191 sbitmap *antin, *antout, *avout, *kill, *earliest;
193 sbitmap difference, temp_bitmap;
194 int x, num_edges;
195 basic_block pred, succ;
197 num_edges = NUM_EDGES (edge_list);
199 difference = sbitmap_alloc (n_exprs);
200 temp_bitmap = sbitmap_alloc (n_exprs);
202 for (x = 0; x < num_edges; x++)
204 pred = INDEX_EDGE_PRED_BB (edge_list, x);
205 succ = INDEX_EDGE_SUCC_BB (edge_list, x);
206 if (pred == ENTRY_BLOCK_PTR)
207 sbitmap_copy (earliest[x], antin[succ->index]);
208 else
210 /* We refer to the EXIT_BLOCK index, instead of testing for
211 EXIT_BLOCK_PTR, so that EXIT_BLOCK_PTR's index can be
212 changed so as to pretend it's a regular block, so that
213 its antin can be taken into account. */
214 if (succ->index == EXIT_BLOCK)
215 sbitmap_zero (earliest[x]);
216 else
218 sbitmap_difference (difference, antin[succ->index],
219 avout[pred->index]);
220 sbitmap_not (temp_bitmap, antout[pred->index]);
221 sbitmap_a_and_b_or_c (earliest[x], difference,
222 kill[pred->index], temp_bitmap);
227 sbitmap_free (temp_bitmap);
228 sbitmap_free (difference);
231 /* later(p,s) is dependent on the calculation of laterin(p).
232 laterin(p) is dependent on the calculation of later(p2,p).
234 laterin(ENTRY) is defined as all 0's
235 later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
236 laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
238 If we progress in this manner, starting with all basic blocks
239 in the work list, anytime we change later(bb), we need to add
240 succs(bb) to the worklist if they are not already on the worklist.
242 Boundary conditions:
244 We prime the worklist all the normal basic blocks. The ENTRY block can
245 never be added to the worklist since it is never the successor of any
246 block. We explicitly prevent the EXIT block from being added to the
247 worklist.
249 We optimistically initialize LATER. That is the only time this routine
250 will compute LATER for an edge out of the entry block since the entry
251 block is never on the worklist. Thus, LATERIN is neither used nor
252 computed for the ENTRY block.
254 Since the EXIT block is never added to the worklist, we will neither
255 use nor compute LATERIN for the exit block. Edges which reach the
256 EXIT block are handled in the normal fashion inside the loop. However,
257 the insertion/deletion computation needs LATERIN(EXIT), so we have
258 to compute it. */
260 static void
261 compute_laterin (edge_list, earliest, antloc, later, laterin)
262 struct edge_list *edge_list;
263 sbitmap *earliest, *antloc, *later, *laterin;
265 int bb, num_edges, i;
266 edge e;
267 basic_block *worklist, *qin, *qout, *qend;
268 unsigned int qlen;
270 num_edges = NUM_EDGES (edge_list);
272 /* Allocate a worklist array/queue. Entries are only added to the
273 list if they were not already on the list. So the size is
274 bounded by the number of basic blocks. */
275 qin = qout = worklist
276 = (basic_block *) xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
278 /* Initialize a mapping from each edge to its index. */
279 for (i = 0; i < num_edges; i++)
280 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
282 /* We want a maximal solution, so initially consider LATER true for
283 all edges. This allows propagation through a loop since the incoming
284 loop edge will have LATER set, so if all the other incoming edges
285 to the loop are set, then LATERIN will be set for the head of the
286 loop.
288 If the optimistic setting of LATER on that edge was incorrect (for
289 example the expression is ANTLOC in a block within the loop) then
290 this algorithm will detect it when we process the block at the head
291 of the optimistic edge. That will requeue the affected blocks. */
292 sbitmap_vector_ones (later, num_edges);
294 /* Note that even though we want an optimistic setting of LATER, we
295 do not want to be overly optimistic. Consider an outgoing edge from
296 the entry block. That edge should always have a LATER value the
297 same as EARLIEST for that edge. */
298 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
299 sbitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
301 /* Add all the blocks to the worklist. This prevents an early exit from
302 the loop given our optimistic initialization of LATER above. */
303 for (bb = 0; bb < n_basic_blocks; bb++)
305 basic_block b = BASIC_BLOCK (bb);
306 *qin++ = b;
307 b->aux = b;
309 qin = worklist;
310 /* Note that we do not use the last allocated element for our queue,
311 as EXIT_BLOCK is never inserted into it. In fact the above allocation
312 of n_basic_blocks + 1 elements is not encessary. */
313 qend = &worklist[n_basic_blocks];
314 qlen = n_basic_blocks;
316 /* Iterate until the worklist is empty. */
317 while (qlen)
319 /* Take the first entry off the worklist. */
320 basic_block b = *qout++;
321 b->aux = NULL;
322 qlen--;
323 if (qout >= qend)
324 qout = worklist;
326 /* Compute the intersection of LATERIN for each incoming edge to B. */
327 bb = b->index;
328 sbitmap_ones (laterin[bb]);
329 for (e = b->pred; e != NULL; e = e->pred_next)
330 sbitmap_a_and_b (laterin[bb], laterin[bb], later[(size_t)e->aux]);
332 /* Calculate LATER for all outgoing edges. */
333 for (e = b->succ; e != NULL; e = e->succ_next)
334 if (sbitmap_union_of_diff (later[(size_t) e->aux],
335 earliest[(size_t) e->aux],
336 laterin[e->src->index],
337 antloc[e->src->index])
338 /* If LATER for an outgoing edge was changed, then we need
339 to add the target of the outgoing edge to the worklist. */
340 && e->dest != EXIT_BLOCK_PTR && e->dest->aux == 0)
342 *qin++ = e->dest;
343 e->dest->aux = e;
344 qlen++;
345 if (qin >= qend)
346 qin = worklist;
350 /* Computation of insertion and deletion points requires computing LATERIN
351 for the EXIT block. We allocated an extra entry in the LATERIN array
352 for just this purpose. */
353 sbitmap_ones (laterin[n_basic_blocks]);
354 for (e = EXIT_BLOCK_PTR->pred; e != NULL; e = e->pred_next)
355 sbitmap_a_and_b (laterin[n_basic_blocks],
356 laterin[n_basic_blocks],
357 later[(size_t) e->aux]);
359 clear_aux_for_edges ();
360 free (worklist);
363 /* Compute the insertion and deletion points for edge based LCM. */
365 static void
366 compute_insert_delete (edge_list, antloc, later, laterin,
367 insert, delete)
368 struct edge_list *edge_list;
369 sbitmap *antloc, *later, *laterin, *insert, *delete;
371 int x;
373 for (x = 0; x < n_basic_blocks; x++)
374 sbitmap_difference (delete[x], antloc[x], laterin[x]);
376 for (x = 0; x < NUM_EDGES (edge_list); x++)
378 basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
380 if (b == EXIT_BLOCK_PTR)
381 sbitmap_difference (insert[x], later[x], laterin[n_basic_blocks]);
382 else
383 sbitmap_difference (insert[x], later[x], laterin[b->index]);
387 /* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and
388 delete vectors for edge based LCM. Returns an edgelist which is used to
389 map the insert vector to what edge an expression should be inserted on. */
391 struct edge_list *
392 pre_edge_lcm (file, n_exprs, transp, avloc, antloc, kill, insert, delete)
393 FILE *file ATTRIBUTE_UNUSED;
394 int n_exprs;
395 sbitmap *transp;
396 sbitmap *avloc;
397 sbitmap *antloc;
398 sbitmap *kill;
399 sbitmap **insert;
400 sbitmap **delete;
402 sbitmap *antin, *antout, *earliest;
403 sbitmap *avin, *avout;
404 sbitmap *later, *laterin;
405 struct edge_list *edge_list;
406 int num_edges;
408 edge_list = create_edge_list ();
409 num_edges = NUM_EDGES (edge_list);
411 #ifdef LCM_DEBUG_INFO
412 if (file)
414 fprintf (file, "Edge List:\n");
415 verify_edge_list (file, edge_list);
416 print_edge_list (file, edge_list);
417 dump_sbitmap_vector (file, "transp", "", transp, n_basic_blocks);
418 dump_sbitmap_vector (file, "antloc", "", antloc, n_basic_blocks);
419 dump_sbitmap_vector (file, "avloc", "", avloc, n_basic_blocks);
420 dump_sbitmap_vector (file, "kill", "", kill, n_basic_blocks);
422 #endif
424 /* Compute global availability. */
425 avin = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
426 avout = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
427 compute_available (avloc, kill, avout, avin);
428 sbitmap_vector_free (avin);
430 /* Compute global anticipatability. */
431 antin = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
432 antout = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
433 compute_antinout_edge (antloc, transp, antin, antout);
435 #ifdef LCM_DEBUG_INFO
436 if (file)
438 dump_sbitmap_vector (file, "antin", "", antin, n_basic_blocks);
439 dump_sbitmap_vector (file, "antout", "", antout, n_basic_blocks);
441 #endif
443 /* Compute earliestness. */
444 earliest = sbitmap_vector_alloc (num_edges, n_exprs);
445 compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
447 #ifdef LCM_DEBUG_INFO
448 if (file)
449 dump_sbitmap_vector (file, "earliest", "", earliest, num_edges);
450 #endif
452 sbitmap_vector_free (antout);
453 sbitmap_vector_free (antin);
454 sbitmap_vector_free (avout);
456 later = sbitmap_vector_alloc (num_edges, n_exprs);
458 /* Allocate an extra element for the exit block in the laterin vector. */
459 laterin = sbitmap_vector_alloc (n_basic_blocks + 1, n_exprs);
460 compute_laterin (edge_list, earliest, antloc, later, laterin);
462 #ifdef LCM_DEBUG_INFO
463 if (file)
465 dump_sbitmap_vector (file, "laterin", "", laterin, n_basic_blocks + 1);
466 dump_sbitmap_vector (file, "later", "", later, num_edges);
468 #endif
470 sbitmap_vector_free (earliest);
472 *insert = sbitmap_vector_alloc (num_edges, n_exprs);
473 *delete = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
474 compute_insert_delete (edge_list, antloc, later, laterin, *insert, *delete);
476 sbitmap_vector_free (laterin);
477 sbitmap_vector_free (later);
479 #ifdef LCM_DEBUG_INFO
480 if (file)
482 dump_sbitmap_vector (file, "pre_insert_map", "", *insert, num_edges);
483 dump_sbitmap_vector (file, "pre_delete_map", "", *delete,
484 n_basic_blocks);
486 #endif
488 return edge_list;
491 /* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
492 Return the number of passes we performed to iterate to a solution. */
494 void
495 compute_available (avloc, kill, avout, avin)
496 sbitmap *avloc, *kill, *avout, *avin;
498 int bb;
499 edge e;
500 basic_block *worklist, *qin, *qout, *qend;
501 unsigned int qlen;
503 /* Allocate a worklist array/queue. Entries are only added to the
504 list if they were not already on the list. So the size is
505 bounded by the number of basic blocks. */
506 qin = qout = worklist
507 = (basic_block *) xmalloc (sizeof (basic_block) * n_basic_blocks);
509 /* We want a maximal solution. */
510 sbitmap_vector_ones (avout, n_basic_blocks);
512 /* Put every block on the worklist; this is necessary because of the
513 optimistic initialization of AVOUT above. */
514 for (bb = 0; bb < n_basic_blocks; bb++)
516 *qin++ = BASIC_BLOCK (bb);
517 BASIC_BLOCK (bb)->aux = BASIC_BLOCK (bb);
520 qin = worklist;
521 qend = &worklist[n_basic_blocks];
522 qlen = n_basic_blocks;
524 /* Mark blocks which are successors of the entry block so that we
525 can easily identify them below. */
526 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
527 e->dest->aux = ENTRY_BLOCK_PTR;
529 /* Iterate until the worklist is empty. */
530 while (qlen)
532 /* Take the first entry off the worklist. */
533 basic_block b = *qout++;
534 bb = b->index;
535 qlen--;
537 if (qout >= qend)
538 qout = worklist;
540 /* If one of the predecessor blocks is the ENTRY block, then the
541 intersection of avouts is the null set. We can identify such blocks
542 by the special value in the AUX field in the block structure. */
543 if (b->aux == ENTRY_BLOCK_PTR)
544 /* Do not clear the aux field for blocks which are successors of the
545 ENTRY block. That way we never add then to the worklist again. */
546 sbitmap_zero (avin[bb]);
547 else
549 /* Clear the aux field of this block so that it can be added to
550 the worklist again if necessary. */
551 b->aux = NULL;
552 sbitmap_intersection_of_preds (avin[bb], avout, bb);
555 if (sbitmap_union_of_diff (avout[bb], avloc[bb], avin[bb], kill[bb]))
556 /* If the out state of this block changed, then we need
557 to add the successors of this block to the worklist
558 if they are not already on the worklist. */
559 for (e = b->succ; e; e = e->succ_next)
560 if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR)
562 *qin++ = e->dest;
563 e->dest->aux = e;
564 qlen++;
566 if (qin >= qend)
567 qin = worklist;
571 clear_aux_for_edges ();
572 clear_aux_for_blocks ();
573 free (worklist);
576 /* Compute the farthest vector for edge based lcm. */
578 static void
579 compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
580 kill, farthest)
581 struct edge_list *edge_list;
582 int n_exprs;
583 sbitmap *st_avout, *st_avin, *st_antin, *kill, *farthest;
585 sbitmap difference, temp_bitmap;
586 int x, num_edges;
587 basic_block pred, succ;
589 num_edges = NUM_EDGES (edge_list);
591 difference = sbitmap_alloc (n_exprs);
592 temp_bitmap = sbitmap_alloc (n_exprs);
594 for (x = 0; x < num_edges; x++)
596 pred = INDEX_EDGE_PRED_BB (edge_list, x);
597 succ = INDEX_EDGE_SUCC_BB (edge_list, x);
598 if (succ == EXIT_BLOCK_PTR)
599 sbitmap_copy (farthest[x], st_avout[pred->index]);
600 else
602 if (pred == ENTRY_BLOCK_PTR)
603 sbitmap_zero (farthest[x]);
604 else
606 sbitmap_difference (difference, st_avout[pred->index],
607 st_antin[succ->index]);
608 sbitmap_not (temp_bitmap, st_avin[succ->index]);
609 sbitmap_a_and_b_or_c (farthest[x], difference,
610 kill[succ->index], temp_bitmap);
615 sbitmap_free (temp_bitmap);
616 sbitmap_free (difference);
619 /* Compute nearer and nearerout vectors for edge based lcm.
621 This is the mirror of compute_laterin, additional comments on the
622 implementation can be found before compute_laterin. */
624 static void
625 compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout)
626 struct edge_list *edge_list;
627 sbitmap *farthest, *st_avloc, *nearer, *nearerout;
629 int bb, num_edges, i;
630 edge e;
631 basic_block *worklist, *tos;
633 num_edges = NUM_EDGES (edge_list);
635 /* Allocate a worklist array/queue. Entries are only added to the
636 list if they were not already on the list. So the size is
637 bounded by the number of basic blocks. */
638 tos = worklist
639 = (basic_block *) xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
641 /* Initialize NEARER for each edge and build a mapping from an edge to
642 its index. */
643 for (i = 0; i < num_edges; i++)
644 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
646 /* We want a maximal solution. */
647 sbitmap_vector_ones (nearer, num_edges);
649 /* Note that even though we want an optimistic setting of NEARER, we
650 do not want to be overly optimistic. Consider an incoming edge to
651 the exit block. That edge should always have a NEARER value the
652 same as FARTHEST for that edge. */
653 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
654 sbitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
656 /* Add all the blocks to the worklist. This prevents an early exit
657 from the loop given our optimistic initialization of NEARER. */
658 for (bb = 0; bb < n_basic_blocks; bb++)
660 basic_block b = BASIC_BLOCK (bb);
661 *tos++ = b;
662 b->aux = b;
665 /* Iterate until the worklist is empty. */
666 while (tos != worklist)
668 /* Take the first entry off the worklist. */
669 basic_block b = *--tos;
670 b->aux = NULL;
672 /* Compute the intersection of NEARER for each outgoing edge from B. */
673 bb = b->index;
674 sbitmap_ones (nearerout[bb]);
675 for (e = b->succ; e != NULL; e = e->succ_next)
676 sbitmap_a_and_b (nearerout[bb], nearerout[bb],
677 nearer[(size_t) e->aux]);
679 /* Calculate NEARER for all incoming edges. */
680 for (e = b->pred; e != NULL; e = e->pred_next)
681 if (sbitmap_union_of_diff (nearer[(size_t) e->aux],
682 farthest[(size_t) e->aux],
683 nearerout[e->dest->index],
684 st_avloc[e->dest->index])
685 /* If NEARER for an incoming edge was changed, then we need
686 to add the source of the incoming edge to the worklist. */
687 && e->src != ENTRY_BLOCK_PTR && e->src->aux == 0)
689 *tos++ = e->src;
690 e->src->aux = e;
694 /* Computation of insertion and deletion points requires computing NEAREROUT
695 for the ENTRY block. We allocated an extra entry in the NEAREROUT array
696 for just this purpose. */
697 sbitmap_ones (nearerout[n_basic_blocks]);
698 for (e = ENTRY_BLOCK_PTR->succ; e != NULL; e = e->succ_next)
699 sbitmap_a_and_b (nearerout[n_basic_blocks],
700 nearerout[n_basic_blocks],
701 nearer[(size_t) e->aux]);
703 clear_aux_for_edges ();
704 free (tos);
707 /* Compute the insertion and deletion points for edge based LCM. */
709 static void
710 compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
711 insert, delete)
712 struct edge_list *edge_list;
713 sbitmap *st_avloc, *nearer, *nearerout, *insert, *delete;
715 int x;
717 for (x = 0; x < n_basic_blocks; x++)
718 sbitmap_difference (delete[x], st_avloc[x], nearerout[x]);
720 for (x = 0; x < NUM_EDGES (edge_list); x++)
722 basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
723 if (b == ENTRY_BLOCK_PTR)
724 sbitmap_difference (insert[x], nearer[x], nearerout[n_basic_blocks]);
725 else
726 sbitmap_difference (insert[x], nearer[x], nearerout[b->index]);
730 /* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
731 insert and delete vectors for edge based reverse LCM. Returns an
732 edgelist which is used to map the insert vector to what edge
733 an expression should be inserted on. */
735 struct edge_list *
736 pre_edge_rev_lcm (file, n_exprs, transp, st_avloc, st_antloc, kill,
737 insert, delete)
738 FILE *file ATTRIBUTE_UNUSED;
739 int n_exprs;
740 sbitmap *transp;
741 sbitmap *st_avloc;
742 sbitmap *st_antloc;
743 sbitmap *kill;
744 sbitmap **insert;
745 sbitmap **delete;
747 sbitmap *st_antin, *st_antout;
748 sbitmap *st_avout, *st_avin, *farthest;
749 sbitmap *nearer, *nearerout;
750 struct edge_list *edge_list;
751 int num_edges;
753 edge_list = create_edge_list ();
754 num_edges = NUM_EDGES (edge_list);
756 st_antin = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, n_exprs);
757 st_antout = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, n_exprs);
758 sbitmap_vector_zero (st_antin, n_basic_blocks);
759 sbitmap_vector_zero (st_antout, n_basic_blocks);
760 compute_antinout_edge (st_antloc, transp, st_antin, st_antout);
762 /* Compute global anticipatability. */
763 st_avout = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
764 st_avin = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
765 compute_available (st_avloc, kill, st_avout, st_avin);
767 #ifdef LCM_DEBUG_INFO
768 if (file)
770 fprintf (file, "Edge List:\n");
771 verify_edge_list (file, edge_list);
772 print_edge_list (file, edge_list);
773 dump_sbitmap_vector (file, "transp", "", transp, n_basic_blocks);
774 dump_sbitmap_vector (file, "st_avloc", "", st_avloc, n_basic_blocks);
775 dump_sbitmap_vector (file, "st_antloc", "", st_antloc, n_basic_blocks);
776 dump_sbitmap_vector (file, "st_antin", "", st_antin, n_basic_blocks);
777 dump_sbitmap_vector (file, "st_antout", "", st_antout, n_basic_blocks);
778 dump_sbitmap_vector (file, "st_kill", "", kill, n_basic_blocks);
780 #endif
782 #ifdef LCM_DEBUG_INFO
783 if (file)
785 dump_sbitmap_vector (file, "st_avout", "", st_avout, n_basic_blocks);
786 dump_sbitmap_vector (file, "st_avin", "", st_avin, n_basic_blocks);
788 #endif
790 /* Compute farthestness. */
791 farthest = sbitmap_vector_alloc (num_edges, n_exprs);
792 compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
793 kill, farthest);
795 #ifdef LCM_DEBUG_INFO
796 if (file)
797 dump_sbitmap_vector (file, "farthest", "", farthest, num_edges);
798 #endif
800 sbitmap_vector_free (st_antin);
801 sbitmap_vector_free (st_antout);
803 sbitmap_vector_free (st_avin);
804 sbitmap_vector_free (st_avout);
806 nearer = sbitmap_vector_alloc (num_edges, n_exprs);
808 /* Allocate an extra element for the entry block. */
809 nearerout = sbitmap_vector_alloc (n_basic_blocks + 1, n_exprs);
810 compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
812 #ifdef LCM_DEBUG_INFO
813 if (file)
815 dump_sbitmap_vector (file, "nearerout", "", nearerout,
816 n_basic_blocks + 1);
817 dump_sbitmap_vector (file, "nearer", "", nearer, num_edges);
819 #endif
821 sbitmap_vector_free (farthest);
823 *insert = sbitmap_vector_alloc (num_edges, n_exprs);
824 *delete = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
825 compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
826 *insert, *delete);
828 sbitmap_vector_free (nearerout);
829 sbitmap_vector_free (nearer);
831 #ifdef LCM_DEBUG_INFO
832 if (file)
834 dump_sbitmap_vector (file, "pre_insert_map", "", *insert, num_edges);
835 dump_sbitmap_vector (file, "pre_delete_map", "", *delete,
836 n_basic_blocks);
838 #endif
839 return edge_list;
842 /* Mode switching:
844 The algorithm for setting the modes consists of scanning the insn list
845 and finding all the insns which require a specific mode. Each insn gets
846 a unique struct seginfo element. These structures are inserted into a list
847 for each basic block. For each entity, there is an array of bb_info over
848 the flow graph basic blocks (local var 'bb_info'), and contains a list
849 of all insns within that basic block, in the order they are encountered.
851 For each entity, any basic block WITHOUT any insns requiring a specific
852 mode are given a single entry, without a mode. (Each basic block
853 in the flow graph must have at least one entry in the segment table.)
855 The LCM algorithm is then run over the flow graph to determine where to
856 place the sets to the highest-priority value in respect of first the first
857 insn in any one block. Any adjustments required to the transparancy
858 vectors are made, then the next iteration starts for the next-lower
859 priority mode, till for each entity all modes are exhasted.
861 More details are located in the code for optimize_mode_switching(). */
863 /* This structure contains the information for each insn which requires
864 either single or double mode to be set.
865 MODE is the mode this insn must be executed in.
866 INSN_PTR is the insn to be executed (may be the note that marks the
867 beginning of a basic block).
868 BBNUM is the flow graph basic block this insn occurs in.
869 NEXT is the next insn in the same basic block. */
870 struct seginfo
872 int mode;
873 rtx insn_ptr;
874 int bbnum;
875 struct seginfo *next;
876 HARD_REG_SET regs_live;
879 struct bb_info
881 struct seginfo *seginfo;
882 int computing;
885 /* These bitmaps are used for the LCM algorithm. */
887 #ifdef OPTIMIZE_MODE_SWITCHING
888 static sbitmap *antic;
889 static sbitmap *transp;
890 static sbitmap *comp;
891 static sbitmap *delete;
892 static sbitmap *insert;
894 static struct seginfo * new_seginfo PARAMS ((int, rtx, int, HARD_REG_SET));
895 static void add_seginfo PARAMS ((struct bb_info *, struct seginfo *));
896 static void reg_dies PARAMS ((rtx, HARD_REG_SET));
897 static void reg_becomes_live PARAMS ((rtx, rtx, void *));
898 static void make_preds_opaque PARAMS ((basic_block, int));
899 #endif
901 #ifdef OPTIMIZE_MODE_SWITCHING
903 /* This function will allocate a new BBINFO structure, initialized
904 with the MODE, INSN, and basic block BB parameters. */
906 static struct seginfo *
907 new_seginfo (mode, insn, bb, regs_live)
908 int mode;
909 rtx insn;
910 int bb;
911 HARD_REG_SET regs_live;
913 struct seginfo *ptr;
914 ptr = xmalloc (sizeof (struct seginfo));
915 ptr->mode = mode;
916 ptr->insn_ptr = insn;
917 ptr->bbnum = bb;
918 ptr->next = NULL;
919 COPY_HARD_REG_SET (ptr->regs_live, regs_live);
920 return ptr;
923 /* Add a seginfo element to the end of a list.
924 HEAD is a pointer to the list beginning.
925 INFO is the structure to be linked in. */
927 static void
928 add_seginfo (head, info)
929 struct bb_info *head;
930 struct seginfo *info;
932 struct seginfo *ptr;
934 if (head->seginfo == NULL)
935 head->seginfo = info;
936 else
938 ptr = head->seginfo;
939 while (ptr->next != NULL)
940 ptr = ptr->next;
941 ptr->next = info;
945 /* Make all predecessors of basic block B opaque, recursively, till we hit
946 some that are already non-transparent, or an edge where aux is set; that
947 denotes that a mode set is to be done on that edge.
948 J is the bit number in the bitmaps that corresponds to the entity that
949 we are currently handling mode-switching for. */
951 static void
952 make_preds_opaque (b, j)
953 basic_block b;
954 int j;
956 edge e;
958 for (e = b->pred; e; e = e->pred_next)
960 basic_block pb = e->src;
962 if (e->aux || ! TEST_BIT (transp[pb->index], j))
963 continue;
965 RESET_BIT (transp[pb->index], j);
966 make_preds_opaque (pb, j);
970 /* Record in LIVE that register REG died. */
972 static void
973 reg_dies (reg, live)
974 rtx reg;
975 HARD_REG_SET live;
977 int regno, nregs;
979 if (GET_CODE (reg) != REG)
980 return;
982 regno = REGNO (reg);
983 if (regno < FIRST_PSEUDO_REGISTER)
984 for (nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1; nregs >= 0;
985 nregs--)
986 CLEAR_HARD_REG_BIT (live, regno + nregs);
989 /* Record in LIVE that register REG became live.
990 This is called via note_stores. */
992 static void
993 reg_becomes_live (reg, setter, live)
994 rtx reg;
995 rtx setter ATTRIBUTE_UNUSED;
996 void *live;
998 int regno, nregs;
1000 if (GET_CODE (reg) == SUBREG)
1001 reg = SUBREG_REG (reg);
1003 if (GET_CODE (reg) != REG)
1004 return;
1006 regno = REGNO (reg);
1007 if (regno < FIRST_PSEUDO_REGISTER)
1008 for (nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1; nregs >= 0;
1009 nregs--)
1010 SET_HARD_REG_BIT (* (HARD_REG_SET *) live, regno + nregs);
1013 /* Find all insns that need a particular mode setting, and insert the
1014 necessary mode switches. Return true if we did work. */
1017 optimize_mode_switching (file)
1018 FILE *file;
1020 rtx insn;
1021 int bb, e;
1022 int need_commit = 0;
1023 sbitmap *kill;
1024 struct edge_list *edge_list;
1025 static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
1026 #define N_ENTITIES ARRAY_SIZE (num_modes)
1027 int entity_map[N_ENTITIES];
1028 struct bb_info *bb_info[N_ENTITIES];
1029 int i, j;
1030 int n_entities;
1031 int max_num_modes = 0;
1032 bool emited = false;
1034 clear_bb_flags ();
1035 #ifdef NORMAL_MODE
1036 /* Increment n_basic_blocks before allocating bb_info. */
1037 n_basic_blocks++;
1038 #endif
1040 for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--)
1041 if (OPTIMIZE_MODE_SWITCHING (e))
1043 /* Create the list of segments within each basic block. */
1044 bb_info[n_entities]
1045 = (struct bb_info *) xcalloc (n_basic_blocks, sizeof **bb_info);
1046 entity_map[n_entities++] = e;
1047 if (num_modes[e] > max_num_modes)
1048 max_num_modes = num_modes[e];
1051 #ifdef NORMAL_MODE
1052 /* Decrement it back in case we return below. */
1053 n_basic_blocks--;
1054 #endif
1056 if (! n_entities)
1057 return 0;
1059 #ifdef NORMAL_MODE
1060 /* We're going to pretend the EXIT_BLOCK is a regular basic block,
1061 so that switching back to normal mode when entering the
1062 EXIT_BLOCK isn't optimized away. We do this by incrementing the
1063 basic block count, growing the VARRAY of basic_block_info and
1064 appending the EXIT_BLOCK_PTR to it. */
1065 n_basic_blocks++;
1066 if (VARRAY_SIZE (basic_block_info) < n_basic_blocks)
1067 VARRAY_GROW (basic_block_info, n_basic_blocks);
1068 BASIC_BLOCK (n_basic_blocks - 1) = EXIT_BLOCK_PTR;
1069 EXIT_BLOCK_PTR->index = n_basic_blocks - 1;
1070 #endif
1072 /* Create the bitmap vectors. */
1074 antic = sbitmap_vector_alloc (n_basic_blocks, n_entities);
1075 transp = sbitmap_vector_alloc (n_basic_blocks, n_entities);
1076 comp = sbitmap_vector_alloc (n_basic_blocks, n_entities);
1078 sbitmap_vector_ones (transp, n_basic_blocks);
1080 for (j = n_entities - 1; j >= 0; j--)
1082 int e = entity_map[j];
1083 int no_mode = num_modes[e];
1084 struct bb_info *info = bb_info[j];
1086 /* Determine what the first use (if any) need for a mode of entity E is.
1087 This will be the mode that is anticipatable for this block.
1088 Also compute the initial transparency settings. */
1089 for (bb = 0 ; bb < n_basic_blocks; bb++)
1091 struct seginfo *ptr;
1092 int last_mode = no_mode;
1093 HARD_REG_SET live_now;
1095 REG_SET_TO_HARD_REG_SET (live_now,
1096 BASIC_BLOCK (bb)->global_live_at_start);
1097 for (insn = BLOCK_HEAD (bb);
1098 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
1099 insn = NEXT_INSN (insn))
1101 if (INSN_P (insn))
1103 int mode = MODE_NEEDED (e, insn);
1104 rtx link;
1106 if (mode != no_mode && mode != last_mode)
1108 last_mode = mode;
1109 ptr = new_seginfo (mode, insn, bb, live_now);
1110 add_seginfo (info + bb, ptr);
1111 RESET_BIT (transp[bb], j);
1114 /* Update LIVE_NOW. */
1115 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1116 if (REG_NOTE_KIND (link) == REG_DEAD)
1117 reg_dies (XEXP (link, 0), live_now);
1119 note_stores (PATTERN (insn), reg_becomes_live, &live_now);
1120 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1121 if (REG_NOTE_KIND (link) == REG_UNUSED)
1122 reg_dies (XEXP (link, 0), live_now);
1126 info[bb].computing = last_mode;
1127 /* Check for blocks without ANY mode requirements. */
1128 if (last_mode == no_mode)
1130 ptr = new_seginfo (no_mode, insn, bb, live_now);
1131 add_seginfo (info + bb, ptr);
1134 #ifdef NORMAL_MODE
1136 int mode = NORMAL_MODE (e);
1138 if (mode != no_mode)
1140 edge eg;
1142 for (eg = ENTRY_BLOCK_PTR->succ; eg; eg = eg->succ_next)
1144 bb = eg->dest->index;
1146 /* By always making this nontransparent, we save
1147 an extra check in make_preds_opaque. We also
1148 need this to avoid confusing pre_edge_lcm when
1149 antic is cleared but transp and comp are set. */
1150 RESET_BIT (transp[bb], j);
1152 /* If the block already has MODE, pretend it
1153 has none (because we don't need to set it),
1154 but retain whatever mode it computes. */
1155 if (info[bb].seginfo->mode == mode)
1156 info[bb].seginfo->mode = no_mode;
1158 /* Insert a fake computing definition of MODE into entry
1159 blocks which compute no mode. This represents the mode on
1160 entry. */
1161 else if (info[bb].computing == no_mode)
1163 info[bb].computing = mode;
1164 info[bb].seginfo->mode = no_mode;
1168 bb = n_basic_blocks - 1;
1169 info[bb].seginfo->mode = mode;
1172 #endif /* NORMAL_MODE */
1175 kill = sbitmap_vector_alloc (n_basic_blocks, n_entities);
1176 for (i = 0; i < max_num_modes; i++)
1178 int current_mode[N_ENTITIES];
1180 /* Set the anticipatable and computing arrays. */
1181 sbitmap_vector_zero (antic, n_basic_blocks);
1182 sbitmap_vector_zero (comp, n_basic_blocks);
1183 for (j = n_entities - 1; j >= 0; j--)
1185 int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i);
1186 struct bb_info *info = bb_info[j];
1188 for (bb = 0 ; bb < n_basic_blocks; bb++)
1190 if (info[bb].seginfo->mode == m)
1191 SET_BIT (antic[bb], j);
1193 if (info[bb].computing == m)
1194 SET_BIT (comp[bb], j);
1198 /* Calculate the optimal locations for the
1199 placement mode switches to modes with priority I. */
1201 for (bb = n_basic_blocks - 1; bb >= 0; bb--)
1202 sbitmap_not (kill[bb], transp[bb]);
1203 edge_list = pre_edge_lcm (file, 1, transp, comp, antic,
1204 kill, &insert, &delete);
1206 for (j = n_entities - 1; j >= 0; j--)
1208 /* Insert all mode sets that have been inserted by lcm. */
1209 int no_mode = num_modes[entity_map[j]];
1211 /* Wherever we have moved a mode setting upwards in the flow graph,
1212 the blocks between the new setting site and the now redundant
1213 computation ceases to be transparent for any lower-priority
1214 mode of the same entity. First set the aux field of each
1215 insertion site edge non-transparent, then propagate the new
1216 non-transparency from the redundant computation upwards till
1217 we hit an insertion site or an already non-transparent block. */
1218 for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--)
1220 edge eg = INDEX_EDGE (edge_list, e);
1221 int mode;
1222 basic_block src_bb;
1223 HARD_REG_SET live_at_edge;
1224 rtx mode_set;
1226 eg->aux = 0;
1228 if (! TEST_BIT (insert[e], j))
1229 continue;
1231 eg->aux = (void *)1;
1233 mode = current_mode[j];
1234 src_bb = eg->src;
1236 REG_SET_TO_HARD_REG_SET (live_at_edge,
1237 src_bb->global_live_at_end);
1239 start_sequence ();
1240 EMIT_MODE_SET (entity_map[j], mode, live_at_edge);
1241 mode_set = gen_sequence ();
1242 end_sequence ();
1244 /* Do not bother to insert empty sequence. */
1245 if (GET_CODE (mode_set) == SEQUENCE
1246 && !XVECLEN (mode_set, 0))
1247 continue;
1249 /* If this is an abnormal edge, we'll insert at the end
1250 of the previous block. */
1251 if (eg->flags & EDGE_ABNORMAL)
1253 emited = true;
1254 if (GET_CODE (src_bb->end) == JUMP_INSN)
1255 emit_insn_before (mode_set, src_bb->end);
1256 /* It doesn't make sense to switch to normal mode
1257 after a CALL_INSN, so we're going to abort if we
1258 find one. The cases in which a CALL_INSN may
1259 have an abnormal edge are sibcalls and EH edges.
1260 In the case of sibcalls, the dest basic-block is
1261 the EXIT_BLOCK, that runs in normal mode; it is
1262 assumed that a sibcall insn requires normal mode
1263 itself, so no mode switch would be required after
1264 the call (it wouldn't make sense, anyway). In
1265 the case of EH edges, EH entry points also start
1266 in normal mode, so a similar reasoning applies. */
1267 else if (GET_CODE (src_bb->end) == INSN)
1268 emit_insn_after (mode_set, src_bb->end);
1269 else
1270 abort ();
1271 bb_info[j][src_bb->index].computing = mode;
1272 RESET_BIT (transp[src_bb->index], j);
1274 else
1276 need_commit = 1;
1277 insert_insn_on_edge (mode_set, eg);
1281 for (bb = n_basic_blocks - 1; bb >= 0; bb--)
1282 if (TEST_BIT (delete[bb], j))
1284 make_preds_opaque (BASIC_BLOCK (bb), j);
1285 /* Cancel the 'deleted' mode set. */
1286 bb_info[j][bb].seginfo->mode = no_mode;
1290 clear_aux_for_edges ();
1291 free_edge_list (edge_list);
1294 #ifdef NORMAL_MODE
1295 /* Restore the special status of EXIT_BLOCK. */
1296 n_basic_blocks--;
1297 VARRAY_POP (basic_block_info);
1298 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
1299 #endif
1301 /* Now output the remaining mode sets in all the segments. */
1302 for (j = n_entities - 1; j >= 0; j--)
1304 int no_mode = num_modes[entity_map[j]];
1306 #ifdef NORMAL_MODE
1307 if (bb_info[j][n_basic_blocks].seginfo->mode != no_mode)
1309 edge eg;
1310 struct seginfo *ptr = bb_info[j][n_basic_blocks].seginfo;
1312 for (eg = EXIT_BLOCK_PTR->pred; eg; eg = eg->pred_next)
1314 rtx mode_set;
1316 if (bb_info[j][eg->src->index].computing == ptr->mode)
1317 continue;
1319 start_sequence ();
1320 EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
1321 mode_set = gen_sequence ();
1322 end_sequence ();
1324 /* Do not bother to insert empty sequence. */
1325 if (GET_CODE (mode_set) == SEQUENCE
1326 && !XVECLEN (mode_set, 0))
1327 continue;
1329 /* If this is an abnormal edge, we'll insert at the end of the
1330 previous block. */
1331 if (eg->flags & EDGE_ABNORMAL)
1333 emited = true;
1334 if (GET_CODE (eg->src->end) == JUMP_INSN)
1335 emit_insn_before (mode_set, eg->src->end);
1336 else if (GET_CODE (eg->src->end) == INSN)
1337 emit_insn_after (mode_set, eg->src->end);
1338 else
1339 abort ();
1341 else
1343 need_commit = 1;
1344 insert_insn_on_edge (mode_set, eg);
1349 #endif
1351 for (bb = n_basic_blocks - 1; bb >= 0; bb--)
1353 struct seginfo *ptr, *next;
1354 for (ptr = bb_info[j][bb].seginfo; ptr; ptr = next)
1356 next = ptr->next;
1357 if (ptr->mode != no_mode)
1359 rtx mode_set;
1361 start_sequence ();
1362 EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
1363 mode_set = gen_sequence ();
1364 end_sequence ();
1366 /* Do not bother to insert empty sequence. */
1367 if (GET_CODE (mode_set) == SEQUENCE
1368 && !XVECLEN (mode_set, 0))
1369 continue;
1371 emited = true;
1372 if (GET_CODE (ptr->insn_ptr) == NOTE
1373 && (NOTE_LINE_NUMBER (ptr->insn_ptr)
1374 == NOTE_INSN_BASIC_BLOCK))
1375 emit_insn_after (mode_set, ptr->insn_ptr);
1376 else
1377 emit_insn_before (mode_set, ptr->insn_ptr);
1380 free (ptr);
1384 free (bb_info[j]);
1387 /* Finished. Free up all the things we've allocated. */
1389 sbitmap_vector_free (kill);
1390 sbitmap_vector_free (antic);
1391 sbitmap_vector_free (transp);
1392 sbitmap_vector_free (comp);
1393 sbitmap_vector_free (delete);
1394 sbitmap_vector_free (insert);
1396 if (need_commit)
1397 commit_edge_insertions ();
1399 if (!need_commit && !emited)
1400 return 0;
1402 max_regno = max_reg_num ();
1403 allocate_reg_info (max_regno, FALSE, FALSE);
1404 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
1405 (PROP_DEATH_NOTES | PROP_KILL_DEAD_CODE
1406 | PROP_SCAN_DEAD_CODE));
1408 return 1;
1410 #endif /* OPTIMIZE_MODE_SWITCHING */