1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains optimizer of the control flow. The main entrypoint is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to it's
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
36 #include "coretypes.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
43 #include "insn-config.h"
52 /* cleanup_cfg maintains following flags for each basic block. */
56 /* Set if BB is the forwarder block to avoid too many
57 forwarder_block_p calls. */
58 BB_FORWARDER_BLOCK
= 1,
59 BB_NONTHREADABLE_BLOCK
= 2
62 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
63 #define BB_SET_FLAG(BB, FLAG) \
64 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
65 #define BB_CLEAR_FLAG(BB, FLAG) \
66 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
68 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
70 static bool try_crossjump_to_edge
PARAMS ((int, edge
, edge
));
71 static bool try_crossjump_bb
PARAMS ((int, basic_block
));
72 static bool outgoing_edges_match
PARAMS ((int,
73 basic_block
, basic_block
));
74 static int flow_find_cross_jump
PARAMS ((int, basic_block
, basic_block
,
76 static bool insns_match_p
PARAMS ((int, rtx
, rtx
));
78 static bool label_is_jump_target_p
PARAMS ((rtx
, rtx
));
79 static bool tail_recursion_label_p
PARAMS ((rtx
));
80 static void merge_blocks_move_predecessor_nojumps
PARAMS ((basic_block
,
82 static void merge_blocks_move_successor_nojumps
PARAMS ((basic_block
,
84 static basic_block merge_blocks
PARAMS ((edge
,basic_block
,basic_block
,
86 static bool try_optimize_cfg
PARAMS ((int));
87 static bool try_simplify_condjump
PARAMS ((basic_block
));
88 static bool try_forward_edges
PARAMS ((int, basic_block
));
89 static edge thread_jump
PARAMS ((int, edge
, basic_block
));
90 static bool mark_effect
PARAMS ((rtx
, bitmap
));
91 static void notice_new_block
PARAMS ((basic_block
));
92 static void update_forwarder_flag
PARAMS ((basic_block
));
93 static int mentions_nonequal_regs
PARAMS ((rtx
*, void *));
95 /* Set flags for newly created block. */
104 if (forwarder_block_p (bb
))
105 BB_SET_FLAG (bb
, BB_FORWARDER_BLOCK
);
108 /* Recompute forwarder flag after block has been modified. */
111 update_forwarder_flag (bb
)
114 if (forwarder_block_p (bb
))
115 BB_SET_FLAG (bb
, BB_FORWARDER_BLOCK
);
117 BB_CLEAR_FLAG (bb
, BB_FORWARDER_BLOCK
);
120 /* Simplify a conditional jump around an unconditional jump.
121 Return true if something changed. */
124 try_simplify_condjump (cbranch_block
)
125 basic_block cbranch_block
;
127 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
128 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
131 /* Verify that there are exactly two successors. */
132 if (!cbranch_block
->succ
133 || !cbranch_block
->succ
->succ_next
134 || cbranch_block
->succ
->succ_next
->succ_next
)
137 /* Verify that we've got a normal conditional branch at the end
139 cbranch_insn
= cbranch_block
->end
;
140 if (!any_condjump_p (cbranch_insn
))
143 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
144 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
146 /* The next block must not have multiple predecessors, must not
147 be the last block in the function, and must contain just the
148 unconditional jump. */
149 jump_block
= cbranch_fallthru_edge
->dest
;
150 if (jump_block
->pred
->pred_next
151 || jump_block
->next_bb
== EXIT_BLOCK_PTR
152 || !FORWARDER_BLOCK_P (jump_block
))
154 jump_dest_block
= jump_block
->succ
->dest
;
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block
= cbranch_jump_edge
->dest
;
160 if (!can_fallthru (jump_block
, cbranch_dest_block
))
163 /* Invert the conditional branch. */
164 if (!invert_jump (cbranch_insn
, block_label (jump_dest_block
), 0))
168 fprintf (rtl_dump_file
, "Simplifying condjump %i around jump %i\n",
169 INSN_UID (cbranch_insn
), INSN_UID (jump_block
->end
));
171 /* Success. Update the CFG to match. Note that after this point
172 the edge variable names appear backwards; the redirection is done
173 this way to preserve edge profile data. */
174 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
176 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
178 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
179 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
180 update_br_prob_note (cbranch_block
);
182 /* Delete the block with the unconditional jump, and clean up the mess. */
183 delete_block (jump_block
);
184 tidy_fallthru_edge (cbranch_jump_edge
, cbranch_block
, cbranch_dest_block
);
189 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
190 on register. Used by jump threading. */
193 mark_effect (exp
, nonequal
)
199 switch (GET_CODE (exp
))
201 /* In case we do clobber the register, mark it as equal, as we know the
202 value is dead so it don't have to match. */
204 if (REG_P (XEXP (exp
, 0)))
206 dest
= XEXP (exp
, 0);
207 regno
= REGNO (dest
);
208 CLEAR_REGNO_REG_SET (nonequal
, regno
);
209 if (regno
< FIRST_PSEUDO_REGISTER
)
211 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (dest
));
213 CLEAR_REGNO_REG_SET (nonequal
, regno
+ n
);
219 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
221 dest
= SET_DEST (exp
);
226 regno
= REGNO (dest
);
227 SET_REGNO_REG_SET (nonequal
, regno
);
228 if (regno
< FIRST_PSEUDO_REGISTER
)
230 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (dest
));
232 SET_REGNO_REG_SET (nonequal
, regno
+ n
);
241 /* Return nonzero if X is an register set in regset DATA.
242 Called via for_each_rtx. */
244 mentions_nonequal_regs (x
, data
)
248 regset nonequal
= (regset
) data
;
254 if (REGNO_REG_SET_P (nonequal
, regno
))
256 if (regno
< FIRST_PSEUDO_REGISTER
)
258 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (*x
));
260 if (REGNO_REG_SET_P (nonequal
, regno
+ n
))
266 /* Attempt to prove that the basic block B will have no side effects and
267 always continues in the same edge if reached via E. Return the edge
268 if exist, NULL otherwise. */
271 thread_jump (mode
, e
, b
)
276 rtx set1
, set2
, cond1
, cond2
, insn
;
277 enum rtx_code code1
, code2
, reversed_code2
;
278 bool reverse1
= false;
283 if (BB_FLAGS (b
) & BB_NONTHREADABLE_BLOCK
)
286 /* At the moment, we do handle only conditional jumps, but later we may
287 want to extend this code to tablejumps and others. */
288 if (!e
->src
->succ
->succ_next
|| e
->src
->succ
->succ_next
->succ_next
)
290 if (!b
->succ
|| !b
->succ
->succ_next
|| b
->succ
->succ_next
->succ_next
)
292 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
296 /* Second branch must end with onlyjump, as we will eliminate the jump. */
297 if (!any_condjump_p (e
->src
->end
))
300 if (!any_condjump_p (b
->end
) || !onlyjump_p (b
->end
))
302 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
306 set1
= pc_set (e
->src
->end
);
307 set2
= pc_set (b
->end
);
308 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
309 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
312 cond1
= XEXP (SET_SRC (set1
), 0);
313 cond2
= XEXP (SET_SRC (set2
), 0);
315 code1
= reversed_comparison_code (cond1
, e
->src
->end
);
317 code1
= GET_CODE (cond1
);
319 code2
= GET_CODE (cond2
);
320 reversed_code2
= reversed_comparison_code (cond2
, b
->end
);
322 if (!comparison_dominates_p (code1
, code2
)
323 && !comparison_dominates_p (code1
, reversed_code2
))
326 /* Ensure that the comparison operators are equivalent.
327 ??? This is far too pessimistic. We should allow swapped operands,
328 different CCmodes, or for example comparisons for interval, that
329 dominate even when operands are not equivalent. */
330 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
331 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
334 /* Short circuit cases where block B contains some side effects, as we can't
336 for (insn
= NEXT_INSN (b
->head
); insn
!= NEXT_INSN (b
->end
);
337 insn
= NEXT_INSN (insn
))
338 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
340 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
346 /* First process all values computed in the source basic block. */
347 for (insn
= NEXT_INSN (e
->src
->head
); insn
!= NEXT_INSN (e
->src
->end
);
348 insn
= NEXT_INSN (insn
))
350 cselib_process_insn (insn
);
352 nonequal
= BITMAP_XMALLOC();
353 CLEAR_REG_SET (nonequal
);
355 /* Now assume that we've continued by the edge E to B and continue
356 processing as if it were same basic block.
357 Our goal is to prove that whole block is an NOOP. */
359 for (insn
= NEXT_INSN (b
->head
); insn
!= NEXT_INSN (b
->end
) && !failed
;
360 insn
= NEXT_INSN (insn
))
364 rtx pat
= PATTERN (insn
);
366 if (GET_CODE (pat
) == PARALLEL
)
368 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
369 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
372 failed
|= mark_effect (pat
, nonequal
);
375 cselib_process_insn (insn
);
378 /* Later we should clear nonequal of dead registers. So far we don't
379 have life information in cfg_cleanup. */
382 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
386 /* cond2 must not mention any register that is not equal to the
388 if (for_each_rtx (&cond2
, mentions_nonequal_regs
, nonequal
))
391 /* In case liveness information is available, we need to prove equivalence
392 only of the live values. */
393 if (mode
& CLEANUP_UPDATE_LIFE
)
394 AND_REG_SET (nonequal
, b
->global_live_at_end
);
396 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, goto failed_exit
;);
398 BITMAP_XFREE (nonequal
);
400 if ((comparison_dominates_p (code1
, code2
) != 0)
401 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
402 return BRANCH_EDGE (b
);
404 return FALLTHRU_EDGE (b
);
407 BITMAP_XFREE (nonequal
);
412 /* Attempt to forward edges leaving basic block B.
413 Return true if successful. */
416 try_forward_edges (mode
, b
)
420 bool changed
= false;
421 edge e
, next
, *threaded_edges
= NULL
;
423 for (e
= b
->succ
; e
; e
= next
)
425 basic_block target
, first
;
427 bool threaded
= false;
428 int nthreaded_edges
= 0;
432 /* Skip complex edges because we don't know how to update them.
434 Still handle fallthru edges, as we can succeed to forward fallthru
435 edge to the same place as the branch edge of conditional branch
436 and turn conditional branch to an unconditional branch. */
437 if (e
->flags
& EDGE_COMPLEX
)
440 target
= first
= e
->dest
;
443 while (counter
< n_basic_blocks
)
445 basic_block new_target
= NULL
;
446 bool new_target_threaded
= false;
448 if (FORWARDER_BLOCK_P (target
)
449 && target
->succ
->dest
!= EXIT_BLOCK_PTR
)
451 /* Bypass trivial infinite loops. */
452 if (target
== target
->succ
->dest
)
453 counter
= n_basic_blocks
;
454 new_target
= target
->succ
->dest
;
457 /* Allow to thread only over one edge at time to simplify updating
459 else if (mode
& CLEANUP_THREADING
)
461 edge t
= thread_jump (mode
, e
, target
);
465 threaded_edges
= xmalloc (sizeof (*threaded_edges
)
471 /* Detect an infinite loop across blocks not
472 including the start block. */
473 for (i
= 0; i
< nthreaded_edges
; ++i
)
474 if (threaded_edges
[i
] == t
)
476 if (i
< nthreaded_edges
)
478 counter
= n_basic_blocks
;
483 /* Detect an infinite loop across the start block. */
487 if (nthreaded_edges
>= n_basic_blocks
)
489 threaded_edges
[nthreaded_edges
++] = t
;
491 new_target
= t
->dest
;
492 new_target_threaded
= true;
499 /* Avoid killing of loop pre-headers, as it is the place loop
500 optimizer wants to hoist code to.
502 For fallthru forwarders, the LOOP_BEG note must appear between
503 the header of block and CODE_LABEL of the loop, for non forwarders
504 it must appear before the JUMP_INSN. */
505 if ((mode
& CLEANUP_PRE_LOOP
) && optimize
)
507 rtx insn
= (target
->succ
->flags
& EDGE_FALLTHRU
508 ? target
->head
: prev_nonnote_insn (target
->end
));
510 if (GET_CODE (insn
) != NOTE
)
511 insn
= NEXT_INSN (insn
);
513 for (; insn
&& GET_CODE (insn
) != CODE_LABEL
&& !INSN_P (insn
);
514 insn
= NEXT_INSN (insn
))
515 if (GET_CODE (insn
) == NOTE
516 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
519 if (GET_CODE (insn
) == NOTE
)
522 /* Do not clean up branches to just past the end of a loop
523 at this time; it can mess up the loop optimizer's
524 recognition of some patterns. */
526 insn
= PREV_INSN (target
->head
);
527 if (insn
&& GET_CODE (insn
) == NOTE
528 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
534 threaded
|= new_target_threaded
;
537 if (counter
>= n_basic_blocks
)
540 fprintf (rtl_dump_file
, "Infinite loop in BB %i.\n",
543 else if (target
== first
)
544 ; /* We didn't do anything. */
547 /* Save the values now, as the edge may get removed. */
548 gcov_type edge_count
= e
->count
;
549 int edge_probability
= e
->probability
;
553 /* Don't force if target is exit block. */
554 if (threaded
&& target
!= EXIT_BLOCK_PTR
)
556 notice_new_block (redirect_edge_and_branch_force (e
, target
));
558 fprintf (rtl_dump_file
, "Conditionals threaded.\n");
560 else if (!redirect_edge_and_branch (e
, target
))
563 fprintf (rtl_dump_file
,
564 "Forwarding edge %i->%i to %i failed.\n",
565 b
->index
, e
->dest
->index
, target
->index
);
569 /* We successfully forwarded the edge. Now update profile
570 data: for each edge we traversed in the chain, remove
571 the original edge's execution count. */
572 edge_frequency
= ((edge_probability
* b
->frequency
573 + REG_BR_PROB_BASE
/ 2)
576 if (!FORWARDER_BLOCK_P (b
) && forwarder_block_p (b
))
577 BB_SET_FLAG (b
, BB_FORWARDER_BLOCK
);
583 first
->count
-= edge_count
;
584 if (first
->count
< 0)
586 first
->frequency
-= edge_frequency
;
587 if (first
->frequency
< 0)
588 first
->frequency
= 0;
589 if (first
->succ
->succ_next
)
593 if (n
>= nthreaded_edges
)
595 t
= threaded_edges
[n
++];
598 if (first
->frequency
)
599 prob
= edge_frequency
* REG_BR_PROB_BASE
/ first
->frequency
;
602 if (prob
> t
->probability
)
603 prob
= t
->probability
;
604 t
->probability
-= prob
;
605 prob
= REG_BR_PROB_BASE
- prob
;
608 first
->succ
->probability
= REG_BR_PROB_BASE
;
609 first
->succ
->succ_next
->probability
= 0;
612 for (e
= first
->succ
; e
; e
= e
->succ_next
)
613 e
->probability
= ((e
->probability
* REG_BR_PROB_BASE
)
615 update_br_prob_note (first
);
619 /* It is possible that as the result of
620 threading we've removed edge as it is
621 threaded to the fallthru edge. Avoid
622 getting out of sync. */
623 if (n
< nthreaded_edges
624 && first
== threaded_edges
[n
]->src
)
629 t
->count
-= edge_count
;
634 while (first
!= target
);
641 free (threaded_edges
);
645 /* Return true if LABEL is a target of JUMP_INSN. This applies only
646 to non-complex jumps. That is, direct unconditional, conditional,
647 and tablejumps, but not computed jumps or returns. It also does
648 not apply to the fallthru case of a conditional jump. */
651 label_is_jump_target_p (label
, jump_insn
)
652 rtx label
, jump_insn
;
654 rtx tmp
= JUMP_LABEL (jump_insn
);
659 if (tablejump_p (jump_insn
, NULL
, &tmp
))
661 rtvec vec
= XVEC (tmp
, GET_CODE (tmp
) == ADDR_DIFF_VEC
);
662 int i
, veclen
= GET_NUM_ELEM (vec
);
664 for (i
= 0; i
< veclen
; ++i
)
665 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
672 /* Return true if LABEL is used for tail recursion. */
675 tail_recursion_label_p (label
)
680 for (x
= tail_recursion_label_list
; x
; x
= XEXP (x
, 1))
681 if (label
== XEXP (x
, 0))
687 /* Blocks A and B are to be merged into a single block. A has no incoming
688 fallthru edge, so it can be moved before B without adding or modifying
689 any jumps (aside from the jump from A to B). */
692 merge_blocks_move_predecessor_nojumps (a
, b
)
697 barrier
= next_nonnote_insn (a
->end
);
698 if (GET_CODE (barrier
) != BARRIER
)
700 delete_insn (barrier
);
702 /* Move block and loop notes out of the chain so that we do not
705 ??? A better solution would be to squeeze out all the non-nested notes
706 and adjust the block trees appropriately. Even better would be to have
707 a tighter connection between block trees and rtl so that this is not
709 if (squeeze_notes (&a
->head
, &a
->end
))
712 /* Scramble the insn chain. */
713 if (a
->end
!= PREV_INSN (b
->head
))
714 reorder_insns_nobb (a
->head
, a
->end
, PREV_INSN (b
->head
));
715 a
->flags
|= BB_DIRTY
;
718 fprintf (rtl_dump_file
, "Moved block %d before %d and merged.\n",
721 /* Swap the records for the two blocks around. */
724 link_block (a
, b
->prev_bb
);
726 /* Now blocks A and B are contiguous. Merge them. */
727 merge_blocks_nomove (a
, b
);
730 /* Blocks A and B are to be merged into a single block. B has no outgoing
731 fallthru edge, so it can be moved after A without adding or modifying
732 any jumps (aside from the jump from A to B). */
735 merge_blocks_move_successor_nojumps (a
, b
)
738 rtx barrier
, real_b_end
;
741 barrier
= NEXT_INSN (b
->end
);
743 /* Recognize a jump table following block B. */
745 && GET_CODE (barrier
) == CODE_LABEL
746 && NEXT_INSN (barrier
)
747 && GET_CODE (NEXT_INSN (barrier
)) == JUMP_INSN
748 && (GET_CODE (PATTERN (NEXT_INSN (barrier
))) == ADDR_VEC
749 || GET_CODE (PATTERN (NEXT_INSN (barrier
))) == ADDR_DIFF_VEC
))
751 /* Temporarily add the table jump insn to b, so that it will also
752 be moved to the correct location. */
753 b
->end
= NEXT_INSN (barrier
);
754 barrier
= NEXT_INSN (b
->end
);
757 /* There had better have been a barrier there. Delete it. */
758 if (barrier
&& GET_CODE (barrier
) == BARRIER
)
759 delete_insn (barrier
);
761 /* Move block and loop notes out of the chain so that we do not
764 ??? A better solution would be to squeeze out all the non-nested notes
765 and adjust the block trees appropriately. Even better would be to have
766 a tighter connection between block trees and rtl so that this is not
768 if (squeeze_notes (&b
->head
, &b
->end
))
771 /* Scramble the insn chain. */
772 reorder_insns_nobb (b
->head
, b
->end
, a
->end
);
774 /* Restore the real end of b. */
778 fprintf (rtl_dump_file
, "Moved block %d after %d and merged.\n",
781 /* Now blocks A and B are contiguous. Merge them. */
782 merge_blocks_nomove (a
, b
);
785 /* Attempt to merge basic blocks that are potentially non-adjacent.
786 Return NULL iff the attempt failed, otherwise return basic block
787 where cleanup_cfg should continue. Because the merging commonly
788 moves basic block away or introduces another optimization
789 possiblity, return basic block just before B so cleanup_cfg don't
792 It may be good idea to return basic block before C in the case
793 C has been moved after B and originally appeared earlier in the
794 insn seqeunce, but we have no infromation available about the
795 relative ordering of these two. Hopefully it is not too common. */
798 merge_blocks (e
, b
, c
, mode
)
804 /* If C has a tail recursion label, do not merge. There is no
805 edge recorded from the call_placeholder back to this label, as
806 that would make optimize_sibling_and_tail_recursive_calls more
807 complex for no gain. */
808 if ((mode
& CLEANUP_PRE_SIBCALL
)
809 && GET_CODE (c
->head
) == CODE_LABEL
810 && tail_recursion_label_p (c
->head
))
813 /* If B has a fallthru edge to C, no need to move anything. */
814 if (e
->flags
& EDGE_FALLTHRU
)
816 int b_index
= b
->index
, c_index
= c
->index
;
817 merge_blocks_nomove (b
, c
);
818 update_forwarder_flag (b
);
821 fprintf (rtl_dump_file
, "Merged %d and %d without moving.\n",
824 return b
->prev_bb
== ENTRY_BLOCK_PTR
? b
: b
->prev_bb
;
827 /* Otherwise we will need to move code around. Do that only if expensive
828 transformations are allowed. */
829 else if (mode
& CLEANUP_EXPENSIVE
)
831 edge tmp_edge
, b_fallthru_edge
;
832 bool c_has_outgoing_fallthru
;
833 bool b_has_incoming_fallthru
;
835 /* Avoid overactive code motion, as the forwarder blocks should be
836 eliminated by edge redirection instead. One exception might have
837 been if B is a forwarder block and C has no fallthru edge, but
838 that should be cleaned up by bb-reorder instead. */
839 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
842 /* We must make sure to not munge nesting of lexical blocks,
843 and loop notes. This is done by squeezing out all the notes
844 and leaving them there to lie. Not ideal, but functional. */
846 for (tmp_edge
= c
->succ
; tmp_edge
; tmp_edge
= tmp_edge
->succ_next
)
847 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
850 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
852 for (tmp_edge
= b
->pred
; tmp_edge
; tmp_edge
= tmp_edge
->pred_next
)
853 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
856 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
857 b_fallthru_edge
= tmp_edge
;
860 next
= next
->prev_bb
;
862 /* Otherwise, we're going to try to move C after B. If C does
863 not have an outgoing fallthru, then it can be moved
864 immediately after B without introducing or modifying jumps. */
865 if (! c_has_outgoing_fallthru
)
867 merge_blocks_move_successor_nojumps (b
, c
);
868 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
871 /* If B does not have an incoming fallthru, then it can be moved
872 immediately before C without introducing or modifying jumps.
873 C cannot be the first block, so we do not have to worry about
874 accessing a non-existent block. */
876 if (b_has_incoming_fallthru
)
880 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR
)
882 bb
= force_nonfallthru (b_fallthru_edge
);
884 notice_new_block (bb
);
887 merge_blocks_move_predecessor_nojumps (b
, c
);
888 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
895 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
898 insns_match_p (mode
, i1
, i2
)
899 int mode ATTRIBUTE_UNUSED
;
904 /* Verify that I1 and I2 are equivalent. */
905 if (GET_CODE (i1
) != GET_CODE (i2
))
911 if (GET_CODE (p1
) != GET_CODE (p2
))
914 /* If this is a CALL_INSN, compare register usage information.
915 If we don't check this on stack register machines, the two
916 CALL_INSNs might be merged leaving reg-stack.c with mismatching
917 numbers of stack registers in the same basic block.
918 If we don't check this on machines with delay slots, a delay slot may
919 be filled that clobbers a parameter expected by the subroutine.
921 ??? We take the simple route for now and assume that if they're
922 equal, they were constructed identically. */
924 if (GET_CODE (i1
) == CALL_INSN
925 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
926 CALL_INSN_FUNCTION_USAGE (i2
))
927 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
)))
931 /* If cross_jump_death_matters is not 0, the insn's mode
932 indicates whether or not the insn contains any stack-like
935 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
937 /* If register stack conversion has already been done, then
938 death notes must also be compared before it is certain that
939 the two instruction streams match. */
942 HARD_REG_SET i1_regset
, i2_regset
;
944 CLEAR_HARD_REG_SET (i1_regset
);
945 CLEAR_HARD_REG_SET (i2_regset
);
947 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
948 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
949 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
951 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
952 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
953 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
955 GO_IF_HARD_REG_EQUAL (i1_regset
, i2_regset
, done
);
965 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
968 /* Do not do EQUIV substitution after reload. First, we're undoing the
969 work of reload_cse. Second, we may be undoing the work of the post-
970 reload splitting pass. */
971 /* ??? Possibly add a new phase switch variable that can be used by
972 targets to disallow the troublesome insns after splitting. */
973 if (!reload_completed
)
975 /* The following code helps take care of G++ cleanups. */
976 rtx equiv1
= find_reg_equal_equiv_note (i1
);
977 rtx equiv2
= find_reg_equal_equiv_note (i2
);
980 /* If the equivalences are not to a constant, they may
981 reference pseudos that no longer exist, so we can't
983 && (! reload_completed
984 || (CONSTANT_P (XEXP (equiv1
, 0))
985 && rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))))
987 rtx s1
= single_set (i1
);
988 rtx s2
= single_set (i2
);
989 if (s1
!= 0 && s2
!= 0
990 && rtx_renumbered_equal_p (SET_DEST (s1
), SET_DEST (s2
)))
992 validate_change (i1
, &SET_SRC (s1
), XEXP (equiv1
, 0), 1);
993 validate_change (i2
, &SET_SRC (s2
), XEXP (equiv2
, 0), 1);
994 if (! rtx_renumbered_equal_p (p1
, p2
))
996 else if (apply_change_group ())
1005 /* Look through the insns at the end of BB1 and BB2 and find the longest
1006 sequence that are equivalent. Store the first insns for that sequence
1007 in *F1 and *F2 and return the sequence length.
1009 To simplify callers of this function, if the blocks match exactly,
1010 store the head of the blocks in *F1 and *F2. */
1013 flow_find_cross_jump (mode
, bb1
, bb2
, f1
, f2
)
1014 int mode ATTRIBUTE_UNUSED
;
1015 basic_block bb1
, bb2
;
1018 rtx i1
, i2
, last1
, last2
, afterlast1
, afterlast2
;
1021 /* Skip simple jumps at the end of the blocks. Complex jumps still
1022 need to be compared for equivalence, which we'll do below. */
1025 last1
= afterlast1
= last2
= afterlast2
= NULL_RTX
;
1027 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1030 i1
= PREV_INSN (i1
);
1035 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1038 /* Count everything except for unconditional jump as insn. */
1039 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
)
1041 i2
= PREV_INSN (i2
);
1047 while (!INSN_P (i1
) && i1
!= bb1
->head
)
1048 i1
= PREV_INSN (i1
);
1050 while (!INSN_P (i2
) && i2
!= bb2
->head
)
1051 i2
= PREV_INSN (i2
);
1053 if (i1
== bb1
->head
|| i2
== bb2
->head
)
1056 if (!insns_match_p (mode
, i1
, i2
))
1059 /* Don't begin a cross-jump with a NOTE insn. */
1062 /* If the merged insns have different REG_EQUAL notes, then
1064 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1065 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1067 if (equiv1
&& !equiv2
)
1068 remove_note (i1
, equiv1
);
1069 else if (!equiv1
&& equiv2
)
1070 remove_note (i2
, equiv2
);
1071 else if (equiv1
&& equiv2
1072 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1074 remove_note (i1
, equiv1
);
1075 remove_note (i2
, equiv2
);
1078 afterlast1
= last1
, afterlast2
= last2
;
1079 last1
= i1
, last2
= i2
;
1083 i1
= PREV_INSN (i1
);
1084 i2
= PREV_INSN (i2
);
1088 /* Don't allow the insn after a compare to be shared by
1089 cross-jumping unless the compare is also shared. */
1090 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && ! sets_cc0_p (last1
))
1091 last1
= afterlast1
, last2
= afterlast2
, ninsns
--;
1094 /* Include preceding notes and labels in the cross-jump. One,
1095 this may bring us to the head of the blocks as requested above.
1096 Two, it keeps line number notes as matched as may be. */
1099 while (last1
!= bb1
->head
&& !INSN_P (PREV_INSN (last1
)))
1100 last1
= PREV_INSN (last1
);
1102 if (last1
!= bb1
->head
&& GET_CODE (PREV_INSN (last1
)) == CODE_LABEL
)
1103 last1
= PREV_INSN (last1
);
1105 while (last2
!= bb2
->head
&& !INSN_P (PREV_INSN (last2
)))
1106 last2
= PREV_INSN (last2
);
1108 if (last2
!= bb2
->head
&& GET_CODE (PREV_INSN (last2
)) == CODE_LABEL
)
1109 last2
= PREV_INSN (last2
);
1118 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1119 the branch instruction. This means that if we commonize the control
1120 flow before end of the basic block, the semantic remains unchanged.
1122 We may assume that there exists one edge with a common destination. */
1125 outgoing_edges_match (mode
, bb1
, bb2
)
1130 int nehedges1
= 0, nehedges2
= 0;
1131 edge fallthru1
= 0, fallthru2
= 0;
1134 /* If BB1 has only one successor, we may be looking at either an
1135 unconditional jump, or a fake edge to exit. */
1136 if (bb1
->succ
&& !bb1
->succ
->succ_next
1137 && (bb1
->succ
->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1138 && (GET_CODE (bb1
->end
) != JUMP_INSN
|| simplejump_p (bb1
->end
)))
1139 return (bb2
->succ
&& !bb2
->succ
->succ_next
1140 && (bb2
->succ
->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1141 && (GET_CODE (bb2
->end
) != JUMP_INSN
|| simplejump_p (bb2
->end
)));
1143 /* Match conditional jumps - this may get tricky when fallthru and branch
1144 edges are crossed. */
1146 && bb1
->succ
->succ_next
1147 && !bb1
->succ
->succ_next
->succ_next
1148 && any_condjump_p (bb1
->end
)
1149 && onlyjump_p (bb1
->end
))
1151 edge b1
, f1
, b2
, f2
;
1152 bool reverse
, match
;
1153 rtx set1
, set2
, cond1
, cond2
;
1154 enum rtx_code code1
, code2
;
1157 || !bb2
->succ
->succ_next
1158 || bb2
->succ
->succ_next
->succ_next
1159 || !any_condjump_p (bb2
->end
)
1160 || !onlyjump_p (bb2
->end
))
1163 b1
= BRANCH_EDGE (bb1
);
1164 b2
= BRANCH_EDGE (bb2
);
1165 f1
= FALLTHRU_EDGE (bb1
);
1166 f2
= FALLTHRU_EDGE (bb2
);
1168 /* Get around possible forwarders on fallthru edges. Other cases
1169 should be optimized out already. */
1170 if (FORWARDER_BLOCK_P (f1
->dest
))
1171 f1
= f1
->dest
->succ
;
1173 if (FORWARDER_BLOCK_P (f2
->dest
))
1174 f2
= f2
->dest
->succ
;
1176 /* To simplify use of this function, return false if there are
1177 unneeded forwarder blocks. These will get eliminated later
1178 during cleanup_cfg. */
1179 if (FORWARDER_BLOCK_P (f1
->dest
)
1180 || FORWARDER_BLOCK_P (f2
->dest
)
1181 || FORWARDER_BLOCK_P (b1
->dest
)
1182 || FORWARDER_BLOCK_P (b2
->dest
))
1185 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1187 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1192 set1
= pc_set (bb1
->end
);
1193 set2
= pc_set (bb2
->end
);
1194 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1195 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1198 cond1
= XEXP (SET_SRC (set1
), 0);
1199 cond2
= XEXP (SET_SRC (set2
), 0);
1200 code1
= GET_CODE (cond1
);
1202 code2
= reversed_comparison_code (cond2
, bb2
->end
);
1204 code2
= GET_CODE (cond2
);
1206 if (code2
== UNKNOWN
)
1209 /* Verify codes and operands match. */
1210 match
= ((code1
== code2
1211 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1212 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1213 || (code1
== swap_condition (code2
)
1214 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1216 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1219 /* If we return true, we will join the blocks. Which means that
1220 we will only have one branch prediction bit to work with. Thus
1221 we require the existing branches to have probabilities that are
1225 && maybe_hot_bb_p (bb1
)
1226 && maybe_hot_bb_p (bb2
))
1230 if (b1
->dest
== b2
->dest
)
1231 prob2
= b2
->probability
;
1233 /* Do not use f2 probability as f2 may be forwarded. */
1234 prob2
= REG_BR_PROB_BASE
- b2
->probability
;
1236 /* Fail if the difference in probabilities is greater than 50%.
1237 This rules out two well-predicted branches with opposite
1239 if (abs (b1
->probability
- prob2
) > REG_BR_PROB_BASE
/ 2)
1242 fprintf (rtl_dump_file
,
1243 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1244 bb1
->index
, bb2
->index
, b1
->probability
, prob2
);
1250 if (rtl_dump_file
&& match
)
1251 fprintf (rtl_dump_file
, "Conditionals in bb %i and %i match.\n",
1252 bb1
->index
, bb2
->index
);
1257 /* Generic case - we are seeing a computed jump, table jump or trapping
1260 #ifndef CASE_DROPS_THROUGH
1261 /* Check whether there are tablejumps in the end of BB1 and BB2.
1262 Return true if they are identical. */
1267 if (tablejump_p (bb1
->end
, &label1
, &table1
)
1268 && tablejump_p (bb2
->end
, &label2
, &table2
)
1269 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1271 /* The labels should never be the same rtx. If they really are same
1272 the jump tables are same too. So disable crossjumping of blocks BB1
1273 and BB2 because when deleting the common insns in the end of BB1
1274 by delete_block () the jump table would be deleted too. */
1275 /* If LABEL2 is referenced in BB1->END do not do anything
1276 because we would loose information when replacing
1277 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1278 if (label1
!= label2
&& !rtx_referenced_p (label2
, bb1
->end
))
1280 /* Set IDENTICAL to true when the tables are identical. */
1281 bool identical
= false;
1284 p1
= PATTERN (table1
);
1285 p2
= PATTERN (table2
);
1286 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1290 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1291 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1292 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1293 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1298 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1299 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1305 replace_label_data rr
;
1308 /* Temporarily replace references to LABEL1 with LABEL2
1309 in BB1->END so that we could compare the instructions. */
1312 rr
.update_label_nuses
= false;
1313 for_each_rtx (&bb1
->end
, replace_label
, &rr
);
1315 match
= insns_match_p (mode
, bb1
->end
, bb2
->end
);
1316 if (rtl_dump_file
&& match
)
1317 fprintf (rtl_dump_file
,
1318 "Tablejumps in bb %i and %i match.\n",
1319 bb1
->index
, bb2
->index
);
1321 /* Set the original label in BB1->END because when deleting
1322 a block whose end is a tablejump, the tablejump referenced
1323 from the instruction is deleted too. */
1326 for_each_rtx (&bb1
->end
, replace_label
, &rr
);
1336 /* First ensure that the instructions match. There may be many outgoing
1337 edges so this test is generally cheaper. */
1338 if (!insns_match_p (mode
, bb1
->end
, bb2
->end
))
1341 /* Search the outgoing edges, ensure that the counts do match, find possible
1342 fallthru and exception handling edges since these needs more
1344 for (e1
= bb1
->succ
, e2
= bb2
->succ
; e1
&& e2
;
1345 e1
= e1
->succ_next
, e2
= e2
->succ_next
)
1347 if (e1
->flags
& EDGE_EH
)
1350 if (e2
->flags
& EDGE_EH
)
1353 if (e1
->flags
& EDGE_FALLTHRU
)
1355 if (e2
->flags
& EDGE_FALLTHRU
)
1359 /* If number of edges of various types does not match, fail. */
1361 || nehedges1
!= nehedges2
1362 || (fallthru1
!= 0) != (fallthru2
!= 0))
1365 /* fallthru edges must be forwarded to the same destination. */
1368 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1369 ? fallthru1
->dest
->succ
->dest
: fallthru1
->dest
);
1370 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1371 ? fallthru2
->dest
->succ
->dest
: fallthru2
->dest
);
1377 /* In case we do have EH edges, ensure we are in the same region. */
1380 rtx n1
= find_reg_note (bb1
->end
, REG_EH_REGION
, 0);
1381 rtx n2
= find_reg_note (bb2
->end
, REG_EH_REGION
, 0);
1383 if (XEXP (n1
, 0) != XEXP (n2
, 0))
1387 /* We don't need to match the rest of edges as above checks should be enought
1388 to ensure that they are equivalent. */
1392 /* E1 and E2 are edges with the same destination block. Search their
1393 predecessors for common code. If found, redirect control flow from
1394 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1397 try_crossjump_to_edge (mode
, e1
, e2
)
1402 basic_block src1
= e1
->src
, src2
= e2
->src
;
1403 basic_block redirect_to
, redirect_from
, to_remove
;
1404 rtx newpos1
, newpos2
;
1407 /* Search backward through forwarder blocks. We don't need to worry
1408 about multiple entry or chained forwarders, as they will be optimized
1409 away. We do this to look past the unconditional jump following a
1410 conditional jump that is required due to the current CFG shape. */
1412 && !src1
->pred
->pred_next
1413 && FORWARDER_BLOCK_P (src1
))
1414 e1
= src1
->pred
, src1
= e1
->src
;
1417 && !src2
->pred
->pred_next
1418 && FORWARDER_BLOCK_P (src2
))
1419 e2
= src2
->pred
, src2
= e2
->src
;
1421 /* Nothing to do if we reach ENTRY, or a common source block. */
1422 if (src1
== ENTRY_BLOCK_PTR
|| src2
== ENTRY_BLOCK_PTR
)
1427 /* Seeing more than 1 forwarder blocks would confuse us later... */
1428 if (FORWARDER_BLOCK_P (e1
->dest
)
1429 && FORWARDER_BLOCK_P (e1
->dest
->succ
->dest
))
1432 if (FORWARDER_BLOCK_P (e2
->dest
)
1433 && FORWARDER_BLOCK_P (e2
->dest
->succ
->dest
))
1436 /* Likewise with dead code (possibly newly created by the other optimizations
1438 if (!src1
->pred
|| !src2
->pred
)
1441 /* Look for the common insn sequence, part the first ... */
1442 if (!outgoing_edges_match (mode
, src1
, src2
))
1445 /* ... and part the second. */
1446 nmatch
= flow_find_cross_jump (mode
, src1
, src2
, &newpos1
, &newpos2
);
1450 #ifndef CASE_DROPS_THROUGH
1451 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1453 If we have tablejumps in the end of SRC1 and SRC2
1454 they have been already compared for equivalence in outgoing_edges_match ()
1455 so replace the references to TABLE1 by references to TABLE2. */
1460 if (tablejump_p (src1
->end
, &label1
, &table1
)
1461 && tablejump_p (src2
->end
, &label2
, &table2
)
1462 && label1
!= label2
)
1464 replace_label_data rr
;
1467 /* Replace references to LABEL1 with LABEL2. */
1470 rr
.update_label_nuses
= true;
1471 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1473 /* Do not replace the label in SRC1->END because when deleting
1474 a block whose end is a tablejump, the tablejump referenced
1475 from the instruction is deleted too. */
1476 if (insn
!= src1
->end
)
1477 for_each_rtx (&insn
, replace_label
, &rr
);
1483 /* Avoid splitting if possible. */
1484 if (newpos2
== src2
->head
)
1489 fprintf (rtl_dump_file
, "Splitting bb %i before %i insns\n",
1490 src2
->index
, nmatch
);
1491 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
1495 fprintf (rtl_dump_file
,
1496 "Cross jumping from bb %i to bb %i; %i common insns\n",
1497 src1
->index
, src2
->index
, nmatch
);
1499 redirect_to
->count
+= src1
->count
;
1500 redirect_to
->frequency
+= src1
->frequency
;
1501 /* We may have some registers visible trought the block. */
1502 redirect_to
->flags
|= BB_DIRTY
;
1504 /* Recompute the frequencies and counts of outgoing edges. */
1505 for (s
= redirect_to
->succ
; s
; s
= s
->succ_next
)
1508 basic_block d
= s
->dest
;
1510 if (FORWARDER_BLOCK_P (d
))
1513 for (s2
= src1
->succ
; ; s2
= s2
->succ_next
)
1515 basic_block d2
= s2
->dest
;
1516 if (FORWARDER_BLOCK_P (d2
))
1517 d2
= d2
->succ
->dest
;
1522 s
->count
+= s2
->count
;
1524 /* Take care to update possible forwarder blocks. We verified
1525 that there is no more than one in the chain, so we can't run
1526 into infinite loop. */
1527 if (FORWARDER_BLOCK_P (s
->dest
))
1529 s
->dest
->succ
->count
+= s2
->count
;
1530 s
->dest
->count
+= s2
->count
;
1531 s
->dest
->frequency
+= EDGE_FREQUENCY (s
);
1534 if (FORWARDER_BLOCK_P (s2
->dest
))
1536 s2
->dest
->succ
->count
-= s2
->count
;
1537 if (s2
->dest
->succ
->count
< 0)
1538 s2
->dest
->succ
->count
= 0;
1539 s2
->dest
->count
-= s2
->count
;
1540 s2
->dest
->frequency
-= EDGE_FREQUENCY (s
);
1541 if (s2
->dest
->frequency
< 0)
1542 s2
->dest
->frequency
= 0;
1543 if (s2
->dest
->count
< 0)
1544 s2
->dest
->count
= 0;
1547 if (!redirect_to
->frequency
&& !src1
->frequency
)
1548 s
->probability
= (s
->probability
+ s2
->probability
) / 2;
1551 = ((s
->probability
* redirect_to
->frequency
+
1552 s2
->probability
* src1
->frequency
)
1553 / (redirect_to
->frequency
+ src1
->frequency
));
1556 update_br_prob_note (redirect_to
);
1558 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1560 /* Skip possible basic block header. */
1561 if (GET_CODE (newpos1
) == CODE_LABEL
)
1562 newpos1
= NEXT_INSN (newpos1
);
1564 if (GET_CODE (newpos1
) == NOTE
)
1565 newpos1
= NEXT_INSN (newpos1
);
1567 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
1568 to_remove
= redirect_from
->succ
->dest
;
1570 redirect_edge_and_branch_force (redirect_from
->succ
, redirect_to
);
1571 delete_block (to_remove
);
1573 update_forwarder_flag (redirect_from
);
1578 /* Search the predecessors of BB for common insn sequences. When found,
1579 share code between them by redirecting control flow. Return true if
1580 any changes made. */
1583 try_crossjump_bb (mode
, bb
)
1587 edge e
, e2
, nexte2
, nexte
, fallthru
;
1591 /* Nothing to do if there is not at least two incoming edges. */
1592 if (!bb
->pred
|| !bb
->pred
->pred_next
)
1595 /* It is always cheapest to redirect a block that ends in a branch to
1596 a block that falls through into BB, as that adds no branches to the
1597 program. We'll try that combination first. */
1599 max
= PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES
);
1600 for (e
= bb
->pred
; e
; e
= e
->pred_next
, n
++)
1602 if (e
->flags
& EDGE_FALLTHRU
)
1609 for (e
= bb
->pred
; e
; e
= nexte
)
1611 nexte
= e
->pred_next
;
1613 /* As noted above, first try with the fallthru predecessor. */
1616 /* Don't combine the fallthru edge into anything else.
1617 If there is a match, we'll do it the other way around. */
1621 if (try_crossjump_to_edge (mode
, e
, fallthru
))
1629 /* Non-obvious work limiting check: Recognize that we're going
1630 to call try_crossjump_bb on every basic block. So if we have
1631 two blocks with lots of outgoing edges (a switch) and they
1632 share lots of common destinations, then we would do the
1633 cross-jump check once for each common destination.
1635 Now, if the blocks actually are cross-jump candidates, then
1636 all of their destinations will be shared. Which means that
1637 we only need check them for cross-jump candidacy once. We
1638 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1639 choosing to do the check from the block for which the edge
1640 in question is the first successor of A. */
1641 if (e
->src
->succ
!= e
)
1644 for (e2
= bb
->pred
; e2
; e2
= nexte2
)
1646 nexte2
= e2
->pred_next
;
1651 /* We've already checked the fallthru edge above. */
1655 /* The "first successor" check above only prevents multiple
1656 checks of crossjump(A,B). In order to prevent redundant
1657 checks of crossjump(B,A), require that A be the block
1658 with the lowest index. */
1659 if (e
->src
->index
> e2
->src
->index
)
1662 if (try_crossjump_to_edge (mode
, e
, e2
))
1674 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1675 instructions etc. Return nonzero if changes were made. */
1678 try_optimize_cfg (mode
)
1681 bool changed_overall
= false;
1684 basic_block bb
, b
, next
;
1686 if (mode
& CLEANUP_CROSSJUMP
)
1687 add_noreturn_fake_exit_edges ();
1690 update_forwarder_flag (bb
);
1692 if (mode
& CLEANUP_UPDATE_LIFE
)
1695 if (! (* targetm
.cannot_modify_jumps_p
) ())
1697 /* Attempt to merge blocks as made possible by edge removal. If
1698 a block has only one successor, and the successor has only
1699 one predecessor, they may be combined. */
1706 fprintf (rtl_dump_file
,
1707 "\n\ntry_optimize_cfg iteration %i\n\n",
1710 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
;)
1714 bool changed_here
= false;
1716 /* Delete trivially dead basic blocks. */
1717 while (b
->pred
== NULL
)
1721 fprintf (rtl_dump_file
, "Deleting block %i.\n",
1729 /* Remove code labels no longer used. Don't do this
1730 before CALL_PLACEHOLDER is removed, as some branches
1731 may be hidden within. */
1732 if (b
->pred
->pred_next
== NULL
1733 && (b
->pred
->flags
& EDGE_FALLTHRU
)
1734 && !(b
->pred
->flags
& EDGE_COMPLEX
)
1735 && GET_CODE (b
->head
) == CODE_LABEL
1736 && (!(mode
& CLEANUP_PRE_SIBCALL
)
1737 || !tail_recursion_label_p (b
->head
))
1738 /* If the previous block ends with a branch to this
1739 block, we can't delete the label. Normally this
1740 is a condjump that is yet to be simplified, but
1741 if CASE_DROPS_THRU, this can be a tablejump with
1742 some element going to the same place as the
1743 default (fallthru). */
1744 && (b
->pred
->src
== ENTRY_BLOCK_PTR
1745 || GET_CODE (b
->pred
->src
->end
) != JUMP_INSN
1746 || ! label_is_jump_target_p (b
->head
,
1747 b
->pred
->src
->end
)))
1749 rtx label
= b
->head
;
1751 b
->head
= NEXT_INSN (b
->head
);
1752 delete_insn_chain (label
, label
);
1754 fprintf (rtl_dump_file
, "Deleted label in block %i.\n",
1758 /* If we fall through an empty block, we can remove it. */
1759 if (b
->pred
->pred_next
== NULL
1760 && (b
->pred
->flags
& EDGE_FALLTHRU
)
1761 && GET_CODE (b
->head
) != CODE_LABEL
1762 && FORWARDER_BLOCK_P (b
)
1763 /* Note that forwarder_block_p true ensures that
1764 there is a successor for this block. */
1765 && (b
->succ
->flags
& EDGE_FALLTHRU
)
1766 && n_basic_blocks
> 1)
1769 fprintf (rtl_dump_file
,
1770 "Deleting fallthru block %i.\n",
1773 c
= b
->prev_bb
== ENTRY_BLOCK_PTR
? b
->next_bb
: b
->prev_bb
;
1774 redirect_edge_succ_nodup (b
->pred
, b
->succ
->dest
);
1780 if ((s
= b
->succ
) != NULL
1781 && s
->succ_next
== NULL
1782 && !(s
->flags
& EDGE_COMPLEX
)
1783 && (c
= s
->dest
) != EXIT_BLOCK_PTR
1784 && c
->pred
->pred_next
== NULL
1786 /* If the jump insn has side effects,
1787 we can't kill the edge. */
1788 && (GET_CODE (b
->end
) != JUMP_INSN
1790 ? simplejump_p (b
->end
)
1791 : onlyjump_p (b
->end
)))
1792 && (next
= merge_blocks (s
, b
, c
, mode
)))
1795 changed_here
= true;
1798 /* Simplify branch over branch. */
1799 if ((mode
& CLEANUP_EXPENSIVE
) && try_simplify_condjump (b
))
1800 changed_here
= true;
1802 /* If B has a single outgoing edge, but uses a
1803 non-trivial jump instruction without side-effects, we
1804 can either delete the jump entirely, or replace it
1805 with a simple unconditional jump. Use
1806 redirect_edge_and_branch to do the dirty work. */
1808 && ! b
->succ
->succ_next
1809 && b
->succ
->dest
!= EXIT_BLOCK_PTR
1810 && onlyjump_p (b
->end
)
1811 && redirect_edge_and_branch (b
->succ
, b
->succ
->dest
))
1813 update_forwarder_flag (b
);
1814 changed_here
= true;
1817 /* Simplify branch to branch. */
1818 if (try_forward_edges (mode
, b
))
1819 changed_here
= true;
1821 /* Look for shared code between blocks. */
1822 if ((mode
& CLEANUP_CROSSJUMP
)
1823 && try_crossjump_bb (mode
, b
))
1824 changed_here
= true;
1826 /* Don't get confused by the index shift caused by
1834 if ((mode
& CLEANUP_CROSSJUMP
)
1835 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR
))
1838 #ifdef ENABLE_CHECKING
1840 verify_flow_info ();
1843 changed_overall
|= changed
;
1848 if (mode
& CLEANUP_CROSSJUMP
)
1849 remove_fake_edges ();
1851 clear_aux_for_blocks ();
1853 return changed_overall
;
1856 /* Delete all unreachable basic blocks. */
1859 delete_unreachable_blocks ()
1861 bool changed
= false;
1862 basic_block b
, next_bb
;
1864 find_unreachable_blocks ();
1866 /* Delete all unreachable basic blocks. */
1868 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
; b
= next_bb
)
1870 next_bb
= b
->next_bb
;
1872 if (!(b
->flags
& BB_REACHABLE
))
1880 tidy_fallthru_edges ();
1884 /* Tidy the CFG by deleting unreachable code and whatnot. */
1890 bool changed
= false;
1892 timevar_push (TV_CLEANUP_CFG
);
1893 if (delete_unreachable_blocks ())
1896 /* We've possibly created trivially dead code. Cleanup it right
1897 now to introduce more opportunities for try_optimize_cfg. */
1898 if (!(mode
& (CLEANUP_NO_INSN_DEL
1899 | CLEANUP_UPDATE_LIFE
| CLEANUP_PRE_SIBCALL
))
1900 && !reload_completed
)
1901 delete_trivially_dead_insns (get_insns(), max_reg_num ());
1906 while (try_optimize_cfg (mode
))
1908 delete_unreachable_blocks (), changed
= true;
1909 if (mode
& CLEANUP_UPDATE_LIFE
)
1911 /* Cleaning up CFG introduces more opportunities for dead code
1912 removal that in turn may introduce more opportunities for
1913 cleaning up the CFG. */
1914 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES
,
1916 | PROP_SCAN_DEAD_CODE
1917 | PROP_KILL_DEAD_CODE
1921 else if (!(mode
& (CLEANUP_NO_INSN_DEL
| CLEANUP_PRE_SIBCALL
))
1922 && (mode
& CLEANUP_EXPENSIVE
)
1923 && !reload_completed
)
1925 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
1930 delete_dead_jumptables ();
1933 /* Kill the data we won't maintain. */
1934 free_EXPR_LIST_list (&label_value_list
);
1935 timevar_pop (TV_CLEANUP_CFG
);