* doc/install.texi (Prerequisites): New section documenting
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob89687887b11e42d07fff2a7f2068063d4be4da54
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2002, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Ch7; use Exp_Ch7;
35 with Freeze; use Freeze;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Lib; use Lib;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Output; use Output;
43 with Rtsfind; use Rtsfind;
44 with Sem; use Sem;
45 with Sem_Cat; use Sem_Cat;
46 with Sem_Ch3; use Sem_Ch3;
47 with Sem_Ch4; use Sem_Ch4;
48 with Sem_Ch5; use Sem_Ch5;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Ch12; use Sem_Ch12;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Dist; use Sem_Dist;
53 with Sem_Elim; use Sem_Elim;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Mech; use Sem_Mech;
56 with Sem_Prag; use Sem_Prag;
57 with Sem_Res; use Sem_Res;
58 with Sem_Util; use Sem_Util;
59 with Sem_Type; use Sem_Type;
60 with Sem_Warn; use Sem_Warn;
61 with Sinput; use Sinput;
62 with Stand; use Stand;
63 with Sinfo; use Sinfo;
64 with Sinfo.CN; use Sinfo.CN;
65 with Snames; use Snames;
66 with Stringt; use Stringt;
67 with Style;
68 with Stylesw; use Stylesw;
69 with Tbuild; use Tbuild;
70 with Uintp; use Uintp;
71 with Urealp; use Urealp;
72 with Validsw; use Validsw;
74 package body Sem_Ch6 is
76 -----------------------
77 -- Local Subprograms --
78 -----------------------
80 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
81 -- Analyze a generic subprogram body
83 function Build_Body_To_Inline
84 (N : Node_Id;
85 Subp : Entity_Id;
86 Orig_Body : Node_Id)
87 return Boolean;
88 -- If a subprogram has pragma Inline and inlining is active, use generic
89 -- machinery to build an unexpanded body for the subprogram. This body is
90 -- subsequenty used for inline expansions at call sites. If subprogram can
91 -- be inlined (depending on size and nature of local declarations) this
92 -- function returns true. Otherwise subprogram body is treated normally.
94 type Conformance_Type is
95 (Type_Conformant, Mode_Conformant, Subtype_Conformant, Fully_Conformant);
96 -- Conformance type used for following call, meaning matches the
97 -- RM definitions of the corresponding terms.
99 procedure Check_Conformance
100 (New_Id : Entity_Id;
101 Old_Id : Entity_Id;
102 Ctype : Conformance_Type;
103 Errmsg : Boolean;
104 Conforms : out Boolean;
105 Err_Loc : Node_Id := Empty;
106 Get_Inst : Boolean := False);
107 -- Given two entities, this procedure checks that the profiles associated
108 -- with these entities meet the conformance criterion given by the third
109 -- parameter. If they conform, Conforms is set True and control returns
110 -- to the caller. If they do not conform, Conforms is set to False, and
111 -- in addition, if Errmsg is True on the call, proper messages are output
112 -- to complain about the conformance failure. If Err_Loc is non_Empty
113 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
114 -- error messages are placed on the appropriate part of the construct
115 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
116 -- against a formal access-to-subprogram type so Get_Instance_Of must
117 -- be called.
119 procedure Check_Subprogram_Order (N : Node_Id);
120 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
121 -- the alpha ordering rule for N if this ordering requirement applicable.
123 function Is_Non_Overriding_Operation
124 (Prev_E : Entity_Id;
125 New_E : Entity_Id)
126 return Boolean;
127 -- Enforce the rule given in 12.3(18): a private operation in an instance
128 -- overrides an inherited operation only if the corresponding operation
129 -- was overriding in the generic. This can happen for primitive operations
130 -- of types derived (in the generic unit) from formal private or formal
131 -- derived types.
133 procedure Check_Returns
134 (HSS : Node_Id;
135 Mode : Character;
136 Err : out Boolean);
137 -- Called to check for missing return statements in a function body,
138 -- or for returns present in a procedure body which has No_Return set.
139 -- L is the handled statement sequence for the subprogram body. This
140 -- procedure checks all flow paths to make sure they either have a
141 -- return (Mode = 'F') or do not have a return (Mode = 'P'). The flag
142 -- Err is set if there are any control paths not explicitly terminated
143 -- by a return in the function case, and is True otherwise.
145 function Conforming_Types
146 (T1 : Entity_Id;
147 T2 : Entity_Id;
148 Ctype : Conformance_Type;
149 Get_Inst : Boolean := False)
150 return Boolean;
151 -- Check that two formal parameter types conform, checking both
152 -- for equality of base types, and where required statically
153 -- matching subtypes, depending on the setting of Ctype.
155 procedure Enter_Overloaded_Entity (S : Entity_Id);
156 -- This procedure makes S, a new overloaded entity, into the first
157 -- visible entity with that name.
159 procedure Install_Entity (E : Entity_Id);
160 -- Make single entity visible. Used for generic formals as well.
162 procedure Install_Formals (Id : Entity_Id);
163 -- On entry to a subprogram body, make the formals visible. Note
164 -- that simply placing the subprogram on the scope stack is not
165 -- sufficient: the formals must become the current entities for
166 -- their names.
168 procedure Make_Inequality_Operator (S : Entity_Id);
169 -- Create the declaration for an inequality operator that is implicitly
170 -- created by a user-defined equality operator that yields a boolean.
172 procedure May_Need_Actuals (Fun : Entity_Id);
173 -- Flag functions that can be called without parameters, i.e. those that
174 -- have no parameters, or those for which defaults exist for all parameters
176 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
177 -- Formal_Id is an formal parameter entity. This procedure deals with
178 -- setting the proper validity status for this entity, which depends
179 -- on the kind of parameter and the validity checking mode.
181 ---------------------------------------------
182 -- Analyze_Abstract_Subprogram_Declaration --
183 ---------------------------------------------
185 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
186 Designator : constant Entity_Id := Analyze_Spec (Specification (N));
187 Scop : constant Entity_Id := Current_Scope;
189 begin
190 Generate_Definition (Designator);
191 Set_Is_Abstract (Designator);
192 New_Overloaded_Entity (Designator);
193 Check_Delayed_Subprogram (Designator);
195 Set_Is_Pure (Designator,
196 Is_Pure (Scop) and then Is_Library_Level_Entity (Designator));
197 Set_Is_Remote_Call_Interface (
198 Designator, Is_Remote_Call_Interface (Scop));
199 Set_Is_Remote_Types (Designator, Is_Remote_Types (Scop));
201 if Ekind (Scope (Designator)) = E_Protected_Type then
202 Error_Msg_N
203 ("abstract subprogram not allowed in protected type", N);
204 end if;
205 end Analyze_Abstract_Subprogram_Declaration;
207 ----------------------------
208 -- Analyze_Function_Call --
209 ----------------------------
211 procedure Analyze_Function_Call (N : Node_Id) is
212 P : constant Node_Id := Name (N);
213 L : constant List_Id := Parameter_Associations (N);
214 Actual : Node_Id;
216 begin
217 Analyze (P);
219 -- If error analyzing name, then set Any_Type as result type and return
221 if Etype (P) = Any_Type then
222 Set_Etype (N, Any_Type);
223 return;
224 end if;
226 -- Otherwise analyze the parameters
228 if Present (L) then
229 Actual := First (L);
231 while Present (Actual) loop
232 Analyze (Actual);
233 Check_Parameterless_Call (Actual);
234 Next (Actual);
235 end loop;
236 end if;
238 Analyze_Call (N);
240 end Analyze_Function_Call;
242 -------------------------------------
243 -- Analyze_Generic_Subprogram_Body --
244 -------------------------------------
246 procedure Analyze_Generic_Subprogram_Body
247 (N : Node_Id;
248 Gen_Id : Entity_Id)
250 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
251 Spec : Node_Id;
252 Kind : constant Entity_Kind := Ekind (Gen_Id);
253 Nam : Entity_Id;
254 New_N : Node_Id;
256 begin
257 -- Copy body and disable expansion while analyzing the generic
258 -- For a stub, do not copy the stub (which would load the proper body),
259 -- this will be done when the proper body is analyzed.
261 if Nkind (N) /= N_Subprogram_Body_Stub then
262 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
263 Rewrite (N, New_N);
264 Start_Generic;
265 end if;
267 Spec := Specification (N);
269 -- Within the body of the generic, the subprogram is callable, and
270 -- behaves like the corresponding non-generic unit.
272 Nam := Defining_Entity (Spec);
274 if Kind = E_Generic_Procedure
275 and then Nkind (Spec) /= N_Procedure_Specification
276 then
277 Error_Msg_N ("invalid body for generic procedure ", Nam);
278 return;
280 elsif Kind = E_Generic_Function
281 and then Nkind (Spec) /= N_Function_Specification
282 then
283 Error_Msg_N ("invalid body for generic function ", Nam);
284 return;
285 end if;
287 Set_Corresponding_Body (Gen_Decl, Nam);
289 if Has_Completion (Gen_Id)
290 and then Nkind (Parent (N)) /= N_Subunit
291 then
292 Error_Msg_N ("duplicate generic body", N);
293 return;
294 else
295 Set_Has_Completion (Gen_Id);
296 end if;
298 if Nkind (N) = N_Subprogram_Body_Stub then
299 Set_Ekind (Defining_Entity (Specification (N)), Kind);
300 else
301 Set_Corresponding_Spec (N, Gen_Id);
302 end if;
304 if Nkind (Parent (N)) = N_Compilation_Unit then
305 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
306 end if;
308 -- Make generic parameters immediately visible in the body. They are
309 -- needed to process the formals declarations. Then make the formals
310 -- visible in a separate step.
312 New_Scope (Gen_Id);
314 declare
315 E : Entity_Id;
316 First_Ent : Entity_Id;
318 begin
319 First_Ent := First_Entity (Gen_Id);
321 E := First_Ent;
322 while Present (E) and then not Is_Formal (E) loop
323 Install_Entity (E);
324 Next_Entity (E);
325 end loop;
327 Set_Use (Generic_Formal_Declarations (Gen_Decl));
329 -- Now generic formals are visible, and the specification can be
330 -- analyzed, for subsequent conformance check.
332 Nam := Analyze_Spec (Spec);
334 if Nkind (N) = N_Subprogram_Body_Stub then
336 -- Nothing to do if no body to process
338 Set_Ekind (Nam, Kind);
339 End_Scope;
340 return;
341 end if;
343 if Present (E) then
345 -- E is the first formal parameter, which must be the first
346 -- entity in the subprogram body.
348 Set_First_Entity (Gen_Id, E);
350 -- Now make formal parameters visible
352 while Present (E) loop
353 Install_Entity (E);
354 Next_Formal (E);
355 end loop;
356 end if;
358 -- Visible generic entity is callable within its own body.
360 Set_Ekind (Gen_Id, Ekind (Nam));
361 Set_Convention (Nam, Convention (Gen_Id));
362 Set_Scope (Nam, Scope (Gen_Id));
363 Check_Fully_Conformant (Nam, Gen_Id, Nam);
365 -- If this is a compilation unit, it must be made visible
366 -- explicitly, because the compilation of the declaration,
367 -- unlike other library unit declarations, does not. If it
368 -- is not a unit, the following is redundant but harmless.
370 Set_Is_Immediately_Visible (Gen_Id);
372 Set_Actual_Subtypes (N, Current_Scope);
373 Analyze_Declarations (Declarations (N));
374 Check_Completion;
375 Analyze (Handled_Statement_Sequence (N));
377 Save_Global_References (Original_Node (N));
379 -- Prior to exiting the scope, include generic formals again
380 -- (if any are present) in the set of local entities.
382 if Present (First_Ent) then
383 Set_First_Entity (Gen_Id, First_Ent);
384 end if;
386 end;
388 End_Scope;
389 Check_Subprogram_Order (N);
391 -- Outside of its body, unit is generic again.
393 Set_Ekind (Gen_Id, Kind);
394 Set_Ekind (Nam, E_Subprogram_Body);
395 Generate_Reference (Gen_Id, Nam, 'b');
396 Style.Check_Identifier (Nam, Gen_Id);
397 End_Generic;
399 end Analyze_Generic_Subprogram_Body;
401 -----------------------------
402 -- Analyze_Operator_Symbol --
403 -----------------------------
405 -- An operator symbol such as "+" or "and" may appear in context where
406 -- the literal denotes an entity name, such as "+"(x, y) or in a
407 -- context when it is just a string, as in (conjunction = "or"). In
408 -- these cases the parser generates this node, and the semantics does
409 -- the disambiguation. Other such case are actuals in an instantiation,
410 -- the generic unit in an instantiation, and pragma arguments.
412 procedure Analyze_Operator_Symbol (N : Node_Id) is
413 Par : constant Node_Id := Parent (N);
415 begin
416 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
417 or else Nkind (Par) = N_Function_Instantiation
418 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
419 or else (Nkind (Par) = N_Pragma_Argument_Association
420 and then not Is_Pragma_String_Literal (Par))
421 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
422 or else (Nkind (Par) = N_Attribute_Reference
423 and then Attribute_Name (Par) /= Name_Value)
424 then
425 Find_Direct_Name (N);
427 else
428 Change_Operator_Symbol_To_String_Literal (N);
429 Analyze (N);
430 end if;
431 end Analyze_Operator_Symbol;
433 -----------------------------------
434 -- Analyze_Parameter_Association --
435 -----------------------------------
437 procedure Analyze_Parameter_Association (N : Node_Id) is
438 begin
439 Analyze (Explicit_Actual_Parameter (N));
440 end Analyze_Parameter_Association;
442 ----------------------------
443 -- Analyze_Procedure_Call --
444 ----------------------------
446 procedure Analyze_Procedure_Call (N : Node_Id) is
447 Loc : constant Source_Ptr := Sloc (N);
448 P : constant Node_Id := Name (N);
449 Actuals : constant List_Id := Parameter_Associations (N);
450 Actual : Node_Id;
451 New_N : Node_Id;
453 procedure Analyze_Call_And_Resolve;
454 -- Do Analyze and Resolve calls for procedure call
456 procedure Analyze_Call_And_Resolve is
457 begin
458 if Nkind (N) = N_Procedure_Call_Statement then
459 Analyze_Call (N);
460 Resolve (N, Standard_Void_Type);
461 else
462 Analyze (N);
463 end if;
464 end Analyze_Call_And_Resolve;
466 -- Start of processing for Analyze_Procedure_Call
468 begin
469 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
470 -- a procedure call or an entry call. The prefix may denote an access
471 -- to subprogram type, in which case an implicit dereference applies.
472 -- If the prefix is an indexed component (without implicit defererence)
473 -- then the construct denotes a call to a member of an entire family.
474 -- If the prefix is a simple name, it may still denote a call to a
475 -- parameterless member of an entry family. Resolution of these various
476 -- interpretations is delicate.
478 Analyze (P);
480 -- If error analyzing prefix, then set Any_Type as result and return
482 if Etype (P) = Any_Type then
483 Set_Etype (N, Any_Type);
484 return;
485 end if;
487 -- Otherwise analyze the parameters
489 if Present (Actuals) then
490 Actual := First (Actuals);
492 while Present (Actual) loop
493 Analyze (Actual);
494 Check_Parameterless_Call (Actual);
495 Next (Actual);
496 end loop;
497 end if;
499 -- Special processing for Elab_Spec and Elab_Body calls
501 if Nkind (P) = N_Attribute_Reference
502 and then (Attribute_Name (P) = Name_Elab_Spec
503 or else Attribute_Name (P) = Name_Elab_Body)
504 then
505 if Present (Actuals) then
506 Error_Msg_N
507 ("no parameters allowed for this call", First (Actuals));
508 return;
509 end if;
511 Set_Etype (N, Standard_Void_Type);
512 Set_Analyzed (N);
514 elsif Is_Entity_Name (P)
515 and then Is_Record_Type (Etype (Entity (P)))
516 and then Remote_AST_I_Dereference (P)
517 then
518 return;
520 elsif Is_Entity_Name (P)
521 and then Ekind (Entity (P)) /= E_Entry_Family
522 then
523 if Is_Access_Type (Etype (P))
524 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
525 and then No (Actuals)
526 and then Comes_From_Source (N)
527 then
528 Error_Msg_N ("missing explicit dereference in call", N);
529 end if;
531 Analyze_Call_And_Resolve;
533 -- If the prefix is the simple name of an entry family, this is
534 -- a parameterless call from within the task body itself.
536 elsif Is_Entity_Name (P)
537 and then Nkind (P) = N_Identifier
538 and then Ekind (Entity (P)) = E_Entry_Family
539 and then Present (Actuals)
540 and then No (Next (First (Actuals)))
541 then
542 -- Can be call to parameterless entry family. What appears to be
543 -- the sole argument is in fact the entry index. Rewrite prefix
544 -- of node accordingly. Source representation is unchanged by this
545 -- transformation.
547 New_N :=
548 Make_Indexed_Component (Loc,
549 Prefix =>
550 Make_Selected_Component (Loc,
551 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
552 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
553 Expressions => Actuals);
554 Set_Name (N, New_N);
555 Set_Etype (New_N, Standard_Void_Type);
556 Set_Parameter_Associations (N, No_List);
557 Analyze_Call_And_Resolve;
559 elsif Nkind (P) = N_Explicit_Dereference then
560 if Ekind (Etype (P)) = E_Subprogram_Type then
561 Analyze_Call_And_Resolve;
562 else
563 Error_Msg_N ("expect access to procedure in call", P);
564 end if;
566 -- The name can be a selected component or an indexed component
567 -- that yields an access to subprogram. Such a prefix is legal if
568 -- the call has parameter associations.
570 elsif Is_Access_Type (Etype (P))
571 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
572 then
573 if Present (Actuals) then
574 Analyze_Call_And_Resolve;
575 else
576 Error_Msg_N ("missing explicit dereference in call ", N);
577 end if;
579 -- If not an access to subprogram, then the prefix must resolve to
580 -- the name of an entry, entry family, or protected operation.
582 -- For the case of a simple entry call, P is a selected component
583 -- where the prefix is the task and the selector name is the entry.
584 -- A call to a protected procedure will have the same syntax. If
585 -- the protected object contains overloaded operations, the entity
586 -- may appear as a function, the context will select the operation
587 -- whose type is Void.
589 elsif Nkind (P) = N_Selected_Component
590 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
591 or else
592 Ekind (Entity (Selector_Name (P))) = E_Procedure
593 or else
594 Ekind (Entity (Selector_Name (P))) = E_Function)
595 then
596 Analyze_Call_And_Resolve;
598 elsif Nkind (P) = N_Selected_Component
599 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
600 and then Present (Actuals)
601 and then No (Next (First (Actuals)))
602 then
603 -- Can be call to parameterless entry family. What appears to be
604 -- the sole argument is in fact the entry index. Rewrite prefix
605 -- of node accordingly. Source representation is unchanged by this
606 -- transformation.
608 New_N :=
609 Make_Indexed_Component (Loc,
610 Prefix => New_Copy (P),
611 Expressions => Actuals);
612 Set_Name (N, New_N);
613 Set_Etype (New_N, Standard_Void_Type);
614 Set_Parameter_Associations (N, No_List);
615 Analyze_Call_And_Resolve;
617 -- For the case of a reference to an element of an entry family, P is
618 -- an indexed component whose prefix is a selected component (task and
619 -- entry family), and whose index is the entry family index.
621 elsif Nkind (P) = N_Indexed_Component
622 and then Nkind (Prefix (P)) = N_Selected_Component
623 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
624 then
625 Analyze_Call_And_Resolve;
627 -- If the prefix is the name of an entry family, it is a call from
628 -- within the task body itself.
630 elsif Nkind (P) = N_Indexed_Component
631 and then Nkind (Prefix (P)) = N_Identifier
632 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
633 then
634 New_N :=
635 Make_Selected_Component (Loc,
636 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
637 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
638 Rewrite (Prefix (P), New_N);
639 Analyze (P);
640 Analyze_Call_And_Resolve;
642 -- Anything else is an error.
644 else
645 Error_Msg_N ("Invalid procedure or entry call", N);
646 end if;
647 end Analyze_Procedure_Call;
649 ------------------------------
650 -- Analyze_Return_Statement --
651 ------------------------------
653 procedure Analyze_Return_Statement (N : Node_Id) is
654 Loc : constant Source_Ptr := Sloc (N);
655 Expr : Node_Id;
656 Scope_Id : Entity_Id;
657 Kind : Entity_Kind;
658 R_Type : Entity_Id;
660 begin
661 -- Find subprogram or accept statement enclosing the return statement
663 Scope_Id := Empty;
664 for J in reverse 0 .. Scope_Stack.Last loop
665 Scope_Id := Scope_Stack.Table (J).Entity;
666 exit when Ekind (Scope_Id) /= E_Block and then
667 Ekind (Scope_Id) /= E_Loop;
668 end loop;
670 pragma Assert (Present (Scope_Id));
672 Kind := Ekind (Scope_Id);
673 Expr := Expression (N);
675 if Kind /= E_Function
676 and then Kind /= E_Generic_Function
677 and then Kind /= E_Procedure
678 and then Kind /= E_Generic_Procedure
679 and then Kind /= E_Entry
680 and then Kind /= E_Entry_Family
681 then
682 Error_Msg_N ("illegal context for return statement", N);
684 elsif Present (Expr) then
685 if Kind = E_Function or else Kind = E_Generic_Function then
686 Set_Return_Present (Scope_Id);
687 R_Type := Etype (Scope_Id);
688 Set_Return_Type (N, R_Type);
689 Analyze_And_Resolve (Expr, R_Type);
691 if (Is_Class_Wide_Type (Etype (Expr))
692 or else Is_Dynamically_Tagged (Expr))
693 and then not Is_Class_Wide_Type (R_Type)
694 then
695 Error_Msg_N
696 ("dynamically tagged expression not allowed!", Expr);
697 end if;
699 Apply_Constraint_Check (Expr, R_Type);
701 -- ??? A real run-time accessibility check is needed
702 -- in cases involving dereferences of access parameters.
703 -- For now we just check the static cases.
705 if Is_Return_By_Reference_Type (Etype (Scope_Id))
706 and then Object_Access_Level (Expr)
707 > Subprogram_Access_Level (Scope_Id)
708 then
709 Rewrite (N,
710 Make_Raise_Program_Error (Loc,
711 Reason => PE_Accessibility_Check_Failed));
712 Analyze (N);
714 Error_Msg_N
715 ("cannot return a local value by reference?", N);
716 Error_Msg_NE
717 ("& will be raised at run time?!",
718 N, Standard_Program_Error);
719 end if;
721 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
722 Error_Msg_N ("procedure cannot return value (use function)", N);
724 else
725 Error_Msg_N ("accept statement cannot return value", N);
726 end if;
728 -- No expression present
730 else
731 if Kind = E_Function or Kind = E_Generic_Function then
732 Error_Msg_N ("missing expression in return from function", N);
733 end if;
735 if (Ekind (Scope_Id) = E_Procedure
736 or else Ekind (Scope_Id) = E_Generic_Procedure)
737 and then No_Return (Scope_Id)
738 then
739 Error_Msg_N
740 ("RETURN statement not allowed (No_Return)", N);
741 end if;
742 end if;
744 Check_Unreachable_Code (N);
745 end Analyze_Return_Statement;
747 ------------------
748 -- Analyze_Spec --
749 ------------------
751 function Analyze_Spec (N : Node_Id) return Entity_Id is
752 Designator : constant Entity_Id := Defining_Entity (N);
753 Formals : constant List_Id := Parameter_Specifications (N);
754 Typ : Entity_Id;
756 begin
757 Generate_Definition (Designator);
759 if Nkind (N) = N_Function_Specification then
760 Set_Ekind (Designator, E_Function);
761 Set_Mechanism (Designator, Default_Mechanism);
763 if Subtype_Mark (N) /= Error then
764 Find_Type (Subtype_Mark (N));
765 Typ := Entity (Subtype_Mark (N));
766 Set_Etype (Designator, Typ);
768 if (Ekind (Typ) = E_Incomplete_Type
769 or else (Is_Class_Wide_Type (Typ)
770 and then
771 Ekind (Root_Type (Typ)) = E_Incomplete_Type))
772 then
773 Error_Msg_N
774 ("invalid use of incomplete type", Subtype_Mark (N));
775 end if;
777 else
778 Set_Etype (Designator, Any_Type);
779 end if;
781 else
782 Set_Ekind (Designator, E_Procedure);
783 Set_Etype (Designator, Standard_Void_Type);
784 end if;
786 if Present (Formals) then
787 Set_Scope (Designator, Current_Scope);
788 New_Scope (Designator);
789 Process_Formals (Formals, N);
790 End_Scope;
791 end if;
793 if Nkind (N) = N_Function_Specification then
794 if Nkind (Designator) = N_Defining_Operator_Symbol then
795 Valid_Operator_Definition (Designator);
796 end if;
798 May_Need_Actuals (Designator);
800 if Is_Abstract (Etype (Designator))
801 and then Nkind (Parent (N)) /= N_Abstract_Subprogram_Declaration
802 then
803 Error_Msg_N
804 ("function that returns abstract type must be abstract", N);
805 end if;
806 end if;
808 return Designator;
809 end Analyze_Spec;
811 -----------------------------
812 -- Analyze_Subprogram_Body --
813 -----------------------------
815 -- This procedure is called for regular subprogram bodies, generic bodies,
816 -- and for subprogram stubs of both kinds. In the case of stubs, only the
817 -- specification matters, and is used to create a proper declaration for
818 -- the subprogram, or to perform conformance checks.
820 procedure Analyze_Subprogram_Body (N : Node_Id) is
821 Loc : constant Source_Ptr := Sloc (N);
822 Body_Spec : constant Node_Id := Specification (N);
823 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
824 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
826 HSS : Node_Id;
827 Spec_Id : Entity_Id;
828 Spec_Decl : Node_Id := Empty;
829 Last_Formal : Entity_Id := Empty;
830 Conformant : Boolean;
831 Missing_Ret : Boolean;
832 Body_Deleted : Boolean := False;
833 P_Ent : Entity_Id;
835 begin
836 if Debug_Flag_C then
837 Write_Str ("==== Compiling subprogram body ");
838 Write_Name (Chars (Body_Id));
839 Write_Str (" from ");
840 Write_Location (Loc);
841 Write_Eol;
842 end if;
844 Trace_Scope (N, Body_Id, " Analyze subprogram");
846 -- Generic subprograms are handled separately. They always have
847 -- a generic specification. Determine whether current scope has
848 -- a previous declaration.
850 -- If the subprogram body is defined within an instance of the
851 -- same name, the instance appears as a package renaming, and
852 -- will be hidden within the subprogram.
854 if Present (Prev_Id)
855 and then not Is_Overloadable (Prev_Id)
856 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
857 or else Comes_From_Source (Prev_Id))
858 then
859 if Ekind (Prev_Id) = E_Generic_Procedure
860 or else Ekind (Prev_Id) = E_Generic_Function
861 then
862 Spec_Id := Prev_Id;
863 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
864 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
866 Analyze_Generic_Subprogram_Body (N, Spec_Id);
867 return;
869 else
870 -- Previous entity conflicts with subprogram name.
871 -- Attempting to enter name will post error.
873 Enter_Name (Body_Id);
874 return;
875 end if;
877 -- Non-generic case, find the subprogram declaration, if one was
878 -- seen, or enter new overloaded entity in the current scope.
879 -- If the current_entity is the body_id itself, the unit is being
880 -- analyzed as part of the context of one of its subunits. No need
881 -- to redo the analysis.
883 elsif Prev_Id = Body_Id
884 and then Has_Completion (Body_Id)
885 then
886 return;
888 else
889 Body_Id := Analyze_Spec (Body_Spec);
891 if Nkind (N) = N_Subprogram_Body_Stub
892 or else No (Corresponding_Spec (N))
893 then
894 Spec_Id := Find_Corresponding_Spec (N);
896 -- If this is a duplicate body, no point in analyzing it
898 if Error_Posted (N) then
899 return;
900 end if;
902 -- A subprogram body should cause freezing of its own
903 -- declaration, but if there was no previous explicit
904 -- declaration, then the subprogram will get frozen too
905 -- late (there may be code within the body that depends
906 -- on the subprogram having been frozen, such as uses of
907 -- extra formals), so we force it to be frozen here.
908 -- Same holds if the body and the spec are compilation units.
910 if No (Spec_Id) then
911 Freeze_Before (N, Body_Id);
913 elsif Nkind (Parent (N)) = N_Compilation_Unit then
914 Freeze_Before (N, Spec_Id);
915 end if;
916 else
917 Spec_Id := Corresponding_Spec (N);
918 end if;
919 end if;
921 -- Do not inline any subprogram that contains nested subprograms,
922 -- since the backend inlining circuit seems to generate uninitialized
923 -- references in this case. We know this happens in the case of front
924 -- end ZCX support, but it also appears it can happen in other cases
925 -- as well. The backend often rejects attempts to inline in the case
926 -- of nested procedures anyway, so little if anything is lost by this.
928 -- Do not do this test if errors have been detected, because in some
929 -- error cases, this code blows up, and we don't need it anyway if
930 -- there have been errors, since we won't get to the linker anyway.
932 if Serious_Errors_Detected = 0 then
933 P_Ent := Body_Id;
934 loop
935 P_Ent := Scope (P_Ent);
936 exit when No (P_Ent) or else P_Ent = Standard_Standard;
938 if Is_Subprogram (P_Ent) and then Is_Inlined (P_Ent) then
939 Set_Is_Inlined (P_Ent, False);
941 if Comes_From_Source (P_Ent)
942 and then Ineffective_Inline_Warnings
943 and then Has_Pragma_Inline (P_Ent)
944 then
945 Error_Msg_NE
946 ("?pragma Inline for & ignored (has nested subprogram)",
947 Get_Rep_Pragma (P_Ent, Name_Inline), P_Ent);
948 end if;
949 end if;
950 end loop;
951 end if;
953 -- Case of fully private operation in the body of the protected type.
954 -- We must create a declaration for the subprogram, in order to attach
955 -- the protected subprogram that will be used in internal calls.
957 if No (Spec_Id)
958 and then Comes_From_Source (N)
959 and then Is_Protected_Type (Current_Scope)
960 then
961 declare
962 Decl : Node_Id;
963 Plist : List_Id;
964 Formal : Entity_Id;
965 New_Spec : Node_Id;
967 begin
968 Formal := First_Formal (Body_Id);
970 -- The protected operation always has at least one formal,
971 -- namely the object itself, but it is only placed in the
972 -- parameter list if expansion is enabled.
974 if Present (Formal)
975 or else Expander_Active
976 then
977 Plist := New_List;
979 else
980 Plist := No_List;
981 end if;
983 while Present (Formal) loop
984 Append
985 (Make_Parameter_Specification (Loc,
986 Defining_Identifier =>
987 Make_Defining_Identifier (Sloc (Formal),
988 Chars => Chars (Formal)),
989 In_Present => In_Present (Parent (Formal)),
990 Out_Present => Out_Present (Parent (Formal)),
991 Parameter_Type =>
992 New_Reference_To (Etype (Formal), Loc),
993 Expression =>
994 New_Copy_Tree (Expression (Parent (Formal)))),
995 Plist);
997 Next_Formal (Formal);
998 end loop;
1000 if Nkind (Body_Spec) = N_Procedure_Specification then
1001 New_Spec :=
1002 Make_Procedure_Specification (Loc,
1003 Defining_Unit_Name =>
1004 Make_Defining_Identifier (Sloc (Body_Id),
1005 Chars => Chars (Body_Id)),
1006 Parameter_Specifications => Plist);
1007 else
1008 New_Spec :=
1009 Make_Function_Specification (Loc,
1010 Defining_Unit_Name =>
1011 Make_Defining_Identifier (Sloc (Body_Id),
1012 Chars => Chars (Body_Id)),
1013 Parameter_Specifications => Plist,
1014 Subtype_Mark => New_Occurrence_Of (Etype (Body_Id), Loc));
1015 end if;
1017 Decl :=
1018 Make_Subprogram_Declaration (Loc,
1019 Specification => New_Spec);
1020 Insert_Before (N, Decl);
1021 Analyze (Decl);
1022 Spec_Id := Defining_Unit_Name (New_Spec);
1023 Set_Has_Completion (Spec_Id);
1024 Set_Convention (Spec_Id, Convention_Protected);
1025 end;
1027 elsif Present (Spec_Id) then
1028 Spec_Decl := Unit_Declaration_Node (Spec_Id);
1029 end if;
1031 -- Place subprogram on scope stack, and make formals visible. If there
1032 -- is a spec, the visible entity remains that of the spec.
1034 if Present (Spec_Id) then
1035 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
1036 Style.Check_Identifier (Body_Id, Spec_Id);
1038 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1039 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1041 if Is_Abstract (Spec_Id) then
1042 Error_Msg_N ("an abstract subprogram cannot have a body", N);
1043 return;
1044 else
1045 Set_Convention (Body_Id, Convention (Spec_Id));
1046 Set_Has_Completion (Spec_Id);
1048 if Is_Protected_Type (Scope (Spec_Id)) then
1049 Set_Privals_Chain (Spec_Id, New_Elmt_List);
1050 end if;
1052 -- If this is a body generated for a renaming, do not check for
1053 -- full conformance. The check is redundant, because the spec of
1054 -- the body is a copy of the spec in the renaming declaration,
1055 -- and the test can lead to spurious errors on nested defaults.
1057 if Present (Spec_Decl)
1058 and then not Comes_From_Source (N)
1059 and then
1060 (Nkind (Original_Node (Spec_Decl)) =
1061 N_Subprogram_Renaming_Declaration
1062 or else (Present (Corresponding_Body (Spec_Decl))
1063 and then
1064 Nkind (Unit_Declaration_Node
1065 (Corresponding_Body (Spec_Decl))) =
1066 N_Subprogram_Renaming_Declaration))
1067 then
1068 Conformant := True;
1069 else
1070 Check_Conformance
1071 (Body_Id, Spec_Id,
1072 Fully_Conformant, True, Conformant, Body_Id);
1073 end if;
1075 -- If the body is not fully conformant, we have to decide if we
1076 -- should analyze it or not. If it has a really messed up profile
1077 -- then we probably should not analyze it, since we will get too
1078 -- many bogus messages.
1080 -- Our decision is to go ahead in the non-fully conformant case
1081 -- only if it is at least mode conformant with the spec. Note
1082 -- that the call to Check_Fully_Conformant has issued the proper
1083 -- error messages to complain about the lack of conformance.
1085 if not Conformant
1086 and then not Mode_Conformant (Body_Id, Spec_Id)
1087 then
1088 return;
1089 end if;
1090 end if;
1092 -- Generate references from body formals to spec formals
1093 -- and also set the Spec_Entity fields for all formals. We
1094 -- do not set this reference count as a reference for the
1095 -- purposes of identifying unreferenced formals however.
1097 if Spec_Id /= Body_Id then
1098 declare
1099 Fs : Entity_Id;
1100 Fb : Entity_Id;
1102 begin
1103 Fs := First_Formal (Spec_Id);
1104 Fb := First_Formal (Body_Id);
1105 while Present (Fs) loop
1106 Generate_Reference (Fs, Fb, 'b');
1107 Style.Check_Identifier (Fb, Fs);
1108 Set_Spec_Entity (Fb, Fs);
1109 Set_Referenced (Fs, False);
1110 Next_Formal (Fs);
1111 Next_Formal (Fb);
1112 end loop;
1113 end;
1114 end if;
1116 if Nkind (N) /= N_Subprogram_Body_Stub then
1117 Set_Corresponding_Spec (N, Spec_Id);
1118 Install_Formals (Spec_Id);
1119 Last_Formal := Last_Entity (Spec_Id);
1120 New_Scope (Spec_Id);
1122 -- Make sure that the subprogram is immediately visible. For
1123 -- child units that have no separate spec this is indispensable.
1124 -- Otherwise it is safe albeit redundant.
1126 Set_Is_Immediately_Visible (Spec_Id);
1127 end if;
1129 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
1130 Set_Ekind (Body_Id, E_Subprogram_Body);
1131 Set_Scope (Body_Id, Scope (Spec_Id));
1133 -- Case of subprogram body with no previous spec
1135 else
1136 if Style_Check
1137 and then Comes_From_Source (Body_Id)
1138 and then not Suppress_Style_Checks (Body_Id)
1139 and then not In_Instance
1140 then
1141 Style.Body_With_No_Spec (N);
1142 end if;
1144 New_Overloaded_Entity (Body_Id);
1146 if Nkind (N) /= N_Subprogram_Body_Stub then
1147 Set_Acts_As_Spec (N);
1148 Generate_Definition (Body_Id);
1149 Install_Formals (Body_Id);
1150 New_Scope (Body_Id);
1151 end if;
1152 end if;
1154 -- If this is the proper body of a stub, we must verify that the stub
1155 -- conforms to the body, and to the previous spec if one was present.
1156 -- we know already that the body conforms to that spec. This test is
1157 -- only required for subprograms that come from source.
1159 if Nkind (Parent (N)) = N_Subunit
1160 and then Comes_From_Source (N)
1161 and then not Error_Posted (Body_Id)
1162 then
1163 declare
1164 Conformant : Boolean := False;
1165 Old_Id : Entity_Id :=
1166 Defining_Entity
1167 (Specification (Corresponding_Stub (Parent (N))));
1169 begin
1170 if No (Spec_Id) then
1171 Check_Fully_Conformant (Body_Id, Old_Id);
1173 else
1174 Check_Conformance
1175 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
1177 if not Conformant then
1179 -- The stub was taken to be a new declaration. Indicate
1180 -- that it lacks a body.
1182 Set_Has_Completion (Old_Id, False);
1183 end if;
1184 end if;
1185 end;
1186 end if;
1188 Set_Has_Completion (Body_Id);
1189 Check_Eliminated (Body_Id);
1191 if Nkind (N) = N_Subprogram_Body_Stub then
1192 return;
1194 elsif Present (Spec_Id)
1195 and then Expander_Active
1196 and then (Is_Always_Inlined (Spec_Id)
1197 or else (Has_Pragma_Inline (Spec_Id)
1198 and then
1199 (Front_End_Inlining or else No_Run_Time)))
1200 then
1201 if Build_Body_To_Inline (N, Spec_Id, Copy_Separate_Tree (N)) then
1202 null;
1203 end if;
1204 end if;
1206 -- Now we can go on to analyze the body
1208 HSS := Handled_Statement_Sequence (N);
1209 Set_Actual_Subtypes (N, Current_Scope);
1210 Analyze_Declarations (Declarations (N));
1211 Check_Completion;
1212 Analyze (HSS);
1213 Process_End_Label (HSS, 't', Current_Scope);
1214 End_Scope;
1215 Check_Subprogram_Order (N);
1217 -- If we have a separate spec, then the analysis of the declarations
1218 -- caused the entities in the body to be chained to the spec id, but
1219 -- we want them chained to the body id. Only the formal parameters
1220 -- end up chained to the spec id in this case.
1222 if Present (Spec_Id) then
1224 -- If a parent unit is categorized, the context of a subunit
1225 -- must conform to the categorization. Conversely, if a child
1226 -- unit is categorized, the parents themselves must conform.
1228 if Nkind (Parent (N)) = N_Subunit then
1229 Validate_Categorization_Dependency (N, Spec_Id);
1231 elsif Is_Child_Unit (Spec_Id) then
1232 Validate_Categorization_Dependency
1233 (Unit_Declaration_Node (Spec_Id), Spec_Id);
1234 end if;
1236 if Present (Last_Formal) then
1237 Set_Next_Entity
1238 (Last_Entity (Body_Id), Next_Entity (Last_Formal));
1239 Set_Next_Entity (Last_Formal, Empty);
1240 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
1241 Set_Last_Entity (Spec_Id, Last_Formal);
1243 else
1244 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
1245 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
1246 Set_First_Entity (Spec_Id, Empty);
1247 Set_Last_Entity (Spec_Id, Empty);
1248 end if;
1249 end if;
1251 -- If function, check return statements
1253 if Nkind (Body_Spec) = N_Function_Specification then
1254 declare
1255 Id : Entity_Id;
1257 begin
1258 if Present (Spec_Id) then
1259 Id := Spec_Id;
1260 else
1261 Id := Body_Id;
1262 end if;
1264 if Return_Present (Id) then
1265 Check_Returns (HSS, 'F', Missing_Ret);
1267 if Missing_Ret then
1268 Set_Has_Missing_Return (Id);
1269 end if;
1271 elsif not Is_Machine_Code_Subprogram (Id)
1272 and then not Body_Deleted
1273 then
1274 Error_Msg_N ("missing RETURN statement in function body", N);
1275 end if;
1276 end;
1278 -- If procedure with No_Return, check returns
1280 elsif Nkind (Body_Spec) = N_Procedure_Specification
1281 and then Present (Spec_Id)
1282 and then No_Return (Spec_Id)
1283 then
1284 Check_Returns (HSS, 'P', Missing_Ret);
1285 end if;
1287 -- Don't worry about checking for variables that are never modified
1288 -- if the first statement of the body is a raise statement, since
1289 -- we assume this is some kind of stub. We ignore a label generated
1290 -- by the exception stuff for the purpose of this test.
1292 declare
1293 Stm : Node_Id := First (Statements (HSS));
1295 begin
1296 if Nkind (Stm) = N_Label then
1297 Next (Stm);
1298 end if;
1300 if Nkind (Original_Node (Stm)) = N_Raise_Statement then
1301 return;
1302 end if;
1303 end;
1305 -- Check for variables that are never modified
1307 declare
1308 E1, E2 : Entity_Id;
1310 begin
1311 -- If there is a separate spec, then transfer Not_Source_Assigned
1312 -- flags from out parameters to the corresponding entities in the
1313 -- body. The reason we do that is we want to post error flags on
1314 -- the body entities, not the spec entities.
1316 if Present (Spec_Id) then
1317 E1 := First_Entity (Spec_Id);
1319 while Present (E1) loop
1320 if Ekind (E1) = E_Out_Parameter then
1321 E2 := First_Entity (Body_Id);
1323 loop
1324 -- If no matching body entity, then we already had
1325 -- a detected error of some kind, so just forget
1326 -- about worrying about these warnings.
1328 if No (E2) then
1329 return;
1330 end if;
1332 exit when Chars (E1) = Chars (E2);
1333 Next_Entity (E2);
1334 end loop;
1336 Set_Not_Source_Assigned (E2, Not_Source_Assigned (E1));
1337 end if;
1339 Next_Entity (E1);
1340 end loop;
1341 end if;
1343 -- Check references in body unless it was deleted. Note that the
1344 -- check of Body_Deleted here is not just for efficiency, it is
1345 -- necessary to avoid junk warnings on formal parameters.
1347 if not Body_Deleted then
1348 Check_References (Body_Id);
1349 end if;
1350 end;
1351 end Analyze_Subprogram_Body;
1353 ------------------------------------
1354 -- Analyze_Subprogram_Declaration --
1355 ------------------------------------
1357 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
1358 Designator : constant Entity_Id := Analyze_Spec (Specification (N));
1359 Scop : constant Entity_Id := Current_Scope;
1361 -- Start of processing for Analyze_Subprogram_Declaration
1363 begin
1364 Generate_Definition (Designator);
1366 -- Check for RCI unit subprogram declarations against in-lined
1367 -- subprograms and subprograms having access parameter or limited
1368 -- parameter without Read and Write (RM E.2.3(12-13)).
1370 Validate_RCI_Subprogram_Declaration (N);
1372 Trace_Scope
1374 Defining_Entity (N),
1375 " Analyze subprogram spec. ");
1377 if Debug_Flag_C then
1378 Write_Str ("==== Compiling subprogram spec ");
1379 Write_Name (Chars (Designator));
1380 Write_Str (" from ");
1381 Write_Location (Sloc (N));
1382 Write_Eol;
1383 end if;
1385 New_Overloaded_Entity (Designator);
1386 Check_Delayed_Subprogram (Designator);
1387 Set_Suppress_Elaboration_Checks
1388 (Designator, Elaboration_Checks_Suppressed (Designator));
1390 if Scop /= Standard_Standard
1391 and then not Is_Child_Unit (Designator)
1392 then
1393 Set_Is_Pure (Designator,
1394 Is_Pure (Scop) and then Is_Library_Level_Entity (Designator));
1395 Set_Is_Remote_Call_Interface (
1396 Designator, Is_Remote_Call_Interface (Scop));
1397 Set_Is_Remote_Types (Designator, Is_Remote_Types (Scop));
1399 else
1400 -- For a compilation unit, check for library-unit pragmas.
1402 New_Scope (Designator);
1403 Set_Categorization_From_Pragmas (N);
1404 Validate_Categorization_Dependency (N, Designator);
1405 Pop_Scope;
1406 end if;
1408 -- For a compilation unit, set body required. This flag will only be
1409 -- reset if a valid Import or Interface pragma is processed later on.
1411 if Nkind (Parent (N)) = N_Compilation_Unit then
1412 Set_Body_Required (Parent (N), True);
1413 end if;
1415 Check_Eliminated (Designator);
1416 end Analyze_Subprogram_Declaration;
1418 --------------------------
1419 -- Build_Body_To_Inline --
1420 --------------------------
1422 function Build_Body_To_Inline
1423 (N : Node_Id;
1424 Subp : Entity_Id;
1425 Orig_Body : Node_Id) return Boolean
1427 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
1428 Original_Body : Node_Id;
1429 Body_To_Analyze : Node_Id;
1430 Max_Size : constant := 10;
1431 Stat_Count : Integer := 0;
1433 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
1434 -- Check for declarations that make inlining not worthwhile.
1436 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
1437 -- Check for statements that make inlining not worthwhile: any
1438 -- tasking statement, nested at any level. Keep track of total
1439 -- number of elementary statements, as a measure of acceptable size.
1441 function Has_Pending_Instantiation return Boolean;
1442 -- If some enclosing body contains instantiations that appear before
1443 -- the corresponding generic body, the enclosing body has a freeze node
1444 -- so that it can be elaborated after the generic itself. This might
1445 -- conflict with subsequent inlinings, so that it is unsafe to try to
1446 -- inline in such a case.
1448 -------------------
1449 -- Cannot_Inline --
1450 -------------------
1452 procedure Cannot_Inline (Msg : String; N : Node_Id);
1453 -- If subprogram has pragma Inline_Always, it is an error if
1454 -- it cannot be inlined. Otherwise, emit a warning.
1456 procedure Cannot_Inline (Msg : String; N : Node_Id) is
1457 begin
1458 if Is_Always_Inlined (Subp) then
1459 Error_Msg_NE (Msg (1 .. Msg'Length - 1), N, Subp);
1461 elsif Ineffective_Inline_Warnings then
1462 Error_Msg_NE (Msg, N, Subp);
1463 end if;
1464 end Cannot_Inline;
1466 ------------------------------
1467 -- Has_Excluded_Declaration --
1468 ------------------------------
1470 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
1471 D : Node_Id;
1473 begin
1474 D := First (Decls);
1476 while Present (D) loop
1477 if Nkind (D) = N_Function_Instantiation
1478 or else Nkind (D) = N_Protected_Type_Declaration
1479 or else Nkind (D) = N_Package_Declaration
1480 or else Nkind (D) = N_Package_Instantiation
1481 or else Nkind (D) = N_Subprogram_Body
1482 or else Nkind (D) = N_Procedure_Instantiation
1483 or else Nkind (D) = N_Task_Type_Declaration
1484 then
1485 Cannot_Inline
1486 ("\declaration prevents front-end inlining of&?", D);
1487 return True;
1488 end if;
1490 Next (D);
1491 end loop;
1493 return False;
1495 end Has_Excluded_Declaration;
1497 ----------------------------
1498 -- Has_Excluded_Statement --
1499 ----------------------------
1501 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
1502 S : Node_Id;
1503 E : Node_Id;
1505 begin
1506 S := First (Stats);
1508 while Present (S) loop
1509 Stat_Count := Stat_Count + 1;
1511 if Nkind (S) = N_Abort_Statement
1512 or else Nkind (S) = N_Asynchronous_Select
1513 or else Nkind (S) = N_Conditional_Entry_Call
1514 or else Nkind (S) = N_Delay_Relative_Statement
1515 or else Nkind (S) = N_Delay_Until_Statement
1516 or else Nkind (S) = N_Selective_Accept
1517 or else Nkind (S) = N_Timed_Entry_Call
1518 then
1519 Cannot_Inline
1520 ("\statement prevents front-end inlining of&?", S);
1521 return True;
1523 elsif Nkind (S) = N_Block_Statement then
1524 if Present (Declarations (S))
1525 and then Has_Excluded_Declaration (Declarations (S))
1526 then
1527 return True;
1529 elsif Present (Handled_Statement_Sequence (S))
1530 and then
1531 (Present
1532 (Exception_Handlers (Handled_Statement_Sequence (S)))
1533 or else
1534 Has_Excluded_Statement
1535 (Statements (Handled_Statement_Sequence (S))))
1536 then
1537 return True;
1538 end if;
1540 elsif Nkind (S) = N_Case_Statement then
1541 E := First (Alternatives (S));
1543 while Present (E) loop
1544 if Has_Excluded_Statement (Statements (E)) then
1545 return True;
1546 end if;
1548 Next (E);
1549 end loop;
1551 elsif Nkind (S) = N_If_Statement then
1552 if Has_Excluded_Statement (Then_Statements (S)) then
1553 return True;
1554 end if;
1556 if Present (Elsif_Parts (S)) then
1557 E := First (Elsif_Parts (S));
1559 while Present (E) loop
1560 if Has_Excluded_Statement (Then_Statements (E)) then
1561 return True;
1562 end if;
1563 Next (E);
1564 end loop;
1565 end if;
1567 if Present (Else_Statements (S))
1568 and then Has_Excluded_Statement (Else_Statements (S))
1569 then
1570 return True;
1571 end if;
1573 elsif Nkind (S) = N_Loop_Statement
1574 and then Has_Excluded_Statement (Statements (S))
1575 then
1576 return True;
1577 end if;
1579 Next (S);
1580 end loop;
1582 return False;
1583 end Has_Excluded_Statement;
1585 -------------------------------
1586 -- Has_Pending_Instantiation --
1587 -------------------------------
1589 function Has_Pending_Instantiation return Boolean is
1590 S : Entity_Id := Current_Scope;
1592 begin
1593 while Present (S) loop
1594 if Is_Compilation_Unit (S)
1595 or else Is_Child_Unit (S)
1596 then
1597 return False;
1598 elsif Ekind (S) = E_Package
1599 and then Has_Forward_Instantiation (S)
1600 then
1601 return True;
1602 end if;
1604 S := Scope (S);
1605 end loop;
1607 return False;
1608 end Has_Pending_Instantiation;
1610 -- Start of processing for Build_Body_To_Inline
1612 begin
1613 if Nkind (Decl) = N_Subprogram_Declaration
1614 and then Present (Body_To_Inline (Decl))
1615 then
1616 return True; -- Done already.
1618 -- Functions that return unconstrained composite types will require
1619 -- secondary stack handling, and cannot currently be inlined.
1621 elsif Ekind (Subp) = E_Function
1622 and then not Is_Scalar_Type (Etype (Subp))
1623 and then not Is_Access_Type (Etype (Subp))
1624 and then not Is_Constrained (Etype (Subp))
1625 then
1626 Cannot_Inline
1627 ("unconstrained return type prevents front-end inlining of&?", N);
1628 return False;
1629 end if;
1631 -- We need to capture references to the formals in order to substitute
1632 -- the actuals at the point of inlining, i.e. instantiation. To treat
1633 -- the formals as globals to the body to inline, we nest it within
1634 -- a dummy parameterless subprogram, declared within the real one.
1636 Original_Body := Orig_Body;
1638 -- Within an instance, the current tree is already the result of
1639 -- a generic copy, and not what we need for subsequent inlining.
1640 -- We create the required body by doing an instantiating copy, to
1641 -- obtain the proper partially analyzed tree.
1643 if In_Instance then
1644 if No (Generic_Parent (Specification (N))) then
1645 return False;
1647 elsif Is_Child_Unit (Scope (Current_Scope)) then
1648 return False;
1650 elsif Scope (Current_Scope) = Cunit_Entity (Main_Unit) then
1652 -- compiling an instantiation. There is no point in generating
1653 -- bodies to inline, because they will not be used.
1655 return False;
1657 else
1658 Body_To_Analyze :=
1659 Copy_Generic_Node
1660 (Generic_Parent (Specification (N)), Empty,
1661 Instantiating => True);
1662 end if;
1663 else
1664 Body_To_Analyze :=
1665 Copy_Generic_Node (Original_Body, Empty,
1666 Instantiating => False);
1667 end if;
1669 Set_Parameter_Specifications (Specification (Original_Body), No_List);
1670 Set_Defining_Unit_Name (Specification (Original_Body),
1671 Make_Defining_Identifier (Sloc (N), New_Internal_Name ('S')));
1672 Set_Corresponding_Spec (Original_Body, Empty);
1674 if Ekind (Subp) = E_Function then
1675 Set_Subtype_Mark (Specification (Original_Body),
1676 New_Occurrence_Of (Etype (Subp), Sloc (N)));
1677 end if;
1679 if Present (Declarations (Orig_Body))
1680 and then Has_Excluded_Declaration (Declarations (Orig_Body))
1681 then
1682 return False;
1683 end if;
1685 if Present (Handled_Statement_Sequence (N)) then
1687 (Present (Exception_Handlers (Handled_Statement_Sequence (N))))
1688 then
1689 Cannot_Inline ("handler prevents front-end inlining of&?",
1690 First (Exception_Handlers (Handled_Statement_Sequence (N))));
1691 return False;
1692 elsif
1693 Has_Excluded_Statement
1694 (Statements (Handled_Statement_Sequence (N)))
1695 then
1696 return False;
1697 end if;
1698 end if;
1700 -- We do not inline a subprogram that is too large, unless it is
1701 -- marked Inline_Always. This pragma does not suppress the other
1702 -- checks on inlining (forbidden declarations, handlers, etc).
1704 if Stat_Count > Max_Size
1705 and then not Is_Always_Inlined (Subp)
1706 then
1707 Cannot_Inline ("body is too large for front-end inlining of&?", N);
1708 return False;
1709 end if;
1711 if Has_Pending_Instantiation then
1712 Cannot_Inline
1713 ("cannot inline& because of forward instance within enclosing body",
1715 return False;
1716 end if;
1718 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
1720 -- Set return type of function, which is also global and does not need
1721 -- to be resolved.
1723 if Ekind (Subp) = E_Function then
1724 Set_Subtype_Mark (Specification (Body_To_Analyze),
1725 New_Occurrence_Of (Etype (Subp), Sloc (N)));
1726 end if;
1728 if No (Declarations (N)) then
1729 Set_Declarations (N, New_List (Body_To_Analyze));
1730 else
1731 Append (Body_To_Analyze, Declarations (N));
1732 end if;
1734 Expander_Mode_Save_And_Set (False);
1736 Analyze (Body_To_Analyze);
1737 New_Scope (Defining_Entity (Body_To_Analyze));
1738 Save_Global_References (Original_Body);
1739 End_Scope;
1740 Remove (Body_To_Analyze);
1742 Expander_Mode_Restore;
1743 Set_Body_To_Inline (Decl, Original_Body);
1744 Set_Is_Inlined (Subp);
1745 return True;
1747 end Build_Body_To_Inline;
1749 -----------------------
1750 -- Check_Conformance --
1751 -----------------------
1753 procedure Check_Conformance
1754 (New_Id : Entity_Id;
1755 Old_Id : Entity_Id;
1756 Ctype : Conformance_Type;
1757 Errmsg : Boolean;
1758 Conforms : out Boolean;
1759 Err_Loc : Node_Id := Empty;
1760 Get_Inst : Boolean := False)
1762 Old_Type : constant Entity_Id := Etype (Old_Id);
1763 New_Type : constant Entity_Id := Etype (New_Id);
1764 Old_Formal : Entity_Id;
1765 New_Formal : Entity_Id;
1767 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
1768 -- Post error message for conformance error on given node.
1769 -- Two messages are output. The first points to the previous
1770 -- declaration with a general "no conformance" message.
1771 -- The second is the detailed reason, supplied as Msg. The
1772 -- parameter N provide information for a possible & insertion
1773 -- in the message, and also provides the location for posting
1774 -- the message in the absence of a specified Err_Loc location.
1776 -----------------------
1777 -- Conformance_Error --
1778 -----------------------
1780 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
1781 Enode : Node_Id;
1783 begin
1784 Conforms := False;
1786 if Errmsg then
1787 if No (Err_Loc) then
1788 Enode := N;
1789 else
1790 Enode := Err_Loc;
1791 end if;
1793 Error_Msg_Sloc := Sloc (Old_Id);
1795 case Ctype is
1796 when Type_Conformant =>
1797 Error_Msg_N
1798 ("not type conformant with declaration#!", Enode);
1800 when Mode_Conformant =>
1801 Error_Msg_N
1802 ("not mode conformant with declaration#!", Enode);
1804 when Subtype_Conformant =>
1805 Error_Msg_N
1806 ("not subtype conformant with declaration#!", Enode);
1808 when Fully_Conformant =>
1809 Error_Msg_N
1810 ("not fully conformant with declaration#!", Enode);
1811 end case;
1813 Error_Msg_NE (Msg, Enode, N);
1814 end if;
1815 end Conformance_Error;
1817 -- Start of processing for Check_Conformance
1819 begin
1820 Conforms := True;
1822 -- We need a special case for operators, since they don't
1823 -- appear explicitly.
1825 if Ctype = Type_Conformant then
1826 if Ekind (New_Id) = E_Operator
1827 and then Operator_Matches_Spec (New_Id, Old_Id)
1828 then
1829 return;
1830 end if;
1831 end if;
1833 -- If both are functions/operators, check return types conform
1835 if Old_Type /= Standard_Void_Type
1836 and then New_Type /= Standard_Void_Type
1837 then
1838 if not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
1839 Conformance_Error ("return type does not match!", New_Id);
1840 return;
1841 end if;
1843 -- If either is a function/operator and the other isn't, error
1845 elsif Old_Type /= Standard_Void_Type
1846 or else New_Type /= Standard_Void_Type
1847 then
1848 Conformance_Error ("functions can only match functions!", New_Id);
1849 return;
1850 end if;
1852 -- In subtype conformant case, conventions must match (RM 6.3.1(16))
1853 -- If this is a renaming as body, refine error message to indicate that
1854 -- the conflict is with the original declaration. If the entity is not
1855 -- frozen, the conventions don't have to match, the one of the renamed
1856 -- entity is inherited.
1858 if Ctype >= Subtype_Conformant then
1860 if Convention (Old_Id) /= Convention (New_Id) then
1862 if not Is_Frozen (New_Id) then
1863 null;
1865 elsif Present (Err_Loc)
1866 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
1867 and then Present (Corresponding_Spec (Err_Loc))
1868 then
1869 Error_Msg_Name_1 := Chars (New_Id);
1870 Error_Msg_Name_2 :=
1871 Name_Ada + Convention_Id'Pos (Convention (New_Id));
1873 Conformance_Error ("prior declaration for% has convention %!");
1875 else
1876 Conformance_Error ("calling conventions do not match!");
1877 end if;
1879 return;
1881 elsif Is_Formal_Subprogram (Old_Id)
1882 or else Is_Formal_Subprogram (New_Id)
1883 then
1884 Conformance_Error ("formal subprograms not allowed!");
1885 return;
1886 end if;
1887 end if;
1889 -- Deal with parameters
1891 -- Note: we use the entity information, rather than going directly
1892 -- to the specification in the tree. This is not only simpler, but
1893 -- absolutely necessary for some cases of conformance tests between
1894 -- operators, where the declaration tree simply does not exist!
1896 Old_Formal := First_Formal (Old_Id);
1897 New_Formal := First_Formal (New_Id);
1899 while Present (Old_Formal) and then Present (New_Formal) loop
1901 -- Types must always match. In the visible part of an instance,
1902 -- usual overloading rules for dispatching operations apply, and
1903 -- we check base types (not the actual subtypes).
1905 if In_Instance_Visible_Part
1906 and then Is_Dispatching_Operation (New_Id)
1907 then
1908 if not Conforming_Types
1909 (Base_Type (Etype (Old_Formal)),
1910 Base_Type (Etype (New_Formal)), Ctype, Get_Inst)
1911 then
1912 Conformance_Error ("type of & does not match!", New_Formal);
1913 return;
1914 end if;
1916 elsif not Conforming_Types
1917 (Etype (Old_Formal), Etype (New_Formal), Ctype, Get_Inst)
1918 then
1919 Conformance_Error ("type of & does not match!", New_Formal);
1920 return;
1921 end if;
1923 -- For mode conformance, mode must match
1925 if Ctype >= Mode_Conformant
1926 and then Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal)
1927 then
1928 Conformance_Error ("mode of & does not match!", New_Formal);
1929 return;
1930 end if;
1932 -- Full conformance checks
1934 if Ctype = Fully_Conformant then
1936 -- Names must match
1938 if Chars (Old_Formal) /= Chars (New_Formal) then
1939 Conformance_Error ("name & does not match!", New_Formal);
1940 return;
1942 -- And default expressions for in parameters
1944 elsif Parameter_Mode (Old_Formal) = E_In_Parameter then
1945 declare
1946 NewD : constant Boolean :=
1947 Present (Default_Value (New_Formal));
1948 OldD : constant Boolean :=
1949 Present (Default_Value (Old_Formal));
1950 begin
1951 if NewD or OldD then
1953 -- The old default value has been analyzed and expanded,
1954 -- because the current full declaration will have frozen
1955 -- everything before. The new default values have not
1956 -- been expanded, so expand now to check conformance.
1958 if NewD then
1959 New_Scope (New_Id);
1960 Analyze_Default_Expression
1961 (Default_Value (New_Formal), Etype (New_Formal));
1962 End_Scope;
1963 end if;
1965 if not (NewD and OldD)
1966 or else not Fully_Conformant_Expressions
1967 (Default_Value (Old_Formal),
1968 Default_Value (New_Formal))
1969 then
1970 Conformance_Error
1971 ("default expression for & does not match!",
1972 New_Formal);
1973 return;
1974 end if;
1975 end if;
1976 end;
1977 end if;
1978 end if;
1980 -- A couple of special checks for Ada 83 mode. These checks are
1981 -- skipped if either entity is an operator in package Standard.
1982 -- or if either old or new instance is not from the source program.
1984 if Ada_83
1985 and then Sloc (Old_Id) > Standard_Location
1986 and then Sloc (New_Id) > Standard_Location
1987 and then Comes_From_Source (Old_Id)
1988 and then Comes_From_Source (New_Id)
1989 then
1990 declare
1991 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
1992 New_Param : constant Node_Id := Declaration_Node (New_Formal);
1994 begin
1995 -- Explicit IN must be present or absent in both cases. This
1996 -- test is required only in the full conformance case.
1998 if In_Present (Old_Param) /= In_Present (New_Param)
1999 and then Ctype = Fully_Conformant
2000 then
2001 Conformance_Error
2002 ("(Ada 83) IN must appear in both declarations",
2003 New_Formal);
2004 return;
2005 end if;
2007 -- Grouping (use of comma in param lists) must be the same
2008 -- This is where we catch a misconformance like:
2010 -- A,B : Integer
2011 -- A : Integer; B : Integer
2013 -- which are represented identically in the tree except
2014 -- for the setting of the flags More_Ids and Prev_Ids.
2016 if More_Ids (Old_Param) /= More_Ids (New_Param)
2017 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
2018 then
2019 Conformance_Error
2020 ("grouping of & does not match!", New_Formal);
2021 return;
2022 end if;
2023 end;
2024 end if;
2026 Next_Formal (Old_Formal);
2027 Next_Formal (New_Formal);
2028 end loop;
2030 if Present (Old_Formal) then
2031 Conformance_Error ("too few parameters!");
2032 return;
2034 elsif Present (New_Formal) then
2035 Conformance_Error ("too many parameters!", New_Formal);
2036 return;
2037 end if;
2039 end Check_Conformance;
2041 ------------------------------
2042 -- Check_Delayed_Subprogram --
2043 ------------------------------
2045 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
2046 F : Entity_Id;
2048 procedure Possible_Freeze (T : Entity_Id);
2049 -- T is the type of either a formal parameter or of the return type.
2050 -- If T is not yet frozen and needs a delayed freeze, then the
2051 -- subprogram itself must be delayed.
2053 procedure Possible_Freeze (T : Entity_Id) is
2054 begin
2055 if Has_Delayed_Freeze (T)
2056 and then not Is_Frozen (T)
2057 then
2058 Set_Has_Delayed_Freeze (Designator);
2060 elsif Is_Access_Type (T)
2061 and then Has_Delayed_Freeze (Designated_Type (T))
2062 and then not Is_Frozen (Designated_Type (T))
2063 then
2064 Set_Has_Delayed_Freeze (Designator);
2065 end if;
2066 end Possible_Freeze;
2068 -- Start of processing for Check_Delayed_Subprogram
2070 begin
2071 -- Never need to freeze abstract subprogram
2073 if Is_Abstract (Designator) then
2074 null;
2075 else
2076 -- Need delayed freeze if return type itself needs a delayed
2077 -- freeze and is not yet frozen.
2079 Possible_Freeze (Etype (Designator));
2080 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
2082 -- Need delayed freeze if any of the formal types themselves need
2083 -- a delayed freeze and are not yet frozen.
2085 F := First_Formal (Designator);
2086 while Present (F) loop
2087 Possible_Freeze (Etype (F));
2088 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
2089 Next_Formal (F);
2090 end loop;
2091 end if;
2093 -- Mark functions that return by reference. Note that it cannot be
2094 -- done for delayed_freeze subprograms because the underlying
2095 -- returned type may not be known yet (for private types)
2097 if not Has_Delayed_Freeze (Designator)
2098 and then Expander_Active
2099 then
2100 declare
2101 Typ : constant Entity_Id := Etype (Designator);
2102 Utyp : constant Entity_Id := Underlying_Type (Typ);
2104 begin
2105 if Is_Return_By_Reference_Type (Typ) then
2106 Set_Returns_By_Ref (Designator);
2108 elsif Present (Utyp) and then Controlled_Type (Utyp) then
2109 Set_Returns_By_Ref (Designator);
2110 end if;
2111 end;
2112 end if;
2113 end Check_Delayed_Subprogram;
2115 ------------------------------------
2116 -- Check_Discriminant_Conformance --
2117 ------------------------------------
2119 procedure Check_Discriminant_Conformance
2120 (N : Node_Id;
2121 Prev : Entity_Id;
2122 Prev_Loc : Node_Id)
2124 Old_Discr : Entity_Id := First_Discriminant (Prev);
2125 New_Discr : Node_Id := First (Discriminant_Specifications (N));
2126 New_Discr_Id : Entity_Id;
2127 New_Discr_Type : Entity_Id;
2129 procedure Conformance_Error (Msg : String; N : Node_Id);
2130 -- Post error message for conformance error on given node.
2131 -- Two messages are output. The first points to the previous
2132 -- declaration with a general "no conformance" message.
2133 -- The second is the detailed reason, supplied as Msg. The
2134 -- parameter N provide information for a possible & insertion
2135 -- in the message.
2137 -----------------------
2138 -- Conformance_Error --
2139 -----------------------
2141 procedure Conformance_Error (Msg : String; N : Node_Id) is
2142 begin
2143 Error_Msg_Sloc := Sloc (Prev_Loc);
2144 Error_Msg_N ("not fully conformant with declaration#!", N);
2145 Error_Msg_NE (Msg, N, N);
2146 end Conformance_Error;
2148 -- Start of processing for Check_Discriminant_Conformance
2150 begin
2151 while Present (Old_Discr) and then Present (New_Discr) loop
2153 New_Discr_Id := Defining_Identifier (New_Discr);
2155 -- The subtype mark of the discriminant on the full type
2156 -- has not been analyzed so we do it here. For an access
2157 -- discriminant a new type is created.
2159 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
2160 New_Discr_Type :=
2161 Access_Definition (N, Discriminant_Type (New_Discr));
2163 else
2164 Analyze (Discriminant_Type (New_Discr));
2165 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
2166 end if;
2168 if not Conforming_Types
2169 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
2170 then
2171 Conformance_Error ("type of & does not match!", New_Discr_Id);
2172 return;
2173 end if;
2175 -- Names must match
2177 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
2178 Conformance_Error ("name & does not match!", New_Discr_Id);
2179 return;
2180 end if;
2182 -- Default expressions must match
2184 declare
2185 NewD : constant Boolean :=
2186 Present (Expression (New_Discr));
2187 OldD : constant Boolean :=
2188 Present (Expression (Parent (Old_Discr)));
2190 begin
2191 if NewD or OldD then
2193 -- The old default value has been analyzed and expanded,
2194 -- because the current full declaration will have frozen
2195 -- everything before. The new default values have not
2196 -- been expanded, so expand now to check conformance.
2198 if NewD then
2199 Analyze_Default_Expression
2200 (Expression (New_Discr), New_Discr_Type);
2201 end if;
2203 if not (NewD and OldD)
2204 or else not Fully_Conformant_Expressions
2205 (Expression (Parent (Old_Discr)),
2206 Expression (New_Discr))
2208 then
2209 Conformance_Error
2210 ("default expression for & does not match!",
2211 New_Discr_Id);
2212 return;
2213 end if;
2214 end if;
2215 end;
2217 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
2219 if Ada_83 then
2220 declare
2221 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
2223 begin
2224 -- Grouping (use of comma in param lists) must be the same
2225 -- This is where we catch a misconformance like:
2227 -- A,B : Integer
2228 -- A : Integer; B : Integer
2230 -- which are represented identically in the tree except
2231 -- for the setting of the flags More_Ids and Prev_Ids.
2233 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
2234 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
2235 then
2236 Conformance_Error
2237 ("grouping of & does not match!", New_Discr_Id);
2238 return;
2239 end if;
2240 end;
2241 end if;
2243 Next_Discriminant (Old_Discr);
2244 Next (New_Discr);
2245 end loop;
2247 if Present (Old_Discr) then
2248 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
2249 return;
2251 elsif Present (New_Discr) then
2252 Conformance_Error
2253 ("too many discriminants!", Defining_Identifier (New_Discr));
2254 return;
2255 end if;
2256 end Check_Discriminant_Conformance;
2258 ----------------------------
2259 -- Check_Fully_Conformant --
2260 ----------------------------
2262 procedure Check_Fully_Conformant
2263 (New_Id : Entity_Id;
2264 Old_Id : Entity_Id;
2265 Err_Loc : Node_Id := Empty)
2267 Result : Boolean;
2269 begin
2270 Check_Conformance
2271 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
2272 end Check_Fully_Conformant;
2274 ---------------------------
2275 -- Check_Mode_Conformant --
2276 ---------------------------
2278 procedure Check_Mode_Conformant
2279 (New_Id : Entity_Id;
2280 Old_Id : Entity_Id;
2281 Err_Loc : Node_Id := Empty;
2282 Get_Inst : Boolean := False)
2284 Result : Boolean;
2286 begin
2287 Check_Conformance
2288 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
2289 end Check_Mode_Conformant;
2291 -------------------
2292 -- Check_Returns --
2293 -------------------
2295 procedure Check_Returns
2296 (HSS : Node_Id;
2297 Mode : Character;
2298 Err : out Boolean)
2300 Handler : Node_Id;
2302 procedure Check_Statement_Sequence (L : List_Id);
2303 -- Internal recursive procedure to check a list of statements for proper
2304 -- termination by a return statement (or a transfer of control or a
2305 -- compound statement that is itself internally properly terminated).
2307 ------------------------------
2308 -- Check_Statement_Sequence --
2309 ------------------------------
2311 procedure Check_Statement_Sequence (L : List_Id) is
2312 Last_Stm : Node_Id;
2313 Kind : Node_Kind;
2315 Raise_Exception_Call : Boolean;
2316 -- Set True if statement sequence terminated by Raise_Exception call
2317 -- or a Reraise_Occurrence call.
2319 begin
2320 Raise_Exception_Call := False;
2322 -- Get last real statement
2324 Last_Stm := Last (L);
2326 -- Don't count pragmas
2328 while Nkind (Last_Stm) = N_Pragma
2330 -- Don't count call to SS_Release (can happen after Raise_Exception)
2332 or else
2333 (Nkind (Last_Stm) = N_Procedure_Call_Statement
2334 and then
2335 Nkind (Name (Last_Stm)) = N_Identifier
2336 and then
2337 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
2339 -- Don't count exception junk
2341 or else
2342 ((Nkind (Last_Stm) = N_Goto_Statement
2343 or else Nkind (Last_Stm) = N_Label
2344 or else Nkind (Last_Stm) = N_Object_Declaration)
2345 and then Exception_Junk (Last_Stm))
2346 loop
2347 Prev (Last_Stm);
2348 end loop;
2350 -- Here we have the "real" last statement
2352 Kind := Nkind (Last_Stm);
2354 -- Transfer of control, OK. Note that in the No_Return procedure
2355 -- case, we already diagnosed any explicit return statements, so
2356 -- we can treat them as OK in this context.
2358 if Is_Transfer (Last_Stm) then
2359 return;
2361 -- Check cases of explicit non-indirect procedure calls
2363 elsif Kind = N_Procedure_Call_Statement
2364 and then Is_Entity_Name (Name (Last_Stm))
2365 then
2366 -- Check call to Raise_Exception procedure which is treated
2367 -- specially, as is a call to Reraise_Occurrence.
2369 -- We suppress the warning in these cases since it is likely that
2370 -- the programmer really does not expect to deal with the case
2371 -- of Null_Occurrence, and thus would find a warning about a
2372 -- missing return curious, and raising Program_Error does not
2373 -- seem such a bad behavior if this does occur.
2375 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
2376 or else
2377 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
2378 then
2379 Raise_Exception_Call := True;
2381 -- For Raise_Exception call, test first argument, if it is
2382 -- an attribute reference for a 'Identity call, then we know
2383 -- that the call cannot possibly return.
2385 declare
2386 Arg : constant Node_Id :=
2387 Original_Node (First_Actual (Last_Stm));
2389 begin
2390 if Nkind (Arg) = N_Attribute_Reference
2391 and then Attribute_Name (Arg) = Name_Identity
2392 then
2393 return;
2394 end if;
2395 end;
2396 end if;
2398 -- If statement, need to look inside if there is an else and check
2399 -- each constituent statement sequence for proper termination.
2401 elsif Kind = N_If_Statement
2402 and then Present (Else_Statements (Last_Stm))
2403 then
2404 Check_Statement_Sequence (Then_Statements (Last_Stm));
2405 Check_Statement_Sequence (Else_Statements (Last_Stm));
2407 if Present (Elsif_Parts (Last_Stm)) then
2408 declare
2409 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
2411 begin
2412 while Present (Elsif_Part) loop
2413 Check_Statement_Sequence (Then_Statements (Elsif_Part));
2414 Next (Elsif_Part);
2415 end loop;
2416 end;
2417 end if;
2419 return;
2421 -- Case statement, check each case for proper termination
2423 elsif Kind = N_Case_Statement then
2424 declare
2425 Case_Alt : Node_Id;
2427 begin
2428 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
2429 while Present (Case_Alt) loop
2430 Check_Statement_Sequence (Statements (Case_Alt));
2431 Next_Non_Pragma (Case_Alt);
2432 end loop;
2433 end;
2435 return;
2437 -- Block statement, check its handled sequence of statements
2439 elsif Kind = N_Block_Statement then
2440 declare
2441 Err1 : Boolean;
2443 begin
2444 Check_Returns
2445 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
2447 if Err1 then
2448 Err := True;
2449 end if;
2451 return;
2452 end;
2454 -- Loop statement. If there is an iteration scheme, we can definitely
2455 -- fall out of the loop. Similarly if there is an exit statement, we
2456 -- can fall out. In either case we need a following return.
2458 elsif Kind = N_Loop_Statement then
2459 if Present (Iteration_Scheme (Last_Stm))
2460 or else Has_Exit (Entity (Identifier (Last_Stm)))
2461 then
2462 null;
2464 -- A loop with no exit statement or iteration scheme if either
2465 -- an inifite loop, or it has some other exit (raise/return).
2466 -- In either case, no warning is required.
2468 else
2469 return;
2470 end if;
2472 -- Timed entry call, check entry call and delay alternatives
2474 -- Note: in expanded code, the timed entry call has been converted
2475 -- to a set of expanded statements on which the check will work
2476 -- correctly in any case.
2478 elsif Kind = N_Timed_Entry_Call then
2479 declare
2480 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
2481 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
2483 begin
2484 -- If statement sequence of entry call alternative is missing,
2485 -- then we can definitely fall through, and we post the error
2486 -- message on the entry call alternative itself.
2488 if No (Statements (ECA)) then
2489 Last_Stm := ECA;
2491 -- If statement sequence of delay alternative is missing, then
2492 -- we can definitely fall through, and we post the error
2493 -- message on the delay alternative itself.
2495 -- Note: if both ECA and DCA are missing the return, then we
2496 -- post only one message, should be enough to fix the bugs.
2497 -- If not we will get a message next time on the DCA when the
2498 -- ECA is fixed!
2500 elsif No (Statements (DCA)) then
2501 Last_Stm := DCA;
2503 -- Else check both statement sequences
2505 else
2506 Check_Statement_Sequence (Statements (ECA));
2507 Check_Statement_Sequence (Statements (DCA));
2508 return;
2509 end if;
2510 end;
2512 -- Conditional entry call, check entry call and else part
2514 -- Note: in expanded code, the conditional entry call has been
2515 -- converted to a set of expanded statements on which the check
2516 -- will work correctly in any case.
2518 elsif Kind = N_Conditional_Entry_Call then
2519 declare
2520 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
2522 begin
2523 -- If statement sequence of entry call alternative is missing,
2524 -- then we can definitely fall through, and we post the error
2525 -- message on the entry call alternative itself.
2527 if No (Statements (ECA)) then
2528 Last_Stm := ECA;
2530 -- Else check statement sequence and else part
2532 else
2533 Check_Statement_Sequence (Statements (ECA));
2534 Check_Statement_Sequence (Else_Statements (Last_Stm));
2535 return;
2536 end if;
2537 end;
2538 end if;
2540 -- If we fall through, issue appropriate message
2542 if Mode = 'F' then
2544 if not Raise_Exception_Call then
2545 Error_Msg_N
2546 ("?RETURN statement missing following this statement!",
2547 Last_Stm);
2548 Error_Msg_N
2549 ("\?Program_Error may be raised at run time",
2550 Last_Stm);
2551 end if;
2553 -- Note: we set Err even though we have not issued a warning
2554 -- because we still have a case of a missing return. This is
2555 -- an extremely marginal case, probably will never be noticed
2556 -- but we might as well get it right.
2558 Err := True;
2560 else
2561 Error_Msg_N
2562 ("implied return after this statement not allowed (No_Return)",
2563 Last_Stm);
2564 end if;
2565 end Check_Statement_Sequence;
2567 -- Start of processing for Check_Returns
2569 begin
2570 Err := False;
2571 Check_Statement_Sequence (Statements (HSS));
2573 if Present (Exception_Handlers (HSS)) then
2574 Handler := First_Non_Pragma (Exception_Handlers (HSS));
2575 while Present (Handler) loop
2576 Check_Statement_Sequence (Statements (Handler));
2577 Next_Non_Pragma (Handler);
2578 end loop;
2579 end if;
2580 end Check_Returns;
2582 ----------------------------
2583 -- Check_Subprogram_Order --
2584 ----------------------------
2586 procedure Check_Subprogram_Order (N : Node_Id) is
2588 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
2589 -- This is used to check if S1 > S2 in the sense required by this
2590 -- test, for example nameab < namec, but name2 < name10.
2592 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
2593 L1, L2 : Positive;
2594 N1, N2 : Natural;
2596 begin
2597 -- Remove trailing numeric parts
2599 L1 := S1'Last;
2600 while S1 (L1) in '0' .. '9' loop
2601 L1 := L1 - 1;
2602 end loop;
2604 L2 := S2'Last;
2605 while S2 (L2) in '0' .. '9' loop
2606 L2 := L2 - 1;
2607 end loop;
2609 -- If non-numeric parts non-equal, that's decisive
2611 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
2612 return False;
2614 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
2615 return True;
2617 -- If non-numeric parts equal, compare suffixed numeric parts. Note
2618 -- that a missing suffix is treated as numeric zero in this test.
2620 else
2621 N1 := 0;
2622 while L1 < S1'Last loop
2623 L1 := L1 + 1;
2624 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
2625 end loop;
2627 N2 := 0;
2628 while L2 < S2'Last loop
2629 L2 := L2 + 1;
2630 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
2631 end loop;
2633 return N1 > N2;
2634 end if;
2635 end Subprogram_Name_Greater;
2637 -- Start of processing for Check_Subprogram_Order
2639 begin
2640 -- Check body in alpha order if this is option
2642 if Style_Check_Subprogram_Order
2643 and then Nkind (N) = N_Subprogram_Body
2644 and then Comes_From_Source (N)
2645 and then In_Extended_Main_Source_Unit (N)
2646 then
2647 declare
2648 LSN : String_Ptr
2649 renames Scope_Stack.Table
2650 (Scope_Stack.Last).Last_Subprogram_Name;
2652 Body_Id : constant Entity_Id :=
2653 Defining_Entity (Specification (N));
2655 begin
2656 Get_Decoded_Name_String (Chars (Body_Id));
2658 if LSN /= null then
2659 if Subprogram_Name_Greater
2660 (LSN.all, Name_Buffer (1 .. Name_Len))
2661 then
2662 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
2663 end if;
2665 Free (LSN);
2666 end if;
2668 LSN := new String'(Name_Buffer (1 .. Name_Len));
2669 end;
2670 end if;
2671 end Check_Subprogram_Order;
2673 ------------------------------
2674 -- Check_Subtype_Conformant --
2675 ------------------------------
2677 procedure Check_Subtype_Conformant
2678 (New_Id : Entity_Id;
2679 Old_Id : Entity_Id;
2680 Err_Loc : Node_Id := Empty)
2682 Result : Boolean;
2684 begin
2685 Check_Conformance
2686 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc);
2687 end Check_Subtype_Conformant;
2689 ---------------------------
2690 -- Check_Type_Conformant --
2691 ---------------------------
2693 procedure Check_Type_Conformant
2694 (New_Id : Entity_Id;
2695 Old_Id : Entity_Id;
2696 Err_Loc : Node_Id := Empty)
2698 Result : Boolean;
2700 begin
2701 Check_Conformance
2702 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
2703 end Check_Type_Conformant;
2705 ----------------------
2706 -- Conforming_Types --
2707 ----------------------
2709 function Conforming_Types
2710 (T1 : Entity_Id;
2711 T2 : Entity_Id;
2712 Ctype : Conformance_Type;
2713 Get_Inst : Boolean := False)
2714 return Boolean
2716 Type_1 : Entity_Id := T1;
2717 Type_2 : Entity_Id := T2;
2719 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
2720 -- If neither T1 nor T2 are generic actual types, or if they are
2721 -- in different scopes (e.g. parent and child instances), then verify
2722 -- that the base types are equal. Otherwise T1 and T2 must be
2723 -- on the same subtype chain. The whole purpose of this procedure
2724 -- is to prevent spurious ambiguities in an instantiation that may
2725 -- arise if two distinct generic types are instantiated with the
2726 -- same actual.
2728 ----------------------
2729 -- Base_Types_Match --
2730 ----------------------
2732 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
2733 begin
2734 if T1 = T2 then
2735 return True;
2737 elsif Base_Type (T1) = Base_Type (T2) then
2739 -- The following is too permissive. A more precise test must
2740 -- check that the generic actual is an ancestor subtype of the
2741 -- other ???.
2743 return not Is_Generic_Actual_Type (T1)
2744 or else not Is_Generic_Actual_Type (T2)
2745 or else Scope (T1) /= Scope (T2);
2747 else
2748 return False;
2749 end if;
2750 end Base_Types_Match;
2752 begin
2753 -- The context is an instance association for a formal
2754 -- access-to-subprogram type; the formal parameter types
2755 -- require mapping because they may denote other formal
2756 -- parameters of the generic unit.
2758 if Get_Inst then
2759 Type_1 := Get_Instance_Of (T1);
2760 Type_2 := Get_Instance_Of (T2);
2761 end if;
2763 -- First see if base types match
2765 if Base_Types_Match (Type_1, Type_2) then
2766 return Ctype <= Mode_Conformant
2767 or else Subtypes_Statically_Match (Type_1, Type_2);
2769 elsif Is_Incomplete_Or_Private_Type (Type_1)
2770 and then Present (Full_View (Type_1))
2771 and then Base_Types_Match (Full_View (Type_1), Type_2)
2772 then
2773 return Ctype <= Mode_Conformant
2774 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
2776 elsif Ekind (Type_2) = E_Incomplete_Type
2777 and then Present (Full_View (Type_2))
2778 and then Base_Types_Match (Type_1, Full_View (Type_2))
2779 then
2780 return Ctype <= Mode_Conformant
2781 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
2782 end if;
2784 -- Test anonymous access type case. For this case, static subtype
2785 -- matching is required for mode conformance (RM 6.3.1(15))
2787 if Ekind (Type_1) = E_Anonymous_Access_Type
2788 and then Ekind (Type_2) = E_Anonymous_Access_Type
2789 then
2790 declare
2791 Desig_1 : Entity_Id;
2792 Desig_2 : Entity_Id;
2794 begin
2795 Desig_1 := Directly_Designated_Type (Type_1);
2797 -- An access parameter can designate an incomplete type.
2799 if Ekind (Desig_1) = E_Incomplete_Type
2800 and then Present (Full_View (Desig_1))
2801 then
2802 Desig_1 := Full_View (Desig_1);
2803 end if;
2805 Desig_2 := Directly_Designated_Type (Type_2);
2807 if Ekind (Desig_2) = E_Incomplete_Type
2808 and then Present (Full_View (Desig_2))
2809 then
2810 Desig_2 := Full_View (Desig_2);
2811 end if;
2813 -- The context is an instance association for a formal
2814 -- access-to-subprogram type; formal access parameter
2815 -- designated types require mapping because they may
2816 -- denote other formal parameters of the generic unit.
2818 if Get_Inst then
2819 Desig_1 := Get_Instance_Of (Desig_1);
2820 Desig_2 := Get_Instance_Of (Desig_2);
2821 end if;
2823 -- It is possible for a Class_Wide_Type to be introduced for
2824 -- an incomplete type, in which case there is a separate class_
2825 -- wide type for the full view. The types conform if their
2826 -- Etypes conform, i.e. one may be the full view of the other.
2827 -- This can only happen in the context of an access parameter,
2828 -- other uses of an incomplete Class_Wide_Type are illegal.
2830 if Ekind (Desig_1) = E_Class_Wide_Type
2831 and then Ekind (Desig_2) = E_Class_Wide_Type
2832 then
2833 return
2834 Conforming_Types (Etype (Desig_1), Etype (Desig_2), Ctype);
2835 else
2836 return Base_Type (Desig_1) = Base_Type (Desig_2)
2837 and then (Ctype = Type_Conformant
2838 or else
2839 Subtypes_Statically_Match (Desig_1, Desig_2));
2840 end if;
2841 end;
2843 -- Otherwise definitely no match
2845 else
2846 return False;
2847 end if;
2849 end Conforming_Types;
2851 --------------------------
2852 -- Create_Extra_Formals --
2853 --------------------------
2855 procedure Create_Extra_Formals (E : Entity_Id) is
2856 Formal : Entity_Id;
2857 Last_Formal : Entity_Id;
2858 Last_Extra : Entity_Id;
2859 Formal_Type : Entity_Id;
2860 P_Formal : Entity_Id := Empty;
2862 function Add_Extra_Formal (Typ : Entity_Id) return Entity_Id;
2863 -- Add an extra formal, associated with the current Formal. The
2864 -- extra formal is added to the list of extra formals, and also
2865 -- returned as the result. These formals are always of mode IN.
2867 function Add_Extra_Formal (Typ : Entity_Id) return Entity_Id is
2868 EF : constant Entity_Id :=
2869 Make_Defining_Identifier (Sloc (Formal),
2870 Chars => New_External_Name (Chars (Formal), 'F'));
2872 begin
2873 -- We never generate extra formals if expansion is not active
2874 -- because we don't need them unless we are generating code.
2876 if not Expander_Active then
2877 return Empty;
2878 end if;
2880 -- A little optimization. Never generate an extra formal for
2881 -- the _init operand of an initialization procedure, since it
2882 -- could never be used.
2884 if Chars (Formal) = Name_uInit then
2885 return Empty;
2886 end if;
2888 Set_Ekind (EF, E_In_Parameter);
2889 Set_Actual_Subtype (EF, Typ);
2890 Set_Etype (EF, Typ);
2891 Set_Scope (EF, Scope (Formal));
2892 Set_Mechanism (EF, Default_Mechanism);
2893 Set_Formal_Validity (EF);
2895 Set_Extra_Formal (Last_Extra, EF);
2896 Last_Extra := EF;
2897 return EF;
2898 end Add_Extra_Formal;
2900 -- Start of processing for Create_Extra_Formals
2902 begin
2903 -- If this is a derived subprogram then the subtypes of the
2904 -- parent subprogram's formal parameters will be used to
2905 -- to determine the need for extra formals.
2907 if Is_Overloadable (E) and then Present (Alias (E)) then
2908 P_Formal := First_Formal (Alias (E));
2909 end if;
2911 Last_Extra := Empty;
2912 Formal := First_Formal (E);
2913 while Present (Formal) loop
2914 Last_Extra := Formal;
2915 Next_Formal (Formal);
2916 end loop;
2918 -- If Extra_formals where already created, don't do it again
2919 -- This situation may arise for subprogram types created as part
2920 -- of dispatching calls (see Expand_Dispatch_Call)
2922 if Present (Last_Extra) and then
2923 Present (Extra_Formal (Last_Extra))
2924 then
2925 return;
2926 end if;
2928 Formal := First_Formal (E);
2930 while Present (Formal) loop
2932 -- Create extra formal for supporting the attribute 'Constrained.
2933 -- The case of a private type view without discriminants also
2934 -- requires the extra formal if the underlying type has defaulted
2935 -- discriminants.
2937 if Ekind (Formal) /= E_In_Parameter then
2938 if Present (P_Formal) then
2939 Formal_Type := Etype (P_Formal);
2940 else
2941 Formal_Type := Etype (Formal);
2942 end if;
2944 if not Has_Discriminants (Formal_Type)
2945 and then Ekind (Formal_Type) in Private_Kind
2946 and then Present (Underlying_Type (Formal_Type))
2947 then
2948 Formal_Type := Underlying_Type (Formal_Type);
2949 end if;
2951 if Has_Discriminants (Formal_Type)
2952 and then
2953 ((not Is_Constrained (Formal_Type)
2954 and then not Is_Indefinite_Subtype (Formal_Type))
2955 or else Present (Extra_Formal (Formal)))
2956 then
2957 Set_Extra_Constrained
2958 (Formal, Add_Extra_Formal (Standard_Boolean));
2959 end if;
2960 end if;
2962 -- Create extra formal for supporting accessibility checking
2964 -- This is suppressed if we specifically suppress accessibility
2965 -- checks for either the subprogram, or the package in which it
2966 -- resides. However, we do not suppress it simply if the scope
2967 -- has accessibility checks suppressed, since this could cause
2968 -- trouble when clients are compiled with a different suppression
2969 -- setting. The explicit checks are safe from this point of view.
2971 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2972 and then not
2973 (Suppress_Accessibility_Checks (E)
2974 or else
2975 Suppress_Accessibility_Checks (Scope (E)))
2976 and then
2977 (not Present (P_Formal)
2978 or else Present (Extra_Accessibility (P_Formal)))
2979 then
2980 -- Temporary kludge: for now we avoid creating the extra
2981 -- formal for access parameters of protected operations
2982 -- because of problem with the case of internal protected
2983 -- calls. ???
2985 if Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Definition
2986 and then Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Body
2987 then
2988 Set_Extra_Accessibility
2989 (Formal, Add_Extra_Formal (Standard_Natural));
2990 end if;
2991 end if;
2993 if Present (P_Formal) then
2994 Next_Formal (P_Formal);
2995 end if;
2997 Last_Formal := Formal;
2998 Next_Formal (Formal);
2999 end loop;
3000 end Create_Extra_Formals;
3002 -----------------------------
3003 -- Enter_Overloaded_Entity --
3004 -----------------------------
3006 procedure Enter_Overloaded_Entity (S : Entity_Id) is
3007 E : Entity_Id := Current_Entity_In_Scope (S);
3008 C_E : Entity_Id := Current_Entity (S);
3010 begin
3011 if Present (E) then
3012 Set_Has_Homonym (E);
3013 Set_Has_Homonym (S);
3014 end if;
3016 Set_Is_Immediately_Visible (S);
3017 Set_Scope (S, Current_Scope);
3019 -- Chain new entity if front of homonym in current scope, so that
3020 -- homonyms are contiguous.
3022 if Present (E)
3023 and then E /= C_E
3024 then
3025 while Homonym (C_E) /= E loop
3026 C_E := Homonym (C_E);
3027 end loop;
3029 Set_Homonym (C_E, S);
3031 else
3032 E := C_E;
3033 Set_Current_Entity (S);
3034 end if;
3036 Set_Homonym (S, E);
3038 Append_Entity (S, Current_Scope);
3039 Set_Public_Status (S);
3041 if Debug_Flag_E then
3042 Write_Str ("New overloaded entity chain: ");
3043 Write_Name (Chars (S));
3044 E := S;
3046 while Present (E) loop
3047 Write_Str (" "); Write_Int (Int (E));
3048 E := Homonym (E);
3049 end loop;
3051 Write_Eol;
3052 end if;
3054 -- Generate warning for hiding
3056 if Warn_On_Hiding
3057 and then Comes_From_Source (S)
3058 and then In_Extended_Main_Source_Unit (S)
3059 then
3060 E := S;
3061 loop
3062 E := Homonym (E);
3063 exit when No (E);
3065 -- Warn unless genuine overloading
3067 if (not Is_Overloadable (E))
3068 or else Subtype_Conformant (E, S)
3069 then
3070 Error_Msg_Sloc := Sloc (E);
3071 Error_Msg_N ("declaration of & hides one#?", S);
3072 end if;
3073 end loop;
3074 end if;
3075 end Enter_Overloaded_Entity;
3077 -----------------------------
3078 -- Find_Corresponding_Spec --
3079 -----------------------------
3081 function Find_Corresponding_Spec (N : Node_Id) return Entity_Id is
3082 Spec : constant Node_Id := Specification (N);
3083 Designator : constant Entity_Id := Defining_Entity (Spec);
3085 E : Entity_Id;
3087 begin
3088 E := Current_Entity (Designator);
3090 while Present (E) loop
3092 -- We are looking for a matching spec. It must have the same scope,
3093 -- and the same name, and either be type conformant, or be the case
3094 -- of a library procedure spec and its body (which belong to one
3095 -- another regardless of whether they are type conformant or not).
3097 if Scope (E) = Current_Scope then
3098 if (Current_Scope = Standard_Standard
3099 or else (Ekind (E) = Ekind (Designator)
3100 and then
3101 Type_Conformant (E, Designator)))
3102 then
3103 -- Within an instantiation, we know that spec and body are
3104 -- subtype conformant, because they were subtype conformant
3105 -- in the generic. We choose the subtype-conformant entity
3106 -- here as well, to resolve spurious ambiguities in the
3107 -- instance that were not present in the generic (i.e. when
3108 -- two different types are given the same actual). If we are
3109 -- looking for a spec to match a body, full conformance is
3110 -- expected.
3112 if In_Instance then
3113 Set_Convention (Designator, Convention (E));
3115 if Nkind (N) = N_Subprogram_Body
3116 and then Present (Homonym (E))
3117 and then not Fully_Conformant (E, Designator)
3118 then
3119 goto Next_Entity;
3121 elsif not Subtype_Conformant (E, Designator) then
3122 goto Next_Entity;
3123 end if;
3124 end if;
3126 if not Has_Completion (E) then
3128 if Nkind (N) /= N_Subprogram_Body_Stub then
3129 Set_Corresponding_Spec (N, E);
3130 end if;
3132 Set_Has_Completion (E);
3133 return E;
3135 elsif Nkind (Parent (N)) = N_Subunit then
3137 -- If this is the proper body of a subunit, the completion
3138 -- flag is set when analyzing the stub.
3140 return E;
3142 -- If body already exists, this is an error unless the
3143 -- previous declaration is the implicit declaration of
3144 -- a derived subprogram, or this is a spurious overloading
3145 -- in an instance.
3147 elsif No (Alias (E))
3148 and then not Is_Intrinsic_Subprogram (E)
3149 and then not In_Instance
3150 then
3151 Error_Msg_Sloc := Sloc (E);
3152 if Is_Imported (E) then
3153 Error_Msg_NE
3154 ("body not allowed for imported subprogram & declared#",
3155 N, E);
3156 else
3157 Error_Msg_NE ("duplicate body for & declared#", N, E);
3158 end if;
3159 end if;
3161 elsif Is_Child_Unit (E)
3162 and then
3163 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
3164 and then
3165 Nkind (Parent (Unit_Declaration_Node (Designator)))
3166 = N_Compilation_Unit
3167 then
3169 -- Child units cannot be overloaded, so a conformance mismatch
3170 -- between body and a previous spec is an error.
3172 Error_Msg_N
3173 ("body of child unit does not match previous declaration", N);
3174 end if;
3175 end if;
3177 <<Next_Entity>>
3178 E := Homonym (E);
3179 end loop;
3181 -- On exit, we know that no previous declaration of subprogram exists
3183 return Empty;
3184 end Find_Corresponding_Spec;
3186 ----------------------
3187 -- Fully_Conformant --
3188 ----------------------
3190 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
3191 Result : Boolean;
3193 begin
3194 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
3195 return Result;
3196 end Fully_Conformant;
3198 ----------------------------------
3199 -- Fully_Conformant_Expressions --
3200 ----------------------------------
3202 function Fully_Conformant_Expressions
3203 (Given_E1 : Node_Id;
3204 Given_E2 : Node_Id)
3205 return Boolean
3207 E1 : constant Node_Id := Original_Node (Given_E1);
3208 E2 : constant Node_Id := Original_Node (Given_E2);
3209 -- We always test conformance on original nodes, since it is possible
3210 -- for analysis and/or expansion to make things look as though they
3211 -- conform when they do not, e.g. by converting 1+2 into 3.
3213 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
3214 renames Fully_Conformant_Expressions;
3216 function FCL (L1, L2 : List_Id) return Boolean;
3217 -- Compare elements of two lists for conformance. Elements have to
3218 -- be conformant, and actuals inserted as default parameters do not
3219 -- match explicit actuals with the same value.
3221 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
3222 -- Compare an operator node with a function call.
3224 ---------
3225 -- FCL --
3226 ---------
3228 function FCL (L1, L2 : List_Id) return Boolean is
3229 N1, N2 : Node_Id;
3231 begin
3232 if L1 = No_List then
3233 N1 := Empty;
3234 else
3235 N1 := First (L1);
3236 end if;
3238 if L2 = No_List then
3239 N2 := Empty;
3240 else
3241 N2 := First (L2);
3242 end if;
3244 -- Compare two lists, skipping rewrite insertions (we want to
3245 -- compare the original trees, not the expanded versions!)
3247 loop
3248 if Is_Rewrite_Insertion (N1) then
3249 Next (N1);
3250 elsif Is_Rewrite_Insertion (N2) then
3251 Next (N2);
3252 elsif No (N1) then
3253 return No (N2);
3254 elsif No (N2) then
3255 return False;
3256 elsif not FCE (N1, N2) then
3257 return False;
3258 else
3259 Next (N1);
3260 Next (N2);
3261 end if;
3262 end loop;
3263 end FCL;
3265 ---------
3266 -- FCO --
3267 ---------
3269 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
3270 Actuals : constant List_Id := Parameter_Associations (Call_Node);
3271 Act : Node_Id;
3273 begin
3274 if No (Actuals)
3275 or else Entity (Op_Node) /= Entity (Name (Call_Node))
3276 then
3277 return False;
3279 else
3280 Act := First (Actuals);
3282 if Nkind (Op_Node) in N_Binary_Op then
3284 if not FCE (Left_Opnd (Op_Node), Act) then
3285 return False;
3286 end if;
3288 Next (Act);
3289 end if;
3291 return Present (Act)
3292 and then FCE (Right_Opnd (Op_Node), Act)
3293 and then No (Next (Act));
3294 end if;
3295 end FCO;
3297 -- Start of processing for Fully_Conformant_Expressions
3299 begin
3300 -- Non-conformant if paren count does not match. Note: if some idiot
3301 -- complains that we don't do this right for more than 3 levels of
3302 -- parentheses, they will be treated with the respect they deserve :-)
3304 if Paren_Count (E1) /= Paren_Count (E2) then
3305 return False;
3307 -- If same entities are referenced, then they are conformant
3308 -- even if they have different forms (RM 8.3.1(19-20)).
3310 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
3311 if Present (Entity (E1)) then
3312 return Entity (E1) = Entity (E2)
3313 or else (Chars (Entity (E1)) = Chars (Entity (E2))
3314 and then Ekind (Entity (E1)) = E_Discriminant
3315 and then Ekind (Entity (E2)) = E_In_Parameter);
3317 elsif Nkind (E1) = N_Expanded_Name
3318 and then Nkind (E2) = N_Expanded_Name
3319 and then Nkind (Selector_Name (E1)) = N_Character_Literal
3320 and then Nkind (Selector_Name (E2)) = N_Character_Literal
3321 then
3322 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
3324 else
3325 -- Identifiers in component associations don't always have
3326 -- entities, but their names must conform.
3328 return Nkind (E1) = N_Identifier
3329 and then Nkind (E2) = N_Identifier
3330 and then Chars (E1) = Chars (E2);
3331 end if;
3333 elsif Nkind (E1) = N_Character_Literal
3334 and then Nkind (E2) = N_Expanded_Name
3335 then
3336 return Nkind (Selector_Name (E2)) = N_Character_Literal
3337 and then Chars (E1) = Chars (Selector_Name (E2));
3339 elsif Nkind (E2) = N_Character_Literal
3340 and then Nkind (E1) = N_Expanded_Name
3341 then
3342 return Nkind (Selector_Name (E1)) = N_Character_Literal
3343 and then Chars (E2) = Chars (Selector_Name (E1));
3345 elsif Nkind (E1) in N_Op
3346 and then Nkind (E2) = N_Function_Call
3347 then
3348 return FCO (E1, E2);
3350 elsif Nkind (E2) in N_Op
3351 and then Nkind (E1) = N_Function_Call
3352 then
3353 return FCO (E2, E1);
3355 -- Otherwise we must have the same syntactic entity
3357 elsif Nkind (E1) /= Nkind (E2) then
3358 return False;
3360 -- At this point, we specialize by node type
3362 else
3363 case Nkind (E1) is
3365 when N_Aggregate =>
3366 return
3367 FCL (Expressions (E1), Expressions (E2))
3368 and then FCL (Component_Associations (E1),
3369 Component_Associations (E2));
3371 when N_Allocator =>
3372 if Nkind (Expression (E1)) = N_Qualified_Expression
3373 or else
3374 Nkind (Expression (E2)) = N_Qualified_Expression
3375 then
3376 return FCE (Expression (E1), Expression (E2));
3378 -- Check that the subtype marks and any constraints
3379 -- are conformant
3381 else
3382 declare
3383 Indic1 : constant Node_Id := Expression (E1);
3384 Indic2 : constant Node_Id := Expression (E2);
3385 Elt1 : Node_Id;
3386 Elt2 : Node_Id;
3388 begin
3389 if Nkind (Indic1) /= N_Subtype_Indication then
3390 return
3391 Nkind (Indic2) /= N_Subtype_Indication
3392 and then Entity (Indic1) = Entity (Indic2);
3394 elsif Nkind (Indic2) /= N_Subtype_Indication then
3395 return
3396 Nkind (Indic1) /= N_Subtype_Indication
3397 and then Entity (Indic1) = Entity (Indic2);
3399 else
3400 if Entity (Subtype_Mark (Indic1)) /=
3401 Entity (Subtype_Mark (Indic2))
3402 then
3403 return False;
3404 end if;
3406 Elt1 := First (Constraints (Constraint (Indic1)));
3407 Elt2 := First (Constraints (Constraint (Indic2)));
3409 while Present (Elt1) and then Present (Elt2) loop
3410 if not FCE (Elt1, Elt2) then
3411 return False;
3412 end if;
3414 Next (Elt1);
3415 Next (Elt2);
3416 end loop;
3418 return True;
3419 end if;
3420 end;
3421 end if;
3423 when N_Attribute_Reference =>
3424 return
3425 Attribute_Name (E1) = Attribute_Name (E2)
3426 and then FCL (Expressions (E1), Expressions (E2));
3428 when N_Binary_Op =>
3429 return
3430 Entity (E1) = Entity (E2)
3431 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
3432 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
3434 when N_And_Then | N_Or_Else | N_In | N_Not_In =>
3435 return
3436 FCE (Left_Opnd (E1), Left_Opnd (E2))
3437 and then
3438 FCE (Right_Opnd (E1), Right_Opnd (E2));
3440 when N_Character_Literal =>
3441 return
3442 Char_Literal_Value (E1) = Char_Literal_Value (E2);
3444 when N_Component_Association =>
3445 return
3446 FCL (Choices (E1), Choices (E2))
3447 and then FCE (Expression (E1), Expression (E2));
3449 when N_Conditional_Expression =>
3450 return
3451 FCL (Expressions (E1), Expressions (E2));
3453 when N_Explicit_Dereference =>
3454 return
3455 FCE (Prefix (E1), Prefix (E2));
3457 when N_Extension_Aggregate =>
3458 return
3459 FCL (Expressions (E1), Expressions (E2))
3460 and then Null_Record_Present (E1) =
3461 Null_Record_Present (E2)
3462 and then FCL (Component_Associations (E1),
3463 Component_Associations (E2));
3465 when N_Function_Call =>
3466 return
3467 FCE (Name (E1), Name (E2))
3468 and then FCL (Parameter_Associations (E1),
3469 Parameter_Associations (E2));
3471 when N_Indexed_Component =>
3472 return
3473 FCE (Prefix (E1), Prefix (E2))
3474 and then FCL (Expressions (E1), Expressions (E2));
3476 when N_Integer_Literal =>
3477 return (Intval (E1) = Intval (E2));
3479 when N_Null =>
3480 return True;
3482 when N_Operator_Symbol =>
3483 return
3484 Chars (E1) = Chars (E2);
3486 when N_Others_Choice =>
3487 return True;
3489 when N_Parameter_Association =>
3490 return
3492 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
3493 and then FCE (Explicit_Actual_Parameter (E1),
3494 Explicit_Actual_Parameter (E2));
3496 when N_Qualified_Expression =>
3497 return
3498 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
3499 and then FCE (Expression (E1), Expression (E2));
3501 when N_Range =>
3502 return
3503 FCE (Low_Bound (E1), Low_Bound (E2))
3504 and then FCE (High_Bound (E1), High_Bound (E2));
3506 when N_Real_Literal =>
3507 return (Realval (E1) = Realval (E2));
3509 when N_Selected_Component =>
3510 return
3511 FCE (Prefix (E1), Prefix (E2))
3512 and then FCE (Selector_Name (E1), Selector_Name (E2));
3514 when N_Slice =>
3515 return
3516 FCE (Prefix (E1), Prefix (E2))
3517 and then FCE (Discrete_Range (E1), Discrete_Range (E2));
3519 when N_String_Literal =>
3520 declare
3521 S1 : constant String_Id := Strval (E1);
3522 S2 : constant String_Id := Strval (E2);
3523 L1 : constant Nat := String_Length (S1);
3524 L2 : constant Nat := String_Length (S2);
3526 begin
3527 if L1 /= L2 then
3528 return False;
3530 else
3531 for J in 1 .. L1 loop
3532 if Get_String_Char (S1, J) /=
3533 Get_String_Char (S2, J)
3534 then
3535 return False;
3536 end if;
3537 end loop;
3539 return True;
3540 end if;
3541 end;
3543 when N_Type_Conversion =>
3544 return
3545 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
3546 and then FCE (Expression (E1), Expression (E2));
3548 when N_Unary_Op =>
3549 return
3550 Entity (E1) = Entity (E2)
3551 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
3553 when N_Unchecked_Type_Conversion =>
3554 return
3555 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
3556 and then FCE (Expression (E1), Expression (E2));
3558 -- All other node types cannot appear in this context. Strictly
3559 -- we should raise a fatal internal error. Instead we just ignore
3560 -- the nodes. This means that if anyone makes a mistake in the
3561 -- expander and mucks an expression tree irretrievably, the
3562 -- result will be a failure to detect a (probably very obscure)
3563 -- case of non-conformance, which is better than bombing on some
3564 -- case where two expressions do in fact conform.
3566 when others =>
3567 return True;
3569 end case;
3570 end if;
3571 end Fully_Conformant_Expressions;
3573 --------------------
3574 -- Install_Entity --
3575 --------------------
3577 procedure Install_Entity (E : Entity_Id) is
3578 Prev : constant Entity_Id := Current_Entity (E);
3580 begin
3581 Set_Is_Immediately_Visible (E);
3582 Set_Current_Entity (E);
3583 Set_Homonym (E, Prev);
3584 end Install_Entity;
3586 ---------------------
3587 -- Install_Formals --
3588 ---------------------
3590 procedure Install_Formals (Id : Entity_Id) is
3591 F : Entity_Id;
3593 begin
3594 F := First_Formal (Id);
3596 while Present (F) loop
3597 Install_Entity (F);
3598 Next_Formal (F);
3599 end loop;
3600 end Install_Formals;
3602 ---------------------------------
3603 -- Is_Non_Overriding_Operation --
3604 ---------------------------------
3606 function Is_Non_Overriding_Operation
3607 (Prev_E : Entity_Id;
3608 New_E : Entity_Id)
3609 return Boolean
3611 Formal : Entity_Id;
3612 F_Typ : Entity_Id;
3613 G_Typ : Entity_Id := Empty;
3615 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
3616 -- If F_Type is a derived type associated with a generic actual
3617 -- subtype, then return its Generic_Parent_Type attribute, else
3618 -- return Empty.
3620 function Types_Correspond
3621 (P_Type : Entity_Id;
3622 N_Type : Entity_Id)
3623 return Boolean;
3624 -- Returns true if and only if the types (or designated types
3625 -- in the case of anonymous access types) are the same or N_Type
3626 -- is derived directly or indirectly from P_Type.
3628 -----------------------------
3629 -- Get_Generic_Parent_Type --
3630 -----------------------------
3632 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
3633 G_Typ : Entity_Id;
3634 Indic : Node_Id;
3636 begin
3637 if Is_Derived_Type (F_Typ)
3638 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
3639 then
3640 -- The tree must be traversed to determine the parent
3641 -- subtype in the generic unit, which unfortunately isn't
3642 -- always available via semantic attributes. ???
3643 -- (Note: The use of Original_Node is needed for cases
3644 -- where a full derived type has been rewritten.)
3646 Indic := Subtype_Indication
3647 (Type_Definition (Original_Node (Parent (F_Typ))));
3649 if Nkind (Indic) = N_Subtype_Indication then
3650 G_Typ := Entity (Subtype_Mark (Indic));
3651 else
3652 G_Typ := Entity (Indic);
3653 end if;
3655 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
3656 and then Present (Generic_Parent_Type (Parent (G_Typ)))
3657 then
3658 return Generic_Parent_Type (Parent (G_Typ));
3659 end if;
3660 end if;
3662 return Empty;
3663 end Get_Generic_Parent_Type;
3665 ----------------------
3666 -- Types_Correspond --
3667 ----------------------
3669 function Types_Correspond
3670 (P_Type : Entity_Id;
3671 N_Type : Entity_Id)
3672 return Boolean
3674 Prev_Type : Entity_Id := Base_Type (P_Type);
3675 New_Type : Entity_Id := Base_Type (N_Type);
3677 begin
3678 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
3679 Prev_Type := Designated_Type (Prev_Type);
3680 end if;
3682 if Ekind (New_Type) = E_Anonymous_Access_Type then
3683 New_Type := Designated_Type (New_Type);
3684 end if;
3686 if Prev_Type = New_Type then
3687 return True;
3689 elsif not Is_Class_Wide_Type (New_Type) then
3690 while Etype (New_Type) /= New_Type loop
3691 New_Type := Etype (New_Type);
3692 if New_Type = Prev_Type then
3693 return True;
3694 end if;
3695 end loop;
3696 end if;
3697 return False;
3698 end Types_Correspond;
3700 -- Start of processing for Is_Non_Overriding_Operation
3702 begin
3703 -- In the case where both operations are implicit derived
3704 -- subprograms then neither overrides the other. This can
3705 -- only occur in certain obscure cases (e.g., derivation
3706 -- from homographs created in a generic instantiation).
3708 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
3709 return True;
3711 elsif Ekind (Current_Scope) = E_Package
3712 and then Is_Generic_Instance (Current_Scope)
3713 and then In_Private_Part (Current_Scope)
3714 and then Comes_From_Source (New_E)
3715 then
3716 -- We examine the formals and result subtype of the inherited
3717 -- operation, to determine whether their type is derived from
3718 -- (the instance of) a generic type.
3720 Formal := First_Formal (Prev_E);
3722 while Present (Formal) loop
3723 F_Typ := Base_Type (Etype (Formal));
3725 if Ekind (F_Typ) = E_Anonymous_Access_Type then
3726 F_Typ := Designated_Type (F_Typ);
3727 end if;
3729 G_Typ := Get_Generic_Parent_Type (F_Typ);
3731 Next_Formal (Formal);
3732 end loop;
3734 if not Present (G_Typ) and then Ekind (Prev_E) = E_Function then
3735 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
3736 end if;
3738 if No (G_Typ) then
3739 return False;
3740 end if;
3742 -- If the generic type is a private type, then the original
3743 -- operation was not overriding in the generic, because there was
3744 -- no primitive operation to override.
3746 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
3747 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
3748 N_Formal_Private_Type_Definition
3749 then
3750 return True;
3752 -- The generic parent type is the ancestor of a formal derived
3753 -- type declaration. We need to check whether it has a primitive
3754 -- operation that should be overridden by New_E in the generic.
3756 else
3757 declare
3758 P_Formal : Entity_Id;
3759 N_Formal : Entity_Id;
3760 P_Typ : Entity_Id;
3761 N_Typ : Entity_Id;
3762 P_Prim : Entity_Id;
3763 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
3765 begin
3766 while Present (Prim_Elt) loop
3767 P_Prim := Node (Prim_Elt);
3768 if Chars (P_Prim) = Chars (New_E)
3769 and then Ekind (P_Prim) = Ekind (New_E)
3770 then
3771 P_Formal := First_Formal (P_Prim);
3772 N_Formal := First_Formal (New_E);
3773 while Present (P_Formal) and then Present (N_Formal) loop
3774 P_Typ := Etype (P_Formal);
3775 N_Typ := Etype (N_Formal);
3777 if not Types_Correspond (P_Typ, N_Typ) then
3778 exit;
3779 end if;
3781 Next_Entity (P_Formal);
3782 Next_Entity (N_Formal);
3783 end loop;
3785 -- Found a matching primitive operation belonging to
3786 -- the formal ancestor type, so the new subprogram
3787 -- is overriding.
3789 if not Present (P_Formal)
3790 and then not Present (N_Formal)
3791 and then (Ekind (New_E) /= E_Function
3792 or else
3793 Types_Correspond
3794 (Etype (P_Prim), Etype (New_E)))
3795 then
3796 return False;
3797 end if;
3798 end if;
3800 Next_Elmt (Prim_Elt);
3801 end loop;
3803 -- If no match found, then the new subprogram does
3804 -- not override in the generic (nor in the instance).
3806 return True;
3807 end;
3808 end if;
3809 else
3810 return False;
3811 end if;
3812 end Is_Non_Overriding_Operation;
3814 ------------------------------
3815 -- Make_Inequality_Operator --
3816 ------------------------------
3818 -- S is the defining identifier of an equality operator. We build a
3819 -- subprogram declaration with the right signature. This operation is
3820 -- intrinsic, because it is always expanded as the negation of the
3821 -- call to the equality function.
3823 procedure Make_Inequality_Operator (S : Entity_Id) is
3824 Loc : constant Source_Ptr := Sloc (S);
3825 Decl : Node_Id;
3826 Formals : List_Id;
3827 Op_Name : Entity_Id;
3829 A : Entity_Id;
3830 B : Entity_Id;
3832 begin
3833 -- Check that equality was properly defined.
3835 if No (Next_Formal (First_Formal (S))) then
3836 return;
3837 end if;
3839 A := Make_Defining_Identifier (Loc, Chars (First_Formal (S)));
3840 B := Make_Defining_Identifier (Loc,
3841 Chars (Next_Formal (First_Formal (S))));
3843 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
3845 Formals := New_List (
3846 Make_Parameter_Specification (Loc,
3847 Defining_Identifier => A,
3848 Parameter_Type =>
3849 New_Reference_To (Etype (First_Formal (S)), Loc)),
3851 Make_Parameter_Specification (Loc,
3852 Defining_Identifier => B,
3853 Parameter_Type =>
3854 New_Reference_To (Etype (Next_Formal (First_Formal (S))), Loc)));
3856 Decl :=
3857 Make_Subprogram_Declaration (Loc,
3858 Specification =>
3859 Make_Function_Specification (Loc,
3860 Defining_Unit_Name => Op_Name,
3861 Parameter_Specifications => Formals,
3862 Subtype_Mark => New_Reference_To (Standard_Boolean, Loc)));
3864 -- Insert inequality right after equality if it is explicit or after
3865 -- the derived type when implicit. These entities are created only
3866 -- for visibility purposes, and eventually replaced in the course of
3867 -- expansion, so they do not need to be attached to the tree and seen
3868 -- by the back-end. Keeping them internal also avoids spurious freezing
3869 -- problems. The parent field is set simply to make analysis safe.
3871 if No (Alias (S)) then
3872 Set_Parent (Decl, Parent (Unit_Declaration_Node (S)));
3873 else
3874 Set_Parent (Decl, Parent (Parent (Etype (First_Formal (S)))));
3875 end if;
3877 Mark_Rewrite_Insertion (Decl);
3878 Set_Is_Intrinsic_Subprogram (Op_Name);
3879 Analyze (Decl);
3880 Set_Has_Completion (Op_Name);
3881 Set_Corresponding_Equality (Op_Name, S);
3882 Set_Is_Abstract (Op_Name, Is_Abstract (S));
3884 end Make_Inequality_Operator;
3886 ----------------------
3887 -- May_Need_Actuals --
3888 ----------------------
3890 procedure May_Need_Actuals (Fun : Entity_Id) is
3891 F : Entity_Id;
3892 B : Boolean;
3894 begin
3895 F := First_Formal (Fun);
3896 B := True;
3898 while Present (F) loop
3899 if No (Default_Value (F)) then
3900 B := False;
3901 exit;
3902 end if;
3904 Next_Formal (F);
3905 end loop;
3907 Set_Needs_No_Actuals (Fun, B);
3908 end May_Need_Actuals;
3910 ---------------------
3911 -- Mode_Conformant --
3912 ---------------------
3914 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
3915 Result : Boolean;
3917 begin
3918 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
3919 return Result;
3920 end Mode_Conformant;
3922 ---------------------------
3923 -- New_Overloaded_Entity --
3924 ---------------------------
3926 procedure New_Overloaded_Entity
3927 (S : Entity_Id;
3928 Derived_Type : Entity_Id := Empty)
3930 E : Entity_Id := Current_Entity_In_Scope (S);
3931 Prev_Vis : Entity_Id := Empty;
3933 function Is_Private_Declaration (E : Entity_Id) return Boolean;
3934 -- Check that E is declared in the private part of the current package,
3935 -- or in the package body, where it may hide a previous declaration.
3936 -- We can' use In_Private_Part by itself because this flag is also
3937 -- set when freezing entities, so we must examine the place of the
3938 -- declaration in the tree, and recognize wrapper packages as well.
3940 procedure Maybe_Primitive_Operation (Overriding : Boolean := False);
3941 -- If the subprogram being analyzed is a primitive operation of
3942 -- the type of one of its formals, set the corresponding flag.
3944 ----------------------------
3945 -- Is_Private_Declaration --
3946 ----------------------------
3948 function Is_Private_Declaration (E : Entity_Id) return Boolean is
3949 Priv_Decls : List_Id;
3950 Decl : constant Node_Id := Unit_Declaration_Node (E);
3952 begin
3953 if Is_Package (Current_Scope)
3954 and then In_Private_Part (Current_Scope)
3955 then
3956 Priv_Decls :=
3957 Private_Declarations (
3958 Specification (Unit_Declaration_Node (Current_Scope)));
3960 return In_Package_Body (Current_Scope)
3961 or else List_Containing (Decl) = Priv_Decls
3962 or else (Nkind (Parent (Decl)) = N_Package_Specification
3963 and then not Is_Compilation_Unit (
3964 Defining_Entity (Parent (Decl)))
3965 and then List_Containing (Parent (Parent (Decl)))
3966 = Priv_Decls);
3967 else
3968 return False;
3969 end if;
3970 end Is_Private_Declaration;
3972 -------------------------------
3973 -- Maybe_Primitive_Operation --
3974 -------------------------------
3976 procedure Maybe_Primitive_Operation (Overriding : Boolean := False) is
3977 Formal : Entity_Id;
3978 F_Typ : Entity_Id;
3979 B_Typ : Entity_Id;
3981 function Visible_Part_Type (T : Entity_Id) return Boolean;
3982 -- Returns true if T is declared in the visible part of
3983 -- the current package scope; otherwise returns false.
3984 -- Assumes that T is declared in a package.
3986 procedure Check_Private_Overriding (T : Entity_Id);
3987 -- Checks that if a primitive abstract subprogram of a visible
3988 -- abstract type is declared in a private part, then it must
3989 -- override an abstract subprogram declared in the visible part.
3990 -- Also checks that if a primitive function with a controlling
3991 -- result is declared in a private part, then it must override
3992 -- a function declared in the visible part.
3994 ------------------------------
3995 -- Check_Private_Overriding --
3996 ------------------------------
3998 procedure Check_Private_Overriding (T : Entity_Id) is
3999 begin
4000 if Ekind (Current_Scope) = E_Package
4001 and then In_Private_Part (Current_Scope)
4002 and then Visible_Part_Type (T)
4003 and then not In_Instance
4004 then
4005 if Is_Abstract (T)
4006 and then Is_Abstract (S)
4007 and then (not Overriding or else not Is_Abstract (E))
4008 then
4009 Error_Msg_N ("abstract subprograms must be visible "
4010 & "('R'M 3.9.3(10))!", S);
4012 elsif Ekind (S) = E_Function
4013 and then Is_Tagged_Type (T)
4014 and then T = Base_Type (Etype (S))
4015 and then not Overriding
4016 then
4017 Error_Msg_N
4018 ("private function with tagged result must"
4019 & " override visible-part function", S);
4020 Error_Msg_N
4021 ("\move subprogram to the visible part"
4022 & " ('R'M 3.9.3(10))", S);
4023 end if;
4024 end if;
4025 end Check_Private_Overriding;
4027 -----------------------
4028 -- Visible_Part_Type --
4029 -----------------------
4031 function Visible_Part_Type (T : Entity_Id) return Boolean is
4032 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
4033 N : Node_Id;
4035 begin
4036 -- If the entity is a private type, then it must be
4037 -- declared in a visible part.
4039 if Ekind (T) in Private_Kind then
4040 return True;
4041 end if;
4043 -- Otherwise, we traverse the visible part looking for its
4044 -- corresponding declaration. We cannot use the declaration
4045 -- node directly because in the private part the entity of a
4046 -- private type is the one in the full view, which does not
4047 -- indicate that it is the completion of something visible.
4049 N := First (Visible_Declarations (Specification (P)));
4050 while Present (N) loop
4051 if Nkind (N) = N_Full_Type_Declaration
4052 and then Present (Defining_Identifier (N))
4053 and then T = Defining_Identifier (N)
4054 then
4055 return True;
4057 elsif (Nkind (N) = N_Private_Type_Declaration
4058 or else
4059 Nkind (N) = N_Private_Extension_Declaration)
4060 and then Present (Defining_Identifier (N))
4061 and then T = Full_View (Defining_Identifier (N))
4062 then
4063 return True;
4064 end if;
4066 Next (N);
4067 end loop;
4069 return False;
4070 end Visible_Part_Type;
4072 -- Start of processing for Maybe_Primitive_Operation
4074 begin
4075 if not Comes_From_Source (S) then
4076 null;
4078 elsif (Ekind (Current_Scope) = E_Package
4079 and then not In_Package_Body (Current_Scope))
4080 or else Overriding
4081 then
4082 -- For function, check return type
4084 if Ekind (S) = E_Function then
4085 B_Typ := Base_Type (Etype (S));
4087 if Scope (B_Typ) = Current_Scope then
4088 Set_Has_Primitive_Operations (B_Typ);
4089 Check_Private_Overriding (B_Typ);
4090 end if;
4091 end if;
4093 -- For all subprograms, check formals
4095 Formal := First_Formal (S);
4096 while Present (Formal) loop
4097 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
4098 F_Typ := Designated_Type (Etype (Formal));
4099 else
4100 F_Typ := Etype (Formal);
4101 end if;
4103 B_Typ := Base_Type (F_Typ);
4105 if Scope (B_Typ) = Current_Scope then
4106 Set_Has_Primitive_Operations (B_Typ);
4107 Check_Private_Overriding (B_Typ);
4108 end if;
4110 Next_Formal (Formal);
4111 end loop;
4112 end if;
4113 end Maybe_Primitive_Operation;
4115 -- Start of processing for New_Overloaded_Entity
4117 begin
4118 if No (E) then
4119 Enter_Overloaded_Entity (S);
4120 Check_Dispatching_Operation (S, Empty);
4121 Maybe_Primitive_Operation;
4123 elsif not Is_Overloadable (E) then
4125 -- Check for spurious conflict produced by a subprogram that has the
4126 -- same name as that of the enclosing generic package. The conflict
4127 -- occurs within an instance, between the subprogram and the renaming
4128 -- declaration for the package. After the subprogram, the package
4129 -- renaming declaration becomes hidden.
4131 if Ekind (E) = E_Package
4132 and then Present (Renamed_Object (E))
4133 and then Renamed_Object (E) = Current_Scope
4134 and then Nkind (Parent (Renamed_Object (E))) =
4135 N_Package_Specification
4136 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
4137 then
4138 Set_Is_Hidden (E);
4139 Set_Is_Immediately_Visible (E, False);
4140 Enter_Overloaded_Entity (S);
4141 Set_Homonym (S, Homonym (E));
4142 Check_Dispatching_Operation (S, Empty);
4144 -- If the subprogram is implicit it is hidden by the previous
4145 -- declaration. However if it is dispatching, it must appear in
4146 -- the dispatch table anyway, because it can be dispatched to
4147 -- even if it cannot be called directly.
4149 elsif Present (Alias (S))
4150 and then not Comes_From_Source (S)
4151 then
4152 Set_Scope (S, Current_Scope);
4154 if Is_Dispatching_Operation (Alias (S)) then
4155 Check_Dispatching_Operation (S, Empty);
4156 end if;
4158 return;
4160 else
4161 Error_Msg_Sloc := Sloc (E);
4162 Error_Msg_N ("& conflicts with declaration#", S);
4164 -- Useful additional warning.
4166 if Is_Generic_Unit (E) then
4167 Error_Msg_N ("\previous generic unit cannot be overloaded", S);
4168 end if;
4170 return;
4171 end if;
4173 else
4174 -- E exists and is overloadable. Determine whether S is the body
4175 -- of E, a new overloaded entity with a different signature, or
4176 -- an error altogether.
4178 while Present (E) loop
4179 if Scope (E) /= Current_Scope then
4180 null;
4182 elsif Type_Conformant (E, S) then
4184 -- If the old and new entities have the same profile and
4185 -- one is not the body of the other, then this is an error,
4186 -- unless one of them is implicitly declared.
4188 -- There are some cases when both can be implicit, for example
4189 -- when both a literal and a function that overrides it are
4190 -- inherited in a derivation, or when an inhertited operation
4191 -- of a tagged full type overrides the ineherited operation of
4192 -- a private extension. Ada 83 had a special rule for the
4193 -- the literal case. In Ada95, the later implicit operation
4194 -- hides the former, and the literal is always the former.
4195 -- In the odd case where both are derived operations declared
4196 -- at the same point, both operations should be declared,
4197 -- and in that case we bypass the following test and proceed
4198 -- to the next part (this can only occur for certain obscure
4199 -- cases involving homographs in instances and can't occur for
4200 -- dispatching operations ???). Note that the following
4201 -- condition is less than clear. For example, it's not at
4202 -- all clear why there's a test for E_Entry here. ???
4204 if Present (Alias (S))
4205 and then (No (Alias (E))
4206 or else Comes_From_Source (E)
4207 or else Is_Dispatching_Operation (E))
4208 and then
4209 (Ekind (E) = E_Entry
4210 or else Ekind (E) /= E_Enumeration_Literal)
4211 then
4212 -- When an derived operation is overloaded it may be due
4213 -- to the fact that the full view of a private extension
4214 -- re-inherits. It has to be dealt with.
4216 if Is_Package (Current_Scope)
4217 and then In_Private_Part (Current_Scope)
4218 then
4219 Check_Operation_From_Private_View (S, E);
4220 end if;
4222 -- In any case the implicit operation remains hidden by
4223 -- the existing declaration.
4225 return;
4227 -- Within an instance, the renaming declarations for
4228 -- actual subprograms may become ambiguous, but they do
4229 -- not hide each other.
4231 elsif Ekind (E) /= E_Entry
4232 and then not Comes_From_Source (E)
4233 and then not Is_Generic_Instance (E)
4234 and then (Present (Alias (E))
4235 or else Is_Intrinsic_Subprogram (E))
4236 and then (not In_Instance
4237 or else No (Parent (E))
4238 or else Nkind (Unit_Declaration_Node (E)) /=
4239 N_Subprogram_Renaming_Declaration)
4240 then
4241 -- A subprogram child unit is not allowed to override
4242 -- an inherited subprogram (10.1.1(20)).
4244 if Is_Child_Unit (S) then
4245 Error_Msg_N
4246 ("child unit overrides inherited subprogram in parent",
4248 return;
4249 end if;
4251 if Is_Non_Overriding_Operation (E, S) then
4252 Enter_Overloaded_Entity (S);
4253 if not Present (Derived_Type)
4254 or else Is_Tagged_Type (Derived_Type)
4255 then
4256 Check_Dispatching_Operation (S, Empty);
4257 end if;
4259 return;
4260 end if;
4262 -- E is a derived operation or an internal operator which
4263 -- is being overridden. Remove E from further visibility.
4264 -- Furthermore, if E is a dispatching operation, it must be
4265 -- replaced in the list of primitive operations of its type
4266 -- (see Override_Dispatching_Operation).
4268 declare
4269 Prev : Entity_Id;
4271 begin
4272 Prev := First_Entity (Current_Scope);
4274 while Present (Prev)
4275 and then Next_Entity (Prev) /= E
4276 loop
4277 Next_Entity (Prev);
4278 end loop;
4280 -- It is possible for E to be in the current scope and
4281 -- yet not in the entity chain. This can only occur in a
4282 -- generic context where E is an implicit concatenation
4283 -- in the formal part, because in a generic body the
4284 -- entity chain starts with the formals.
4286 pragma Assert
4287 (Present (Prev) or else Chars (E) = Name_Op_Concat);
4289 -- E must be removed both from the entity_list of the
4290 -- current scope, and from the visibility chain
4292 if Debug_Flag_E then
4293 Write_Str ("Override implicit operation ");
4294 Write_Int (Int (E));
4295 Write_Eol;
4296 end if;
4298 -- If E is a predefined concatenation, it stands for four
4299 -- different operations. As a result, a single explicit
4300 -- declaration does not hide it. In a possible ambiguous
4301 -- situation, Disambiguate chooses the user-defined op,
4302 -- so it is correct to retain the previous internal one.
4304 if Chars (E) /= Name_Op_Concat
4305 or else Ekind (E) /= E_Operator
4306 then
4307 -- For nondispatching derived operations that are
4308 -- overridden by a subprogram declared in the private
4309 -- part of a package, we retain the derived subprogram
4310 -- but mark it as not immediately visible. If the
4311 -- derived operation was declared in the visible part
4312 -- then this ensures that it will still be visible
4313 -- outside the package with the proper signature
4314 -- (calls from outside must also be directed to this
4315 -- version rather than the overriding one, unlike the
4316 -- dispatching case). Calls from inside the package
4317 -- will still resolve to the overriding subprogram
4318 -- since the derived one is marked as not visible
4319 -- within the package.
4321 -- If the private operation is dispatching, we achieve
4322 -- the overriding by keeping the implicit operation
4323 -- but setting its alias to be the overring one. In
4324 -- this fashion the proper body is executed in all
4325 -- cases, but the original signature is used outside
4326 -- of the package.
4328 -- If the overriding is not in the private part, we
4329 -- remove the implicit operation altogether.
4331 if Is_Private_Declaration (S) then
4333 if not Is_Dispatching_Operation (E) then
4334 Set_Is_Immediately_Visible (E, False);
4335 else
4337 -- work done in Override_Dispatching_Operation.
4339 null;
4340 end if;
4341 else
4343 -- Find predecessor of E in Homonym chain.
4345 if E = Current_Entity (E) then
4346 Prev_Vis := Empty;
4347 else
4348 Prev_Vis := Current_Entity (E);
4349 while Homonym (Prev_Vis) /= E loop
4350 Prev_Vis := Homonym (Prev_Vis);
4351 end loop;
4352 end if;
4354 if Prev_Vis /= Empty then
4356 -- Skip E in the visibility chain
4358 Set_Homonym (Prev_Vis, Homonym (E));
4360 else
4361 Set_Name_Entity_Id (Chars (E), Homonym (E));
4362 end if;
4364 Set_Next_Entity (Prev, Next_Entity (E));
4366 if No (Next_Entity (Prev)) then
4367 Set_Last_Entity (Current_Scope, Prev);
4368 end if;
4370 end if;
4371 end if;
4373 Enter_Overloaded_Entity (S);
4375 if Is_Dispatching_Operation (E) then
4376 -- An overriding dispatching subprogram inherits
4377 -- the convention of the overridden subprogram
4378 -- (by AI-117).
4380 Set_Convention (S, Convention (E));
4382 Check_Dispatching_Operation (S, E);
4383 else
4384 Check_Dispatching_Operation (S, Empty);
4385 end if;
4387 Maybe_Primitive_Operation (Overriding => True);
4388 goto Check_Inequality;
4389 end;
4391 -- Apparent redeclarations in instances can occur when two
4392 -- formal types get the same actual type. The subprograms in
4393 -- in the instance are legal, even if not callable from the
4394 -- outside. Calls from within are disambiguated elsewhere.
4395 -- For dispatching operations in the visible part, the usual
4396 -- rules apply, and operations with the same profile are not
4397 -- legal (B830001).
4399 elsif (In_Instance_Visible_Part
4400 and then not Is_Dispatching_Operation (E))
4401 or else In_Instance_Not_Visible
4402 then
4403 null;
4405 -- Here we have a real error (identical profile)
4407 else
4408 Error_Msg_Sloc := Sloc (E);
4410 -- Avoid cascaded errors if the entity appears in
4411 -- subsequent calls.
4413 Set_Scope (S, Current_Scope);
4415 Error_Msg_N ("& conflicts with declaration#", S);
4417 if Is_Generic_Instance (S)
4418 and then not Has_Completion (E)
4419 then
4420 Error_Msg_N
4421 ("\instantiation cannot provide body for it", S);
4422 end if;
4424 return;
4425 end if;
4427 else
4428 null;
4429 end if;
4431 Prev_Vis := E;
4432 E := Homonym (E);
4433 end loop;
4435 -- On exit, we know that S is a new entity
4437 Enter_Overloaded_Entity (S);
4438 Maybe_Primitive_Operation;
4440 -- If S is a derived operation for an untagged type then
4441 -- by definition it's not a dispatching operation (even
4442 -- if the parent operation was dispatching), so we don't
4443 -- call Check_Dispatching_Operation in that case.
4445 if not Present (Derived_Type)
4446 or else Is_Tagged_Type (Derived_Type)
4447 then
4448 Check_Dispatching_Operation (S, Empty);
4449 end if;
4450 end if;
4452 -- If this is a user-defined equality operator that is not
4453 -- a derived subprogram, create the corresponding inequality.
4454 -- If the operation is dispatching, the expansion is done
4455 -- elsewhere, and we do not create an explicit inequality
4456 -- operation.
4458 <<Check_Inequality>>
4459 if Chars (S) = Name_Op_Eq
4460 and then Etype (S) = Standard_Boolean
4461 and then Present (Parent (S))
4462 and then not Is_Dispatching_Operation (S)
4463 then
4464 Make_Inequality_Operator (S);
4465 end if;
4467 end New_Overloaded_Entity;
4469 ---------------------
4470 -- Process_Formals --
4471 ---------------------
4473 procedure Process_Formals
4474 (T : List_Id;
4475 Related_Nod : Node_Id)
4477 Param_Spec : Node_Id;
4478 Formal : Entity_Id;
4479 Formal_Type : Entity_Id;
4480 Default : Node_Id;
4481 Ptype : Entity_Id;
4483 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
4484 -- Check whether the default has a class-wide type. After analysis
4485 -- the default has the type of the formal, so we must also check
4486 -- explicitly for an access attribute.
4488 ---------------------------
4489 -- Is_Class_Wide_Default --
4490 ---------------------------
4492 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
4493 begin
4494 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
4495 or else (Nkind (D) = N_Attribute_Reference
4496 and then Attribute_Name (D) = Name_Access
4497 and then Is_Class_Wide_Type (Etype (Prefix (D))));
4498 end Is_Class_Wide_Default;
4500 -- Start of processing for Process_Formals
4502 begin
4503 -- In order to prevent premature use of the formals in the same formal
4504 -- part, the Ekind is left undefined until all default expressions are
4505 -- analyzed. The Ekind is established in a separate loop at the end.
4507 Param_Spec := First (T);
4509 while Present (Param_Spec) loop
4511 Formal := Defining_Identifier (Param_Spec);
4512 Enter_Name (Formal);
4514 -- Case of ordinary parameters
4516 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
4517 Find_Type (Parameter_Type (Param_Spec));
4518 Ptype := Parameter_Type (Param_Spec);
4520 if Ptype = Error then
4521 goto Continue;
4522 end if;
4524 Formal_Type := Entity (Ptype);
4526 if Ekind (Formal_Type) = E_Incomplete_Type
4527 or else (Is_Class_Wide_Type (Formal_Type)
4528 and then Ekind (Root_Type (Formal_Type)) =
4529 E_Incomplete_Type)
4530 then
4531 if Nkind (Parent (T)) /= N_Access_Function_Definition
4532 and then Nkind (Parent (T)) /= N_Access_Procedure_Definition
4533 then
4534 Error_Msg_N ("invalid use of incomplete type", Param_Spec);
4535 end if;
4537 elsif Ekind (Formal_Type) = E_Void then
4538 Error_Msg_NE ("premature use of&",
4539 Parameter_Type (Param_Spec), Formal_Type);
4540 end if;
4542 -- An access formal type
4544 else
4545 Formal_Type :=
4546 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
4547 end if;
4549 Set_Etype (Formal, Formal_Type);
4551 Default := Expression (Param_Spec);
4553 if Present (Default) then
4554 if Out_Present (Param_Spec) then
4555 Error_Msg_N
4556 ("default initialization only allowed for IN parameters",
4557 Param_Spec);
4558 end if;
4560 -- Do the special preanalysis of the expression (see section on
4561 -- "Handling of Default Expressions" in the spec of package Sem).
4563 Analyze_Default_Expression (Default, Formal_Type);
4565 -- Check that the designated type of an access parameter's
4566 -- default is not a class-wide type unless the parameter's
4567 -- designated type is also class-wide.
4569 if Ekind (Formal_Type) = E_Anonymous_Access_Type
4570 and then Is_Class_Wide_Default (Default)
4571 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
4572 then
4573 Error_Msg_N
4574 ("access to class-wide expression not allowed here", Default);
4575 end if;
4576 end if;
4578 <<Continue>>
4579 Next (Param_Spec);
4580 end loop;
4582 -- Now set the kind (mode) of each formal
4584 Param_Spec := First (T);
4586 while Present (Param_Spec) loop
4587 Formal := Defining_Identifier (Param_Spec);
4588 Set_Formal_Mode (Formal);
4590 if Ekind (Formal) = E_In_Parameter then
4591 Set_Default_Value (Formal, Expression (Param_Spec));
4593 if Present (Expression (Param_Spec)) then
4594 Default := Expression (Param_Spec);
4596 if Is_Scalar_Type (Etype (Default)) then
4597 if Nkind
4598 (Parameter_Type (Param_Spec)) /= N_Access_Definition
4599 then
4600 Formal_Type := Entity (Parameter_Type (Param_Spec));
4602 else
4603 Formal_Type := Access_Definition
4604 (Related_Nod, Parameter_Type (Param_Spec));
4605 end if;
4607 Apply_Scalar_Range_Check (Default, Formal_Type);
4608 end if;
4610 end if;
4611 end if;
4613 Next (Param_Spec);
4614 end loop;
4616 end Process_Formals;
4618 -------------------------
4619 -- Set_Actual_Subtypes --
4620 -------------------------
4622 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
4623 Loc : constant Source_Ptr := Sloc (N);
4624 Decl : Node_Id;
4625 Formal : Entity_Id;
4626 T : Entity_Id;
4627 First_Stmt : Node_Id := Empty;
4628 AS_Needed : Boolean;
4630 begin
4631 Formal := First_Formal (Subp);
4632 while Present (Formal) loop
4633 T := Etype (Formal);
4635 -- We never need an actual subtype for a constrained formal.
4637 if Is_Constrained (T) then
4638 AS_Needed := False;
4640 -- If we have unknown discriminants, then we do not need an
4641 -- actual subtype, or more accurately we cannot figure it out!
4642 -- Note that all class-wide types have unknown discriminants.
4644 elsif Has_Unknown_Discriminants (T) then
4645 AS_Needed := False;
4647 -- At this stage we have an unconstrained type that may need
4648 -- an actual subtype. For sure the actual subtype is needed
4649 -- if we have an unconstrained array type.
4651 elsif Is_Array_Type (T) then
4652 AS_Needed := True;
4654 -- The only other case which needs an actual subtype is an
4655 -- unconstrained record type which is an IN parameter (we
4656 -- cannot generate actual subtypes for the OUT or IN OUT case,
4657 -- since an assignment can change the discriminant values.
4658 -- However we exclude the case of initialization procedures,
4659 -- since discriminants are handled very specially in this context,
4660 -- see the section entitled "Handling of Discriminants" in Einfo.
4661 -- We also exclude the case of Discrim_SO_Functions (functions
4662 -- used in front end layout mode for size/offset values), since
4663 -- in such functions only discriminants are referenced, and not
4664 -- only are such subtypes not needed, but they cannot always
4665 -- be generated, because of order of elaboration issues.
4667 elsif Is_Record_Type (T)
4668 and then Ekind (Formal) = E_In_Parameter
4669 and then Chars (Formal) /= Name_uInit
4670 and then not Is_Discrim_SO_Function (Subp)
4671 then
4672 AS_Needed := True;
4674 -- All other cases do not need an actual subtype
4676 else
4677 AS_Needed := False;
4678 end if;
4680 -- Generate actual subtypes for unconstrained arrays and
4681 -- unconstrained discriminated records.
4683 if AS_Needed then
4684 Decl := Build_Actual_Subtype (T, Formal);
4686 if Nkind (N) = N_Accept_Statement then
4687 if Present (Handled_Statement_Sequence (N)) then
4688 First_Stmt :=
4689 First (Statements (Handled_Statement_Sequence (N)));
4690 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
4691 Mark_Rewrite_Insertion (Decl);
4692 else
4693 -- If the accept statement has no body, there will be
4694 -- no reference to the actuals, so no need to compute
4695 -- actual subtypes.
4697 return;
4698 end if;
4700 else
4701 Prepend (Decl, Declarations (N));
4702 Mark_Rewrite_Insertion (Decl);
4703 end if;
4705 Analyze (Decl);
4707 -- We need to freeze manually the generated type when it is
4708 -- inserted anywhere else than in a declarative part.
4710 if Present (First_Stmt) then
4711 Insert_List_Before_And_Analyze (First_Stmt,
4712 Freeze_Entity (Defining_Identifier (Decl), Loc));
4713 end if;
4715 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
4716 end if;
4718 Next_Formal (Formal);
4719 end loop;
4720 end Set_Actual_Subtypes;
4722 ---------------------
4723 -- Set_Formal_Mode --
4724 ---------------------
4726 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
4727 Spec : constant Node_Id := Parent (Formal_Id);
4729 begin
4730 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
4731 -- since we ensure that corresponding actuals are always valid at the
4732 -- point of the call.
4734 if Out_Present (Spec) then
4736 if Ekind (Scope (Formal_Id)) = E_Function
4737 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
4738 then
4739 Error_Msg_N ("functions can only have IN parameters", Spec);
4740 Set_Ekind (Formal_Id, E_In_Parameter);
4742 elsif In_Present (Spec) then
4743 Set_Ekind (Formal_Id, E_In_Out_Parameter);
4745 else
4746 Set_Ekind (Formal_Id, E_Out_Parameter);
4747 Set_Not_Source_Assigned (Formal_Id);
4748 end if;
4750 else
4751 Set_Ekind (Formal_Id, E_In_Parameter);
4752 end if;
4754 Set_Mechanism (Formal_Id, Default_Mechanism);
4755 Set_Formal_Validity (Formal_Id);
4756 end Set_Formal_Mode;
4758 -------------------------
4759 -- Set_Formal_Validity --
4760 -------------------------
4762 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
4763 begin
4764 -- If in full validity checking mode, then we can assume that
4765 -- an IN or IN OUT parameter is valid (see Exp_Ch5.Expand_Call)
4767 if not Validity_Checks_On then
4768 return;
4770 elsif Ekind (Formal_Id) = E_In_Parameter
4771 and then Validity_Check_In_Params
4772 then
4773 Set_Is_Known_Valid (Formal_Id, True);
4775 elsif Ekind (Formal_Id) = E_In_Out_Parameter
4776 and then Validity_Check_In_Out_Params
4777 then
4778 Set_Is_Known_Valid (Formal_Id, True);
4779 end if;
4780 end Set_Formal_Validity;
4782 ------------------------
4783 -- Subtype_Conformant --
4784 ------------------------
4786 function Subtype_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
4787 Result : Boolean;
4789 begin
4790 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result);
4791 return Result;
4792 end Subtype_Conformant;
4794 ---------------------
4795 -- Type_Conformant --
4796 ---------------------
4798 function Type_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
4799 Result : Boolean;
4801 begin
4802 Check_Conformance (New_Id, Old_Id, Type_Conformant, False, Result);
4803 return Result;
4804 end Type_Conformant;
4806 -------------------------------
4807 -- Valid_Operator_Definition --
4808 -------------------------------
4810 procedure Valid_Operator_Definition (Designator : Entity_Id) is
4811 N : Integer := 0;
4812 F : Entity_Id;
4813 Id : constant Name_Id := Chars (Designator);
4814 N_OK : Boolean;
4816 begin
4817 F := First_Formal (Designator);
4819 while Present (F) loop
4820 N := N + 1;
4822 if Present (Default_Value (F)) then
4823 Error_Msg_N
4824 ("default values not allowed for operator parameters",
4825 Parent (F));
4826 end if;
4828 Next_Formal (F);
4829 end loop;
4831 -- Verify that user-defined operators have proper number of arguments
4832 -- First case of operators which can only be unary
4834 if Id = Name_Op_Not
4835 or else Id = Name_Op_Abs
4836 then
4837 N_OK := (N = 1);
4839 -- Case of operators which can be unary or binary
4841 elsif Id = Name_Op_Add
4842 or Id = Name_Op_Subtract
4843 then
4844 N_OK := (N in 1 .. 2);
4846 -- All other operators can only be binary
4848 else
4849 N_OK := (N = 2);
4850 end if;
4852 if not N_OK then
4853 Error_Msg_N
4854 ("incorrect number of arguments for operator", Designator);
4855 end if;
4857 if Id = Name_Op_Ne
4858 and then Base_Type (Etype (Designator)) = Standard_Boolean
4859 and then not Is_Intrinsic_Subprogram (Designator)
4860 then
4861 Error_Msg_N
4862 ("explicit definition of inequality not allowed", Designator);
4863 end if;
4864 end Valid_Operator_Definition;
4866 end Sem_Ch6;