* doc/install.texi (Prerequisites): New section documenting
[official-gcc.git] / gcc / ada / 5gmastop.adb
blob01e6381cadd6226f40c13501418a31243c125d05
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- SYSTEM.MACHINE_STATE_OPERATIONS --
6 -- --
7 -- B o d y --
8 -- (Version for IRIX/MIPS) --
9 -- --
10 -- Copyright (C) 1999-2001 Free Software Foundation, Inc. --
11 -- --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 2, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
18 -- for more details. You should have received a copy of the GNU General --
19 -- Public License distributed with GNAT; see file COPYING. If not, write --
20 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
21 -- MA 02111-1307, USA. --
22 -- --
23 -- As a special exception, if other files instantiate generics from this --
24 -- unit, or you link this unit with other files to produce an executable, --
25 -- this unit does not by itself cause the resulting executable to be --
26 -- covered by the GNU General Public License. This exception does not --
27 -- however invalidate any other reasons why the executable file might be --
28 -- covered by the GNU Public License. --
29 -- --
30 -- GNAT was originally developed by the GNAT team at New York University. --
31 -- Extensive contributions were provided by Ada Core Technologies Inc. --
32 -- --
33 ------------------------------------------------------------------------------
35 -- This version of Ada.Exceptions.Machine_State_Operations is for use on
36 -- SGI Irix systems. By means of compile time conditional calculations, it
37 -- can handle both n32/n64 and o32 modes.
39 with System.Machine_Code; use System.Machine_Code;
40 with System.Memory;
41 with System.Soft_Links; use System.Soft_Links;
42 with Unchecked_Conversion;
44 package body System.Machine_State_Operations is
46 use System.Storage_Elements;
47 use System.Exceptions;
49 -- The exc_unwind function in libexc operats on a Sigcontext
51 -- Type sigcontext_t is defined in /usr/include/sys/signal.h.
52 -- We define an equivalent Ada type here. From the comments in
53 -- signal.h:
55 -- sigcontext is not part of the ABI - so this version is used to
56 -- handle 32 and 64 bit applications - it is a constant size regardless
57 -- of compilation mode, and always returns 64 bit register values
59 type Uns32 is mod 2 ** 32;
60 type Uns64 is mod 2 ** 64;
62 type Uns32_Ptr is access all Uns32;
63 type Uns64_Array is array (Integer range <>) of Uns64;
65 type Reg_Array is array (0 .. 31) of Uns64;
67 type Sigcontext is record
68 SC_Regmask : Uns32; -- 0
69 SC_Status : Uns32; -- 4
70 SC_PC : Uns64; -- 8
71 SC_Regs : Reg_Array; -- 16
72 SC_Fpregs : Reg_Array; -- 272
73 SC_Ownedfp : Uns32; -- 528
74 SC_Fpc_Csr : Uns32; -- 532
75 SC_Fpc_Eir : Uns32; -- 536
76 SC_Ssflags : Uns32; -- 540
77 SC_Mdhi : Uns64; -- 544
78 SC_Mdlo : Uns64; -- 552
79 SC_Cause : Uns64; -- 560
80 SC_Badvaddr : Uns64; -- 568
81 SC_Triggersave : Uns64; -- 576
82 SC_Sigset : Uns64; -- 584
83 SC_Fp_Rounded_Result : Uns64; -- 592
84 SC_Pancake : Uns64_Array (0 .. 5);
85 SC_Pad : Uns64_Array (0 .. 26);
86 end record;
88 type Sigcontext_Ptr is access all Sigcontext;
90 SC_Regs_Pos : constant String := "16";
91 SC_Fpregs_Pos : constant String := "272";
92 -- Byte offset of the Integer and Floating Point register save areas
93 -- within the Sigcontext.
95 function To_Sigcontext_Ptr is
96 new Unchecked_Conversion (Machine_State, Sigcontext_Ptr);
98 type Addr_Int is mod 2 ** Long_Integer'Size;
99 -- An unsigned integer type whose size is the same as System.Address.
100 -- We rely on the fact that Long_Integer'Size = System.Address'Size in
101 -- all ABIs. Type Addr_Int can be converted to Uns64.
103 function To_Code_Loc is new Unchecked_Conversion (Addr_Int, Code_Loc);
104 function To_Addr_Int is new Unchecked_Conversion (System.Address, Addr_Int);
105 function To_Uns32_Ptr is new Unchecked_Conversion (Addr_Int, Uns32_Ptr);
107 --------------------------------
108 -- ABI-Dependent Declarations --
109 --------------------------------
111 o32 : constant Natural := Boolean'Pos (System.Word_Size = 32);
112 n32 : constant Natural := Boolean'Pos (System.Word_Size = 64);
113 -- Flags to indicate which ABI is in effect for this compilation. For the
114 -- purposes of this unit, the n32 and n64 ABI's are identical.
116 LSC : constant Character := Character'Val (o32 * Character'Pos ('w') +
117 n32 * Character'Pos ('d'));
118 -- This is 'w' for o32, and 'd' for n32/n64, used for constructing the
119 -- load/store instructions used to save/restore machine instructions.
121 Roff : constant Character := Character'Val (o32 * Character'Pos ('4') +
122 n32 * Character'Pos (' '));
123 -- Offset from first byte of a __uint64 register save location where
124 -- the register value is stored. For n32/64 we store the entire 64
125 -- bit register into the uint64. For o32, only 32 bits are stored
126 -- at an offset of 4 bytes.
128 procedure Update_GP (Scp : Sigcontext_Ptr);
130 ---------------
131 -- Update_GP --
132 ---------------
134 procedure Update_GP (Scp : Sigcontext_Ptr) is
136 type F_op is mod 2 ** 6;
137 type F_reg is mod 2 ** 5;
138 type F_imm is new Short_Integer;
140 type I_Type is record
141 op : F_op;
142 rs : F_reg;
143 rt : F_reg;
144 imm : F_imm;
145 end record;
147 pragma Pack (I_Type);
148 for I_Type'Size use 32;
150 type I_Type_Ptr is access all I_Type;
152 LW : constant F_op := 2#100011#;
153 Reg_GP : constant := 28;
155 type Address_Int is mod 2 ** Standard'Address_Size;
156 function To_I_Type_Ptr is new
157 Unchecked_Conversion (Address_Int, I_Type_Ptr);
159 Ret_Ins : I_Type_Ptr := To_I_Type_Ptr (Address_Int (Scp.SC_PC));
160 GP_Ptr : Uns32_Ptr;
162 begin
163 if Ret_Ins.op = LW and then Ret_Ins.rt = Reg_GP then
164 GP_Ptr := To_Uns32_Ptr
165 (Addr_Int (Scp.SC_Regs (Integer (Ret_Ins.rs)))
166 + Addr_Int (Ret_Ins.imm));
167 Scp.SC_Regs (Reg_GP) := Uns64 (GP_Ptr.all);
168 end if;
169 end Update_GP;
171 ----------------------------
172 -- Allocate_Machine_State --
173 ----------------------------
175 function Allocate_Machine_State return Machine_State is
176 begin
177 return Machine_State
178 (Memory.Alloc (Sigcontext'Max_Size_In_Storage_Elements));
179 end Allocate_Machine_State;
181 -------------------
182 -- Enter_Handler --
183 -------------------
185 procedure Enter_Handler (M : Machine_State; Handler : Handler_Loc) is
187 LOADI : constant String (1 .. 2) := 'l' & LSC;
188 -- This is "lw" in o32 mode, and "ld" in n32/n64 mode
190 LOADF : constant String (1 .. 4) := 'l' & LSC & "c1";
191 -- This is "lwc1" in o32 mode and "ldc1" in n32/n64 mode
193 begin
194 -- Restore integer registers from machine state. Note that we know
195 -- that $4 points to M, and $5 points to Handler, since this is
196 -- the standard calling sequence
198 Asm (LOADI & " $16, 16*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
199 Asm (LOADI & " $17, 17*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
200 Asm (LOADI & " $18, 18*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
201 Asm (LOADI & " $19, 19*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
202 Asm (LOADI & " $20, 20*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
203 Asm (LOADI & " $21, 21*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
204 Asm (LOADI & " $22, 22*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
205 Asm (LOADI & " $23, 23*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
206 Asm (LOADI & " $24, 24*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
207 Asm (LOADI & " $25, 25*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
208 Asm (LOADI & " $26, 26*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
209 Asm (LOADI & " $27, 27*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
210 Asm (LOADI & " $28, 28*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
211 Asm (LOADI & " $29, 29*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
212 Asm (LOADI & " $30, 30*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
213 Asm (LOADI & " $31, 31*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
215 -- Restore floating-point registers from machine state
217 Asm (LOADF & " $f16, 16*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
218 Asm (LOADF & " $f17, 17*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
219 Asm (LOADF & " $f18, 18*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
220 Asm (LOADF & " $f19, 19*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
221 Asm (LOADF & " $f20, 20*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
222 Asm (LOADF & " $f21, 21*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
223 Asm (LOADF & " $f22, 22*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
224 Asm (LOADF & " $f23, 23*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
225 Asm (LOADF & " $f24, 24*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
226 Asm (LOADF & " $f25, 25*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
227 Asm (LOADF & " $f26, 26*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
228 Asm (LOADF & " $f27, 27*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
229 Asm (LOADF & " $f28, 28*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
230 Asm (LOADF & " $f29, 29*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
231 Asm (LOADF & " $f30, 30*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
232 Asm (LOADF & " $f31, 31*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
234 -- Jump directly to the handler
236 Asm ("jr $5");
237 end Enter_Handler;
239 ----------------
240 -- Fetch_Code --
241 ----------------
243 function Fetch_Code (Loc : Code_Loc) return Code_Loc is
244 begin
245 return Loc;
246 end Fetch_Code;
248 ------------------------
249 -- Free_Machine_State --
250 ------------------------
252 procedure Free_Machine_State (M : in out Machine_State) is
253 begin
254 Memory.Free (Address (M));
255 M := Machine_State (Null_Address);
256 end Free_Machine_State;
258 ------------------
259 -- Get_Code_Loc --
260 ------------------
262 function Get_Code_Loc (M : Machine_State) return Code_Loc is
263 SC : constant Sigcontext_Ptr := To_Sigcontext_Ptr (M);
264 begin
265 return To_Code_Loc (Addr_Int (SC.SC_PC));
266 end Get_Code_Loc;
268 --------------------------
269 -- Machine_State_Length --
270 --------------------------
272 function Machine_State_Length return Storage_Offset is
273 begin
274 return Sigcontext'Max_Size_In_Storage_Elements;
275 end Machine_State_Length;
277 ---------------
278 -- Pop_Frame --
279 ---------------
281 procedure Pop_Frame
282 (M : Machine_State;
283 Info : Subprogram_Info_Type)
285 Scp : Sigcontext_Ptr := To_Sigcontext_Ptr (M);
287 procedure Exc_Unwind (Scp : Sigcontext_Ptr; Fde : Long_Integer := 0);
288 pragma Import (C, Exc_Unwind, "exc_unwind");
289 pragma Linker_Options ("-lexc");
291 begin
292 -- exc_unwind is apparently not thread-safe under IRIX, so protect it
293 -- against race conditions within the GNAT run time.
294 -- ??? Note that we might want to use a fine grained lock here since
295 -- Lock_Task is used in many other places.
297 Lock_Task.all;
298 Exc_Unwind (Scp);
299 Unlock_Task.all;
301 if Scp.SC_PC = 0 or else Scp.SC_PC = 1 then
303 -- A return value of 0 or 1 means exc_unwind couldn't find a parent
304 -- frame. Propagate_Exception expects a zero return address to
305 -- indicate TOS.
307 Scp.SC_PC := 0;
309 else
311 -- Set the GP to restore to the caller value (not callee value)
312 -- This is done only in o32 mode. In n32/n64 mode, GP is a normal
313 -- callee save register
315 if o32 = 1 then
316 Update_GP (Scp);
317 end if;
319 -- Adjust the return address to the call site, not the
320 -- instruction following the branch delay slot. This may
321 -- be necessary if the last instruction of a pragma No_Return
322 -- subprogram is a call. The first instruction following the
323 -- delay slot may be the start of another subprogram. We back
324 -- off the address by 8, which points safely into the middle
325 -- of the generated subprogram code, avoiding end effects.
327 Scp.SC_PC := Scp.SC_PC - 8;
328 end if;
329 end Pop_Frame;
331 -----------------------
332 -- Set_Machine_State --
333 -----------------------
335 procedure Set_Machine_State (M : Machine_State) is
337 STOREI : constant String (1 .. 2) := 's' & LSC;
338 -- This is "sw" in o32 mode, and "sd" in n32 mode
340 STOREF : constant String (1 .. 4) := 's' & LSC & "c1";
341 -- This is "swc1" in o32 mode and "sdc1" in n32 mode
343 Scp : Sigcontext_Ptr;
345 begin
346 -- Save the integer registers. Note that we know that $4 points
347 -- to M, since that is where the first parameter is passed.
348 -- Restore integer registers from machine state. Note that we know
349 -- that $4 points to M since this is the standard calling sequence
351 <<Past_Prolog>>
353 Asm (STOREI & " $16, 16*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
354 Asm (STOREI & " $17, 17*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
355 Asm (STOREI & " $18, 18*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
356 Asm (STOREI & " $19, 19*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
357 Asm (STOREI & " $20, 20*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
358 Asm (STOREI & " $21, 21*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
359 Asm (STOREI & " $22, 22*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
360 Asm (STOREI & " $23, 23*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
361 Asm (STOREI & " $24, 24*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
362 Asm (STOREI & " $25, 25*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
363 Asm (STOREI & " $26, 26*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
364 Asm (STOREI & " $27, 27*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
365 Asm (STOREI & " $28, 28*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
366 Asm (STOREI & " $29, 29*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
367 Asm (STOREI & " $30, 30*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
368 Asm (STOREI & " $31, 31*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
370 -- Restore floating-point registers from machine state
372 Asm (STOREF & " $f16, 16*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
373 Asm (STOREF & " $f17, 17*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
374 Asm (STOREF & " $f18, 18*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
375 Asm (STOREF & " $f19, 19*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
376 Asm (STOREF & " $f20, 20*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
377 Asm (STOREF & " $f21, 21*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
378 Asm (STOREF & " $f22, 22*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
379 Asm (STOREF & " $f23, 23*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
380 Asm (STOREF & " $f24, 24*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
381 Asm (STOREF & " $f25, 25*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
382 Asm (STOREF & " $f26, 26*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
383 Asm (STOREF & " $f27, 27*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
384 Asm (STOREF & " $f28, 28*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
385 Asm (STOREF & " $f29, 29*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
386 Asm (STOREF & " $f30, 30*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
387 Asm (STOREF & " $f31, 31*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
389 -- Set the PC value for the context to a location after the
390 -- prolog has been executed.
392 Scp := To_Sigcontext_Ptr (M);
393 Scp.SC_PC := Uns64 (To_Addr_Int (Past_Prolog'Address));
395 -- We saved the state *inside* this routine, but what we want is
396 -- the state at the call site. So we need to do one pop operation.
397 -- This pop operation will properly set the PC value in the machine
398 -- state, so there is no need to save PC in the above code.
400 Pop_Frame (M, Set_Machine_State'Address);
401 end Set_Machine_State;
403 ------------------------------
404 -- Set_Signal_Machine_State --
405 ------------------------------
407 procedure Set_Signal_Machine_State
408 (M : Machine_State;
409 Context : System.Address) is
410 begin
411 null;
412 end Set_Signal_Machine_State;
414 end System.Machine_State_Operations;