1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
29 #include "coretypes.h"
34 #include "diagnostic.h"
36 #include "tree-flow.h"
37 #include "tree-chrec.h"
38 #include "tree-pass.h"
41 #include "tree-scalar-evolution.h"
45 /* Extended folder for chrecs. */
47 /* Determines whether CST is not a constant evolution. */
50 is_not_constant_evolution (const_tree cst
)
52 return (TREE_CODE (cst
) == POLYNOMIAL_CHREC
);
55 /* Fold CODE for a polynomial function and a constant. */
58 chrec_fold_poly_cst (enum tree_code code
,
65 gcc_assert (TREE_CODE (poly
) == POLYNOMIAL_CHREC
);
66 gcc_assert (!is_not_constant_evolution (cst
));
67 gcc_assert (type
== chrec_type (poly
));
72 return build_polynomial_chrec
73 (CHREC_VARIABLE (poly
),
74 chrec_fold_plus (type
, CHREC_LEFT (poly
), cst
),
78 return build_polynomial_chrec
79 (CHREC_VARIABLE (poly
),
80 chrec_fold_minus (type
, CHREC_LEFT (poly
), cst
),
84 return build_polynomial_chrec
85 (CHREC_VARIABLE (poly
),
86 chrec_fold_multiply (type
, CHREC_LEFT (poly
), cst
),
87 chrec_fold_multiply (type
, CHREC_RIGHT (poly
), cst
));
90 return chrec_dont_know
;
94 /* Fold the addition of two polynomial functions. */
97 chrec_fold_plus_poly_poly (enum tree_code code
,
103 struct loop
*loop0
= get_chrec_loop (poly0
);
104 struct loop
*loop1
= get_chrec_loop (poly1
);
105 tree rtype
= code
== POINTER_PLUS_EXPR
? sizetype
: type
;
109 gcc_assert (TREE_CODE (poly0
) == POLYNOMIAL_CHREC
);
110 gcc_assert (TREE_CODE (poly1
) == POLYNOMIAL_CHREC
);
111 if (POINTER_TYPE_P (chrec_type (poly0
)))
112 gcc_assert (chrec_type (poly1
) == sizetype
);
114 gcc_assert (chrec_type (poly0
) == chrec_type (poly1
));
115 gcc_assert (type
== chrec_type (poly0
));
118 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
119 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
120 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
121 if (flow_loop_nested_p (loop0
, loop1
))
123 if (code
== PLUS_EXPR
|| code
== POINTER_PLUS_EXPR
)
124 return build_polynomial_chrec
125 (CHREC_VARIABLE (poly1
),
126 chrec_fold_plus (type
, poly0
, CHREC_LEFT (poly1
)),
127 CHREC_RIGHT (poly1
));
129 return build_polynomial_chrec
130 (CHREC_VARIABLE (poly1
),
131 chrec_fold_minus (type
, poly0
, CHREC_LEFT (poly1
)),
132 chrec_fold_multiply (type
, CHREC_RIGHT (poly1
),
133 SCALAR_FLOAT_TYPE_P (type
)
134 ? build_real (type
, dconstm1
)
135 : build_int_cst_type (type
, -1)));
138 if (flow_loop_nested_p (loop1
, loop0
))
140 if (code
== PLUS_EXPR
|| code
== POINTER_PLUS_EXPR
)
141 return build_polynomial_chrec
142 (CHREC_VARIABLE (poly0
),
143 chrec_fold_plus (type
, CHREC_LEFT (poly0
), poly1
),
144 CHREC_RIGHT (poly0
));
146 return build_polynomial_chrec
147 (CHREC_VARIABLE (poly0
),
148 chrec_fold_minus (type
, CHREC_LEFT (poly0
), poly1
),
149 CHREC_RIGHT (poly0
));
152 /* This function should never be called for chrecs of loops that
153 do not belong to the same loop nest. */
154 gcc_assert (loop0
== loop1
);
156 if (code
== PLUS_EXPR
|| code
== POINTER_PLUS_EXPR
)
158 left
= chrec_fold_plus
159 (type
, CHREC_LEFT (poly0
), CHREC_LEFT (poly1
));
160 right
= chrec_fold_plus
161 (rtype
, CHREC_RIGHT (poly0
), CHREC_RIGHT (poly1
));
165 left
= chrec_fold_minus
166 (type
, CHREC_LEFT (poly0
), CHREC_LEFT (poly1
));
167 right
= chrec_fold_minus
168 (type
, CHREC_RIGHT (poly0
), CHREC_RIGHT (poly1
));
171 if (chrec_zerop (right
))
174 return build_polynomial_chrec
175 (CHREC_VARIABLE (poly0
), left
, right
);
180 /* Fold the multiplication of two polynomial functions. */
183 chrec_fold_multiply_poly_poly (tree type
,
189 struct loop
*loop0
= get_chrec_loop (poly0
);
190 struct loop
*loop1
= get_chrec_loop (poly1
);
194 gcc_assert (TREE_CODE (poly0
) == POLYNOMIAL_CHREC
);
195 gcc_assert (TREE_CODE (poly1
) == POLYNOMIAL_CHREC
);
196 gcc_assert (chrec_type (poly0
) == chrec_type (poly1
));
197 gcc_assert (type
== chrec_type (poly0
));
199 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
200 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
201 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
202 if (flow_loop_nested_p (loop0
, loop1
))
203 /* poly0 is a constant wrt. poly1. */
204 return build_polynomial_chrec
205 (CHREC_VARIABLE (poly1
),
206 chrec_fold_multiply (type
, CHREC_LEFT (poly1
), poly0
),
207 CHREC_RIGHT (poly1
));
209 if (flow_loop_nested_p (loop1
, loop0
))
210 /* poly1 is a constant wrt. poly0. */
211 return build_polynomial_chrec
212 (CHREC_VARIABLE (poly0
),
213 chrec_fold_multiply (type
, CHREC_LEFT (poly0
), poly1
),
214 CHREC_RIGHT (poly0
));
216 gcc_assert (loop0
== loop1
);
218 /* poly0 and poly1 are two polynomials in the same variable,
219 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
222 t0
= chrec_fold_multiply (type
, CHREC_LEFT (poly0
), CHREC_LEFT (poly1
));
225 t1
= chrec_fold_multiply (type
, CHREC_LEFT (poly0
), CHREC_RIGHT (poly1
));
226 t1
= chrec_fold_plus (type
, t1
, chrec_fold_multiply (type
,
228 CHREC_LEFT (poly1
)));
230 t2
= chrec_fold_multiply (type
, CHREC_RIGHT (poly0
), CHREC_RIGHT (poly1
));
231 /* "a*d + b*c + b*d". */
232 t1
= chrec_fold_plus (type
, t1
, t2
);
234 t2
= chrec_fold_multiply (type
, SCALAR_FLOAT_TYPE_P (type
)
235 ? build_real (type
, dconst2
)
236 : build_int_cst (type
, 2), t2
);
238 var
= CHREC_VARIABLE (poly0
);
239 return build_polynomial_chrec (var
, t0
,
240 build_polynomial_chrec (var
, t1
, t2
));
243 /* When the operands are automatically_generated_chrec_p, the fold has
244 to respect the semantics of the operands. */
247 chrec_fold_automatically_generated_operands (tree op0
,
250 if (op0
== chrec_dont_know
251 || op1
== chrec_dont_know
)
252 return chrec_dont_know
;
254 if (op0
== chrec_known
255 || op1
== chrec_known
)
258 if (op0
== chrec_not_analyzed_yet
259 || op1
== chrec_not_analyzed_yet
)
260 return chrec_not_analyzed_yet
;
262 /* The default case produces a safe result. */
263 return chrec_dont_know
;
266 /* Fold the addition of two chrecs. */
269 chrec_fold_plus_1 (enum tree_code code
, tree type
,
272 tree op1_type
= code
== POINTER_PLUS_EXPR
? sizetype
: type
;
274 if (automatically_generated_chrec_p (op0
)
275 || automatically_generated_chrec_p (op1
))
276 return chrec_fold_automatically_generated_operands (op0
, op1
);
278 switch (TREE_CODE (op0
))
280 case POLYNOMIAL_CHREC
:
281 switch (TREE_CODE (op1
))
283 case POLYNOMIAL_CHREC
:
284 return chrec_fold_plus_poly_poly (code
, type
, op0
, op1
);
287 if (code
== PLUS_EXPR
|| code
== POINTER_PLUS_EXPR
)
288 return build_polynomial_chrec
289 (CHREC_VARIABLE (op0
),
290 chrec_fold_plus (type
, CHREC_LEFT (op0
), op1
),
293 return build_polynomial_chrec
294 (CHREC_VARIABLE (op0
),
295 chrec_fold_minus (type
, CHREC_LEFT (op0
), op1
),
300 switch (TREE_CODE (op1
))
302 case POLYNOMIAL_CHREC
:
303 if (code
== PLUS_EXPR
|| code
== POINTER_PLUS_EXPR
)
304 return build_polynomial_chrec
305 (CHREC_VARIABLE (op1
),
306 chrec_fold_plus (type
, op0
, CHREC_LEFT (op1
)),
309 return build_polynomial_chrec
310 (CHREC_VARIABLE (op1
),
311 chrec_fold_minus (type
, op0
, CHREC_LEFT (op1
)),
312 chrec_fold_multiply (type
, CHREC_RIGHT (op1
),
313 SCALAR_FLOAT_TYPE_P (type
)
314 ? build_real (type
, dconstm1
)
315 : build_int_cst_type (type
, -1)));
320 if ((tree_contains_chrecs (op0
, &size
)
321 || tree_contains_chrecs (op1
, &size
))
322 && size
< PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE
))
323 return build2 (code
, type
, op0
, op1
);
324 else if (size
< PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE
))
325 return fold_build2 (code
, type
,
326 fold_convert (type
, op0
),
327 fold_convert (op1_type
, op1
));
329 return chrec_dont_know
;
335 /* Fold the addition of two chrecs. */
338 chrec_fold_plus (tree type
,
343 if (automatically_generated_chrec_p (op0
)
344 || automatically_generated_chrec_p (op1
))
345 return chrec_fold_automatically_generated_operands (op0
, op1
);
347 if (integer_zerop (op0
))
348 return chrec_convert (type
, op1
, NULL
);
349 if (integer_zerop (op1
))
350 return chrec_convert (type
, op0
, NULL
);
352 if (POINTER_TYPE_P (type
))
353 code
= POINTER_PLUS_EXPR
;
357 return chrec_fold_plus_1 (code
, type
, op0
, op1
);
360 /* Fold the subtraction of two chrecs. */
363 chrec_fold_minus (tree type
,
367 if (automatically_generated_chrec_p (op0
)
368 || automatically_generated_chrec_p (op1
))
369 return chrec_fold_automatically_generated_operands (op0
, op1
);
371 if (integer_zerop (op1
))
374 return chrec_fold_plus_1 (MINUS_EXPR
, type
, op0
, op1
);
377 /* Fold the multiplication of two chrecs. */
380 chrec_fold_multiply (tree type
,
384 if (automatically_generated_chrec_p (op0
)
385 || automatically_generated_chrec_p (op1
))
386 return chrec_fold_automatically_generated_operands (op0
, op1
);
388 switch (TREE_CODE (op0
))
390 case POLYNOMIAL_CHREC
:
391 switch (TREE_CODE (op1
))
393 case POLYNOMIAL_CHREC
:
394 return chrec_fold_multiply_poly_poly (type
, op0
, op1
);
397 if (integer_onep (op1
))
399 if (integer_zerop (op1
))
400 return build_int_cst (type
, 0);
402 return build_polynomial_chrec
403 (CHREC_VARIABLE (op0
),
404 chrec_fold_multiply (type
, CHREC_LEFT (op0
), op1
),
405 chrec_fold_multiply (type
, CHREC_RIGHT (op0
), op1
));
409 if (integer_onep (op0
))
412 if (integer_zerop (op0
))
413 return build_int_cst (type
, 0);
415 switch (TREE_CODE (op1
))
417 case POLYNOMIAL_CHREC
:
418 return build_polynomial_chrec
419 (CHREC_VARIABLE (op1
),
420 chrec_fold_multiply (type
, CHREC_LEFT (op1
), op0
),
421 chrec_fold_multiply (type
, CHREC_RIGHT (op1
), op0
));
424 if (integer_onep (op1
))
426 if (integer_zerop (op1
))
427 return build_int_cst (type
, 0);
428 return fold_build2 (MULT_EXPR
, type
, op0
, op1
);
437 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
438 calculation overflows, otherwise return C(n,k) with type TYPE. */
441 tree_fold_binomial (tree type
, tree n
, unsigned int k
)
443 unsigned HOST_WIDE_INT lidx
, lnum
, ldenom
, lres
, ldum
;
444 HOST_WIDE_INT hidx
, hnum
, hdenom
, hres
, hdum
;
448 /* Handle the most frequent cases. */
450 return build_int_cst (type
, 1);
452 return fold_convert (type
, n
);
454 /* Check that k <= n. */
455 if (TREE_INT_CST_HIGH (n
) == 0
456 && TREE_INT_CST_LOW (n
) < k
)
460 lnum
= TREE_INT_CST_LOW (n
);
461 hnum
= TREE_INT_CST_HIGH (n
);
463 /* Denominator = 2. */
467 /* Index = Numerator-1. */
471 lidx
= ~ (unsigned HOST_WIDE_INT
) 0;
479 /* Numerator = Numerator*Index = n*(n-1). */
480 if (mul_double (lnum
, hnum
, lidx
, hidx
, &lnum
, &hnum
))
483 for (i
= 3; i
<= k
; i
++)
489 lidx
= ~ (unsigned HOST_WIDE_INT
) 0;
494 /* Numerator *= Index. */
495 if (mul_double (lnum
, hnum
, lidx
, hidx
, &lnum
, &hnum
))
498 /* Denominator *= i. */
499 mul_double (ldenom
, hdenom
, i
, 0, &ldenom
, &hdenom
);
502 /* Result = Numerator / Denominator. */
503 div_and_round_double (EXACT_DIV_EXPR
, 1, lnum
, hnum
, ldenom
, hdenom
,
504 &lres
, &hres
, &ldum
, &hdum
);
506 res
= build_int_cst_wide (type
, lres
, hres
);
507 return int_fits_type_p (res
, type
) ? res
: NULL_TREE
;
510 /* Helper function. Use the Newton's interpolating formula for
511 evaluating the value of the evolution function. */
514 chrec_evaluate (unsigned var
, tree chrec
, tree n
, unsigned int k
)
516 tree arg0
, arg1
, binomial_n_k
;
517 tree type
= TREE_TYPE (chrec
);
518 struct loop
*var_loop
= get_loop (var
);
520 while (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
521 && flow_loop_nested_p (var_loop
, get_chrec_loop (chrec
)))
522 chrec
= CHREC_LEFT (chrec
);
524 if (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
525 && CHREC_VARIABLE (chrec
) == var
)
527 arg1
= chrec_evaluate (var
, CHREC_RIGHT (chrec
), n
, k
+ 1);
528 if (arg1
== chrec_dont_know
)
529 return chrec_dont_know
;
530 binomial_n_k
= tree_fold_binomial (type
, n
, k
);
532 return chrec_dont_know
;
533 arg0
= fold_build2 (MULT_EXPR
, type
,
534 CHREC_LEFT (chrec
), binomial_n_k
);
535 return chrec_fold_plus (type
, arg0
, arg1
);
538 binomial_n_k
= tree_fold_binomial (type
, n
, k
);
540 return chrec_dont_know
;
542 return fold_build2 (MULT_EXPR
, type
, chrec
, binomial_n_k
);
545 /* Evaluates "CHREC (X)" when the varying variable is VAR.
546 Example: Given the following parameters,
552 The result is given by the Newton's interpolating formula:
553 3 * \binom{10}{0} + 4 * \binom{10}{1}.
557 chrec_apply (unsigned var
,
561 tree type
= chrec_type (chrec
);
562 tree res
= chrec_dont_know
;
564 if (automatically_generated_chrec_p (chrec
)
565 || automatically_generated_chrec_p (x
)
567 /* When the symbols are defined in an outer loop, it is possible
568 to symbolically compute the apply, since the symbols are
569 constants with respect to the varying loop. */
570 || chrec_contains_symbols_defined_in_loop (chrec
, var
))
571 return chrec_dont_know
;
573 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
574 fprintf (dump_file
, "(chrec_apply \n");
576 if (TREE_CODE (x
) == INTEGER_CST
&& SCALAR_FLOAT_TYPE_P (type
))
577 x
= build_real_from_int_cst (type
, x
);
579 if (evolution_function_is_affine_p (chrec
))
581 /* "{a, +, b} (x)" -> "a + b*x". */
582 x
= chrec_convert_rhs (type
, x
, NULL
);
583 res
= chrec_fold_multiply (TREE_TYPE (x
), CHREC_RIGHT (chrec
), x
);
584 res
= chrec_fold_plus (type
, CHREC_LEFT (chrec
), res
);
587 else if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
590 else if (TREE_CODE (x
) == INTEGER_CST
591 && tree_int_cst_sgn (x
) == 1)
592 /* testsuite/.../ssa-chrec-38.c. */
593 res
= chrec_evaluate (var
, chrec
, x
, 0);
595 res
= chrec_dont_know
;
597 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
599 fprintf (dump_file
, " (varying_loop = %d\n", var
);
600 fprintf (dump_file
, ")\n (chrec = ");
601 print_generic_expr (dump_file
, chrec
, 0);
602 fprintf (dump_file
, ")\n (x = ");
603 print_generic_expr (dump_file
, x
, 0);
604 fprintf (dump_file
, ")\n (res = ");
605 print_generic_expr (dump_file
, res
, 0);
606 fprintf (dump_file
, "))\n");
612 /* Replaces the initial condition in CHREC with INIT_COND. */
615 chrec_replace_initial_condition (tree chrec
,
618 if (automatically_generated_chrec_p (chrec
))
621 gcc_assert (chrec_type (chrec
) == chrec_type (init_cond
));
623 switch (TREE_CODE (chrec
))
625 case POLYNOMIAL_CHREC
:
626 return build_polynomial_chrec
627 (CHREC_VARIABLE (chrec
),
628 chrec_replace_initial_condition (CHREC_LEFT (chrec
), init_cond
),
629 CHREC_RIGHT (chrec
));
636 /* Returns the initial condition of a given CHREC. */
639 initial_condition (tree chrec
)
641 if (automatically_generated_chrec_p (chrec
))
644 if (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
)
645 return initial_condition (CHREC_LEFT (chrec
));
650 /* Returns a univariate function that represents the evolution in
651 LOOP_NUM. Mask the evolution of any other loop. */
654 hide_evolution_in_other_loops_than_loop (tree chrec
,
657 struct loop
*loop
= get_loop (loop_num
), *chloop
;
658 if (automatically_generated_chrec_p (chrec
))
661 switch (TREE_CODE (chrec
))
663 case POLYNOMIAL_CHREC
:
664 chloop
= get_chrec_loop (chrec
);
667 return build_polynomial_chrec
669 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec
),
671 CHREC_RIGHT (chrec
));
673 else if (flow_loop_nested_p (chloop
, loop
))
674 /* There is no evolution in this loop. */
675 return initial_condition (chrec
);
679 gcc_assert (flow_loop_nested_p (loop
, chloop
));
680 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec
),
689 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
690 true, otherwise returns the initial condition in LOOP_NUM. */
693 chrec_component_in_loop_num (tree chrec
,
698 struct loop
*loop
= get_loop (loop_num
), *chloop
;
700 if (automatically_generated_chrec_p (chrec
))
703 switch (TREE_CODE (chrec
))
705 case POLYNOMIAL_CHREC
:
706 chloop
= get_chrec_loop (chrec
);
711 component
= CHREC_RIGHT (chrec
);
713 component
= CHREC_LEFT (chrec
);
715 if (TREE_CODE (CHREC_LEFT (chrec
)) != POLYNOMIAL_CHREC
716 || CHREC_VARIABLE (CHREC_LEFT (chrec
)) != CHREC_VARIABLE (chrec
))
720 return build_polynomial_chrec
722 chrec_component_in_loop_num (CHREC_LEFT (chrec
),
728 else if (flow_loop_nested_p (chloop
, loop
))
729 /* There is no evolution part in this loop. */
734 gcc_assert (flow_loop_nested_p (loop
, chloop
));
735 return chrec_component_in_loop_num (CHREC_LEFT (chrec
),
748 /* Returns the evolution part in LOOP_NUM. Example: the call
749 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
753 evolution_part_in_loop_num (tree chrec
,
756 return chrec_component_in_loop_num (chrec
, loop_num
, true);
759 /* Returns the initial condition in LOOP_NUM. Example: the call
760 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
764 initial_condition_in_loop_num (tree chrec
,
767 return chrec_component_in_loop_num (chrec
, loop_num
, false);
770 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
771 This function is essentially used for setting the evolution to
772 chrec_dont_know, for example after having determined that it is
773 impossible to say how many times a loop will execute. */
776 reset_evolution_in_loop (unsigned loop_num
,
780 struct loop
*loop
= get_loop (loop_num
);
782 if (POINTER_TYPE_P (chrec_type (chrec
)))
783 gcc_assert (sizetype
== chrec_type (new_evol
));
785 gcc_assert (chrec_type (chrec
) == chrec_type (new_evol
));
787 if (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
788 && flow_loop_nested_p (loop
, get_chrec_loop (chrec
)))
790 tree left
= reset_evolution_in_loop (loop_num
, CHREC_LEFT (chrec
),
792 tree right
= reset_evolution_in_loop (loop_num
, CHREC_RIGHT (chrec
),
794 return build3 (POLYNOMIAL_CHREC
, TREE_TYPE (left
),
795 build_int_cst (NULL_TREE
, CHREC_VARIABLE (chrec
)),
799 while (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
800 && CHREC_VARIABLE (chrec
) == loop_num
)
801 chrec
= CHREC_LEFT (chrec
);
803 return build_polynomial_chrec (loop_num
, chrec
, new_evol
);
806 /* Merges two evolution functions that were found by following two
807 alternate paths of a conditional expression. */
810 chrec_merge (tree chrec1
,
813 if (chrec1
== chrec_dont_know
814 || chrec2
== chrec_dont_know
)
815 return chrec_dont_know
;
817 if (chrec1
== chrec_known
818 || chrec2
== chrec_known
)
821 if (chrec1
== chrec_not_analyzed_yet
)
823 if (chrec2
== chrec_not_analyzed_yet
)
826 if (eq_evolutions_p (chrec1
, chrec2
))
829 return chrec_dont_know
;
836 /* Helper function for is_multivariate_chrec. */
839 is_multivariate_chrec_rec (const_tree chrec
, unsigned int rec_var
)
841 if (chrec
== NULL_TREE
)
844 if (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
)
846 if (CHREC_VARIABLE (chrec
) != rec_var
)
849 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec
), rec_var
)
850 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec
), rec_var
));
856 /* Determine whether the given chrec is multivariate or not. */
859 is_multivariate_chrec (const_tree chrec
)
861 if (chrec
== NULL_TREE
)
864 if (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
)
865 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec
),
866 CHREC_VARIABLE (chrec
))
867 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec
),
868 CHREC_VARIABLE (chrec
)));
873 /* Determines whether the chrec contains symbolic names or not. */
876 chrec_contains_symbols (const_tree chrec
)
880 if (chrec
== NULL_TREE
)
883 if (TREE_CODE (chrec
) == SSA_NAME
884 || TREE_CODE (chrec
) == VAR_DECL
885 || TREE_CODE (chrec
) == PARM_DECL
886 || TREE_CODE (chrec
) == FUNCTION_DECL
887 || TREE_CODE (chrec
) == LABEL_DECL
888 || TREE_CODE (chrec
) == RESULT_DECL
889 || TREE_CODE (chrec
) == FIELD_DECL
)
892 n
= TREE_OPERAND_LENGTH (chrec
);
893 for (i
= 0; i
< n
; i
++)
894 if (chrec_contains_symbols (TREE_OPERAND (chrec
, i
)))
899 /* Determines whether the chrec contains undetermined coefficients. */
902 chrec_contains_undetermined (const_tree chrec
)
906 if (chrec
== chrec_dont_know
)
909 if (chrec
== NULL_TREE
)
912 n
= TREE_OPERAND_LENGTH (chrec
);
913 for (i
= 0; i
< n
; i
++)
914 if (chrec_contains_undetermined (TREE_OPERAND (chrec
, i
)))
919 /* Determines whether the tree EXPR contains chrecs, and increment
920 SIZE if it is not a NULL pointer by an estimation of the depth of
924 tree_contains_chrecs (const_tree expr
, int *size
)
928 if (expr
== NULL_TREE
)
934 if (tree_is_chrec (expr
))
937 n
= TREE_OPERAND_LENGTH (expr
);
938 for (i
= 0; i
< n
; i
++)
939 if (tree_contains_chrecs (TREE_OPERAND (expr
, i
), size
))
944 /* Recursive helper function. */
947 evolution_function_is_invariant_rec_p (tree chrec
, int loopnum
)
949 if (evolution_function_is_constant_p (chrec
))
952 if (TREE_CODE (chrec
) == SSA_NAME
954 || expr_invariant_in_loop_p (get_loop (loopnum
), chrec
)))
957 if (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
)
959 if (CHREC_VARIABLE (chrec
) == (unsigned) loopnum
960 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec
),
962 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec
),
968 switch (TREE_OPERAND_LENGTH (chrec
))
971 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec
, 1),
976 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec
, 0),
988 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
991 evolution_function_is_invariant_p (tree chrec
, int loopnum
)
993 return evolution_function_is_invariant_rec_p (chrec
, loopnum
);
996 /* Determine whether the given tree is an affine multivariate
1000 evolution_function_is_affine_multivariate_p (const_tree chrec
, int loopnum
)
1002 if (chrec
== NULL_TREE
)
1005 switch (TREE_CODE (chrec
))
1007 case POLYNOMIAL_CHREC
:
1008 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec
), loopnum
))
1010 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec
), loopnum
))
1014 if (TREE_CODE (CHREC_RIGHT (chrec
)) == POLYNOMIAL_CHREC
1015 && CHREC_VARIABLE (CHREC_RIGHT (chrec
))
1016 != CHREC_VARIABLE (chrec
)
1017 && evolution_function_is_affine_multivariate_p
1018 (CHREC_RIGHT (chrec
), loopnum
))
1026 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec
), loopnum
)
1027 && TREE_CODE (CHREC_LEFT (chrec
)) == POLYNOMIAL_CHREC
1028 && CHREC_VARIABLE (CHREC_LEFT (chrec
)) != CHREC_VARIABLE (chrec
)
1029 && evolution_function_is_affine_multivariate_p
1030 (CHREC_LEFT (chrec
), loopnum
))
1041 /* Determine whether the given tree is a function in zero or one
1045 evolution_function_is_univariate_p (const_tree chrec
)
1047 if (chrec
== NULL_TREE
)
1050 switch (TREE_CODE (chrec
))
1052 case POLYNOMIAL_CHREC
:
1053 switch (TREE_CODE (CHREC_LEFT (chrec
)))
1055 case POLYNOMIAL_CHREC
:
1056 if (CHREC_VARIABLE (chrec
) != CHREC_VARIABLE (CHREC_LEFT (chrec
)))
1058 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec
)))
1066 switch (TREE_CODE (CHREC_RIGHT (chrec
)))
1068 case POLYNOMIAL_CHREC
:
1069 if (CHREC_VARIABLE (chrec
) != CHREC_VARIABLE (CHREC_RIGHT (chrec
)))
1071 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec
)))
1084 /* Returns the number of variables of CHREC. Example: the call
1085 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1088 nb_vars_in_chrec (tree chrec
)
1090 if (chrec
== NULL_TREE
)
1093 switch (TREE_CODE (chrec
))
1095 case POLYNOMIAL_CHREC
:
1096 return 1 + nb_vars_in_chrec
1097 (initial_condition_in_loop_num (chrec
, CHREC_VARIABLE (chrec
)));
1104 static tree
chrec_convert_1 (tree
, tree
, gimple
, bool);
1106 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1107 the scev corresponds to. AT_STMT is the statement at that the scev is
1108 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1109 the rules for overflow of the given language apply (e.g., that signed
1110 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1111 tests, but also to enforce that the result follows them. Returns true if the
1112 conversion succeeded, false otherwise. */
1115 convert_affine_scev (struct loop
*loop
, tree type
,
1116 tree
*base
, tree
*step
, gimple at_stmt
,
1117 bool use_overflow_semantics
)
1119 tree ct
= TREE_TYPE (*step
);
1120 bool enforce_overflow_semantics
;
1121 bool must_check_src_overflow
, must_check_rslt_overflow
;
1122 tree new_base
, new_step
;
1123 tree step_type
= POINTER_TYPE_P (type
) ? sizetype
: type
;
1126 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1127 but we must check some assumptions.
1129 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1130 of CT is smaller than the precision of TYPE. For example, when we
1131 cast unsigned char [254, +, 1] to unsigned, the values on left side
1132 are 254, 255, 0, 1, ..., but those on the right side are
1133 254, 255, 256, 257, ...
1134 2) In case that we must also preserve the fact that signed ivs do not
1135 overflow, we must additionally check that the new iv does not wrap.
1136 For example, unsigned char [125, +, 1] casted to signed char could
1137 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1138 which would confuse optimizers that assume that this does not
1140 must_check_src_overflow
= TYPE_PRECISION (ct
) < TYPE_PRECISION (type
);
1142 enforce_overflow_semantics
= (use_overflow_semantics
1143 && nowrap_type_p (type
));
1144 if (enforce_overflow_semantics
)
1146 /* We can avoid checking whether the result overflows in the following
1149 -- must_check_src_overflow is true, and the range of TYPE is superset
1150 of the range of CT -- i.e., in all cases except if CT signed and
1152 -- both CT and TYPE have the same precision and signedness, and we
1153 verify instead that the source does not overflow (this may be
1154 easier than verifying it for the result, as we may use the
1155 information about the semantics of overflow in CT). */
1156 if (must_check_src_overflow
)
1158 if (TYPE_UNSIGNED (type
) && !TYPE_UNSIGNED (ct
))
1159 must_check_rslt_overflow
= true;
1161 must_check_rslt_overflow
= false;
1163 else if (TYPE_UNSIGNED (ct
) == TYPE_UNSIGNED (type
)
1164 && TYPE_PRECISION (ct
) == TYPE_PRECISION (type
))
1166 must_check_rslt_overflow
= false;
1167 must_check_src_overflow
= true;
1170 must_check_rslt_overflow
= true;
1173 must_check_rslt_overflow
= false;
1175 if (must_check_src_overflow
1176 && scev_probably_wraps_p (*base
, *step
, at_stmt
, loop
,
1177 use_overflow_semantics
))
1180 new_base
= chrec_convert_1 (type
, *base
, at_stmt
,
1181 use_overflow_semantics
);
1182 /* The step must be sign extended, regardless of the signedness
1183 of CT and TYPE. This only needs to be handled specially when
1184 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1185 (with values 100, 99, 98, ...) from becoming signed or unsigned
1186 [100, +, 255] with values 100, 355, ...; the sign-extension is
1187 performed by default when CT is signed. */
1189 if (TYPE_PRECISION (step_type
) > TYPE_PRECISION (ct
) && TYPE_UNSIGNED (ct
))
1190 new_step
= chrec_convert_1 (signed_type_for (ct
), new_step
, at_stmt
,
1191 use_overflow_semantics
);
1192 new_step
= chrec_convert_1 (step_type
, new_step
, at_stmt
, use_overflow_semantics
);
1194 if (automatically_generated_chrec_p (new_base
)
1195 || automatically_generated_chrec_p (new_step
))
1198 if (must_check_rslt_overflow
1199 /* Note that in this case we cannot use the fact that signed variables
1200 do not overflow, as this is what we are verifying for the new iv. */
1201 && scev_probably_wraps_p (new_base
, new_step
, at_stmt
, loop
, false))
1210 /* Convert CHREC for the right hand side of a CREC.
1211 The increment for a pointer type is always sizetype. */
1213 chrec_convert_rhs (tree type
, tree chrec
, gimple at_stmt
)
1215 if (POINTER_TYPE_P (type
))
1217 return chrec_convert (type
, chrec
, at_stmt
);
1220 /* Convert CHREC to TYPE. When the analyzer knows the context in
1221 which the CHREC is built, it sets AT_STMT to the statement that
1222 contains the definition of the analyzed variable, otherwise the
1223 conversion is less accurate: the information is used for
1224 determining a more accurate estimation of the number of iterations.
1225 By default AT_STMT could be safely set to NULL_TREE.
1227 The following rule is always true: TREE_TYPE (chrec) ==
1228 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1229 An example of what could happen when adding two chrecs and the type
1230 of the CHREC_RIGHT is different than CHREC_LEFT is:
1232 {(uint) 0, +, (uchar) 10} +
1233 {(uint) 0, +, (uchar) 250}
1235 that would produce a wrong result if CHREC_RIGHT is not (uint):
1237 {(uint) 0, +, (uchar) 4}
1241 {(uint) 0, +, (uint) 260}
1245 chrec_convert (tree type
, tree chrec
, gimple at_stmt
)
1247 return chrec_convert_1 (type
, chrec
, at_stmt
, true);
1250 /* Convert CHREC to TYPE. When the analyzer knows the context in
1251 which the CHREC is built, it sets AT_STMT to the statement that
1252 contains the definition of the analyzed variable, otherwise the
1253 conversion is less accurate: the information is used for
1254 determining a more accurate estimation of the number of iterations.
1255 By default AT_STMT could be safely set to NULL_TREE.
1257 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1258 the rules for overflow of the given language apply (e.g., that signed
1259 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1260 tests, but also to enforce that the result follows them. */
1263 chrec_convert_1 (tree type
, tree chrec
, gimple at_stmt
,
1264 bool use_overflow_semantics
)
1270 if (automatically_generated_chrec_p (chrec
))
1273 ct
= chrec_type (chrec
);
1277 if (!evolution_function_is_affine_p (chrec
))
1280 loop
= get_chrec_loop (chrec
);
1281 base
= CHREC_LEFT (chrec
);
1282 step
= CHREC_RIGHT (chrec
);
1284 if (convert_affine_scev (loop
, type
, &base
, &step
, at_stmt
,
1285 use_overflow_semantics
))
1286 return build_polynomial_chrec (loop
->num
, base
, step
);
1288 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1290 /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1291 may be more expensive. We do want to perform this optimization here
1292 though for canonicalization reasons. */
1293 if (use_overflow_semantics
1294 && (TREE_CODE (chrec
) == PLUS_EXPR
1295 || TREE_CODE (chrec
) == MINUS_EXPR
)
1296 && TYPE_PRECISION (type
) > TYPE_PRECISION (ct
)
1297 && TYPE_OVERFLOW_UNDEFINED (ct
))
1298 res
= fold_build2 (TREE_CODE (chrec
), type
,
1299 fold_convert (type
, TREE_OPERAND (chrec
, 0)),
1300 fold_convert (type
, TREE_OPERAND (chrec
, 1)));
1302 res
= fold_convert (type
, chrec
);
1304 /* Don't propagate overflows. */
1305 if (CONSTANT_CLASS_P (res
))
1306 TREE_OVERFLOW (res
) = 0;
1308 /* But reject constants that don't fit in their type after conversion.
1309 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1310 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1311 and can cause problems later when computing niters of loops. Note
1312 that we don't do the check before converting because we don't want
1313 to reject conversions of negative chrecs to unsigned types. */
1314 if (TREE_CODE (res
) == INTEGER_CST
1315 && TREE_CODE (type
) == INTEGER_TYPE
1316 && !int_fits_type_p (res
, type
))
1317 res
= chrec_dont_know
;
1322 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1323 chrec if something else than what chrec_convert would do happens, NULL_TREE
1327 chrec_convert_aggressive (tree type
, tree chrec
)
1329 tree inner_type
, left
, right
, lc
, rc
, rtype
;
1331 if (automatically_generated_chrec_p (chrec
)
1332 || TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
1335 inner_type
= TREE_TYPE (chrec
);
1336 if (TYPE_PRECISION (type
) > TYPE_PRECISION (inner_type
))
1339 rtype
= POINTER_TYPE_P (type
) ? sizetype
: type
;
1341 left
= CHREC_LEFT (chrec
);
1342 right
= CHREC_RIGHT (chrec
);
1343 lc
= chrec_convert_aggressive (type
, left
);
1345 lc
= chrec_convert (type
, left
, NULL
);
1346 rc
= chrec_convert_aggressive (rtype
, right
);
1348 rc
= chrec_convert (rtype
, right
, NULL
);
1350 return build_polynomial_chrec (CHREC_VARIABLE (chrec
), lc
, rc
);
1353 /* Returns true when CHREC0 == CHREC1. */
1356 eq_evolutions_p (const_tree chrec0
, const_tree chrec1
)
1358 if (chrec0
== NULL_TREE
1359 || chrec1
== NULL_TREE
1360 || TREE_CODE (chrec0
) != TREE_CODE (chrec1
))
1363 if (chrec0
== chrec1
)
1366 switch (TREE_CODE (chrec0
))
1369 return operand_equal_p (chrec0
, chrec1
, 0);
1371 case POLYNOMIAL_CHREC
:
1372 return (CHREC_VARIABLE (chrec0
) == CHREC_VARIABLE (chrec1
)
1373 && eq_evolutions_p (CHREC_LEFT (chrec0
), CHREC_LEFT (chrec1
))
1374 && eq_evolutions_p (CHREC_RIGHT (chrec0
), CHREC_RIGHT (chrec1
)));
1380 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1381 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1382 which of these cases happens. */
1385 scev_direction (const_tree chrec
)
1389 if (!evolution_function_is_affine_p (chrec
))
1390 return EV_DIR_UNKNOWN
;
1392 step
= CHREC_RIGHT (chrec
);
1393 if (TREE_CODE (step
) != INTEGER_CST
)
1394 return EV_DIR_UNKNOWN
;
1396 if (tree_int_cst_sign_bit (step
))
1397 return EV_DIR_DECREASES
;
1399 return EV_DIR_GROWS
;
1402 /* Iterates over all the components of SCEV, and calls CBCK. */
1405 for_each_scev_op (tree
*scev
, bool (*cbck
) (tree
*, void *), void *data
)
1407 switch (TREE_CODE_LENGTH (TREE_CODE (*scev
)))
1410 for_each_scev_op (&TREE_OPERAND (*scev
, 2), cbck
, data
);
1413 for_each_scev_op (&TREE_OPERAND (*scev
, 1), cbck
, data
);
1416 for_each_scev_op (&TREE_OPERAND (*scev
, 0), cbck
, data
);
1424 /* Returns true when the operation can be part of a linear
1428 operator_is_linear (tree scev
)
1430 switch (TREE_CODE (scev
))
1433 case POLYNOMIAL_CHREC
:
1435 case POINTER_PLUS_EXPR
:
1440 case NON_LVALUE_EXPR
:
1450 /* Return true when SCEV is a linear expression. Linear expressions
1451 can contain additions, substractions and multiplications.
1452 Multiplications are restricted to constant scaling: "cst * x". */
1455 scev_is_linear_expression (tree scev
)
1458 || !operator_is_linear (scev
))
1461 if (TREE_CODE (scev
) == MULT_EXPR
)
1462 return !(tree_contains_chrecs (TREE_OPERAND (scev
, 0), NULL
)
1463 && tree_contains_chrecs (TREE_OPERAND (scev
, 1), NULL
));
1465 if (TREE_CODE (scev
) == POLYNOMIAL_CHREC
1466 && !evolution_function_is_affine_multivariate_p (scev
, CHREC_VARIABLE (scev
)))
1469 switch (TREE_CODE_LENGTH (TREE_CODE (scev
)))
1472 return scev_is_linear_expression (TREE_OPERAND (scev
, 0))
1473 && scev_is_linear_expression (TREE_OPERAND (scev
, 1))
1474 && scev_is_linear_expression (TREE_OPERAND (scev
, 2));
1477 return scev_is_linear_expression (TREE_OPERAND (scev
, 0))
1478 && scev_is_linear_expression (TREE_OPERAND (scev
, 1));
1481 return scev_is_linear_expression (TREE_OPERAND (scev
, 0));
1491 /* Determines whether the expression CHREC contains only interger consts
1492 in the right parts. */
1495 evolution_function_right_is_integer_cst (const_tree chrec
)
1497 if (chrec
== NULL_TREE
)
1500 switch (TREE_CODE (chrec
))
1505 case POLYNOMIAL_CHREC
:
1506 if (!evolution_function_right_is_integer_cst (CHREC_RIGHT (chrec
)))
1509 if (TREE_CODE (CHREC_LEFT (chrec
)) == POLYNOMIAL_CHREC
1510 && !evolution_function_right_is_integer_cst (CHREC_LEFT (chrec
)))