Fix comment in gcc/config/arm/predicates.md
[official-gcc.git] / gcc / ada / sem_eval.adb
blob99b6e775218b38f753726967da0ddc441ea5081d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ E V A L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Lib; use Lib;
36 with Namet; use Namet;
37 with Nmake; use Nmake;
38 with Nlists; use Nlists;
39 with Opt; use Opt;
40 with Rtsfind; use Rtsfind;
41 with Sem; use Sem;
42 with Sem_Aux; use Sem_Aux;
43 with Sem_Cat; use Sem_Cat;
44 with Sem_Ch6; use Sem_Ch6;
45 with Sem_Ch8; use Sem_Ch8;
46 with Sem_Res; use Sem_Res;
47 with Sem_Util; use Sem_Util;
48 with Sem_Type; use Sem_Type;
49 with Sem_Warn; use Sem_Warn;
50 with Sinfo; use Sinfo;
51 with Snames; use Snames;
52 with Stand; use Stand;
53 with Stringt; use Stringt;
54 with Tbuild; use Tbuild;
56 package body Sem_Eval is
58 -----------------------------------------
59 -- Handling of Compile Time Evaluation --
60 -----------------------------------------
62 -- The compile time evaluation of expressions is distributed over several
63 -- Eval_xxx procedures. These procedures are called immediately after
64 -- a subexpression is resolved and is therefore accomplished in a bottom
65 -- up fashion. The flags are synthesized using the following approach.
67 -- Is_Static_Expression is determined by following the detailed rules
68 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
69 -- flag of the operands in many cases.
71 -- Raises_Constraint_Error is set if any of the operands have the flag
72 -- set or if an attempt to compute the value of the current expression
73 -- results in detection of a runtime constraint error.
75 -- As described in the spec, the requirement is that Is_Static_Expression
76 -- be accurately set, and in addition for nodes for which this flag is set,
77 -- Raises_Constraint_Error must also be set. Furthermore a node which has
78 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
79 -- requirement is that the expression value must be precomputed, and the
80 -- node is either a literal, or the name of a constant entity whose value
81 -- is a static expression.
83 -- The general approach is as follows. First compute Is_Static_Expression.
84 -- If the node is not static, then the flag is left off in the node and
85 -- we are all done. Otherwise for a static node, we test if any of the
86 -- operands will raise constraint error, and if so, propagate the flag
87 -- Raises_Constraint_Error to the result node and we are done (since the
88 -- error was already posted at a lower level).
90 -- For the case of a static node whose operands do not raise constraint
91 -- error, we attempt to evaluate the node. If this evaluation succeeds,
92 -- then the node is replaced by the result of this computation. If the
93 -- evaluation raises constraint error, then we rewrite the node with
94 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
95 -- to post appropriate error messages.
97 ----------------
98 -- Local Data --
99 ----------------
101 type Bits is array (Nat range <>) of Boolean;
102 -- Used to convert unsigned (modular) values for folding logical ops
104 -- The following definitions are used to maintain a cache of nodes that
105 -- have compile time known values. The cache is maintained only for
106 -- discrete types (the most common case), and is populated by calls to
107 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
108 -- since it is possible for the status to change (in particular it is
109 -- possible for a node to get replaced by a constraint error node).
111 CV_Bits : constant := 5;
112 -- Number of low order bits of Node_Id value used to reference entries
113 -- in the cache table.
115 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
116 -- Size of cache for compile time values
118 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
120 type CV_Entry is record
121 N : Node_Id;
122 V : Uint;
123 end record;
125 type CV_Cache_Array is array (CV_Range) of CV_Entry;
127 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
128 -- This is the actual cache, with entries consisting of node/value pairs,
129 -- and the impossible value Node_High_Bound used for unset entries.
131 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
132 -- Range membership may either be statically known to be in range or out
133 -- of range, or not statically known. Used for Test_In_Range below.
135 -----------------------
136 -- Local Subprograms --
137 -----------------------
139 function From_Bits (B : Bits; T : Entity_Id) return Uint;
140 -- Converts a bit string of length B'Length to a Uint value to be used
141 -- for a target of type T, which is a modular type. This procedure
142 -- includes the necessary reduction by the modulus in the case of a
143 -- non-binary modulus (for a binary modulus, the bit string is the
144 -- right length any way so all is well).
146 function Get_String_Val (N : Node_Id) return Node_Id;
147 -- Given a tree node for a folded string or character value, returns
148 -- the corresponding string literal or character literal (one of the
149 -- two must be available, or the operand would not have been marked
150 -- as foldable in the earlier analysis of the operation).
152 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
153 -- Bits represents the number of bits in an integer value to be computed
154 -- (but the value has not been computed yet). If this value in Bits is
155 -- reasonable, a result of True is returned, with the implication that
156 -- the caller should go ahead and complete the calculation. If the value
157 -- in Bits is unreasonably large, then an error is posted on node N, and
158 -- False is returned (and the caller skips the proposed calculation).
160 procedure Out_Of_Range (N : Node_Id);
161 -- This procedure is called if it is determined that node N, which
162 -- appears in a non-static context, is a compile time known value
163 -- which is outside its range, i.e. the range of Etype. This is used
164 -- in contexts where this is an illegality if N is static, and should
165 -- generate a warning otherwise.
167 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
168 -- N and Exp are nodes representing an expression, Exp is known
169 -- to raise CE. N is rewritten in term of Exp in the optimal way.
171 function String_Type_Len (Stype : Entity_Id) return Uint;
172 -- Given a string type, determines the length of the index type, or,
173 -- if this index type is non-static, the length of the base type of
174 -- this index type. Note that if the string type is itself static,
175 -- then the index type is static, so the second case applies only
176 -- if the string type passed is non-static.
178 function Test (Cond : Boolean) return Uint;
179 pragma Inline (Test);
180 -- This function simply returns the appropriate Boolean'Pos value
181 -- corresponding to the value of Cond as a universal integer. It is
182 -- used for producing the result of the static evaluation of the
183 -- logical operators
185 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
186 -- Check whether an arithmetic operation with universal operands which
187 -- is a rewritten function call with an explicit scope indication is
188 -- ambiguous: P."+" (1, 2) will be ambiguous if there is more than one
189 -- visible numeric type declared in P and the context does not impose a
190 -- type on the result (e.g. in the expression of a type conversion).
191 -- If ambiguous, emit an error and return Empty, else return the result
192 -- type of the operator.
194 procedure Test_Expression_Is_Foldable
195 (N : Node_Id;
196 Op1 : Node_Id;
197 Stat : out Boolean;
198 Fold : out Boolean);
199 -- Tests to see if expression N whose single operand is Op1 is foldable,
200 -- i.e. the operand value is known at compile time. If the operation is
201 -- foldable, then Fold is True on return, and Stat indicates whether
202 -- the result is static (i.e. the operand was static). Note that it
203 -- is quite possible for Fold to be True, and Stat to be False, since
204 -- there are cases in which we know the value of an operand even though
205 -- it is not technically static (e.g. the static lower bound of a range
206 -- whose upper bound is non-static).
208 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes a
209 -- call to Check_Non_Static_Context on the operand. If Fold is False on
210 -- return, then all processing is complete, and the caller should
211 -- return, since there is nothing else to do.
213 -- If Stat is set True on return, then Is_Static_Expression is also set
214 -- true in node N. There are some cases where this is over-enthusiastic,
215 -- e.g. in the two operand case below, for string comparison, the result
216 -- is not static even though the two operands are static. In such cases,
217 -- the caller must reset the Is_Static_Expression flag in N.
219 -- If Fold and Stat are both set to False then this routine performs also
220 -- the following extra actions:
222 -- If either operand is Any_Type then propagate it to result to
223 -- prevent cascaded errors.
225 -- If some operand raises constraint error, then replace the node N
226 -- with the raise constraint error node. This replacement inherits the
227 -- Is_Static_Expression flag from the operands.
229 procedure Test_Expression_Is_Foldable
230 (N : Node_Id;
231 Op1 : Node_Id;
232 Op2 : Node_Id;
233 Stat : out Boolean;
234 Fold : out Boolean);
235 -- Same processing, except applies to an expression N with two operands
236 -- Op1 and Op2. The result is static only if both operands are static.
238 function Test_In_Range
239 (N : Node_Id;
240 Typ : Entity_Id;
241 Assume_Valid : Boolean;
242 Fixed_Int : Boolean;
243 Int_Real : Boolean) return Range_Membership;
244 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
245 -- or Out_Of_Range if it can be guaranteed at compile time that expression
246 -- N is known to be in or out of range of the subtype Typ. If not compile
247 -- time known, Unknown is returned. See documentation of Is_In_Range for
248 -- complete description of parameters.
250 procedure To_Bits (U : Uint; B : out Bits);
251 -- Converts a Uint value to a bit string of length B'Length
253 ------------------------------
254 -- Check_Non_Static_Context --
255 ------------------------------
257 procedure Check_Non_Static_Context (N : Node_Id) is
258 T : constant Entity_Id := Etype (N);
259 Checks_On : constant Boolean :=
260 not Index_Checks_Suppressed (T)
261 and not Range_Checks_Suppressed (T);
263 begin
264 -- Ignore cases of non-scalar types, error types, or universal real
265 -- types that have no usable bounds.
267 if T = Any_Type
268 or else not Is_Scalar_Type (T)
269 or else T = Universal_Fixed
270 or else T = Universal_Real
271 then
272 return;
273 end if;
275 -- At this stage we have a scalar type. If we have an expression that
276 -- raises CE, then we already issued a warning or error msg so there
277 -- is nothing more to be done in this routine.
279 if Raises_Constraint_Error (N) then
280 return;
281 end if;
283 -- Now we have a scalar type which is not marked as raising a constraint
284 -- error exception. The main purpose of this routine is to deal with
285 -- static expressions appearing in a non-static context. That means
286 -- that if we do not have a static expression then there is not much
287 -- to do. The one case that we deal with here is that if we have a
288 -- floating-point value that is out of range, then we post a warning
289 -- that an infinity will result.
291 if not Is_Static_Expression (N) then
292 if Is_Floating_Point_Type (T)
293 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
294 then
295 Error_Msg_N
296 ("??float value out of range, infinity will be generated", N);
297 end if;
299 return;
300 end if;
302 -- Here we have the case of outer level static expression of scalar
303 -- type, where the processing of this procedure is needed.
305 -- For real types, this is where we convert the value to a machine
306 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
307 -- need to do this if the parent is a constant declaration, since in
308 -- other cases, gigi should do the necessary conversion correctly, but
309 -- experimentation shows that this is not the case on all machines, in
310 -- particular if we do not convert all literals to machine values in
311 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
312 -- and SGI/Irix.
314 if Nkind (N) = N_Real_Literal
315 and then not Is_Machine_Number (N)
316 and then not Is_Generic_Type (Etype (N))
317 and then Etype (N) /= Universal_Real
318 then
319 -- Check that value is in bounds before converting to machine
320 -- number, so as not to lose case where value overflows in the
321 -- least significant bit or less. See B490001.
323 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
324 Out_Of_Range (N);
325 return;
326 end if;
328 -- Note: we have to copy the node, to avoid problems with conformance
329 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
331 Rewrite (N, New_Copy (N));
333 if not Is_Floating_Point_Type (T) then
334 Set_Realval
335 (N, Corresponding_Integer_Value (N) * Small_Value (T));
337 elsif not UR_Is_Zero (Realval (N)) then
339 -- Note: even though RM 4.9(38) specifies biased rounding, this
340 -- has been modified by AI-100 in order to prevent confusing
341 -- differences in rounding between static and non-static
342 -- expressions. AI-100 specifies that the effect of such rounding
343 -- is implementation dependent, and in GNAT we round to nearest
344 -- even to match the run-time behavior.
346 Set_Realval
347 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
348 end if;
350 Set_Is_Machine_Number (N);
351 end if;
353 -- Check for out of range universal integer. This is a non-static
354 -- context, so the integer value must be in range of the runtime
355 -- representation of universal integers.
357 -- We do this only within an expression, because that is the only
358 -- case in which non-static universal integer values can occur, and
359 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
360 -- called in contexts like the expression of a number declaration where
361 -- we certainly want to allow out of range values.
363 if Etype (N) = Universal_Integer
364 and then Nkind (N) = N_Integer_Literal
365 and then Nkind (Parent (N)) in N_Subexpr
366 and then
367 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
368 or else
369 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
370 then
371 Apply_Compile_Time_Constraint_Error
372 (N, "non-static universal integer value out of range??",
373 CE_Range_Check_Failed);
375 -- Check out of range of base type
377 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
378 Out_Of_Range (N);
380 -- Give warning if outside subtype (where one or both of the bounds of
381 -- the subtype is static). This warning is omitted if the expression
382 -- appears in a range that could be null (warnings are handled elsewhere
383 -- for this case).
385 elsif T /= Base_Type (T)
386 and then Nkind (Parent (N)) /= N_Range
387 then
388 if Is_In_Range (N, T, Assume_Valid => True) then
389 null;
391 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
392 Apply_Compile_Time_Constraint_Error
393 (N, "value not in range of}??", CE_Range_Check_Failed);
395 elsif Checks_On then
396 Enable_Range_Check (N);
398 else
399 Set_Do_Range_Check (N, False);
400 end if;
401 end if;
402 end Check_Non_Static_Context;
404 ---------------------------------
405 -- Check_String_Literal_Length --
406 ---------------------------------
408 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
409 begin
410 if not Raises_Constraint_Error (N) and then Is_Constrained (Ttype) then
412 UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
413 then
414 Apply_Compile_Time_Constraint_Error
415 (N, "string length wrong for}??",
416 CE_Length_Check_Failed,
417 Ent => Ttype,
418 Typ => Ttype);
419 end if;
420 end if;
421 end Check_String_Literal_Length;
423 --------------------------
424 -- Compile_Time_Compare --
425 --------------------------
427 function Compile_Time_Compare
428 (L, R : Node_Id;
429 Assume_Valid : Boolean) return Compare_Result
431 Discard : aliased Uint;
432 begin
433 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
434 end Compile_Time_Compare;
436 function Compile_Time_Compare
437 (L, R : Node_Id;
438 Diff : access Uint;
439 Assume_Valid : Boolean;
440 Rec : Boolean := False) return Compare_Result
442 Ltyp : Entity_Id := Underlying_Type (Etype (L));
443 Rtyp : Entity_Id := Underlying_Type (Etype (R));
444 -- These get reset to the base type for the case of entities where
445 -- Is_Known_Valid is not set. This takes care of handling possible
446 -- invalid representations using the value of the base type, in
447 -- accordance with RM 13.9.1(10).
449 Discard : aliased Uint;
451 procedure Compare_Decompose
452 (N : Node_Id;
453 R : out Node_Id;
454 V : out Uint);
455 -- This procedure decomposes the node N into an expression node and a
456 -- signed offset, so that the value of N is equal to the value of R plus
457 -- the value V (which may be negative). If no such decomposition is
458 -- possible, then on return R is a copy of N, and V is set to zero.
460 function Compare_Fixup (N : Node_Id) return Node_Id;
461 -- This function deals with replacing 'Last and 'First references with
462 -- their corresponding type bounds, which we then can compare. The
463 -- argument is the original node, the result is the identity, unless we
464 -- have a 'Last/'First reference in which case the value returned is the
465 -- appropriate type bound.
467 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
468 -- Even if the context does not assume that values are valid, some
469 -- simple cases can be recognized.
471 function Is_Same_Value (L, R : Node_Id) return Boolean;
472 -- Returns True iff L and R represent expressions that definitely have
473 -- identical (but not necessarily compile time known) values Indeed the
474 -- caller is expected to have already dealt with the cases of compile
475 -- time known values, so these are not tested here.
477 -----------------------
478 -- Compare_Decompose --
479 -----------------------
481 procedure Compare_Decompose
482 (N : Node_Id;
483 R : out Node_Id;
484 V : out Uint)
486 begin
487 if Nkind (N) = N_Op_Add
488 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
489 then
490 R := Left_Opnd (N);
491 V := Intval (Right_Opnd (N));
492 return;
494 elsif Nkind (N) = N_Op_Subtract
495 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
496 then
497 R := Left_Opnd (N);
498 V := UI_Negate (Intval (Right_Opnd (N)));
499 return;
501 elsif Nkind (N) = N_Attribute_Reference then
502 if Attribute_Name (N) = Name_Succ then
503 R := First (Expressions (N));
504 V := Uint_1;
505 return;
507 elsif Attribute_Name (N) = Name_Pred then
508 R := First (Expressions (N));
509 V := Uint_Minus_1;
510 return;
511 end if;
512 end if;
514 R := N;
515 V := Uint_0;
516 end Compare_Decompose;
518 -------------------
519 -- Compare_Fixup --
520 -------------------
522 function Compare_Fixup (N : Node_Id) return Node_Id is
523 Indx : Node_Id;
524 Xtyp : Entity_Id;
525 Subs : Nat;
527 begin
528 -- Fixup only required for First/Last attribute reference
530 if Nkind (N) = N_Attribute_Reference
531 and then Nam_In (Attribute_Name (N), Name_First, Name_Last)
532 then
533 Xtyp := Etype (Prefix (N));
535 -- If we have no type, then just abandon the attempt to do
536 -- a fixup, this is probably the result of some other error.
538 if No (Xtyp) then
539 return N;
540 end if;
542 -- Dereference an access type
544 if Is_Access_Type (Xtyp) then
545 Xtyp := Designated_Type (Xtyp);
546 end if;
548 -- If we don't have an array type at this stage, something
549 -- is peculiar, e.g. another error, and we abandon the attempt
550 -- at a fixup.
552 if not Is_Array_Type (Xtyp) then
553 return N;
554 end if;
556 -- Ignore unconstrained array, since bounds are not meaningful
558 if not Is_Constrained (Xtyp) then
559 return N;
560 end if;
562 if Ekind (Xtyp) = E_String_Literal_Subtype then
563 if Attribute_Name (N) = Name_First then
564 return String_Literal_Low_Bound (Xtyp);
566 else
567 return Make_Integer_Literal (Sloc (N),
568 Intval => Intval (String_Literal_Low_Bound (Xtyp))
569 + String_Literal_Length (Xtyp));
570 end if;
571 end if;
573 -- Find correct index type
575 Indx := First_Index (Xtyp);
577 if Present (Expressions (N)) then
578 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
580 for J in 2 .. Subs loop
581 Indx := Next_Index (Indx);
582 end loop;
583 end if;
585 Xtyp := Etype (Indx);
587 if Attribute_Name (N) = Name_First then
588 return Type_Low_Bound (Xtyp);
589 else
590 return Type_High_Bound (Xtyp);
591 end if;
592 end if;
594 return N;
595 end Compare_Fixup;
597 ----------------------------
598 -- Is_Known_Valid_Operand --
599 ----------------------------
601 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
602 begin
603 return (Is_Entity_Name (Opnd)
604 and then
605 (Is_Known_Valid (Entity (Opnd))
606 or else Ekind (Entity (Opnd)) = E_In_Parameter
607 or else
608 (Ekind (Entity (Opnd)) in Object_Kind
609 and then Present (Current_Value (Entity (Opnd))))))
610 or else Is_OK_Static_Expression (Opnd);
611 end Is_Known_Valid_Operand;
613 -------------------
614 -- Is_Same_Value --
615 -------------------
617 function Is_Same_Value (L, R : Node_Id) return Boolean is
618 Lf : constant Node_Id := Compare_Fixup (L);
619 Rf : constant Node_Id := Compare_Fixup (R);
621 function Is_Same_Subscript (L, R : List_Id) return Boolean;
622 -- L, R are the Expressions values from two attribute nodes for First
623 -- or Last attributes. Either may be set to No_List if no expressions
624 -- are present (indicating subscript 1). The result is True if both
625 -- expressions represent the same subscript (note one case is where
626 -- one subscript is missing and the other is explicitly set to 1).
628 -----------------------
629 -- Is_Same_Subscript --
630 -----------------------
632 function Is_Same_Subscript (L, R : List_Id) return Boolean is
633 begin
634 if L = No_List then
635 if R = No_List then
636 return True;
637 else
638 return Expr_Value (First (R)) = Uint_1;
639 end if;
641 else
642 if R = No_List then
643 return Expr_Value (First (L)) = Uint_1;
644 else
645 return Expr_Value (First (L)) = Expr_Value (First (R));
646 end if;
647 end if;
648 end Is_Same_Subscript;
650 -- Start of processing for Is_Same_Value
652 begin
653 -- Values are the same if they refer to the same entity and the
654 -- entity is non-volatile. This does not however apply to Float
655 -- types, since we may have two NaN values and they should never
656 -- compare equal.
658 -- If the entity is a discriminant, the two expressions may be bounds
659 -- of components of objects of the same discriminated type. The
660 -- values of the discriminants are not static, and therefore the
661 -- result is unknown.
663 -- It would be better to comment individual branches of this test ???
665 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
666 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
667 and then Entity (Lf) = Entity (Rf)
668 and then Ekind (Entity (Lf)) /= E_Discriminant
669 and then Present (Entity (Lf))
670 and then not Is_Floating_Point_Type (Etype (L))
671 and then not Is_Volatile_Reference (L)
672 and then not Is_Volatile_Reference (R)
673 then
674 return True;
676 -- Or if they are compile time known and identical
678 elsif Compile_Time_Known_Value (Lf)
679 and then
680 Compile_Time_Known_Value (Rf)
681 and then Expr_Value (Lf) = Expr_Value (Rf)
682 then
683 return True;
685 -- False if Nkind of the two nodes is different for remaining cases
687 elsif Nkind (Lf) /= Nkind (Rf) then
688 return False;
690 -- True if both 'First or 'Last values applying to the same entity
691 -- (first and last don't change even if value does). Note that we
692 -- need this even with the calls to Compare_Fixup, to handle the
693 -- case of unconstrained array attributes where Compare_Fixup
694 -- cannot find useful bounds.
696 elsif Nkind (Lf) = N_Attribute_Reference
697 and then Attribute_Name (Lf) = Attribute_Name (Rf)
698 and then Nam_In (Attribute_Name (Lf), Name_First, Name_Last)
699 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
700 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
701 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
702 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
703 then
704 return True;
706 -- True if the same selected component from the same record
708 elsif Nkind (Lf) = N_Selected_Component
709 and then Selector_Name (Lf) = Selector_Name (Rf)
710 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
711 then
712 return True;
714 -- True if the same unary operator applied to the same operand
716 elsif Nkind (Lf) in N_Unary_Op
717 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
718 then
719 return True;
721 -- True if the same binary operator applied to the same operands
723 elsif Nkind (Lf) in N_Binary_Op
724 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
725 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
726 then
727 return True;
729 -- All other cases, we can't tell, so return False
731 else
732 return False;
733 end if;
734 end Is_Same_Value;
736 -- Start of processing for Compile_Time_Compare
738 begin
739 Diff.all := No_Uint;
741 -- In preanalysis mode, always return Unknown unless the expression
742 -- is static. It is too early to be thinking we know the result of a
743 -- comparison, save that judgment for the full analysis. This is
744 -- particularly important in the case of pre and postconditions, which
745 -- otherwise can be prematurely collapsed into having True or False
746 -- conditions when this is inappropriate.
748 if not (Full_Analysis
749 or else (Is_Static_Expression (L)
750 and then
751 Is_Static_Expression (R)))
752 then
753 return Unknown;
754 end if;
756 -- If either operand could raise constraint error, then we cannot
757 -- know the result at compile time (since CE may be raised!)
759 if not (Cannot_Raise_Constraint_Error (L)
760 and then
761 Cannot_Raise_Constraint_Error (R))
762 then
763 return Unknown;
764 end if;
766 -- Identical operands are most certainly equal
768 if L = R then
769 return EQ;
771 -- If expressions have no types, then do not attempt to determine if
772 -- they are the same, since something funny is going on. One case in
773 -- which this happens is during generic template analysis, when bounds
774 -- are not fully analyzed.
776 elsif No (Ltyp) or else No (Rtyp) then
777 return Unknown;
779 -- We do not attempt comparisons for packed arrays arrays represented as
780 -- modular types, where the semantics of comparison is quite different.
782 elsif Is_Packed_Array_Type (Ltyp)
783 and then Is_Modular_Integer_Type (Ltyp)
784 then
785 return Unknown;
787 -- For access types, the only time we know the result at compile time
788 -- (apart from identical operands, which we handled already) is if we
789 -- know one operand is null and the other is not, or both operands are
790 -- known null.
792 elsif Is_Access_Type (Ltyp) then
793 if Known_Null (L) then
794 if Known_Null (R) then
795 return EQ;
796 elsif Known_Non_Null (R) then
797 return NE;
798 else
799 return Unknown;
800 end if;
802 elsif Known_Non_Null (L) and then Known_Null (R) then
803 return NE;
805 else
806 return Unknown;
807 end if;
809 -- Case where comparison involves two compile time known values
811 elsif Compile_Time_Known_Value (L)
812 and then Compile_Time_Known_Value (R)
813 then
814 -- For the floating-point case, we have to be a little careful, since
815 -- at compile time we are dealing with universal exact values, but at
816 -- runtime, these will be in non-exact target form. That's why the
817 -- returned results are LE and GE below instead of LT and GT.
819 if Is_Floating_Point_Type (Ltyp)
820 or else
821 Is_Floating_Point_Type (Rtyp)
822 then
823 declare
824 Lo : constant Ureal := Expr_Value_R (L);
825 Hi : constant Ureal := Expr_Value_R (R);
827 begin
828 if Lo < Hi then
829 return LE;
830 elsif Lo = Hi then
831 return EQ;
832 else
833 return GE;
834 end if;
835 end;
837 -- For string types, we have two string literals and we proceed to
838 -- compare them using the Ada style dictionary string comparison.
840 elsif not Is_Scalar_Type (Ltyp) then
841 declare
842 Lstring : constant String_Id := Strval (Expr_Value_S (L));
843 Rstring : constant String_Id := Strval (Expr_Value_S (R));
844 Llen : constant Nat := String_Length (Lstring);
845 Rlen : constant Nat := String_Length (Rstring);
847 begin
848 for J in 1 .. Nat'Min (Llen, Rlen) loop
849 declare
850 LC : constant Char_Code := Get_String_Char (Lstring, J);
851 RC : constant Char_Code := Get_String_Char (Rstring, J);
852 begin
853 if LC < RC then
854 return LT;
855 elsif LC > RC then
856 return GT;
857 end if;
858 end;
859 end loop;
861 if Llen < Rlen then
862 return LT;
863 elsif Llen > Rlen then
864 return GT;
865 else
866 return EQ;
867 end if;
868 end;
870 -- For remaining scalar cases we know exactly (note that this does
871 -- include the fixed-point case, where we know the run time integer
872 -- values now).
874 else
875 declare
876 Lo : constant Uint := Expr_Value (L);
877 Hi : constant Uint := Expr_Value (R);
879 begin
880 if Lo < Hi then
881 Diff.all := Hi - Lo;
882 return LT;
884 elsif Lo = Hi then
885 return EQ;
887 else
888 Diff.all := Lo - Hi;
889 return GT;
890 end if;
891 end;
892 end if;
894 -- Cases where at least one operand is not known at compile time
896 else
897 -- Remaining checks apply only for discrete types
899 if not Is_Discrete_Type (Ltyp)
900 or else not Is_Discrete_Type (Rtyp)
901 then
902 return Unknown;
903 end if;
905 -- Defend against generic types, or actually any expressions that
906 -- contain a reference to a generic type from within a generic
907 -- template. We don't want to do any range analysis of such
908 -- expressions for two reasons. First, the bounds of a generic type
909 -- itself are junk and cannot be used for any kind of analysis.
910 -- Second, we may have a case where the range at run time is indeed
911 -- known, but we don't want to do compile time analysis in the
912 -- template based on that range since in an instance the value may be
913 -- static, and able to be elaborated without reference to the bounds
914 -- of types involved. As an example, consider:
916 -- (F'Pos (F'Last) + 1) > Integer'Last
918 -- The expression on the left side of > is Universal_Integer and thus
919 -- acquires the type Integer for evaluation at run time, and at run
920 -- time it is true that this condition is always False, but within
921 -- an instance F may be a type with a static range greater than the
922 -- range of Integer, and the expression statically evaluates to True.
924 if References_Generic_Formal_Type (L)
925 or else
926 References_Generic_Formal_Type (R)
927 then
928 return Unknown;
929 end if;
931 -- Replace types by base types for the case of entities which are
932 -- not known to have valid representations. This takes care of
933 -- properly dealing with invalid representations.
935 if not Assume_Valid and then not Assume_No_Invalid_Values then
936 if Is_Entity_Name (L) and then not Is_Known_Valid (Entity (L)) then
937 Ltyp := Underlying_Type (Base_Type (Ltyp));
938 end if;
940 if Is_Entity_Name (R) and then not Is_Known_Valid (Entity (R)) then
941 Rtyp := Underlying_Type (Base_Type (Rtyp));
942 end if;
943 end if;
945 -- First attempt is to decompose the expressions to extract a
946 -- constant offset resulting from the use of any of the forms:
948 -- expr + literal
949 -- expr - literal
950 -- typ'Succ (expr)
951 -- typ'Pred (expr)
953 -- Then we see if the two expressions are the same value, and if so
954 -- the result is obtained by comparing the offsets.
956 -- Note: the reason we do this test first is that it returns only
957 -- decisive results (with diff set), where other tests, like the
958 -- range test, may not be as so decisive. Consider for example
959 -- J .. J + 1. This code can conclude LT with a difference of 1,
960 -- even if the range of J is not known.
962 declare
963 Lnode : Node_Id;
964 Loffs : Uint;
965 Rnode : Node_Id;
966 Roffs : Uint;
968 begin
969 Compare_Decompose (L, Lnode, Loffs);
970 Compare_Decompose (R, Rnode, Roffs);
972 if Is_Same_Value (Lnode, Rnode) then
973 if Loffs = Roffs then
974 return EQ;
976 elsif Loffs < Roffs then
977 Diff.all := Roffs - Loffs;
978 return LT;
980 else
981 Diff.all := Loffs - Roffs;
982 return GT;
983 end if;
984 end if;
985 end;
987 -- Next, try range analysis and see if operand ranges are disjoint
989 declare
990 LOK, ROK : Boolean;
991 LLo, LHi : Uint;
992 RLo, RHi : Uint;
994 Single : Boolean;
995 -- True if each range is a single point
997 begin
998 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
999 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
1001 if LOK and ROK then
1002 Single := (LLo = LHi) and then (RLo = RHi);
1004 if LHi < RLo then
1005 if Single and Assume_Valid then
1006 Diff.all := RLo - LLo;
1007 end if;
1009 return LT;
1011 elsif RHi < LLo then
1012 if Single and Assume_Valid then
1013 Diff.all := LLo - RLo;
1014 end if;
1016 return GT;
1018 elsif Single and then LLo = RLo then
1020 -- If the range includes a single literal and we can assume
1021 -- validity then the result is known even if an operand is
1022 -- not static.
1024 if Assume_Valid then
1025 return EQ;
1026 else
1027 return Unknown;
1028 end if;
1030 elsif LHi = RLo then
1031 return LE;
1033 elsif RHi = LLo then
1034 return GE;
1036 elsif not Is_Known_Valid_Operand (L)
1037 and then not Assume_Valid
1038 then
1039 if Is_Same_Value (L, R) then
1040 return EQ;
1041 else
1042 return Unknown;
1043 end if;
1044 end if;
1046 -- If the range of either operand cannot be determined, nothing
1047 -- further can be inferred.
1049 else
1050 return Unknown;
1051 end if;
1052 end;
1054 -- Here is where we check for comparisons against maximum bounds of
1055 -- types, where we know that no value can be outside the bounds of
1056 -- the subtype. Note that this routine is allowed to assume that all
1057 -- expressions are within their subtype bounds. Callers wishing to
1058 -- deal with possibly invalid values must in any case take special
1059 -- steps (e.g. conversions to larger types) to avoid this kind of
1060 -- optimization, which is always considered to be valid. We do not
1061 -- attempt this optimization with generic types, since the type
1062 -- bounds may not be meaningful in this case.
1064 -- We are in danger of an infinite recursion here. It does not seem
1065 -- useful to go more than one level deep, so the parameter Rec is
1066 -- used to protect ourselves against this infinite recursion.
1068 if not Rec then
1070 -- See if we can get a decisive check against one operand and
1071 -- a bound of the other operand (four possible tests here).
1072 -- Note that we avoid testing junk bounds of a generic type.
1074 if not Is_Generic_Type (Rtyp) then
1075 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
1076 Discard'Access,
1077 Assume_Valid, Rec => True)
1079 when LT => return LT;
1080 when LE => return LE;
1081 when EQ => return LE;
1082 when others => null;
1083 end case;
1085 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1086 Discard'Access,
1087 Assume_Valid, Rec => True)
1089 when GT => return GT;
1090 when GE => return GE;
1091 when EQ => return GE;
1092 when others => null;
1093 end case;
1094 end if;
1096 if not Is_Generic_Type (Ltyp) then
1097 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1098 Discard'Access,
1099 Assume_Valid, Rec => True)
1101 when GT => return GT;
1102 when GE => return GE;
1103 when EQ => return GE;
1104 when others => null;
1105 end case;
1107 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1108 Discard'Access,
1109 Assume_Valid, Rec => True)
1111 when LT => return LT;
1112 when LE => return LE;
1113 when EQ => return LE;
1114 when others => null;
1115 end case;
1116 end if;
1117 end if;
1119 -- Next attempt is to see if we have an entity compared with a
1120 -- compile time known value, where there is a current value
1121 -- conditional for the entity which can tell us the result.
1123 declare
1124 Var : Node_Id;
1125 -- Entity variable (left operand)
1127 Val : Uint;
1128 -- Value (right operand)
1130 Inv : Boolean;
1131 -- If False, we have reversed the operands
1133 Op : Node_Kind;
1134 -- Comparison operator kind from Get_Current_Value_Condition call
1136 Opn : Node_Id;
1137 -- Value from Get_Current_Value_Condition call
1139 Opv : Uint;
1140 -- Value of Opn
1142 Result : Compare_Result;
1143 -- Known result before inversion
1145 begin
1146 if Is_Entity_Name (L)
1147 and then Compile_Time_Known_Value (R)
1148 then
1149 Var := L;
1150 Val := Expr_Value (R);
1151 Inv := False;
1153 elsif Is_Entity_Name (R)
1154 and then Compile_Time_Known_Value (L)
1155 then
1156 Var := R;
1157 Val := Expr_Value (L);
1158 Inv := True;
1160 -- That was the last chance at finding a compile time result
1162 else
1163 return Unknown;
1164 end if;
1166 Get_Current_Value_Condition (Var, Op, Opn);
1168 -- That was the last chance, so if we got nothing return
1170 if No (Opn) then
1171 return Unknown;
1172 end if;
1174 Opv := Expr_Value (Opn);
1176 -- We got a comparison, so we might have something interesting
1178 -- Convert LE to LT and GE to GT, just so we have fewer cases
1180 if Op = N_Op_Le then
1181 Op := N_Op_Lt;
1182 Opv := Opv + 1;
1184 elsif Op = N_Op_Ge then
1185 Op := N_Op_Gt;
1186 Opv := Opv - 1;
1187 end if;
1189 -- Deal with equality case
1191 if Op = N_Op_Eq then
1192 if Val = Opv then
1193 Result := EQ;
1194 elsif Opv < Val then
1195 Result := LT;
1196 else
1197 Result := GT;
1198 end if;
1200 -- Deal with inequality case
1202 elsif Op = N_Op_Ne then
1203 if Val = Opv then
1204 Result := NE;
1205 else
1206 return Unknown;
1207 end if;
1209 -- Deal with greater than case
1211 elsif Op = N_Op_Gt then
1212 if Opv >= Val then
1213 Result := GT;
1214 elsif Opv = Val - 1 then
1215 Result := GE;
1216 else
1217 return Unknown;
1218 end if;
1220 -- Deal with less than case
1222 else pragma Assert (Op = N_Op_Lt);
1223 if Opv <= Val then
1224 Result := LT;
1225 elsif Opv = Val + 1 then
1226 Result := LE;
1227 else
1228 return Unknown;
1229 end if;
1230 end if;
1232 -- Deal with inverting result
1234 if Inv then
1235 case Result is
1236 when GT => return LT;
1237 when GE => return LE;
1238 when LT => return GT;
1239 when LE => return GE;
1240 when others => return Result;
1241 end case;
1242 end if;
1244 return Result;
1245 end;
1246 end if;
1247 end Compile_Time_Compare;
1249 -------------------------------
1250 -- Compile_Time_Known_Bounds --
1251 -------------------------------
1253 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1254 Indx : Node_Id;
1255 Typ : Entity_Id;
1257 begin
1258 if not Is_Array_Type (T) then
1259 return False;
1260 end if;
1262 Indx := First_Index (T);
1263 while Present (Indx) loop
1264 Typ := Underlying_Type (Etype (Indx));
1266 -- Never look at junk bounds of a generic type
1268 if Is_Generic_Type (Typ) then
1269 return False;
1270 end if;
1272 -- Otherwise check bounds for compile time known
1274 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1275 return False;
1276 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1277 return False;
1278 else
1279 Next_Index (Indx);
1280 end if;
1281 end loop;
1283 return True;
1284 end Compile_Time_Known_Bounds;
1286 ------------------------------
1287 -- Compile_Time_Known_Value --
1288 ------------------------------
1290 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1291 K : constant Node_Kind := Nkind (Op);
1292 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
1294 begin
1295 -- Never known at compile time if bad type or raises constraint error
1296 -- or empty (latter case occurs only as a result of a previous error).
1298 if No (Op) then
1299 Check_Error_Detected;
1300 return False;
1302 elsif Op = Error
1303 or else Etype (Op) = Any_Type
1304 or else Raises_Constraint_Error (Op)
1305 then
1306 return False;
1307 end if;
1309 -- If this is not a static expression or a null literal, and we are in
1310 -- configurable run-time mode, then we consider it not known at compile
1311 -- time. This avoids anomalies where whether something is allowed with a
1312 -- given configurable run-time library depends on how good the compiler
1313 -- is at optimizing and knowing that things are constant when they are
1314 -- nonstatic.
1316 if Configurable_Run_Time_Mode
1317 and then K /= N_Null
1318 and then not Is_Static_Expression (Op)
1319 then
1320 -- We make an exception for expressions that evaluate to True/False,
1321 -- to suppress spurious checks in ZFP mode. So far we have not seen
1322 -- any negative consequences of this exception.
1324 if Is_Entity_Name (Op)
1325 and then Ekind (Entity (Op)) = E_Enumeration_Literal
1326 and then Etype (Entity (Op)) = Standard_Boolean
1327 then
1328 null;
1330 else
1331 return False;
1332 end if;
1333 end if;
1335 -- If we have an entity name, then see if it is the name of a constant
1336 -- and if so, test the corresponding constant value, or the name of
1337 -- an enumeration literal, which is always a constant.
1339 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1340 declare
1341 E : constant Entity_Id := Entity (Op);
1342 V : Node_Id;
1344 begin
1345 -- Never known at compile time if it is a packed array value.
1346 -- We might want to try to evaluate these at compile time one
1347 -- day, but we do not make that attempt now.
1349 if Is_Packed_Array_Type (Etype (Op)) then
1350 return False;
1351 end if;
1353 if Ekind (E) = E_Enumeration_Literal then
1354 return True;
1356 elsif Ekind (E) = E_Constant then
1357 V := Constant_Value (E);
1358 return Present (V) and then Compile_Time_Known_Value (V);
1359 end if;
1360 end;
1362 -- We have a value, see if it is compile time known
1364 else
1365 -- Integer literals are worth storing in the cache
1367 if K = N_Integer_Literal then
1368 CV_Ent.N := Op;
1369 CV_Ent.V := Intval (Op);
1370 return True;
1372 -- Other literals and NULL are known at compile time
1374 elsif
1375 K = N_Character_Literal
1376 or else
1377 K = N_Real_Literal
1378 or else
1379 K = N_String_Literal
1380 or else
1381 K = N_Null
1382 then
1383 return True;
1385 -- Any reference to Null_Parameter is known at compile time. No
1386 -- other attribute references (that have not already been folded)
1387 -- are known at compile time.
1389 elsif K = N_Attribute_Reference then
1390 return Attribute_Name (Op) = Name_Null_Parameter;
1391 end if;
1392 end if;
1394 -- If we fall through, not known at compile time
1396 return False;
1398 -- If we get an exception while trying to do this test, then some error
1399 -- has occurred, and we simply say that the value is not known after all
1401 exception
1402 when others =>
1403 return False;
1404 end Compile_Time_Known_Value;
1406 --------------------------------------
1407 -- Compile_Time_Known_Value_Or_Aggr --
1408 --------------------------------------
1410 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1411 begin
1412 -- If we have an entity name, then see if it is the name of a constant
1413 -- and if so, test the corresponding constant value, or the name of
1414 -- an enumeration literal, which is always a constant.
1416 if Is_Entity_Name (Op) then
1417 declare
1418 E : constant Entity_Id := Entity (Op);
1419 V : Node_Id;
1421 begin
1422 if Ekind (E) = E_Enumeration_Literal then
1423 return True;
1425 elsif Ekind (E) /= E_Constant then
1426 return False;
1428 else
1429 V := Constant_Value (E);
1430 return Present (V)
1431 and then Compile_Time_Known_Value_Or_Aggr (V);
1432 end if;
1433 end;
1435 -- We have a value, see if it is compile time known
1437 else
1438 if Compile_Time_Known_Value (Op) then
1439 return True;
1441 elsif Nkind (Op) = N_Aggregate then
1443 if Present (Expressions (Op)) then
1444 declare
1445 Expr : Node_Id;
1447 begin
1448 Expr := First (Expressions (Op));
1449 while Present (Expr) loop
1450 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1451 return False;
1452 end if;
1454 Next (Expr);
1455 end loop;
1456 end;
1457 end if;
1459 if Present (Component_Associations (Op)) then
1460 declare
1461 Cass : Node_Id;
1463 begin
1464 Cass := First (Component_Associations (Op));
1465 while Present (Cass) loop
1466 if not
1467 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1468 then
1469 return False;
1470 end if;
1472 Next (Cass);
1473 end loop;
1474 end;
1475 end if;
1477 return True;
1479 -- All other types of values are not known at compile time
1481 else
1482 return False;
1483 end if;
1485 end if;
1486 end Compile_Time_Known_Value_Or_Aggr;
1488 -----------------
1489 -- Eval_Actual --
1490 -----------------
1492 -- This is only called for actuals of functions that are not predefined
1493 -- operators (which have already been rewritten as operators at this
1494 -- stage), so the call can never be folded, and all that needs doing for
1495 -- the actual is to do the check for a non-static context.
1497 procedure Eval_Actual (N : Node_Id) is
1498 begin
1499 Check_Non_Static_Context (N);
1500 end Eval_Actual;
1502 --------------------
1503 -- Eval_Allocator --
1504 --------------------
1506 -- Allocators are never static, so all we have to do is to do the
1507 -- check for a non-static context if an expression is present.
1509 procedure Eval_Allocator (N : Node_Id) is
1510 Expr : constant Node_Id := Expression (N);
1512 begin
1513 if Nkind (Expr) = N_Qualified_Expression then
1514 Check_Non_Static_Context (Expression (Expr));
1515 end if;
1516 end Eval_Allocator;
1518 ------------------------
1519 -- Eval_Arithmetic_Op --
1520 ------------------------
1522 -- Arithmetic operations are static functions, so the result is static
1523 -- if both operands are static (RM 4.9(7), 4.9(20)).
1525 procedure Eval_Arithmetic_Op (N : Node_Id) is
1526 Left : constant Node_Id := Left_Opnd (N);
1527 Right : constant Node_Id := Right_Opnd (N);
1528 Ltype : constant Entity_Id := Etype (Left);
1529 Rtype : constant Entity_Id := Etype (Right);
1530 Otype : Entity_Id := Empty;
1531 Stat : Boolean;
1532 Fold : Boolean;
1534 begin
1535 -- If not foldable we are done
1537 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1539 if not Fold then
1540 return;
1541 end if;
1543 if Is_Universal_Numeric_Type (Etype (Left))
1544 and then
1545 Is_Universal_Numeric_Type (Etype (Right))
1546 then
1547 Otype := Find_Universal_Operator_Type (N);
1548 end if;
1550 -- Fold for cases where both operands are of integer type
1552 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1553 declare
1554 Left_Int : constant Uint := Expr_Value (Left);
1555 Right_Int : constant Uint := Expr_Value (Right);
1556 Result : Uint;
1558 begin
1559 case Nkind (N) is
1561 when N_Op_Add =>
1562 Result := Left_Int + Right_Int;
1564 when N_Op_Subtract =>
1565 Result := Left_Int - Right_Int;
1567 when N_Op_Multiply =>
1568 if OK_Bits
1569 (N, UI_From_Int
1570 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1571 then
1572 Result := Left_Int * Right_Int;
1573 else
1574 Result := Left_Int;
1575 end if;
1577 when N_Op_Divide =>
1579 -- The exception Constraint_Error is raised by integer
1580 -- division, rem and mod if the right operand is zero.
1582 if Right_Int = 0 then
1583 Apply_Compile_Time_Constraint_Error
1584 (N, "division by zero",
1585 CE_Divide_By_Zero,
1586 Warn => not Stat);
1587 return;
1589 else
1590 Result := Left_Int / Right_Int;
1591 end if;
1593 when N_Op_Mod =>
1595 -- The exception Constraint_Error is raised by integer
1596 -- division, rem and mod if the right operand is zero.
1598 if Right_Int = 0 then
1599 Apply_Compile_Time_Constraint_Error
1600 (N, "mod with zero divisor",
1601 CE_Divide_By_Zero,
1602 Warn => not Stat);
1603 return;
1604 else
1605 Result := Left_Int mod Right_Int;
1606 end if;
1608 when N_Op_Rem =>
1610 -- The exception Constraint_Error is raised by integer
1611 -- division, rem and mod if the right operand is zero.
1613 if Right_Int = 0 then
1614 Apply_Compile_Time_Constraint_Error
1615 (N, "rem with zero divisor",
1616 CE_Divide_By_Zero,
1617 Warn => not Stat);
1618 return;
1620 else
1621 Result := Left_Int rem Right_Int;
1622 end if;
1624 when others =>
1625 raise Program_Error;
1626 end case;
1628 -- Adjust the result by the modulus if the type is a modular type
1630 if Is_Modular_Integer_Type (Ltype) then
1631 Result := Result mod Modulus (Ltype);
1633 -- For a signed integer type, check non-static overflow
1635 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1636 declare
1637 BT : constant Entity_Id := Base_Type (Ltype);
1638 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1639 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1640 begin
1641 if Result < Lo or else Result > Hi then
1642 Apply_Compile_Time_Constraint_Error
1643 (N, "value not in range of }??",
1644 CE_Overflow_Check_Failed,
1645 Ent => BT);
1646 return;
1647 end if;
1648 end;
1649 end if;
1651 -- If we get here we can fold the result
1653 Fold_Uint (N, Result, Stat);
1654 end;
1656 -- Cases where at least one operand is a real. We handle the cases of
1657 -- both reals, or mixed/real integer cases (the latter happen only for
1658 -- divide and multiply, and the result is always real).
1660 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1661 declare
1662 Left_Real : Ureal;
1663 Right_Real : Ureal;
1664 Result : Ureal;
1666 begin
1667 if Is_Real_Type (Ltype) then
1668 Left_Real := Expr_Value_R (Left);
1669 else
1670 Left_Real := UR_From_Uint (Expr_Value (Left));
1671 end if;
1673 if Is_Real_Type (Rtype) then
1674 Right_Real := Expr_Value_R (Right);
1675 else
1676 Right_Real := UR_From_Uint (Expr_Value (Right));
1677 end if;
1679 if Nkind (N) = N_Op_Add then
1680 Result := Left_Real + Right_Real;
1682 elsif Nkind (N) = N_Op_Subtract then
1683 Result := Left_Real - Right_Real;
1685 elsif Nkind (N) = N_Op_Multiply then
1686 Result := Left_Real * Right_Real;
1688 else pragma Assert (Nkind (N) = N_Op_Divide);
1689 if UR_Is_Zero (Right_Real) then
1690 Apply_Compile_Time_Constraint_Error
1691 (N, "division by zero", CE_Divide_By_Zero);
1692 return;
1693 end if;
1695 Result := Left_Real / Right_Real;
1696 end if;
1698 Fold_Ureal (N, Result, Stat);
1699 end;
1700 end if;
1702 -- If the operator was resolved to a specific type, make sure that type
1703 -- is frozen even if the expression is folded into a literal (which has
1704 -- a universal type).
1706 if Present (Otype) then
1707 Freeze_Before (N, Otype);
1708 end if;
1709 end Eval_Arithmetic_Op;
1711 ----------------------------
1712 -- Eval_Character_Literal --
1713 ----------------------------
1715 -- Nothing to be done!
1717 procedure Eval_Character_Literal (N : Node_Id) is
1718 pragma Warnings (Off, N);
1719 begin
1720 null;
1721 end Eval_Character_Literal;
1723 ---------------
1724 -- Eval_Call --
1725 ---------------
1727 -- Static function calls are either calls to predefined operators
1728 -- with static arguments, or calls to functions that rename a literal.
1729 -- Only the latter case is handled here, predefined operators are
1730 -- constant-folded elsewhere.
1732 -- If the function is itself inherited (see 7423-001) the literal of
1733 -- the parent type must be explicitly converted to the return type
1734 -- of the function.
1736 procedure Eval_Call (N : Node_Id) is
1737 Loc : constant Source_Ptr := Sloc (N);
1738 Typ : constant Entity_Id := Etype (N);
1739 Lit : Entity_Id;
1741 begin
1742 if Nkind (N) = N_Function_Call
1743 and then No (Parameter_Associations (N))
1744 and then Is_Entity_Name (Name (N))
1745 and then Present (Alias (Entity (Name (N))))
1746 and then Is_Enumeration_Type (Base_Type (Typ))
1747 then
1748 Lit := Ultimate_Alias (Entity (Name (N)));
1750 if Ekind (Lit) = E_Enumeration_Literal then
1751 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
1752 Rewrite
1753 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
1754 else
1755 Rewrite (N, New_Occurrence_Of (Lit, Loc));
1756 end if;
1758 Resolve (N, Typ);
1759 end if;
1760 end if;
1761 end Eval_Call;
1763 --------------------------
1764 -- Eval_Case_Expression --
1765 --------------------------
1767 -- A conditional expression is static if all its conditions and dependent
1768 -- expressions are static.
1770 procedure Eval_Case_Expression (N : Node_Id) is
1771 Alt : Node_Id;
1772 Choice : Node_Id;
1773 Is_Static : Boolean;
1774 Result : Node_Id;
1775 Val : Uint;
1777 begin
1778 Result := Empty;
1779 Is_Static := True;
1781 if Is_Static_Expression (Expression (N)) then
1782 Val := Expr_Value (Expression (N));
1784 else
1785 Check_Non_Static_Context (Expression (N));
1786 Is_Static := False;
1787 end if;
1789 Alt := First (Alternatives (N));
1791 Search : while Present (Alt) loop
1792 if not Is_Static
1793 or else not Is_Static_Expression (Expression (Alt))
1794 then
1795 Check_Non_Static_Context (Expression (Alt));
1796 Is_Static := False;
1798 else
1799 Choice := First (Discrete_Choices (Alt));
1800 while Present (Choice) loop
1801 if Nkind (Choice) = N_Others_Choice then
1802 Result := Expression (Alt);
1803 exit Search;
1805 elsif Expr_Value (Choice) = Val then
1806 Result := Expression (Alt);
1807 exit Search;
1809 else
1810 Next (Choice);
1811 end if;
1812 end loop;
1813 end if;
1815 Next (Alt);
1816 end loop Search;
1818 if Is_Static then
1819 Rewrite (N, Relocate_Node (Result));
1821 else
1822 Set_Is_Static_Expression (N, False);
1823 end if;
1824 end Eval_Case_Expression;
1826 ------------------------
1827 -- Eval_Concatenation --
1828 ------------------------
1830 -- Concatenation is a static function, so the result is static if both
1831 -- operands are static (RM 4.9(7), 4.9(21)).
1833 procedure Eval_Concatenation (N : Node_Id) is
1834 Left : constant Node_Id := Left_Opnd (N);
1835 Right : constant Node_Id := Right_Opnd (N);
1836 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
1837 Stat : Boolean;
1838 Fold : Boolean;
1840 begin
1841 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
1842 -- non-static context.
1844 if Ada_Version = Ada_83
1845 and then Comes_From_Source (N)
1846 then
1847 Check_Non_Static_Context (Left);
1848 Check_Non_Static_Context (Right);
1849 return;
1850 end if;
1852 -- If not foldable we are done. In principle concatenation that yields
1853 -- any string type is static (i.e. an array type of character types).
1854 -- However, character types can include enumeration literals, and
1855 -- concatenation in that case cannot be described by a literal, so we
1856 -- only consider the operation static if the result is an array of
1857 -- (a descendant of) a predefined character type.
1859 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1861 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
1862 Set_Is_Static_Expression (N, False);
1863 return;
1864 end if;
1866 -- Compile time string concatenation
1868 -- ??? Note that operands that are aggregates can be marked as static,
1869 -- so we should attempt at a later stage to fold concatenations with
1870 -- such aggregates.
1872 declare
1873 Left_Str : constant Node_Id := Get_String_Val (Left);
1874 Left_Len : Nat;
1875 Right_Str : constant Node_Id := Get_String_Val (Right);
1876 Folded_Val : String_Id;
1878 begin
1879 -- Establish new string literal, and store left operand. We make
1880 -- sure to use the special Start_String that takes an operand if
1881 -- the left operand is a string literal. Since this is optimized
1882 -- in the case where that is the most recently created string
1883 -- literal, we ensure efficient time/space behavior for the
1884 -- case of a concatenation of a series of string literals.
1886 if Nkind (Left_Str) = N_String_Literal then
1887 Left_Len := String_Length (Strval (Left_Str));
1889 -- If the left operand is the empty string, and the right operand
1890 -- is a string literal (the case of "" & "..."), the result is the
1891 -- value of the right operand. This optimization is important when
1892 -- Is_Folded_In_Parser, to avoid copying an enormous right
1893 -- operand.
1895 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
1896 Folded_Val := Strval (Right_Str);
1897 else
1898 Start_String (Strval (Left_Str));
1899 end if;
1901 else
1902 Start_String;
1903 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
1904 Left_Len := 1;
1905 end if;
1907 -- Now append the characters of the right operand, unless we
1908 -- optimized the "" & "..." case above.
1910 if Nkind (Right_Str) = N_String_Literal then
1911 if Left_Len /= 0 then
1912 Store_String_Chars (Strval (Right_Str));
1913 Folded_Val := End_String;
1914 end if;
1915 else
1916 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
1917 Folded_Val := End_String;
1918 end if;
1920 Set_Is_Static_Expression (N, Stat);
1922 -- If left operand is the empty string, the result is the
1923 -- right operand, including its bounds if anomalous.
1925 if Left_Len = 0
1926 and then Is_Array_Type (Etype (Right))
1927 and then Etype (Right) /= Any_String
1928 then
1929 Set_Etype (N, Etype (Right));
1930 end if;
1932 Fold_Str (N, Folded_Val, Static => Stat);
1933 end;
1934 end Eval_Concatenation;
1936 ----------------------
1937 -- Eval_Entity_Name --
1938 ----------------------
1940 -- This procedure is used for identifiers and expanded names other than
1941 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1942 -- static if they denote a static constant (RM 4.9(6)) or if the name
1943 -- denotes an enumeration literal (RM 4.9(22)).
1945 procedure Eval_Entity_Name (N : Node_Id) is
1946 Def_Id : constant Entity_Id := Entity (N);
1947 Val : Node_Id;
1949 begin
1950 -- Enumeration literals are always considered to be constants
1951 -- and cannot raise constraint error (RM 4.9(22)).
1953 if Ekind (Def_Id) = E_Enumeration_Literal then
1954 Set_Is_Static_Expression (N);
1955 return;
1957 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1958 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1959 -- it does not violate 10.2.1(8) here, since this is not a variable.
1961 elsif Ekind (Def_Id) = E_Constant then
1963 -- Deferred constants must always be treated as nonstatic
1964 -- outside the scope of their full view.
1966 if Present (Full_View (Def_Id))
1967 and then not In_Open_Scopes (Scope (Def_Id))
1968 then
1969 Val := Empty;
1970 else
1971 Val := Constant_Value (Def_Id);
1972 end if;
1974 if Present (Val) then
1975 Set_Is_Static_Expression
1976 (N, Is_Static_Expression (Val)
1977 and then Is_Static_Subtype (Etype (Def_Id)));
1978 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
1980 if not Is_Static_Expression (N)
1981 and then not Is_Generic_Type (Etype (N))
1982 then
1983 Validate_Static_Object_Name (N);
1984 end if;
1986 return;
1987 end if;
1988 end if;
1990 -- Fall through if the name is not static
1992 Validate_Static_Object_Name (N);
1993 end Eval_Entity_Name;
1995 ------------------------
1996 -- Eval_If_Expression --
1997 ------------------------
1999 -- We can fold to a static expression if the condition and both dependent
2000 -- expressions are static. Otherwise, the only required processing is to do
2001 -- the check for non-static context for the then and else expressions.
2003 procedure Eval_If_Expression (N : Node_Id) is
2004 Condition : constant Node_Id := First (Expressions (N));
2005 Then_Expr : constant Node_Id := Next (Condition);
2006 Else_Expr : constant Node_Id := Next (Then_Expr);
2007 Result : Node_Id;
2008 Non_Result : Node_Id;
2010 Rstat : constant Boolean :=
2011 Is_Static_Expression (Condition)
2012 and then
2013 Is_Static_Expression (Then_Expr)
2014 and then
2015 Is_Static_Expression (Else_Expr);
2017 begin
2018 -- If any operand is Any_Type, just propagate to result and do not try
2019 -- to fold, this prevents cascaded errors.
2021 if Etype (Condition) = Any_Type or else
2022 Etype (Then_Expr) = Any_Type or else
2023 Etype (Else_Expr) = Any_Type
2024 then
2025 Set_Etype (N, Any_Type);
2026 Set_Is_Static_Expression (N, False);
2027 return;
2029 -- Static case where we can fold. Note that we don't try to fold cases
2030 -- where the condition is known at compile time, but the result is
2031 -- non-static. This avoids possible cases of infinite recursion where
2032 -- the expander puts in a redundant test and we remove it. Instead we
2033 -- deal with these cases in the expander.
2035 elsif Rstat then
2037 -- Select result operand
2039 if Is_True (Expr_Value (Condition)) then
2040 Result := Then_Expr;
2041 Non_Result := Else_Expr;
2042 else
2043 Result := Else_Expr;
2044 Non_Result := Then_Expr;
2045 end if;
2047 -- Note that it does not matter if the non-result operand raises a
2048 -- Constraint_Error, but if the result raises constraint error then
2049 -- we replace the node with a raise constraint error. This will
2050 -- properly propagate Raises_Constraint_Error since this flag is
2051 -- set in Result.
2053 if Raises_Constraint_Error (Result) then
2054 Rewrite_In_Raise_CE (N, Result);
2055 Check_Non_Static_Context (Non_Result);
2057 -- Otherwise the result operand replaces the original node
2059 else
2060 Rewrite (N, Relocate_Node (Result));
2061 end if;
2063 -- Case of condition not known at compile time
2065 else
2066 Check_Non_Static_Context (Condition);
2067 Check_Non_Static_Context (Then_Expr);
2068 Check_Non_Static_Context (Else_Expr);
2069 end if;
2071 Set_Is_Static_Expression (N, Rstat);
2072 end Eval_If_Expression;
2074 ----------------------------
2075 -- Eval_Indexed_Component --
2076 ----------------------------
2078 -- Indexed components are never static, so we need to perform the check
2079 -- for non-static context on the index values. Then, we check if the
2080 -- value can be obtained at compile time, even though it is non-static.
2082 procedure Eval_Indexed_Component (N : Node_Id) is
2083 Expr : Node_Id;
2085 begin
2086 -- Check for non-static context on index values
2088 Expr := First (Expressions (N));
2089 while Present (Expr) loop
2090 Check_Non_Static_Context (Expr);
2091 Next (Expr);
2092 end loop;
2094 -- If the indexed component appears in an object renaming declaration
2095 -- then we do not want to try to evaluate it, since in this case we
2096 -- need the identity of the array element.
2098 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2099 return;
2101 -- Similarly if the indexed component appears as the prefix of an
2102 -- attribute we don't want to evaluate it, because at least for
2103 -- some cases of attributes we need the identify (e.g. Access, Size)
2105 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2106 return;
2107 end if;
2109 -- Note: there are other cases, such as the left side of an assignment,
2110 -- or an OUT parameter for a call, where the replacement results in the
2111 -- illegal use of a constant, But these cases are illegal in the first
2112 -- place, so the replacement, though silly, is harmless.
2114 -- Now see if this is a constant array reference
2116 if List_Length (Expressions (N)) = 1
2117 and then Is_Entity_Name (Prefix (N))
2118 and then Ekind (Entity (Prefix (N))) = E_Constant
2119 and then Present (Constant_Value (Entity (Prefix (N))))
2120 then
2121 declare
2122 Loc : constant Source_Ptr := Sloc (N);
2123 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2124 Sub : constant Node_Id := First (Expressions (N));
2126 Atyp : Entity_Id;
2127 -- Type of array
2129 Lin : Nat;
2130 -- Linear one's origin subscript value for array reference
2132 Lbd : Node_Id;
2133 -- Lower bound of the first array index
2135 Elm : Node_Id;
2136 -- Value from constant array
2138 begin
2139 Atyp := Etype (Arr);
2141 if Is_Access_Type (Atyp) then
2142 Atyp := Designated_Type (Atyp);
2143 end if;
2145 -- If we have an array type (we should have but perhaps there are
2146 -- error cases where this is not the case), then see if we can do
2147 -- a constant evaluation of the array reference.
2149 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
2150 if Ekind (Atyp) = E_String_Literal_Subtype then
2151 Lbd := String_Literal_Low_Bound (Atyp);
2152 else
2153 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2154 end if;
2156 if Compile_Time_Known_Value (Sub)
2157 and then Nkind (Arr) = N_Aggregate
2158 and then Compile_Time_Known_Value (Lbd)
2159 and then Is_Discrete_Type (Component_Type (Atyp))
2160 then
2161 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2163 if List_Length (Expressions (Arr)) >= Lin then
2164 Elm := Pick (Expressions (Arr), Lin);
2166 -- If the resulting expression is compile time known,
2167 -- then we can rewrite the indexed component with this
2168 -- value, being sure to mark the result as non-static.
2169 -- We also reset the Sloc, in case this generates an
2170 -- error later on (e.g. 136'Access).
2172 if Compile_Time_Known_Value (Elm) then
2173 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2174 Set_Is_Static_Expression (N, False);
2175 Set_Sloc (N, Loc);
2176 end if;
2177 end if;
2179 -- We can also constant-fold if the prefix is a string literal.
2180 -- This will be useful in an instantiation or an inlining.
2182 elsif Compile_Time_Known_Value (Sub)
2183 and then Nkind (Arr) = N_String_Literal
2184 and then Compile_Time_Known_Value (Lbd)
2185 and then Expr_Value (Lbd) = 1
2186 and then Expr_Value (Sub) <=
2187 String_Literal_Length (Etype (Arr))
2188 then
2189 declare
2190 C : constant Char_Code :=
2191 Get_String_Char (Strval (Arr),
2192 UI_To_Int (Expr_Value (Sub)));
2193 begin
2194 Set_Character_Literal_Name (C);
2196 Elm :=
2197 Make_Character_Literal (Loc,
2198 Chars => Name_Find,
2199 Char_Literal_Value => UI_From_CC (C));
2200 Set_Etype (Elm, Component_Type (Atyp));
2201 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2202 Set_Is_Static_Expression (N, False);
2203 end;
2204 end if;
2205 end if;
2206 end;
2207 end if;
2208 end Eval_Indexed_Component;
2210 --------------------------
2211 -- Eval_Integer_Literal --
2212 --------------------------
2214 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2215 -- as static by the analyzer. The reason we did it that early is to allow
2216 -- the possibility of turning off the Is_Static_Expression flag after
2217 -- analysis, but before resolution, when integer literals are generated in
2218 -- the expander that do not correspond to static expressions.
2220 procedure Eval_Integer_Literal (N : Node_Id) is
2221 T : constant Entity_Id := Etype (N);
2223 function In_Any_Integer_Context return Boolean;
2224 -- If the literal is resolved with a specific type in a context where
2225 -- the expected type is Any_Integer, there are no range checks on the
2226 -- literal. By the time the literal is evaluated, it carries the type
2227 -- imposed by the enclosing expression, and we must recover the context
2228 -- to determine that Any_Integer is meant.
2230 ----------------------------
2231 -- In_Any_Integer_Context --
2232 ----------------------------
2234 function In_Any_Integer_Context return Boolean is
2235 Par : constant Node_Id := Parent (N);
2236 K : constant Node_Kind := Nkind (Par);
2238 begin
2239 -- Any_Integer also appears in digits specifications for real types,
2240 -- but those have bounds smaller that those of any integer base type,
2241 -- so we can safely ignore these cases.
2243 return K = N_Number_Declaration
2244 or else K = N_Attribute_Reference
2245 or else K = N_Attribute_Definition_Clause
2246 or else K = N_Modular_Type_Definition
2247 or else K = N_Signed_Integer_Type_Definition;
2248 end In_Any_Integer_Context;
2250 -- Start of processing for Eval_Integer_Literal
2252 begin
2254 -- If the literal appears in a non-expression context, then it is
2255 -- certainly appearing in a non-static context, so check it. This is
2256 -- actually a redundant check, since Check_Non_Static_Context would
2257 -- check it, but it seems worth while avoiding the call.
2259 if Nkind (Parent (N)) not in N_Subexpr
2260 and then not In_Any_Integer_Context
2261 then
2262 Check_Non_Static_Context (N);
2263 end if;
2265 -- Modular integer literals must be in their base range
2267 if Is_Modular_Integer_Type (T)
2268 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
2269 then
2270 Out_Of_Range (N);
2271 end if;
2272 end Eval_Integer_Literal;
2274 ---------------------
2275 -- Eval_Logical_Op --
2276 ---------------------
2278 -- Logical operations are static functions, so the result is potentially
2279 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2281 procedure Eval_Logical_Op (N : Node_Id) is
2282 Left : constant Node_Id := Left_Opnd (N);
2283 Right : constant Node_Id := Right_Opnd (N);
2284 Stat : Boolean;
2285 Fold : Boolean;
2287 begin
2288 -- If not foldable we are done
2290 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2292 if not Fold then
2293 return;
2294 end if;
2296 -- Compile time evaluation of logical operation
2298 declare
2299 Left_Int : constant Uint := Expr_Value (Left);
2300 Right_Int : constant Uint := Expr_Value (Right);
2302 begin
2303 -- VMS includes bitwise operations on signed types
2305 if Is_Modular_Integer_Type (Etype (N))
2306 or else Is_VMS_Operator (Entity (N))
2307 then
2308 declare
2309 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2310 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2312 begin
2313 To_Bits (Left_Int, Left_Bits);
2314 To_Bits (Right_Int, Right_Bits);
2316 -- Note: should really be able to use array ops instead of
2317 -- these loops, but they weren't working at the time ???
2319 if Nkind (N) = N_Op_And then
2320 for J in Left_Bits'Range loop
2321 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2322 end loop;
2324 elsif Nkind (N) = N_Op_Or then
2325 for J in Left_Bits'Range loop
2326 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2327 end loop;
2329 else
2330 pragma Assert (Nkind (N) = N_Op_Xor);
2332 for J in Left_Bits'Range loop
2333 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2334 end loop;
2335 end if;
2337 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
2338 end;
2340 else
2341 pragma Assert (Is_Boolean_Type (Etype (N)));
2343 if Nkind (N) = N_Op_And then
2344 Fold_Uint (N,
2345 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
2347 elsif Nkind (N) = N_Op_Or then
2348 Fold_Uint (N,
2349 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
2351 else
2352 pragma Assert (Nkind (N) = N_Op_Xor);
2353 Fold_Uint (N,
2354 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
2355 end if;
2356 end if;
2357 end;
2358 end Eval_Logical_Op;
2360 ------------------------
2361 -- Eval_Membership_Op --
2362 ------------------------
2364 -- A membership test is potentially static if the expression is static, and
2365 -- the range is a potentially static range, or is a subtype mark denoting a
2366 -- static subtype (RM 4.9(12)).
2368 procedure Eval_Membership_Op (N : Node_Id) is
2369 Left : constant Node_Id := Left_Opnd (N);
2370 Right : constant Node_Id := Right_Opnd (N);
2371 Def_Id : Entity_Id;
2372 Lo : Node_Id;
2373 Hi : Node_Id;
2374 Result : Boolean;
2375 Stat : Boolean;
2376 Fold : Boolean;
2378 begin
2379 -- Ignore if error in either operand, except to make sure that Any_Type
2380 -- is properly propagated to avoid junk cascaded errors.
2382 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
2383 Set_Etype (N, Any_Type);
2384 return;
2385 end if;
2387 -- Ignore if types involved have predicates
2389 if Present (Predicate_Function (Etype (Left)))
2390 or else
2391 Present (Predicate_Function (Etype (Right)))
2392 then
2393 return;
2394 end if;
2396 -- Case of right operand is a subtype name
2398 if Is_Entity_Name (Right) then
2399 Def_Id := Entity (Right);
2401 if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
2402 and then Is_OK_Static_Subtype (Def_Id)
2403 then
2404 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2406 if not Fold or else not Stat then
2407 return;
2408 end if;
2409 else
2410 Check_Non_Static_Context (Left);
2411 return;
2412 end if;
2414 -- For string membership tests we will check the length further on
2416 if not Is_String_Type (Def_Id) then
2417 Lo := Type_Low_Bound (Def_Id);
2418 Hi := Type_High_Bound (Def_Id);
2420 else
2421 Lo := Empty;
2422 Hi := Empty;
2423 end if;
2425 -- Case of right operand is a range
2427 else
2428 if Is_Static_Range (Right) then
2429 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2431 if not Fold or else not Stat then
2432 return;
2434 -- If one bound of range raises CE, then don't try to fold
2436 elsif not Is_OK_Static_Range (Right) then
2437 Check_Non_Static_Context (Left);
2438 return;
2439 end if;
2441 else
2442 Check_Non_Static_Context (Left);
2443 return;
2444 end if;
2446 -- Here we know range is an OK static range
2448 Lo := Low_Bound (Right);
2449 Hi := High_Bound (Right);
2450 end if;
2452 -- For strings we check that the length of the string expression is
2453 -- compatible with the string subtype if the subtype is constrained,
2454 -- or if unconstrained then the test is always true.
2456 if Is_String_Type (Etype (Right)) then
2457 if not Is_Constrained (Etype (Right)) then
2458 Result := True;
2460 else
2461 declare
2462 Typlen : constant Uint := String_Type_Len (Etype (Right));
2463 Strlen : constant Uint :=
2464 UI_From_Int
2465 (String_Length (Strval (Get_String_Val (Left))));
2466 begin
2467 Result := (Typlen = Strlen);
2468 end;
2469 end if;
2471 -- Fold the membership test. We know we have a static range and Lo and
2472 -- Hi are set to the expressions for the end points of this range.
2474 elsif Is_Real_Type (Etype (Right)) then
2475 declare
2476 Leftval : constant Ureal := Expr_Value_R (Left);
2478 begin
2479 Result := Expr_Value_R (Lo) <= Leftval
2480 and then Leftval <= Expr_Value_R (Hi);
2481 end;
2483 else
2484 declare
2485 Leftval : constant Uint := Expr_Value (Left);
2487 begin
2488 Result := Expr_Value (Lo) <= Leftval
2489 and then Leftval <= Expr_Value (Hi);
2490 end;
2491 end if;
2493 if Nkind (N) = N_Not_In then
2494 Result := not Result;
2495 end if;
2497 Fold_Uint (N, Test (Result), True);
2499 Warn_On_Known_Condition (N);
2500 end Eval_Membership_Op;
2502 ------------------------
2503 -- Eval_Named_Integer --
2504 ------------------------
2506 procedure Eval_Named_Integer (N : Node_Id) is
2507 begin
2508 Fold_Uint (N,
2509 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
2510 end Eval_Named_Integer;
2512 ---------------------
2513 -- Eval_Named_Real --
2514 ---------------------
2516 procedure Eval_Named_Real (N : Node_Id) is
2517 begin
2518 Fold_Ureal (N,
2519 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
2520 end Eval_Named_Real;
2522 -------------------
2523 -- Eval_Op_Expon --
2524 -------------------
2526 -- Exponentiation is a static functions, so the result is potentially
2527 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2529 procedure Eval_Op_Expon (N : Node_Id) is
2530 Left : constant Node_Id := Left_Opnd (N);
2531 Right : constant Node_Id := Right_Opnd (N);
2532 Stat : Boolean;
2533 Fold : Boolean;
2535 begin
2536 -- If not foldable we are done
2538 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2540 if not Fold then
2541 return;
2542 end if;
2544 -- Fold exponentiation operation
2546 declare
2547 Right_Int : constant Uint := Expr_Value (Right);
2549 begin
2550 -- Integer case
2552 if Is_Integer_Type (Etype (Left)) then
2553 declare
2554 Left_Int : constant Uint := Expr_Value (Left);
2555 Result : Uint;
2557 begin
2558 -- Exponentiation of an integer raises Constraint_Error for a
2559 -- negative exponent (RM 4.5.6).
2561 if Right_Int < 0 then
2562 Apply_Compile_Time_Constraint_Error
2563 (N, "integer exponent negative",
2564 CE_Range_Check_Failed,
2565 Warn => not Stat);
2566 return;
2568 else
2569 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2570 Result := Left_Int ** Right_Int;
2571 else
2572 Result := Left_Int;
2573 end if;
2575 if Is_Modular_Integer_Type (Etype (N)) then
2576 Result := Result mod Modulus (Etype (N));
2577 end if;
2579 Fold_Uint (N, Result, Stat);
2580 end if;
2581 end;
2583 -- Real case
2585 else
2586 declare
2587 Left_Real : constant Ureal := Expr_Value_R (Left);
2589 begin
2590 -- Cannot have a zero base with a negative exponent
2592 if UR_Is_Zero (Left_Real) then
2594 if Right_Int < 0 then
2595 Apply_Compile_Time_Constraint_Error
2596 (N, "zero ** negative integer",
2597 CE_Range_Check_Failed,
2598 Warn => not Stat);
2599 return;
2600 else
2601 Fold_Ureal (N, Ureal_0, Stat);
2602 end if;
2604 else
2605 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
2606 end if;
2607 end;
2608 end if;
2609 end;
2610 end Eval_Op_Expon;
2612 -----------------
2613 -- Eval_Op_Not --
2614 -----------------
2616 -- The not operation is a static functions, so the result is potentially
2617 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2619 procedure Eval_Op_Not (N : Node_Id) is
2620 Right : constant Node_Id := Right_Opnd (N);
2621 Stat : Boolean;
2622 Fold : Boolean;
2624 begin
2625 -- If not foldable we are done
2627 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2629 if not Fold then
2630 return;
2631 end if;
2633 -- Fold not operation
2635 declare
2636 Rint : constant Uint := Expr_Value (Right);
2637 Typ : constant Entity_Id := Etype (N);
2639 begin
2640 -- Negation is equivalent to subtracting from the modulus minus one.
2641 -- For a binary modulus this is equivalent to the ones-complement of
2642 -- the original value. For non-binary modulus this is an arbitrary
2643 -- but consistent definition.
2645 if Is_Modular_Integer_Type (Typ) then
2646 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
2648 else
2649 pragma Assert (Is_Boolean_Type (Typ));
2650 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
2651 end if;
2653 Set_Is_Static_Expression (N, Stat);
2654 end;
2655 end Eval_Op_Not;
2657 -------------------------------
2658 -- Eval_Qualified_Expression --
2659 -------------------------------
2661 -- A qualified expression is potentially static if its subtype mark denotes
2662 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2664 procedure Eval_Qualified_Expression (N : Node_Id) is
2665 Operand : constant Node_Id := Expression (N);
2666 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2668 Stat : Boolean;
2669 Fold : Boolean;
2670 Hex : Boolean;
2672 begin
2673 -- Can only fold if target is string or scalar and subtype is static.
2674 -- Also, do not fold if our parent is an allocator (this is because the
2675 -- qualified expression is really part of the syntactic structure of an
2676 -- allocator, and we do not want to end up with something that
2677 -- corresponds to "new 1" where the 1 is the result of folding a
2678 -- qualified expression).
2680 if not Is_Static_Subtype (Target_Type)
2681 or else Nkind (Parent (N)) = N_Allocator
2682 then
2683 Check_Non_Static_Context (Operand);
2685 -- If operand is known to raise constraint_error, set the flag on the
2686 -- expression so it does not get optimized away.
2688 if Nkind (Operand) = N_Raise_Constraint_Error then
2689 Set_Raises_Constraint_Error (N);
2690 end if;
2692 return;
2693 end if;
2695 -- If not foldable we are done
2697 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2699 if not Fold then
2700 return;
2702 -- Don't try fold if target type has constraint error bounds
2704 elsif not Is_OK_Static_Subtype (Target_Type) then
2705 Set_Raises_Constraint_Error (N);
2706 return;
2707 end if;
2709 -- Here we will fold, save Print_In_Hex indication
2711 Hex := Nkind (Operand) = N_Integer_Literal
2712 and then Print_In_Hex (Operand);
2714 -- Fold the result of qualification
2716 if Is_Discrete_Type (Target_Type) then
2717 Fold_Uint (N, Expr_Value (Operand), Stat);
2719 -- Preserve Print_In_Hex indication
2721 if Hex and then Nkind (N) = N_Integer_Literal then
2722 Set_Print_In_Hex (N);
2723 end if;
2725 elsif Is_Real_Type (Target_Type) then
2726 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
2728 else
2729 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
2731 if not Stat then
2732 Set_Is_Static_Expression (N, False);
2733 else
2734 Check_String_Literal_Length (N, Target_Type);
2735 end if;
2737 return;
2738 end if;
2740 -- The expression may be foldable but not static
2742 Set_Is_Static_Expression (N, Stat);
2744 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
2745 Out_Of_Range (N);
2746 end if;
2747 end Eval_Qualified_Expression;
2749 -----------------------
2750 -- Eval_Real_Literal --
2751 -----------------------
2753 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2754 -- as static by the analyzer. The reason we did it that early is to allow
2755 -- the possibility of turning off the Is_Static_Expression flag after
2756 -- analysis, but before resolution, when integer literals are generated
2757 -- in the expander that do not correspond to static expressions.
2759 procedure Eval_Real_Literal (N : Node_Id) is
2760 PK : constant Node_Kind := Nkind (Parent (N));
2762 begin
2763 -- If the literal appears in a non-expression context and not as part of
2764 -- a number declaration, then it is appearing in a non-static context,
2765 -- so check it.
2767 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
2768 Check_Non_Static_Context (N);
2769 end if;
2770 end Eval_Real_Literal;
2772 ------------------------
2773 -- Eval_Relational_Op --
2774 ------------------------
2776 -- Relational operations are static functions, so the result is static if
2777 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
2778 -- the result is never static, even if the operands are.
2780 procedure Eval_Relational_Op (N : Node_Id) is
2781 Left : constant Node_Id := Left_Opnd (N);
2782 Right : constant Node_Id := Right_Opnd (N);
2783 Typ : constant Entity_Id := Etype (Left);
2784 Otype : Entity_Id := Empty;
2785 Result : Boolean;
2787 begin
2788 -- One special case to deal with first. If we can tell that the result
2789 -- will be false because the lengths of one or more index subtypes are
2790 -- compile time known and different, then we can replace the entire
2791 -- result by False. We only do this for one dimensional arrays, because
2792 -- the case of multi-dimensional arrays is rare and too much trouble! If
2793 -- one of the operands is an illegal aggregate, its type might still be
2794 -- an arbitrary composite type, so nothing to do.
2796 if Is_Array_Type (Typ)
2797 and then Typ /= Any_Composite
2798 and then Number_Dimensions (Typ) = 1
2799 and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
2800 then
2801 if Raises_Constraint_Error (Left)
2802 or else Raises_Constraint_Error (Right)
2803 then
2804 return;
2805 end if;
2807 -- OK, we have the case where we may be able to do this fold
2809 Length_Mismatch : declare
2810 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
2811 -- If Op is an expression for a constrained array with a known at
2812 -- compile time length, then Len is set to this (non-negative
2813 -- length). Otherwise Len is set to minus 1.
2815 -----------------------
2816 -- Get_Static_Length --
2817 -----------------------
2819 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
2820 T : Entity_Id;
2822 begin
2823 -- First easy case string literal
2825 if Nkind (Op) = N_String_Literal then
2826 Len := UI_From_Int (String_Length (Strval (Op)));
2827 return;
2828 end if;
2830 -- Second easy case, not constrained subtype, so no length
2832 if not Is_Constrained (Etype (Op)) then
2833 Len := Uint_Minus_1;
2834 return;
2835 end if;
2837 -- General case
2839 T := Etype (First_Index (Etype (Op)));
2841 -- The simple case, both bounds are known at compile time
2843 if Is_Discrete_Type (T)
2844 and then
2845 Compile_Time_Known_Value (Type_Low_Bound (T))
2846 and then
2847 Compile_Time_Known_Value (Type_High_Bound (T))
2848 then
2849 Len := UI_Max (Uint_0,
2850 Expr_Value (Type_High_Bound (T)) -
2851 Expr_Value (Type_Low_Bound (T)) + 1);
2852 return;
2853 end if;
2855 -- A more complex case, where the bounds are of the form
2856 -- X [+/- K1] .. X [+/- K2]), where X is an expression that is
2857 -- either A'First or A'Last (with A an entity name), or X is an
2858 -- entity name, and the two X's are the same and K1 and K2 are
2859 -- known at compile time, in this case, the length can also be
2860 -- computed at compile time, even though the bounds are not
2861 -- known. A common case of this is e.g. (X'First .. X'First+5).
2863 Extract_Length : declare
2864 procedure Decompose_Expr
2865 (Expr : Node_Id;
2866 Ent : out Entity_Id;
2867 Kind : out Character;
2868 Cons : out Uint);
2869 -- Given an expression, see if is of the form above,
2870 -- X [+/- K]. If so Ent is set to the entity in X,
2871 -- Kind is 'F','L','E' for 'First/'Last/simple entity,
2872 -- and Cons is the value of K. If the expression is
2873 -- not of the required form, Ent is set to Empty.
2875 --------------------
2876 -- Decompose_Expr --
2877 --------------------
2879 procedure Decompose_Expr
2880 (Expr : Node_Id;
2881 Ent : out Entity_Id;
2882 Kind : out Character;
2883 Cons : out Uint)
2885 Exp : Node_Id;
2887 begin
2888 if Nkind (Expr) = N_Op_Add
2889 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2890 then
2891 Exp := Left_Opnd (Expr);
2892 Cons := Expr_Value (Right_Opnd (Expr));
2894 elsif Nkind (Expr) = N_Op_Subtract
2895 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2896 then
2897 Exp := Left_Opnd (Expr);
2898 Cons := -Expr_Value (Right_Opnd (Expr));
2900 -- If the bound is a constant created to remove side
2901 -- effects, recover original expression to see if it has
2902 -- one of the recognizable forms.
2904 elsif Nkind (Expr) = N_Identifier
2905 and then not Comes_From_Source (Entity (Expr))
2906 and then Ekind (Entity (Expr)) = E_Constant
2907 and then
2908 Nkind (Parent (Entity (Expr))) = N_Object_Declaration
2909 then
2910 Exp := Expression (Parent (Entity (Expr)));
2911 Decompose_Expr (Exp, Ent, Kind, Cons);
2913 -- If original expression includes an entity, create a
2914 -- reference to it for use below.
2916 if Present (Ent) then
2917 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
2918 end if;
2920 else
2921 Exp := Expr;
2922 Cons := Uint_0;
2923 end if;
2925 -- At this stage Exp is set to the potential X
2927 if Nkind (Exp) = N_Attribute_Reference then
2928 if Attribute_Name (Exp) = Name_First then
2929 Kind := 'F';
2931 elsif Attribute_Name (Exp) = Name_Last then
2932 Kind := 'L';
2934 else
2935 Ent := Empty;
2936 return;
2937 end if;
2939 Exp := Prefix (Exp);
2941 else
2942 Kind := 'E';
2943 end if;
2945 if Is_Entity_Name (Exp)
2946 and then Present (Entity (Exp))
2947 then
2948 Ent := Entity (Exp);
2949 else
2950 Ent := Empty;
2951 end if;
2952 end Decompose_Expr;
2954 -- Local Variables
2956 Ent1, Ent2 : Entity_Id;
2957 Kind1, Kind2 : Character;
2958 Cons1, Cons2 : Uint;
2960 -- Start of processing for Extract_Length
2962 begin
2963 Decompose_Expr
2964 (Original_Node (Type_Low_Bound (T)), Ent1, Kind1, Cons1);
2965 Decompose_Expr
2966 (Original_Node (Type_High_Bound (T)), Ent2, Kind2, Cons2);
2968 if Present (Ent1)
2969 and then Kind1 = Kind2
2970 and then Ent1 = Ent2
2971 then
2972 Len := Cons2 - Cons1 + 1;
2973 else
2974 Len := Uint_Minus_1;
2975 end if;
2976 end Extract_Length;
2977 end Get_Static_Length;
2979 -- Local Variables
2981 Len_L : Uint;
2982 Len_R : Uint;
2984 -- Start of processing for Length_Mismatch
2986 begin
2987 Get_Static_Length (Left, Len_L);
2988 Get_Static_Length (Right, Len_R);
2990 if Len_L /= Uint_Minus_1
2991 and then Len_R /= Uint_Minus_1
2992 and then Len_L /= Len_R
2993 then
2994 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
2995 Warn_On_Known_Condition (N);
2996 return;
2997 end if;
2998 end Length_Mismatch;
2999 end if;
3001 declare
3002 Is_Static_Expression : Boolean;
3003 Is_Foldable : Boolean;
3004 pragma Unreferenced (Is_Foldable);
3006 begin
3007 -- Initialize the value of Is_Static_Expression. The value of
3008 -- Is_Foldable returned by Test_Expression_Is_Foldable is not needed
3009 -- since, even when some operand is a variable, we can still perform
3010 -- the static evaluation of the expression in some cases (for
3011 -- example, for a variable of a subtype of Integer we statically
3012 -- know that any value stored in such variable is smaller than
3013 -- Integer'Last).
3015 Test_Expression_Is_Foldable
3016 (N, Left, Right, Is_Static_Expression, Is_Foldable);
3018 -- Only comparisons of scalars can give static results. In
3019 -- particular, comparisons of strings never yield a static
3020 -- result, even if both operands are static strings.
3022 if not Is_Scalar_Type (Typ) then
3023 Is_Static_Expression := False;
3024 Set_Is_Static_Expression (N, False);
3025 end if;
3027 -- For operators on universal numeric types called as functions with
3028 -- an explicit scope, determine appropriate specific numeric type,
3029 -- and diagnose possible ambiguity.
3031 if Is_Universal_Numeric_Type (Etype (Left))
3032 and then
3033 Is_Universal_Numeric_Type (Etype (Right))
3034 then
3035 Otype := Find_Universal_Operator_Type (N);
3036 end if;
3038 -- For static real type expressions, we cannot use
3039 -- Compile_Time_Compare since it worries about run-time
3040 -- results which are not exact.
3042 if Is_Static_Expression and then Is_Real_Type (Typ) then
3043 declare
3044 Left_Real : constant Ureal := Expr_Value_R (Left);
3045 Right_Real : constant Ureal := Expr_Value_R (Right);
3047 begin
3048 case Nkind (N) is
3049 when N_Op_Eq => Result := (Left_Real = Right_Real);
3050 when N_Op_Ne => Result := (Left_Real /= Right_Real);
3051 when N_Op_Lt => Result := (Left_Real < Right_Real);
3052 when N_Op_Le => Result := (Left_Real <= Right_Real);
3053 when N_Op_Gt => Result := (Left_Real > Right_Real);
3054 when N_Op_Ge => Result := (Left_Real >= Right_Real);
3056 when others =>
3057 raise Program_Error;
3058 end case;
3060 Fold_Uint (N, Test (Result), True);
3061 end;
3063 -- For all other cases, we use Compile_Time_Compare to do the compare
3065 else
3066 declare
3067 CR : constant Compare_Result :=
3068 Compile_Time_Compare
3069 (Left, Right, Assume_Valid => False);
3071 begin
3072 if CR = Unknown then
3073 return;
3074 end if;
3076 case Nkind (N) is
3077 when N_Op_Eq =>
3078 if CR = EQ then
3079 Result := True;
3080 elsif CR = NE or else CR = GT or else CR = LT then
3081 Result := False;
3082 else
3083 return;
3084 end if;
3086 when N_Op_Ne =>
3087 if CR = NE or else CR = GT or else CR = LT then
3088 Result := True;
3089 elsif CR = EQ then
3090 Result := False;
3091 else
3092 return;
3093 end if;
3095 when N_Op_Lt =>
3096 if CR = LT then
3097 Result := True;
3098 elsif CR = EQ or else CR = GT or else CR = GE then
3099 Result := False;
3100 else
3101 return;
3102 end if;
3104 when N_Op_Le =>
3105 if CR = LT or else CR = EQ or else CR = LE then
3106 Result := True;
3107 elsif CR = GT then
3108 Result := False;
3109 else
3110 return;
3111 end if;
3113 when N_Op_Gt =>
3114 if CR = GT then
3115 Result := True;
3116 elsif CR = EQ or else CR = LT or else CR = LE then
3117 Result := False;
3118 else
3119 return;
3120 end if;
3122 when N_Op_Ge =>
3123 if CR = GT or else CR = EQ or else CR = GE then
3124 Result := True;
3125 elsif CR = LT then
3126 Result := False;
3127 else
3128 return;
3129 end if;
3131 when others =>
3132 raise Program_Error;
3133 end case;
3134 end;
3136 Fold_Uint (N, Test (Result), Is_Static_Expression);
3137 end if;
3138 end;
3140 -- For the case of a folded relational operator on a specific numeric
3141 -- type, freeze operand type now.
3143 if Present (Otype) then
3144 Freeze_Before (N, Otype);
3145 end if;
3147 Warn_On_Known_Condition (N);
3148 end Eval_Relational_Op;
3150 ----------------
3151 -- Eval_Shift --
3152 ----------------
3154 -- Shift operations are intrinsic operations that can never be static, so
3155 -- the only processing required is to perform the required check for a non
3156 -- static context for the two operands.
3158 -- Actually we could do some compile time evaluation here some time ???
3160 procedure Eval_Shift (N : Node_Id) is
3161 begin
3162 Check_Non_Static_Context (Left_Opnd (N));
3163 Check_Non_Static_Context (Right_Opnd (N));
3164 end Eval_Shift;
3166 ------------------------
3167 -- Eval_Short_Circuit --
3168 ------------------------
3170 -- A short circuit operation is potentially static if both operands are
3171 -- potentially static (RM 4.9 (13)).
3173 procedure Eval_Short_Circuit (N : Node_Id) is
3174 Kind : constant Node_Kind := Nkind (N);
3175 Left : constant Node_Id := Left_Opnd (N);
3176 Right : constant Node_Id := Right_Opnd (N);
3177 Left_Int : Uint;
3179 Rstat : constant Boolean :=
3180 Is_Static_Expression (Left)
3181 and then
3182 Is_Static_Expression (Right);
3184 begin
3185 -- Short circuit operations are never static in Ada 83
3187 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3188 Check_Non_Static_Context (Left);
3189 Check_Non_Static_Context (Right);
3190 return;
3191 end if;
3193 -- Now look at the operands, we can't quite use the normal call to
3194 -- Test_Expression_Is_Foldable here because short circuit operations
3195 -- are a special case, they can still be foldable, even if the right
3196 -- operand raises constraint error.
3198 -- If either operand is Any_Type, just propagate to result and do not
3199 -- try to fold, this prevents cascaded errors.
3201 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3202 Set_Etype (N, Any_Type);
3203 return;
3205 -- If left operand raises constraint error, then replace node N with
3206 -- the raise constraint error node, and we are obviously not foldable.
3207 -- Is_Static_Expression is set from the two operands in the normal way,
3208 -- and we check the right operand if it is in a non-static context.
3210 elsif Raises_Constraint_Error (Left) then
3211 if not Rstat then
3212 Check_Non_Static_Context (Right);
3213 end if;
3215 Rewrite_In_Raise_CE (N, Left);
3216 Set_Is_Static_Expression (N, Rstat);
3217 return;
3219 -- If the result is not static, then we won't in any case fold
3221 elsif not Rstat then
3222 Check_Non_Static_Context (Left);
3223 Check_Non_Static_Context (Right);
3224 return;
3225 end if;
3227 -- Here the result is static, note that, unlike the normal processing
3228 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3229 -- the right operand raises constraint error, that's because it is not
3230 -- significant if the left operand is decisive.
3232 Set_Is_Static_Expression (N);
3234 -- It does not matter if the right operand raises constraint error if
3235 -- it will not be evaluated. So deal specially with the cases where
3236 -- the right operand is not evaluated. Note that we will fold these
3237 -- cases even if the right operand is non-static, which is fine, but
3238 -- of course in these cases the result is not potentially static.
3240 Left_Int := Expr_Value (Left);
3242 if (Kind = N_And_Then and then Is_False (Left_Int))
3243 or else
3244 (Kind = N_Or_Else and then Is_True (Left_Int))
3245 then
3246 Fold_Uint (N, Left_Int, Rstat);
3247 return;
3248 end if;
3250 -- If first operand not decisive, then it does matter if the right
3251 -- operand raises constraint error, since it will be evaluated, so
3252 -- we simply replace the node with the right operand. Note that this
3253 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3254 -- (both are set to True in Right).
3256 if Raises_Constraint_Error (Right) then
3257 Rewrite_In_Raise_CE (N, Right);
3258 Check_Non_Static_Context (Left);
3259 return;
3260 end if;
3262 -- Otherwise the result depends on the right operand
3264 Fold_Uint (N, Expr_Value (Right), Rstat);
3265 return;
3266 end Eval_Short_Circuit;
3268 ----------------
3269 -- Eval_Slice --
3270 ----------------
3272 -- Slices can never be static, so the only processing required is to check
3273 -- for non-static context if an explicit range is given.
3275 procedure Eval_Slice (N : Node_Id) is
3276 Drange : constant Node_Id := Discrete_Range (N);
3277 begin
3278 if Nkind (Drange) = N_Range then
3279 Check_Non_Static_Context (Low_Bound (Drange));
3280 Check_Non_Static_Context (High_Bound (Drange));
3281 end if;
3283 -- A slice of the form A (subtype), when the subtype is the index of
3284 -- the type of A, is redundant, the slice can be replaced with A, and
3285 -- this is worth a warning.
3287 if Is_Entity_Name (Prefix (N)) then
3288 declare
3289 E : constant Entity_Id := Entity (Prefix (N));
3290 T : constant Entity_Id := Etype (E);
3291 begin
3292 if Ekind (E) = E_Constant
3293 and then Is_Array_Type (T)
3294 and then Is_Entity_Name (Drange)
3295 then
3296 if Is_Entity_Name (Original_Node (First_Index (T)))
3297 and then Entity (Original_Node (First_Index (T)))
3298 = Entity (Drange)
3299 then
3300 if Warn_On_Redundant_Constructs then
3301 Error_Msg_N ("redundant slice denotes whole array?r?", N);
3302 end if;
3304 -- The following might be a useful optimization???
3306 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3307 end if;
3308 end if;
3309 end;
3310 end if;
3311 end Eval_Slice;
3313 ---------------------------------
3314 -- Eval_Static_Predicate_Check --
3315 ---------------------------------
3317 function Eval_Static_Predicate_Check
3318 (N : Node_Id;
3319 Typ : Entity_Id) return Boolean
3321 Loc : constant Source_Ptr := Sloc (N);
3322 Pred : constant List_Id := Static_Predicate (Typ);
3323 Test : Node_Id;
3325 begin
3326 if No (Pred) then
3327 return True;
3328 end if;
3330 -- The static predicate is a list of alternatives in the proper format
3331 -- for an Ada 2012 membership test. If the argument is a literal, the
3332 -- membership test can be evaluated statically. The caller transforms
3333 -- a result of False into a static contraint error.
3335 Test := Make_In (Loc,
3336 Left_Opnd => New_Copy_Tree (N),
3337 Right_Opnd => Empty,
3338 Alternatives => Pred);
3339 Analyze_And_Resolve (Test, Standard_Boolean);
3341 return Nkind (Test) = N_Identifier
3342 and then Entity (Test) = Standard_True;
3343 end Eval_Static_Predicate_Check;
3345 -------------------------
3346 -- Eval_String_Literal --
3347 -------------------------
3349 procedure Eval_String_Literal (N : Node_Id) is
3350 Typ : constant Entity_Id := Etype (N);
3351 Bas : constant Entity_Id := Base_Type (Typ);
3352 Xtp : Entity_Id;
3353 Len : Nat;
3354 Lo : Node_Id;
3356 begin
3357 -- Nothing to do if error type (handles cases like default expressions
3358 -- or generics where we have not yet fully resolved the type).
3360 if Bas = Any_Type or else Bas = Any_String then
3361 return;
3362 end if;
3364 -- String literals are static if the subtype is static (RM 4.9(2)), so
3365 -- reset the static expression flag (it was set unconditionally in
3366 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3367 -- the subtype is static by looking at the lower bound.
3369 if Ekind (Typ) = E_String_Literal_Subtype then
3370 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3371 Set_Is_Static_Expression (N, False);
3372 return;
3373 end if;
3375 -- Here if Etype of string literal is normal Etype (not yet possible,
3376 -- but may be possible in future).
3378 elsif not Is_OK_Static_Expression
3379 (Type_Low_Bound (Etype (First_Index (Typ))))
3380 then
3381 Set_Is_Static_Expression (N, False);
3382 return;
3383 end if;
3385 -- If original node was a type conversion, then result if non-static
3387 if Nkind (Original_Node (N)) = N_Type_Conversion then
3388 Set_Is_Static_Expression (N, False);
3389 return;
3390 end if;
3392 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3393 -- if its bounds are outside the index base type and this index type is
3394 -- static. This can happen in only two ways. Either the string literal
3395 -- is too long, or it is null, and the lower bound is type'First. In
3396 -- either case it is the upper bound that is out of range of the index
3397 -- type.
3398 if Ada_Version >= Ada_95 then
3399 if Root_Type (Bas) = Standard_String
3400 or else
3401 Root_Type (Bas) = Standard_Wide_String
3402 or else
3403 Root_Type (Bas) = Standard_Wide_Wide_String
3404 then
3405 Xtp := Standard_Positive;
3406 else
3407 Xtp := Etype (First_Index (Bas));
3408 end if;
3410 if Ekind (Typ) = E_String_Literal_Subtype then
3411 Lo := String_Literal_Low_Bound (Typ);
3412 else
3413 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3414 end if;
3416 -- Check for string too long
3418 Len := String_Length (Strval (N));
3420 if UI_From_Int (Len) > String_Type_Len (Bas) then
3422 -- Issue message. Note that this message is a warning if the
3423 -- string literal is not marked as static (happens in some cases
3424 -- of folding strings known at compile time, but not static).
3425 -- Furthermore in such cases, we reword the message, since there
3426 -- is no string literal in the source program!
3428 if Is_Static_Expression (N) then
3429 Apply_Compile_Time_Constraint_Error
3430 (N, "string literal too long for}", CE_Length_Check_Failed,
3431 Ent => Bas,
3432 Typ => First_Subtype (Bas));
3433 else
3434 Apply_Compile_Time_Constraint_Error
3435 (N, "string value too long for}", CE_Length_Check_Failed,
3436 Ent => Bas,
3437 Typ => First_Subtype (Bas),
3438 Warn => True);
3439 end if;
3441 -- Test for null string not allowed
3443 elsif Len = 0
3444 and then not Is_Generic_Type (Xtp)
3445 and then
3446 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
3447 then
3448 -- Same specialization of message
3450 if Is_Static_Expression (N) then
3451 Apply_Compile_Time_Constraint_Error
3452 (N, "null string literal not allowed for}",
3453 CE_Length_Check_Failed,
3454 Ent => Bas,
3455 Typ => First_Subtype (Bas));
3456 else
3457 Apply_Compile_Time_Constraint_Error
3458 (N, "null string value not allowed for}",
3459 CE_Length_Check_Failed,
3460 Ent => Bas,
3461 Typ => First_Subtype (Bas),
3462 Warn => True);
3463 end if;
3464 end if;
3465 end if;
3466 end Eval_String_Literal;
3468 --------------------------
3469 -- Eval_Type_Conversion --
3470 --------------------------
3472 -- A type conversion is potentially static if its subtype mark is for a
3473 -- static scalar subtype, and its operand expression is potentially static
3474 -- (RM 4.9(10)).
3476 procedure Eval_Type_Conversion (N : Node_Id) is
3477 Operand : constant Node_Id := Expression (N);
3478 Source_Type : constant Entity_Id := Etype (Operand);
3479 Target_Type : constant Entity_Id := Etype (N);
3481 Stat : Boolean;
3482 Fold : Boolean;
3484 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
3485 -- Returns true if type T is an integer type, or if it is a fixed-point
3486 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3487 -- on the conversion node).
3489 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3490 -- Returns true if type T is a floating-point type, or if it is a
3491 -- fixed-point type that is not to be treated as an integer (i.e. the
3492 -- flag Conversion_OK is not set on the conversion node).
3494 ------------------------------
3495 -- To_Be_Treated_As_Integer --
3496 ------------------------------
3498 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3499 begin
3500 return
3501 Is_Integer_Type (T)
3502 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3503 end To_Be_Treated_As_Integer;
3505 ---------------------------
3506 -- To_Be_Treated_As_Real --
3507 ---------------------------
3509 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3510 begin
3511 return
3512 Is_Floating_Point_Type (T)
3513 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3514 end To_Be_Treated_As_Real;
3516 -- Start of processing for Eval_Type_Conversion
3518 begin
3519 -- Cannot fold if target type is non-static or if semantic error
3521 if not Is_Static_Subtype (Target_Type) then
3522 Check_Non_Static_Context (Operand);
3523 return;
3525 elsif Error_Posted (N) then
3526 return;
3527 end if;
3529 -- If not foldable we are done
3531 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3533 if not Fold then
3534 return;
3536 -- Don't try fold if target type has constraint error bounds
3538 elsif not Is_OK_Static_Subtype (Target_Type) then
3539 Set_Raises_Constraint_Error (N);
3540 return;
3541 end if;
3543 -- Remaining processing depends on operand types. Note that in the
3544 -- following type test, fixed-point counts as real unless the flag
3545 -- Conversion_OK is set, in which case it counts as integer.
3547 -- Fold conversion, case of string type. The result is not static
3549 if Is_String_Type (Target_Type) then
3550 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
3552 return;
3554 -- Fold conversion, case of integer target type
3556 elsif To_Be_Treated_As_Integer (Target_Type) then
3557 declare
3558 Result : Uint;
3560 begin
3561 -- Integer to integer conversion
3563 if To_Be_Treated_As_Integer (Source_Type) then
3564 Result := Expr_Value (Operand);
3566 -- Real to integer conversion
3568 else
3569 Result := UR_To_Uint (Expr_Value_R (Operand));
3570 end if;
3572 -- If fixed-point type (Conversion_OK must be set), then the
3573 -- result is logically an integer, but we must replace the
3574 -- conversion with the corresponding real literal, since the
3575 -- type from a semantic point of view is still fixed-point.
3577 if Is_Fixed_Point_Type (Target_Type) then
3578 Fold_Ureal
3579 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
3581 -- Otherwise result is integer literal
3583 else
3584 Fold_Uint (N, Result, Stat);
3585 end if;
3586 end;
3588 -- Fold conversion, case of real target type
3590 elsif To_Be_Treated_As_Real (Target_Type) then
3591 declare
3592 Result : Ureal;
3594 begin
3595 if To_Be_Treated_As_Real (Source_Type) then
3596 Result := Expr_Value_R (Operand);
3597 else
3598 Result := UR_From_Uint (Expr_Value (Operand));
3599 end if;
3601 Fold_Ureal (N, Result, Stat);
3602 end;
3604 -- Enumeration types
3606 else
3607 Fold_Uint (N, Expr_Value (Operand), Stat);
3608 end if;
3610 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
3611 Out_Of_Range (N);
3612 end if;
3614 end Eval_Type_Conversion;
3616 -------------------
3617 -- Eval_Unary_Op --
3618 -------------------
3620 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
3621 -- are potentially static if the operand is potentially static (RM 4.9(7)).
3623 procedure Eval_Unary_Op (N : Node_Id) is
3624 Right : constant Node_Id := Right_Opnd (N);
3625 Otype : Entity_Id := Empty;
3626 Stat : Boolean;
3627 Fold : Boolean;
3629 begin
3630 -- If not foldable we are done
3632 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3634 if not Fold then
3635 return;
3636 end if;
3638 if Etype (Right) = Universal_Integer
3639 or else
3640 Etype (Right) = Universal_Real
3641 then
3642 Otype := Find_Universal_Operator_Type (N);
3643 end if;
3645 -- Fold for integer case
3647 if Is_Integer_Type (Etype (N)) then
3648 declare
3649 Rint : constant Uint := Expr_Value (Right);
3650 Result : Uint;
3652 begin
3653 -- In the case of modular unary plus and abs there is no need
3654 -- to adjust the result of the operation since if the original
3655 -- operand was in bounds the result will be in the bounds of the
3656 -- modular type. However, in the case of modular unary minus the
3657 -- result may go out of the bounds of the modular type and needs
3658 -- adjustment.
3660 if Nkind (N) = N_Op_Plus then
3661 Result := Rint;
3663 elsif Nkind (N) = N_Op_Minus then
3664 if Is_Modular_Integer_Type (Etype (N)) then
3665 Result := (-Rint) mod Modulus (Etype (N));
3666 else
3667 Result := (-Rint);
3668 end if;
3670 else
3671 pragma Assert (Nkind (N) = N_Op_Abs);
3672 Result := abs Rint;
3673 end if;
3675 Fold_Uint (N, Result, Stat);
3676 end;
3678 -- Fold for real case
3680 elsif Is_Real_Type (Etype (N)) then
3681 declare
3682 Rreal : constant Ureal := Expr_Value_R (Right);
3683 Result : Ureal;
3685 begin
3686 if Nkind (N) = N_Op_Plus then
3687 Result := Rreal;
3689 elsif Nkind (N) = N_Op_Minus then
3690 Result := UR_Negate (Rreal);
3692 else
3693 pragma Assert (Nkind (N) = N_Op_Abs);
3694 Result := abs Rreal;
3695 end if;
3697 Fold_Ureal (N, Result, Stat);
3698 end;
3699 end if;
3701 -- If the operator was resolved to a specific type, make sure that type
3702 -- is frozen even if the expression is folded into a literal (which has
3703 -- a universal type).
3705 if Present (Otype) then
3706 Freeze_Before (N, Otype);
3707 end if;
3708 end Eval_Unary_Op;
3710 -------------------------------
3711 -- Eval_Unchecked_Conversion --
3712 -------------------------------
3714 -- Unchecked conversions can never be static, so the only required
3715 -- processing is to check for a non-static context for the operand.
3717 procedure Eval_Unchecked_Conversion (N : Node_Id) is
3718 begin
3719 Check_Non_Static_Context (Expression (N));
3720 end Eval_Unchecked_Conversion;
3722 --------------------
3723 -- Expr_Rep_Value --
3724 --------------------
3726 function Expr_Rep_Value (N : Node_Id) return Uint is
3727 Kind : constant Node_Kind := Nkind (N);
3728 Ent : Entity_Id;
3730 begin
3731 if Is_Entity_Name (N) then
3732 Ent := Entity (N);
3734 -- An enumeration literal that was either in the source or created
3735 -- as a result of static evaluation.
3737 if Ekind (Ent) = E_Enumeration_Literal then
3738 return Enumeration_Rep (Ent);
3740 -- A user defined static constant
3742 else
3743 pragma Assert (Ekind (Ent) = E_Constant);
3744 return Expr_Rep_Value (Constant_Value (Ent));
3745 end if;
3747 -- An integer literal that was either in the source or created as a
3748 -- result of static evaluation.
3750 elsif Kind = N_Integer_Literal then
3751 return Intval (N);
3753 -- A real literal for a fixed-point type. This must be the fixed-point
3754 -- case, either the literal is of a fixed-point type, or it is a bound
3755 -- of a fixed-point type, with type universal real. In either case we
3756 -- obtain the desired value from Corresponding_Integer_Value.
3758 elsif Kind = N_Real_Literal then
3759 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3760 return Corresponding_Integer_Value (N);
3762 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3764 elsif Kind = N_Attribute_Reference
3765 and then Attribute_Name (N) = Name_Null_Parameter
3766 then
3767 return Uint_0;
3769 -- Otherwise must be character literal
3771 else
3772 pragma Assert (Kind = N_Character_Literal);
3773 Ent := Entity (N);
3775 -- Since Character literals of type Standard.Character don't have any
3776 -- defining character literals built for them, they do not have their
3777 -- Entity set, so just use their Char code. Otherwise for user-
3778 -- defined character literals use their Pos value as usual which is
3779 -- the same as the Rep value.
3781 if No (Ent) then
3782 return Char_Literal_Value (N);
3783 else
3784 return Enumeration_Rep (Ent);
3785 end if;
3786 end if;
3787 end Expr_Rep_Value;
3789 ----------------
3790 -- Expr_Value --
3791 ----------------
3793 function Expr_Value (N : Node_Id) return Uint is
3794 Kind : constant Node_Kind := Nkind (N);
3795 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
3796 Ent : Entity_Id;
3797 Val : Uint;
3799 begin
3800 -- If already in cache, then we know it's compile time known and we can
3801 -- return the value that was previously stored in the cache since
3802 -- compile time known values cannot change.
3804 if CV_Ent.N = N then
3805 return CV_Ent.V;
3806 end if;
3808 -- Otherwise proceed to test value
3810 if Is_Entity_Name (N) then
3811 Ent := Entity (N);
3813 -- An enumeration literal that was either in the source or created as
3814 -- a result of static evaluation.
3816 if Ekind (Ent) = E_Enumeration_Literal then
3817 Val := Enumeration_Pos (Ent);
3819 -- A user defined static constant
3821 else
3822 pragma Assert (Ekind (Ent) = E_Constant);
3823 Val := Expr_Value (Constant_Value (Ent));
3824 end if;
3826 -- An integer literal that was either in the source or created as a
3827 -- result of static evaluation.
3829 elsif Kind = N_Integer_Literal then
3830 Val := Intval (N);
3832 -- A real literal for a fixed-point type. This must be the fixed-point
3833 -- case, either the literal is of a fixed-point type, or it is a bound
3834 -- of a fixed-point type, with type universal real. In either case we
3835 -- obtain the desired value from Corresponding_Integer_Value.
3837 elsif Kind = N_Real_Literal then
3839 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3840 Val := Corresponding_Integer_Value (N);
3842 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3844 elsif Kind = N_Attribute_Reference
3845 and then Attribute_Name (N) = Name_Null_Parameter
3846 then
3847 Val := Uint_0;
3849 -- Otherwise must be character literal
3851 else
3852 pragma Assert (Kind = N_Character_Literal);
3853 Ent := Entity (N);
3855 -- Since Character literals of type Standard.Character don't
3856 -- have any defining character literals built for them, they
3857 -- do not have their Entity set, so just use their Char
3858 -- code. Otherwise for user-defined character literals use
3859 -- their Pos value as usual.
3861 if No (Ent) then
3862 Val := Char_Literal_Value (N);
3863 else
3864 Val := Enumeration_Pos (Ent);
3865 end if;
3866 end if;
3868 -- Come here with Val set to value to be returned, set cache
3870 CV_Ent.N := N;
3871 CV_Ent.V := Val;
3872 return Val;
3873 end Expr_Value;
3875 ------------------
3876 -- Expr_Value_E --
3877 ------------------
3879 function Expr_Value_E (N : Node_Id) return Entity_Id is
3880 Ent : constant Entity_Id := Entity (N);
3882 begin
3883 if Ekind (Ent) = E_Enumeration_Literal then
3884 return Ent;
3885 else
3886 pragma Assert (Ekind (Ent) = E_Constant);
3887 return Expr_Value_E (Constant_Value (Ent));
3888 end if;
3889 end Expr_Value_E;
3891 ------------------
3892 -- Expr_Value_R --
3893 ------------------
3895 function Expr_Value_R (N : Node_Id) return Ureal is
3896 Kind : constant Node_Kind := Nkind (N);
3897 Ent : Entity_Id;
3899 begin
3900 if Kind = N_Real_Literal then
3901 return Realval (N);
3903 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
3904 Ent := Entity (N);
3905 pragma Assert (Ekind (Ent) = E_Constant);
3906 return Expr_Value_R (Constant_Value (Ent));
3908 elsif Kind = N_Integer_Literal then
3909 return UR_From_Uint (Expr_Value (N));
3911 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
3913 elsif Kind = N_Attribute_Reference
3914 and then Attribute_Name (N) = Name_Null_Parameter
3915 then
3916 return Ureal_0;
3917 end if;
3919 -- If we fall through, we have a node that cannot be interpreted as a
3920 -- compile time constant. That is definitely an error.
3922 raise Program_Error;
3923 end Expr_Value_R;
3925 ------------------
3926 -- Expr_Value_S --
3927 ------------------
3929 function Expr_Value_S (N : Node_Id) return Node_Id is
3930 begin
3931 if Nkind (N) = N_String_Literal then
3932 return N;
3933 else
3934 pragma Assert (Ekind (Entity (N)) = E_Constant);
3935 return Expr_Value_S (Constant_Value (Entity (N)));
3936 end if;
3937 end Expr_Value_S;
3939 ----------------------------------
3940 -- Find_Universal_Operator_Type --
3941 ----------------------------------
3943 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
3944 PN : constant Node_Id := Parent (N);
3945 Call : constant Node_Id := Original_Node (N);
3946 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
3948 Is_Fix : constant Boolean :=
3949 Nkind (N) in N_Binary_Op
3950 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
3951 -- A mixed-mode operation in this context indicates the presence of
3952 -- fixed-point type in the designated package.
3954 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
3955 -- Case where N is a relational (or membership) operator (else it is an
3956 -- arithmetic one).
3958 In_Membership : constant Boolean :=
3959 Nkind (PN) in N_Membership_Test
3960 and then
3961 Nkind (Right_Opnd (PN)) = N_Range
3962 and then
3963 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
3964 and then
3965 Is_Universal_Numeric_Type
3966 (Etype (Low_Bound (Right_Opnd (PN))))
3967 and then
3968 Is_Universal_Numeric_Type
3969 (Etype (High_Bound (Right_Opnd (PN))));
3970 -- Case where N is part of a membership test with a universal range
3972 E : Entity_Id;
3973 Pack : Entity_Id;
3974 Typ1 : Entity_Id := Empty;
3975 Priv_E : Entity_Id;
3977 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
3978 -- Check whether one operand is a mixed-mode operation that requires the
3979 -- presence of a fixed-point type. Given that all operands are universal
3980 -- and have been constant-folded, retrieve the original function call.
3982 ---------------------------
3983 -- Is_Mixed_Mode_Operand --
3984 ---------------------------
3986 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
3987 Onod : constant Node_Id := Original_Node (Op);
3988 begin
3989 return Nkind (Onod) = N_Function_Call
3990 and then Present (Next_Actual (First_Actual (Onod)))
3991 and then Etype (First_Actual (Onod)) /=
3992 Etype (Next_Actual (First_Actual (Onod)));
3993 end Is_Mixed_Mode_Operand;
3995 -- Start of processing for Find_Universal_Operator_Type
3997 begin
3998 if Nkind (Call) /= N_Function_Call
3999 or else Nkind (Name (Call)) /= N_Expanded_Name
4000 then
4001 return Empty;
4003 -- There are several cases where the context does not imply the type of
4004 -- the operands:
4005 -- - the universal expression appears in a type conversion;
4006 -- - the expression is a relational operator applied to universal
4007 -- operands;
4008 -- - the expression is a membership test with a universal operand
4009 -- and a range with universal bounds.
4011 elsif Nkind (Parent (N)) = N_Type_Conversion
4012 or else Is_Relational
4013 or else In_Membership
4014 then
4015 Pack := Entity (Prefix (Name (Call)));
4017 -- If the prefix is a package declared elsewhere, iterate over its
4018 -- visible entities, otherwise iterate over all declarations in the
4019 -- designated scope.
4021 if Ekind (Pack) = E_Package
4022 and then not In_Open_Scopes (Pack)
4023 then
4024 Priv_E := First_Private_Entity (Pack);
4025 else
4026 Priv_E := Empty;
4027 end if;
4029 Typ1 := Empty;
4030 E := First_Entity (Pack);
4031 while Present (E) and then E /= Priv_E loop
4032 if Is_Numeric_Type (E)
4033 and then Nkind (Parent (E)) /= N_Subtype_Declaration
4034 and then Comes_From_Source (E)
4035 and then Is_Integer_Type (E) = Is_Int
4036 and then
4037 (Nkind (N) in N_Unary_Op
4038 or else Is_Relational
4039 or else Is_Fixed_Point_Type (E) = Is_Fix)
4040 then
4041 if No (Typ1) then
4042 Typ1 := E;
4044 -- Before emitting an error, check for the presence of a
4045 -- mixed-mode operation that specifies a fixed point type.
4047 elsif Is_Relational
4048 and then
4049 (Is_Mixed_Mode_Operand (Left_Opnd (N))
4050 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
4051 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
4053 then
4054 if Is_Fixed_Point_Type (E) then
4055 Typ1 := E;
4056 end if;
4058 else
4059 -- More than one type of the proper class declared in P
4061 Error_Msg_N ("ambiguous operation", N);
4062 Error_Msg_Sloc := Sloc (Typ1);
4063 Error_Msg_N ("\possible interpretation (inherited)#", N);
4064 Error_Msg_Sloc := Sloc (E);
4065 Error_Msg_N ("\possible interpretation (inherited)#", N);
4066 return Empty;
4067 end if;
4068 end if;
4070 Next_Entity (E);
4071 end loop;
4072 end if;
4074 return Typ1;
4075 end Find_Universal_Operator_Type;
4077 --------------------------
4078 -- Flag_Non_Static_Expr --
4079 --------------------------
4081 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
4082 begin
4083 if Error_Posted (Expr) and then not All_Errors_Mode then
4084 return;
4085 else
4086 Error_Msg_F (Msg, Expr);
4087 Why_Not_Static (Expr);
4088 end if;
4089 end Flag_Non_Static_Expr;
4091 --------------
4092 -- Fold_Str --
4093 --------------
4095 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
4096 Loc : constant Source_Ptr := Sloc (N);
4097 Typ : constant Entity_Id := Etype (N);
4099 begin
4100 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
4102 -- We now have the literal with the right value, both the actual type
4103 -- and the expected type of this literal are taken from the expression
4104 -- that was evaluated. So now we do the Analyze and Resolve.
4106 -- Note that we have to reset Is_Static_Expression both after the
4107 -- analyze step (because Resolve will evaluate the literal, which
4108 -- will cause semantic errors if it is marked as static), and after
4109 -- the Resolve step (since Resolve in some cases resets this flag).
4111 Analyze (N);
4112 Set_Is_Static_Expression (N, Static);
4113 Set_Etype (N, Typ);
4114 Resolve (N);
4115 Set_Is_Static_Expression (N, Static);
4116 end Fold_Str;
4118 ---------------
4119 -- Fold_Uint --
4120 ---------------
4122 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
4123 Loc : constant Source_Ptr := Sloc (N);
4124 Typ : Entity_Id := Etype (N);
4125 Ent : Entity_Id;
4127 begin
4128 -- If we are folding a named number, retain the entity in the literal,
4129 -- for ASIS use.
4131 if Is_Entity_Name (N)
4132 and then Ekind (Entity (N)) = E_Named_Integer
4133 then
4134 Ent := Entity (N);
4135 else
4136 Ent := Empty;
4137 end if;
4139 if Is_Private_Type (Typ) then
4140 Typ := Full_View (Typ);
4141 end if;
4143 -- For a result of type integer, substitute an N_Integer_Literal node
4144 -- for the result of the compile time evaluation of the expression.
4145 -- For ASIS use, set a link to the original named number when not in
4146 -- a generic context.
4148 if Is_Integer_Type (Typ) then
4149 Rewrite (N, Make_Integer_Literal (Loc, Val));
4151 Set_Original_Entity (N, Ent);
4153 -- Otherwise we have an enumeration type, and we substitute either
4154 -- an N_Identifier or N_Character_Literal to represent the enumeration
4155 -- literal corresponding to the given value, which must always be in
4156 -- range, because appropriate tests have already been made for this.
4158 else pragma Assert (Is_Enumeration_Type (Typ));
4159 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4160 end if;
4162 -- We now have the literal with the right value, both the actual type
4163 -- and the expected type of this literal are taken from the expression
4164 -- that was evaluated. So now we do the Analyze and Resolve.
4166 -- Note that we have to reset Is_Static_Expression both after the
4167 -- analyze step (because Resolve will evaluate the literal, which
4168 -- will cause semantic errors if it is marked as static), and after
4169 -- the Resolve step (since Resolve in some cases sets this flag).
4171 Analyze (N);
4172 Set_Is_Static_Expression (N, Static);
4173 Set_Etype (N, Typ);
4174 Resolve (N);
4175 Set_Is_Static_Expression (N, Static);
4176 end Fold_Uint;
4178 ----------------
4179 -- Fold_Ureal --
4180 ----------------
4182 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
4183 Loc : constant Source_Ptr := Sloc (N);
4184 Typ : constant Entity_Id := Etype (N);
4185 Ent : Entity_Id;
4187 begin
4188 -- If we are folding a named number, retain the entity in the literal,
4189 -- for ASIS use.
4191 if Is_Entity_Name (N)
4192 and then Ekind (Entity (N)) = E_Named_Real
4193 then
4194 Ent := Entity (N);
4195 else
4196 Ent := Empty;
4197 end if;
4199 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
4201 -- Set link to original named number, for ASIS use
4203 Set_Original_Entity (N, Ent);
4205 -- We now have the literal with the right value, both the actual type
4206 -- and the expected type of this literal are taken from the expression
4207 -- that was evaluated. So now we do the Analyze and Resolve.
4209 -- Note that we have to reset Is_Static_Expression both after the
4210 -- analyze step (because Resolve will evaluate the literal, which
4211 -- will cause semantic errors if it is marked as static), and after
4212 -- the Resolve step (since Resolve in some cases sets this flag).
4214 Analyze (N);
4215 Set_Is_Static_Expression (N, Static);
4216 Set_Etype (N, Typ);
4217 Resolve (N);
4218 Set_Is_Static_Expression (N, Static);
4219 end Fold_Ureal;
4221 ---------------
4222 -- From_Bits --
4223 ---------------
4225 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4226 V : Uint := Uint_0;
4228 begin
4229 for J in 0 .. B'Last loop
4230 if B (J) then
4231 V := V + 2 ** J;
4232 end if;
4233 end loop;
4235 if Non_Binary_Modulus (T) then
4236 V := V mod Modulus (T);
4237 end if;
4239 return V;
4240 end From_Bits;
4242 --------------------
4243 -- Get_String_Val --
4244 --------------------
4246 function Get_String_Val (N : Node_Id) return Node_Id is
4247 begin
4248 if Nkind (N) = N_String_Literal then
4249 return N;
4251 elsif Nkind (N) = N_Character_Literal then
4252 return N;
4254 else
4255 pragma Assert (Is_Entity_Name (N));
4256 return Get_String_Val (Constant_Value (Entity (N)));
4257 end if;
4258 end Get_String_Val;
4260 ----------------
4261 -- Initialize --
4262 ----------------
4264 procedure Initialize is
4265 begin
4266 CV_Cache := (others => (Node_High_Bound, Uint_0));
4267 end Initialize;
4269 --------------------
4270 -- In_Subrange_Of --
4271 --------------------
4273 function In_Subrange_Of
4274 (T1 : Entity_Id;
4275 T2 : Entity_Id;
4276 Fixed_Int : Boolean := False) return Boolean
4278 L1 : Node_Id;
4279 H1 : Node_Id;
4281 L2 : Node_Id;
4282 H2 : Node_Id;
4284 begin
4285 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4286 return True;
4288 -- Never in range if both types are not scalar. Don't know if this can
4289 -- actually happen, but just in case.
4291 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
4292 return False;
4294 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4295 -- definitely not compatible with T2.
4297 elsif Is_Floating_Point_Type (T1)
4298 and then Has_Infinities (T1)
4299 and then Is_Floating_Point_Type (T2)
4300 and then not Has_Infinities (T2)
4301 then
4302 return False;
4304 else
4305 L1 := Type_Low_Bound (T1);
4306 H1 := Type_High_Bound (T1);
4308 L2 := Type_Low_Bound (T2);
4309 H2 := Type_High_Bound (T2);
4311 -- Check bounds to see if comparison possible at compile time
4313 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
4314 and then
4315 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
4316 then
4317 return True;
4318 end if;
4320 -- If bounds not comparable at compile time, then the bounds of T2
4321 -- must be compile time known or we cannot answer the query.
4323 if not Compile_Time_Known_Value (L2)
4324 or else not Compile_Time_Known_Value (H2)
4325 then
4326 return False;
4327 end if;
4329 -- If the bounds of T1 are know at compile time then use these
4330 -- ones, otherwise use the bounds of the base type (which are of
4331 -- course always static).
4333 if not Compile_Time_Known_Value (L1) then
4334 L1 := Type_Low_Bound (Base_Type (T1));
4335 end if;
4337 if not Compile_Time_Known_Value (H1) then
4338 H1 := Type_High_Bound (Base_Type (T1));
4339 end if;
4341 -- Fixed point types should be considered as such only if
4342 -- flag Fixed_Int is set to False.
4344 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4345 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4346 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4347 then
4348 return
4349 Expr_Value_R (L2) <= Expr_Value_R (L1)
4350 and then
4351 Expr_Value_R (H2) >= Expr_Value_R (H1);
4353 else
4354 return
4355 Expr_Value (L2) <= Expr_Value (L1)
4356 and then
4357 Expr_Value (H2) >= Expr_Value (H1);
4359 end if;
4360 end if;
4362 -- If any exception occurs, it means that we have some bug in the compiler
4363 -- possibly triggered by a previous error, or by some unforeseen peculiar
4364 -- occurrence. However, this is only an optimization attempt, so there is
4365 -- really no point in crashing the compiler. Instead we just decide, too
4366 -- bad, we can't figure out the answer in this case after all.
4368 exception
4369 when others =>
4371 -- Debug flag K disables this behavior (useful for debugging)
4373 if Debug_Flag_K then
4374 raise;
4375 else
4376 return False;
4377 end if;
4378 end In_Subrange_Of;
4380 -----------------
4381 -- Is_In_Range --
4382 -----------------
4384 function Is_In_Range
4385 (N : Node_Id;
4386 Typ : Entity_Id;
4387 Assume_Valid : Boolean := False;
4388 Fixed_Int : Boolean := False;
4389 Int_Real : Boolean := False) return Boolean
4391 begin
4392 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4393 = In_Range;
4394 end Is_In_Range;
4396 -------------------
4397 -- Is_Null_Range --
4398 -------------------
4400 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4401 Typ : constant Entity_Id := Etype (Lo);
4403 begin
4404 if not Compile_Time_Known_Value (Lo)
4405 or else not Compile_Time_Known_Value (Hi)
4406 then
4407 return False;
4408 end if;
4410 if Is_Discrete_Type (Typ) then
4411 return Expr_Value (Lo) > Expr_Value (Hi);
4413 else
4414 pragma Assert (Is_Real_Type (Typ));
4415 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4416 end if;
4417 end Is_Null_Range;
4419 -----------------------------
4420 -- Is_OK_Static_Expression --
4421 -----------------------------
4423 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4424 begin
4425 return Is_Static_Expression (N)
4426 and then not Raises_Constraint_Error (N);
4427 end Is_OK_Static_Expression;
4429 ------------------------
4430 -- Is_OK_Static_Range --
4431 ------------------------
4433 -- A static range is a range whose bounds are static expressions, or a
4434 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4435 -- We have already converted range attribute references, so we get the
4436 -- "or" part of this rule without needing a special test.
4438 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4439 begin
4440 return Is_OK_Static_Expression (Low_Bound (N))
4441 and then Is_OK_Static_Expression (High_Bound (N));
4442 end Is_OK_Static_Range;
4444 --------------------------
4445 -- Is_OK_Static_Subtype --
4446 --------------------------
4448 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4449 -- neither bound raises constraint error when evaluated.
4451 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4452 Base_T : constant Entity_Id := Base_Type (Typ);
4453 Anc_Subt : Entity_Id;
4455 begin
4456 -- First a quick check on the non static subtype flag. As described
4457 -- in further detail in Einfo, this flag is not decisive in all cases,
4458 -- but if it is set, then the subtype is definitely non-static.
4460 if Is_Non_Static_Subtype (Typ) then
4461 return False;
4462 end if;
4464 Anc_Subt := Ancestor_Subtype (Typ);
4466 if Anc_Subt = Empty then
4467 Anc_Subt := Base_T;
4468 end if;
4470 if Is_Generic_Type (Root_Type (Base_T))
4471 or else Is_Generic_Actual_Type (Base_T)
4472 then
4473 return False;
4475 -- String types
4477 elsif Is_String_Type (Typ) then
4478 return
4479 Ekind (Typ) = E_String_Literal_Subtype
4480 or else
4481 (Is_OK_Static_Subtype (Component_Type (Typ))
4482 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
4484 -- Scalar types
4486 elsif Is_Scalar_Type (Typ) then
4487 if Base_T = Typ then
4488 return True;
4490 else
4491 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4492 -- Get_Type_{Low,High}_Bound.
4494 return Is_OK_Static_Subtype (Anc_Subt)
4495 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4496 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4497 end if;
4499 -- Types other than string and scalar types are never static
4501 else
4502 return False;
4503 end if;
4504 end Is_OK_Static_Subtype;
4506 ---------------------
4507 -- Is_Out_Of_Range --
4508 ---------------------
4510 function Is_Out_Of_Range
4511 (N : Node_Id;
4512 Typ : Entity_Id;
4513 Assume_Valid : Boolean := False;
4514 Fixed_Int : Boolean := False;
4515 Int_Real : Boolean := False) return Boolean
4517 begin
4518 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4519 = Out_Of_Range;
4520 end Is_Out_Of_Range;
4522 ---------------------
4523 -- Is_Static_Range --
4524 ---------------------
4526 -- A static range is a range whose bounds are static expressions, or a
4527 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4528 -- We have already converted range attribute references, so we get the
4529 -- "or" part of this rule without needing a special test.
4531 function Is_Static_Range (N : Node_Id) return Boolean is
4532 begin
4533 return Is_Static_Expression (Low_Bound (N))
4534 and then Is_Static_Expression (High_Bound (N));
4535 end Is_Static_Range;
4537 -----------------------
4538 -- Is_Static_Subtype --
4539 -----------------------
4541 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
4543 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4544 Base_T : constant Entity_Id := Base_Type (Typ);
4545 Anc_Subt : Entity_Id;
4547 begin
4548 -- First a quick check on the non static subtype flag. As described
4549 -- in further detail in Einfo, this flag is not decisive in all cases,
4550 -- but if it is set, then the subtype is definitely non-static.
4552 if Is_Non_Static_Subtype (Typ) then
4553 return False;
4554 end if;
4556 Anc_Subt := Ancestor_Subtype (Typ);
4558 if Anc_Subt = Empty then
4559 Anc_Subt := Base_T;
4560 end if;
4562 if Is_Generic_Type (Root_Type (Base_T))
4563 or else Is_Generic_Actual_Type (Base_T)
4564 then
4565 return False;
4567 -- String types
4569 elsif Is_String_Type (Typ) then
4570 return
4571 Ekind (Typ) = E_String_Literal_Subtype
4572 or else (Is_Static_Subtype (Component_Type (Typ))
4573 and then Is_Static_Subtype (Etype (First_Index (Typ))));
4575 -- Scalar types
4577 elsif Is_Scalar_Type (Typ) then
4578 if Base_T = Typ then
4579 return True;
4581 else
4582 return Is_Static_Subtype (Anc_Subt)
4583 and then Is_Static_Expression (Type_Low_Bound (Typ))
4584 and then Is_Static_Expression (Type_High_Bound (Typ));
4585 end if;
4587 -- Types other than string and scalar types are never static
4589 else
4590 return False;
4591 end if;
4592 end Is_Static_Subtype;
4594 --------------------
4595 -- Not_Null_Range --
4596 --------------------
4598 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4599 Typ : constant Entity_Id := Etype (Lo);
4601 begin
4602 if not Compile_Time_Known_Value (Lo)
4603 or else not Compile_Time_Known_Value (Hi)
4604 then
4605 return False;
4606 end if;
4608 if Is_Discrete_Type (Typ) then
4609 return Expr_Value (Lo) <= Expr_Value (Hi);
4611 else
4612 pragma Assert (Is_Real_Type (Typ));
4614 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
4615 end if;
4616 end Not_Null_Range;
4618 -------------
4619 -- OK_Bits --
4620 -------------
4622 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
4623 begin
4624 -- We allow a maximum of 500,000 bits which seems a reasonable limit
4626 if Bits < 500_000 then
4627 return True;
4629 else
4630 Error_Msg_N ("static value too large, capacity exceeded", N);
4631 return False;
4632 end if;
4633 end OK_Bits;
4635 ------------------
4636 -- Out_Of_Range --
4637 ------------------
4639 procedure Out_Of_Range (N : Node_Id) is
4640 begin
4641 -- If we have the static expression case, then this is an illegality
4642 -- in Ada 95 mode, except that in an instance, we never generate an
4643 -- error (if the error is legitimate, it was already diagnosed in the
4644 -- template). The expression to compute the length of a packed array is
4645 -- attached to the array type itself, and deserves a separate message.
4647 if Is_Static_Expression (N)
4648 and then not In_Instance
4649 and then not In_Inlined_Body
4650 and then Ada_Version >= Ada_95
4651 then
4652 if Nkind (Parent (N)) = N_Defining_Identifier
4653 and then Is_Array_Type (Parent (N))
4654 and then Present (Packed_Array_Type (Parent (N)))
4655 and then Present (First_Rep_Item (Parent (N)))
4656 then
4657 Error_Msg_N
4658 ("length of packed array must not exceed Integer''Last",
4659 First_Rep_Item (Parent (N)));
4660 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
4662 else
4663 Apply_Compile_Time_Constraint_Error
4664 (N, "value not in range of}", CE_Range_Check_Failed);
4665 end if;
4667 -- Here we generate a warning for the Ada 83 case, or when we are in an
4668 -- instance, or when we have a non-static expression case.
4670 else
4671 Apply_Compile_Time_Constraint_Error
4672 (N, "value not in range of}??", CE_Range_Check_Failed);
4673 end if;
4674 end Out_Of_Range;
4676 -------------------------
4677 -- Rewrite_In_Raise_CE --
4678 -------------------------
4680 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
4681 Typ : constant Entity_Id := Etype (N);
4683 begin
4684 -- If we want to raise CE in the condition of a N_Raise_CE node
4685 -- we may as well get rid of the condition.
4687 if Present (Parent (N))
4688 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
4689 then
4690 Set_Condition (Parent (N), Empty);
4692 -- If the expression raising CE is a N_Raise_CE node, we can use that
4693 -- one. We just preserve the type of the context.
4695 elsif Nkind (Exp) = N_Raise_Constraint_Error then
4696 Rewrite (N, Exp);
4697 Set_Etype (N, Typ);
4699 -- Else build an explcit N_Raise_CE
4701 else
4702 Rewrite (N,
4703 Make_Raise_Constraint_Error (Sloc (Exp),
4704 Reason => CE_Range_Check_Failed));
4705 Set_Raises_Constraint_Error (N);
4706 Set_Etype (N, Typ);
4707 end if;
4708 end Rewrite_In_Raise_CE;
4710 ---------------------
4711 -- String_Type_Len --
4712 ---------------------
4714 function String_Type_Len (Stype : Entity_Id) return Uint is
4715 NT : constant Entity_Id := Etype (First_Index (Stype));
4716 T : Entity_Id;
4718 begin
4719 if Is_OK_Static_Subtype (NT) then
4720 T := NT;
4721 else
4722 T := Base_Type (NT);
4723 end if;
4725 return Expr_Value (Type_High_Bound (T)) -
4726 Expr_Value (Type_Low_Bound (T)) + 1;
4727 end String_Type_Len;
4729 ------------------------------------
4730 -- Subtypes_Statically_Compatible --
4731 ------------------------------------
4733 function Subtypes_Statically_Compatible
4734 (T1 : Entity_Id;
4735 T2 : Entity_Id) return Boolean
4737 begin
4738 -- Scalar types
4740 if Is_Scalar_Type (T1) then
4742 -- Definitely compatible if we match
4744 if Subtypes_Statically_Match (T1, T2) then
4745 return True;
4747 -- If either subtype is nonstatic then they're not compatible
4749 elsif not Is_Static_Subtype (T1)
4750 or else not Is_Static_Subtype (T2)
4751 then
4752 return False;
4754 -- If either type has constraint error bounds, then consider that
4755 -- they match to avoid junk cascaded errors here.
4757 elsif not Is_OK_Static_Subtype (T1)
4758 or else not Is_OK_Static_Subtype (T2)
4759 then
4760 return True;
4762 -- Base types must match, but we don't check that (should we???) but
4763 -- we do at least check that both types are real, or both types are
4764 -- not real.
4766 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
4767 return False;
4769 -- Here we check the bounds
4771 else
4772 declare
4773 LB1 : constant Node_Id := Type_Low_Bound (T1);
4774 HB1 : constant Node_Id := Type_High_Bound (T1);
4775 LB2 : constant Node_Id := Type_Low_Bound (T2);
4776 HB2 : constant Node_Id := Type_High_Bound (T2);
4778 begin
4779 if Is_Real_Type (T1) then
4780 return
4781 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
4782 or else
4783 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
4784 and then
4785 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
4787 else
4788 return
4789 (Expr_Value (LB1) > Expr_Value (HB1))
4790 or else
4791 (Expr_Value (LB2) <= Expr_Value (LB1)
4792 and then
4793 Expr_Value (HB1) <= Expr_Value (HB2));
4794 end if;
4795 end;
4796 end if;
4798 -- Access types
4800 elsif Is_Access_Type (T1) then
4801 return (not Is_Constrained (T2)
4802 or else (Subtypes_Statically_Match
4803 (Designated_Type (T1), Designated_Type (T2))))
4804 and then not (Can_Never_Be_Null (T2)
4805 and then not Can_Never_Be_Null (T1));
4807 -- All other cases
4809 else
4810 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
4811 or else Subtypes_Statically_Match (T1, T2);
4812 end if;
4813 end Subtypes_Statically_Compatible;
4815 -------------------------------
4816 -- Subtypes_Statically_Match --
4817 -------------------------------
4819 -- Subtypes statically match if they have statically matching constraints
4820 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
4821 -- they are the same identical constraint, or if they are static and the
4822 -- values match (RM 4.9.1(1)).
4824 function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
4826 function Predicates_Match return Boolean;
4827 -- In Ada 2012, subtypes statically match if their static predicates
4828 -- match as well.
4830 ----------------------
4831 -- Predicates_Match --
4832 ----------------------
4834 function Predicates_Match return Boolean is
4835 Pred1 : Node_Id;
4836 Pred2 : Node_Id;
4838 begin
4839 if Ada_Version < Ada_2012 then
4840 return True;
4842 elsif Has_Predicates (T1) /= Has_Predicates (T2) then
4843 return False;
4845 else
4846 Pred1 :=
4847 Get_Rep_Item
4848 (T1, Name_Static_Predicate, Check_Parents => False);
4849 Pred2 :=
4850 Get_Rep_Item
4851 (T2, Name_Static_Predicate, Check_Parents => False);
4853 -- Subtypes statically match if the predicate comes from the
4854 -- same declaration, which can only happen if one is a subtype
4855 -- of the other and has no explicit predicate.
4857 -- Suppress warnings on order of actuals, which is otherwise
4858 -- triggered by one of the two calls below.
4860 pragma Warnings (Off);
4861 return Pred1 = Pred2
4862 or else (No (Pred1) and then Is_Subtype_Of (T1, T2))
4863 or else (No (Pred2) and then Is_Subtype_Of (T2, T1));
4864 pragma Warnings (On);
4865 end if;
4866 end Predicates_Match;
4868 -- Start of processing for Subtypes_Statically_Match
4870 begin
4871 -- A type always statically matches itself
4873 if T1 = T2 then
4874 return True;
4876 -- Scalar types
4878 elsif Is_Scalar_Type (T1) then
4880 -- Base types must be the same
4882 if Base_Type (T1) /= Base_Type (T2) then
4883 return False;
4884 end if;
4886 -- A constrained numeric subtype never matches an unconstrained
4887 -- subtype, i.e. both types must be constrained or unconstrained.
4889 -- To understand the requirement for this test, see RM 4.9.1(1).
4890 -- As is made clear in RM 3.5.4(11), type Integer, for example is
4891 -- a constrained subtype with constraint bounds matching the bounds
4892 -- of its corresponding unconstrained base type. In this situation,
4893 -- Integer and Integer'Base do not statically match, even though
4894 -- they have the same bounds.
4896 -- We only apply this test to types in Standard and types that appear
4897 -- in user programs. That way, we do not have to be too careful about
4898 -- setting Is_Constrained right for Itypes.
4900 if Is_Numeric_Type (T1)
4901 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4902 and then (Scope (T1) = Standard_Standard
4903 or else Comes_From_Source (T1))
4904 and then (Scope (T2) = Standard_Standard
4905 or else Comes_From_Source (T2))
4906 then
4907 return False;
4909 -- A generic scalar type does not statically match its base type
4910 -- (AI-311). In this case we make sure that the formals, which are
4911 -- first subtypes of their bases, are constrained.
4913 elsif Is_Generic_Type (T1)
4914 and then Is_Generic_Type (T2)
4915 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4916 then
4917 return False;
4918 end if;
4920 -- If there was an error in either range, then just assume the types
4921 -- statically match to avoid further junk errors.
4923 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
4924 or else Error_Posted (Scalar_Range (T1))
4925 or else Error_Posted (Scalar_Range (T2))
4926 then
4927 return True;
4928 end if;
4930 -- Otherwise both types have bound that can be compared
4932 declare
4933 LB1 : constant Node_Id := Type_Low_Bound (T1);
4934 HB1 : constant Node_Id := Type_High_Bound (T1);
4935 LB2 : constant Node_Id := Type_Low_Bound (T2);
4936 HB2 : constant Node_Id := Type_High_Bound (T2);
4938 begin
4939 -- If the bounds are the same tree node, then match if and only
4940 -- if any predicates present also match.
4942 if LB1 = LB2 and then HB1 = HB2 then
4943 return Predicates_Match;
4945 -- Otherwise bounds must be static and identical value
4947 else
4948 if not Is_Static_Subtype (T1)
4949 or else not Is_Static_Subtype (T2)
4950 then
4951 return False;
4953 -- If either type has constraint error bounds, then say that
4954 -- they match to avoid junk cascaded errors here.
4956 elsif not Is_OK_Static_Subtype (T1)
4957 or else not Is_OK_Static_Subtype (T2)
4958 then
4959 return True;
4961 elsif Is_Real_Type (T1) then
4962 return
4963 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
4964 and then
4965 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
4967 else
4968 return
4969 Expr_Value (LB1) = Expr_Value (LB2)
4970 and then
4971 Expr_Value (HB1) = Expr_Value (HB2);
4972 end if;
4973 end if;
4974 end;
4976 -- Type with discriminants
4978 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
4980 -- Because of view exchanges in multiple instantiations, conformance
4981 -- checking might try to match a partial view of a type with no
4982 -- discriminants with a full view that has defaulted discriminants.
4983 -- In such a case, use the discriminant constraint of the full view,
4984 -- which must exist because we know that the two subtypes have the
4985 -- same base type.
4987 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
4988 if In_Instance then
4989 if Is_Private_Type (T2)
4990 and then Present (Full_View (T2))
4991 and then Has_Discriminants (Full_View (T2))
4992 then
4993 return Subtypes_Statically_Match (T1, Full_View (T2));
4995 elsif Is_Private_Type (T1)
4996 and then Present (Full_View (T1))
4997 and then Has_Discriminants (Full_View (T1))
4998 then
4999 return Subtypes_Statically_Match (Full_View (T1), T2);
5001 else
5002 return False;
5003 end if;
5004 else
5005 return False;
5006 end if;
5007 end if;
5009 declare
5010 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
5011 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
5013 DA1 : Elmt_Id;
5014 DA2 : Elmt_Id;
5016 begin
5017 if DL1 = DL2 then
5018 return True;
5019 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
5020 return False;
5021 end if;
5023 -- Now loop through the discriminant constraints
5025 -- Note: the guard here seems necessary, since it is possible at
5026 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
5028 if Present (DL1) and then Present (DL2) then
5029 DA1 := First_Elmt (DL1);
5030 DA2 := First_Elmt (DL2);
5031 while Present (DA1) loop
5032 declare
5033 Expr1 : constant Node_Id := Node (DA1);
5034 Expr2 : constant Node_Id := Node (DA2);
5036 begin
5037 if not Is_Static_Expression (Expr1)
5038 or else not Is_Static_Expression (Expr2)
5039 then
5040 return False;
5042 -- If either expression raised a constraint error,
5043 -- consider the expressions as matching, since this
5044 -- helps to prevent cascading errors.
5046 elsif Raises_Constraint_Error (Expr1)
5047 or else Raises_Constraint_Error (Expr2)
5048 then
5049 null;
5051 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
5052 return False;
5053 end if;
5054 end;
5056 Next_Elmt (DA1);
5057 Next_Elmt (DA2);
5058 end loop;
5059 end if;
5060 end;
5062 return True;
5064 -- A definite type does not match an indefinite or classwide type.
5065 -- However, a generic type with unknown discriminants may be
5066 -- instantiated with a type with no discriminants, and conformance
5067 -- checking on an inherited operation may compare the actual with the
5068 -- subtype that renames it in the instance.
5070 elsif
5071 Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
5072 then
5073 return
5074 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
5076 -- Array type
5078 elsif Is_Array_Type (T1) then
5080 -- If either subtype is unconstrained then both must be, and if both
5081 -- are unconstrained then no further checking is needed.
5083 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
5084 return not (Is_Constrained (T1) or else Is_Constrained (T2));
5085 end if;
5087 -- Both subtypes are constrained, so check that the index subtypes
5088 -- statically match.
5090 declare
5091 Index1 : Node_Id := First_Index (T1);
5092 Index2 : Node_Id := First_Index (T2);
5094 begin
5095 while Present (Index1) loop
5096 if not
5097 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
5098 then
5099 return False;
5100 end if;
5102 Next_Index (Index1);
5103 Next_Index (Index2);
5104 end loop;
5106 return True;
5107 end;
5109 elsif Is_Access_Type (T1) then
5110 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
5111 return False;
5113 elsif Ekind_In (T1, E_Access_Subprogram_Type,
5114 E_Anonymous_Access_Subprogram_Type)
5115 then
5116 return
5117 Subtype_Conformant
5118 (Designated_Type (T1),
5119 Designated_Type (T2));
5120 else
5121 return
5122 Subtypes_Statically_Match
5123 (Designated_Type (T1),
5124 Designated_Type (T2))
5125 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
5126 end if;
5128 -- All other types definitely match
5130 else
5131 return True;
5132 end if;
5133 end Subtypes_Statically_Match;
5135 ----------
5136 -- Test --
5137 ----------
5139 function Test (Cond : Boolean) return Uint is
5140 begin
5141 if Cond then
5142 return Uint_1;
5143 else
5144 return Uint_0;
5145 end if;
5146 end Test;
5148 ---------------------------------
5149 -- Test_Expression_Is_Foldable --
5150 ---------------------------------
5152 -- One operand case
5154 procedure Test_Expression_Is_Foldable
5155 (N : Node_Id;
5156 Op1 : Node_Id;
5157 Stat : out Boolean;
5158 Fold : out Boolean)
5160 begin
5161 Stat := False;
5162 Fold := False;
5164 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5165 return;
5166 end if;
5168 -- If operand is Any_Type, just propagate to result and do not
5169 -- try to fold, this prevents cascaded errors.
5171 if Etype (Op1) = Any_Type then
5172 Set_Etype (N, Any_Type);
5173 return;
5175 -- If operand raises constraint error, then replace node N with the
5176 -- raise constraint error node, and we are obviously not foldable.
5177 -- Note that this replacement inherits the Is_Static_Expression flag
5178 -- from the operand.
5180 elsif Raises_Constraint_Error (Op1) then
5181 Rewrite_In_Raise_CE (N, Op1);
5182 return;
5184 -- If the operand is not static, then the result is not static, and
5185 -- all we have to do is to check the operand since it is now known
5186 -- to appear in a non-static context.
5188 elsif not Is_Static_Expression (Op1) then
5189 Check_Non_Static_Context (Op1);
5190 Fold := Compile_Time_Known_Value (Op1);
5191 return;
5193 -- An expression of a formal modular type is not foldable because
5194 -- the modulus is unknown.
5196 elsif Is_Modular_Integer_Type (Etype (Op1))
5197 and then Is_Generic_Type (Etype (Op1))
5198 then
5199 Check_Non_Static_Context (Op1);
5200 return;
5202 -- Here we have the case of an operand whose type is OK, which is
5203 -- static, and which does not raise constraint error, we can fold.
5205 else
5206 Set_Is_Static_Expression (N);
5207 Fold := True;
5208 Stat := True;
5209 end if;
5210 end Test_Expression_Is_Foldable;
5212 -- Two operand case
5214 procedure Test_Expression_Is_Foldable
5215 (N : Node_Id;
5216 Op1 : Node_Id;
5217 Op2 : Node_Id;
5218 Stat : out Boolean;
5219 Fold : out Boolean)
5221 Rstat : constant Boolean := Is_Static_Expression (Op1)
5222 and then Is_Static_Expression (Op2);
5224 begin
5225 Stat := False;
5226 Fold := False;
5228 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5229 return;
5230 end if;
5232 -- If either operand is Any_Type, just propagate to result and
5233 -- do not try to fold, this prevents cascaded errors.
5235 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
5236 Set_Etype (N, Any_Type);
5237 return;
5239 -- If left operand raises constraint error, then replace node N with the
5240 -- Raise_Constraint_Error node, and we are obviously not foldable.
5241 -- Is_Static_Expression is set from the two operands in the normal way,
5242 -- and we check the right operand if it is in a non-static context.
5244 elsif Raises_Constraint_Error (Op1) then
5245 if not Rstat then
5246 Check_Non_Static_Context (Op2);
5247 end if;
5249 Rewrite_In_Raise_CE (N, Op1);
5250 Set_Is_Static_Expression (N, Rstat);
5251 return;
5253 -- Similar processing for the case of the right operand. Note that we
5254 -- don't use this routine for the short-circuit case, so we do not have
5255 -- to worry about that special case here.
5257 elsif Raises_Constraint_Error (Op2) then
5258 if not Rstat then
5259 Check_Non_Static_Context (Op1);
5260 end if;
5262 Rewrite_In_Raise_CE (N, Op2);
5263 Set_Is_Static_Expression (N, Rstat);
5264 return;
5266 -- Exclude expressions of a generic modular type, as above
5268 elsif Is_Modular_Integer_Type (Etype (Op1))
5269 and then Is_Generic_Type (Etype (Op1))
5270 then
5271 Check_Non_Static_Context (Op1);
5272 return;
5274 -- If result is not static, then check non-static contexts on operands
5275 -- since one of them may be static and the other one may not be static.
5277 elsif not Rstat then
5278 Check_Non_Static_Context (Op1);
5279 Check_Non_Static_Context (Op2);
5280 Fold := Compile_Time_Known_Value (Op1)
5281 and then Compile_Time_Known_Value (Op2);
5282 return;
5284 -- Else result is static and foldable. Both operands are static, and
5285 -- neither raises constraint error, so we can definitely fold.
5287 else
5288 Set_Is_Static_Expression (N);
5289 Fold := True;
5290 Stat := True;
5291 return;
5292 end if;
5293 end Test_Expression_Is_Foldable;
5295 -------------------
5296 -- Test_In_Range --
5297 -------------------
5299 function Test_In_Range
5300 (N : Node_Id;
5301 Typ : Entity_Id;
5302 Assume_Valid : Boolean;
5303 Fixed_Int : Boolean;
5304 Int_Real : Boolean) return Range_Membership
5306 Val : Uint;
5307 Valr : Ureal;
5309 pragma Warnings (Off, Assume_Valid);
5310 -- For now Assume_Valid is unreferenced since the current implementation
5311 -- always returns Unknown if N is not a compile time known value, but we
5312 -- keep the parameter to allow for future enhancements in which we try
5313 -- to get the information in the variable case as well.
5315 begin
5316 -- Universal types have no range limits, so always in range
5318 if Typ = Universal_Integer or else Typ = Universal_Real then
5319 return In_Range;
5321 -- Never known if not scalar type. Don't know if this can actually
5322 -- happen, but our spec allows it, so we must check!
5324 elsif not Is_Scalar_Type (Typ) then
5325 return Unknown;
5327 -- Never known if this is a generic type, since the bounds of generic
5328 -- types are junk. Note that if we only checked for static expressions
5329 -- (instead of compile time known values) below, we would not need this
5330 -- check, because values of a generic type can never be static, but they
5331 -- can be known at compile time.
5333 elsif Is_Generic_Type (Typ) then
5334 return Unknown;
5336 -- Never known unless we have a compile time known value
5338 elsif not Compile_Time_Known_Value (N) then
5339 return Unknown;
5341 -- General processing with a known compile time value
5343 else
5344 declare
5345 Lo : Node_Id;
5346 Hi : Node_Id;
5348 LB_Known : Boolean;
5349 HB_Known : Boolean;
5351 begin
5352 Lo := Type_Low_Bound (Typ);
5353 Hi := Type_High_Bound (Typ);
5355 LB_Known := Compile_Time_Known_Value (Lo);
5356 HB_Known := Compile_Time_Known_Value (Hi);
5358 -- Fixed point types should be considered as such only if flag
5359 -- Fixed_Int is set to False.
5361 if Is_Floating_Point_Type (Typ)
5362 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
5363 or else Int_Real
5364 then
5365 Valr := Expr_Value_R (N);
5367 if LB_Known and HB_Known then
5368 if Valr >= Expr_Value_R (Lo)
5369 and then
5370 Valr <= Expr_Value_R (Hi)
5371 then
5372 return In_Range;
5373 else
5374 return Out_Of_Range;
5375 end if;
5377 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
5378 or else
5379 (HB_Known and then Valr > Expr_Value_R (Hi))
5380 then
5381 return Out_Of_Range;
5383 else
5384 return Unknown;
5385 end if;
5387 else
5388 Val := Expr_Value (N);
5390 if LB_Known and HB_Known then
5391 if Val >= Expr_Value (Lo)
5392 and then
5393 Val <= Expr_Value (Hi)
5394 then
5395 return In_Range;
5396 else
5397 return Out_Of_Range;
5398 end if;
5400 elsif (LB_Known and then Val < Expr_Value (Lo))
5401 or else
5402 (HB_Known and then Val > Expr_Value (Hi))
5403 then
5404 return Out_Of_Range;
5406 else
5407 return Unknown;
5408 end if;
5409 end if;
5410 end;
5411 end if;
5412 end Test_In_Range;
5414 --------------
5415 -- To_Bits --
5416 --------------
5418 procedure To_Bits (U : Uint; B : out Bits) is
5419 begin
5420 for J in 0 .. B'Last loop
5421 B (J) := (U / (2 ** J)) mod 2 /= 0;
5422 end loop;
5423 end To_Bits;
5425 --------------------
5426 -- Why_Not_Static --
5427 --------------------
5429 procedure Why_Not_Static (Expr : Node_Id) is
5430 N : constant Node_Id := Original_Node (Expr);
5431 Typ : Entity_Id;
5432 E : Entity_Id;
5434 procedure Why_Not_Static_List (L : List_Id);
5435 -- A version that can be called on a list of expressions. Finds all
5436 -- non-static violations in any element of the list.
5438 -------------------------
5439 -- Why_Not_Static_List --
5440 -------------------------
5442 procedure Why_Not_Static_List (L : List_Id) is
5443 N : Node_Id;
5445 begin
5446 if Is_Non_Empty_List (L) then
5447 N := First (L);
5448 while Present (N) loop
5449 Why_Not_Static (N);
5450 Next (N);
5451 end loop;
5452 end if;
5453 end Why_Not_Static_List;
5455 -- Start of processing for Why_Not_Static
5457 begin
5458 -- If in ACATS mode (debug flag 2), then suppress all these messages,
5459 -- this avoids massive updates to the ACATS base line.
5461 if Debug_Flag_2 then
5462 return;
5463 end if;
5465 -- Ignore call on error or empty node
5467 if No (Expr) or else Nkind (Expr) = N_Error then
5468 return;
5469 end if;
5471 -- Preprocessing for sub expressions
5473 if Nkind (Expr) in N_Subexpr then
5475 -- Nothing to do if expression is static
5477 if Is_OK_Static_Expression (Expr) then
5478 return;
5479 end if;
5481 -- Test for constraint error raised
5483 if Raises_Constraint_Error (Expr) then
5484 Error_Msg_N
5485 ("\expression raises exception, cannot be static " &
5486 "(RM 4.9(34))", N);
5487 return;
5488 end if;
5490 -- If no type, then something is pretty wrong, so ignore
5492 Typ := Etype (Expr);
5494 if No (Typ) then
5495 return;
5496 end if;
5498 -- Type must be scalar or string type (but allow Bignum, since this
5499 -- is really a scalar type from our point of view in this diagnosis).
5501 if not Is_Scalar_Type (Typ)
5502 and then not Is_String_Type (Typ)
5503 and then not Is_RTE (Typ, RE_Bignum)
5504 then
5505 Error_Msg_N
5506 ("\static expression must have scalar or string type " &
5507 "(RM 4.9(2))", N);
5508 return;
5509 end if;
5510 end if;
5512 -- If we got through those checks, test particular node kind
5514 case Nkind (N) is
5516 -- Entity name
5518 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
5519 E := Entity (N);
5521 if Is_Named_Number (E) then
5522 null;
5524 elsif Ekind (E) = E_Constant then
5526 -- One case we can give a metter message is when we have a
5527 -- string literal created by concatenating an aggregate with
5528 -- an others expression.
5530 Entity_Case : declare
5531 CV : constant Node_Id := Constant_Value (E);
5532 CO : constant Node_Id := Original_Node (CV);
5534 function Is_Aggregate (N : Node_Id) return Boolean;
5535 -- See if node N came from an others aggregate, if so
5536 -- return True and set Error_Msg_Sloc to aggregate.
5538 ------------------
5539 -- Is_Aggregate --
5540 ------------------
5542 function Is_Aggregate (N : Node_Id) return Boolean is
5543 begin
5544 if Nkind (Original_Node (N)) = N_Aggregate then
5545 Error_Msg_Sloc := Sloc (Original_Node (N));
5546 return True;
5547 elsif Is_Entity_Name (N)
5548 and then Ekind (Entity (N)) = E_Constant
5549 and then
5550 Nkind (Original_Node (Constant_Value (Entity (N)))) =
5551 N_Aggregate
5552 then
5553 Error_Msg_Sloc :=
5554 Sloc (Original_Node (Constant_Value (Entity (N))));
5555 return True;
5556 else
5557 return False;
5558 end if;
5559 end Is_Aggregate;
5561 -- Start of processing for Entity_Case
5563 begin
5564 if Is_Aggregate (CV)
5565 or else (Nkind (CO) = N_Op_Concat
5566 and then (Is_Aggregate (Left_Opnd (CO))
5567 or else
5568 Is_Aggregate (Right_Opnd (CO))))
5569 then
5570 Error_Msg_N ("\aggregate (#) is never static", N);
5572 elsif No (CV) or else not Is_Static_Expression (CV) then
5573 Error_Msg_NE
5574 ("\& is not a static constant (RM 4.9(5))", N, E);
5575 end if;
5576 end Entity_Case;
5578 else
5579 Error_Msg_NE
5580 ("\& is not static constant or named number "
5581 & "(RM 4.9(5))", N, E);
5582 end if;
5584 -- Binary operator
5586 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
5587 if Nkind (N) in N_Op_Shift then
5588 Error_Msg_N
5589 ("\shift functions are never static (RM 4.9(6,18))", N);
5591 else
5592 Why_Not_Static (Left_Opnd (N));
5593 Why_Not_Static (Right_Opnd (N));
5594 end if;
5596 -- Unary operator
5598 when N_Unary_Op =>
5599 Why_Not_Static (Right_Opnd (N));
5601 -- Attribute reference
5603 when N_Attribute_Reference =>
5604 Why_Not_Static_List (Expressions (N));
5606 E := Etype (Prefix (N));
5608 if E = Standard_Void_Type then
5609 return;
5610 end if;
5612 -- Special case non-scalar'Size since this is a common error
5614 if Attribute_Name (N) = Name_Size then
5615 Error_Msg_N
5616 ("\size attribute is only static for static scalar type "
5617 & "(RM 4.9(7,8))", N);
5619 -- Flag array cases
5621 elsif Is_Array_Type (E) then
5622 if Attribute_Name (N) /= Name_First
5623 and then
5624 Attribute_Name (N) /= Name_Last
5625 and then
5626 Attribute_Name (N) /= Name_Length
5627 then
5628 Error_Msg_N
5629 ("\static array attribute must be Length, First, or Last "
5630 & "(RM 4.9(8))", N);
5632 -- Since we know the expression is not-static (we already
5633 -- tested for this, must mean array is not static).
5635 else
5636 Error_Msg_N
5637 ("\prefix is non-static array (RM 4.9(8))", Prefix (N));
5638 end if;
5640 return;
5642 -- Special case generic types, since again this is a common source
5643 -- of confusion.
5645 elsif Is_Generic_Actual_Type (E)
5646 or else
5647 Is_Generic_Type (E)
5648 then
5649 Error_Msg_N
5650 ("\attribute of generic type is never static "
5651 & "(RM 4.9(7,8))", N);
5653 elsif Is_Static_Subtype (E) then
5654 null;
5656 elsif Is_Scalar_Type (E) then
5657 Error_Msg_N
5658 ("\prefix type for attribute is not static scalar subtype "
5659 & "(RM 4.9(7))", N);
5661 else
5662 Error_Msg_N
5663 ("\static attribute must apply to array/scalar type "
5664 & "(RM 4.9(7,8))", N);
5665 end if;
5667 -- String literal
5669 when N_String_Literal =>
5670 Error_Msg_N
5671 ("\subtype of string literal is non-static (RM 4.9(4))", N);
5673 -- Explicit dereference
5675 when N_Explicit_Dereference =>
5676 Error_Msg_N
5677 ("\explicit dereference is never static (RM 4.9)", N);
5679 -- Function call
5681 when N_Function_Call =>
5682 Why_Not_Static_List (Parameter_Associations (N));
5684 -- Complain about non-static function call unless we have Bignum
5685 -- which means that the underlying expression is really some
5686 -- scalar arithmetic operation.
5688 if not Is_RTE (Typ, RE_Bignum) then
5689 Error_Msg_N ("\non-static function call (RM 4.9(6,18))", N);
5690 end if;
5692 -- Parameter assocation (test actual parameter)
5694 when N_Parameter_Association =>
5695 Why_Not_Static (Explicit_Actual_Parameter (N));
5697 -- Indexed component
5699 when N_Indexed_Component =>
5700 Error_Msg_N ("\indexed component is never static (RM 4.9)", N);
5702 -- Procedure call
5704 when N_Procedure_Call_Statement =>
5705 Error_Msg_N ("\procedure call is never static (RM 4.9)", N);
5707 -- Qualified expression (test expression)
5709 when N_Qualified_Expression =>
5710 Why_Not_Static (Expression (N));
5712 -- Aggregate
5714 when N_Aggregate | N_Extension_Aggregate =>
5715 Error_Msg_N ("\an aggregate is never static (RM 4.9)", N);
5717 -- Range
5719 when N_Range =>
5720 Why_Not_Static (Low_Bound (N));
5721 Why_Not_Static (High_Bound (N));
5723 -- Range constraint, test range expression
5725 when N_Range_Constraint =>
5726 Why_Not_Static (Range_Expression (N));
5728 -- Subtype indication, test constraint
5730 when N_Subtype_Indication =>
5731 Why_Not_Static (Constraint (N));
5733 -- Selected component
5735 when N_Selected_Component =>
5736 Error_Msg_N ("\selected component is never static (RM 4.9)", N);
5738 -- Slice
5740 when N_Slice =>
5741 Error_Msg_N ("\slice is never static (RM 4.9)", N);
5743 when N_Type_Conversion =>
5744 Why_Not_Static (Expression (N));
5746 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
5747 or else not Is_Static_Subtype (Entity (Subtype_Mark (N)))
5748 then
5749 Error_Msg_N
5750 ("\static conversion requires static scalar subtype result "
5751 & "(RM 4.9(9))", N);
5752 end if;
5754 -- Unchecked type conversion
5756 when N_Unchecked_Type_Conversion =>
5757 Error_Msg_N
5758 ("\unchecked type conversion is never static (RM 4.9)", N);
5760 -- All other cases, no reason to give
5762 when others =>
5763 null;
5765 end case;
5766 end Why_Not_Static;
5768 end Sem_Eval;