Delete changes meant for a private branch.
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_common.h
blob87b8f02b5b730158f61569fb5d9b8dfceb898ec5
1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between run-time libraries of sanitizers.
11 // It declares common functions and classes that are used in both runtimes.
12 // Implementation of some functions are provided in sanitizer_common, while
13 // others must be defined by run-time library itself.
14 //===----------------------------------------------------------------------===//
15 #ifndef SANITIZER_COMMON_H
16 #define SANITIZER_COMMON_H
18 #include "sanitizer_flags.h"
19 #include "sanitizer_interface_internal.h"
20 #include "sanitizer_internal_defs.h"
21 #include "sanitizer_libc.h"
22 #include "sanitizer_list.h"
23 #include "sanitizer_mutex.h"
25 #if defined(_MSC_VER) && !defined(__clang__)
26 extern "C" void _ReadWriteBarrier();
27 #pragma intrinsic(_ReadWriteBarrier)
28 #endif
30 namespace __sanitizer {
32 struct AddressInfo;
33 struct BufferedStackTrace;
34 struct SignalContext;
35 struct StackTrace;
37 // Constants.
38 const uptr kWordSize = SANITIZER_WORDSIZE / 8;
39 const uptr kWordSizeInBits = 8 * kWordSize;
41 const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE;
43 const uptr kMaxPathLength = 4096;
45 const uptr kMaxThreadStackSize = 1 << 30; // 1Gb
47 static const uptr kErrorMessageBufferSize = 1 << 16;
49 // Denotes fake PC values that come from JIT/JAVA/etc.
50 // For such PC values __tsan_symbolize_external_ex() will be called.
51 const u64 kExternalPCBit = 1ULL << 60;
53 extern const char *SanitizerToolName; // Can be changed by the tool.
55 extern atomic_uint32_t current_verbosity;
56 INLINE void SetVerbosity(int verbosity) {
57 atomic_store(&current_verbosity, verbosity, memory_order_relaxed);
59 INLINE int Verbosity() {
60 return atomic_load(&current_verbosity, memory_order_relaxed);
63 #if SANITIZER_ANDROID
64 INLINE uptr GetPageSize() {
65 // Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array.
66 return 4096;
68 INLINE uptr GetPageSizeCached() {
69 return 4096;
71 #else
72 uptr GetPageSize();
73 extern uptr PageSizeCached;
74 INLINE uptr GetPageSizeCached() {
75 if (!PageSizeCached)
76 PageSizeCached = GetPageSize();
77 return PageSizeCached;
79 #endif
80 uptr GetMmapGranularity();
81 uptr GetMaxVirtualAddress();
82 uptr GetMaxUserVirtualAddress();
83 // Threads
84 tid_t GetTid();
85 int TgKill(pid_t pid, tid_t tid, int sig);
86 uptr GetThreadSelf();
87 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
88 uptr *stack_bottom);
89 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
90 uptr *tls_addr, uptr *tls_size);
92 // Memory management
93 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
94 INLINE void *MmapOrDieQuietly(uptr size, const char *mem_type) {
95 return MmapOrDie(size, mem_type, /*raw_report*/ true);
97 void UnmapOrDie(void *addr, uptr size);
98 // Behaves just like MmapOrDie, but tolerates out of memory condition, in that
99 // case returns nullptr.
100 void *MmapOrDieOnFatalError(uptr size, const char *mem_type);
101 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr)
102 WARN_UNUSED_RESULT;
103 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size,
104 const char *name = nullptr) WARN_UNUSED_RESULT;
105 void *MmapNoReserveOrDie(uptr size, const char *mem_type);
106 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
107 // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
108 // that case returns nullptr.
109 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size,
110 const char *name = nullptr);
111 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
112 void *MmapNoAccess(uptr size);
113 // Map aligned chunk of address space; size and alignment are powers of two.
114 // Dies on all but out of memory errors, in the latter case returns nullptr.
115 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
116 const char *mem_type);
117 // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an
118 // unaccessible memory.
119 bool MprotectNoAccess(uptr addr, uptr size);
120 bool MprotectReadOnly(uptr addr, uptr size);
122 void MprotectMallocZones(void *addr, int prot);
124 // Find an available address space.
125 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
126 uptr *largest_gap_found, uptr *max_occupied_addr);
128 // Used to check if we can map shadow memory to a fixed location.
129 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
130 // Releases memory pages entirely within the [beg, end] address range. Noop if
131 // the provided range does not contain at least one entire page.
132 void ReleaseMemoryPagesToOS(uptr beg, uptr end);
133 void IncreaseTotalMmap(uptr size);
134 void DecreaseTotalMmap(uptr size);
135 uptr GetRSS();
136 void SetShadowRegionHugePageMode(uptr addr, uptr length);
137 bool DontDumpShadowMemory(uptr addr, uptr length);
138 // Check if the built VMA size matches the runtime one.
139 void CheckVMASize();
140 void RunMallocHooks(const void *ptr, uptr size);
141 void RunFreeHooks(const void *ptr);
143 class ReservedAddressRange {
144 public:
145 uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0);
146 uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr);
147 uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
148 void Unmap(uptr addr, uptr size);
149 void *base() const { return base_; }
150 uptr size() const { return size_; }
152 private:
153 void* base_;
154 uptr size_;
155 const char* name_;
156 uptr os_handle_;
159 typedef void (*fill_profile_f)(uptr start, uptr rss, bool file,
160 /*out*/uptr *stats, uptr stats_size);
162 // Parse the contents of /proc/self/smaps and generate a memory profile.
163 // |cb| is a tool-specific callback that fills the |stats| array containing
164 // |stats_size| elements.
165 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size);
167 // Simple low-level (mmap-based) allocator for internal use. Doesn't have
168 // constructor, so all instances of LowLevelAllocator should be
169 // linker initialized.
170 class LowLevelAllocator {
171 public:
172 // Requires an external lock.
173 void *Allocate(uptr size);
174 private:
175 char *allocated_end_;
176 char *allocated_current_;
178 // Set the min alignment of LowLevelAllocator to at least alignment.
179 void SetLowLevelAllocateMinAlignment(uptr alignment);
180 typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
181 // Allows to register tool-specific callbacks for LowLevelAllocator.
182 // Passing NULL removes the callback.
183 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);
185 // IO
186 void CatastrophicErrorWrite(const char *buffer, uptr length);
187 void RawWrite(const char *buffer);
188 bool ColorizeReports();
189 void RemoveANSIEscapeSequencesFromString(char *buffer);
190 void Printf(const char *format, ...);
191 void Report(const char *format, ...);
192 void SetPrintfAndReportCallback(void (*callback)(const char *));
193 #define VReport(level, ...) \
194 do { \
195 if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
196 } while (0)
197 #define VPrintf(level, ...) \
198 do { \
199 if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
200 } while (0)
202 // Lock sanitizer error reporting and protects against nested errors.
203 class ScopedErrorReportLock {
204 public:
205 ScopedErrorReportLock();
206 ~ScopedErrorReportLock();
208 static void CheckLocked();
211 extern uptr stoptheworld_tracer_pid;
212 extern uptr stoptheworld_tracer_ppid;
214 bool IsAccessibleMemoryRange(uptr beg, uptr size);
216 // Error report formatting.
217 const char *StripPathPrefix(const char *filepath,
218 const char *strip_file_prefix);
219 // Strip the directories from the module name.
220 const char *StripModuleName(const char *module);
222 // OS
223 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
224 uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
225 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
226 const char *GetProcessName();
227 void UpdateProcessName();
228 void CacheBinaryName();
229 void DisableCoreDumperIfNecessary();
230 void DumpProcessMap();
231 void PrintModuleMap();
232 const char *GetEnv(const char *name);
233 bool SetEnv(const char *name, const char *value);
235 u32 GetUid();
236 void ReExec();
237 void CheckASLR();
238 void CheckMPROTECT();
239 char **GetArgv();
240 char **GetEnviron();
241 void PrintCmdline();
242 bool StackSizeIsUnlimited();
243 void SetStackSizeLimitInBytes(uptr limit);
244 bool AddressSpaceIsUnlimited();
245 void SetAddressSpaceUnlimited();
246 void AdjustStackSize(void *attr);
247 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args);
248 void SetSandboxingCallback(void (*f)());
250 void InitializeCoverage(bool enabled, const char *coverage_dir);
252 void InitTlsSize();
253 uptr GetTlsSize();
255 // Other
256 void SleepForSeconds(int seconds);
257 void SleepForMillis(int millis);
258 u64 NanoTime();
259 u64 MonotonicNanoTime();
260 int Atexit(void (*function)(void));
261 bool TemplateMatch(const char *templ, const char *str);
263 // Exit
264 void NORETURN Abort();
265 void NORETURN Die();
266 void NORETURN
267 CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
268 void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
269 const char *mmap_type, error_t err,
270 bool raw_report = false);
272 // Specific tools may override behavior of "Die" and "CheckFailed" functions
273 // to do tool-specific job.
274 typedef void (*DieCallbackType)(void);
276 // It's possible to add several callbacks that would be run when "Die" is
277 // called. The callbacks will be run in the opposite order. The tools are
278 // strongly recommended to setup all callbacks during initialization, when there
279 // is only a single thread.
280 bool AddDieCallback(DieCallbackType callback);
281 bool RemoveDieCallback(DieCallbackType callback);
283 void SetUserDieCallback(DieCallbackType callback);
285 typedef void (*CheckFailedCallbackType)(const char *, int, const char *,
286 u64, u64);
287 void SetCheckFailedCallback(CheckFailedCallbackType callback);
289 // Callback will be called if soft_rss_limit_mb is given and the limit is
290 // exceeded (exceeded==true) or if rss went down below the limit
291 // (exceeded==false).
292 // The callback should be registered once at the tool init time.
293 void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded));
295 // Functions related to signal handling.
296 typedef void (*SignalHandlerType)(int, void *, void *);
297 HandleSignalMode GetHandleSignalMode(int signum);
298 void InstallDeadlySignalHandlers(SignalHandlerType handler);
300 // Signal reporting.
301 // Each sanitizer uses slightly different implementation of stack unwinding.
302 typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig,
303 const void *callback_context,
304 BufferedStackTrace *stack);
305 // Print deadly signal report and die.
306 void HandleDeadlySignal(void *siginfo, void *context, u32 tid,
307 UnwindSignalStackCallbackType unwind,
308 const void *unwind_context);
310 // Part of HandleDeadlySignal, exposed for asan.
311 void StartReportDeadlySignal();
312 // Part of HandleDeadlySignal, exposed for asan.
313 void ReportDeadlySignal(const SignalContext &sig, u32 tid,
314 UnwindSignalStackCallbackType unwind,
315 const void *unwind_context);
317 // Alternative signal stack (POSIX-only).
318 void SetAlternateSignalStack();
319 void UnsetAlternateSignalStack();
321 // We don't want a summary too long.
322 const int kMaxSummaryLength = 1024;
323 // Construct a one-line string:
324 // SUMMARY: SanitizerToolName: error_message
325 // and pass it to __sanitizer_report_error_summary.
326 // If alt_tool_name is provided, it's used in place of SanitizerToolName.
327 void ReportErrorSummary(const char *error_message,
328 const char *alt_tool_name = nullptr);
329 // Same as above, but construct error_message as:
330 // error_type file:line[:column][ function]
331 void ReportErrorSummary(const char *error_type, const AddressInfo &info,
332 const char *alt_tool_name = nullptr);
333 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
334 void ReportErrorSummary(const char *error_type, const StackTrace *trace,
335 const char *alt_tool_name = nullptr);
337 void ReportMmapWriteExec(int prot);
339 // Math
340 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
341 extern "C" {
342 unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
343 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
344 #if defined(_WIN64)
345 unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask);
346 unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);
347 #endif
349 #endif
351 INLINE uptr MostSignificantSetBitIndex(uptr x) {
352 CHECK_NE(x, 0U);
353 unsigned long up;
354 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
355 # ifdef _WIN64
356 up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
357 # else
358 up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
359 # endif
360 #elif defined(_WIN64)
361 _BitScanReverse64(&up, x);
362 #else
363 _BitScanReverse(&up, x);
364 #endif
365 return up;
368 INLINE uptr LeastSignificantSetBitIndex(uptr x) {
369 CHECK_NE(x, 0U);
370 unsigned long up;
371 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
372 # ifdef _WIN64
373 up = __builtin_ctzll(x);
374 # else
375 up = __builtin_ctzl(x);
376 # endif
377 #elif defined(_WIN64)
378 _BitScanForward64(&up, x);
379 #else
380 _BitScanForward(&up, x);
381 #endif
382 return up;
385 INLINE bool IsPowerOfTwo(uptr x) {
386 return (x & (x - 1)) == 0;
389 INLINE uptr RoundUpToPowerOfTwo(uptr size) {
390 CHECK(size);
391 if (IsPowerOfTwo(size)) return size;
393 uptr up = MostSignificantSetBitIndex(size);
394 CHECK_LT(size, (1ULL << (up + 1)));
395 CHECK_GT(size, (1ULL << up));
396 return 1ULL << (up + 1);
399 INLINE uptr RoundUpTo(uptr size, uptr boundary) {
400 RAW_CHECK(IsPowerOfTwo(boundary));
401 return (size + boundary - 1) & ~(boundary - 1);
404 INLINE uptr RoundDownTo(uptr x, uptr boundary) {
405 return x & ~(boundary - 1);
408 INLINE bool IsAligned(uptr a, uptr alignment) {
409 return (a & (alignment - 1)) == 0;
412 INLINE uptr Log2(uptr x) {
413 CHECK(IsPowerOfTwo(x));
414 return LeastSignificantSetBitIndex(x);
417 // Don't use std::min, std::max or std::swap, to minimize dependency
418 // on libstdc++.
419 template<class T> T Min(T a, T b) { return a < b ? a : b; }
420 template<class T> T Max(T a, T b) { return a > b ? a : b; }
421 template<class T> void Swap(T& a, T& b) {
422 T tmp = a;
423 a = b;
424 b = tmp;
427 // Char handling
428 INLINE bool IsSpace(int c) {
429 return (c == ' ') || (c == '\n') || (c == '\t') ||
430 (c == '\f') || (c == '\r') || (c == '\v');
432 INLINE bool IsDigit(int c) {
433 return (c >= '0') && (c <= '9');
435 INLINE int ToLower(int c) {
436 return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
439 // A low-level vector based on mmap. May incur a significant memory overhead for
440 // small vectors.
441 // WARNING: The current implementation supports only POD types.
442 template<typename T>
443 class InternalMmapVectorNoCtor {
444 public:
445 void Initialize(uptr initial_capacity) {
446 capacity_bytes_ = 0;
447 size_ = 0;
448 data_ = 0;
449 reserve(initial_capacity);
451 void Destroy() { UnmapOrDie(data_, capacity_bytes_); }
452 T &operator[](uptr i) {
453 CHECK_LT(i, size_);
454 return data_[i];
456 const T &operator[](uptr i) const {
457 CHECK_LT(i, size_);
458 return data_[i];
460 void push_back(const T &element) {
461 CHECK_LE(size_, capacity());
462 if (size_ == capacity()) {
463 uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
464 Realloc(new_capacity);
466 internal_memcpy(&data_[size_++], &element, sizeof(T));
468 T &back() {
469 CHECK_GT(size_, 0);
470 return data_[size_ - 1];
472 void pop_back() {
473 CHECK_GT(size_, 0);
474 size_--;
476 uptr size() const {
477 return size_;
479 const T *data() const {
480 return data_;
482 T *data() {
483 return data_;
485 uptr capacity() const { return capacity_bytes_ / sizeof(T); }
486 void reserve(uptr new_size) {
487 // Never downsize internal buffer.
488 if (new_size > capacity())
489 Realloc(new_size);
491 void resize(uptr new_size) {
492 if (new_size > size_) {
493 reserve(new_size);
494 internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_));
496 size_ = new_size;
499 void clear() { size_ = 0; }
500 bool empty() const { return size() == 0; }
502 const T *begin() const {
503 return data();
505 T *begin() {
506 return data();
508 const T *end() const {
509 return data() + size();
511 T *end() {
512 return data() + size();
515 void swap(InternalMmapVectorNoCtor &other) {
516 Swap(data_, other.data_);
517 Swap(capacity_bytes_, other.capacity_bytes_);
518 Swap(size_, other.size_);
521 private:
522 void Realloc(uptr new_capacity) {
523 CHECK_GT(new_capacity, 0);
524 CHECK_LE(size_, new_capacity);
525 uptr new_capacity_bytes =
526 RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached());
527 T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector");
528 internal_memcpy(new_data, data_, size_ * sizeof(T));
529 UnmapOrDie(data_, capacity_bytes_);
530 data_ = new_data;
531 capacity_bytes_ = new_capacity_bytes;
534 T *data_;
535 uptr capacity_bytes_;
536 uptr size_;
539 template <typename T>
540 bool operator==(const InternalMmapVectorNoCtor<T> &lhs,
541 const InternalMmapVectorNoCtor<T> &rhs) {
542 if (lhs.size() != rhs.size()) return false;
543 return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0;
546 template <typename T>
547 bool operator!=(const InternalMmapVectorNoCtor<T> &lhs,
548 const InternalMmapVectorNoCtor<T> &rhs) {
549 return !(lhs == rhs);
552 template<typename T>
553 class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
554 public:
555 InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(1); }
556 explicit InternalMmapVector(uptr cnt) {
557 InternalMmapVectorNoCtor<T>::Initialize(cnt);
558 this->resize(cnt);
560 ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
561 // Disallow copies and moves.
562 InternalMmapVector(const InternalMmapVector &) = delete;
563 InternalMmapVector &operator=(const InternalMmapVector &) = delete;
564 InternalMmapVector(InternalMmapVector &&) = delete;
565 InternalMmapVector &operator=(InternalMmapVector &&) = delete;
568 class InternalScopedString : public InternalMmapVector<char> {
569 public:
570 explicit InternalScopedString(uptr max_length)
571 : InternalMmapVector<char>(max_length), length_(0) {
572 (*this)[0] = '\0';
574 uptr length() { return length_; }
575 void clear() {
576 (*this)[0] = '\0';
577 length_ = 0;
579 void append(const char *format, ...);
581 private:
582 uptr length_;
585 template <class T>
586 struct CompareLess {
587 bool operator()(const T &a, const T &b) const { return a < b; }
590 // HeapSort for arrays and InternalMmapVector.
591 template <class T, class Compare = CompareLess<T>>
592 void Sort(T *v, uptr size, Compare comp = {}) {
593 if (size < 2)
594 return;
595 // Stage 1: insert elements to the heap.
596 for (uptr i = 1; i < size; i++) {
597 uptr j, p;
598 for (j = i; j > 0; j = p) {
599 p = (j - 1) / 2;
600 if (comp(v[p], v[j]))
601 Swap(v[j], v[p]);
602 else
603 break;
606 // Stage 2: swap largest element with the last one,
607 // and sink the new top.
608 for (uptr i = size - 1; i > 0; i--) {
609 Swap(v[0], v[i]);
610 uptr j, max_ind;
611 for (j = 0; j < i; j = max_ind) {
612 uptr left = 2 * j + 1;
613 uptr right = 2 * j + 2;
614 max_ind = j;
615 if (left < i && comp(v[max_ind], v[left]))
616 max_ind = left;
617 if (right < i && comp(v[max_ind], v[right]))
618 max_ind = right;
619 if (max_ind != j)
620 Swap(v[j], v[max_ind]);
621 else
622 break;
627 // Works like std::lower_bound: finds the first element that is not less
628 // than the val.
629 template <class Container, class Value, class Compare>
630 uptr InternalLowerBound(const Container &v, uptr first, uptr last,
631 const Value &val, Compare comp) {
632 while (last > first) {
633 uptr mid = (first + last) / 2;
634 if (comp(v[mid], val))
635 first = mid + 1;
636 else
637 last = mid;
639 return first;
642 enum ModuleArch {
643 kModuleArchUnknown,
644 kModuleArchI386,
645 kModuleArchX86_64,
646 kModuleArchX86_64H,
647 kModuleArchARMV6,
648 kModuleArchARMV7,
649 kModuleArchARMV7S,
650 kModuleArchARMV7K,
651 kModuleArchARM64
654 // Opens the file 'file_name" and reads up to 'max_len' bytes.
655 // The resulting buffer is mmaped and stored in '*buff'.
656 // Returns true if file was successfully opened and read.
657 bool ReadFileToVector(const char *file_name,
658 InternalMmapVectorNoCtor<char> *buff,
659 uptr max_len = 1 << 26, error_t *errno_p = nullptr);
661 // Opens the file 'file_name" and reads up to 'max_len' bytes.
662 // This function is less I/O efficient than ReadFileToVector as it may reread
663 // file multiple times to avoid mmap during read attempts. It's used to read
664 // procmap, so short reads with mmap in between can produce inconsistent result.
665 // The resulting buffer is mmaped and stored in '*buff'.
666 // The size of the mmaped region is stored in '*buff_size'.
667 // The total number of read bytes is stored in '*read_len'.
668 // Returns true if file was successfully opened and read.
669 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
670 uptr *read_len, uptr max_len = 1 << 26,
671 error_t *errno_p = nullptr);
673 // When adding a new architecture, don't forget to also update
674 // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp.
675 inline const char *ModuleArchToString(ModuleArch arch) {
676 switch (arch) {
677 case kModuleArchUnknown:
678 return "";
679 case kModuleArchI386:
680 return "i386";
681 case kModuleArchX86_64:
682 return "x86_64";
683 case kModuleArchX86_64H:
684 return "x86_64h";
685 case kModuleArchARMV6:
686 return "armv6";
687 case kModuleArchARMV7:
688 return "armv7";
689 case kModuleArchARMV7S:
690 return "armv7s";
691 case kModuleArchARMV7K:
692 return "armv7k";
693 case kModuleArchARM64:
694 return "arm64";
696 CHECK(0 && "Invalid module arch");
697 return "";
700 const uptr kModuleUUIDSize = 16;
701 const uptr kMaxSegName = 16;
703 // Represents a binary loaded into virtual memory (e.g. this can be an
704 // executable or a shared object).
705 class LoadedModule {
706 public:
707 LoadedModule()
708 : full_name_(nullptr),
709 base_address_(0),
710 max_executable_address_(0),
711 arch_(kModuleArchUnknown),
712 instrumented_(false) {
713 internal_memset(uuid_, 0, kModuleUUIDSize);
714 ranges_.clear();
716 void set(const char *module_name, uptr base_address);
717 void set(const char *module_name, uptr base_address, ModuleArch arch,
718 u8 uuid[kModuleUUIDSize], bool instrumented);
719 void clear();
720 void addAddressRange(uptr beg, uptr end, bool executable, bool writable,
721 const char *name = nullptr);
722 bool containsAddress(uptr address) const;
724 const char *full_name() const { return full_name_; }
725 uptr base_address() const { return base_address_; }
726 uptr max_executable_address() const { return max_executable_address_; }
727 ModuleArch arch() const { return arch_; }
728 const u8 *uuid() const { return uuid_; }
729 bool instrumented() const { return instrumented_; }
731 struct AddressRange {
732 AddressRange *next;
733 uptr beg;
734 uptr end;
735 bool executable;
736 bool writable;
737 char name[kMaxSegName];
739 AddressRange(uptr beg, uptr end, bool executable, bool writable,
740 const char *name)
741 : next(nullptr),
742 beg(beg),
743 end(end),
744 executable(executable),
745 writable(writable) {
746 internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name));
750 const IntrusiveList<AddressRange> &ranges() const { return ranges_; }
752 private:
753 char *full_name_; // Owned.
754 uptr base_address_;
755 uptr max_executable_address_;
756 ModuleArch arch_;
757 u8 uuid_[kModuleUUIDSize];
758 bool instrumented_;
759 IntrusiveList<AddressRange> ranges_;
762 // List of LoadedModules. OS-dependent implementation is responsible for
763 // filling this information.
764 class ListOfModules {
765 public:
766 ListOfModules() : initialized(false) {}
767 ~ListOfModules() { clear(); }
768 void init();
769 void fallbackInit(); // Uses fallback init if available, otherwise clears
770 const LoadedModule *begin() const { return modules_.begin(); }
771 LoadedModule *begin() { return modules_.begin(); }
772 const LoadedModule *end() const { return modules_.end(); }
773 LoadedModule *end() { return modules_.end(); }
774 uptr size() const { return modules_.size(); }
775 const LoadedModule &operator[](uptr i) const {
776 CHECK_LT(i, modules_.size());
777 return modules_[i];
780 private:
781 void clear() {
782 for (auto &module : modules_) module.clear();
783 modules_.clear();
785 void clearOrInit() {
786 initialized ? clear() : modules_.Initialize(kInitialCapacity);
787 initialized = true;
790 InternalMmapVectorNoCtor<LoadedModule> modules_;
791 // We rarely have more than 16K loaded modules.
792 static const uptr kInitialCapacity = 1 << 14;
793 bool initialized;
796 // Callback type for iterating over a set of memory ranges.
797 typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);
799 enum AndroidApiLevel {
800 ANDROID_NOT_ANDROID = 0,
801 ANDROID_KITKAT = 19,
802 ANDROID_LOLLIPOP_MR1 = 22,
803 ANDROID_POST_LOLLIPOP = 23
806 void WriteToSyslog(const char *buffer);
808 #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__)
809 #define SANITIZER_WIN_TRACE 1
810 #else
811 #define SANITIZER_WIN_TRACE 0
812 #endif
814 #if SANITIZER_MAC || SANITIZER_WIN_TRACE
815 void LogFullErrorReport(const char *buffer);
816 #else
817 INLINE void LogFullErrorReport(const char *buffer) {}
818 #endif
820 #if SANITIZER_LINUX || SANITIZER_MAC
821 void WriteOneLineToSyslog(const char *s);
822 void LogMessageOnPrintf(const char *str);
823 #else
824 INLINE void WriteOneLineToSyslog(const char *s) {}
825 INLINE void LogMessageOnPrintf(const char *str) {}
826 #endif
828 #if SANITIZER_LINUX || SANITIZER_WIN_TRACE
829 // Initialize Android logging. Any writes before this are silently lost.
830 void AndroidLogInit();
831 void SetAbortMessage(const char *);
832 #else
833 INLINE void AndroidLogInit() {}
834 // FIXME: MacOS implementation could use CRSetCrashLogMessage.
835 INLINE void SetAbortMessage(const char *) {}
836 #endif
838 #if SANITIZER_ANDROID
839 void SanitizerInitializeUnwinder();
840 AndroidApiLevel AndroidGetApiLevel();
841 #else
842 INLINE void AndroidLogWrite(const char *buffer_unused) {}
843 INLINE void SanitizerInitializeUnwinder() {}
844 INLINE AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
845 #endif
847 INLINE uptr GetPthreadDestructorIterations() {
848 #if SANITIZER_ANDROID
849 return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
850 #elif SANITIZER_POSIX
851 return 4;
852 #else
853 // Unused on Windows.
854 return 0;
855 #endif
858 void *internal_start_thread(void(*func)(void*), void *arg);
859 void internal_join_thread(void *th);
860 void MaybeStartBackgroudThread();
862 // Make the compiler think that something is going on there.
863 // Use this inside a loop that looks like memset/memcpy/etc to prevent the
864 // compiler from recognising it and turning it into an actual call to
865 // memset/memcpy/etc.
866 static inline void SanitizerBreakOptimization(void *arg) {
867 #if defined(_MSC_VER) && !defined(__clang__)
868 _ReadWriteBarrier();
869 #else
870 __asm__ __volatile__("" : : "r" (arg) : "memory");
871 #endif
874 struct SignalContext {
875 void *siginfo;
876 void *context;
877 uptr addr;
878 uptr pc;
879 uptr sp;
880 uptr bp;
881 bool is_memory_access;
882 enum WriteFlag { UNKNOWN, READ, WRITE } write_flag;
884 // In some cases the kernel cannot provide the true faulting address; `addr`
885 // will be zero then. This field allows to distinguish between these cases
886 // and dereferences of null.
887 bool is_true_faulting_addr;
889 // VS2013 doesn't implement unrestricted unions, so we need a trivial default
890 // constructor
891 SignalContext() = default;
893 // Creates signal context in a platform-specific manner.
894 // SignalContext is going to keep pointers to siginfo and context without
895 // owning them.
896 SignalContext(void *siginfo, void *context)
897 : siginfo(siginfo),
898 context(context),
899 addr(GetAddress()),
900 is_memory_access(IsMemoryAccess()),
901 write_flag(GetWriteFlag()),
902 is_true_faulting_addr(IsTrueFaultingAddress()) {
903 InitPcSpBp();
906 static void DumpAllRegisters(void *context);
908 // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION.
909 int GetType() const;
911 // String description of the signal.
912 const char *Describe() const;
914 // Returns true if signal is stack overflow.
915 bool IsStackOverflow() const;
917 private:
918 // Platform specific initialization.
919 void InitPcSpBp();
920 uptr GetAddress() const;
921 WriteFlag GetWriteFlag() const;
922 bool IsMemoryAccess() const;
923 bool IsTrueFaultingAddress() const;
926 void InitializePlatformEarly();
927 void MaybeReexec();
929 template <typename Fn>
930 class RunOnDestruction {
931 public:
932 explicit RunOnDestruction(Fn fn) : fn_(fn) {}
933 ~RunOnDestruction() { fn_(); }
935 private:
936 Fn fn_;
939 // A simple scope guard. Usage:
940 // auto cleanup = at_scope_exit([]{ do_cleanup; });
941 template <typename Fn>
942 RunOnDestruction<Fn> at_scope_exit(Fn fn) {
943 return RunOnDestruction<Fn>(fn);
946 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine
947 // if a process uses virtual memory over 4TB (as many sanitizers like
948 // to do). This function will abort the process if running on a kernel
949 // that looks vulnerable.
950 #if SANITIZER_LINUX && SANITIZER_S390_64
951 void AvoidCVE_2016_2143();
952 #else
953 INLINE void AvoidCVE_2016_2143() {}
954 #endif
956 struct StackDepotStats {
957 uptr n_uniq_ids;
958 uptr allocated;
961 // The default value for allocator_release_to_os_interval_ms common flag to
962 // indicate that sanitizer allocator should not attempt to release memory to OS.
963 const s32 kReleaseToOSIntervalNever = -1;
965 void CheckNoDeepBind(const char *filename, int flag);
967 // Returns the requested amount of random data (up to 256 bytes) that can then
968 // be used to seed a PRNG. Defaults to blocking like the underlying syscall.
969 bool GetRandom(void *buffer, uptr length, bool blocking = true);
971 // Returns the number of logical processors on the system.
972 u32 GetNumberOfCPUs();
973 extern u32 NumberOfCPUsCached;
974 INLINE u32 GetNumberOfCPUsCached() {
975 if (!NumberOfCPUsCached)
976 NumberOfCPUsCached = GetNumberOfCPUs();
977 return NumberOfCPUsCached;
980 } // namespace __sanitizer
982 inline void *operator new(__sanitizer::operator_new_size_type size,
983 __sanitizer::LowLevelAllocator &alloc) { // NOLINT
984 return alloc.Allocate(size);
987 #endif // SANITIZER_COMMON_H