Fix memory leaks in tree-vect-data-refs.c
[official-gcc.git] / gcc / ada / sem_ch5.adb
blobb4e82783b2b8cb808c96909cb588e2b20b695f29
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Ch7; use Exp_Ch7;
34 with Exp_Util; use Exp_Util;
35 with Freeze; use Freeze;
36 with Ghost; use Ghost;
37 with Lib; use Lib;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Rtsfind; use Rtsfind;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Case; use Sem_Case;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Elab; use Sem_Elab;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Snames; use Snames;
61 with Stand; use Stand;
62 with Sinfo; use Sinfo;
63 with Targparm; use Targparm;
64 with Tbuild; use Tbuild;
65 with Uintp; use Uintp;
67 package body Sem_Ch5 is
69 Unblocked_Exit_Count : Nat := 0;
70 -- This variable is used when processing if statements, case statements,
71 -- and block statements. It counts the number of exit points that are not
72 -- blocked by unconditional transfer instructions: for IF and CASE, these
73 -- are the branches of the conditional; for a block, they are the statement
74 -- sequence of the block, and the statement sequences of any exception
75 -- handlers that are part of the block. When processing is complete, if
76 -- this count is zero, it means that control cannot fall through the IF,
77 -- CASE or block statement. This is used for the generation of warning
78 -- messages. This variable is recursively saved on entry to processing the
79 -- construct, and restored on exit.
81 procedure Preanalyze_Range (R_Copy : Node_Id);
82 -- Determine expected type of range or domain of iteration of Ada 2012
83 -- loop by analyzing separate copy. Do the analysis and resolution of the
84 -- copy of the bound(s) with expansion disabled, to prevent the generation
85 -- of finalization actions. This prevents memory leaks when the bounds
86 -- contain calls to functions returning controlled arrays or when the
87 -- domain of iteration is a container.
89 ------------------------
90 -- Analyze_Assignment --
91 ------------------------
93 procedure Analyze_Assignment (N : Node_Id) is
94 Lhs : constant Node_Id := Name (N);
95 Rhs : constant Node_Id := Expression (N);
96 T1 : Entity_Id;
97 T2 : Entity_Id;
98 Decl : Node_Id;
100 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
101 -- N is the node for the left hand side of an assignment, and it is not
102 -- a variable. This routine issues an appropriate diagnostic.
104 procedure Kill_Lhs;
105 -- This is called to kill current value settings of a simple variable
106 -- on the left hand side. We call it if we find any error in analyzing
107 -- the assignment, and at the end of processing before setting any new
108 -- current values in place.
110 procedure Set_Assignment_Type
111 (Opnd : Node_Id;
112 Opnd_Type : in out Entity_Id);
113 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
114 -- nominal subtype. This procedure is used to deal with cases where the
115 -- nominal subtype must be replaced by the actual subtype.
117 -------------------------------
118 -- Diagnose_Non_Variable_Lhs --
119 -------------------------------
121 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
122 begin
123 -- Not worth posting another error if left hand side already flagged
124 -- as being illegal in some respect.
126 if Error_Posted (N) then
127 return;
129 -- Some special bad cases of entity names
131 elsif Is_Entity_Name (N) then
132 declare
133 Ent : constant Entity_Id := Entity (N);
135 begin
136 if Ekind (Ent) = E_In_Parameter then
137 Error_Msg_N
138 ("assignment to IN mode parameter not allowed", N);
139 return;
141 -- Renamings of protected private components are turned into
142 -- constants when compiling a protected function. In the case
143 -- of single protected types, the private component appears
144 -- directly.
146 elsif (Is_Prival (Ent)
147 and then
148 (Ekind (Current_Scope) = E_Function
149 or else Ekind (Enclosing_Dynamic_Scope
150 (Current_Scope)) = E_Function))
151 or else
152 (Ekind (Ent) = E_Component
153 and then Is_Protected_Type (Scope (Ent)))
154 then
155 Error_Msg_N
156 ("protected function cannot modify protected object", N);
157 return;
159 elsif Ekind (Ent) = E_Loop_Parameter then
160 Error_Msg_N ("assignment to loop parameter not allowed", N);
161 return;
162 end if;
163 end;
165 -- For indexed components, test prefix if it is in array. We do not
166 -- want to recurse for cases where the prefix is a pointer, since we
167 -- may get a message confusing the pointer and what it references.
169 elsif Nkind (N) = N_Indexed_Component
170 and then Is_Array_Type (Etype (Prefix (N)))
171 then
172 Diagnose_Non_Variable_Lhs (Prefix (N));
173 return;
175 -- Another special case for assignment to discriminant
177 elsif Nkind (N) = N_Selected_Component then
178 if Present (Entity (Selector_Name (N)))
179 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
180 then
181 Error_Msg_N ("assignment to discriminant not allowed", N);
182 return;
184 -- For selection from record, diagnose prefix, but note that again
185 -- we only do this for a record, not e.g. for a pointer.
187 elsif Is_Record_Type (Etype (Prefix (N))) then
188 Diagnose_Non_Variable_Lhs (Prefix (N));
189 return;
190 end if;
191 end if;
193 -- If we fall through, we have no special message to issue
195 Error_Msg_N ("left hand side of assignment must be a variable", N);
196 end Diagnose_Non_Variable_Lhs;
198 --------------
199 -- Kill_Lhs --
200 --------------
202 procedure Kill_Lhs is
203 begin
204 if Is_Entity_Name (Lhs) then
205 declare
206 Ent : constant Entity_Id := Entity (Lhs);
207 begin
208 if Present (Ent) then
209 Kill_Current_Values (Ent);
210 end if;
211 end;
212 end if;
213 end Kill_Lhs;
215 -------------------------
216 -- Set_Assignment_Type --
217 -------------------------
219 procedure Set_Assignment_Type
220 (Opnd : Node_Id;
221 Opnd_Type : in out Entity_Id)
223 begin
224 Require_Entity (Opnd);
226 -- If the assignment operand is an in-out or out parameter, then we
227 -- get the actual subtype (needed for the unconstrained case). If the
228 -- operand is the actual in an entry declaration, then within the
229 -- accept statement it is replaced with a local renaming, which may
230 -- also have an actual subtype.
232 if Is_Entity_Name (Opnd)
233 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
234 or else Ekind_In (Entity (Opnd),
235 E_In_Out_Parameter,
236 E_Generic_In_Out_Parameter)
237 or else
238 (Ekind (Entity (Opnd)) = E_Variable
239 and then Nkind (Parent (Entity (Opnd))) =
240 N_Object_Renaming_Declaration
241 and then Nkind (Parent (Parent (Entity (Opnd)))) =
242 N_Accept_Statement))
243 then
244 Opnd_Type := Get_Actual_Subtype (Opnd);
246 -- If assignment operand is a component reference, then we get the
247 -- actual subtype of the component for the unconstrained case.
249 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
250 and then not Is_Unchecked_Union (Opnd_Type)
251 then
252 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
254 if Present (Decl) then
255 Insert_Action (N, Decl);
256 Mark_Rewrite_Insertion (Decl);
257 Analyze (Decl);
258 Opnd_Type := Defining_Identifier (Decl);
259 Set_Etype (Opnd, Opnd_Type);
260 Freeze_Itype (Opnd_Type, N);
262 elsif Is_Constrained (Etype (Opnd)) then
263 Opnd_Type := Etype (Opnd);
264 end if;
266 -- For slice, use the constrained subtype created for the slice
268 elsif Nkind (Opnd) = N_Slice then
269 Opnd_Type := Etype (Opnd);
270 end if;
271 end Set_Assignment_Type;
273 -- Local variables
275 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
277 -- Start of processing for Analyze_Assignment
279 begin
280 Mark_Coextensions (N, Rhs);
282 -- Analyze the target of the assignment first in case the expression
283 -- contains references to Ghost entities. The checks that verify the
284 -- proper use of a Ghost entity need to know the enclosing context.
286 Analyze (Lhs);
288 -- An assignment statement is Ghost when the left hand side denotes a
289 -- Ghost entity. Set the mode now to ensure that any nodes generated
290 -- during analysis and expansion are properly marked as Ghost.
292 Set_Ghost_Mode (N);
293 Analyze (Rhs);
295 -- Ensure that we never do an assignment on a variable marked as
296 -- as Safe_To_Reevaluate.
298 pragma Assert (not Is_Entity_Name (Lhs)
299 or else Ekind (Entity (Lhs)) /= E_Variable
300 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
302 -- Start type analysis for assignment
304 T1 := Etype (Lhs);
306 -- In the most general case, both Lhs and Rhs can be overloaded, and we
307 -- must compute the intersection of the possible types on each side.
309 if Is_Overloaded (Lhs) then
310 declare
311 I : Interp_Index;
312 It : Interp;
314 begin
315 T1 := Any_Type;
316 Get_First_Interp (Lhs, I, It);
318 while Present (It.Typ) loop
320 -- An indexed component with generalized indexing is always
321 -- overloaded with the corresponding dereference. Discard the
322 -- interpretation that yields a reference type, which is not
323 -- assignable.
325 if Nkind (Lhs) = N_Indexed_Component
326 and then Present (Generalized_Indexing (Lhs))
327 and then Has_Implicit_Dereference (It.Typ)
328 then
329 null;
331 elsif Has_Compatible_Type (Rhs, It.Typ) then
332 if T1 /= Any_Type then
334 -- An explicit dereference is overloaded if the prefix
335 -- is. Try to remove the ambiguity on the prefix, the
336 -- error will be posted there if the ambiguity is real.
338 if Nkind (Lhs) = N_Explicit_Dereference then
339 declare
340 PI : Interp_Index;
341 PI1 : Interp_Index := 0;
342 PIt : Interp;
343 Found : Boolean;
345 begin
346 Found := False;
347 Get_First_Interp (Prefix (Lhs), PI, PIt);
349 while Present (PIt.Typ) loop
350 if Is_Access_Type (PIt.Typ)
351 and then Has_Compatible_Type
352 (Rhs, Designated_Type (PIt.Typ))
353 then
354 if Found then
355 PIt :=
356 Disambiguate (Prefix (Lhs),
357 PI1, PI, Any_Type);
359 if PIt = No_Interp then
360 Error_Msg_N
361 ("ambiguous left-hand side"
362 & " in assignment", Lhs);
363 exit;
364 else
365 Resolve (Prefix (Lhs), PIt.Typ);
366 end if;
368 exit;
369 else
370 Found := True;
371 PI1 := PI;
372 end if;
373 end if;
375 Get_Next_Interp (PI, PIt);
376 end loop;
377 end;
379 else
380 Error_Msg_N
381 ("ambiguous left-hand side in assignment", Lhs);
382 exit;
383 end if;
384 else
385 T1 := It.Typ;
386 end if;
387 end if;
389 Get_Next_Interp (I, It);
390 end loop;
391 end;
393 if T1 = Any_Type then
394 Error_Msg_N
395 ("no valid types for left-hand side for assignment", Lhs);
396 Kill_Lhs;
397 Ghost_Mode := Save_Ghost_Mode;
398 return;
399 end if;
400 end if;
402 -- The resulting assignment type is T1, so now we will resolve the left
403 -- hand side of the assignment using this determined type.
405 Resolve (Lhs, T1);
407 -- Cases where Lhs is not a variable
409 -- Cases where Lhs is not a variable. In an instance or an inlined body
410 -- no need for further check because assignment was legal in template.
412 if In_Inlined_Body then
413 null;
415 elsif not Is_Variable (Lhs) then
417 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
418 -- protected object.
420 declare
421 Ent : Entity_Id;
422 S : Entity_Id;
424 begin
425 if Ada_Version >= Ada_2005 then
427 -- Handle chains of renamings
429 Ent := Lhs;
430 while Nkind (Ent) in N_Has_Entity
431 and then Present (Entity (Ent))
432 and then Present (Renamed_Object (Entity (Ent)))
433 loop
434 Ent := Renamed_Object (Entity (Ent));
435 end loop;
437 if (Nkind (Ent) = N_Attribute_Reference
438 and then Attribute_Name (Ent) = Name_Priority)
440 -- Renamings of the attribute Priority applied to protected
441 -- objects have been previously expanded into calls to the
442 -- Get_Ceiling run-time subprogram.
444 or else
445 (Nkind (Ent) = N_Function_Call
446 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
447 or else
448 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
449 then
450 -- The enclosing subprogram cannot be a protected function
452 S := Current_Scope;
453 while not (Is_Subprogram (S)
454 and then Convention (S) = Convention_Protected)
455 and then S /= Standard_Standard
456 loop
457 S := Scope (S);
458 end loop;
460 if Ekind (S) = E_Function
461 and then Convention (S) = Convention_Protected
462 then
463 Error_Msg_N
464 ("protected function cannot modify protected object",
465 Lhs);
466 end if;
468 -- Changes of the ceiling priority of the protected object
469 -- are only effective if the Ceiling_Locking policy is in
470 -- effect (AARM D.5.2 (5/2)).
472 if Locking_Policy /= 'C' then
473 Error_Msg_N ("assignment to the attribute PRIORITY has " &
474 "no effect??", Lhs);
475 Error_Msg_N ("\since no Locking_Policy has been " &
476 "specified??", Lhs);
477 end if;
479 Ghost_Mode := Save_Ghost_Mode;
480 return;
481 end if;
482 end if;
483 end;
485 Diagnose_Non_Variable_Lhs (Lhs);
486 Ghost_Mode := Save_Ghost_Mode;
487 return;
489 -- Error of assigning to limited type. We do however allow this in
490 -- certain cases where the front end generates the assignments.
492 elsif Is_Limited_Type (T1)
493 and then not Assignment_OK (Lhs)
494 and then not Assignment_OK (Original_Node (Lhs))
495 then
496 -- CPP constructors can only be called in declarations
498 if Is_CPP_Constructor_Call (Rhs) then
499 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
500 else
501 Error_Msg_N
502 ("left hand of assignment must not be limited type", Lhs);
503 Explain_Limited_Type (T1, Lhs);
504 end if;
506 Ghost_Mode := Save_Ghost_Mode;
507 return;
509 -- A class-wide type may be a limited view. This illegal case is not
510 -- caught by previous checks.
512 elsif Ekind (T1) = E_Class_Wide_Type
513 and then From_Limited_With (T1)
514 then
515 Error_Msg_NE ("invalid use of limited view of&", Lhs, T1);
516 return;
518 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
519 -- abstract. This is only checked when the assignment Comes_From_Source,
520 -- because in some cases the expander generates such assignments (such
521 -- in the _assign operation for an abstract type).
523 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
524 Error_Msg_N
525 ("target of assignment operation must not be abstract", Lhs);
526 end if;
528 -- Resolution may have updated the subtype, in case the left-hand side
529 -- is a private protected component. Use the correct subtype to avoid
530 -- scoping issues in the back-end.
532 T1 := Etype (Lhs);
534 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
535 -- type. For example:
537 -- limited with P;
538 -- package Pkg is
539 -- type Acc is access P.T;
540 -- end Pkg;
542 -- with Pkg; use Acc;
543 -- procedure Example is
544 -- A, B : Acc;
545 -- begin
546 -- A.all := B.all; -- ERROR
547 -- end Example;
549 if Nkind (Lhs) = N_Explicit_Dereference
550 and then Ekind (T1) = E_Incomplete_Type
551 then
552 Error_Msg_N ("invalid use of incomplete type", Lhs);
553 Kill_Lhs;
554 Ghost_Mode := Save_Ghost_Mode;
555 return;
556 end if;
558 -- Now we can complete the resolution of the right hand side
560 Set_Assignment_Type (Lhs, T1);
561 Resolve (Rhs, T1);
563 -- This is the point at which we check for an unset reference
565 Check_Unset_Reference (Rhs);
566 Check_Unprotected_Access (Lhs, Rhs);
568 -- Remaining steps are skipped if Rhs was syntactically in error
570 if Rhs = Error then
571 Kill_Lhs;
572 Ghost_Mode := Save_Ghost_Mode;
573 return;
574 end if;
576 T2 := Etype (Rhs);
578 if not Covers (T1, T2) then
579 Wrong_Type (Rhs, Etype (Lhs));
580 Kill_Lhs;
581 Ghost_Mode := Save_Ghost_Mode;
582 return;
583 end if;
585 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
586 -- types, use the non-limited view if available
588 if Nkind (Rhs) = N_Explicit_Dereference
589 and then Is_Tagged_Type (T2)
590 and then Has_Non_Limited_View (T2)
591 then
592 T2 := Non_Limited_View (T2);
593 end if;
595 Set_Assignment_Type (Rhs, T2);
597 if Total_Errors_Detected /= 0 then
598 if No (T1) then
599 T1 := Any_Type;
600 end if;
602 if No (T2) then
603 T2 := Any_Type;
604 end if;
605 end if;
607 if T1 = Any_Type or else T2 = Any_Type then
608 Kill_Lhs;
609 Ghost_Mode := Save_Ghost_Mode;
610 return;
611 end if;
613 -- If the rhs is class-wide or dynamically tagged, then require the lhs
614 -- to be class-wide. The case where the rhs is a dynamically tagged call
615 -- to a dispatching operation with a controlling access result is
616 -- excluded from this check, since the target has an access type (and
617 -- no tag propagation occurs in that case).
619 if (Is_Class_Wide_Type (T2)
620 or else (Is_Dynamically_Tagged (Rhs)
621 and then not Is_Access_Type (T1)))
622 and then not Is_Class_Wide_Type (T1)
623 then
624 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
626 elsif Is_Class_Wide_Type (T1)
627 and then not Is_Class_Wide_Type (T2)
628 and then not Is_Tag_Indeterminate (Rhs)
629 and then not Is_Dynamically_Tagged (Rhs)
630 then
631 Error_Msg_N ("dynamically tagged expression required!", Rhs);
632 end if;
634 -- Propagate the tag from a class-wide target to the rhs when the rhs
635 -- is a tag-indeterminate call.
637 if Is_Tag_Indeterminate (Rhs) then
638 if Is_Class_Wide_Type (T1) then
639 Propagate_Tag (Lhs, Rhs);
641 elsif Nkind (Rhs) = N_Function_Call
642 and then Is_Entity_Name (Name (Rhs))
643 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
644 then
645 Error_Msg_N
646 ("call to abstract function must be dispatching", Name (Rhs));
648 elsif Nkind (Rhs) = N_Qualified_Expression
649 and then Nkind (Expression (Rhs)) = N_Function_Call
650 and then Is_Entity_Name (Name (Expression (Rhs)))
651 and then
652 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
653 then
654 Error_Msg_N
655 ("call to abstract function must be dispatching",
656 Name (Expression (Rhs)));
657 end if;
658 end if;
660 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
661 -- apply an implicit conversion of the rhs to that type to force
662 -- appropriate static and run-time accessibility checks. This applies
663 -- as well to anonymous access-to-subprogram types that are component
664 -- subtypes or formal parameters.
666 if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
667 if Is_Local_Anonymous_Access (T1)
668 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
670 -- Handle assignment to an Ada 2012 stand-alone object
671 -- of an anonymous access type.
673 or else (Ekind (T1) = E_Anonymous_Access_Type
674 and then Nkind (Associated_Node_For_Itype (T1)) =
675 N_Object_Declaration)
677 then
678 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
679 Analyze_And_Resolve (Rhs, T1);
680 end if;
681 end if;
683 -- Ada 2005 (AI-231): Assignment to not null variable
685 if Ada_Version >= Ada_2005
686 and then Can_Never_Be_Null (T1)
687 and then not Assignment_OK (Lhs)
688 then
689 -- Case where we know the right hand side is null
691 if Known_Null (Rhs) then
692 Apply_Compile_Time_Constraint_Error
693 (N => Rhs,
694 Msg =>
695 "(Ada 2005) null not allowed in null-excluding objects??",
696 Reason => CE_Null_Not_Allowed);
698 -- We still mark this as a possible modification, that's necessary
699 -- to reset Is_True_Constant, and desirable for xref purposes.
701 Note_Possible_Modification (Lhs, Sure => True);
702 Ghost_Mode := Save_Ghost_Mode;
703 return;
705 -- If we know the right hand side is non-null, then we convert to the
706 -- target type, since we don't need a run time check in that case.
708 elsif not Can_Never_Be_Null (T2) then
709 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
710 Analyze_And_Resolve (Rhs, T1);
711 end if;
712 end if;
714 if Is_Scalar_Type (T1) then
715 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
717 -- For array types, verify that lengths match. If the right hand side
718 -- is a function call that has been inlined, the assignment has been
719 -- rewritten as a block, and the constraint check will be applied to the
720 -- assignment within the block.
722 elsif Is_Array_Type (T1)
723 and then (Nkind (Rhs) /= N_Type_Conversion
724 or else Is_Constrained (Etype (Rhs)))
725 and then (Nkind (Rhs) /= N_Function_Call
726 or else Nkind (N) /= N_Block_Statement)
727 then
728 -- Assignment verifies that the length of the Lsh and Rhs are equal,
729 -- but of course the indexes do not have to match. If the right-hand
730 -- side is a type conversion to an unconstrained type, a length check
731 -- is performed on the expression itself during expansion. In rare
732 -- cases, the redundant length check is computed on an index type
733 -- with a different representation, triggering incorrect code in the
734 -- back end.
736 Apply_Length_Check (Rhs, Etype (Lhs));
738 else
739 -- Discriminant checks are applied in the course of expansion
741 null;
742 end if;
744 -- Note: modifications of the Lhs may only be recorded after
745 -- checks have been applied.
747 Note_Possible_Modification (Lhs, Sure => True);
749 -- ??? a real accessibility check is needed when ???
751 -- Post warning for redundant assignment or variable to itself
753 if Warn_On_Redundant_Constructs
755 -- We only warn for source constructs
757 and then Comes_From_Source (N)
759 -- Where the object is the same on both sides
761 and then Same_Object (Lhs, Original_Node (Rhs))
763 -- But exclude the case where the right side was an operation that
764 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
765 -- don't want to warn in such a case, since it is reasonable to write
766 -- such expressions especially when K is defined symbolically in some
767 -- other package.
769 and then Nkind (Original_Node (Rhs)) not in N_Op
770 then
771 if Nkind (Lhs) in N_Has_Entity then
772 Error_Msg_NE -- CODEFIX
773 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
774 else
775 Error_Msg_N -- CODEFIX
776 ("?r?useless assignment of object to itself!", N);
777 end if;
778 end if;
780 -- Check for non-allowed composite assignment
782 if not Support_Composite_Assign_On_Target
783 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
784 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
785 then
786 Error_Msg_CRT ("composite assignment", N);
787 end if;
789 -- Check elaboration warning for left side if not in elab code
791 if not In_Subprogram_Or_Concurrent_Unit then
792 Check_Elab_Assign (Lhs);
793 end if;
795 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
796 -- assignment is a source assignment in the extended main source unit.
797 -- We are not interested in any reference information outside this
798 -- context, or in compiler generated assignment statements.
800 if Comes_From_Source (N)
801 and then In_Extended_Main_Source_Unit (Lhs)
802 then
803 Set_Referenced_Modified (Lhs, Out_Param => False);
804 end if;
806 -- RM 7.3.2 (12/3) An assignment to a view conversion (from a type
807 -- to one of its ancestors) requires an invariant check. Apply check
808 -- only if expression comes from source, otherwise it will be applied
809 -- when value is assigned to source entity.
811 if Nkind (Lhs) = N_Type_Conversion
812 and then Has_Invariants (Etype (Expression (Lhs)))
813 and then Comes_From_Source (Expression (Lhs))
814 then
815 Insert_After (N, Make_Invariant_Call (Expression (Lhs)));
816 end if;
818 -- Final step. If left side is an entity, then we may be able to reset
819 -- the current tracked values to new safe values. We only have something
820 -- to do if the left side is an entity name, and expansion has not
821 -- modified the node into something other than an assignment, and of
822 -- course we only capture values if it is safe to do so.
824 if Is_Entity_Name (Lhs)
825 and then Nkind (N) = N_Assignment_Statement
826 then
827 declare
828 Ent : constant Entity_Id := Entity (Lhs);
830 begin
831 if Safe_To_Capture_Value (N, Ent) then
833 -- If simple variable on left side, warn if this assignment
834 -- blots out another one (rendering it useless). We only do
835 -- this for source assignments, otherwise we can generate bogus
836 -- warnings when an assignment is rewritten as another
837 -- assignment, and gets tied up with itself.
839 if Warn_On_Modified_Unread
840 and then Is_Assignable (Ent)
841 and then Comes_From_Source (N)
842 and then In_Extended_Main_Source_Unit (Ent)
843 then
844 Warn_On_Useless_Assignment (Ent, N);
845 end if;
847 -- If we are assigning an access type and the left side is an
848 -- entity, then make sure that the Is_Known_[Non_]Null flags
849 -- properly reflect the state of the entity after assignment.
851 if Is_Access_Type (T1) then
852 if Known_Non_Null (Rhs) then
853 Set_Is_Known_Non_Null (Ent, True);
855 elsif Known_Null (Rhs)
856 and then not Can_Never_Be_Null (Ent)
857 then
858 Set_Is_Known_Null (Ent, True);
860 else
861 Set_Is_Known_Null (Ent, False);
863 if not Can_Never_Be_Null (Ent) then
864 Set_Is_Known_Non_Null (Ent, False);
865 end if;
866 end if;
868 -- For discrete types, we may be able to set the current value
869 -- if the value is known at compile time.
871 elsif Is_Discrete_Type (T1)
872 and then Compile_Time_Known_Value (Rhs)
873 then
874 Set_Current_Value (Ent, Rhs);
875 else
876 Set_Current_Value (Ent, Empty);
877 end if;
879 -- If not safe to capture values, kill them
881 else
882 Kill_Lhs;
883 end if;
884 end;
885 end if;
887 -- If assigning to an object in whole or in part, note location of
888 -- assignment in case no one references value. We only do this for
889 -- source assignments, otherwise we can generate bogus warnings when an
890 -- assignment is rewritten as another assignment, and gets tied up with
891 -- itself.
893 declare
894 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
895 begin
896 if Present (Ent)
897 and then Safe_To_Capture_Value (N, Ent)
898 and then Nkind (N) = N_Assignment_Statement
899 and then Warn_On_Modified_Unread
900 and then Is_Assignable (Ent)
901 and then Comes_From_Source (N)
902 and then In_Extended_Main_Source_Unit (Ent)
903 then
904 Set_Last_Assignment (Ent, Lhs);
905 end if;
906 end;
908 Analyze_Dimension (N);
909 Ghost_Mode := Save_Ghost_Mode;
910 end Analyze_Assignment;
912 -----------------------------
913 -- Analyze_Block_Statement --
914 -----------------------------
916 procedure Analyze_Block_Statement (N : Node_Id) is
917 procedure Install_Return_Entities (Scop : Entity_Id);
918 -- Install all entities of return statement scope Scop in the visibility
919 -- chain except for the return object since its entity is reused in a
920 -- renaming.
922 -----------------------------
923 -- Install_Return_Entities --
924 -----------------------------
926 procedure Install_Return_Entities (Scop : Entity_Id) is
927 Id : Entity_Id;
929 begin
930 Id := First_Entity (Scop);
931 while Present (Id) loop
933 -- Do not install the return object
935 if not Ekind_In (Id, E_Constant, E_Variable)
936 or else not Is_Return_Object (Id)
937 then
938 Install_Entity (Id);
939 end if;
941 Next_Entity (Id);
942 end loop;
943 end Install_Return_Entities;
945 -- Local constants and variables
947 Decls : constant List_Id := Declarations (N);
948 Id : constant Node_Id := Identifier (N);
949 HSS : constant Node_Id := Handled_Statement_Sequence (N);
951 Is_BIP_Return_Statement : Boolean;
953 -- Start of processing for Analyze_Block_Statement
955 begin
956 -- In SPARK mode, we reject block statements. Note that the case of
957 -- block statements generated by the expander is fine.
959 if Nkind (Original_Node (N)) = N_Block_Statement then
960 Check_SPARK_05_Restriction ("block statement is not allowed", N);
961 end if;
963 -- If no handled statement sequence is present, things are really messed
964 -- up, and we just return immediately (defence against previous errors).
966 if No (HSS) then
967 Check_Error_Detected;
968 return;
969 end if;
971 -- Detect whether the block is actually a rewritten return statement of
972 -- a build-in-place function.
974 Is_BIP_Return_Statement :=
975 Present (Id)
976 and then Present (Entity (Id))
977 and then Ekind (Entity (Id)) = E_Return_Statement
978 and then Is_Build_In_Place_Function
979 (Return_Applies_To (Entity (Id)));
981 -- Normal processing with HSS present
983 declare
984 EH : constant List_Id := Exception_Handlers (HSS);
985 Ent : Entity_Id := Empty;
986 S : Entity_Id;
988 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
989 -- Recursively save value of this global, will be restored on exit
991 begin
992 -- Initialize unblocked exit count for statements of begin block
993 -- plus one for each exception handler that is present.
995 Unblocked_Exit_Count := 1;
997 if Present (EH) then
998 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
999 end if;
1001 -- If a label is present analyze it and mark it as referenced
1003 if Present (Id) then
1004 Analyze (Id);
1005 Ent := Entity (Id);
1007 -- An error defense. If we have an identifier, but no entity, then
1008 -- something is wrong. If previous errors, then just remove the
1009 -- identifier and continue, otherwise raise an exception.
1011 if No (Ent) then
1012 Check_Error_Detected;
1013 Set_Identifier (N, Empty);
1015 else
1016 Set_Ekind (Ent, E_Block);
1017 Generate_Reference (Ent, N, ' ');
1018 Generate_Definition (Ent);
1020 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
1021 Set_Label_Construct (Parent (Ent), N);
1022 end if;
1023 end if;
1024 end if;
1026 -- If no entity set, create a label entity
1028 if No (Ent) then
1029 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
1030 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
1031 Set_Parent (Ent, N);
1032 end if;
1034 Set_Etype (Ent, Standard_Void_Type);
1035 Set_Block_Node (Ent, Identifier (N));
1036 Push_Scope (Ent);
1038 -- The block served as an extended return statement. Ensure that any
1039 -- entities created during the analysis and expansion of the return
1040 -- object declaration are once again visible.
1042 if Is_BIP_Return_Statement then
1043 Install_Return_Entities (Ent);
1044 end if;
1046 if Present (Decls) then
1047 Analyze_Declarations (Decls);
1048 Check_Completion;
1049 Inspect_Deferred_Constant_Completion (Decls);
1050 end if;
1052 Analyze (HSS);
1053 Process_End_Label (HSS, 'e', Ent);
1055 -- If exception handlers are present, then we indicate that enclosing
1056 -- scopes contain a block with handlers. We only need to mark non-
1057 -- generic scopes.
1059 if Present (EH) then
1060 S := Scope (Ent);
1061 loop
1062 Set_Has_Nested_Block_With_Handler (S);
1063 exit when Is_Overloadable (S)
1064 or else Ekind (S) = E_Package
1065 or else Is_Generic_Unit (S);
1066 S := Scope (S);
1067 end loop;
1068 end if;
1070 Check_References (Ent);
1071 Warn_On_Useless_Assignments (Ent);
1072 End_Scope;
1074 if Unblocked_Exit_Count = 0 then
1075 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1076 Check_Unreachable_Code (N);
1077 else
1078 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1079 end if;
1080 end;
1081 end Analyze_Block_Statement;
1083 --------------------------------
1084 -- Analyze_Compound_Statement --
1085 --------------------------------
1087 procedure Analyze_Compound_Statement (N : Node_Id) is
1088 begin
1089 Analyze_List (Actions (N));
1090 end Analyze_Compound_Statement;
1092 ----------------------------
1093 -- Analyze_Case_Statement --
1094 ----------------------------
1096 procedure Analyze_Case_Statement (N : Node_Id) is
1097 Exp : Node_Id;
1098 Exp_Type : Entity_Id;
1099 Exp_Btype : Entity_Id;
1100 Last_Choice : Nat;
1102 Others_Present : Boolean;
1103 -- Indicates if Others was present
1105 pragma Warnings (Off, Last_Choice);
1106 -- Don't care about assigned value
1108 Statements_Analyzed : Boolean := False;
1109 -- Set True if at least some statement sequences get analyzed. If False
1110 -- on exit, means we had a serious error that prevented full analysis of
1111 -- the case statement, and as a result it is not a good idea to output
1112 -- warning messages about unreachable code.
1114 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1115 -- Recursively save value of this global, will be restored on exit
1117 procedure Non_Static_Choice_Error (Choice : Node_Id);
1118 -- Error routine invoked by the generic instantiation below when the
1119 -- case statement has a non static choice.
1121 procedure Process_Statements (Alternative : Node_Id);
1122 -- Analyzes the statements associated with a case alternative. Needed
1123 -- by instantiation below.
1125 package Analyze_Case_Choices is new
1126 Generic_Analyze_Choices
1127 (Process_Associated_Node => Process_Statements);
1128 use Analyze_Case_Choices;
1129 -- Instantiation of the generic choice analysis package
1131 package Check_Case_Choices is new
1132 Generic_Check_Choices
1133 (Process_Empty_Choice => No_OP,
1134 Process_Non_Static_Choice => Non_Static_Choice_Error,
1135 Process_Associated_Node => No_OP);
1136 use Check_Case_Choices;
1137 -- Instantiation of the generic choice processing package
1139 -----------------------------
1140 -- Non_Static_Choice_Error --
1141 -----------------------------
1143 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1144 begin
1145 Flag_Non_Static_Expr
1146 ("choice given in case statement is not static!", Choice);
1147 end Non_Static_Choice_Error;
1149 ------------------------
1150 -- Process_Statements --
1151 ------------------------
1153 procedure Process_Statements (Alternative : Node_Id) is
1154 Choices : constant List_Id := Discrete_Choices (Alternative);
1155 Ent : Entity_Id;
1157 begin
1158 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1159 Statements_Analyzed := True;
1161 -- An interesting optimization. If the case statement expression
1162 -- is a simple entity, then we can set the current value within an
1163 -- alternative if the alternative has one possible value.
1165 -- case N is
1166 -- when 1 => alpha
1167 -- when 2 | 3 => beta
1168 -- when others => gamma
1170 -- Here we know that N is initially 1 within alpha, but for beta and
1171 -- gamma, we do not know anything more about the initial value.
1173 if Is_Entity_Name (Exp) then
1174 Ent := Entity (Exp);
1176 if Ekind_In (Ent, E_Variable,
1177 E_In_Out_Parameter,
1178 E_Out_Parameter)
1179 then
1180 if List_Length (Choices) = 1
1181 and then Nkind (First (Choices)) in N_Subexpr
1182 and then Compile_Time_Known_Value (First (Choices))
1183 then
1184 Set_Current_Value (Entity (Exp), First (Choices));
1185 end if;
1187 Analyze_Statements (Statements (Alternative));
1189 -- After analyzing the case, set the current value to empty
1190 -- since we won't know what it is for the next alternative
1191 -- (unless reset by this same circuit), or after the case.
1193 Set_Current_Value (Entity (Exp), Empty);
1194 return;
1195 end if;
1196 end if;
1198 -- Case where expression is not an entity name of a variable
1200 Analyze_Statements (Statements (Alternative));
1201 end Process_Statements;
1203 -- Start of processing for Analyze_Case_Statement
1205 begin
1206 Unblocked_Exit_Count := 0;
1207 Exp := Expression (N);
1208 Analyze (Exp);
1210 -- The expression must be of any discrete type. In rare cases, the
1211 -- expander constructs a case statement whose expression has a private
1212 -- type whose full view is discrete. This can happen when generating
1213 -- a stream operation for a variant type after the type is frozen,
1214 -- when the partial of view of the type of the discriminant is private.
1215 -- In that case, use the full view to analyze case alternatives.
1217 if not Is_Overloaded (Exp)
1218 and then not Comes_From_Source (N)
1219 and then Is_Private_Type (Etype (Exp))
1220 and then Present (Full_View (Etype (Exp)))
1221 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1222 then
1223 Resolve (Exp, Etype (Exp));
1224 Exp_Type := Full_View (Etype (Exp));
1226 else
1227 Analyze_And_Resolve (Exp, Any_Discrete);
1228 Exp_Type := Etype (Exp);
1229 end if;
1231 Check_Unset_Reference (Exp);
1232 Exp_Btype := Base_Type (Exp_Type);
1234 -- The expression must be of a discrete type which must be determinable
1235 -- independently of the context in which the expression occurs, but
1236 -- using the fact that the expression must be of a discrete type.
1237 -- Moreover, the type this expression must not be a character literal
1238 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1240 -- If error already reported by Resolve, nothing more to do
1242 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1243 return;
1245 elsif Exp_Btype = Any_Character then
1246 Error_Msg_N
1247 ("character literal as case expression is ambiguous", Exp);
1248 return;
1250 elsif Ada_Version = Ada_83
1251 and then (Is_Generic_Type (Exp_Btype)
1252 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1253 then
1254 Error_Msg_N
1255 ("(Ada 83) case expression cannot be of a generic type", Exp);
1256 return;
1257 end if;
1259 -- If the case expression is a formal object of mode in out, then treat
1260 -- it as having a nonstatic subtype by forcing use of the base type
1261 -- (which has to get passed to Check_Case_Choices below). Also use base
1262 -- type when the case expression is parenthesized.
1264 if Paren_Count (Exp) > 0
1265 or else (Is_Entity_Name (Exp)
1266 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1267 then
1268 Exp_Type := Exp_Btype;
1269 end if;
1271 -- Call instantiated procedures to analyzwe and check discrete choices
1273 Analyze_Choices (Alternatives (N), Exp_Type);
1274 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1276 -- Case statement with single OTHERS alternative not allowed in SPARK
1278 if Others_Present and then List_Length (Alternatives (N)) = 1 then
1279 Check_SPARK_05_Restriction
1280 ("OTHERS as unique case alternative is not allowed", N);
1281 end if;
1283 if Exp_Type = Universal_Integer and then not Others_Present then
1284 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1285 end if;
1287 -- If all our exits were blocked by unconditional transfers of control,
1288 -- then the entire CASE statement acts as an unconditional transfer of
1289 -- control, so treat it like one, and check unreachable code. Skip this
1290 -- test if we had serious errors preventing any statement analysis.
1292 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1293 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1294 Check_Unreachable_Code (N);
1295 else
1296 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1297 end if;
1299 -- If the expander is active it will detect the case of a statically
1300 -- determined single alternative and remove warnings for the case, but
1301 -- if we are not doing expansion, that circuit won't be active. Here we
1302 -- duplicate the effect of removing warnings in the same way, so that
1303 -- we will get the same set of warnings in -gnatc mode.
1305 if not Expander_Active
1306 and then Compile_Time_Known_Value (Expression (N))
1307 and then Serious_Errors_Detected = 0
1308 then
1309 declare
1310 Chosen : constant Node_Id := Find_Static_Alternative (N);
1311 Alt : Node_Id;
1313 begin
1314 Alt := First (Alternatives (N));
1315 while Present (Alt) loop
1316 if Alt /= Chosen then
1317 Remove_Warning_Messages (Statements (Alt));
1318 end if;
1320 Next (Alt);
1321 end loop;
1322 end;
1323 end if;
1324 end Analyze_Case_Statement;
1326 ----------------------------
1327 -- Analyze_Exit_Statement --
1328 ----------------------------
1330 -- If the exit includes a name, it must be the name of a currently open
1331 -- loop. Otherwise there must be an innermost open loop on the stack, to
1332 -- which the statement implicitly refers.
1334 -- Additionally, in SPARK mode:
1336 -- The exit can only name the closest enclosing loop;
1338 -- An exit with a when clause must be directly contained in a loop;
1340 -- An exit without a when clause must be directly contained in an
1341 -- if-statement with no elsif or else, which is itself directly contained
1342 -- in a loop. The exit must be the last statement in the if-statement.
1344 procedure Analyze_Exit_Statement (N : Node_Id) is
1345 Target : constant Node_Id := Name (N);
1346 Cond : constant Node_Id := Condition (N);
1347 Scope_Id : Entity_Id;
1348 U_Name : Entity_Id;
1349 Kind : Entity_Kind;
1351 begin
1352 if No (Cond) then
1353 Check_Unreachable_Code (N);
1354 end if;
1356 if Present (Target) then
1357 Analyze (Target);
1358 U_Name := Entity (Target);
1360 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1361 Error_Msg_N ("invalid loop name in exit statement", N);
1362 return;
1364 else
1365 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1366 Check_SPARK_05_Restriction
1367 ("exit label must name the closest enclosing loop", N);
1368 end if;
1370 Set_Has_Exit (U_Name);
1371 end if;
1373 else
1374 U_Name := Empty;
1375 end if;
1377 for J in reverse 0 .. Scope_Stack.Last loop
1378 Scope_Id := Scope_Stack.Table (J).Entity;
1379 Kind := Ekind (Scope_Id);
1381 if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
1382 Set_Has_Exit (Scope_Id);
1383 exit;
1385 elsif Kind = E_Block
1386 or else Kind = E_Loop
1387 or else Kind = E_Return_Statement
1388 then
1389 null;
1391 else
1392 Error_Msg_N
1393 ("cannot exit from program unit or accept statement", N);
1394 return;
1395 end if;
1396 end loop;
1398 -- Verify that if present the condition is a Boolean expression
1400 if Present (Cond) then
1401 Analyze_And_Resolve (Cond, Any_Boolean);
1402 Check_Unset_Reference (Cond);
1403 end if;
1405 -- In SPARK mode, verify that the exit statement respects the SPARK
1406 -- restrictions.
1408 if Present (Cond) then
1409 if Nkind (Parent (N)) /= N_Loop_Statement then
1410 Check_SPARK_05_Restriction
1411 ("exit with when clause must be directly in loop", N);
1412 end if;
1414 else
1415 if Nkind (Parent (N)) /= N_If_Statement then
1416 if Nkind (Parent (N)) = N_Elsif_Part then
1417 Check_SPARK_05_Restriction
1418 ("exit must be in IF without ELSIF", N);
1419 else
1420 Check_SPARK_05_Restriction ("exit must be directly in IF", N);
1421 end if;
1423 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1424 Check_SPARK_05_Restriction
1425 ("exit must be in IF directly in loop", N);
1427 -- First test the presence of ELSE, so that an exit in an ELSE leads
1428 -- to an error mentioning the ELSE.
1430 elsif Present (Else_Statements (Parent (N))) then
1431 Check_SPARK_05_Restriction ("exit must be in IF without ELSE", N);
1433 -- An exit in an ELSIF does not reach here, as it would have been
1434 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1436 elsif Present (Elsif_Parts (Parent (N))) then
1437 Check_SPARK_05_Restriction ("exit must be in IF without ELSIF", N);
1438 end if;
1439 end if;
1441 -- Chain exit statement to associated loop entity
1443 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1444 Set_First_Exit_Statement (Scope_Id, N);
1446 -- Since the exit may take us out of a loop, any previous assignment
1447 -- statement is not useless, so clear last assignment indications. It
1448 -- is OK to keep other current values, since if the exit statement
1449 -- does not exit, then the current values are still valid.
1451 Kill_Current_Values (Last_Assignment_Only => True);
1452 end Analyze_Exit_Statement;
1454 ----------------------------
1455 -- Analyze_Goto_Statement --
1456 ----------------------------
1458 procedure Analyze_Goto_Statement (N : Node_Id) is
1459 Label : constant Node_Id := Name (N);
1460 Scope_Id : Entity_Id;
1461 Label_Scope : Entity_Id;
1462 Label_Ent : Entity_Id;
1464 begin
1465 Check_SPARK_05_Restriction ("goto statement is not allowed", N);
1467 -- Actual semantic checks
1469 Check_Unreachable_Code (N);
1470 Kill_Current_Values (Last_Assignment_Only => True);
1472 Analyze (Label);
1473 Label_Ent := Entity (Label);
1475 -- Ignore previous error
1477 if Label_Ent = Any_Id then
1478 Check_Error_Detected;
1479 return;
1481 -- We just have a label as the target of a goto
1483 elsif Ekind (Label_Ent) /= E_Label then
1484 Error_Msg_N ("target of goto statement must be a label", Label);
1485 return;
1487 -- Check that the target of the goto is reachable according to Ada
1488 -- scoping rules. Note: the special gotos we generate for optimizing
1489 -- local handling of exceptions would violate these rules, but we mark
1490 -- such gotos as analyzed when built, so this code is never entered.
1492 elsif not Reachable (Label_Ent) then
1493 Error_Msg_N ("target of goto statement is not reachable", Label);
1494 return;
1495 end if;
1497 -- Here if goto passes initial validity checks
1499 Label_Scope := Enclosing_Scope (Label_Ent);
1501 for J in reverse 0 .. Scope_Stack.Last loop
1502 Scope_Id := Scope_Stack.Table (J).Entity;
1504 if Label_Scope = Scope_Id
1505 or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
1506 then
1507 if Scope_Id /= Label_Scope then
1508 Error_Msg_N
1509 ("cannot exit from program unit or accept statement", N);
1510 end if;
1512 return;
1513 end if;
1514 end loop;
1516 raise Program_Error;
1517 end Analyze_Goto_Statement;
1519 --------------------------
1520 -- Analyze_If_Statement --
1521 --------------------------
1523 -- A special complication arises in the analysis of if statements
1525 -- The expander has circuitry to completely delete code that it can tell
1526 -- will not be executed (as a result of compile time known conditions). In
1527 -- the analyzer, we ensure that code that will be deleted in this manner
1528 -- is analyzed but not expanded. This is obviously more efficient, but
1529 -- more significantly, difficulties arise if code is expanded and then
1530 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1531 -- generated in deleted code must be frozen from start, because the nodes
1532 -- on which they depend will not be available at the freeze point.
1534 procedure Analyze_If_Statement (N : Node_Id) is
1535 E : Node_Id;
1537 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1538 -- Recursively save value of this global, will be restored on exit
1540 Save_In_Deleted_Code : Boolean;
1542 Del : Boolean := False;
1543 -- This flag gets set True if a True condition has been found, which
1544 -- means that remaining ELSE/ELSIF parts are deleted.
1546 procedure Analyze_Cond_Then (Cnode : Node_Id);
1547 -- This is applied to either the N_If_Statement node itself or to an
1548 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1549 -- statements associated with it.
1551 -----------------------
1552 -- Analyze_Cond_Then --
1553 -----------------------
1555 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1556 Cond : constant Node_Id := Condition (Cnode);
1557 Tstm : constant List_Id := Then_Statements (Cnode);
1559 begin
1560 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1561 Analyze_And_Resolve (Cond, Any_Boolean);
1562 Check_Unset_Reference (Cond);
1563 Set_Current_Value_Condition (Cnode);
1565 -- If already deleting, then just analyze then statements
1567 if Del then
1568 Analyze_Statements (Tstm);
1570 -- Compile time known value, not deleting yet
1572 elsif Compile_Time_Known_Value (Cond) then
1573 Save_In_Deleted_Code := In_Deleted_Code;
1575 -- If condition is True, then analyze the THEN statements and set
1576 -- no expansion for ELSE and ELSIF parts.
1578 if Is_True (Expr_Value (Cond)) then
1579 Analyze_Statements (Tstm);
1580 Del := True;
1581 Expander_Mode_Save_And_Set (False);
1582 In_Deleted_Code := True;
1584 -- If condition is False, analyze THEN with expansion off
1586 else -- Is_False (Expr_Value (Cond))
1587 Expander_Mode_Save_And_Set (False);
1588 In_Deleted_Code := True;
1589 Analyze_Statements (Tstm);
1590 Expander_Mode_Restore;
1591 In_Deleted_Code := Save_In_Deleted_Code;
1592 end if;
1594 -- Not known at compile time, not deleting, normal analysis
1596 else
1597 Analyze_Statements (Tstm);
1598 end if;
1599 end Analyze_Cond_Then;
1601 -- Start of processing for Analyze_If_Statement
1603 begin
1604 -- Initialize exit count for else statements. If there is no else part,
1605 -- this count will stay non-zero reflecting the fact that the uncovered
1606 -- else case is an unblocked exit.
1608 Unblocked_Exit_Count := 1;
1609 Analyze_Cond_Then (N);
1611 -- Now to analyze the elsif parts if any are present
1613 if Present (Elsif_Parts (N)) then
1614 E := First (Elsif_Parts (N));
1615 while Present (E) loop
1616 Analyze_Cond_Then (E);
1617 Next (E);
1618 end loop;
1619 end if;
1621 if Present (Else_Statements (N)) then
1622 Analyze_Statements (Else_Statements (N));
1623 end if;
1625 -- If all our exits were blocked by unconditional transfers of control,
1626 -- then the entire IF statement acts as an unconditional transfer of
1627 -- control, so treat it like one, and check unreachable code.
1629 if Unblocked_Exit_Count = 0 then
1630 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1631 Check_Unreachable_Code (N);
1632 else
1633 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1634 end if;
1636 if Del then
1637 Expander_Mode_Restore;
1638 In_Deleted_Code := Save_In_Deleted_Code;
1639 end if;
1641 if not Expander_Active
1642 and then Compile_Time_Known_Value (Condition (N))
1643 and then Serious_Errors_Detected = 0
1644 then
1645 if Is_True (Expr_Value (Condition (N))) then
1646 Remove_Warning_Messages (Else_Statements (N));
1648 if Present (Elsif_Parts (N)) then
1649 E := First (Elsif_Parts (N));
1650 while Present (E) loop
1651 Remove_Warning_Messages (Then_Statements (E));
1652 Next (E);
1653 end loop;
1654 end if;
1656 else
1657 Remove_Warning_Messages (Then_Statements (N));
1658 end if;
1659 end if;
1661 -- Warn on redundant if statement that has no effect
1663 -- Note, we could also check empty ELSIF parts ???
1665 if Warn_On_Redundant_Constructs
1667 -- If statement must be from source
1669 and then Comes_From_Source (N)
1671 -- Condition must not have obvious side effect
1673 and then Has_No_Obvious_Side_Effects (Condition (N))
1675 -- No elsif parts of else part
1677 and then No (Elsif_Parts (N))
1678 and then No (Else_Statements (N))
1680 -- Then must be a single null statement
1682 and then List_Length (Then_Statements (N)) = 1
1683 then
1684 -- Go to original node, since we may have rewritten something as
1685 -- a null statement (e.g. a case we could figure the outcome of).
1687 declare
1688 T : constant Node_Id := First (Then_Statements (N));
1689 S : constant Node_Id := Original_Node (T);
1691 begin
1692 if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
1693 Error_Msg_N ("if statement has no effect?r?", N);
1694 end if;
1695 end;
1696 end if;
1697 end Analyze_If_Statement;
1699 ----------------------------------------
1700 -- Analyze_Implicit_Label_Declaration --
1701 ----------------------------------------
1703 -- An implicit label declaration is generated in the innermost enclosing
1704 -- declarative part. This is done for labels, and block and loop names.
1706 -- Note: any changes in this routine may need to be reflected in
1707 -- Analyze_Label_Entity.
1709 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1710 Id : constant Node_Id := Defining_Identifier (N);
1711 begin
1712 Enter_Name (Id);
1713 Set_Ekind (Id, E_Label);
1714 Set_Etype (Id, Standard_Void_Type);
1715 Set_Enclosing_Scope (Id, Current_Scope);
1716 end Analyze_Implicit_Label_Declaration;
1718 ------------------------------
1719 -- Analyze_Iteration_Scheme --
1720 ------------------------------
1722 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1723 Cond : Node_Id;
1724 Iter_Spec : Node_Id;
1725 Loop_Spec : Node_Id;
1727 begin
1728 -- For an infinite loop, there is no iteration scheme
1730 if No (N) then
1731 return;
1732 end if;
1734 Cond := Condition (N);
1735 Iter_Spec := Iterator_Specification (N);
1736 Loop_Spec := Loop_Parameter_Specification (N);
1738 if Present (Cond) then
1739 Analyze_And_Resolve (Cond, Any_Boolean);
1740 Check_Unset_Reference (Cond);
1741 Set_Current_Value_Condition (N);
1743 elsif Present (Iter_Spec) then
1744 Analyze_Iterator_Specification (Iter_Spec);
1746 else
1747 Analyze_Loop_Parameter_Specification (Loop_Spec);
1748 end if;
1749 end Analyze_Iteration_Scheme;
1751 ------------------------------------
1752 -- Analyze_Iterator_Specification --
1753 ------------------------------------
1755 procedure Analyze_Iterator_Specification (N : Node_Id) is
1756 Loc : constant Source_Ptr := Sloc (N);
1757 Def_Id : constant Node_Id := Defining_Identifier (N);
1758 Subt : constant Node_Id := Subtype_Indication (N);
1759 Iter_Name : constant Node_Id := Name (N);
1761 Ent : Entity_Id;
1762 Typ : Entity_Id;
1763 Bas : Entity_Id;
1765 procedure Check_Reverse_Iteration (Typ : Entity_Id);
1766 -- For an iteration over a container, if the loop carries the Reverse
1767 -- indicator, verify that the container type has an Iterate aspect that
1768 -- implements the reversible iterator interface.
1770 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1771 -- For containers with Iterator and related aspects, the cursor is
1772 -- obtained by locating an entity with the proper name in the scope
1773 -- of the type.
1775 -----------------------------
1776 -- Check_Reverse_Iteration --
1777 -----------------------------
1779 procedure Check_Reverse_Iteration (Typ : Entity_Id) is
1780 begin
1781 if Reverse_Present (N)
1782 and then not Is_Array_Type (Typ)
1783 and then not Is_Reversible_Iterator (Typ)
1784 then
1785 Error_Msg_NE
1786 ("container type does not support reverse iteration", N, Typ);
1787 end if;
1788 end Check_Reverse_Iteration;
1790 ---------------------
1791 -- Get_Cursor_Type --
1792 ---------------------
1794 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
1795 Ent : Entity_Id;
1797 begin
1798 Ent := First_Entity (Scope (Typ));
1799 while Present (Ent) loop
1800 exit when Chars (Ent) = Name_Cursor;
1801 Next_Entity (Ent);
1802 end loop;
1804 if No (Ent) then
1805 return Any_Type;
1806 end if;
1808 -- The cursor is the target of generated assignments in the
1809 -- loop, and cannot have a limited type.
1811 if Is_Limited_Type (Etype (Ent)) then
1812 Error_Msg_N ("cursor type cannot be limited", N);
1813 end if;
1815 return Etype (Ent);
1816 end Get_Cursor_Type;
1818 -- Start of processing for Analyze_iterator_Specification
1820 begin
1821 Enter_Name (Def_Id);
1823 -- AI12-0151 specifies that when the subtype indication is present, it
1824 -- must statically match the type of the array or container element.
1825 -- To simplify this check, we introduce a subtype declaration with the
1826 -- given subtype indication when it carries a constraint, and rewrite
1827 -- the original as a reference to the created subtype entity.
1829 if Present (Subt) then
1830 if Nkind (Subt) = N_Subtype_Indication then
1831 declare
1832 S : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
1833 Decl : constant Node_Id :=
1834 Make_Subtype_Declaration (Loc,
1835 Defining_Identifier => S,
1836 Subtype_Indication => New_Copy_Tree (Subt));
1837 begin
1838 Insert_Before (Parent (Parent (N)), Decl);
1839 Analyze (Decl);
1840 Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
1841 end;
1842 else
1843 Analyze (Subt);
1844 end if;
1846 -- Save entity of subtype indication for subsequent check
1848 Bas := Entity (Subt);
1849 end if;
1851 Preanalyze_Range (Iter_Name);
1853 -- Set the kind of the loop variable, which is not visible within
1854 -- the iterator name.
1856 Set_Ekind (Def_Id, E_Variable);
1858 -- Provide a link between the iterator variable and the container, for
1859 -- subsequent use in cross-reference and modification information.
1861 if Of_Present (N) then
1862 Set_Related_Expression (Def_Id, Iter_Name);
1864 -- For a container, the iterator is specified through the aspect
1866 if not Is_Array_Type (Etype (Iter_Name)) then
1867 declare
1868 Iterator : constant Entity_Id :=
1869 Find_Value_Of_Aspect
1870 (Etype (Iter_Name), Aspect_Default_Iterator);
1872 I : Interp_Index;
1873 It : Interp;
1875 begin
1876 if No (Iterator) then
1877 null; -- error reported below.
1879 elsif not Is_Overloaded (Iterator) then
1880 Check_Reverse_Iteration (Etype (Iterator));
1882 -- If Iterator is overloaded, use reversible iterator if
1883 -- one is available.
1885 elsif Is_Overloaded (Iterator) then
1886 Get_First_Interp (Iterator, I, It);
1887 while Present (It.Nam) loop
1888 if Ekind (It.Nam) = E_Function
1889 and then Is_Reversible_Iterator (Etype (It.Nam))
1890 then
1891 Set_Etype (Iterator, It.Typ);
1892 Set_Entity (Iterator, It.Nam);
1893 exit;
1894 end if;
1896 Get_Next_Interp (I, It);
1897 end loop;
1899 Check_Reverse_Iteration (Etype (Iterator));
1900 end if;
1901 end;
1902 end if;
1903 end if;
1905 -- If the domain of iteration is an expression, create a declaration for
1906 -- it, so that finalization actions are introduced outside of the loop.
1907 -- The declaration must be a renaming because the body of the loop may
1908 -- assign to elements.
1910 if not Is_Entity_Name (Iter_Name)
1912 -- When the context is a quantified expression, the renaming
1913 -- declaration is delayed until the expansion phase if we are
1914 -- doing expansion.
1916 and then (Nkind (Parent (N)) /= N_Quantified_Expression
1917 or else Operating_Mode = Check_Semantics)
1919 -- Do not perform this expansion in SPARK mode, since the formal
1920 -- verification directly deals with the source form of the iterator.
1921 -- Ditto for ASIS, where the temporary may hide the transformation
1922 -- of a selected component into a prefixed function call.
1924 and then not GNATprove_Mode
1925 and then not ASIS_Mode
1926 then
1927 declare
1928 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
1929 Decl : Node_Id;
1930 Act_S : Node_Id;
1932 begin
1934 -- If the domain of iteration is an array component that depends
1935 -- on a discriminant, create actual subtype for it. Pre-analysis
1936 -- does not generate the actual subtype of a selected component.
1938 if Nkind (Iter_Name) = N_Selected_Component
1939 and then Is_Array_Type (Etype (Iter_Name))
1940 then
1941 Act_S :=
1942 Build_Actual_Subtype_Of_Component
1943 (Etype (Selector_Name (Iter_Name)), Iter_Name);
1944 Insert_Action (N, Act_S);
1946 if Present (Act_S) then
1947 Typ := Defining_Identifier (Act_S);
1948 else
1949 Typ := Etype (Iter_Name);
1950 end if;
1952 else
1953 Typ := Etype (Iter_Name);
1955 -- Verify that the expression produces an iterator
1957 if not Of_Present (N) and then not Is_Iterator (Typ)
1958 and then not Is_Array_Type (Typ)
1959 and then No (Find_Aspect (Typ, Aspect_Iterable))
1960 then
1961 Error_Msg_N
1962 ("expect object that implements iterator interface",
1963 Iter_Name);
1964 end if;
1965 end if;
1967 -- Protect against malformed iterator
1969 if Typ = Any_Type then
1970 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
1971 return;
1972 end if;
1974 if not Of_Present (N) then
1975 Check_Reverse_Iteration (Typ);
1976 end if;
1978 -- The name in the renaming declaration may be a function call.
1979 -- Indicate that it does not come from source, to suppress
1980 -- spurious warnings on renamings of parameterless functions,
1981 -- a common enough idiom in user-defined iterators.
1983 Decl :=
1984 Make_Object_Renaming_Declaration (Loc,
1985 Defining_Identifier => Id,
1986 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
1987 Name =>
1988 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
1990 -- Create a transient scope to ensure that all the temporaries
1991 -- generated by Remove_Side_Effects as part of processing this
1992 -- renaming declaration (if any) are attached by Insert_Actions
1993 -- to it. It has no effect on the generated code if no actions
1994 -- are added to it (see Wrap_Transient_Declaration).
1996 if Expander_Active then
1997 Establish_Transient_Scope (Name (Decl), Sec_Stack => True);
1998 end if;
2000 Insert_Actions (Parent (Parent (N)), New_List (Decl));
2001 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
2002 Set_Etype (Id, Typ);
2003 Set_Etype (Name (N), Typ);
2004 end;
2006 -- Container is an entity or an array with uncontrolled components, or
2007 -- else it is a container iterator given by a function call, typically
2008 -- called Iterate in the case of predefined containers, even though
2009 -- Iterate is not a reserved name. What matters is that the return type
2010 -- of the function is an iterator type.
2012 elsif Is_Entity_Name (Iter_Name) then
2013 Analyze (Iter_Name);
2015 if Nkind (Iter_Name) = N_Function_Call then
2016 declare
2017 C : constant Node_Id := Name (Iter_Name);
2018 I : Interp_Index;
2019 It : Interp;
2021 begin
2022 if not Is_Overloaded (Iter_Name) then
2023 Resolve (Iter_Name, Etype (C));
2025 else
2026 Get_First_Interp (C, I, It);
2027 while It.Typ /= Empty loop
2028 if Reverse_Present (N) then
2029 if Is_Reversible_Iterator (It.Typ) then
2030 Resolve (Iter_Name, It.Typ);
2031 exit;
2032 end if;
2034 elsif Is_Iterator (It.Typ) then
2035 Resolve (Iter_Name, It.Typ);
2036 exit;
2037 end if;
2039 Get_Next_Interp (I, It);
2040 end loop;
2041 end if;
2042 end;
2044 -- Domain of iteration is not overloaded
2046 else
2047 Resolve (Iter_Name, Etype (Iter_Name));
2048 end if;
2050 if not Of_Present (N) then
2051 Check_Reverse_Iteration (Etype (Iter_Name));
2052 end if;
2053 end if;
2055 -- Get base type of container, for proper retrieval of Cursor type
2056 -- and primitive operations.
2058 Typ := Base_Type (Etype (Iter_Name));
2060 if Is_Array_Type (Typ) then
2061 if Of_Present (N) then
2062 Set_Etype (Def_Id, Component_Type (Typ));
2064 -- The loop variable is aliased if the array components are
2065 -- aliased.
2067 Set_Is_Aliased (Def_Id, Has_Aliased_Components (Typ));
2069 -- AI12-0047 stipulates that the domain (array or container)
2070 -- cannot be a component that depends on a discriminant if the
2071 -- enclosing object is mutable, to prevent a modification of the
2072 -- dowmain of iteration in the course of an iteration.
2074 -- If the object is an expression it has been captured in a
2075 -- temporary, so examine original node.
2077 if Nkind (Original_Node (Iter_Name)) = N_Selected_Component
2078 and then Is_Dependent_Component_Of_Mutable_Object
2079 (Original_Node (Iter_Name))
2080 then
2081 Error_Msg_N
2082 ("iterable name cannot be a discriminant-dependent "
2083 & "component of a mutable object", N);
2084 end if;
2086 if Present (Subt)
2087 and then
2088 (Base_Type (Bas) /= Base_Type (Component_Type (Typ))
2089 or else
2090 not Subtypes_Statically_Match (Bas, Component_Type (Typ)))
2091 then
2092 Error_Msg_N
2093 ("subtype indication does not match component type", Subt);
2094 end if;
2096 -- Here we have a missing Range attribute
2098 else
2099 Error_Msg_N
2100 ("missing Range attribute in iteration over an array", N);
2102 -- In Ada 2012 mode, this may be an attempt at an iterator
2104 if Ada_Version >= Ada_2012 then
2105 Error_Msg_NE
2106 ("\if& is meant to designate an element of the array, use OF",
2107 N, Def_Id);
2108 end if;
2110 -- Prevent cascaded errors
2112 Set_Ekind (Def_Id, E_Loop_Parameter);
2113 Set_Etype (Def_Id, Etype (First_Index (Typ)));
2114 end if;
2116 -- Check for type error in iterator
2118 elsif Typ = Any_Type then
2119 return;
2121 -- Iteration over a container
2123 else
2124 Set_Ekind (Def_Id, E_Loop_Parameter);
2125 Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
2127 -- OF present
2129 if Of_Present (N) then
2130 if Has_Aspect (Typ, Aspect_Iterable) then
2131 declare
2132 Elt : constant Entity_Id :=
2133 Get_Iterable_Type_Primitive (Typ, Name_Element);
2134 begin
2135 if No (Elt) then
2136 Error_Msg_N
2137 ("missing Element primitive for iteration", N);
2138 else
2139 Set_Etype (Def_Id, Etype (Elt));
2140 end if;
2141 end;
2143 -- For a predefined container, The type of the loop variable is
2144 -- the Iterator_Element aspect of the container type.
2146 else
2147 declare
2148 Element : constant Entity_Id :=
2149 Find_Value_Of_Aspect (Typ, Aspect_Iterator_Element);
2150 Iterator : constant Entity_Id :=
2151 Find_Value_Of_Aspect (Typ, Aspect_Default_Iterator);
2152 Cursor_Type : Entity_Id;
2154 begin
2155 if No (Element) then
2156 Error_Msg_NE ("cannot iterate over&", N, Typ);
2157 return;
2159 else
2160 Set_Etype (Def_Id, Entity (Element));
2161 Cursor_Type := Get_Cursor_Type (Typ);
2162 pragma Assert (Present (Cursor_Type));
2164 -- If subtype indication was given, verify that it covers
2165 -- the element type of the container.
2167 if Present (Subt)
2168 and then (not Covers (Bas, Etype (Def_Id))
2169 or else not Subtypes_Statically_Match
2170 (Bas, Etype (Def_Id)))
2171 then
2172 Error_Msg_N
2173 ("subtype indication does not match element type",
2174 Subt);
2175 end if;
2177 -- If the container has a variable indexing aspect, the
2178 -- element is a variable and is modifiable in the loop.
2180 if Has_Aspect (Typ, Aspect_Variable_Indexing) then
2181 Set_Ekind (Def_Id, E_Variable);
2182 end if;
2184 -- If the container is a constant, iterating over it
2185 -- requires a Constant_Indexing operation.
2187 if not Is_Variable (Iter_Name)
2188 and then not Has_Aspect (Typ, Aspect_Constant_Indexing)
2189 then
2190 Error_Msg_N ("iteration over constant container "
2191 & "require constant_indexing aspect", N);
2193 -- The Iterate function may have an in_out parameter,
2194 -- and a constant container is thus illegal.
2196 elsif Present (Iterator)
2197 and then Ekind (Entity (Iterator)) = E_Function
2198 and then Ekind (First_Formal (Entity (Iterator))) /=
2199 E_In_Parameter
2200 and then not Is_Variable (Iter_Name)
2201 then
2202 Error_Msg_N
2203 ("variable container expected", N);
2204 end if;
2206 if Nkind (Original_Node (Iter_Name))
2207 = N_Selected_Component
2208 and then
2209 Is_Dependent_Component_Of_Mutable_Object
2210 (Original_Node (Iter_Name))
2211 then
2212 Error_Msg_N
2213 ("container cannot be a discriminant-dependent "
2214 & "component of a mutable object", N);
2215 end if;
2216 end if;
2217 end;
2218 end if;
2220 -- IN iterator, domain is a range, or a call to Iterate function
2222 else
2223 -- For an iteration of the form IN, the name must denote an
2224 -- iterator, typically the result of a call to Iterate. Give a
2225 -- useful error message when the name is a container by itself.
2227 -- The type may be a formal container type, which has to have
2228 -- an Iterable aspect detailing the required primitives.
2230 if Is_Entity_Name (Original_Node (Name (N)))
2231 and then not Is_Iterator (Typ)
2232 then
2233 if Has_Aspect (Typ, Aspect_Iterable) then
2234 null;
2236 elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
2237 Error_Msg_NE
2238 ("cannot iterate over&", Name (N), Typ);
2239 else
2240 Error_Msg_N
2241 ("name must be an iterator, not a container", Name (N));
2242 end if;
2244 if Has_Aspect (Typ, Aspect_Iterable) then
2245 null;
2246 else
2247 Error_Msg_NE
2248 ("\to iterate directly over the elements of a container, "
2249 & "write `of &`", Name (N), Original_Node (Name (N)));
2251 -- No point in continuing analysis of iterator spec
2253 return;
2254 end if;
2255 end if;
2257 -- If the name is a call (typically prefixed) to some Iterate
2258 -- function, it has been rewritten as an object declaration.
2259 -- If that object is a selected component, verify that it is not
2260 -- a component of an unconstrained mutable object.
2262 if Nkind (Iter_Name) = N_Identifier then
2263 declare
2264 Orig_Node : constant Node_Id := Original_Node (Iter_Name);
2265 Iter_Kind : constant Node_Kind := Nkind (Orig_Node);
2266 Obj : Node_Id;
2268 begin
2269 if Iter_Kind = N_Selected_Component then
2270 Obj := Prefix (Orig_Node);
2272 elsif Iter_Kind = N_Function_Call then
2273 Obj := First_Actual (Orig_Node);
2275 -- If neither, the name comes from source
2277 else
2278 Obj := Iter_Name;
2279 end if;
2281 if Nkind (Obj) = N_Selected_Component
2282 and then Is_Dependent_Component_Of_Mutable_Object (Obj)
2283 then
2284 Error_Msg_N
2285 ("container cannot be a discriminant-dependent "
2286 & "component of a mutable object", N);
2287 end if;
2288 end;
2289 end if;
2291 -- The result type of Iterate function is the classwide type of
2292 -- the interface parent. We need the specific Cursor type defined
2293 -- in the container package. We obtain it by name for a predefined
2294 -- container, or through the Iterable aspect for a formal one.
2296 if Has_Aspect (Typ, Aspect_Iterable) then
2297 Set_Etype (Def_Id,
2298 Get_Cursor_Type
2299 (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
2300 Typ));
2301 Ent := Etype (Def_Id);
2303 else
2304 Set_Etype (Def_Id, Get_Cursor_Type (Typ));
2305 end if;
2307 end if;
2308 end if;
2310 -- A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
2311 -- This check is relevant only when SPARK_Mode is on as it is not a
2312 -- standard Ada legality check.
2314 -- Not clear whether this applies to element iterators, where the
2315 -- cursor is not an explicit entity ???
2317 if SPARK_Mode = On
2318 and then not Of_Present (N)
2319 and then Is_Effectively_Volatile (Ent)
2320 then
2321 Error_Msg_N ("loop parameter cannot be volatile", Ent);
2322 end if;
2323 end Analyze_Iterator_Specification;
2325 -------------------
2326 -- Analyze_Label --
2327 -------------------
2329 -- Note: the semantic work required for analyzing labels (setting them as
2330 -- reachable) was done in a prepass through the statements in the block,
2331 -- so that forward gotos would be properly handled. See Analyze_Statements
2332 -- for further details. The only processing required here is to deal with
2333 -- optimizations that depend on an assumption of sequential control flow,
2334 -- since of course the occurrence of a label breaks this assumption.
2336 procedure Analyze_Label (N : Node_Id) is
2337 pragma Warnings (Off, N);
2338 begin
2339 Kill_Current_Values;
2340 end Analyze_Label;
2342 --------------------------
2343 -- Analyze_Label_Entity --
2344 --------------------------
2346 procedure Analyze_Label_Entity (E : Entity_Id) is
2347 begin
2348 Set_Ekind (E, E_Label);
2349 Set_Etype (E, Standard_Void_Type);
2350 Set_Enclosing_Scope (E, Current_Scope);
2351 Set_Reachable (E, True);
2352 end Analyze_Label_Entity;
2354 ------------------------------------------
2355 -- Analyze_Loop_Parameter_Specification --
2356 ------------------------------------------
2358 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
2359 Loop_Nod : constant Node_Id := Parent (Parent (N));
2361 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
2362 -- If the bounds are given by a 'Range reference on a function call
2363 -- that returns a controlled array, introduce an explicit declaration
2364 -- to capture the bounds, so that the function result can be finalized
2365 -- in timely fashion.
2367 procedure Check_Predicate_Use (T : Entity_Id);
2368 -- Diagnose Attempt to iterate through non-static predicate. Note that
2369 -- a type with inherited predicates may have both static and dynamic
2370 -- forms. In this case it is not sufficent to check the static predicate
2371 -- function only, look for a dynamic predicate aspect as well.
2373 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
2374 -- N is the node for an arbitrary construct. This function searches the
2375 -- construct N to see if any expressions within it contain function
2376 -- calls that use the secondary stack, returning True if any such call
2377 -- is found, and False otherwise.
2379 procedure Process_Bounds (R : Node_Id);
2380 -- If the iteration is given by a range, create temporaries and
2381 -- assignment statements block to capture the bounds and perform
2382 -- required finalization actions in case a bound includes a function
2383 -- call that uses the temporary stack. We first pre-analyze a copy of
2384 -- the range in order to determine the expected type, and analyze and
2385 -- resolve the original bounds.
2387 --------------------------------------
2388 -- Check_Controlled_Array_Attribute --
2389 --------------------------------------
2391 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
2392 begin
2393 if Nkind (DS) = N_Attribute_Reference
2394 and then Is_Entity_Name (Prefix (DS))
2395 and then Ekind (Entity (Prefix (DS))) = E_Function
2396 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
2397 and then
2398 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
2399 and then Expander_Active
2400 then
2401 declare
2402 Loc : constant Source_Ptr := Sloc (N);
2403 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
2404 Indx : constant Entity_Id :=
2405 Base_Type (Etype (First_Index (Arr)));
2406 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
2407 Decl : Node_Id;
2409 begin
2410 Decl :=
2411 Make_Subtype_Declaration (Loc,
2412 Defining_Identifier => Subt,
2413 Subtype_Indication =>
2414 Make_Subtype_Indication (Loc,
2415 Subtype_Mark => New_Occurrence_Of (Indx, Loc),
2416 Constraint =>
2417 Make_Range_Constraint (Loc, Relocate_Node (DS))));
2418 Insert_Before (Loop_Nod, Decl);
2419 Analyze (Decl);
2421 Rewrite (DS,
2422 Make_Attribute_Reference (Loc,
2423 Prefix => New_Occurrence_Of (Subt, Loc),
2424 Attribute_Name => Attribute_Name (DS)));
2426 Analyze (DS);
2427 end;
2428 end if;
2429 end Check_Controlled_Array_Attribute;
2431 -------------------------
2432 -- Check_Predicate_Use --
2433 -------------------------
2435 procedure Check_Predicate_Use (T : Entity_Id) is
2436 begin
2437 -- A predicated subtype is illegal in loops and related constructs
2438 -- if the predicate is not static, or if it is a non-static subtype
2439 -- of a statically predicated subtype.
2441 if Is_Discrete_Type (T)
2442 and then Has_Predicates (T)
2443 and then (not Has_Static_Predicate (T)
2444 or else not Is_Static_Subtype (T)
2445 or else Has_Dynamic_Predicate_Aspect (T))
2446 then
2447 -- Seems a confusing message for the case of a static predicate
2448 -- with a non-static subtype???
2450 Bad_Predicated_Subtype_Use
2451 ("cannot use subtype& with non-static predicate for loop "
2452 & "iteration", Discrete_Subtype_Definition (N),
2453 T, Suggest_Static => True);
2455 elsif Inside_A_Generic and then Is_Generic_Formal (T) then
2456 Set_No_Dynamic_Predicate_On_Actual (T);
2457 end if;
2458 end Check_Predicate_Use;
2460 ------------------------------------
2461 -- Has_Call_Using_Secondary_Stack --
2462 ------------------------------------
2464 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
2466 function Check_Call (N : Node_Id) return Traverse_Result;
2467 -- Check if N is a function call which uses the secondary stack
2469 ----------------
2470 -- Check_Call --
2471 ----------------
2473 function Check_Call (N : Node_Id) return Traverse_Result is
2474 Nam : Node_Id;
2475 Subp : Entity_Id;
2476 Return_Typ : Entity_Id;
2478 begin
2479 if Nkind (N) = N_Function_Call then
2480 Nam := Name (N);
2482 -- Call using access to subprogram with explicit dereference
2484 if Nkind (Nam) = N_Explicit_Dereference then
2485 Subp := Etype (Nam);
2487 -- Call using a selected component notation or Ada 2005 object
2488 -- operation notation
2490 elsif Nkind (Nam) = N_Selected_Component then
2491 Subp := Entity (Selector_Name (Nam));
2493 -- Common case
2495 else
2496 Subp := Entity (Nam);
2497 end if;
2499 Return_Typ := Etype (Subp);
2501 if Is_Composite_Type (Return_Typ)
2502 and then not Is_Constrained (Return_Typ)
2503 then
2504 return Abandon;
2506 elsif Sec_Stack_Needed_For_Return (Subp) then
2507 return Abandon;
2508 end if;
2509 end if;
2511 -- Continue traversing the tree
2513 return OK;
2514 end Check_Call;
2516 function Check_Calls is new Traverse_Func (Check_Call);
2518 -- Start of processing for Has_Call_Using_Secondary_Stack
2520 begin
2521 return Check_Calls (N) = Abandon;
2522 end Has_Call_Using_Secondary_Stack;
2524 --------------------
2525 -- Process_Bounds --
2526 --------------------
2528 procedure Process_Bounds (R : Node_Id) is
2529 Loc : constant Source_Ptr := Sloc (N);
2531 function One_Bound
2532 (Original_Bound : Node_Id;
2533 Analyzed_Bound : Node_Id;
2534 Typ : Entity_Id) return Node_Id;
2535 -- Capture value of bound and return captured value
2537 ---------------
2538 -- One_Bound --
2539 ---------------
2541 function One_Bound
2542 (Original_Bound : Node_Id;
2543 Analyzed_Bound : Node_Id;
2544 Typ : Entity_Id) return Node_Id
2546 Assign : Node_Id;
2547 Decl : Node_Id;
2548 Id : Entity_Id;
2550 begin
2551 -- If the bound is a constant or an object, no need for a separate
2552 -- declaration. If the bound is the result of previous expansion
2553 -- it is already analyzed and should not be modified. Note that
2554 -- the Bound will be resolved later, if needed, as part of the
2555 -- call to Make_Index (literal bounds may need to be resolved to
2556 -- type Integer).
2558 if Analyzed (Original_Bound) then
2559 return Original_Bound;
2561 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2562 N_Character_Literal)
2563 or else Is_Entity_Name (Analyzed_Bound)
2564 then
2565 Analyze_And_Resolve (Original_Bound, Typ);
2566 return Original_Bound;
2567 end if;
2569 -- Normally, the best approach is simply to generate a constant
2570 -- declaration that captures the bound. However, there is a nasty
2571 -- case where this is wrong. If the bound is complex, and has a
2572 -- possible use of the secondary stack, we need to generate a
2573 -- separate assignment statement to ensure the creation of a block
2574 -- which will release the secondary stack.
2576 -- We prefer the constant declaration, since it leaves us with a
2577 -- proper trace of the value, useful in optimizations that get rid
2578 -- of junk range checks.
2580 if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
2581 Analyze_And_Resolve (Original_Bound, Typ);
2583 -- Ensure that the bound is valid. This check should not be
2584 -- generated when the range belongs to a quantified expression
2585 -- as the construct is still not expanded into its final form.
2587 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
2588 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
2589 then
2590 Ensure_Valid (Original_Bound);
2591 end if;
2593 Force_Evaluation (Original_Bound);
2594 return Original_Bound;
2595 end if;
2597 Id := Make_Temporary (Loc, 'R', Original_Bound);
2599 -- Here we make a declaration with a separate assignment
2600 -- statement, and insert before loop header.
2602 Decl :=
2603 Make_Object_Declaration (Loc,
2604 Defining_Identifier => Id,
2605 Object_Definition => New_Occurrence_Of (Typ, Loc));
2607 Assign :=
2608 Make_Assignment_Statement (Loc,
2609 Name => New_Occurrence_Of (Id, Loc),
2610 Expression => Relocate_Node (Original_Bound));
2612 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2614 -- Now that this temporary variable is initialized we decorate it
2615 -- as safe-to-reevaluate to inform to the backend that no further
2616 -- asignment will be issued and hence it can be handled as side
2617 -- effect free. Note that this decoration must be done when the
2618 -- assignment has been analyzed because otherwise it will be
2619 -- rejected (see Analyze_Assignment).
2621 Set_Is_Safe_To_Reevaluate (Id);
2623 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2625 if Nkind (Assign) = N_Assignment_Statement then
2626 return Expression (Assign);
2627 else
2628 return Original_Bound;
2629 end if;
2630 end One_Bound;
2632 Hi : constant Node_Id := High_Bound (R);
2633 Lo : constant Node_Id := Low_Bound (R);
2634 R_Copy : constant Node_Id := New_Copy_Tree (R);
2635 New_Hi : Node_Id;
2636 New_Lo : Node_Id;
2637 Typ : Entity_Id;
2639 -- Start of processing for Process_Bounds
2641 begin
2642 Set_Parent (R_Copy, Parent (R));
2643 Preanalyze_Range (R_Copy);
2644 Typ := Etype (R_Copy);
2646 -- If the type of the discrete range is Universal_Integer, then the
2647 -- bound's type must be resolved to Integer, and any object used to
2648 -- hold the bound must also have type Integer, unless the literal
2649 -- bounds are constant-folded expressions with a user-defined type.
2651 if Typ = Universal_Integer then
2652 if Nkind (Lo) = N_Integer_Literal
2653 and then Present (Etype (Lo))
2654 and then Scope (Etype (Lo)) /= Standard_Standard
2655 then
2656 Typ := Etype (Lo);
2658 elsif Nkind (Hi) = N_Integer_Literal
2659 and then Present (Etype (Hi))
2660 and then Scope (Etype (Hi)) /= Standard_Standard
2661 then
2662 Typ := Etype (Hi);
2664 else
2665 Typ := Standard_Integer;
2666 end if;
2667 end if;
2669 Set_Etype (R, Typ);
2671 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2672 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2674 -- Propagate staticness to loop range itself, in case the
2675 -- corresponding subtype is static.
2677 if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
2678 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2679 end if;
2681 if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
2682 Rewrite (High_Bound (R), New_Copy (New_Hi));
2683 end if;
2684 end Process_Bounds;
2686 -- Local variables
2688 DS : constant Node_Id := Discrete_Subtype_Definition (N);
2689 Id : constant Entity_Id := Defining_Identifier (N);
2691 DS_Copy : Node_Id;
2693 -- Start of processing for Analyze_Loop_Parameter_Specification
2695 begin
2696 Enter_Name (Id);
2698 -- We always consider the loop variable to be referenced, since the loop
2699 -- may be used just for counting purposes.
2701 Generate_Reference (Id, N, ' ');
2703 -- Check for the case of loop variable hiding a local variable (used
2704 -- later on to give a nice warning if the hidden variable is never
2705 -- assigned).
2707 declare
2708 H : constant Entity_Id := Homonym (Id);
2709 begin
2710 if Present (H)
2711 and then Ekind (H) = E_Variable
2712 and then Is_Discrete_Type (Etype (H))
2713 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
2714 then
2715 Set_Hiding_Loop_Variable (H, Id);
2716 end if;
2717 end;
2719 -- Loop parameter specification must include subtype mark in SPARK
2721 if Nkind (DS) = N_Range then
2722 Check_SPARK_05_Restriction
2723 ("loop parameter specification must include subtype mark", N);
2724 end if;
2726 -- Analyze the subtype definition and create temporaries for the bounds.
2727 -- Do not evaluate the range when preanalyzing a quantified expression
2728 -- because bounds expressed as function calls with side effects will be
2729 -- incorrectly replicated.
2731 if Nkind (DS) = N_Range
2732 and then Expander_Active
2733 and then Nkind (Parent (N)) /= N_Quantified_Expression
2734 then
2735 Process_Bounds (DS);
2737 -- Either the expander not active or the range of iteration is a subtype
2738 -- indication, an entity, or a function call that yields an aggregate or
2739 -- a container.
2741 else
2742 DS_Copy := New_Copy_Tree (DS);
2743 Set_Parent (DS_Copy, Parent (DS));
2744 Preanalyze_Range (DS_Copy);
2746 -- Ada 2012: If the domain of iteration is:
2748 -- a) a function call,
2749 -- b) an identifier that is not a type,
2750 -- c) an attribute reference 'Old (within a postcondition)
2751 -- d) an unchecked conversion
2753 -- then it is an iteration over a container. It was classified as
2754 -- a loop specification by the parser, and must be rewritten now
2755 -- to activate container iteration. The last case will occur within
2756 -- an expanded inlined call, where the expansion wraps an actual in
2757 -- an unchecked conversion when needed. The expression of the
2758 -- conversion is always an object.
2760 if Nkind (DS_Copy) = N_Function_Call
2761 or else (Is_Entity_Name (DS_Copy)
2762 and then not Is_Type (Entity (DS_Copy)))
2763 or else (Nkind (DS_Copy) = N_Attribute_Reference
2764 and then Nam_In (Attribute_Name (DS_Copy),
2765 Name_Old, Name_Loop_Entry))
2766 or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
2767 or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)
2768 then
2769 -- This is an iterator specification. Rewrite it as such and
2770 -- analyze it to capture function calls that may require
2771 -- finalization actions.
2773 declare
2774 I_Spec : constant Node_Id :=
2775 Make_Iterator_Specification (Sloc (N),
2776 Defining_Identifier => Relocate_Node (Id),
2777 Name => DS_Copy,
2778 Subtype_Indication => Empty,
2779 Reverse_Present => Reverse_Present (N));
2780 Scheme : constant Node_Id := Parent (N);
2782 begin
2783 Set_Iterator_Specification (Scheme, I_Spec);
2784 Set_Loop_Parameter_Specification (Scheme, Empty);
2785 Analyze_Iterator_Specification (I_Spec);
2787 -- In a generic context, analyze the original domain of
2788 -- iteration, for name capture.
2790 if not Expander_Active then
2791 Analyze (DS);
2792 end if;
2794 -- Set kind of loop parameter, which may be used in the
2795 -- subsequent analysis of the condition in a quantified
2796 -- expression.
2798 Set_Ekind (Id, E_Loop_Parameter);
2799 return;
2800 end;
2802 -- Domain of iteration is not a function call, and is side-effect
2803 -- free.
2805 else
2806 -- A quantified expression that appears in a pre/post condition
2807 -- is pre-analyzed several times. If the range is given by an
2808 -- attribute reference it is rewritten as a range, and this is
2809 -- done even with expansion disabled. If the type is already set
2810 -- do not reanalyze, because a range with static bounds may be
2811 -- typed Integer by default.
2813 if Nkind (Parent (N)) = N_Quantified_Expression
2814 and then Present (Etype (DS))
2815 then
2816 null;
2817 else
2818 Analyze (DS);
2819 end if;
2820 end if;
2821 end if;
2823 if DS = Error then
2824 return;
2825 end if;
2827 -- Some additional checks if we are iterating through a type
2829 if Is_Entity_Name (DS)
2830 and then Present (Entity (DS))
2831 and then Is_Type (Entity (DS))
2832 then
2833 -- The subtype indication may denote the completion of an incomplete
2834 -- type declaration.
2836 if Ekind (Entity (DS)) = E_Incomplete_Type then
2837 Set_Entity (DS, Get_Full_View (Entity (DS)));
2838 Set_Etype (DS, Entity (DS));
2839 end if;
2841 Check_Predicate_Use (Entity (DS));
2842 end if;
2844 -- Error if not discrete type
2846 if not Is_Discrete_Type (Etype (DS)) then
2847 Wrong_Type (DS, Any_Discrete);
2848 Set_Etype (DS, Any_Type);
2849 end if;
2851 Check_Controlled_Array_Attribute (DS);
2853 if Nkind (DS) = N_Subtype_Indication then
2854 Check_Predicate_Use (Entity (Subtype_Mark (DS)));
2855 end if;
2857 Make_Index (DS, N, In_Iter_Schm => True);
2858 Set_Ekind (Id, E_Loop_Parameter);
2860 -- A quantified expression which appears in a pre- or post-condition may
2861 -- be analyzed multiple times. The analysis of the range creates several
2862 -- itypes which reside in different scopes depending on whether the pre-
2863 -- or post-condition has been expanded. Update the type of the loop
2864 -- variable to reflect the proper itype at each stage of analysis.
2866 if No (Etype (Id))
2867 or else Etype (Id) = Any_Type
2868 or else
2869 (Present (Etype (Id))
2870 and then Is_Itype (Etype (Id))
2871 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
2872 and then Nkind (Original_Node (Parent (Loop_Nod))) =
2873 N_Quantified_Expression)
2874 then
2875 Set_Etype (Id, Etype (DS));
2876 end if;
2878 -- Treat a range as an implicit reference to the type, to inhibit
2879 -- spurious warnings.
2881 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
2882 Set_Is_Known_Valid (Id, True);
2884 -- The loop is not a declarative part, so the loop variable must be
2885 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2886 -- expression because the freeze node will not be inserted into the
2887 -- tree due to flag Is_Spec_Expression being set.
2889 if Nkind (Parent (N)) /= N_Quantified_Expression then
2890 declare
2891 Flist : constant List_Id := Freeze_Entity (Id, N);
2892 begin
2893 if Is_Non_Empty_List (Flist) then
2894 Insert_Actions (N, Flist);
2895 end if;
2896 end;
2897 end if;
2899 -- Case where we have a range or a subtype, get type bounds
2901 if Nkind_In (DS, N_Range, N_Subtype_Indication)
2902 and then not Error_Posted (DS)
2903 and then Etype (DS) /= Any_Type
2904 and then Is_Discrete_Type (Etype (DS))
2905 then
2906 declare
2907 L : Node_Id;
2908 H : Node_Id;
2910 begin
2911 if Nkind (DS) = N_Range then
2912 L := Low_Bound (DS);
2913 H := High_Bound (DS);
2914 else
2915 L :=
2916 Type_Low_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
2917 H :=
2918 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
2919 end if;
2921 -- Check for null or possibly null range and issue warning. We
2922 -- suppress such messages in generic templates and instances,
2923 -- because in practice they tend to be dubious in these cases. The
2924 -- check applies as well to rewritten array element loops where a
2925 -- null range may be detected statically.
2927 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
2929 -- Suppress the warning if inside a generic template or
2930 -- instance, since in practice they tend to be dubious in these
2931 -- cases since they can result from intended parameterization.
2933 if not Inside_A_Generic and then not In_Instance then
2935 -- Specialize msg if invalid values could make the loop
2936 -- non-null after all.
2938 if Compile_Time_Compare
2939 (L, H, Assume_Valid => False) = GT
2940 then
2941 -- Since we know the range of the loop is null, set the
2942 -- appropriate flag to remove the loop entirely during
2943 -- expansion.
2945 Set_Is_Null_Loop (Loop_Nod);
2947 if Comes_From_Source (N) then
2948 Error_Msg_N
2949 ("??loop range is null, loop will not execute", DS);
2950 end if;
2952 -- Here is where the loop could execute because of
2953 -- invalid values, so issue appropriate message and in
2954 -- this case we do not set the Is_Null_Loop flag since
2955 -- the loop may execute.
2957 elsif Comes_From_Source (N) then
2958 Error_Msg_N
2959 ("??loop range may be null, loop may not execute",
2960 DS);
2961 Error_Msg_N
2962 ("??can only execute if invalid values are present",
2963 DS);
2964 end if;
2965 end if;
2967 -- In either case, suppress warnings in the body of the loop,
2968 -- since it is likely that these warnings will be inappropriate
2969 -- if the loop never actually executes, which is likely.
2971 Set_Suppress_Loop_Warnings (Loop_Nod);
2973 -- The other case for a warning is a reverse loop where the
2974 -- upper bound is the integer literal zero or one, and the
2975 -- lower bound may exceed this value.
2977 -- For example, we have
2979 -- for J in reverse N .. 1 loop
2981 -- In practice, this is very likely to be a case of reversing
2982 -- the bounds incorrectly in the range.
2984 elsif Reverse_Present (N)
2985 and then Nkind (Original_Node (H)) = N_Integer_Literal
2986 and then
2987 (Intval (Original_Node (H)) = Uint_0
2988 or else
2989 Intval (Original_Node (H)) = Uint_1)
2990 then
2991 -- Lower bound may in fact be known and known not to exceed
2992 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
2994 if Compile_Time_Known_Value (L)
2995 and then Expr_Value (L) <= Expr_Value (H)
2996 then
2997 null;
2999 -- Otherwise warning is warranted
3001 else
3002 Error_Msg_N ("??loop range may be null", DS);
3003 Error_Msg_N ("\??bounds may be wrong way round", DS);
3004 end if;
3005 end if;
3007 -- Check if either bound is known to be outside the range of the
3008 -- loop parameter type, this is e.g. the case of a loop from
3009 -- 20..X where the type is 1..19.
3011 -- Such a loop is dubious since either it raises CE or it executes
3012 -- zero times, and that cannot be useful!
3014 if Etype (DS) /= Any_Type
3015 and then not Error_Posted (DS)
3016 and then Nkind (DS) = N_Subtype_Indication
3017 and then Nkind (Constraint (DS)) = N_Range_Constraint
3018 then
3019 declare
3020 LLo : constant Node_Id :=
3021 Low_Bound (Range_Expression (Constraint (DS)));
3022 LHi : constant Node_Id :=
3023 High_Bound (Range_Expression (Constraint (DS)));
3025 Bad_Bound : Node_Id := Empty;
3026 -- Suspicious loop bound
3028 begin
3029 -- At this stage L, H are the bounds of the type, and LLo
3030 -- Lhi are the low bound and high bound of the loop.
3032 if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
3033 or else
3034 Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
3035 then
3036 Bad_Bound := LLo;
3037 end if;
3039 if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
3040 or else
3041 Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
3042 then
3043 Bad_Bound := LHi;
3044 end if;
3046 if Present (Bad_Bound) then
3047 Error_Msg_N
3048 ("suspicious loop bound out of range of "
3049 & "loop subtype??", Bad_Bound);
3050 Error_Msg_N
3051 ("\loop executes zero times or raises "
3052 & "Constraint_Error??", Bad_Bound);
3053 end if;
3054 end;
3055 end if;
3057 -- This declare block is about warnings, if we get an exception while
3058 -- testing for warnings, we simply abandon the attempt silently. This
3059 -- most likely occurs as the result of a previous error, but might
3060 -- just be an obscure case we have missed. In either case, not giving
3061 -- the warning is perfectly acceptable.
3063 exception
3064 when others => null;
3065 end;
3066 end if;
3068 -- A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
3069 -- This check is relevant only when SPARK_Mode is on as it is not a
3070 -- standard Ada legality check.
3072 if SPARK_Mode = On and then Is_Effectively_Volatile (Id) then
3073 Error_Msg_N ("loop parameter cannot be volatile", Id);
3074 end if;
3075 end Analyze_Loop_Parameter_Specification;
3077 ----------------------------
3078 -- Analyze_Loop_Statement --
3079 ----------------------------
3081 procedure Analyze_Loop_Statement (N : Node_Id) is
3083 function Is_Container_Iterator (Iter : Node_Id) return Boolean;
3084 -- Given a loop iteration scheme, determine whether it is an Ada 2012
3085 -- container iteration.
3087 function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
3088 -- Determine whether loop statement N has been wrapped in a block to
3089 -- capture finalization actions that may be generated for container
3090 -- iterators. Prevents infinite recursion when block is analyzed.
3091 -- Routine is a noop if loop is single statement within source block.
3093 ---------------------------
3094 -- Is_Container_Iterator --
3095 ---------------------------
3097 function Is_Container_Iterator (Iter : Node_Id) return Boolean is
3098 begin
3099 -- Infinite loop
3101 if No (Iter) then
3102 return False;
3104 -- While loop
3106 elsif Present (Condition (Iter)) then
3107 return False;
3109 -- for Def_Id in [reverse] Name loop
3110 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
3112 elsif Present (Iterator_Specification (Iter)) then
3113 declare
3114 Nam : constant Node_Id := Name (Iterator_Specification (Iter));
3115 Nam_Copy : Node_Id;
3117 begin
3118 Nam_Copy := New_Copy_Tree (Nam);
3119 Set_Parent (Nam_Copy, Parent (Nam));
3120 Preanalyze_Range (Nam_Copy);
3122 -- The only two options here are iteration over a container or
3123 -- an array.
3125 return not Is_Array_Type (Etype (Nam_Copy));
3126 end;
3128 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
3130 else
3131 declare
3132 LP : constant Node_Id := Loop_Parameter_Specification (Iter);
3133 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
3134 DS_Copy : Node_Id;
3136 begin
3137 DS_Copy := New_Copy_Tree (DS);
3138 Set_Parent (DS_Copy, Parent (DS));
3139 Preanalyze_Range (DS_Copy);
3141 -- Check for a call to Iterate ()
3143 return
3144 Nkind (DS_Copy) = N_Function_Call
3145 and then Needs_Finalization (Etype (DS_Copy));
3146 end;
3147 end if;
3148 end Is_Container_Iterator;
3150 -------------------------
3151 -- Is_Wrapped_In_Block --
3152 -------------------------
3154 function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
3155 HSS : Node_Id;
3156 Stat : Node_Id;
3158 begin
3160 -- Check if current scope is a block that is not a transient block.
3162 if Ekind (Current_Scope) /= E_Block
3163 or else No (Block_Node (Current_Scope))
3164 then
3165 return False;
3167 else
3168 HSS :=
3169 Handled_Statement_Sequence (Parent (Block_Node (Current_Scope)));
3171 -- Skip leading pragmas that may be introduced for invariant and
3172 -- predicate checks.
3174 Stat := First (Statements (HSS));
3175 while Present (Stat) and then Nkind (Stat) = N_Pragma loop
3176 Stat := Next (Stat);
3177 end loop;
3179 return Stat = N and then No (Next (Stat));
3180 end if;
3181 end Is_Wrapped_In_Block;
3183 -- Local declarations
3185 Id : constant Node_Id := Identifier (N);
3186 Iter : constant Node_Id := Iteration_Scheme (N);
3187 Loc : constant Source_Ptr := Sloc (N);
3188 Ent : Entity_Id;
3189 Stmt : Node_Id;
3191 -- Start of processing for Analyze_Loop_Statement
3193 begin
3194 if Present (Id) then
3196 -- Make name visible, e.g. for use in exit statements. Loop labels
3197 -- are always considered to be referenced.
3199 Analyze (Id);
3200 Ent := Entity (Id);
3202 -- Guard against serious error (typically, a scope mismatch when
3203 -- semantic analysis is requested) by creating loop entity to
3204 -- continue analysis.
3206 if No (Ent) then
3207 if Total_Errors_Detected /= 0 then
3208 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3209 else
3210 raise Program_Error;
3211 end if;
3213 -- Verify that the loop name is hot hidden by an unrelated
3214 -- declaration in an inner scope.
3216 elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
3217 Error_Msg_Sloc := Sloc (Ent);
3218 Error_Msg_N ("implicit label declaration for & is hidden#", Id);
3220 if Present (Homonym (Ent))
3221 and then Ekind (Homonym (Ent)) = E_Label
3222 then
3223 Set_Entity (Id, Ent);
3224 Set_Ekind (Ent, E_Loop);
3225 end if;
3227 else
3228 Generate_Reference (Ent, N, ' ');
3229 Generate_Definition (Ent);
3231 -- If we found a label, mark its type. If not, ignore it, since it
3232 -- means we have a conflicting declaration, which would already
3233 -- have been diagnosed at declaration time. Set Label_Construct
3234 -- of the implicit label declaration, which is not created by the
3235 -- parser for generic units.
3237 if Ekind (Ent) = E_Label then
3238 Set_Ekind (Ent, E_Loop);
3240 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
3241 Set_Label_Construct (Parent (Ent), N);
3242 end if;
3243 end if;
3244 end if;
3246 -- Case of no identifier present. Create one and attach it to the
3247 -- loop statement for use as a scope and as a reference for later
3248 -- expansions. Indicate that the label does not come from source,
3249 -- and attach it to the loop statement so it is part of the tree,
3250 -- even without a full declaration.
3252 else
3253 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3254 Set_Etype (Ent, Standard_Void_Type);
3255 Set_Identifier (N, New_Occurrence_Of (Ent, Loc));
3256 Set_Parent (Ent, N);
3257 Set_Has_Created_Identifier (N);
3258 end if;
3260 -- Iteration over a container in Ada 2012 involves the creation of a
3261 -- controlled iterator object. Wrap the loop in a block to ensure the
3262 -- timely finalization of the iterator and release of container locks.
3263 -- The same applies to the use of secondary stack when obtaining an
3264 -- iterator.
3266 if Ada_Version >= Ada_2012
3267 and then Is_Container_Iterator (Iter)
3268 and then not Is_Wrapped_In_Block (N)
3269 then
3270 declare
3271 Block_Nod : Node_Id;
3272 Block_Id : Entity_Id;
3274 begin
3275 Block_Nod :=
3276 Make_Block_Statement (Loc,
3277 Declarations => New_List,
3278 Handled_Statement_Sequence =>
3279 Make_Handled_Sequence_Of_Statements (Loc,
3280 Statements => New_List (Relocate_Node (N))));
3282 Add_Block_Identifier (Block_Nod, Block_Id);
3284 -- The expansion of iterator loops generates an iterator in order
3285 -- to traverse the elements of a container:
3287 -- Iter : <iterator type> := Iterate (Container)'reference;
3289 -- The iterator is controlled and returned on the secondary stack.
3290 -- The analysis of the call to Iterate establishes a transient
3291 -- scope to deal with the secondary stack management, but never
3292 -- really creates a physical block as this would kill the iterator
3293 -- too early (see Wrap_Transient_Declaration). To address this
3294 -- case, mark the generated block as needing secondary stack
3295 -- management.
3297 Set_Uses_Sec_Stack (Block_Id);
3299 Rewrite (N, Block_Nod);
3300 Analyze (N);
3301 return;
3302 end;
3303 end if;
3305 -- Kill current values on entry to loop, since statements in the body of
3306 -- the loop may have been executed before the loop is entered. Similarly
3307 -- we kill values after the loop, since we do not know that the body of
3308 -- the loop was executed.
3310 Kill_Current_Values;
3311 Push_Scope (Ent);
3312 Analyze_Iteration_Scheme (Iter);
3314 -- Check for following case which merits a warning if the type E of is
3315 -- a multi-dimensional array (and no explicit subscript ranges present).
3317 -- for J in E'Range
3318 -- for K in E'Range
3320 if Present (Iter)
3321 and then Present (Loop_Parameter_Specification (Iter))
3322 then
3323 declare
3324 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
3325 DSD : constant Node_Id :=
3326 Original_Node (Discrete_Subtype_Definition (LPS));
3327 begin
3328 if Nkind (DSD) = N_Attribute_Reference
3329 and then Attribute_Name (DSD) = Name_Range
3330 and then No (Expressions (DSD))
3331 then
3332 declare
3333 Typ : constant Entity_Id := Etype (Prefix (DSD));
3334 begin
3335 if Is_Array_Type (Typ)
3336 and then Number_Dimensions (Typ) > 1
3337 and then Nkind (Parent (N)) = N_Loop_Statement
3338 and then Present (Iteration_Scheme (Parent (N)))
3339 then
3340 declare
3341 OIter : constant Node_Id :=
3342 Iteration_Scheme (Parent (N));
3343 OLPS : constant Node_Id :=
3344 Loop_Parameter_Specification (OIter);
3345 ODSD : constant Node_Id :=
3346 Original_Node (Discrete_Subtype_Definition (OLPS));
3347 begin
3348 if Nkind (ODSD) = N_Attribute_Reference
3349 and then Attribute_Name (ODSD) = Name_Range
3350 and then No (Expressions (ODSD))
3351 and then Etype (Prefix (ODSD)) = Typ
3352 then
3353 Error_Msg_Sloc := Sloc (ODSD);
3354 Error_Msg_N
3355 ("inner range same as outer range#??", DSD);
3356 end if;
3357 end;
3358 end if;
3359 end;
3360 end if;
3361 end;
3362 end if;
3364 -- Analyze the statements of the body except in the case of an Ada 2012
3365 -- iterator with the expander active. In this case the expander will do
3366 -- a rewrite of the loop into a while loop. We will then analyze the
3367 -- loop body when we analyze this while loop.
3369 -- We need to do this delay because if the container is for indefinite
3370 -- types the actual subtype of the components will only be determined
3371 -- when the cursor declaration is analyzed.
3373 -- If the expander is not active then we want to analyze the loop body
3374 -- now even in the Ada 2012 iterator case, since the rewriting will not
3375 -- be done. Insert the loop variable in the current scope, if not done
3376 -- when analysing the iteration scheme. Set its kind properly to detect
3377 -- improper uses in the loop body.
3379 -- In GNATprove mode, we do one of the above depending on the kind of
3380 -- loop. If it is an iterator over an array, then we do not analyze the
3381 -- loop now. We will analyze it after it has been rewritten by the
3382 -- special SPARK expansion which is activated in GNATprove mode. We need
3383 -- to do this so that other expansions that should occur in GNATprove
3384 -- mode take into account the specificities of the rewritten loop, in
3385 -- particular the introduction of a renaming (which needs to be
3386 -- expanded).
3388 -- In other cases in GNATprove mode then we want to analyze the loop
3389 -- body now, since no rewriting will occur.
3391 if Present (Iter)
3392 and then Present (Iterator_Specification (Iter))
3393 then
3394 if GNATprove_Mode
3395 and then Is_Iterator_Over_Array (Iterator_Specification (Iter))
3396 then
3397 null;
3399 elsif not Expander_Active then
3400 declare
3401 I_Spec : constant Node_Id := Iterator_Specification (Iter);
3402 Id : constant Entity_Id := Defining_Identifier (I_Spec);
3404 begin
3405 if Scope (Id) /= Current_Scope then
3406 Enter_Name (Id);
3407 end if;
3409 -- In an element iterator, The loop parameter is a variable if
3410 -- the domain of iteration (container or array) is a variable.
3412 if not Of_Present (I_Spec)
3413 or else not Is_Variable (Name (I_Spec))
3414 then
3415 Set_Ekind (Id, E_Loop_Parameter);
3416 end if;
3417 end;
3419 Analyze_Statements (Statements (N));
3420 end if;
3422 else
3424 -- Pre-Ada2012 for-loops and while loops.
3426 Analyze_Statements (Statements (N));
3427 end if;
3429 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
3430 -- the loop is transformed into a conditional block. Retrieve the loop.
3432 Stmt := N;
3434 if Subject_To_Loop_Entry_Attributes (Stmt) then
3435 Stmt := Find_Loop_In_Conditional_Block (Stmt);
3436 end if;
3438 -- Finish up processing for the loop. We kill all current values, since
3439 -- in general we don't know if the statements in the loop have been
3440 -- executed. We could do a bit better than this with a loop that we
3441 -- know will execute at least once, but it's not worth the trouble and
3442 -- the front end is not in the business of flow tracing.
3444 Process_End_Label (Stmt, 'e', Ent);
3445 End_Scope;
3446 Kill_Current_Values;
3448 -- Check for infinite loop. Skip check for generated code, since it
3449 -- justs waste time and makes debugging the routine called harder.
3451 -- Note that we have to wait till the body of the loop is fully analyzed
3452 -- before making this call, since Check_Infinite_Loop_Warning relies on
3453 -- being able to use semantic visibility information to find references.
3455 if Comes_From_Source (Stmt) then
3456 Check_Infinite_Loop_Warning (Stmt);
3457 end if;
3459 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3460 -- contains no EXIT statements within the body of the loop.
3462 if No (Iter) and then not Has_Exit (Ent) then
3463 Check_Unreachable_Code (Stmt);
3464 end if;
3465 end Analyze_Loop_Statement;
3467 ----------------------------
3468 -- Analyze_Null_Statement --
3469 ----------------------------
3471 -- Note: the semantics of the null statement is implemented by a single
3472 -- null statement, too bad everything isn't as simple as this.
3474 procedure Analyze_Null_Statement (N : Node_Id) is
3475 pragma Warnings (Off, N);
3476 begin
3477 null;
3478 end Analyze_Null_Statement;
3480 ------------------------
3481 -- Analyze_Statements --
3482 ------------------------
3484 procedure Analyze_Statements (L : List_Id) is
3485 S : Node_Id;
3486 Lab : Entity_Id;
3488 begin
3489 -- The labels declared in the statement list are reachable from
3490 -- statements in the list. We do this as a prepass so that any goto
3491 -- statement will be properly flagged if its target is not reachable.
3492 -- This is not required, but is nice behavior.
3494 S := First (L);
3495 while Present (S) loop
3496 if Nkind (S) = N_Label then
3497 Analyze (Identifier (S));
3498 Lab := Entity (Identifier (S));
3500 -- If we found a label mark it as reachable
3502 if Ekind (Lab) = E_Label then
3503 Generate_Definition (Lab);
3504 Set_Reachable (Lab);
3506 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
3507 Set_Label_Construct (Parent (Lab), S);
3508 end if;
3510 -- If we failed to find a label, it means the implicit declaration
3511 -- of the label was hidden. A for-loop parameter can do this to
3512 -- a label with the same name inside the loop, since the implicit
3513 -- label declaration is in the innermost enclosing body or block
3514 -- statement.
3516 else
3517 Error_Msg_Sloc := Sloc (Lab);
3518 Error_Msg_N
3519 ("implicit label declaration for & is hidden#",
3520 Identifier (S));
3521 end if;
3522 end if;
3524 Next (S);
3525 end loop;
3527 -- Perform semantic analysis on all statements
3529 Conditional_Statements_Begin;
3531 S := First (L);
3532 while Present (S) loop
3533 Analyze (S);
3535 -- Remove dimension in all statements
3537 Remove_Dimension_In_Statement (S);
3538 Next (S);
3539 end loop;
3541 Conditional_Statements_End;
3543 -- Make labels unreachable. Visibility is not sufficient, because labels
3544 -- in one if-branch for example are not reachable from the other branch,
3545 -- even though their declarations are in the enclosing declarative part.
3547 S := First (L);
3548 while Present (S) loop
3549 if Nkind (S) = N_Label then
3550 Set_Reachable (Entity (Identifier (S)), False);
3551 end if;
3553 Next (S);
3554 end loop;
3555 end Analyze_Statements;
3557 ----------------------------
3558 -- Check_Unreachable_Code --
3559 ----------------------------
3561 procedure Check_Unreachable_Code (N : Node_Id) is
3562 Error_Node : Node_Id;
3563 P : Node_Id;
3565 begin
3566 if Is_List_Member (N) and then Comes_From_Source (N) then
3567 declare
3568 Nxt : Node_Id;
3570 begin
3571 Nxt := Original_Node (Next (N));
3573 -- Skip past pragmas
3575 while Nkind (Nxt) = N_Pragma loop
3576 Nxt := Original_Node (Next (Nxt));
3577 end loop;
3579 -- If a label follows us, then we never have dead code, since
3580 -- someone could branch to the label, so we just ignore it, unless
3581 -- we are in formal mode where goto statements are not allowed.
3583 if Nkind (Nxt) = N_Label
3584 and then not Restriction_Check_Required (SPARK_05)
3585 then
3586 return;
3588 -- Otherwise see if we have a real statement following us
3590 elsif Present (Nxt)
3591 and then Comes_From_Source (Nxt)
3592 and then Is_Statement (Nxt)
3593 then
3594 -- Special very annoying exception. If we have a return that
3595 -- follows a raise, then we allow it without a warning, since
3596 -- the Ada RM annoyingly requires a useless return here.
3598 if Nkind (Original_Node (N)) /= N_Raise_Statement
3599 or else Nkind (Nxt) /= N_Simple_Return_Statement
3600 then
3601 -- The rather strange shenanigans with the warning message
3602 -- here reflects the fact that Kill_Dead_Code is very good
3603 -- at removing warnings in deleted code, and this is one
3604 -- warning we would prefer NOT to have removed.
3606 Error_Node := Nxt;
3608 -- If we have unreachable code, analyze and remove the
3609 -- unreachable code, since it is useless and we don't
3610 -- want to generate junk warnings.
3612 -- We skip this step if we are not in code generation mode
3613 -- or CodePeer mode.
3615 -- This is the one case where we remove dead code in the
3616 -- semantics as opposed to the expander, and we do not want
3617 -- to remove code if we are not in code generation mode,
3618 -- since this messes up the ASIS trees or loses useful
3619 -- information in the CodePeer tree.
3621 -- Note that one might react by moving the whole circuit to
3622 -- exp_ch5, but then we lose the warning in -gnatc mode.
3624 if Operating_Mode = Generate_Code
3625 and then not CodePeer_Mode
3626 then
3627 loop
3628 Nxt := Next (N);
3630 -- Quit deleting when we have nothing more to delete
3631 -- or if we hit a label (since someone could transfer
3632 -- control to a label, so we should not delete it).
3634 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
3636 -- Statement/declaration is to be deleted
3638 Analyze (Nxt);
3639 Remove (Nxt);
3640 Kill_Dead_Code (Nxt);
3641 end loop;
3642 end if;
3644 -- Now issue the warning (or error in formal mode)
3646 if Restriction_Check_Required (SPARK_05) then
3647 Check_SPARK_05_Restriction
3648 ("unreachable code is not allowed", Error_Node);
3649 else
3650 Error_Msg ("??unreachable code!", Sloc (Error_Node));
3651 end if;
3652 end if;
3654 -- If the unconditional transfer of control instruction is the
3655 -- last statement of a sequence, then see if our parent is one of
3656 -- the constructs for which we count unblocked exits, and if so,
3657 -- adjust the count.
3659 else
3660 P := Parent (N);
3662 -- Statements in THEN part or ELSE part of IF statement
3664 if Nkind (P) = N_If_Statement then
3665 null;
3667 -- Statements in ELSIF part of an IF statement
3669 elsif Nkind (P) = N_Elsif_Part then
3670 P := Parent (P);
3671 pragma Assert (Nkind (P) = N_If_Statement);
3673 -- Statements in CASE statement alternative
3675 elsif Nkind (P) = N_Case_Statement_Alternative then
3676 P := Parent (P);
3677 pragma Assert (Nkind (P) = N_Case_Statement);
3679 -- Statements in body of block
3681 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
3682 and then Nkind (Parent (P)) = N_Block_Statement
3683 then
3684 -- The original loop is now placed inside a block statement
3685 -- due to the expansion of attribute 'Loop_Entry. Return as
3686 -- this is not a "real" block for the purposes of exit
3687 -- counting.
3689 if Nkind (N) = N_Loop_Statement
3690 and then Subject_To_Loop_Entry_Attributes (N)
3691 then
3692 return;
3693 end if;
3695 -- Statements in exception handler in a block
3697 elsif Nkind (P) = N_Exception_Handler
3698 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
3699 and then Nkind (Parent (Parent (P))) = N_Block_Statement
3700 then
3701 null;
3703 -- None of these cases, so return
3705 else
3706 return;
3707 end if;
3709 -- This was one of the cases we are looking for (i.e. the
3710 -- parent construct was IF, CASE or block) so decrement count.
3712 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
3713 end if;
3714 end;
3715 end if;
3716 end Check_Unreachable_Code;
3718 ----------------------
3719 -- Preanalyze_Range --
3720 ----------------------
3722 procedure Preanalyze_Range (R_Copy : Node_Id) is
3723 Save_Analysis : constant Boolean := Full_Analysis;
3724 Typ : Entity_Id;
3726 begin
3727 Full_Analysis := False;
3728 Expander_Mode_Save_And_Set (False);
3730 Analyze (R_Copy);
3732 if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
3734 -- Apply preference rules for range of predefined integer types, or
3735 -- diagnose true ambiguity.
3737 declare
3738 I : Interp_Index;
3739 It : Interp;
3740 Found : Entity_Id := Empty;
3742 begin
3743 Get_First_Interp (R_Copy, I, It);
3744 while Present (It.Typ) loop
3745 if Is_Discrete_Type (It.Typ) then
3746 if No (Found) then
3747 Found := It.Typ;
3748 else
3749 if Scope (Found) = Standard_Standard then
3750 null;
3752 elsif Scope (It.Typ) = Standard_Standard then
3753 Found := It.Typ;
3755 else
3756 -- Both of them are user-defined
3758 Error_Msg_N
3759 ("ambiguous bounds in range of iteration", R_Copy);
3760 Error_Msg_N ("\possible interpretations:", R_Copy);
3761 Error_Msg_NE ("\\} ", R_Copy, Found);
3762 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
3763 exit;
3764 end if;
3765 end if;
3766 end if;
3768 Get_Next_Interp (I, It);
3769 end loop;
3770 end;
3771 end if;
3773 -- Subtype mark in iteration scheme
3775 if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
3776 null;
3778 -- Expression in range, or Ada 2012 iterator
3780 elsif Nkind (R_Copy) in N_Subexpr then
3781 Resolve (R_Copy);
3782 Typ := Etype (R_Copy);
3784 if Is_Discrete_Type (Typ) then
3785 null;
3787 -- Check that the resulting object is an iterable container
3789 elsif Has_Aspect (Typ, Aspect_Iterator_Element)
3790 or else Has_Aspect (Typ, Aspect_Constant_Indexing)
3791 or else Has_Aspect (Typ, Aspect_Variable_Indexing)
3792 then
3793 null;
3795 -- The expression may yield an implicit reference to an iterable
3796 -- container. Insert explicit dereference so that proper type is
3797 -- visible in the loop.
3799 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
3800 declare
3801 Disc : Entity_Id;
3803 begin
3804 Disc := First_Discriminant (Typ);
3805 while Present (Disc) loop
3806 if Has_Implicit_Dereference (Disc) then
3807 Build_Explicit_Dereference (R_Copy, Disc);
3808 exit;
3809 end if;
3811 Next_Discriminant (Disc);
3812 end loop;
3813 end;
3815 end if;
3816 end if;
3818 Expander_Mode_Restore;
3819 Full_Analysis := Save_Analysis;
3820 end Preanalyze_Range;
3822 end Sem_Ch5;