1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Expander
; use Expander
;
32 with Exp_Ch6
; use Exp_Ch6
;
33 with Exp_Ch7
; use Exp_Ch7
;
34 with Exp_Util
; use Exp_Util
;
35 with Freeze
; use Freeze
;
36 with Ghost
; use Ghost
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Namet
; use Namet
;
40 with Nlists
; use Nlists
;
41 with Nmake
; use Nmake
;
43 with Restrict
; use Restrict
;
44 with Rident
; use Rident
;
45 with Rtsfind
; use Rtsfind
;
47 with Sem_Aux
; use Sem_Aux
;
48 with Sem_Case
; use Sem_Case
;
49 with Sem_Ch3
; use Sem_Ch3
;
50 with Sem_Ch6
; use Sem_Ch6
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Dim
; use Sem_Dim
;
53 with Sem_Disp
; use Sem_Disp
;
54 with Sem_Elab
; use Sem_Elab
;
55 with Sem_Eval
; use Sem_Eval
;
56 with Sem_Res
; use Sem_Res
;
57 with Sem_Type
; use Sem_Type
;
58 with Sem_Util
; use Sem_Util
;
59 with Sem_Warn
; use Sem_Warn
;
60 with Snames
; use Snames
;
61 with Stand
; use Stand
;
62 with Sinfo
; use Sinfo
;
63 with Targparm
; use Targparm
;
64 with Tbuild
; use Tbuild
;
65 with Uintp
; use Uintp
;
67 package body Sem_Ch5
is
69 Unblocked_Exit_Count
: Nat
:= 0;
70 -- This variable is used when processing if statements, case statements,
71 -- and block statements. It counts the number of exit points that are not
72 -- blocked by unconditional transfer instructions: for IF and CASE, these
73 -- are the branches of the conditional; for a block, they are the statement
74 -- sequence of the block, and the statement sequences of any exception
75 -- handlers that are part of the block. When processing is complete, if
76 -- this count is zero, it means that control cannot fall through the IF,
77 -- CASE or block statement. This is used for the generation of warning
78 -- messages. This variable is recursively saved on entry to processing the
79 -- construct, and restored on exit.
81 procedure Preanalyze_Range
(R_Copy
: Node_Id
);
82 -- Determine expected type of range or domain of iteration of Ada 2012
83 -- loop by analyzing separate copy. Do the analysis and resolution of the
84 -- copy of the bound(s) with expansion disabled, to prevent the generation
85 -- of finalization actions. This prevents memory leaks when the bounds
86 -- contain calls to functions returning controlled arrays or when the
87 -- domain of iteration is a container.
89 ------------------------
90 -- Analyze_Assignment --
91 ------------------------
93 procedure Analyze_Assignment
(N
: Node_Id
) is
94 Lhs
: constant Node_Id
:= Name
(N
);
95 Rhs
: constant Node_Id
:= Expression
(N
);
100 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
);
101 -- N is the node for the left hand side of an assignment, and it is not
102 -- a variable. This routine issues an appropriate diagnostic.
105 -- This is called to kill current value settings of a simple variable
106 -- on the left hand side. We call it if we find any error in analyzing
107 -- the assignment, and at the end of processing before setting any new
108 -- current values in place.
110 procedure Set_Assignment_Type
112 Opnd_Type
: in out Entity_Id
);
113 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
114 -- nominal subtype. This procedure is used to deal with cases where the
115 -- nominal subtype must be replaced by the actual subtype.
117 -------------------------------
118 -- Diagnose_Non_Variable_Lhs --
119 -------------------------------
121 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
) is
123 -- Not worth posting another error if left hand side already flagged
124 -- as being illegal in some respect.
126 if Error_Posted
(N
) then
129 -- Some special bad cases of entity names
131 elsif Is_Entity_Name
(N
) then
133 Ent
: constant Entity_Id
:= Entity
(N
);
136 if Ekind
(Ent
) = E_In_Parameter
then
138 ("assignment to IN mode parameter not allowed", N
);
141 -- Renamings of protected private components are turned into
142 -- constants when compiling a protected function. In the case
143 -- of single protected types, the private component appears
146 elsif (Is_Prival
(Ent
)
148 (Ekind
(Current_Scope
) = E_Function
149 or else Ekind
(Enclosing_Dynamic_Scope
150 (Current_Scope
)) = E_Function
))
152 (Ekind
(Ent
) = E_Component
153 and then Is_Protected_Type
(Scope
(Ent
)))
156 ("protected function cannot modify protected object", N
);
159 elsif Ekind
(Ent
) = E_Loop_Parameter
then
160 Error_Msg_N
("assignment to loop parameter not allowed", N
);
165 -- For indexed components, test prefix if it is in array. We do not
166 -- want to recurse for cases where the prefix is a pointer, since we
167 -- may get a message confusing the pointer and what it references.
169 elsif Nkind
(N
) = N_Indexed_Component
170 and then Is_Array_Type
(Etype
(Prefix
(N
)))
172 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
175 -- Another special case for assignment to discriminant
177 elsif Nkind
(N
) = N_Selected_Component
then
178 if Present
(Entity
(Selector_Name
(N
)))
179 and then Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
181 Error_Msg_N
("assignment to discriminant not allowed", N
);
184 -- For selection from record, diagnose prefix, but note that again
185 -- we only do this for a record, not e.g. for a pointer.
187 elsif Is_Record_Type
(Etype
(Prefix
(N
))) then
188 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
193 -- If we fall through, we have no special message to issue
195 Error_Msg_N
("left hand side of assignment must be a variable", N
);
196 end Diagnose_Non_Variable_Lhs
;
202 procedure Kill_Lhs
is
204 if Is_Entity_Name
(Lhs
) then
206 Ent
: constant Entity_Id
:= Entity
(Lhs
);
208 if Present
(Ent
) then
209 Kill_Current_Values
(Ent
);
215 -------------------------
216 -- Set_Assignment_Type --
217 -------------------------
219 procedure Set_Assignment_Type
221 Opnd_Type
: in out Entity_Id
)
224 Require_Entity
(Opnd
);
226 -- If the assignment operand is an in-out or out parameter, then we
227 -- get the actual subtype (needed for the unconstrained case). If the
228 -- operand is the actual in an entry declaration, then within the
229 -- accept statement it is replaced with a local renaming, which may
230 -- also have an actual subtype.
232 if Is_Entity_Name
(Opnd
)
233 and then (Ekind
(Entity
(Opnd
)) = E_Out_Parameter
234 or else Ekind_In
(Entity
(Opnd
),
236 E_Generic_In_Out_Parameter
)
238 (Ekind
(Entity
(Opnd
)) = E_Variable
239 and then Nkind
(Parent
(Entity
(Opnd
))) =
240 N_Object_Renaming_Declaration
241 and then Nkind
(Parent
(Parent
(Entity
(Opnd
)))) =
244 Opnd_Type
:= Get_Actual_Subtype
(Opnd
);
246 -- If assignment operand is a component reference, then we get the
247 -- actual subtype of the component for the unconstrained case.
249 elsif Nkind_In
(Opnd
, N_Selected_Component
, N_Explicit_Dereference
)
250 and then not Is_Unchecked_Union
(Opnd_Type
)
252 Decl
:= Build_Actual_Subtype_Of_Component
(Opnd_Type
, Opnd
);
254 if Present
(Decl
) then
255 Insert_Action
(N
, Decl
);
256 Mark_Rewrite_Insertion
(Decl
);
258 Opnd_Type
:= Defining_Identifier
(Decl
);
259 Set_Etype
(Opnd
, Opnd_Type
);
260 Freeze_Itype
(Opnd_Type
, N
);
262 elsif Is_Constrained
(Etype
(Opnd
)) then
263 Opnd_Type
:= Etype
(Opnd
);
266 -- For slice, use the constrained subtype created for the slice
268 elsif Nkind
(Opnd
) = N_Slice
then
269 Opnd_Type
:= Etype
(Opnd
);
271 end Set_Assignment_Type
;
275 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
277 -- Start of processing for Analyze_Assignment
280 Mark_Coextensions
(N
, Rhs
);
282 -- Analyze the target of the assignment first in case the expression
283 -- contains references to Ghost entities. The checks that verify the
284 -- proper use of a Ghost entity need to know the enclosing context.
288 -- An assignment statement is Ghost when the left hand side denotes a
289 -- Ghost entity. Set the mode now to ensure that any nodes generated
290 -- during analysis and expansion are properly marked as Ghost.
295 -- Ensure that we never do an assignment on a variable marked as
296 -- as Safe_To_Reevaluate.
298 pragma Assert
(not Is_Entity_Name
(Lhs
)
299 or else Ekind
(Entity
(Lhs
)) /= E_Variable
300 or else not Is_Safe_To_Reevaluate
(Entity
(Lhs
)));
302 -- Start type analysis for assignment
306 -- In the most general case, both Lhs and Rhs can be overloaded, and we
307 -- must compute the intersection of the possible types on each side.
309 if Is_Overloaded
(Lhs
) then
316 Get_First_Interp
(Lhs
, I
, It
);
318 while Present
(It
.Typ
) loop
320 -- An indexed component with generalized indexing is always
321 -- overloaded with the corresponding dereference. Discard the
322 -- interpretation that yields a reference type, which is not
325 if Nkind
(Lhs
) = N_Indexed_Component
326 and then Present
(Generalized_Indexing
(Lhs
))
327 and then Has_Implicit_Dereference
(It
.Typ
)
331 elsif Has_Compatible_Type
(Rhs
, It
.Typ
) then
332 if T1
/= Any_Type
then
334 -- An explicit dereference is overloaded if the prefix
335 -- is. Try to remove the ambiguity on the prefix, the
336 -- error will be posted there if the ambiguity is real.
338 if Nkind
(Lhs
) = N_Explicit_Dereference
then
341 PI1
: Interp_Index
:= 0;
347 Get_First_Interp
(Prefix
(Lhs
), PI
, PIt
);
349 while Present
(PIt
.Typ
) loop
350 if Is_Access_Type
(PIt
.Typ
)
351 and then Has_Compatible_Type
352 (Rhs
, Designated_Type
(PIt
.Typ
))
356 Disambiguate
(Prefix
(Lhs
),
359 if PIt
= No_Interp
then
361 ("ambiguous left-hand side"
362 & " in assignment", Lhs
);
365 Resolve
(Prefix
(Lhs
), PIt
.Typ
);
375 Get_Next_Interp
(PI
, PIt
);
381 ("ambiguous left-hand side in assignment", Lhs
);
389 Get_Next_Interp
(I
, It
);
393 if T1
= Any_Type
then
395 ("no valid types for left-hand side for assignment", Lhs
);
397 Ghost_Mode
:= Save_Ghost_Mode
;
402 -- The resulting assignment type is T1, so now we will resolve the left
403 -- hand side of the assignment using this determined type.
407 -- Cases where Lhs is not a variable
409 -- Cases where Lhs is not a variable. In an instance or an inlined body
410 -- no need for further check because assignment was legal in template.
412 if In_Inlined_Body
then
415 elsif not Is_Variable
(Lhs
) then
417 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
425 if Ada_Version
>= Ada_2005
then
427 -- Handle chains of renamings
430 while Nkind
(Ent
) in N_Has_Entity
431 and then Present
(Entity
(Ent
))
432 and then Present
(Renamed_Object
(Entity
(Ent
)))
434 Ent
:= Renamed_Object
(Entity
(Ent
));
437 if (Nkind
(Ent
) = N_Attribute_Reference
438 and then Attribute_Name
(Ent
) = Name_Priority
)
440 -- Renamings of the attribute Priority applied to protected
441 -- objects have been previously expanded into calls to the
442 -- Get_Ceiling run-time subprogram.
445 (Nkind
(Ent
) = N_Function_Call
446 and then (Entity
(Name
(Ent
)) = RTE
(RE_Get_Ceiling
)
448 Entity
(Name
(Ent
)) = RTE
(RO_PE_Get_Ceiling
)))
450 -- The enclosing subprogram cannot be a protected function
453 while not (Is_Subprogram
(S
)
454 and then Convention
(S
) = Convention_Protected
)
455 and then S
/= Standard_Standard
460 if Ekind
(S
) = E_Function
461 and then Convention
(S
) = Convention_Protected
464 ("protected function cannot modify protected object",
468 -- Changes of the ceiling priority of the protected object
469 -- are only effective if the Ceiling_Locking policy is in
470 -- effect (AARM D.5.2 (5/2)).
472 if Locking_Policy
/= 'C' then
473 Error_Msg_N
("assignment to the attribute PRIORITY has " &
475 Error_Msg_N
("\since no Locking_Policy has been " &
479 Ghost_Mode
:= Save_Ghost_Mode
;
485 Diagnose_Non_Variable_Lhs
(Lhs
);
486 Ghost_Mode
:= Save_Ghost_Mode
;
489 -- Error of assigning to limited type. We do however allow this in
490 -- certain cases where the front end generates the assignments.
492 elsif Is_Limited_Type
(T1
)
493 and then not Assignment_OK
(Lhs
)
494 and then not Assignment_OK
(Original_Node
(Lhs
))
496 -- CPP constructors can only be called in declarations
498 if Is_CPP_Constructor_Call
(Rhs
) then
499 Error_Msg_N
("invalid use of 'C'P'P constructor", Rhs
);
502 ("left hand of assignment must not be limited type", Lhs
);
503 Explain_Limited_Type
(T1
, Lhs
);
506 Ghost_Mode
:= Save_Ghost_Mode
;
509 -- A class-wide type may be a limited view. This illegal case is not
510 -- caught by previous checks.
512 elsif Ekind
(T1
) = E_Class_Wide_Type
513 and then From_Limited_With
(T1
)
515 Error_Msg_NE
("invalid use of limited view of&", Lhs
, T1
);
518 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
519 -- abstract. This is only checked when the assignment Comes_From_Source,
520 -- because in some cases the expander generates such assignments (such
521 -- in the _assign operation for an abstract type).
523 elsif Is_Abstract_Type
(T1
) and then Comes_From_Source
(N
) then
525 ("target of assignment operation must not be abstract", Lhs
);
528 -- Resolution may have updated the subtype, in case the left-hand side
529 -- is a private protected component. Use the correct subtype to avoid
530 -- scoping issues in the back-end.
534 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
535 -- type. For example:
539 -- type Acc is access P.T;
542 -- with Pkg; use Acc;
543 -- procedure Example is
546 -- A.all := B.all; -- ERROR
549 if Nkind
(Lhs
) = N_Explicit_Dereference
550 and then Ekind
(T1
) = E_Incomplete_Type
552 Error_Msg_N
("invalid use of incomplete type", Lhs
);
554 Ghost_Mode
:= Save_Ghost_Mode
;
558 -- Now we can complete the resolution of the right hand side
560 Set_Assignment_Type
(Lhs
, T1
);
563 -- This is the point at which we check for an unset reference
565 Check_Unset_Reference
(Rhs
);
566 Check_Unprotected_Access
(Lhs
, Rhs
);
568 -- Remaining steps are skipped if Rhs was syntactically in error
572 Ghost_Mode
:= Save_Ghost_Mode
;
578 if not Covers
(T1
, T2
) then
579 Wrong_Type
(Rhs
, Etype
(Lhs
));
581 Ghost_Mode
:= Save_Ghost_Mode
;
585 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
586 -- types, use the non-limited view if available
588 if Nkind
(Rhs
) = N_Explicit_Dereference
589 and then Is_Tagged_Type
(T2
)
590 and then Has_Non_Limited_View
(T2
)
592 T2
:= Non_Limited_View
(T2
);
595 Set_Assignment_Type
(Rhs
, T2
);
597 if Total_Errors_Detected
/= 0 then
607 if T1
= Any_Type
or else T2
= Any_Type
then
609 Ghost_Mode
:= Save_Ghost_Mode
;
613 -- If the rhs is class-wide or dynamically tagged, then require the lhs
614 -- to be class-wide. The case where the rhs is a dynamically tagged call
615 -- to a dispatching operation with a controlling access result is
616 -- excluded from this check, since the target has an access type (and
617 -- no tag propagation occurs in that case).
619 if (Is_Class_Wide_Type
(T2
)
620 or else (Is_Dynamically_Tagged
(Rhs
)
621 and then not Is_Access_Type
(T1
)))
622 and then not Is_Class_Wide_Type
(T1
)
624 Error_Msg_N
("dynamically tagged expression not allowed!", Rhs
);
626 elsif Is_Class_Wide_Type
(T1
)
627 and then not Is_Class_Wide_Type
(T2
)
628 and then not Is_Tag_Indeterminate
(Rhs
)
629 and then not Is_Dynamically_Tagged
(Rhs
)
631 Error_Msg_N
("dynamically tagged expression required!", Rhs
);
634 -- Propagate the tag from a class-wide target to the rhs when the rhs
635 -- is a tag-indeterminate call.
637 if Is_Tag_Indeterminate
(Rhs
) then
638 if Is_Class_Wide_Type
(T1
) then
639 Propagate_Tag
(Lhs
, Rhs
);
641 elsif Nkind
(Rhs
) = N_Function_Call
642 and then Is_Entity_Name
(Name
(Rhs
))
643 and then Is_Abstract_Subprogram
(Entity
(Name
(Rhs
)))
646 ("call to abstract function must be dispatching", Name
(Rhs
));
648 elsif Nkind
(Rhs
) = N_Qualified_Expression
649 and then Nkind
(Expression
(Rhs
)) = N_Function_Call
650 and then Is_Entity_Name
(Name
(Expression
(Rhs
)))
652 Is_Abstract_Subprogram
(Entity
(Name
(Expression
(Rhs
))))
655 ("call to abstract function must be dispatching",
656 Name
(Expression
(Rhs
)));
660 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
661 -- apply an implicit conversion of the rhs to that type to force
662 -- appropriate static and run-time accessibility checks. This applies
663 -- as well to anonymous access-to-subprogram types that are component
664 -- subtypes or formal parameters.
666 if Ada_Version
>= Ada_2005
and then Is_Access_Type
(T1
) then
667 if Is_Local_Anonymous_Access
(T1
)
668 or else Ekind
(T2
) = E_Anonymous_Access_Subprogram_Type
670 -- Handle assignment to an Ada 2012 stand-alone object
671 -- of an anonymous access type.
673 or else (Ekind
(T1
) = E_Anonymous_Access_Type
674 and then Nkind
(Associated_Node_For_Itype
(T1
)) =
675 N_Object_Declaration
)
678 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
679 Analyze_And_Resolve
(Rhs
, T1
);
683 -- Ada 2005 (AI-231): Assignment to not null variable
685 if Ada_Version
>= Ada_2005
686 and then Can_Never_Be_Null
(T1
)
687 and then not Assignment_OK
(Lhs
)
689 -- Case where we know the right hand side is null
691 if Known_Null
(Rhs
) then
692 Apply_Compile_Time_Constraint_Error
695 "(Ada 2005) null not allowed in null-excluding objects??",
696 Reason
=> CE_Null_Not_Allowed
);
698 -- We still mark this as a possible modification, that's necessary
699 -- to reset Is_True_Constant, and desirable for xref purposes.
701 Note_Possible_Modification
(Lhs
, Sure
=> True);
702 Ghost_Mode
:= Save_Ghost_Mode
;
705 -- If we know the right hand side is non-null, then we convert to the
706 -- target type, since we don't need a run time check in that case.
708 elsif not Can_Never_Be_Null
(T2
) then
709 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
710 Analyze_And_Resolve
(Rhs
, T1
);
714 if Is_Scalar_Type
(T1
) then
715 Apply_Scalar_Range_Check
(Rhs
, Etype
(Lhs
));
717 -- For array types, verify that lengths match. If the right hand side
718 -- is a function call that has been inlined, the assignment has been
719 -- rewritten as a block, and the constraint check will be applied to the
720 -- assignment within the block.
722 elsif Is_Array_Type
(T1
)
723 and then (Nkind
(Rhs
) /= N_Type_Conversion
724 or else Is_Constrained
(Etype
(Rhs
)))
725 and then (Nkind
(Rhs
) /= N_Function_Call
726 or else Nkind
(N
) /= N_Block_Statement
)
728 -- Assignment verifies that the length of the Lsh and Rhs are equal,
729 -- but of course the indexes do not have to match. If the right-hand
730 -- side is a type conversion to an unconstrained type, a length check
731 -- is performed on the expression itself during expansion. In rare
732 -- cases, the redundant length check is computed on an index type
733 -- with a different representation, triggering incorrect code in the
736 Apply_Length_Check
(Rhs
, Etype
(Lhs
));
739 -- Discriminant checks are applied in the course of expansion
744 -- Note: modifications of the Lhs may only be recorded after
745 -- checks have been applied.
747 Note_Possible_Modification
(Lhs
, Sure
=> True);
749 -- ??? a real accessibility check is needed when ???
751 -- Post warning for redundant assignment or variable to itself
753 if Warn_On_Redundant_Constructs
755 -- We only warn for source constructs
757 and then Comes_From_Source
(N
)
759 -- Where the object is the same on both sides
761 and then Same_Object
(Lhs
, Original_Node
(Rhs
))
763 -- But exclude the case where the right side was an operation that
764 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
765 -- don't want to warn in such a case, since it is reasonable to write
766 -- such expressions especially when K is defined symbolically in some
769 and then Nkind
(Original_Node
(Rhs
)) not in N_Op
771 if Nkind
(Lhs
) in N_Has_Entity
then
772 Error_Msg_NE
-- CODEFIX
773 ("?r?useless assignment of & to itself!", N
, Entity
(Lhs
));
775 Error_Msg_N
-- CODEFIX
776 ("?r?useless assignment of object to itself!", N
);
780 -- Check for non-allowed composite assignment
782 if not Support_Composite_Assign_On_Target
783 and then (Is_Array_Type
(T1
) or else Is_Record_Type
(T1
))
784 and then (not Has_Size_Clause
(T1
) or else Esize
(T1
) > 64)
786 Error_Msg_CRT
("composite assignment", N
);
789 -- Check elaboration warning for left side if not in elab code
791 if not In_Subprogram_Or_Concurrent_Unit
then
792 Check_Elab_Assign
(Lhs
);
795 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
796 -- assignment is a source assignment in the extended main source unit.
797 -- We are not interested in any reference information outside this
798 -- context, or in compiler generated assignment statements.
800 if Comes_From_Source
(N
)
801 and then In_Extended_Main_Source_Unit
(Lhs
)
803 Set_Referenced_Modified
(Lhs
, Out_Param
=> False);
806 -- RM 7.3.2 (12/3) An assignment to a view conversion (from a type
807 -- to one of its ancestors) requires an invariant check. Apply check
808 -- only if expression comes from source, otherwise it will be applied
809 -- when value is assigned to source entity.
811 if Nkind
(Lhs
) = N_Type_Conversion
812 and then Has_Invariants
(Etype
(Expression
(Lhs
)))
813 and then Comes_From_Source
(Expression
(Lhs
))
815 Insert_After
(N
, Make_Invariant_Call
(Expression
(Lhs
)));
818 -- Final step. If left side is an entity, then we may be able to reset
819 -- the current tracked values to new safe values. We only have something
820 -- to do if the left side is an entity name, and expansion has not
821 -- modified the node into something other than an assignment, and of
822 -- course we only capture values if it is safe to do so.
824 if Is_Entity_Name
(Lhs
)
825 and then Nkind
(N
) = N_Assignment_Statement
828 Ent
: constant Entity_Id
:= Entity
(Lhs
);
831 if Safe_To_Capture_Value
(N
, Ent
) then
833 -- If simple variable on left side, warn if this assignment
834 -- blots out another one (rendering it useless). We only do
835 -- this for source assignments, otherwise we can generate bogus
836 -- warnings when an assignment is rewritten as another
837 -- assignment, and gets tied up with itself.
839 if Warn_On_Modified_Unread
840 and then Is_Assignable
(Ent
)
841 and then Comes_From_Source
(N
)
842 and then In_Extended_Main_Source_Unit
(Ent
)
844 Warn_On_Useless_Assignment
(Ent
, N
);
847 -- If we are assigning an access type and the left side is an
848 -- entity, then make sure that the Is_Known_[Non_]Null flags
849 -- properly reflect the state of the entity after assignment.
851 if Is_Access_Type
(T1
) then
852 if Known_Non_Null
(Rhs
) then
853 Set_Is_Known_Non_Null
(Ent
, True);
855 elsif Known_Null
(Rhs
)
856 and then not Can_Never_Be_Null
(Ent
)
858 Set_Is_Known_Null
(Ent
, True);
861 Set_Is_Known_Null
(Ent
, False);
863 if not Can_Never_Be_Null
(Ent
) then
864 Set_Is_Known_Non_Null
(Ent
, False);
868 -- For discrete types, we may be able to set the current value
869 -- if the value is known at compile time.
871 elsif Is_Discrete_Type
(T1
)
872 and then Compile_Time_Known_Value
(Rhs
)
874 Set_Current_Value
(Ent
, Rhs
);
876 Set_Current_Value
(Ent
, Empty
);
879 -- If not safe to capture values, kill them
887 -- If assigning to an object in whole or in part, note location of
888 -- assignment in case no one references value. We only do this for
889 -- source assignments, otherwise we can generate bogus warnings when an
890 -- assignment is rewritten as another assignment, and gets tied up with
894 Ent
: constant Entity_Id
:= Get_Enclosing_Object
(Lhs
);
897 and then Safe_To_Capture_Value
(N
, Ent
)
898 and then Nkind
(N
) = N_Assignment_Statement
899 and then Warn_On_Modified_Unread
900 and then Is_Assignable
(Ent
)
901 and then Comes_From_Source
(N
)
902 and then In_Extended_Main_Source_Unit
(Ent
)
904 Set_Last_Assignment
(Ent
, Lhs
);
908 Analyze_Dimension
(N
);
909 Ghost_Mode
:= Save_Ghost_Mode
;
910 end Analyze_Assignment
;
912 -----------------------------
913 -- Analyze_Block_Statement --
914 -----------------------------
916 procedure Analyze_Block_Statement
(N
: Node_Id
) is
917 procedure Install_Return_Entities
(Scop
: Entity_Id
);
918 -- Install all entities of return statement scope Scop in the visibility
919 -- chain except for the return object since its entity is reused in a
922 -----------------------------
923 -- Install_Return_Entities --
924 -----------------------------
926 procedure Install_Return_Entities
(Scop
: Entity_Id
) is
930 Id
:= First_Entity
(Scop
);
931 while Present
(Id
) loop
933 -- Do not install the return object
935 if not Ekind_In
(Id
, E_Constant
, E_Variable
)
936 or else not Is_Return_Object
(Id
)
943 end Install_Return_Entities
;
945 -- Local constants and variables
947 Decls
: constant List_Id
:= Declarations
(N
);
948 Id
: constant Node_Id
:= Identifier
(N
);
949 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
951 Is_BIP_Return_Statement
: Boolean;
953 -- Start of processing for Analyze_Block_Statement
956 -- In SPARK mode, we reject block statements. Note that the case of
957 -- block statements generated by the expander is fine.
959 if Nkind
(Original_Node
(N
)) = N_Block_Statement
then
960 Check_SPARK_05_Restriction
("block statement is not allowed", N
);
963 -- If no handled statement sequence is present, things are really messed
964 -- up, and we just return immediately (defence against previous errors).
967 Check_Error_Detected
;
971 -- Detect whether the block is actually a rewritten return statement of
972 -- a build-in-place function.
974 Is_BIP_Return_Statement
:=
976 and then Present
(Entity
(Id
))
977 and then Ekind
(Entity
(Id
)) = E_Return_Statement
978 and then Is_Build_In_Place_Function
979 (Return_Applies_To
(Entity
(Id
)));
981 -- Normal processing with HSS present
984 EH
: constant List_Id
:= Exception_Handlers
(HSS
);
985 Ent
: Entity_Id
:= Empty
;
988 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
989 -- Recursively save value of this global, will be restored on exit
992 -- Initialize unblocked exit count for statements of begin block
993 -- plus one for each exception handler that is present.
995 Unblocked_Exit_Count
:= 1;
998 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ List_Length
(EH
);
1001 -- If a label is present analyze it and mark it as referenced
1003 if Present
(Id
) then
1007 -- An error defense. If we have an identifier, but no entity, then
1008 -- something is wrong. If previous errors, then just remove the
1009 -- identifier and continue, otherwise raise an exception.
1012 Check_Error_Detected
;
1013 Set_Identifier
(N
, Empty
);
1016 Set_Ekind
(Ent
, E_Block
);
1017 Generate_Reference
(Ent
, N
, ' ');
1018 Generate_Definition
(Ent
);
1020 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
1021 Set_Label_Construct
(Parent
(Ent
), N
);
1026 -- If no entity set, create a label entity
1029 Ent
:= New_Internal_Entity
(E_Block
, Current_Scope
, Sloc
(N
), 'B');
1030 Set_Identifier
(N
, New_Occurrence_Of
(Ent
, Sloc
(N
)));
1031 Set_Parent
(Ent
, N
);
1034 Set_Etype
(Ent
, Standard_Void_Type
);
1035 Set_Block_Node
(Ent
, Identifier
(N
));
1038 -- The block served as an extended return statement. Ensure that any
1039 -- entities created during the analysis and expansion of the return
1040 -- object declaration are once again visible.
1042 if Is_BIP_Return_Statement
then
1043 Install_Return_Entities
(Ent
);
1046 if Present
(Decls
) then
1047 Analyze_Declarations
(Decls
);
1049 Inspect_Deferred_Constant_Completion
(Decls
);
1053 Process_End_Label
(HSS
, 'e', Ent
);
1055 -- If exception handlers are present, then we indicate that enclosing
1056 -- scopes contain a block with handlers. We only need to mark non-
1059 if Present
(EH
) then
1062 Set_Has_Nested_Block_With_Handler
(S
);
1063 exit when Is_Overloadable
(S
)
1064 or else Ekind
(S
) = E_Package
1065 or else Is_Generic_Unit
(S
);
1070 Check_References
(Ent
);
1071 Warn_On_Useless_Assignments
(Ent
);
1074 if Unblocked_Exit_Count
= 0 then
1075 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1076 Check_Unreachable_Code
(N
);
1078 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1081 end Analyze_Block_Statement
;
1083 --------------------------------
1084 -- Analyze_Compound_Statement --
1085 --------------------------------
1087 procedure Analyze_Compound_Statement
(N
: Node_Id
) is
1089 Analyze_List
(Actions
(N
));
1090 end Analyze_Compound_Statement
;
1092 ----------------------------
1093 -- Analyze_Case_Statement --
1094 ----------------------------
1096 procedure Analyze_Case_Statement
(N
: Node_Id
) is
1098 Exp_Type
: Entity_Id
;
1099 Exp_Btype
: Entity_Id
;
1102 Others_Present
: Boolean;
1103 -- Indicates if Others was present
1105 pragma Warnings
(Off
, Last_Choice
);
1106 -- Don't care about assigned value
1108 Statements_Analyzed
: Boolean := False;
1109 -- Set True if at least some statement sequences get analyzed. If False
1110 -- on exit, means we had a serious error that prevented full analysis of
1111 -- the case statement, and as a result it is not a good idea to output
1112 -- warning messages about unreachable code.
1114 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
1115 -- Recursively save value of this global, will be restored on exit
1117 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
1118 -- Error routine invoked by the generic instantiation below when the
1119 -- case statement has a non static choice.
1121 procedure Process_Statements
(Alternative
: Node_Id
);
1122 -- Analyzes the statements associated with a case alternative. Needed
1123 -- by instantiation below.
1125 package Analyze_Case_Choices
is new
1126 Generic_Analyze_Choices
1127 (Process_Associated_Node
=> Process_Statements
);
1128 use Analyze_Case_Choices
;
1129 -- Instantiation of the generic choice analysis package
1131 package Check_Case_Choices
is new
1132 Generic_Check_Choices
1133 (Process_Empty_Choice
=> No_OP
,
1134 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
1135 Process_Associated_Node
=> No_OP
);
1136 use Check_Case_Choices
;
1137 -- Instantiation of the generic choice processing package
1139 -----------------------------
1140 -- Non_Static_Choice_Error --
1141 -----------------------------
1143 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
1145 Flag_Non_Static_Expr
1146 ("choice given in case statement is not static!", Choice
);
1147 end Non_Static_Choice_Error
;
1149 ------------------------
1150 -- Process_Statements --
1151 ------------------------
1153 procedure Process_Statements
(Alternative
: Node_Id
) is
1154 Choices
: constant List_Id
:= Discrete_Choices
(Alternative
);
1158 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
1159 Statements_Analyzed
:= True;
1161 -- An interesting optimization. If the case statement expression
1162 -- is a simple entity, then we can set the current value within an
1163 -- alternative if the alternative has one possible value.
1167 -- when 2 | 3 => beta
1168 -- when others => gamma
1170 -- Here we know that N is initially 1 within alpha, but for beta and
1171 -- gamma, we do not know anything more about the initial value.
1173 if Is_Entity_Name
(Exp
) then
1174 Ent
:= Entity
(Exp
);
1176 if Ekind_In
(Ent
, E_Variable
,
1180 if List_Length
(Choices
) = 1
1181 and then Nkind
(First
(Choices
)) in N_Subexpr
1182 and then Compile_Time_Known_Value
(First
(Choices
))
1184 Set_Current_Value
(Entity
(Exp
), First
(Choices
));
1187 Analyze_Statements
(Statements
(Alternative
));
1189 -- After analyzing the case, set the current value to empty
1190 -- since we won't know what it is for the next alternative
1191 -- (unless reset by this same circuit), or after the case.
1193 Set_Current_Value
(Entity
(Exp
), Empty
);
1198 -- Case where expression is not an entity name of a variable
1200 Analyze_Statements
(Statements
(Alternative
));
1201 end Process_Statements
;
1203 -- Start of processing for Analyze_Case_Statement
1206 Unblocked_Exit_Count
:= 0;
1207 Exp
:= Expression
(N
);
1210 -- The expression must be of any discrete type. In rare cases, the
1211 -- expander constructs a case statement whose expression has a private
1212 -- type whose full view is discrete. This can happen when generating
1213 -- a stream operation for a variant type after the type is frozen,
1214 -- when the partial of view of the type of the discriminant is private.
1215 -- In that case, use the full view to analyze case alternatives.
1217 if not Is_Overloaded
(Exp
)
1218 and then not Comes_From_Source
(N
)
1219 and then Is_Private_Type
(Etype
(Exp
))
1220 and then Present
(Full_View
(Etype
(Exp
)))
1221 and then Is_Discrete_Type
(Full_View
(Etype
(Exp
)))
1223 Resolve
(Exp
, Etype
(Exp
));
1224 Exp_Type
:= Full_View
(Etype
(Exp
));
1227 Analyze_And_Resolve
(Exp
, Any_Discrete
);
1228 Exp_Type
:= Etype
(Exp
);
1231 Check_Unset_Reference
(Exp
);
1232 Exp_Btype
:= Base_Type
(Exp_Type
);
1234 -- The expression must be of a discrete type which must be determinable
1235 -- independently of the context in which the expression occurs, but
1236 -- using the fact that the expression must be of a discrete type.
1237 -- Moreover, the type this expression must not be a character literal
1238 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1240 -- If error already reported by Resolve, nothing more to do
1242 if Exp_Btype
= Any_Discrete
or else Exp_Btype
= Any_Type
then
1245 elsif Exp_Btype
= Any_Character
then
1247 ("character literal as case expression is ambiguous", Exp
);
1250 elsif Ada_Version
= Ada_83
1251 and then (Is_Generic_Type
(Exp_Btype
)
1252 or else Is_Generic_Type
(Root_Type
(Exp_Btype
)))
1255 ("(Ada 83) case expression cannot be of a generic type", Exp
);
1259 -- If the case expression is a formal object of mode in out, then treat
1260 -- it as having a nonstatic subtype by forcing use of the base type
1261 -- (which has to get passed to Check_Case_Choices below). Also use base
1262 -- type when the case expression is parenthesized.
1264 if Paren_Count
(Exp
) > 0
1265 or else (Is_Entity_Name
(Exp
)
1266 and then Ekind
(Entity
(Exp
)) = E_Generic_In_Out_Parameter
)
1268 Exp_Type
:= Exp_Btype
;
1271 -- Call instantiated procedures to analyzwe and check discrete choices
1273 Analyze_Choices
(Alternatives
(N
), Exp_Type
);
1274 Check_Choices
(N
, Alternatives
(N
), Exp_Type
, Others_Present
);
1276 -- Case statement with single OTHERS alternative not allowed in SPARK
1278 if Others_Present
and then List_Length
(Alternatives
(N
)) = 1 then
1279 Check_SPARK_05_Restriction
1280 ("OTHERS as unique case alternative is not allowed", N
);
1283 if Exp_Type
= Universal_Integer
and then not Others_Present
then
1284 Error_Msg_N
("case on universal integer requires OTHERS choice", Exp
);
1287 -- If all our exits were blocked by unconditional transfers of control,
1288 -- then the entire CASE statement acts as an unconditional transfer of
1289 -- control, so treat it like one, and check unreachable code. Skip this
1290 -- test if we had serious errors preventing any statement analysis.
1292 if Unblocked_Exit_Count
= 0 and then Statements_Analyzed
then
1293 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1294 Check_Unreachable_Code
(N
);
1296 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1299 -- If the expander is active it will detect the case of a statically
1300 -- determined single alternative and remove warnings for the case, but
1301 -- if we are not doing expansion, that circuit won't be active. Here we
1302 -- duplicate the effect of removing warnings in the same way, so that
1303 -- we will get the same set of warnings in -gnatc mode.
1305 if not Expander_Active
1306 and then Compile_Time_Known_Value
(Expression
(N
))
1307 and then Serious_Errors_Detected
= 0
1310 Chosen
: constant Node_Id
:= Find_Static_Alternative
(N
);
1314 Alt
:= First
(Alternatives
(N
));
1315 while Present
(Alt
) loop
1316 if Alt
/= Chosen
then
1317 Remove_Warning_Messages
(Statements
(Alt
));
1324 end Analyze_Case_Statement
;
1326 ----------------------------
1327 -- Analyze_Exit_Statement --
1328 ----------------------------
1330 -- If the exit includes a name, it must be the name of a currently open
1331 -- loop. Otherwise there must be an innermost open loop on the stack, to
1332 -- which the statement implicitly refers.
1334 -- Additionally, in SPARK mode:
1336 -- The exit can only name the closest enclosing loop;
1338 -- An exit with a when clause must be directly contained in a loop;
1340 -- An exit without a when clause must be directly contained in an
1341 -- if-statement with no elsif or else, which is itself directly contained
1342 -- in a loop. The exit must be the last statement in the if-statement.
1344 procedure Analyze_Exit_Statement
(N
: Node_Id
) is
1345 Target
: constant Node_Id
:= Name
(N
);
1346 Cond
: constant Node_Id
:= Condition
(N
);
1347 Scope_Id
: Entity_Id
;
1353 Check_Unreachable_Code
(N
);
1356 if Present
(Target
) then
1358 U_Name
:= Entity
(Target
);
1360 if not In_Open_Scopes
(U_Name
) or else Ekind
(U_Name
) /= E_Loop
then
1361 Error_Msg_N
("invalid loop name in exit statement", N
);
1365 if Has_Loop_In_Inner_Open_Scopes
(U_Name
) then
1366 Check_SPARK_05_Restriction
1367 ("exit label must name the closest enclosing loop", N
);
1370 Set_Has_Exit
(U_Name
);
1377 for J
in reverse 0 .. Scope_Stack
.Last
loop
1378 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
1379 Kind
:= Ekind
(Scope_Id
);
1381 if Kind
= E_Loop
and then (No
(Target
) or else Scope_Id
= U_Name
) then
1382 Set_Has_Exit
(Scope_Id
);
1385 elsif Kind
= E_Block
1386 or else Kind
= E_Loop
1387 or else Kind
= E_Return_Statement
1393 ("cannot exit from program unit or accept statement", N
);
1398 -- Verify that if present the condition is a Boolean expression
1400 if Present
(Cond
) then
1401 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1402 Check_Unset_Reference
(Cond
);
1405 -- In SPARK mode, verify that the exit statement respects the SPARK
1408 if Present
(Cond
) then
1409 if Nkind
(Parent
(N
)) /= N_Loop_Statement
then
1410 Check_SPARK_05_Restriction
1411 ("exit with when clause must be directly in loop", N
);
1415 if Nkind
(Parent
(N
)) /= N_If_Statement
then
1416 if Nkind
(Parent
(N
)) = N_Elsif_Part
then
1417 Check_SPARK_05_Restriction
1418 ("exit must be in IF without ELSIF", N
);
1420 Check_SPARK_05_Restriction
("exit must be directly in IF", N
);
1423 elsif Nkind
(Parent
(Parent
(N
))) /= N_Loop_Statement
then
1424 Check_SPARK_05_Restriction
1425 ("exit must be in IF directly in loop", N
);
1427 -- First test the presence of ELSE, so that an exit in an ELSE leads
1428 -- to an error mentioning the ELSE.
1430 elsif Present
(Else_Statements
(Parent
(N
))) then
1431 Check_SPARK_05_Restriction
("exit must be in IF without ELSE", N
);
1433 -- An exit in an ELSIF does not reach here, as it would have been
1434 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1436 elsif Present
(Elsif_Parts
(Parent
(N
))) then
1437 Check_SPARK_05_Restriction
("exit must be in IF without ELSIF", N
);
1441 -- Chain exit statement to associated loop entity
1443 Set_Next_Exit_Statement
(N
, First_Exit_Statement
(Scope_Id
));
1444 Set_First_Exit_Statement
(Scope_Id
, N
);
1446 -- Since the exit may take us out of a loop, any previous assignment
1447 -- statement is not useless, so clear last assignment indications. It
1448 -- is OK to keep other current values, since if the exit statement
1449 -- does not exit, then the current values are still valid.
1451 Kill_Current_Values
(Last_Assignment_Only
=> True);
1452 end Analyze_Exit_Statement
;
1454 ----------------------------
1455 -- Analyze_Goto_Statement --
1456 ----------------------------
1458 procedure Analyze_Goto_Statement
(N
: Node_Id
) is
1459 Label
: constant Node_Id
:= Name
(N
);
1460 Scope_Id
: Entity_Id
;
1461 Label_Scope
: Entity_Id
;
1462 Label_Ent
: Entity_Id
;
1465 Check_SPARK_05_Restriction
("goto statement is not allowed", N
);
1467 -- Actual semantic checks
1469 Check_Unreachable_Code
(N
);
1470 Kill_Current_Values
(Last_Assignment_Only
=> True);
1473 Label_Ent
:= Entity
(Label
);
1475 -- Ignore previous error
1477 if Label_Ent
= Any_Id
then
1478 Check_Error_Detected
;
1481 -- We just have a label as the target of a goto
1483 elsif Ekind
(Label_Ent
) /= E_Label
then
1484 Error_Msg_N
("target of goto statement must be a label", Label
);
1487 -- Check that the target of the goto is reachable according to Ada
1488 -- scoping rules. Note: the special gotos we generate for optimizing
1489 -- local handling of exceptions would violate these rules, but we mark
1490 -- such gotos as analyzed when built, so this code is never entered.
1492 elsif not Reachable
(Label_Ent
) then
1493 Error_Msg_N
("target of goto statement is not reachable", Label
);
1497 -- Here if goto passes initial validity checks
1499 Label_Scope
:= Enclosing_Scope
(Label_Ent
);
1501 for J
in reverse 0 .. Scope_Stack
.Last
loop
1502 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
1504 if Label_Scope
= Scope_Id
1505 or else not Ekind_In
(Scope_Id
, E_Block
, E_Loop
, E_Return_Statement
)
1507 if Scope_Id
/= Label_Scope
then
1509 ("cannot exit from program unit or accept statement", N
);
1516 raise Program_Error
;
1517 end Analyze_Goto_Statement
;
1519 --------------------------
1520 -- Analyze_If_Statement --
1521 --------------------------
1523 -- A special complication arises in the analysis of if statements
1525 -- The expander has circuitry to completely delete code that it can tell
1526 -- will not be executed (as a result of compile time known conditions). In
1527 -- the analyzer, we ensure that code that will be deleted in this manner
1528 -- is analyzed but not expanded. This is obviously more efficient, but
1529 -- more significantly, difficulties arise if code is expanded and then
1530 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1531 -- generated in deleted code must be frozen from start, because the nodes
1532 -- on which they depend will not be available at the freeze point.
1534 procedure Analyze_If_Statement
(N
: Node_Id
) is
1537 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
1538 -- Recursively save value of this global, will be restored on exit
1540 Save_In_Deleted_Code
: Boolean;
1542 Del
: Boolean := False;
1543 -- This flag gets set True if a True condition has been found, which
1544 -- means that remaining ELSE/ELSIF parts are deleted.
1546 procedure Analyze_Cond_Then
(Cnode
: Node_Id
);
1547 -- This is applied to either the N_If_Statement node itself or to an
1548 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1549 -- statements associated with it.
1551 -----------------------
1552 -- Analyze_Cond_Then --
1553 -----------------------
1555 procedure Analyze_Cond_Then
(Cnode
: Node_Id
) is
1556 Cond
: constant Node_Id
:= Condition
(Cnode
);
1557 Tstm
: constant List_Id
:= Then_Statements
(Cnode
);
1560 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
1561 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1562 Check_Unset_Reference
(Cond
);
1563 Set_Current_Value_Condition
(Cnode
);
1565 -- If already deleting, then just analyze then statements
1568 Analyze_Statements
(Tstm
);
1570 -- Compile time known value, not deleting yet
1572 elsif Compile_Time_Known_Value
(Cond
) then
1573 Save_In_Deleted_Code
:= In_Deleted_Code
;
1575 -- If condition is True, then analyze the THEN statements and set
1576 -- no expansion for ELSE and ELSIF parts.
1578 if Is_True
(Expr_Value
(Cond
)) then
1579 Analyze_Statements
(Tstm
);
1581 Expander_Mode_Save_And_Set
(False);
1582 In_Deleted_Code
:= True;
1584 -- If condition is False, analyze THEN with expansion off
1586 else -- Is_False (Expr_Value (Cond))
1587 Expander_Mode_Save_And_Set
(False);
1588 In_Deleted_Code
:= True;
1589 Analyze_Statements
(Tstm
);
1590 Expander_Mode_Restore
;
1591 In_Deleted_Code
:= Save_In_Deleted_Code
;
1594 -- Not known at compile time, not deleting, normal analysis
1597 Analyze_Statements
(Tstm
);
1599 end Analyze_Cond_Then
;
1601 -- Start of processing for Analyze_If_Statement
1604 -- Initialize exit count for else statements. If there is no else part,
1605 -- this count will stay non-zero reflecting the fact that the uncovered
1606 -- else case is an unblocked exit.
1608 Unblocked_Exit_Count
:= 1;
1609 Analyze_Cond_Then
(N
);
1611 -- Now to analyze the elsif parts if any are present
1613 if Present
(Elsif_Parts
(N
)) then
1614 E
:= First
(Elsif_Parts
(N
));
1615 while Present
(E
) loop
1616 Analyze_Cond_Then
(E
);
1621 if Present
(Else_Statements
(N
)) then
1622 Analyze_Statements
(Else_Statements
(N
));
1625 -- If all our exits were blocked by unconditional transfers of control,
1626 -- then the entire IF statement acts as an unconditional transfer of
1627 -- control, so treat it like one, and check unreachable code.
1629 if Unblocked_Exit_Count
= 0 then
1630 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1631 Check_Unreachable_Code
(N
);
1633 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1637 Expander_Mode_Restore
;
1638 In_Deleted_Code
:= Save_In_Deleted_Code
;
1641 if not Expander_Active
1642 and then Compile_Time_Known_Value
(Condition
(N
))
1643 and then Serious_Errors_Detected
= 0
1645 if Is_True
(Expr_Value
(Condition
(N
))) then
1646 Remove_Warning_Messages
(Else_Statements
(N
));
1648 if Present
(Elsif_Parts
(N
)) then
1649 E
:= First
(Elsif_Parts
(N
));
1650 while Present
(E
) loop
1651 Remove_Warning_Messages
(Then_Statements
(E
));
1657 Remove_Warning_Messages
(Then_Statements
(N
));
1661 -- Warn on redundant if statement that has no effect
1663 -- Note, we could also check empty ELSIF parts ???
1665 if Warn_On_Redundant_Constructs
1667 -- If statement must be from source
1669 and then Comes_From_Source
(N
)
1671 -- Condition must not have obvious side effect
1673 and then Has_No_Obvious_Side_Effects
(Condition
(N
))
1675 -- No elsif parts of else part
1677 and then No
(Elsif_Parts
(N
))
1678 and then No
(Else_Statements
(N
))
1680 -- Then must be a single null statement
1682 and then List_Length
(Then_Statements
(N
)) = 1
1684 -- Go to original node, since we may have rewritten something as
1685 -- a null statement (e.g. a case we could figure the outcome of).
1688 T
: constant Node_Id
:= First
(Then_Statements
(N
));
1689 S
: constant Node_Id
:= Original_Node
(T
);
1692 if Comes_From_Source
(S
) and then Nkind
(S
) = N_Null_Statement
then
1693 Error_Msg_N
("if statement has no effect?r?", N
);
1697 end Analyze_If_Statement
;
1699 ----------------------------------------
1700 -- Analyze_Implicit_Label_Declaration --
1701 ----------------------------------------
1703 -- An implicit label declaration is generated in the innermost enclosing
1704 -- declarative part. This is done for labels, and block and loop names.
1706 -- Note: any changes in this routine may need to be reflected in
1707 -- Analyze_Label_Entity.
1709 procedure Analyze_Implicit_Label_Declaration
(N
: Node_Id
) is
1710 Id
: constant Node_Id
:= Defining_Identifier
(N
);
1713 Set_Ekind
(Id
, E_Label
);
1714 Set_Etype
(Id
, Standard_Void_Type
);
1715 Set_Enclosing_Scope
(Id
, Current_Scope
);
1716 end Analyze_Implicit_Label_Declaration
;
1718 ------------------------------
1719 -- Analyze_Iteration_Scheme --
1720 ------------------------------
1722 procedure Analyze_Iteration_Scheme
(N
: Node_Id
) is
1724 Iter_Spec
: Node_Id
;
1725 Loop_Spec
: Node_Id
;
1728 -- For an infinite loop, there is no iteration scheme
1734 Cond
:= Condition
(N
);
1735 Iter_Spec
:= Iterator_Specification
(N
);
1736 Loop_Spec
:= Loop_Parameter_Specification
(N
);
1738 if Present
(Cond
) then
1739 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1740 Check_Unset_Reference
(Cond
);
1741 Set_Current_Value_Condition
(N
);
1743 elsif Present
(Iter_Spec
) then
1744 Analyze_Iterator_Specification
(Iter_Spec
);
1747 Analyze_Loop_Parameter_Specification
(Loop_Spec
);
1749 end Analyze_Iteration_Scheme
;
1751 ------------------------------------
1752 -- Analyze_Iterator_Specification --
1753 ------------------------------------
1755 procedure Analyze_Iterator_Specification
(N
: Node_Id
) is
1756 Loc
: constant Source_Ptr
:= Sloc
(N
);
1757 Def_Id
: constant Node_Id
:= Defining_Identifier
(N
);
1758 Subt
: constant Node_Id
:= Subtype_Indication
(N
);
1759 Iter_Name
: constant Node_Id
:= Name
(N
);
1765 procedure Check_Reverse_Iteration
(Typ
: Entity_Id
);
1766 -- For an iteration over a container, if the loop carries the Reverse
1767 -- indicator, verify that the container type has an Iterate aspect that
1768 -- implements the reversible iterator interface.
1770 function Get_Cursor_Type
(Typ
: Entity_Id
) return Entity_Id
;
1771 -- For containers with Iterator and related aspects, the cursor is
1772 -- obtained by locating an entity with the proper name in the scope
1775 -----------------------------
1776 -- Check_Reverse_Iteration --
1777 -----------------------------
1779 procedure Check_Reverse_Iteration
(Typ
: Entity_Id
) is
1781 if Reverse_Present
(N
)
1782 and then not Is_Array_Type
(Typ
)
1783 and then not Is_Reversible_Iterator
(Typ
)
1786 ("container type does not support reverse iteration", N
, Typ
);
1788 end Check_Reverse_Iteration
;
1790 ---------------------
1791 -- Get_Cursor_Type --
1792 ---------------------
1794 function Get_Cursor_Type
(Typ
: Entity_Id
) return Entity_Id
is
1798 Ent
:= First_Entity
(Scope
(Typ
));
1799 while Present
(Ent
) loop
1800 exit when Chars
(Ent
) = Name_Cursor
;
1808 -- The cursor is the target of generated assignments in the
1809 -- loop, and cannot have a limited type.
1811 if Is_Limited_Type
(Etype
(Ent
)) then
1812 Error_Msg_N
("cursor type cannot be limited", N
);
1816 end Get_Cursor_Type
;
1818 -- Start of processing for Analyze_iterator_Specification
1821 Enter_Name
(Def_Id
);
1823 -- AI12-0151 specifies that when the subtype indication is present, it
1824 -- must statically match the type of the array or container element.
1825 -- To simplify this check, we introduce a subtype declaration with the
1826 -- given subtype indication when it carries a constraint, and rewrite
1827 -- the original as a reference to the created subtype entity.
1829 if Present
(Subt
) then
1830 if Nkind
(Subt
) = N_Subtype_Indication
then
1832 S
: constant Entity_Id
:= Make_Temporary
(Sloc
(Subt
), 'S');
1833 Decl
: constant Node_Id
:=
1834 Make_Subtype_Declaration
(Loc
,
1835 Defining_Identifier
=> S
,
1836 Subtype_Indication
=> New_Copy_Tree
(Subt
));
1838 Insert_Before
(Parent
(Parent
(N
)), Decl
);
1840 Rewrite
(Subt
, New_Occurrence_Of
(S
, Sloc
(Subt
)));
1846 -- Save entity of subtype indication for subsequent check
1848 Bas
:= Entity
(Subt
);
1851 Preanalyze_Range
(Iter_Name
);
1853 -- Set the kind of the loop variable, which is not visible within
1854 -- the iterator name.
1856 Set_Ekind
(Def_Id
, E_Variable
);
1858 -- Provide a link between the iterator variable and the container, for
1859 -- subsequent use in cross-reference and modification information.
1861 if Of_Present
(N
) then
1862 Set_Related_Expression
(Def_Id
, Iter_Name
);
1864 -- For a container, the iterator is specified through the aspect
1866 if not Is_Array_Type
(Etype
(Iter_Name
)) then
1868 Iterator
: constant Entity_Id
:=
1869 Find_Value_Of_Aspect
1870 (Etype
(Iter_Name
), Aspect_Default_Iterator
);
1876 if No
(Iterator
) then
1877 null; -- error reported below.
1879 elsif not Is_Overloaded
(Iterator
) then
1880 Check_Reverse_Iteration
(Etype
(Iterator
));
1882 -- If Iterator is overloaded, use reversible iterator if
1883 -- one is available.
1885 elsif Is_Overloaded
(Iterator
) then
1886 Get_First_Interp
(Iterator
, I
, It
);
1887 while Present
(It
.Nam
) loop
1888 if Ekind
(It
.Nam
) = E_Function
1889 and then Is_Reversible_Iterator
(Etype
(It
.Nam
))
1891 Set_Etype
(Iterator
, It
.Typ
);
1892 Set_Entity
(Iterator
, It
.Nam
);
1896 Get_Next_Interp
(I
, It
);
1899 Check_Reverse_Iteration
(Etype
(Iterator
));
1905 -- If the domain of iteration is an expression, create a declaration for
1906 -- it, so that finalization actions are introduced outside of the loop.
1907 -- The declaration must be a renaming because the body of the loop may
1908 -- assign to elements.
1910 if not Is_Entity_Name
(Iter_Name
)
1912 -- When the context is a quantified expression, the renaming
1913 -- declaration is delayed until the expansion phase if we are
1916 and then (Nkind
(Parent
(N
)) /= N_Quantified_Expression
1917 or else Operating_Mode
= Check_Semantics
)
1919 -- Do not perform this expansion in SPARK mode, since the formal
1920 -- verification directly deals with the source form of the iterator.
1921 -- Ditto for ASIS, where the temporary may hide the transformation
1922 -- of a selected component into a prefixed function call.
1924 and then not GNATprove_Mode
1925 and then not ASIS_Mode
1928 Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R', Iter_Name
);
1934 -- If the domain of iteration is an array component that depends
1935 -- on a discriminant, create actual subtype for it. Pre-analysis
1936 -- does not generate the actual subtype of a selected component.
1938 if Nkind
(Iter_Name
) = N_Selected_Component
1939 and then Is_Array_Type
(Etype
(Iter_Name
))
1942 Build_Actual_Subtype_Of_Component
1943 (Etype
(Selector_Name
(Iter_Name
)), Iter_Name
);
1944 Insert_Action
(N
, Act_S
);
1946 if Present
(Act_S
) then
1947 Typ
:= Defining_Identifier
(Act_S
);
1949 Typ
:= Etype
(Iter_Name
);
1953 Typ
:= Etype
(Iter_Name
);
1955 -- Verify that the expression produces an iterator
1957 if not Of_Present
(N
) and then not Is_Iterator
(Typ
)
1958 and then not Is_Array_Type
(Typ
)
1959 and then No
(Find_Aspect
(Typ
, Aspect_Iterable
))
1962 ("expect object that implements iterator interface",
1967 -- Protect against malformed iterator
1969 if Typ
= Any_Type
then
1970 Error_Msg_N
("invalid expression in loop iterator", Iter_Name
);
1974 if not Of_Present
(N
) then
1975 Check_Reverse_Iteration
(Typ
);
1978 -- The name in the renaming declaration may be a function call.
1979 -- Indicate that it does not come from source, to suppress
1980 -- spurious warnings on renamings of parameterless functions,
1981 -- a common enough idiom in user-defined iterators.
1984 Make_Object_Renaming_Declaration
(Loc
,
1985 Defining_Identifier
=> Id
,
1986 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
1988 New_Copy_Tree
(Iter_Name
, New_Sloc
=> Loc
));
1990 -- Create a transient scope to ensure that all the temporaries
1991 -- generated by Remove_Side_Effects as part of processing this
1992 -- renaming declaration (if any) are attached by Insert_Actions
1993 -- to it. It has no effect on the generated code if no actions
1994 -- are added to it (see Wrap_Transient_Declaration).
1996 if Expander_Active
then
1997 Establish_Transient_Scope
(Name
(Decl
), Sec_Stack
=> True);
2000 Insert_Actions
(Parent
(Parent
(N
)), New_List
(Decl
));
2001 Rewrite
(Name
(N
), New_Occurrence_Of
(Id
, Loc
));
2002 Set_Etype
(Id
, Typ
);
2003 Set_Etype
(Name
(N
), Typ
);
2006 -- Container is an entity or an array with uncontrolled components, or
2007 -- else it is a container iterator given by a function call, typically
2008 -- called Iterate in the case of predefined containers, even though
2009 -- Iterate is not a reserved name. What matters is that the return type
2010 -- of the function is an iterator type.
2012 elsif Is_Entity_Name
(Iter_Name
) then
2013 Analyze
(Iter_Name
);
2015 if Nkind
(Iter_Name
) = N_Function_Call
then
2017 C
: constant Node_Id
:= Name
(Iter_Name
);
2022 if not Is_Overloaded
(Iter_Name
) then
2023 Resolve
(Iter_Name
, Etype
(C
));
2026 Get_First_Interp
(C
, I
, It
);
2027 while It
.Typ
/= Empty
loop
2028 if Reverse_Present
(N
) then
2029 if Is_Reversible_Iterator
(It
.Typ
) then
2030 Resolve
(Iter_Name
, It
.Typ
);
2034 elsif Is_Iterator
(It
.Typ
) then
2035 Resolve
(Iter_Name
, It
.Typ
);
2039 Get_Next_Interp
(I
, It
);
2044 -- Domain of iteration is not overloaded
2047 Resolve
(Iter_Name
, Etype
(Iter_Name
));
2050 if not Of_Present
(N
) then
2051 Check_Reverse_Iteration
(Etype
(Iter_Name
));
2055 -- Get base type of container, for proper retrieval of Cursor type
2056 -- and primitive operations.
2058 Typ
:= Base_Type
(Etype
(Iter_Name
));
2060 if Is_Array_Type
(Typ
) then
2061 if Of_Present
(N
) then
2062 Set_Etype
(Def_Id
, Component_Type
(Typ
));
2064 -- The loop variable is aliased if the array components are
2067 Set_Is_Aliased
(Def_Id
, Has_Aliased_Components
(Typ
));
2069 -- AI12-0047 stipulates that the domain (array or container)
2070 -- cannot be a component that depends on a discriminant if the
2071 -- enclosing object is mutable, to prevent a modification of the
2072 -- dowmain of iteration in the course of an iteration.
2074 -- If the object is an expression it has been captured in a
2075 -- temporary, so examine original node.
2077 if Nkind
(Original_Node
(Iter_Name
)) = N_Selected_Component
2078 and then Is_Dependent_Component_Of_Mutable_Object
2079 (Original_Node
(Iter_Name
))
2082 ("iterable name cannot be a discriminant-dependent "
2083 & "component of a mutable object", N
);
2088 (Base_Type
(Bas
) /= Base_Type
(Component_Type
(Typ
))
2090 not Subtypes_Statically_Match
(Bas
, Component_Type
(Typ
)))
2093 ("subtype indication does not match component type", Subt
);
2096 -- Here we have a missing Range attribute
2100 ("missing Range attribute in iteration over an array", N
);
2102 -- In Ada 2012 mode, this may be an attempt at an iterator
2104 if Ada_Version
>= Ada_2012
then
2106 ("\if& is meant to designate an element of the array, use OF",
2110 -- Prevent cascaded errors
2112 Set_Ekind
(Def_Id
, E_Loop_Parameter
);
2113 Set_Etype
(Def_Id
, Etype
(First_Index
(Typ
)));
2116 -- Check for type error in iterator
2118 elsif Typ
= Any_Type
then
2121 -- Iteration over a container
2124 Set_Ekind
(Def_Id
, E_Loop_Parameter
);
2125 Error_Msg_Ada_2012_Feature
("container iterator", Sloc
(N
));
2129 if Of_Present
(N
) then
2130 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2132 Elt
: constant Entity_Id
:=
2133 Get_Iterable_Type_Primitive
(Typ
, Name_Element
);
2137 ("missing Element primitive for iteration", N
);
2139 Set_Etype
(Def_Id
, Etype
(Elt
));
2143 -- For a predefined container, The type of the loop variable is
2144 -- the Iterator_Element aspect of the container type.
2148 Element
: constant Entity_Id
:=
2149 Find_Value_Of_Aspect
(Typ
, Aspect_Iterator_Element
);
2150 Iterator
: constant Entity_Id
:=
2151 Find_Value_Of_Aspect
(Typ
, Aspect_Default_Iterator
);
2152 Cursor_Type
: Entity_Id
;
2155 if No
(Element
) then
2156 Error_Msg_NE
("cannot iterate over&", N
, Typ
);
2160 Set_Etype
(Def_Id
, Entity
(Element
));
2161 Cursor_Type
:= Get_Cursor_Type
(Typ
);
2162 pragma Assert
(Present
(Cursor_Type
));
2164 -- If subtype indication was given, verify that it covers
2165 -- the element type of the container.
2168 and then (not Covers
(Bas
, Etype
(Def_Id
))
2169 or else not Subtypes_Statically_Match
2170 (Bas
, Etype
(Def_Id
)))
2173 ("subtype indication does not match element type",
2177 -- If the container has a variable indexing aspect, the
2178 -- element is a variable and is modifiable in the loop.
2180 if Has_Aspect
(Typ
, Aspect_Variable_Indexing
) then
2181 Set_Ekind
(Def_Id
, E_Variable
);
2184 -- If the container is a constant, iterating over it
2185 -- requires a Constant_Indexing operation.
2187 if not Is_Variable
(Iter_Name
)
2188 and then not Has_Aspect
(Typ
, Aspect_Constant_Indexing
)
2190 Error_Msg_N
("iteration over constant container "
2191 & "require constant_indexing aspect", N
);
2193 -- The Iterate function may have an in_out parameter,
2194 -- and a constant container is thus illegal.
2196 elsif Present
(Iterator
)
2197 and then Ekind
(Entity
(Iterator
)) = E_Function
2198 and then Ekind
(First_Formal
(Entity
(Iterator
))) /=
2200 and then not Is_Variable
(Iter_Name
)
2203 ("variable container expected", N
);
2206 if Nkind
(Original_Node
(Iter_Name
))
2207 = N_Selected_Component
2209 Is_Dependent_Component_Of_Mutable_Object
2210 (Original_Node
(Iter_Name
))
2213 ("container cannot be a discriminant-dependent "
2214 & "component of a mutable object", N
);
2220 -- IN iterator, domain is a range, or a call to Iterate function
2223 -- For an iteration of the form IN, the name must denote an
2224 -- iterator, typically the result of a call to Iterate. Give a
2225 -- useful error message when the name is a container by itself.
2227 -- The type may be a formal container type, which has to have
2228 -- an Iterable aspect detailing the required primitives.
2230 if Is_Entity_Name
(Original_Node
(Name
(N
)))
2231 and then not Is_Iterator
(Typ
)
2233 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2236 elsif not Has_Aspect
(Typ
, Aspect_Iterator_Element
) then
2238 ("cannot iterate over&", Name
(N
), Typ
);
2241 ("name must be an iterator, not a container", Name
(N
));
2244 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2248 ("\to iterate directly over the elements of a container, "
2249 & "write `of &`", Name
(N
), Original_Node
(Name
(N
)));
2251 -- No point in continuing analysis of iterator spec
2257 -- If the name is a call (typically prefixed) to some Iterate
2258 -- function, it has been rewritten as an object declaration.
2259 -- If that object is a selected component, verify that it is not
2260 -- a component of an unconstrained mutable object.
2262 if Nkind
(Iter_Name
) = N_Identifier
then
2264 Orig_Node
: constant Node_Id
:= Original_Node
(Iter_Name
);
2265 Iter_Kind
: constant Node_Kind
:= Nkind
(Orig_Node
);
2269 if Iter_Kind
= N_Selected_Component
then
2270 Obj
:= Prefix
(Orig_Node
);
2272 elsif Iter_Kind
= N_Function_Call
then
2273 Obj
:= First_Actual
(Orig_Node
);
2275 -- If neither, the name comes from source
2281 if Nkind
(Obj
) = N_Selected_Component
2282 and then Is_Dependent_Component_Of_Mutable_Object
(Obj
)
2285 ("container cannot be a discriminant-dependent "
2286 & "component of a mutable object", N
);
2291 -- The result type of Iterate function is the classwide type of
2292 -- the interface parent. We need the specific Cursor type defined
2293 -- in the container package. We obtain it by name for a predefined
2294 -- container, or through the Iterable aspect for a formal one.
2296 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2299 (Parent
(Find_Value_Of_Aspect
(Typ
, Aspect_Iterable
)),
2301 Ent
:= Etype
(Def_Id
);
2304 Set_Etype
(Def_Id
, Get_Cursor_Type
(Typ
));
2310 -- A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
2311 -- This check is relevant only when SPARK_Mode is on as it is not a
2312 -- standard Ada legality check.
2314 -- Not clear whether this applies to element iterators, where the
2315 -- cursor is not an explicit entity ???
2318 and then not Of_Present
(N
)
2319 and then Is_Effectively_Volatile
(Ent
)
2321 Error_Msg_N
("loop parameter cannot be volatile", Ent
);
2323 end Analyze_Iterator_Specification
;
2329 -- Note: the semantic work required for analyzing labels (setting them as
2330 -- reachable) was done in a prepass through the statements in the block,
2331 -- so that forward gotos would be properly handled. See Analyze_Statements
2332 -- for further details. The only processing required here is to deal with
2333 -- optimizations that depend on an assumption of sequential control flow,
2334 -- since of course the occurrence of a label breaks this assumption.
2336 procedure Analyze_Label
(N
: Node_Id
) is
2337 pragma Warnings
(Off
, N
);
2339 Kill_Current_Values
;
2342 --------------------------
2343 -- Analyze_Label_Entity --
2344 --------------------------
2346 procedure Analyze_Label_Entity
(E
: Entity_Id
) is
2348 Set_Ekind
(E
, E_Label
);
2349 Set_Etype
(E
, Standard_Void_Type
);
2350 Set_Enclosing_Scope
(E
, Current_Scope
);
2351 Set_Reachable
(E
, True);
2352 end Analyze_Label_Entity
;
2354 ------------------------------------------
2355 -- Analyze_Loop_Parameter_Specification --
2356 ------------------------------------------
2358 procedure Analyze_Loop_Parameter_Specification
(N
: Node_Id
) is
2359 Loop_Nod
: constant Node_Id
:= Parent
(Parent
(N
));
2361 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
);
2362 -- If the bounds are given by a 'Range reference on a function call
2363 -- that returns a controlled array, introduce an explicit declaration
2364 -- to capture the bounds, so that the function result can be finalized
2365 -- in timely fashion.
2367 procedure Check_Predicate_Use
(T
: Entity_Id
);
2368 -- Diagnose Attempt to iterate through non-static predicate. Note that
2369 -- a type with inherited predicates may have both static and dynamic
2370 -- forms. In this case it is not sufficent to check the static predicate
2371 -- function only, look for a dynamic predicate aspect as well.
2373 function Has_Call_Using_Secondary_Stack
(N
: Node_Id
) return Boolean;
2374 -- N is the node for an arbitrary construct. This function searches the
2375 -- construct N to see if any expressions within it contain function
2376 -- calls that use the secondary stack, returning True if any such call
2377 -- is found, and False otherwise.
2379 procedure Process_Bounds
(R
: Node_Id
);
2380 -- If the iteration is given by a range, create temporaries and
2381 -- assignment statements block to capture the bounds and perform
2382 -- required finalization actions in case a bound includes a function
2383 -- call that uses the temporary stack. We first pre-analyze a copy of
2384 -- the range in order to determine the expected type, and analyze and
2385 -- resolve the original bounds.
2387 --------------------------------------
2388 -- Check_Controlled_Array_Attribute --
2389 --------------------------------------
2391 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
) is
2393 if Nkind
(DS
) = N_Attribute_Reference
2394 and then Is_Entity_Name
(Prefix
(DS
))
2395 and then Ekind
(Entity
(Prefix
(DS
))) = E_Function
2396 and then Is_Array_Type
(Etype
(Entity
(Prefix
(DS
))))
2398 Is_Controlled
(Component_Type
(Etype
(Entity
(Prefix
(DS
)))))
2399 and then Expander_Active
2402 Loc
: constant Source_Ptr
:= Sloc
(N
);
2403 Arr
: constant Entity_Id
:= Etype
(Entity
(Prefix
(DS
)));
2404 Indx
: constant Entity_Id
:=
2405 Base_Type
(Etype
(First_Index
(Arr
)));
2406 Subt
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
2411 Make_Subtype_Declaration
(Loc
,
2412 Defining_Identifier
=> Subt
,
2413 Subtype_Indication
=>
2414 Make_Subtype_Indication
(Loc
,
2415 Subtype_Mark
=> New_Occurrence_Of
(Indx
, Loc
),
2417 Make_Range_Constraint
(Loc
, Relocate_Node
(DS
))));
2418 Insert_Before
(Loop_Nod
, Decl
);
2422 Make_Attribute_Reference
(Loc
,
2423 Prefix
=> New_Occurrence_Of
(Subt
, Loc
),
2424 Attribute_Name
=> Attribute_Name
(DS
)));
2429 end Check_Controlled_Array_Attribute
;
2431 -------------------------
2432 -- Check_Predicate_Use --
2433 -------------------------
2435 procedure Check_Predicate_Use
(T
: Entity_Id
) is
2437 -- A predicated subtype is illegal in loops and related constructs
2438 -- if the predicate is not static, or if it is a non-static subtype
2439 -- of a statically predicated subtype.
2441 if Is_Discrete_Type
(T
)
2442 and then Has_Predicates
(T
)
2443 and then (not Has_Static_Predicate
(T
)
2444 or else not Is_Static_Subtype
(T
)
2445 or else Has_Dynamic_Predicate_Aspect
(T
))
2447 -- Seems a confusing message for the case of a static predicate
2448 -- with a non-static subtype???
2450 Bad_Predicated_Subtype_Use
2451 ("cannot use subtype& with non-static predicate for loop "
2452 & "iteration", Discrete_Subtype_Definition
(N
),
2453 T
, Suggest_Static
=> True);
2455 elsif Inside_A_Generic
and then Is_Generic_Formal
(T
) then
2456 Set_No_Dynamic_Predicate_On_Actual
(T
);
2458 end Check_Predicate_Use
;
2460 ------------------------------------
2461 -- Has_Call_Using_Secondary_Stack --
2462 ------------------------------------
2464 function Has_Call_Using_Secondary_Stack
(N
: Node_Id
) return Boolean is
2466 function Check_Call
(N
: Node_Id
) return Traverse_Result
;
2467 -- Check if N is a function call which uses the secondary stack
2473 function Check_Call
(N
: Node_Id
) return Traverse_Result
is
2476 Return_Typ
: Entity_Id
;
2479 if Nkind
(N
) = N_Function_Call
then
2482 -- Call using access to subprogram with explicit dereference
2484 if Nkind
(Nam
) = N_Explicit_Dereference
then
2485 Subp
:= Etype
(Nam
);
2487 -- Call using a selected component notation or Ada 2005 object
2488 -- operation notation
2490 elsif Nkind
(Nam
) = N_Selected_Component
then
2491 Subp
:= Entity
(Selector_Name
(Nam
));
2496 Subp
:= Entity
(Nam
);
2499 Return_Typ
:= Etype
(Subp
);
2501 if Is_Composite_Type
(Return_Typ
)
2502 and then not Is_Constrained
(Return_Typ
)
2506 elsif Sec_Stack_Needed_For_Return
(Subp
) then
2511 -- Continue traversing the tree
2516 function Check_Calls
is new Traverse_Func
(Check_Call
);
2518 -- Start of processing for Has_Call_Using_Secondary_Stack
2521 return Check_Calls
(N
) = Abandon
;
2522 end Has_Call_Using_Secondary_Stack
;
2524 --------------------
2525 -- Process_Bounds --
2526 --------------------
2528 procedure Process_Bounds
(R
: Node_Id
) is
2529 Loc
: constant Source_Ptr
:= Sloc
(N
);
2532 (Original_Bound
: Node_Id
;
2533 Analyzed_Bound
: Node_Id
;
2534 Typ
: Entity_Id
) return Node_Id
;
2535 -- Capture value of bound and return captured value
2542 (Original_Bound
: Node_Id
;
2543 Analyzed_Bound
: Node_Id
;
2544 Typ
: Entity_Id
) return Node_Id
2551 -- If the bound is a constant or an object, no need for a separate
2552 -- declaration. If the bound is the result of previous expansion
2553 -- it is already analyzed and should not be modified. Note that
2554 -- the Bound will be resolved later, if needed, as part of the
2555 -- call to Make_Index (literal bounds may need to be resolved to
2558 if Analyzed
(Original_Bound
) then
2559 return Original_Bound
;
2561 elsif Nkind_In
(Analyzed_Bound
, N_Integer_Literal
,
2562 N_Character_Literal
)
2563 or else Is_Entity_Name
(Analyzed_Bound
)
2565 Analyze_And_Resolve
(Original_Bound
, Typ
);
2566 return Original_Bound
;
2569 -- Normally, the best approach is simply to generate a constant
2570 -- declaration that captures the bound. However, there is a nasty
2571 -- case where this is wrong. If the bound is complex, and has a
2572 -- possible use of the secondary stack, we need to generate a
2573 -- separate assignment statement to ensure the creation of a block
2574 -- which will release the secondary stack.
2576 -- We prefer the constant declaration, since it leaves us with a
2577 -- proper trace of the value, useful in optimizations that get rid
2578 -- of junk range checks.
2580 if not Has_Call_Using_Secondary_Stack
(Analyzed_Bound
) then
2581 Analyze_And_Resolve
(Original_Bound
, Typ
);
2583 -- Ensure that the bound is valid. This check should not be
2584 -- generated when the range belongs to a quantified expression
2585 -- as the construct is still not expanded into its final form.
2587 if Nkind
(Parent
(R
)) /= N_Loop_Parameter_Specification
2588 or else Nkind
(Parent
(Parent
(R
))) /= N_Quantified_Expression
2590 Ensure_Valid
(Original_Bound
);
2593 Force_Evaluation
(Original_Bound
);
2594 return Original_Bound
;
2597 Id
:= Make_Temporary
(Loc
, 'R', Original_Bound
);
2599 -- Here we make a declaration with a separate assignment
2600 -- statement, and insert before loop header.
2603 Make_Object_Declaration
(Loc
,
2604 Defining_Identifier
=> Id
,
2605 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
2608 Make_Assignment_Statement
(Loc
,
2609 Name
=> New_Occurrence_Of
(Id
, Loc
),
2610 Expression
=> Relocate_Node
(Original_Bound
));
2612 Insert_Actions
(Loop_Nod
, New_List
(Decl
, Assign
));
2614 -- Now that this temporary variable is initialized we decorate it
2615 -- as safe-to-reevaluate to inform to the backend that no further
2616 -- asignment will be issued and hence it can be handled as side
2617 -- effect free. Note that this decoration must be done when the
2618 -- assignment has been analyzed because otherwise it will be
2619 -- rejected (see Analyze_Assignment).
2621 Set_Is_Safe_To_Reevaluate
(Id
);
2623 Rewrite
(Original_Bound
, New_Occurrence_Of
(Id
, Loc
));
2625 if Nkind
(Assign
) = N_Assignment_Statement
then
2626 return Expression
(Assign
);
2628 return Original_Bound
;
2632 Hi
: constant Node_Id
:= High_Bound
(R
);
2633 Lo
: constant Node_Id
:= Low_Bound
(R
);
2634 R_Copy
: constant Node_Id
:= New_Copy_Tree
(R
);
2639 -- Start of processing for Process_Bounds
2642 Set_Parent
(R_Copy
, Parent
(R
));
2643 Preanalyze_Range
(R_Copy
);
2644 Typ
:= Etype
(R_Copy
);
2646 -- If the type of the discrete range is Universal_Integer, then the
2647 -- bound's type must be resolved to Integer, and any object used to
2648 -- hold the bound must also have type Integer, unless the literal
2649 -- bounds are constant-folded expressions with a user-defined type.
2651 if Typ
= Universal_Integer
then
2652 if Nkind
(Lo
) = N_Integer_Literal
2653 and then Present
(Etype
(Lo
))
2654 and then Scope
(Etype
(Lo
)) /= Standard_Standard
2658 elsif Nkind
(Hi
) = N_Integer_Literal
2659 and then Present
(Etype
(Hi
))
2660 and then Scope
(Etype
(Hi
)) /= Standard_Standard
2665 Typ
:= Standard_Integer
;
2671 New_Lo
:= One_Bound
(Lo
, Low_Bound
(R_Copy
), Typ
);
2672 New_Hi
:= One_Bound
(Hi
, High_Bound
(R_Copy
), Typ
);
2674 -- Propagate staticness to loop range itself, in case the
2675 -- corresponding subtype is static.
2677 if New_Lo
/= Lo
and then Is_OK_Static_Expression
(New_Lo
) then
2678 Rewrite
(Low_Bound
(R
), New_Copy
(New_Lo
));
2681 if New_Hi
/= Hi
and then Is_OK_Static_Expression
(New_Hi
) then
2682 Rewrite
(High_Bound
(R
), New_Copy
(New_Hi
));
2688 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(N
);
2689 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2693 -- Start of processing for Analyze_Loop_Parameter_Specification
2698 -- We always consider the loop variable to be referenced, since the loop
2699 -- may be used just for counting purposes.
2701 Generate_Reference
(Id
, N
, ' ');
2703 -- Check for the case of loop variable hiding a local variable (used
2704 -- later on to give a nice warning if the hidden variable is never
2708 H
: constant Entity_Id
:= Homonym
(Id
);
2711 and then Ekind
(H
) = E_Variable
2712 and then Is_Discrete_Type
(Etype
(H
))
2713 and then Enclosing_Dynamic_Scope
(H
) = Enclosing_Dynamic_Scope
(Id
)
2715 Set_Hiding_Loop_Variable
(H
, Id
);
2719 -- Loop parameter specification must include subtype mark in SPARK
2721 if Nkind
(DS
) = N_Range
then
2722 Check_SPARK_05_Restriction
2723 ("loop parameter specification must include subtype mark", N
);
2726 -- Analyze the subtype definition and create temporaries for the bounds.
2727 -- Do not evaluate the range when preanalyzing a quantified expression
2728 -- because bounds expressed as function calls with side effects will be
2729 -- incorrectly replicated.
2731 if Nkind
(DS
) = N_Range
2732 and then Expander_Active
2733 and then Nkind
(Parent
(N
)) /= N_Quantified_Expression
2735 Process_Bounds
(DS
);
2737 -- Either the expander not active or the range of iteration is a subtype
2738 -- indication, an entity, or a function call that yields an aggregate or
2742 DS_Copy
:= New_Copy_Tree
(DS
);
2743 Set_Parent
(DS_Copy
, Parent
(DS
));
2744 Preanalyze_Range
(DS_Copy
);
2746 -- Ada 2012: If the domain of iteration is:
2748 -- a) a function call,
2749 -- b) an identifier that is not a type,
2750 -- c) an attribute reference 'Old (within a postcondition)
2751 -- d) an unchecked conversion
2753 -- then it is an iteration over a container. It was classified as
2754 -- a loop specification by the parser, and must be rewritten now
2755 -- to activate container iteration. The last case will occur within
2756 -- an expanded inlined call, where the expansion wraps an actual in
2757 -- an unchecked conversion when needed. The expression of the
2758 -- conversion is always an object.
2760 if Nkind
(DS_Copy
) = N_Function_Call
2761 or else (Is_Entity_Name
(DS_Copy
)
2762 and then not Is_Type
(Entity
(DS_Copy
)))
2763 or else (Nkind
(DS_Copy
) = N_Attribute_Reference
2764 and then Nam_In
(Attribute_Name
(DS_Copy
),
2765 Name_Old
, Name_Loop_Entry
))
2766 or else Nkind
(DS_Copy
) = N_Unchecked_Type_Conversion
2767 or else Has_Aspect
(Etype
(DS_Copy
), Aspect_Iterable
)
2769 -- This is an iterator specification. Rewrite it as such and
2770 -- analyze it to capture function calls that may require
2771 -- finalization actions.
2774 I_Spec
: constant Node_Id
:=
2775 Make_Iterator_Specification
(Sloc
(N
),
2776 Defining_Identifier
=> Relocate_Node
(Id
),
2778 Subtype_Indication
=> Empty
,
2779 Reverse_Present
=> Reverse_Present
(N
));
2780 Scheme
: constant Node_Id
:= Parent
(N
);
2783 Set_Iterator_Specification
(Scheme
, I_Spec
);
2784 Set_Loop_Parameter_Specification
(Scheme
, Empty
);
2785 Analyze_Iterator_Specification
(I_Spec
);
2787 -- In a generic context, analyze the original domain of
2788 -- iteration, for name capture.
2790 if not Expander_Active
then
2794 -- Set kind of loop parameter, which may be used in the
2795 -- subsequent analysis of the condition in a quantified
2798 Set_Ekind
(Id
, E_Loop_Parameter
);
2802 -- Domain of iteration is not a function call, and is side-effect
2806 -- A quantified expression that appears in a pre/post condition
2807 -- is pre-analyzed several times. If the range is given by an
2808 -- attribute reference it is rewritten as a range, and this is
2809 -- done even with expansion disabled. If the type is already set
2810 -- do not reanalyze, because a range with static bounds may be
2811 -- typed Integer by default.
2813 if Nkind
(Parent
(N
)) = N_Quantified_Expression
2814 and then Present
(Etype
(DS
))
2827 -- Some additional checks if we are iterating through a type
2829 if Is_Entity_Name
(DS
)
2830 and then Present
(Entity
(DS
))
2831 and then Is_Type
(Entity
(DS
))
2833 -- The subtype indication may denote the completion of an incomplete
2834 -- type declaration.
2836 if Ekind
(Entity
(DS
)) = E_Incomplete_Type
then
2837 Set_Entity
(DS
, Get_Full_View
(Entity
(DS
)));
2838 Set_Etype
(DS
, Entity
(DS
));
2841 Check_Predicate_Use
(Entity
(DS
));
2844 -- Error if not discrete type
2846 if not Is_Discrete_Type
(Etype
(DS
)) then
2847 Wrong_Type
(DS
, Any_Discrete
);
2848 Set_Etype
(DS
, Any_Type
);
2851 Check_Controlled_Array_Attribute
(DS
);
2853 if Nkind
(DS
) = N_Subtype_Indication
then
2854 Check_Predicate_Use
(Entity
(Subtype_Mark
(DS
)));
2857 Make_Index
(DS
, N
, In_Iter_Schm
=> True);
2858 Set_Ekind
(Id
, E_Loop_Parameter
);
2860 -- A quantified expression which appears in a pre- or post-condition may
2861 -- be analyzed multiple times. The analysis of the range creates several
2862 -- itypes which reside in different scopes depending on whether the pre-
2863 -- or post-condition has been expanded. Update the type of the loop
2864 -- variable to reflect the proper itype at each stage of analysis.
2867 or else Etype
(Id
) = Any_Type
2869 (Present
(Etype
(Id
))
2870 and then Is_Itype
(Etype
(Id
))
2871 and then Nkind
(Parent
(Loop_Nod
)) = N_Expression_With_Actions
2872 and then Nkind
(Original_Node
(Parent
(Loop_Nod
))) =
2873 N_Quantified_Expression
)
2875 Set_Etype
(Id
, Etype
(DS
));
2878 -- Treat a range as an implicit reference to the type, to inhibit
2879 -- spurious warnings.
2881 Generate_Reference
(Base_Type
(Etype
(DS
)), N
, ' ');
2882 Set_Is_Known_Valid
(Id
, True);
2884 -- The loop is not a declarative part, so the loop variable must be
2885 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2886 -- expression because the freeze node will not be inserted into the
2887 -- tree due to flag Is_Spec_Expression being set.
2889 if Nkind
(Parent
(N
)) /= N_Quantified_Expression
then
2891 Flist
: constant List_Id
:= Freeze_Entity
(Id
, N
);
2893 if Is_Non_Empty_List
(Flist
) then
2894 Insert_Actions
(N
, Flist
);
2899 -- Case where we have a range or a subtype, get type bounds
2901 if Nkind_In
(DS
, N_Range
, N_Subtype_Indication
)
2902 and then not Error_Posted
(DS
)
2903 and then Etype
(DS
) /= Any_Type
2904 and then Is_Discrete_Type
(Etype
(DS
))
2911 if Nkind
(DS
) = N_Range
then
2912 L
:= Low_Bound
(DS
);
2913 H
:= High_Bound
(DS
);
2916 Type_Low_Bound
(Underlying_Type
(Etype
(Subtype_Mark
(DS
))));
2918 Type_High_Bound
(Underlying_Type
(Etype
(Subtype_Mark
(DS
))));
2921 -- Check for null or possibly null range and issue warning. We
2922 -- suppress such messages in generic templates and instances,
2923 -- because in practice they tend to be dubious in these cases. The
2924 -- check applies as well to rewritten array element loops where a
2925 -- null range may be detected statically.
2927 if Compile_Time_Compare
(L
, H
, Assume_Valid
=> True) = GT
then
2929 -- Suppress the warning if inside a generic template or
2930 -- instance, since in practice they tend to be dubious in these
2931 -- cases since they can result from intended parameterization.
2933 if not Inside_A_Generic
and then not In_Instance
then
2935 -- Specialize msg if invalid values could make the loop
2936 -- non-null after all.
2938 if Compile_Time_Compare
2939 (L
, H
, Assume_Valid
=> False) = GT
2941 -- Since we know the range of the loop is null, set the
2942 -- appropriate flag to remove the loop entirely during
2945 Set_Is_Null_Loop
(Loop_Nod
);
2947 if Comes_From_Source
(N
) then
2949 ("??loop range is null, loop will not execute", DS
);
2952 -- Here is where the loop could execute because of
2953 -- invalid values, so issue appropriate message and in
2954 -- this case we do not set the Is_Null_Loop flag since
2955 -- the loop may execute.
2957 elsif Comes_From_Source
(N
) then
2959 ("??loop range may be null, loop may not execute",
2962 ("??can only execute if invalid values are present",
2967 -- In either case, suppress warnings in the body of the loop,
2968 -- since it is likely that these warnings will be inappropriate
2969 -- if the loop never actually executes, which is likely.
2971 Set_Suppress_Loop_Warnings
(Loop_Nod
);
2973 -- The other case for a warning is a reverse loop where the
2974 -- upper bound is the integer literal zero or one, and the
2975 -- lower bound may exceed this value.
2977 -- For example, we have
2979 -- for J in reverse N .. 1 loop
2981 -- In practice, this is very likely to be a case of reversing
2982 -- the bounds incorrectly in the range.
2984 elsif Reverse_Present
(N
)
2985 and then Nkind
(Original_Node
(H
)) = N_Integer_Literal
2987 (Intval
(Original_Node
(H
)) = Uint_0
2989 Intval
(Original_Node
(H
)) = Uint_1
)
2991 -- Lower bound may in fact be known and known not to exceed
2992 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
2994 if Compile_Time_Known_Value
(L
)
2995 and then Expr_Value
(L
) <= Expr_Value
(H
)
2999 -- Otherwise warning is warranted
3002 Error_Msg_N
("??loop range may be null", DS
);
3003 Error_Msg_N
("\??bounds may be wrong way round", DS
);
3007 -- Check if either bound is known to be outside the range of the
3008 -- loop parameter type, this is e.g. the case of a loop from
3009 -- 20..X where the type is 1..19.
3011 -- Such a loop is dubious since either it raises CE or it executes
3012 -- zero times, and that cannot be useful!
3014 if Etype
(DS
) /= Any_Type
3015 and then not Error_Posted
(DS
)
3016 and then Nkind
(DS
) = N_Subtype_Indication
3017 and then Nkind
(Constraint
(DS
)) = N_Range_Constraint
3020 LLo
: constant Node_Id
:=
3021 Low_Bound
(Range_Expression
(Constraint
(DS
)));
3022 LHi
: constant Node_Id
:=
3023 High_Bound
(Range_Expression
(Constraint
(DS
)));
3025 Bad_Bound
: Node_Id
:= Empty
;
3026 -- Suspicious loop bound
3029 -- At this stage L, H are the bounds of the type, and LLo
3030 -- Lhi are the low bound and high bound of the loop.
3032 if Compile_Time_Compare
(LLo
, L
, Assume_Valid
=> True) = LT
3034 Compile_Time_Compare
(LLo
, H
, Assume_Valid
=> True) = GT
3039 if Compile_Time_Compare
(LHi
, L
, Assume_Valid
=> True) = LT
3041 Compile_Time_Compare
(LHi
, H
, Assume_Valid
=> True) = GT
3046 if Present
(Bad_Bound
) then
3048 ("suspicious loop bound out of range of "
3049 & "loop subtype??", Bad_Bound
);
3051 ("\loop executes zero times or raises "
3052 & "Constraint_Error??", Bad_Bound
);
3057 -- This declare block is about warnings, if we get an exception while
3058 -- testing for warnings, we simply abandon the attempt silently. This
3059 -- most likely occurs as the result of a previous error, but might
3060 -- just be an obscure case we have missed. In either case, not giving
3061 -- the warning is perfectly acceptable.
3064 when others => null;
3068 -- A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
3069 -- This check is relevant only when SPARK_Mode is on as it is not a
3070 -- standard Ada legality check.
3072 if SPARK_Mode
= On
and then Is_Effectively_Volatile
(Id
) then
3073 Error_Msg_N
("loop parameter cannot be volatile", Id
);
3075 end Analyze_Loop_Parameter_Specification
;
3077 ----------------------------
3078 -- Analyze_Loop_Statement --
3079 ----------------------------
3081 procedure Analyze_Loop_Statement
(N
: Node_Id
) is
3083 function Is_Container_Iterator
(Iter
: Node_Id
) return Boolean;
3084 -- Given a loop iteration scheme, determine whether it is an Ada 2012
3085 -- container iteration.
3087 function Is_Wrapped_In_Block
(N
: Node_Id
) return Boolean;
3088 -- Determine whether loop statement N has been wrapped in a block to
3089 -- capture finalization actions that may be generated for container
3090 -- iterators. Prevents infinite recursion when block is analyzed.
3091 -- Routine is a noop if loop is single statement within source block.
3093 ---------------------------
3094 -- Is_Container_Iterator --
3095 ---------------------------
3097 function Is_Container_Iterator
(Iter
: Node_Id
) return Boolean is
3106 elsif Present
(Condition
(Iter
)) then
3109 -- for Def_Id in [reverse] Name loop
3110 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
3112 elsif Present
(Iterator_Specification
(Iter
)) then
3114 Nam
: constant Node_Id
:= Name
(Iterator_Specification
(Iter
));
3118 Nam_Copy
:= New_Copy_Tree
(Nam
);
3119 Set_Parent
(Nam_Copy
, Parent
(Nam
));
3120 Preanalyze_Range
(Nam_Copy
);
3122 -- The only two options here are iteration over a container or
3125 return not Is_Array_Type
(Etype
(Nam_Copy
));
3128 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
3132 LP
: constant Node_Id
:= Loop_Parameter_Specification
(Iter
);
3133 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(LP
);
3137 DS_Copy
:= New_Copy_Tree
(DS
);
3138 Set_Parent
(DS_Copy
, Parent
(DS
));
3139 Preanalyze_Range
(DS_Copy
);
3141 -- Check for a call to Iterate ()
3144 Nkind
(DS_Copy
) = N_Function_Call
3145 and then Needs_Finalization
(Etype
(DS_Copy
));
3148 end Is_Container_Iterator
;
3150 -------------------------
3151 -- Is_Wrapped_In_Block --
3152 -------------------------
3154 function Is_Wrapped_In_Block
(N
: Node_Id
) return Boolean is
3160 -- Check if current scope is a block that is not a transient block.
3162 if Ekind
(Current_Scope
) /= E_Block
3163 or else No
(Block_Node
(Current_Scope
))
3169 Handled_Statement_Sequence
(Parent
(Block_Node
(Current_Scope
)));
3171 -- Skip leading pragmas that may be introduced for invariant and
3172 -- predicate checks.
3174 Stat
:= First
(Statements
(HSS
));
3175 while Present
(Stat
) and then Nkind
(Stat
) = N_Pragma
loop
3176 Stat
:= Next
(Stat
);
3179 return Stat
= N
and then No
(Next
(Stat
));
3181 end Is_Wrapped_In_Block
;
3183 -- Local declarations
3185 Id
: constant Node_Id
:= Identifier
(N
);
3186 Iter
: constant Node_Id
:= Iteration_Scheme
(N
);
3187 Loc
: constant Source_Ptr
:= Sloc
(N
);
3191 -- Start of processing for Analyze_Loop_Statement
3194 if Present
(Id
) then
3196 -- Make name visible, e.g. for use in exit statements. Loop labels
3197 -- are always considered to be referenced.
3202 -- Guard against serious error (typically, a scope mismatch when
3203 -- semantic analysis is requested) by creating loop entity to
3204 -- continue analysis.
3207 if Total_Errors_Detected
/= 0 then
3208 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
3210 raise Program_Error
;
3213 -- Verify that the loop name is hot hidden by an unrelated
3214 -- declaration in an inner scope.
3216 elsif Ekind
(Ent
) /= E_Label
and then Ekind
(Ent
) /= E_Loop
then
3217 Error_Msg_Sloc
:= Sloc
(Ent
);
3218 Error_Msg_N
("implicit label declaration for & is hidden#", Id
);
3220 if Present
(Homonym
(Ent
))
3221 and then Ekind
(Homonym
(Ent
)) = E_Label
3223 Set_Entity
(Id
, Ent
);
3224 Set_Ekind
(Ent
, E_Loop
);
3228 Generate_Reference
(Ent
, N
, ' ');
3229 Generate_Definition
(Ent
);
3231 -- If we found a label, mark its type. If not, ignore it, since it
3232 -- means we have a conflicting declaration, which would already
3233 -- have been diagnosed at declaration time. Set Label_Construct
3234 -- of the implicit label declaration, which is not created by the
3235 -- parser for generic units.
3237 if Ekind
(Ent
) = E_Label
then
3238 Set_Ekind
(Ent
, E_Loop
);
3240 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
3241 Set_Label_Construct
(Parent
(Ent
), N
);
3246 -- Case of no identifier present. Create one and attach it to the
3247 -- loop statement for use as a scope and as a reference for later
3248 -- expansions. Indicate that the label does not come from source,
3249 -- and attach it to the loop statement so it is part of the tree,
3250 -- even without a full declaration.
3253 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
3254 Set_Etype
(Ent
, Standard_Void_Type
);
3255 Set_Identifier
(N
, New_Occurrence_Of
(Ent
, Loc
));
3256 Set_Parent
(Ent
, N
);
3257 Set_Has_Created_Identifier
(N
);
3260 -- Iteration over a container in Ada 2012 involves the creation of a
3261 -- controlled iterator object. Wrap the loop in a block to ensure the
3262 -- timely finalization of the iterator and release of container locks.
3263 -- The same applies to the use of secondary stack when obtaining an
3266 if Ada_Version
>= Ada_2012
3267 and then Is_Container_Iterator
(Iter
)
3268 and then not Is_Wrapped_In_Block
(N
)
3271 Block_Nod
: Node_Id
;
3272 Block_Id
: Entity_Id
;
3276 Make_Block_Statement
(Loc
,
3277 Declarations
=> New_List
,
3278 Handled_Statement_Sequence
=>
3279 Make_Handled_Sequence_Of_Statements
(Loc
,
3280 Statements
=> New_List
(Relocate_Node
(N
))));
3282 Add_Block_Identifier
(Block_Nod
, Block_Id
);
3284 -- The expansion of iterator loops generates an iterator in order
3285 -- to traverse the elements of a container:
3287 -- Iter : <iterator type> := Iterate (Container)'reference;
3289 -- The iterator is controlled and returned on the secondary stack.
3290 -- The analysis of the call to Iterate establishes a transient
3291 -- scope to deal with the secondary stack management, but never
3292 -- really creates a physical block as this would kill the iterator
3293 -- too early (see Wrap_Transient_Declaration). To address this
3294 -- case, mark the generated block as needing secondary stack
3297 Set_Uses_Sec_Stack
(Block_Id
);
3299 Rewrite
(N
, Block_Nod
);
3305 -- Kill current values on entry to loop, since statements in the body of
3306 -- the loop may have been executed before the loop is entered. Similarly
3307 -- we kill values after the loop, since we do not know that the body of
3308 -- the loop was executed.
3310 Kill_Current_Values
;
3312 Analyze_Iteration_Scheme
(Iter
);
3314 -- Check for following case which merits a warning if the type E of is
3315 -- a multi-dimensional array (and no explicit subscript ranges present).
3321 and then Present
(Loop_Parameter_Specification
(Iter
))
3324 LPS
: constant Node_Id
:= Loop_Parameter_Specification
(Iter
);
3325 DSD
: constant Node_Id
:=
3326 Original_Node
(Discrete_Subtype_Definition
(LPS
));
3328 if Nkind
(DSD
) = N_Attribute_Reference
3329 and then Attribute_Name
(DSD
) = Name_Range
3330 and then No
(Expressions
(DSD
))
3333 Typ
: constant Entity_Id
:= Etype
(Prefix
(DSD
));
3335 if Is_Array_Type
(Typ
)
3336 and then Number_Dimensions
(Typ
) > 1
3337 and then Nkind
(Parent
(N
)) = N_Loop_Statement
3338 and then Present
(Iteration_Scheme
(Parent
(N
)))
3341 OIter
: constant Node_Id
:=
3342 Iteration_Scheme
(Parent
(N
));
3343 OLPS
: constant Node_Id
:=
3344 Loop_Parameter_Specification
(OIter
);
3345 ODSD
: constant Node_Id
:=
3346 Original_Node
(Discrete_Subtype_Definition
(OLPS
));
3348 if Nkind
(ODSD
) = N_Attribute_Reference
3349 and then Attribute_Name
(ODSD
) = Name_Range
3350 and then No
(Expressions
(ODSD
))
3351 and then Etype
(Prefix
(ODSD
)) = Typ
3353 Error_Msg_Sloc
:= Sloc
(ODSD
);
3355 ("inner range same as outer range#??", DSD
);
3364 -- Analyze the statements of the body except in the case of an Ada 2012
3365 -- iterator with the expander active. In this case the expander will do
3366 -- a rewrite of the loop into a while loop. We will then analyze the
3367 -- loop body when we analyze this while loop.
3369 -- We need to do this delay because if the container is for indefinite
3370 -- types the actual subtype of the components will only be determined
3371 -- when the cursor declaration is analyzed.
3373 -- If the expander is not active then we want to analyze the loop body
3374 -- now even in the Ada 2012 iterator case, since the rewriting will not
3375 -- be done. Insert the loop variable in the current scope, if not done
3376 -- when analysing the iteration scheme. Set its kind properly to detect
3377 -- improper uses in the loop body.
3379 -- In GNATprove mode, we do one of the above depending on the kind of
3380 -- loop. If it is an iterator over an array, then we do not analyze the
3381 -- loop now. We will analyze it after it has been rewritten by the
3382 -- special SPARK expansion which is activated in GNATprove mode. We need
3383 -- to do this so that other expansions that should occur in GNATprove
3384 -- mode take into account the specificities of the rewritten loop, in
3385 -- particular the introduction of a renaming (which needs to be
3388 -- In other cases in GNATprove mode then we want to analyze the loop
3389 -- body now, since no rewriting will occur.
3392 and then Present
(Iterator_Specification
(Iter
))
3395 and then Is_Iterator_Over_Array
(Iterator_Specification
(Iter
))
3399 elsif not Expander_Active
then
3401 I_Spec
: constant Node_Id
:= Iterator_Specification
(Iter
);
3402 Id
: constant Entity_Id
:= Defining_Identifier
(I_Spec
);
3405 if Scope
(Id
) /= Current_Scope
then
3409 -- In an element iterator, The loop parameter is a variable if
3410 -- the domain of iteration (container or array) is a variable.
3412 if not Of_Present
(I_Spec
)
3413 or else not Is_Variable
(Name
(I_Spec
))
3415 Set_Ekind
(Id
, E_Loop_Parameter
);
3419 Analyze_Statements
(Statements
(N
));
3424 -- Pre-Ada2012 for-loops and while loops.
3426 Analyze_Statements
(Statements
(N
));
3429 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
3430 -- the loop is transformed into a conditional block. Retrieve the loop.
3434 if Subject_To_Loop_Entry_Attributes
(Stmt
) then
3435 Stmt
:= Find_Loop_In_Conditional_Block
(Stmt
);
3438 -- Finish up processing for the loop. We kill all current values, since
3439 -- in general we don't know if the statements in the loop have been
3440 -- executed. We could do a bit better than this with a loop that we
3441 -- know will execute at least once, but it's not worth the trouble and
3442 -- the front end is not in the business of flow tracing.
3444 Process_End_Label
(Stmt
, 'e', Ent
);
3446 Kill_Current_Values
;
3448 -- Check for infinite loop. Skip check for generated code, since it
3449 -- justs waste time and makes debugging the routine called harder.
3451 -- Note that we have to wait till the body of the loop is fully analyzed
3452 -- before making this call, since Check_Infinite_Loop_Warning relies on
3453 -- being able to use semantic visibility information to find references.
3455 if Comes_From_Source
(Stmt
) then
3456 Check_Infinite_Loop_Warning
(Stmt
);
3459 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3460 -- contains no EXIT statements within the body of the loop.
3462 if No
(Iter
) and then not Has_Exit
(Ent
) then
3463 Check_Unreachable_Code
(Stmt
);
3465 end Analyze_Loop_Statement
;
3467 ----------------------------
3468 -- Analyze_Null_Statement --
3469 ----------------------------
3471 -- Note: the semantics of the null statement is implemented by a single
3472 -- null statement, too bad everything isn't as simple as this.
3474 procedure Analyze_Null_Statement
(N
: Node_Id
) is
3475 pragma Warnings
(Off
, N
);
3478 end Analyze_Null_Statement
;
3480 ------------------------
3481 -- Analyze_Statements --
3482 ------------------------
3484 procedure Analyze_Statements
(L
: List_Id
) is
3489 -- The labels declared in the statement list are reachable from
3490 -- statements in the list. We do this as a prepass so that any goto
3491 -- statement will be properly flagged if its target is not reachable.
3492 -- This is not required, but is nice behavior.
3495 while Present
(S
) loop
3496 if Nkind
(S
) = N_Label
then
3497 Analyze
(Identifier
(S
));
3498 Lab
:= Entity
(Identifier
(S
));
3500 -- If we found a label mark it as reachable
3502 if Ekind
(Lab
) = E_Label
then
3503 Generate_Definition
(Lab
);
3504 Set_Reachable
(Lab
);
3506 if Nkind
(Parent
(Lab
)) = N_Implicit_Label_Declaration
then
3507 Set_Label_Construct
(Parent
(Lab
), S
);
3510 -- If we failed to find a label, it means the implicit declaration
3511 -- of the label was hidden. A for-loop parameter can do this to
3512 -- a label with the same name inside the loop, since the implicit
3513 -- label declaration is in the innermost enclosing body or block
3517 Error_Msg_Sloc
:= Sloc
(Lab
);
3519 ("implicit label declaration for & is hidden#",
3527 -- Perform semantic analysis on all statements
3529 Conditional_Statements_Begin
;
3532 while Present
(S
) loop
3535 -- Remove dimension in all statements
3537 Remove_Dimension_In_Statement
(S
);
3541 Conditional_Statements_End
;
3543 -- Make labels unreachable. Visibility is not sufficient, because labels
3544 -- in one if-branch for example are not reachable from the other branch,
3545 -- even though their declarations are in the enclosing declarative part.
3548 while Present
(S
) loop
3549 if Nkind
(S
) = N_Label
then
3550 Set_Reachable
(Entity
(Identifier
(S
)), False);
3555 end Analyze_Statements
;
3557 ----------------------------
3558 -- Check_Unreachable_Code --
3559 ----------------------------
3561 procedure Check_Unreachable_Code
(N
: Node_Id
) is
3562 Error_Node
: Node_Id
;
3566 if Is_List_Member
(N
) and then Comes_From_Source
(N
) then
3571 Nxt
:= Original_Node
(Next
(N
));
3573 -- Skip past pragmas
3575 while Nkind
(Nxt
) = N_Pragma
loop
3576 Nxt
:= Original_Node
(Next
(Nxt
));
3579 -- If a label follows us, then we never have dead code, since
3580 -- someone could branch to the label, so we just ignore it, unless
3581 -- we are in formal mode where goto statements are not allowed.
3583 if Nkind
(Nxt
) = N_Label
3584 and then not Restriction_Check_Required
(SPARK_05
)
3588 -- Otherwise see if we have a real statement following us
3591 and then Comes_From_Source
(Nxt
)
3592 and then Is_Statement
(Nxt
)
3594 -- Special very annoying exception. If we have a return that
3595 -- follows a raise, then we allow it without a warning, since
3596 -- the Ada RM annoyingly requires a useless return here.
3598 if Nkind
(Original_Node
(N
)) /= N_Raise_Statement
3599 or else Nkind
(Nxt
) /= N_Simple_Return_Statement
3601 -- The rather strange shenanigans with the warning message
3602 -- here reflects the fact that Kill_Dead_Code is very good
3603 -- at removing warnings in deleted code, and this is one
3604 -- warning we would prefer NOT to have removed.
3608 -- If we have unreachable code, analyze and remove the
3609 -- unreachable code, since it is useless and we don't
3610 -- want to generate junk warnings.
3612 -- We skip this step if we are not in code generation mode
3613 -- or CodePeer mode.
3615 -- This is the one case where we remove dead code in the
3616 -- semantics as opposed to the expander, and we do not want
3617 -- to remove code if we are not in code generation mode,
3618 -- since this messes up the ASIS trees or loses useful
3619 -- information in the CodePeer tree.
3621 -- Note that one might react by moving the whole circuit to
3622 -- exp_ch5, but then we lose the warning in -gnatc mode.
3624 if Operating_Mode
= Generate_Code
3625 and then not CodePeer_Mode
3630 -- Quit deleting when we have nothing more to delete
3631 -- or if we hit a label (since someone could transfer
3632 -- control to a label, so we should not delete it).
3634 exit when No
(Nxt
) or else Nkind
(Nxt
) = N_Label
;
3636 -- Statement/declaration is to be deleted
3640 Kill_Dead_Code
(Nxt
);
3644 -- Now issue the warning (or error in formal mode)
3646 if Restriction_Check_Required
(SPARK_05
) then
3647 Check_SPARK_05_Restriction
3648 ("unreachable code is not allowed", Error_Node
);
3650 Error_Msg
("??unreachable code!", Sloc
(Error_Node
));
3654 -- If the unconditional transfer of control instruction is the
3655 -- last statement of a sequence, then see if our parent is one of
3656 -- the constructs for which we count unblocked exits, and if so,
3657 -- adjust the count.
3662 -- Statements in THEN part or ELSE part of IF statement
3664 if Nkind
(P
) = N_If_Statement
then
3667 -- Statements in ELSIF part of an IF statement
3669 elsif Nkind
(P
) = N_Elsif_Part
then
3671 pragma Assert
(Nkind
(P
) = N_If_Statement
);
3673 -- Statements in CASE statement alternative
3675 elsif Nkind
(P
) = N_Case_Statement_Alternative
then
3677 pragma Assert
(Nkind
(P
) = N_Case_Statement
);
3679 -- Statements in body of block
3681 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
3682 and then Nkind
(Parent
(P
)) = N_Block_Statement
3684 -- The original loop is now placed inside a block statement
3685 -- due to the expansion of attribute 'Loop_Entry. Return as
3686 -- this is not a "real" block for the purposes of exit
3689 if Nkind
(N
) = N_Loop_Statement
3690 and then Subject_To_Loop_Entry_Attributes
(N
)
3695 -- Statements in exception handler in a block
3697 elsif Nkind
(P
) = N_Exception_Handler
3698 and then Nkind
(Parent
(P
)) = N_Handled_Sequence_Of_Statements
3699 and then Nkind
(Parent
(Parent
(P
))) = N_Block_Statement
3703 -- None of these cases, so return
3709 -- This was one of the cases we are looking for (i.e. the
3710 -- parent construct was IF, CASE or block) so decrement count.
3712 Unblocked_Exit_Count
:= Unblocked_Exit_Count
- 1;
3716 end Check_Unreachable_Code
;
3718 ----------------------
3719 -- Preanalyze_Range --
3720 ----------------------
3722 procedure Preanalyze_Range
(R_Copy
: Node_Id
) is
3723 Save_Analysis
: constant Boolean := Full_Analysis
;
3727 Full_Analysis
:= False;
3728 Expander_Mode_Save_And_Set
(False);
3732 if Nkind
(R_Copy
) in N_Subexpr
and then Is_Overloaded
(R_Copy
) then
3734 -- Apply preference rules for range of predefined integer types, or
3735 -- diagnose true ambiguity.
3740 Found
: Entity_Id
:= Empty
;
3743 Get_First_Interp
(R_Copy
, I
, It
);
3744 while Present
(It
.Typ
) loop
3745 if Is_Discrete_Type
(It
.Typ
) then
3749 if Scope
(Found
) = Standard_Standard
then
3752 elsif Scope
(It
.Typ
) = Standard_Standard
then
3756 -- Both of them are user-defined
3759 ("ambiguous bounds in range of iteration", R_Copy
);
3760 Error_Msg_N
("\possible interpretations:", R_Copy
);
3761 Error_Msg_NE
("\\} ", R_Copy
, Found
);
3762 Error_Msg_NE
("\\} ", R_Copy
, It
.Typ
);
3768 Get_Next_Interp
(I
, It
);
3773 -- Subtype mark in iteration scheme
3775 if Is_Entity_Name
(R_Copy
) and then Is_Type
(Entity
(R_Copy
)) then
3778 -- Expression in range, or Ada 2012 iterator
3780 elsif Nkind
(R_Copy
) in N_Subexpr
then
3782 Typ
:= Etype
(R_Copy
);
3784 if Is_Discrete_Type
(Typ
) then
3787 -- Check that the resulting object is an iterable container
3789 elsif Has_Aspect
(Typ
, Aspect_Iterator_Element
)
3790 or else Has_Aspect
(Typ
, Aspect_Constant_Indexing
)
3791 or else Has_Aspect
(Typ
, Aspect_Variable_Indexing
)
3795 -- The expression may yield an implicit reference to an iterable
3796 -- container. Insert explicit dereference so that proper type is
3797 -- visible in the loop.
3799 elsif Has_Implicit_Dereference
(Etype
(R_Copy
)) then
3804 Disc
:= First_Discriminant
(Typ
);
3805 while Present
(Disc
) loop
3806 if Has_Implicit_Dereference
(Disc
) then
3807 Build_Explicit_Dereference
(R_Copy
, Disc
);
3811 Next_Discriminant
(Disc
);
3818 Expander_Mode_Restore
;
3819 Full_Analysis
:= Save_Analysis
;
3820 end Preanalyze_Range
;