1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Contracts
; use Contracts
;
30 with Debug
; use Debug
;
31 with Elists
; use Elists
;
32 with Einfo
; use Einfo
;
33 with Errout
; use Errout
;
34 with Eval_Fat
; use Eval_Fat
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Disp
; use Exp_Disp
;
38 with Exp_Dist
; use Exp_Dist
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Exp_Util
; use Exp_Util
;
41 with Fname
; use Fname
;
42 with Freeze
; use Freeze
;
43 with Ghost
; use Ghost
;
44 with Itypes
; use Itypes
;
45 with Layout
; use Layout
;
47 with Lib
.Xref
; use Lib
.Xref
;
48 with Namet
; use Namet
;
49 with Nmake
; use Nmake
;
51 with Restrict
; use Restrict
;
52 with Rident
; use Rident
;
53 with Rtsfind
; use Rtsfind
;
55 with Sem_Aux
; use Sem_Aux
;
56 with Sem_Case
; use Sem_Case
;
57 with Sem_Cat
; use Sem_Cat
;
58 with Sem_Ch6
; use Sem_Ch6
;
59 with Sem_Ch7
; use Sem_Ch7
;
60 with Sem_Ch8
; use Sem_Ch8
;
61 with Sem_Ch13
; use Sem_Ch13
;
62 with Sem_Dim
; use Sem_Dim
;
63 with Sem_Disp
; use Sem_Disp
;
64 with Sem_Dist
; use Sem_Dist
;
65 with Sem_Elim
; use Sem_Elim
;
66 with Sem_Eval
; use Sem_Eval
;
67 with Sem_Mech
; use Sem_Mech
;
68 with Sem_Res
; use Sem_Res
;
69 with Sem_Smem
; use Sem_Smem
;
70 with Sem_Type
; use Sem_Type
;
71 with Sem_Util
; use Sem_Util
;
72 with Sem_Warn
; use Sem_Warn
;
73 with Stand
; use Stand
;
74 with Sinfo
; use Sinfo
;
75 with Sinput
; use Sinput
;
76 with Snames
; use Snames
;
77 with Targparm
; use Targparm
;
78 with Tbuild
; use Tbuild
;
79 with Ttypes
; use Ttypes
;
80 with Uintp
; use Uintp
;
81 with Urealp
; use Urealp
;
83 package body Sem_Ch3
is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
94 procedure Build_Derived_Type
96 Parent_Type
: Entity_Id
;
97 Derived_Type
: Entity_Id
;
98 Is_Completion
: Boolean;
99 Derive_Subps
: Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
119 procedure Build_Derived_Access_Type
121 Parent_Type
: Entity_Id
;
122 Derived_Type
: Entity_Id
);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Array_Type
129 Parent_Type
: Entity_Id
;
130 Derived_Type
: Entity_Id
);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
135 procedure Build_Derived_Concurrent_Type
137 Parent_Type
: Entity_Id
;
138 Derived_Type
: Entity_Id
);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
143 procedure Build_Derived_Enumeration_Type
145 Parent_Type
: Entity_Id
;
146 Derived_Type
: Entity_Id
);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
151 procedure Build_Derived_Numeric_Type
153 Parent_Type
: Entity_Id
;
154 Derived_Type
: Entity_Id
);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
158 procedure Build_Derived_Private_Type
160 Parent_Type
: Entity_Id
;
161 Derived_Type
: Entity_Id
;
162 Is_Completion
: Boolean;
163 Derive_Subps
: Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
168 procedure Build_Derived_Record_Type
170 Parent_Type
: Entity_Id
;
171 Derived_Type
: Entity_Id
;
172 Derive_Subps
: Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
183 procedure Build_Discriminal
(Discrim
: Entity_Id
);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
191 function Build_Discriminant_Constraints
194 Derived_Def
: Boolean := False) return Elist_Id
;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
205 procedure Build_Discriminated_Subtype
209 Related_Nod
: Node_Id
;
210 For_Access
: Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
228 function Build_Scalar_Bound
231 Der_T
: Entity_Id
) return Node_Id
;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
237 procedure Build_Underlying_Full_View
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
249 procedure Check_Access_Discriminant_Requires_Limited
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
256 procedure Check_Anonymous_Access_Components
260 Comp_List
: Node_Id
);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
270 procedure Check_Delta_Expression
(E
: Node_Id
);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
274 procedure Check_Digits_Expression
(E
: Node_Id
);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
278 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
282 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
285 procedure Check_Or_Process_Discriminants
288 Prev
: Entity_Id
:= Empty
);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
295 procedure Check_Real_Bound
(Bound
: Node_Id
);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
299 procedure Constant_Redeclaration
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
307 function Contain_Interface
309 Ifaces
: Elist_Id
) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
312 procedure Convert_Scalar_Bounds
314 Parent_Type
: Entity_Id
;
315 Derived_Type
: Entity_Id
;
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
325 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
329 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
333 procedure Create_Constrained_Components
337 Constraints
: Elist_Id
);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
347 function Constrain_Component_Type
349 Constrained_Typ
: Entity_Id
;
350 Related_Node
: Node_Id
;
352 Constraints
: Elist_Id
) return Entity_Id
;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
361 procedure Constrain_Access
362 (Def_Id
: in out Entity_Id
;
364 Related_Nod
: Node_Id
);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
369 procedure Constrain_Array
370 (Def_Id
: in out Entity_Id
;
372 Related_Nod
: Node_Id
;
373 Related_Id
: Entity_Id
;
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
386 procedure Constrain_Concurrent
387 (Def_Id
: in out Entity_Id
;
389 Related_Nod
: Node_Id
;
390 Related_Id
: Entity_Id
;
392 -- Apply list of discriminant constraints to an unconstrained concurrent
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
404 -- Related_Nod gives the place where this type has to be inserted
407 -- The last two arguments are used to create its external name if needed.
409 function Constrain_Corresponding_Record
410 (Prot_Subt
: Entity_Id
;
411 Corr_Rec
: Entity_Id
;
412 Related_Nod
: Node_Id
) return Entity_Id
;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
416 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
420 procedure Constrain_Discriminated_Type
423 Related_Nod
: Node_Id
;
424 For_Access
: Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
432 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
436 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
440 procedure Constrain_Index
443 Related_Nod
: Node_Id
;
444 Related_Id
: Entity_Id
;
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
453 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
454 -- Build subtype of a signed or modular integer type
456 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
460 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
465 procedure Decimal_Fixed_Point_Type_Declaration
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
471 procedure Complete_Private_Subtype
474 Full_Base
: Entity_Id
;
475 Related_Nod
: Node_Id
);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type
: Entity_Id
;
482 Tagged_Type
: Entity_Id
);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
491 procedure Derived_Standard_Character
493 Parent_Type
: Entity_Id
;
494 Derived_Type
: Entity_Id
);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
498 procedure Derived_Type_Declaration
501 Is_Completion
: Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
508 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
515 function Expand_To_Stored_Constraint
517 Constraint
: Elist_Id
) return Elist_Id
;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
522 function Find_Type_Of_Object
524 Related_Nod
: Node_Id
) return Entity_Id
;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
528 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
529 -- Create a new float and apply the constraint to obtain subtype of it
531 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
537 function Inherit_Components
539 Parent_Base
: Entity_Id
;
540 Derived_Base
: Entity_Id
;
542 Inherit_Discr
: Boolean;
543 Discs
: Elist_Id
) return Elist_Id
;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
549 -- N is the original derived type declaration
551 -- Is_Tagged is set if we are dealing with tagged types
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
563 -- which gets treated as
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
571 -- (Old_Component => New_Component),
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
579 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
583 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
589 function Is_Valid_Constraint_Kind
591 Constraint_Kind
: Node_Kind
) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
595 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
596 -- Create new modular type. Verify that modulus is in bounds
598 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
602 procedure Ordinary_Fixed_Point_Type_Declaration
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
608 procedure Prepare_Private_Subtype_Completion
610 Related_Nod
: Node_Id
);
611 -- Id is a subtype of some private type. Creates the full declaration
612 -- associated with Id whenever possible, i.e. when the full declaration
613 -- of the base type is already known. Records each subtype into
614 -- Private_Dependents of the base type.
616 procedure Process_Incomplete_Dependents
620 -- Process all entities that depend on an incomplete type. There include
621 -- subtypes, subprogram types that mention the incomplete type in their
622 -- profiles, and subprogram with access parameters that designate the
625 -- Inc_T is the defining identifier of an incomplete type declaration, its
626 -- Ekind is E_Incomplete_Type.
628 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
630 -- Full_T is N's defining identifier.
632 -- Subtypes of incomplete types with discriminants are completed when the
633 -- parent type is. This is simpler than private subtypes, because they can
634 -- only appear in the same scope, and there is no need to exchange views.
635 -- Similarly, access_to_subprogram types may have a parameter or a return
636 -- type that is an incomplete type, and that must be replaced with the
639 -- If the full type is tagged, subprogram with access parameters that
640 -- designated the incomplete may be primitive operations of the full type,
641 -- and have to be processed accordingly.
643 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
644 -- Given the type definition for a real type, this procedure processes and
645 -- checks the real range specification of this type definition if one is
646 -- present. If errors are found, error messages are posted, and the
647 -- Real_Range_Specification of Def is reset to Empty.
649 procedure Propagate_Default_Init_Cond_Attributes
650 (From_Typ
: Entity_Id
;
652 Parent_To_Derivation
: Boolean := False;
653 Private_To_Full_View
: Boolean := False);
654 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
655 -- all attributes related to pragma Default_Initial_Condition from From_Typ
656 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
657 -- the creation of a derived type. Flag Private_To_Full_View should be set
658 -- when processing both views of a private type.
660 procedure Record_Type_Declaration
664 -- Process a record type declaration (for both untagged and tagged
665 -- records). Parameters T and N are exactly like in procedure
666 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
667 -- for this routine. If this is the completion of an incomplete type
668 -- declaration, Prev is the entity of the incomplete declaration, used for
669 -- cross-referencing. Otherwise Prev = T.
671 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
672 -- This routine is used to process the actual record type definition (both
673 -- for untagged and tagged records). Def is a record type definition node.
674 -- This procedure analyzes the components in this record type definition.
675 -- Prev_T is the entity for the enclosing record type. It is provided so
676 -- that its Has_Task flag can be set if any of the component have Has_Task
677 -- set. If the declaration is the completion of an incomplete type
678 -- declaration, Prev_T is the original incomplete type, whose full view is
681 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
682 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
683 -- build a copy of the declaration tree of the parent, and we create
684 -- independently the list of components for the derived type. Semantic
685 -- information uses the component entities, but record representation
686 -- clauses are validated on the declaration tree. This procedure replaces
687 -- discriminants and components in the declaration with those that have
688 -- been created by Inherit_Components.
690 procedure Set_Fixed_Range
695 -- Build a range node with the given bounds and set it as the Scalar_Range
696 -- of the given fixed-point type entity. Loc is the source location used
697 -- for the constructed range. See body for further details.
699 procedure Set_Scalar_Range_For_Subtype
703 -- This routine is used to set the scalar range field for a subtype given
704 -- Def_Id, the entity for the subtype, and R, the range expression for the
705 -- scalar range. Subt provides the parent subtype to be used to analyze,
706 -- resolve, and check the given range.
708 procedure Set_Default_SSO
(T
: Entity_Id
);
709 -- T is the entity for an array or record being declared. This procedure
710 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
711 -- to the setting of Opt.Default_SSO.
713 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
714 -- Create a new signed integer entity, and apply the constraint to obtain
715 -- the required first named subtype of this type.
717 procedure Set_Stored_Constraint_From_Discriminant_Constraint
719 -- E is some record type. This routine computes E's Stored_Constraint
720 -- from its Discriminant_Constraint.
722 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
723 -- Check that an entity in a list of progenitors is an interface,
724 -- emit error otherwise.
726 -----------------------
727 -- Access_Definition --
728 -----------------------
730 function Access_Definition
731 (Related_Nod
: Node_Id
;
732 N
: Node_Id
) return Entity_Id
734 Anon_Type
: Entity_Id
;
735 Anon_Scope
: Entity_Id
;
736 Desig_Type
: Entity_Id
;
737 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
740 Check_SPARK_05_Restriction
("access type is not allowed", N
);
742 if Is_Entry
(Current_Scope
)
743 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
745 Error_Msg_N
("task entries cannot have access parameters", N
);
749 -- Ada 2005: For an object declaration the corresponding anonymous
750 -- type is declared in the current scope.
752 -- If the access definition is the return type of another access to
753 -- function, scope is the current one, because it is the one of the
754 -- current type declaration, except for the pathological case below.
756 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
757 N_Access_Function_Definition
)
759 Anon_Scope
:= Current_Scope
;
761 -- A pathological case: function returning access functions that
762 -- return access functions, etc. Each anonymous access type created
763 -- is in the enclosing scope of the outermost function.
770 while Nkind_In
(Par
, N_Access_Function_Definition
,
776 if Nkind
(Par
) = N_Function_Specification
then
777 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
781 -- For the anonymous function result case, retrieve the scope of the
782 -- function specification's associated entity rather than using the
783 -- current scope. The current scope will be the function itself if the
784 -- formal part is currently being analyzed, but will be the parent scope
785 -- in the case of a parameterless function, and we always want to use
786 -- the function's parent scope. Finally, if the function is a child
787 -- unit, we must traverse the tree to retrieve the proper entity.
789 elsif Nkind
(Related_Nod
) = N_Function_Specification
790 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
792 -- If the current scope is a protected type, the anonymous access
793 -- is associated with one of the protected operations, and must
794 -- be available in the scope that encloses the protected declaration.
795 -- Otherwise the type is in the scope enclosing the subprogram.
797 -- If the function has formals, The return type of a subprogram
798 -- declaration is analyzed in the scope of the subprogram (see
799 -- Process_Formals) and thus the protected type, if present, is
800 -- the scope of the current function scope.
802 if Ekind
(Current_Scope
) = E_Protected_Type
then
803 Enclosing_Prot_Type
:= Current_Scope
;
805 elsif Ekind
(Current_Scope
) = E_Function
806 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
808 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
811 if Present
(Enclosing_Prot_Type
) then
812 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
815 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
818 -- For an access type definition, if the current scope is a child
819 -- unit it is the scope of the type.
821 elsif Is_Compilation_Unit
(Current_Scope
) then
822 Anon_Scope
:= Current_Scope
;
824 -- For access formals, access components, and access discriminants, the
825 -- scope is that of the enclosing declaration,
828 Anon_Scope
:= Scope
(Current_Scope
);
833 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
836 and then Ada_Version
>= Ada_2005
838 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
841 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
842 -- the corresponding semantic routine
844 if Present
(Access_To_Subprogram_Definition
(N
)) then
846 -- Compiler runtime units are compiled in Ada 2005 mode when building
847 -- the runtime library but must also be compilable in Ada 95 mode
848 -- (when bootstrapping the compiler).
850 Check_Compiler_Unit
("anonymous access to subprogram", N
);
852 Access_Subprogram_Declaration
853 (T_Name
=> Anon_Type
,
854 T_Def
=> Access_To_Subprogram_Definition
(N
));
856 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
858 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
860 Set_Ekind
(Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
863 Set_Can_Use_Internal_Rep
864 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
866 -- If the anonymous access is associated with a protected operation,
867 -- create a reference to it after the enclosing protected definition
868 -- because the itype will be used in the subsequent bodies.
870 -- If the anonymous access itself is protected, a full type
871 -- declaratiton will be created for it, so that the equivalent
872 -- record type can be constructed. For further details, see
873 -- Replace_Anonymous_Access_To_Protected-Subprogram.
875 if Ekind
(Current_Scope
) = E_Protected_Type
876 and then not Protected_Present
(Access_To_Subprogram_Definition
(N
))
878 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
884 Find_Type
(Subtype_Mark
(N
));
885 Desig_Type
:= Entity
(Subtype_Mark
(N
));
887 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
888 Set_Etype
(Anon_Type
, Anon_Type
);
890 -- Make sure the anonymous access type has size and alignment fields
891 -- set, as required by gigi. This is necessary in the case of the
892 -- Task_Body_Procedure.
894 if not Has_Private_Component
(Desig_Type
) then
895 Layout_Type
(Anon_Type
);
898 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
899 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
900 -- the null value is allowed. In Ada 95 the null value is never allowed.
902 if Ada_Version
>= Ada_2005
then
903 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
905 Set_Can_Never_Be_Null
(Anon_Type
, True);
908 -- The anonymous access type is as public as the discriminated type or
909 -- subprogram that defines it. It is imported (for back-end purposes)
910 -- if the designated type is.
912 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
914 -- Ada 2005 (AI-231): Propagate the access-constant attribute
916 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
918 -- The context is either a subprogram declaration, object declaration,
919 -- or an access discriminant, in a private or a full type declaration.
920 -- In the case of a subprogram, if the designated type is incomplete,
921 -- the operation will be a primitive operation of the full type, to be
922 -- updated subsequently. If the type is imported through a limited_with
923 -- clause, the subprogram is not a primitive operation of the type
924 -- (which is declared elsewhere in some other scope).
926 if Ekind
(Desig_Type
) = E_Incomplete_Type
927 and then not From_Limited_With
(Desig_Type
)
928 and then Is_Overloadable
(Current_Scope
)
930 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
931 Set_Has_Delayed_Freeze
(Current_Scope
);
934 -- Ada 2005: If the designated type is an interface that may contain
935 -- tasks, create a Master entity for the declaration. This must be done
936 -- before expansion of the full declaration, because the declaration may
937 -- include an expression that is an allocator, whose expansion needs the
938 -- proper Master for the created tasks.
940 if Nkind
(Related_Nod
) = N_Object_Declaration
and then Expander_Active
942 if Is_Interface
(Desig_Type
) and then Is_Limited_Record
(Desig_Type
)
944 Build_Class_Wide_Master
(Anon_Type
);
946 -- Similarly, if the type is an anonymous access that designates
947 -- tasks, create a master entity for it in the current context.
949 elsif Has_Task
(Desig_Type
) and then Comes_From_Source
(Related_Nod
)
951 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
952 Build_Master_Renaming
(Anon_Type
);
956 -- For a private component of a protected type, it is imperative that
957 -- the back-end elaborate the type immediately after the protected
958 -- declaration, because this type will be used in the declarations
959 -- created for the component within each protected body, so we must
960 -- create an itype reference for it now.
962 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
963 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
965 -- Similarly, if the access definition is the return result of a
966 -- function, create an itype reference for it because it will be used
967 -- within the function body. For a regular function that is not a
968 -- compilation unit, insert reference after the declaration. For a
969 -- protected operation, insert it after the enclosing protected type
970 -- declaration. In either case, do not create a reference for a type
971 -- obtained through a limited_with clause, because this would introduce
972 -- semantic dependencies.
974 -- Similarly, do not create a reference if the designated type is a
975 -- generic formal, because no use of it will reach the backend.
977 elsif Nkind
(Related_Nod
) = N_Function_Specification
978 and then not From_Limited_With
(Desig_Type
)
979 and then not Is_Generic_Type
(Desig_Type
)
981 if Present
(Enclosing_Prot_Type
) then
982 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
984 elsif Is_List_Member
(Parent
(Related_Nod
))
985 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
987 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
990 -- Finally, create an itype reference for an object declaration of an
991 -- anonymous access type. This is strictly necessary only for deferred
992 -- constants, but in any case will avoid out-of-scope problems in the
995 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
996 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
1000 end Access_Definition
;
1002 -----------------------------------
1003 -- Access_Subprogram_Declaration --
1004 -----------------------------------
1006 procedure Access_Subprogram_Declaration
1007 (T_Name
: Entity_Id
;
1010 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
1011 -- Check that type T_Name is not used, directly or recursively, as a
1012 -- parameter or a return type in Def. Def is either a subtype, an
1013 -- access_definition, or an access_to_subprogram_definition.
1015 -------------------------------
1016 -- Check_For_Premature_Usage --
1017 -------------------------------
1019 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
1023 -- Check for a subtype mark
1025 if Nkind
(Def
) in N_Has_Etype
then
1026 if Etype
(Def
) = T_Name
then
1028 ("type& cannot be used before end of its declaration", Def
);
1031 -- If this is not a subtype, then this is an access_definition
1033 elsif Nkind
(Def
) = N_Access_Definition
then
1034 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1035 Check_For_Premature_Usage
1036 (Access_To_Subprogram_Definition
(Def
));
1038 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1041 -- The only cases left are N_Access_Function_Definition and
1042 -- N_Access_Procedure_Definition.
1045 if Present
(Parameter_Specifications
(Def
)) then
1046 Param
:= First
(Parameter_Specifications
(Def
));
1047 while Present
(Param
) loop
1048 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1049 Param
:= Next
(Param
);
1053 if Nkind
(Def
) = N_Access_Function_Definition
then
1054 Check_For_Premature_Usage
(Result_Definition
(Def
));
1057 end Check_For_Premature_Usage
;
1061 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1064 Desig_Type
: constant Entity_Id
:=
1065 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1067 -- Start of processing for Access_Subprogram_Declaration
1070 Check_SPARK_05_Restriction
("access type is not allowed", T_Def
);
1072 -- Associate the Itype node with the inner full-type declaration or
1073 -- subprogram spec or entry body. This is required to handle nested
1074 -- anonymous declarations. For example:
1077 -- (X : access procedure
1078 -- (Y : access procedure
1081 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1082 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1083 N_Private_Type_Declaration
,
1084 N_Private_Extension_Declaration
,
1085 N_Procedure_Specification
,
1086 N_Function_Specification
,
1090 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1091 N_Object_Renaming_Declaration
,
1092 N_Formal_Object_Declaration
,
1093 N_Formal_Type_Declaration
,
1094 N_Task_Type_Declaration
,
1095 N_Protected_Type_Declaration
))
1097 D_Ityp
:= Parent
(D_Ityp
);
1098 pragma Assert
(D_Ityp
/= Empty
);
1101 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1103 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1104 N_Function_Specification
)
1106 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1108 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1109 N_Object_Declaration
,
1110 N_Object_Renaming_Declaration
,
1111 N_Formal_Type_Declaration
)
1113 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1116 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1117 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1119 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1122 if Present
(Access_To_Subprogram_Definition
(Acc
))
1124 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1128 Replace_Anonymous_Access_To_Protected_Subprogram
1134 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1139 Analyze
(Result_Definition
(T_Def
));
1142 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1145 -- If a null exclusion is imposed on the result type, then
1146 -- create a null-excluding itype (an access subtype) and use
1147 -- it as the function's Etype.
1149 if Is_Access_Type
(Typ
)
1150 and then Null_Exclusion_In_Return_Present
(T_Def
)
1152 Set_Etype
(Desig_Type
,
1153 Create_Null_Excluding_Itype
1155 Related_Nod
=> T_Def
,
1156 Scope_Id
=> Current_Scope
));
1159 if From_Limited_With
(Typ
) then
1161 -- AI05-151: Incomplete types are allowed in all basic
1162 -- declarations, including access to subprograms.
1164 if Ada_Version
>= Ada_2012
then
1169 ("illegal use of incomplete type&",
1170 Result_Definition
(T_Def
), Typ
);
1173 elsif Ekind
(Current_Scope
) = E_Package
1174 and then In_Private_Part
(Current_Scope
)
1176 if Ekind
(Typ
) = E_Incomplete_Type
then
1177 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1179 elsif Is_Class_Wide_Type
(Typ
)
1180 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1183 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1187 Set_Etype
(Desig_Type
, Typ
);
1192 if not (Is_Type
(Etype
(Desig_Type
))) then
1194 ("expect type in function specification",
1195 Result_Definition
(T_Def
));
1199 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1202 if Present
(Formals
) then
1203 Push_Scope
(Desig_Type
);
1205 -- Some special tests here. These special tests can be removed
1206 -- if and when Itypes always have proper parent pointers to their
1209 -- Special test 1) Link defining_identifier of formals. Required by
1210 -- First_Formal to provide its functionality.
1216 F
:= First
(Formals
);
1218 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1219 -- when it is part of an unconstrained type and subtype expansion
1220 -- is disabled. To avoid back-end problems with shared profiles,
1221 -- use previous subprogram type as the designated type, and then
1222 -- remove scope added above.
1224 if ASIS_Mode
and then Present
(Scope
(Defining_Identifier
(F
)))
1226 Set_Etype
(T_Name
, T_Name
);
1227 Init_Size_Align
(T_Name
);
1228 Set_Directly_Designated_Type
(T_Name
,
1229 Scope
(Defining_Identifier
(F
)));
1234 while Present
(F
) loop
1235 if No
(Parent
(Defining_Identifier
(F
))) then
1236 Set_Parent
(Defining_Identifier
(F
), F
);
1243 Process_Formals
(Formals
, Parent
(T_Def
));
1245 -- Special test 2) End_Scope requires that the parent pointer be set
1246 -- to something reasonable, but Itypes don't have parent pointers. So
1247 -- we set it and then unset it ???
1249 Set_Parent
(Desig_Type
, T_Name
);
1251 Set_Parent
(Desig_Type
, Empty
);
1254 -- Check for premature usage of the type being defined
1256 Check_For_Premature_Usage
(T_Def
);
1258 -- The return type and/or any parameter type may be incomplete. Mark the
1259 -- subprogram_type as depending on the incomplete type, so that it can
1260 -- be updated when the full type declaration is seen. This only applies
1261 -- to incomplete types declared in some enclosing scope, not to limited
1262 -- views from other packages.
1264 -- Prior to Ada 2012, access to functions can only have in_parameters.
1266 if Present
(Formals
) then
1267 Formal
:= First_Formal
(Desig_Type
);
1268 while Present
(Formal
) loop
1269 if Ekind
(Formal
) /= E_In_Parameter
1270 and then Nkind
(T_Def
) = N_Access_Function_Definition
1271 and then Ada_Version
< Ada_2012
1273 Error_Msg_N
("functions can only have IN parameters", Formal
);
1276 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1277 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1279 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1280 Set_Has_Delayed_Freeze
(Desig_Type
);
1283 Next_Formal
(Formal
);
1287 -- Check whether an indirect call without actuals may be possible. This
1288 -- is used when resolving calls whose result is then indexed.
1290 May_Need_Actuals
(Desig_Type
);
1292 -- If the return type is incomplete, this is legal as long as the type
1293 -- is declared in the current scope and will be completed in it (rather
1294 -- than being part of limited view).
1296 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1297 and then not Has_Delayed_Freeze
(Desig_Type
)
1298 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1300 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1301 Set_Has_Delayed_Freeze
(Desig_Type
);
1304 Check_Delayed_Subprogram
(Desig_Type
);
1306 if Protected_Present
(T_Def
) then
1307 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1308 Set_Convention
(Desig_Type
, Convention_Protected
);
1310 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1313 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1315 Set_Etype
(T_Name
, T_Name
);
1316 Init_Size_Align
(T_Name
);
1317 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1319 Generate_Reference_To_Formals
(T_Name
);
1321 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1323 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1325 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1326 end Access_Subprogram_Declaration
;
1328 ----------------------------
1329 -- Access_Type_Declaration --
1330 ----------------------------
1332 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1333 P
: constant Node_Id
:= Parent
(Def
);
1334 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1336 Full_Desig
: Entity_Id
;
1339 Check_SPARK_05_Restriction
("access type is not allowed", Def
);
1341 -- Check for permissible use of incomplete type
1343 if Nkind
(S
) /= N_Subtype_Indication
then
1346 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1347 Set_Directly_Designated_Type
(T
, Entity
(S
));
1349 -- If the designated type is a limited view, we cannot tell if
1350 -- the full view contains tasks, and there is no way to handle
1351 -- that full view in a client. We create a master entity for the
1352 -- scope, which will be used when a client determines that one
1355 if From_Limited_With
(Entity
(S
))
1356 and then not Is_Class_Wide_Type
(Entity
(S
))
1358 Set_Ekind
(T
, E_Access_Type
);
1359 Build_Master_Entity
(T
);
1360 Build_Master_Renaming
(T
);
1364 Set_Directly_Designated_Type
(T
, Process_Subtype
(S
, P
, T
, 'P'));
1367 -- If the access definition is of the form: ACCESS NOT NULL ..
1368 -- the subtype indication must be of an access type. Create
1369 -- a null-excluding subtype of it.
1371 if Null_Excluding_Subtype
(Def
) then
1372 if not Is_Access_Type
(Entity
(S
)) then
1373 Error_Msg_N
("null exclusion must apply to access type", Def
);
1377 Loc
: constant Source_Ptr
:= Sloc
(S
);
1379 Nam
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1383 Make_Subtype_Declaration
(Loc
,
1384 Defining_Identifier
=> Nam
,
1385 Subtype_Indication
=>
1386 New_Occurrence_Of
(Entity
(S
), Loc
));
1387 Set_Null_Exclusion_Present
(Decl
);
1388 Insert_Before
(Parent
(Def
), Decl
);
1390 Set_Entity
(S
, Nam
);
1396 Set_Directly_Designated_Type
(T
,
1397 Process_Subtype
(S
, P
, T
, 'P'));
1400 if All_Present
(Def
) or Constant_Present
(Def
) then
1401 Set_Ekind
(T
, E_General_Access_Type
);
1403 Set_Ekind
(T
, E_Access_Type
);
1406 Full_Desig
:= Designated_Type
(T
);
1408 if Base_Type
(Full_Desig
) = T
then
1409 Error_Msg_N
("access type cannot designate itself", S
);
1411 -- In Ada 2005, the type may have a limited view through some unit in
1412 -- its own context, allowing the following circularity that cannot be
1413 -- detected earlier.
1415 elsif Is_Class_Wide_Type
(Full_Desig
) and then Etype
(Full_Desig
) = T
1418 ("access type cannot designate its own classwide type", S
);
1420 -- Clean up indication of tagged status to prevent cascaded errors
1422 Set_Is_Tagged_Type
(T
, False);
1427 -- If the type has appeared already in a with_type clause, it is frozen
1428 -- and the pointer size is already set. Else, initialize.
1430 if not From_Limited_With
(T
) then
1431 Init_Size_Align
(T
);
1434 -- Note that Has_Task is always false, since the access type itself
1435 -- is not a task type. See Einfo for more description on this point.
1436 -- Exactly the same consideration applies to Has_Controlled_Component
1437 -- and to Has_Protected.
1439 Set_Has_Task
(T
, False);
1440 Set_Has_Controlled_Component
(T
, False);
1441 Set_Has_Protected
(T
, False);
1443 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1444 -- problems where an incomplete view of this entity has been previously
1445 -- established by a limited with and an overlaid version of this field
1446 -- (Stored_Constraint) was initialized for the incomplete view.
1448 -- This reset is performed in most cases except where the access type
1449 -- has been created for the purposes of allocating or deallocating a
1450 -- build-in-place object. Such access types have explicitly set pools
1451 -- and finalization masters.
1453 if No
(Associated_Storage_Pool
(T
)) then
1454 Set_Finalization_Master
(T
, Empty
);
1457 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1460 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1461 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1462 end Access_Type_Declaration
;
1464 ----------------------------------
1465 -- Add_Interface_Tag_Components --
1466 ----------------------------------
1468 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1469 Loc
: constant Source_Ptr
:= Sloc
(N
);
1473 procedure Add_Tag
(Iface
: Entity_Id
);
1474 -- Add tag for one of the progenitor interfaces
1480 procedure Add_Tag
(Iface
: Entity_Id
) is
1487 pragma Assert
(Is_Tagged_Type
(Iface
) and then Is_Interface
(Iface
));
1489 -- This is a reasonable place to propagate predicates
1491 if Has_Predicates
(Iface
) then
1492 Set_Has_Predicates
(Typ
);
1496 Make_Component_Definition
(Loc
,
1497 Aliased_Present
=> True,
1498 Subtype_Indication
=>
1499 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1501 Tag
:= Make_Temporary
(Loc
, 'V');
1504 Make_Component_Declaration
(Loc
,
1505 Defining_Identifier
=> Tag
,
1506 Component_Definition
=> Def
);
1508 Analyze_Component_Declaration
(Decl
);
1510 Set_Analyzed
(Decl
);
1511 Set_Ekind
(Tag
, E_Component
);
1513 Set_Is_Aliased
(Tag
);
1514 Set_Related_Type
(Tag
, Iface
);
1515 Init_Component_Location
(Tag
);
1517 pragma Assert
(Is_Frozen
(Iface
));
1519 Set_DT_Entry_Count
(Tag
,
1520 DT_Entry_Count
(First_Entity
(Iface
)));
1522 if No
(Last_Tag
) then
1525 Insert_After
(Last_Tag
, Decl
);
1530 -- If the ancestor has discriminants we need to give special support
1531 -- to store the offset_to_top value of the secondary dispatch tables.
1532 -- For this purpose we add a supplementary component just after the
1533 -- field that contains the tag associated with each secondary DT.
1535 if Typ
/= Etype
(Typ
) and then Has_Discriminants
(Etype
(Typ
)) then
1537 Make_Component_Definition
(Loc
,
1538 Subtype_Indication
=>
1539 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1541 Offset
:= Make_Temporary
(Loc
, 'V');
1544 Make_Component_Declaration
(Loc
,
1545 Defining_Identifier
=> Offset
,
1546 Component_Definition
=> Def
);
1548 Analyze_Component_Declaration
(Decl
);
1550 Set_Analyzed
(Decl
);
1551 Set_Ekind
(Offset
, E_Component
);
1552 Set_Is_Aliased
(Offset
);
1553 Set_Related_Type
(Offset
, Iface
);
1554 Init_Component_Location
(Offset
);
1555 Insert_After
(Last_Tag
, Decl
);
1566 -- Start of processing for Add_Interface_Tag_Components
1569 if not RTE_Available
(RE_Interface_Tag
) then
1571 ("(Ada 2005) interface types not supported by this run-time!",
1576 if Ekind
(Typ
) /= E_Record_Type
1577 or else (Is_Concurrent_Record_Type
(Typ
)
1578 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1579 or else (not Is_Concurrent_Record_Type
(Typ
)
1580 and then No
(Interfaces
(Typ
))
1581 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1586 -- Find the current last tag
1588 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1589 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1591 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1592 Ext
:= Type_Definition
(N
);
1597 if not (Present
(Component_List
(Ext
))) then
1598 Set_Null_Present
(Ext
, False);
1600 Set_Component_List
(Ext
,
1601 Make_Component_List
(Loc
,
1602 Component_Items
=> L
,
1603 Null_Present
=> False));
1605 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1606 L
:= Component_Items
1608 (Record_Extension_Part
1609 (Type_Definition
(N
))));
1611 L
:= Component_Items
1613 (Type_Definition
(N
)));
1616 -- Find the last tag component
1619 while Present
(Comp
) loop
1620 if Nkind
(Comp
) = N_Component_Declaration
1621 and then Is_Tag
(Defining_Identifier
(Comp
))
1630 -- At this point L references the list of components and Last_Tag
1631 -- references the current last tag (if any). Now we add the tag
1632 -- corresponding with all the interfaces that are not implemented
1635 if Present
(Interfaces
(Typ
)) then
1636 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1637 while Present
(Elmt
) loop
1638 Add_Tag
(Node
(Elmt
));
1642 end Add_Interface_Tag_Components
;
1644 -------------------------------------
1645 -- Add_Internal_Interface_Entities --
1646 -------------------------------------
1648 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1651 Iface_Elmt
: Elmt_Id
;
1652 Iface_Prim
: Entity_Id
;
1653 Ifaces_List
: Elist_Id
;
1654 New_Subp
: Entity_Id
:= Empty
;
1656 Restore_Scope
: Boolean := False;
1659 pragma Assert
(Ada_Version
>= Ada_2005
1660 and then Is_Record_Type
(Tagged_Type
)
1661 and then Is_Tagged_Type
(Tagged_Type
)
1662 and then Has_Interfaces
(Tagged_Type
)
1663 and then not Is_Interface
(Tagged_Type
));
1665 -- Ensure that the internal entities are added to the scope of the type
1667 if Scope
(Tagged_Type
) /= Current_Scope
then
1668 Push_Scope
(Scope
(Tagged_Type
));
1669 Restore_Scope
:= True;
1672 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1674 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1675 while Present
(Iface_Elmt
) loop
1676 Iface
:= Node
(Iface_Elmt
);
1678 -- Originally we excluded here from this processing interfaces that
1679 -- are parents of Tagged_Type because their primitives are located
1680 -- in the primary dispatch table (and hence no auxiliary internal
1681 -- entities are required to handle secondary dispatch tables in such
1682 -- case). However, these auxiliary entities are also required to
1683 -- handle derivations of interfaces in formals of generics (see
1684 -- Derive_Subprograms).
1686 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1687 while Present
(Elmt
) loop
1688 Iface_Prim
:= Node
(Elmt
);
1690 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1692 Find_Primitive_Covering_Interface
1693 (Tagged_Type
=> Tagged_Type
,
1694 Iface_Prim
=> Iface_Prim
);
1696 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1700 pragma Assert
(Present
(Prim
));
1702 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1703 -- differs from the name of the interface primitive then it is
1704 -- a private primitive inherited from a parent type. In such
1705 -- case, given that Tagged_Type covers the interface, the
1706 -- inherited private primitive becomes visible. For such
1707 -- purpose we add a new entity that renames the inherited
1708 -- private primitive.
1710 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1711 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1713 (New_Subp
=> New_Subp
,
1714 Parent_Subp
=> Iface_Prim
,
1715 Derived_Type
=> Tagged_Type
,
1716 Parent_Type
=> Iface
);
1717 Set_Alias
(New_Subp
, Prim
);
1718 Set_Is_Abstract_Subprogram
1719 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1723 (New_Subp
=> New_Subp
,
1724 Parent_Subp
=> Iface_Prim
,
1725 Derived_Type
=> Tagged_Type
,
1726 Parent_Type
=> Iface
);
1728 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1729 -- associated with interface types. These entities are
1730 -- only registered in the list of primitives of its
1731 -- corresponding tagged type because they are only used
1732 -- to fill the contents of the secondary dispatch tables.
1733 -- Therefore they are removed from the homonym chains.
1735 Set_Is_Hidden
(New_Subp
);
1736 Set_Is_Internal
(New_Subp
);
1737 Set_Alias
(New_Subp
, Prim
);
1738 Set_Is_Abstract_Subprogram
1739 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1740 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1742 -- If the returned type is an interface then propagate it to
1743 -- the returned type. Needed by the thunk to generate the code
1744 -- which displaces "this" to reference the corresponding
1745 -- secondary dispatch table in the returned object.
1747 if Is_Interface
(Etype
(Iface_Prim
)) then
1748 Set_Etype
(New_Subp
, Etype
(Iface_Prim
));
1751 -- Internal entities associated with interface types are only
1752 -- registered in the list of primitives of the tagged type.
1753 -- They are only used to fill the contents of the secondary
1754 -- dispatch tables. Therefore they are not needed in the
1757 Remove_Homonym
(New_Subp
);
1759 -- Hidden entities associated with interfaces must have set
1760 -- the Has_Delay_Freeze attribute to ensure that, in case
1761 -- of locally defined tagged types (or compiling with static
1762 -- dispatch tables generation disabled) the corresponding
1763 -- entry of the secondary dispatch table is filled when such
1764 -- an entity is frozen. This is an expansion activity that must
1765 -- be suppressed for ASIS because it leads to gigi elaboration
1766 -- issues in annotate mode.
1768 if not ASIS_Mode
then
1769 Set_Has_Delayed_Freeze
(New_Subp
);
1777 Next_Elmt
(Iface_Elmt
);
1780 if Restore_Scope
then
1783 end Add_Internal_Interface_Entities
;
1785 -----------------------------------
1786 -- Analyze_Component_Declaration --
1787 -----------------------------------
1789 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1790 Loc
: constant Source_Ptr
:= Sloc
(Component_Definition
(N
));
1791 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1792 E
: constant Node_Id
:= Expression
(N
);
1793 Typ
: constant Node_Id
:=
1794 Subtype_Indication
(Component_Definition
(N
));
1798 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1799 -- Determines whether a constraint uses the discriminant of a record
1800 -- type thus becoming a per-object constraint (POC).
1802 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1803 -- Typ is the type of the current component, check whether this type is
1804 -- a limited type. Used to validate declaration against that of
1805 -- enclosing record.
1811 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1813 -- Prevent cascaded errors
1815 if Error_Posted
(Constr
) then
1819 case Nkind
(Constr
) is
1820 when N_Attribute_Reference
=>
1821 return Attribute_Name
(Constr
) = Name_Access
1822 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1824 when N_Discriminant_Association
=>
1825 return Denotes_Discriminant
(Expression
(Constr
));
1827 when N_Identifier
=>
1828 return Denotes_Discriminant
(Constr
);
1830 when N_Index_Or_Discriminant_Constraint
=>
1835 IDC
:= First
(Constraints
(Constr
));
1836 while Present
(IDC
) loop
1838 -- One per-object constraint is sufficient
1840 if Contains_POC
(IDC
) then
1851 return Denotes_Discriminant
(Low_Bound
(Constr
))
1853 Denotes_Discriminant
(High_Bound
(Constr
));
1855 when N_Range_Constraint
=>
1856 return Denotes_Discriminant
(Range_Expression
(Constr
));
1864 ----------------------
1865 -- Is_Known_Limited --
1866 ----------------------
1868 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1869 P
: constant Entity_Id
:= Etype
(Typ
);
1870 R
: constant Entity_Id
:= Root_Type
(Typ
);
1873 if Is_Limited_Record
(Typ
) then
1876 -- If the root type is limited (and not a limited interface)
1877 -- so is the current type
1879 elsif Is_Limited_Record
(R
)
1880 and then (not Is_Interface
(R
) or else not Is_Limited_Interface
(R
))
1884 -- Else the type may have a limited interface progenitor, but a
1885 -- limited record parent.
1887 elsif R
/= P
and then Is_Limited_Record
(P
) then
1893 end Is_Known_Limited
;
1895 -- Start of processing for Analyze_Component_Declaration
1898 Generate_Definition
(Id
);
1901 if Present
(Typ
) then
1902 T
:= Find_Type_Of_Object
1903 (Subtype_Indication
(Component_Definition
(N
)), N
);
1905 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1906 Check_SPARK_05_Restriction
("subtype mark required", Typ
);
1909 -- Ada 2005 (AI-230): Access Definition case
1912 pragma Assert
(Present
1913 (Access_Definition
(Component_Definition
(N
))));
1915 T
:= Access_Definition
1917 N
=> Access_Definition
(Component_Definition
(N
)));
1918 Set_Is_Local_Anonymous_Access
(T
);
1920 -- Ada 2005 (AI-254)
1922 if Present
(Access_To_Subprogram_Definition
1923 (Access_Definition
(Component_Definition
(N
))))
1924 and then Protected_Present
(Access_To_Subprogram_Definition
1926 (Component_Definition
(N
))))
1928 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1932 -- If the subtype is a constrained subtype of the enclosing record,
1933 -- (which must have a partial view) the back-end does not properly
1934 -- handle the recursion. Rewrite the component declaration with an
1935 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1936 -- the tree directly because side effects have already been removed from
1937 -- discriminant constraints.
1939 if Ekind
(T
) = E_Access_Subtype
1940 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1941 and then Comes_From_Source
(T
)
1942 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1943 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1946 (Subtype_Indication
(Component_Definition
(N
)),
1947 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1948 T
:= Find_Type_Of_Object
1949 (Subtype_Indication
(Component_Definition
(N
)), N
);
1952 -- If the component declaration includes a default expression, then we
1953 -- check that the component is not of a limited type (RM 3.7(5)),
1954 -- and do the special preanalysis of the expression (see section on
1955 -- "Handling of Default and Per-Object Expressions" in the spec of
1959 Check_SPARK_05_Restriction
("default expression is not allowed", E
);
1960 Preanalyze_Default_Expression
(E
, T
);
1961 Check_Initialization
(T
, E
);
1963 if Ada_Version
>= Ada_2005
1964 and then Ekind
(T
) = E_Anonymous_Access_Type
1965 and then Etype
(E
) /= Any_Type
1967 -- Check RM 3.9.2(9): "if the expected type for an expression is
1968 -- an anonymous access-to-specific tagged type, then the object
1969 -- designated by the expression shall not be dynamically tagged
1970 -- unless it is a controlling operand in a call on a dispatching
1973 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1975 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1977 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1981 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1984 -- (Ada 2005: AI-230): Accessibility check for anonymous
1987 if Type_Access_Level
(Etype
(E
)) >
1988 Deepest_Type_Access_Level
(T
)
1991 ("expression has deeper access level than component " &
1992 "(RM 3.10.2 (12.2))", E
);
1995 -- The initialization expression is a reference to an access
1996 -- discriminant. The type of the discriminant is always deeper
1997 -- than any access type.
1999 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
2000 and then Is_Entity_Name
(E
)
2001 and then Ekind
(Entity
(E
)) = E_In_Parameter
2002 and then Present
(Discriminal_Link
(Entity
(E
)))
2005 ("discriminant has deeper accessibility level than target",
2011 -- The parent type may be a private view with unknown discriminants,
2012 -- and thus unconstrained. Regular components must be constrained.
2014 if not Is_Definite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
2015 if Is_Class_Wide_Type
(T
) then
2017 ("class-wide subtype with unknown discriminants" &
2018 " in component declaration",
2019 Subtype_Indication
(Component_Definition
(N
)));
2022 ("unconstrained subtype in component declaration",
2023 Subtype_Indication
(Component_Definition
(N
)));
2026 -- Components cannot be abstract, except for the special case of
2027 -- the _Parent field (case of extending an abstract tagged type)
2029 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
2030 Error_Msg_N
("type of a component cannot be abstract", N
);
2034 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
2036 -- The component declaration may have a per-object constraint, set
2037 -- the appropriate flag in the defining identifier of the subtype.
2039 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
2041 Sindic
: constant Node_Id
:=
2042 Subtype_Indication
(Component_Definition
(N
));
2044 if Nkind
(Sindic
) = N_Subtype_Indication
2045 and then Present
(Constraint
(Sindic
))
2046 and then Contains_POC
(Constraint
(Sindic
))
2048 Set_Has_Per_Object_Constraint
(Id
);
2053 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2054 -- out some static checks.
2056 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
2057 Null_Exclusion_Static_Checks
(N
);
2060 -- If this component is private (or depends on a private type), flag the
2061 -- record type to indicate that some operations are not available.
2063 P
:= Private_Component
(T
);
2067 -- Check for circular definitions
2069 if P
= Any_Type
then
2070 Set_Etype
(Id
, Any_Type
);
2072 -- There is a gap in the visibility of operations only if the
2073 -- component type is not defined in the scope of the record type.
2075 elsif Scope
(P
) = Scope
(Current_Scope
) then
2078 elsif Is_Limited_Type
(P
) then
2079 Set_Is_Limited_Composite
(Current_Scope
);
2082 Set_Is_Private_Composite
(Current_Scope
);
2087 and then Is_Limited_Type
(T
)
2088 and then Chars
(Id
) /= Name_uParent
2089 and then Is_Tagged_Type
(Current_Scope
)
2091 if Is_Derived_Type
(Current_Scope
)
2092 and then not Is_Known_Limited
(Current_Scope
)
2095 ("extension of nonlimited type cannot have limited components",
2098 if Is_Interface
(Root_Type
(Current_Scope
)) then
2100 ("\limitedness is not inherited from limited interface", N
);
2101 Error_Msg_N
("\add LIMITED to type indication", N
);
2104 Explain_Limited_Type
(T
, N
);
2105 Set_Etype
(Id
, Any_Type
);
2106 Set_Is_Limited_Composite
(Current_Scope
, False);
2108 elsif not Is_Derived_Type
(Current_Scope
)
2109 and then not Is_Limited_Record
(Current_Scope
)
2110 and then not Is_Concurrent_Type
(Current_Scope
)
2113 ("nonlimited tagged type cannot have limited components", N
);
2114 Explain_Limited_Type
(T
, N
);
2115 Set_Etype
(Id
, Any_Type
);
2116 Set_Is_Limited_Composite
(Current_Scope
, False);
2120 -- If the component is an unconstrained task or protected type with
2121 -- discriminants, the component and the enclosing record are limited
2122 -- and the component is constrained by its default values. Compute
2123 -- its actual subtype, else it may be allocated the maximum size by
2124 -- the backend, and possibly overflow.
2126 if Is_Concurrent_Type
(T
)
2127 and then not Is_Constrained
(T
)
2128 and then Has_Discriminants
(T
)
2129 and then not Has_Discriminants
(Current_Scope
)
2132 Act_T
: constant Entity_Id
:= Build_Default_Subtype
(T
, N
);
2135 Set_Etype
(Id
, Act_T
);
2137 -- Rewrite component definition to use the constrained subtype
2139 Rewrite
(Component_Definition
(N
),
2140 Make_Component_Definition
(Loc
,
2141 Subtype_Indication
=> New_Occurrence_Of
(Act_T
, Loc
)));
2145 Set_Original_Record_Component
(Id
, Id
);
2147 if Has_Aspects
(N
) then
2148 Analyze_Aspect_Specifications
(N
, Id
);
2151 Analyze_Dimension
(N
);
2152 end Analyze_Component_Declaration
;
2154 --------------------------
2155 -- Analyze_Declarations --
2156 --------------------------
2158 procedure Analyze_Declarations
(L
: List_Id
) is
2161 procedure Adjust_Decl
;
2162 -- Adjust Decl not to include implicit label declarations, since these
2163 -- have strange Sloc values that result in elaboration check problems.
2164 -- (They have the sloc of the label as found in the source, and that
2165 -- is ahead of the current declarative part).
2167 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
);
2168 -- Determine whether Body_Decl denotes the body of a late controlled
2169 -- primitive (either Initialize, Adjust or Finalize). If this is the
2170 -- case, add a proper spec if the body lacks one. The spec is inserted
2171 -- before Body_Decl and immedately analyzed.
2173 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
);
2174 -- Spec_Id is the entity of a package that may define abstract states.
2175 -- If the states have visible refinement, remove the visibility of each
2176 -- constituent at the end of the package body declarations.
2182 procedure Adjust_Decl
is
2184 while Present
(Prev
(Decl
))
2185 and then Nkind
(Decl
) = N_Implicit_Label_Declaration
2191 --------------------------------------
2192 -- Handle_Late_Controlled_Primitive --
2193 --------------------------------------
2195 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
) is
2196 Body_Spec
: constant Node_Id
:= Specification
(Body_Decl
);
2197 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2198 Loc
: constant Source_Ptr
:= Sloc
(Body_Id
);
2199 Params
: constant List_Id
:=
2200 Parameter_Specifications
(Body_Spec
);
2202 Spec_Id
: Entity_Id
;
2206 -- Consider only procedure bodies whose name matches one of the three
2207 -- controlled primitives.
2209 if Nkind
(Body_Spec
) /= N_Procedure_Specification
2210 or else not Nam_In
(Chars
(Body_Id
), Name_Adjust
,
2216 -- A controlled primitive must have exactly one formal which is not
2217 -- an anonymous access type.
2219 elsif List_Length
(Params
) /= 1 then
2223 Typ
:= Parameter_Type
(First
(Params
));
2225 if Nkind
(Typ
) = N_Access_Definition
then
2231 -- The type of the formal must be derived from [Limited_]Controlled
2233 if not Is_Controlled
(Entity
(Typ
)) then
2237 -- Check whether a specification exists for this body. We do not
2238 -- analyze the spec of the body in full, because it will be analyzed
2239 -- again when the body is properly analyzed, and we cannot create
2240 -- duplicate entries in the formals chain. We look for an explicit
2241 -- specification because the body may be an overriding operation and
2242 -- an inherited spec may be present.
2244 Spec_Id
:= Current_Entity
(Body_Id
);
2246 while Present
(Spec_Id
) loop
2247 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
)
2248 and then Scope
(Spec_Id
) = Current_Scope
2249 and then Present
(First_Formal
(Spec_Id
))
2250 and then No
(Next_Formal
(First_Formal
(Spec_Id
)))
2251 and then Etype
(First_Formal
(Spec_Id
)) = Entity
(Typ
)
2252 and then Comes_From_Source
(Spec_Id
)
2257 Spec_Id
:= Homonym
(Spec_Id
);
2260 -- At this point the body is known to be a late controlled primitive.
2261 -- Generate a matching spec and insert it before the body. Note the
2262 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2263 -- tree in this case.
2265 Spec
:= Copy_Separate_Tree
(Body_Spec
);
2267 -- Ensure that the subprogram declaration does not inherit the null
2268 -- indicator from the body as we now have a proper spec/body pair.
2270 Set_Null_Present
(Spec
, False);
2272 Insert_Before_And_Analyze
(Body_Decl
,
2273 Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
));
2274 end Handle_Late_Controlled_Primitive
;
2276 --------------------------------
2277 -- Remove_Visible_Refinements --
2278 --------------------------------
2280 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
) is
2281 State_Elmt
: Elmt_Id
;
2283 if Present
(Abstract_States
(Spec_Id
)) then
2284 State_Elmt
:= First_Elmt
(Abstract_States
(Spec_Id
));
2285 while Present
(State_Elmt
) loop
2286 Set_Has_Visible_Refinement
(Node
(State_Elmt
), False);
2287 Next_Elmt
(State_Elmt
);
2290 end Remove_Visible_Refinements
;
2294 Context
: Node_Id
:= Empty
;
2295 Freeze_From
: Entity_Id
:= Empty
;
2296 Next_Decl
: Node_Id
;
2298 Body_Seen
: Boolean := False;
2299 -- Flag set when the first body [stub] is encountered
2301 -- Start of processing for Analyze_Declarations
2304 if Restriction_Check_Required
(SPARK_05
) then
2305 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2309 while Present
(Decl
) loop
2311 -- Package spec cannot contain a package declaration in SPARK
2313 if Nkind
(Decl
) = N_Package_Declaration
2314 and then Nkind
(Parent
(L
)) = N_Package_Specification
2316 Check_SPARK_05_Restriction
2317 ("package specification cannot contain a package declaration",
2321 -- Complete analysis of declaration
2324 Next_Decl
:= Next
(Decl
);
2326 if No
(Freeze_From
) then
2327 Freeze_From
:= First_Entity
(Current_Scope
);
2330 -- At the end of a declarative part, freeze remaining entities
2331 -- declared in it. The end of the visible declarations of package
2332 -- specification is not the end of a declarative part if private
2333 -- declarations are present. The end of a package declaration is a
2334 -- freezing point only if it a library package. A task definition or
2335 -- protected type definition is not a freeze point either. Finally,
2336 -- we do not freeze entities in generic scopes, because there is no
2337 -- code generated for them and freeze nodes will be generated for
2340 -- The end of a package instantiation is not a freeze point, but
2341 -- for now we make it one, because the generic body is inserted
2342 -- (currently) immediately after. Generic instantiations will not
2343 -- be a freeze point once delayed freezing of bodies is implemented.
2344 -- (This is needed in any case for early instantiations ???).
2346 if No
(Next_Decl
) then
2347 if Nkind_In
(Parent
(L
), N_Component_List
,
2349 N_Protected_Definition
)
2353 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2354 if Nkind
(Parent
(L
)) = N_Package_Body
then
2355 Freeze_From
:= First_Entity
(Current_Scope
);
2358 -- There may have been several freezing points previously,
2359 -- for example object declarations or subprogram bodies, but
2360 -- at the end of a declarative part we check freezing from
2361 -- the beginning, even though entities may already be frozen,
2362 -- in order to perform visibility checks on delayed aspects.
2365 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2366 Freeze_From
:= Last_Entity
(Current_Scope
);
2368 elsif Scope
(Current_Scope
) /= Standard_Standard
2369 and then not Is_Child_Unit
(Current_Scope
)
2370 and then No
(Generic_Parent
(Parent
(L
)))
2374 elsif L
/= Visible_Declarations
(Parent
(L
))
2375 or else No
(Private_Declarations
(Parent
(L
)))
2376 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2379 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2380 Freeze_From
:= Last_Entity
(Current_Scope
);
2382 -- At the end of the visible declarations the expressions in
2383 -- aspects of all entities declared so far must be resolved.
2384 -- The entities themselves might be frozen later, and the
2385 -- generated pragmas and attribute definition clauses analyzed
2386 -- in full at that point, but name resolution must take place
2388 -- In addition to being the proper semantics, this is mandatory
2389 -- within generic units, because global name capture requires
2390 -- those expressions to be analyzed, given that the generated
2391 -- pragmas do not appear in the original generic tree.
2393 elsif Serious_Errors_Detected
= 0 then
2398 E
:= First_Entity
(Current_Scope
);
2399 while Present
(E
) loop
2400 Resolve_Aspect_Expressions
(E
);
2406 -- If next node is a body then freeze all types before the body.
2407 -- An exception occurs for some expander-generated bodies. If these
2408 -- are generated at places where in general language rules would not
2409 -- allow a freeze point, then we assume that the expander has
2410 -- explicitly checked that all required types are properly frozen,
2411 -- and we do not cause general freezing here. This special circuit
2412 -- is used when the encountered body is marked as having already
2415 -- In all other cases (bodies that come from source, and expander
2416 -- generated bodies that have not been analyzed yet), freeze all
2417 -- types now. Note that in the latter case, the expander must take
2418 -- care to attach the bodies at a proper place in the tree so as to
2419 -- not cause unwanted freezing at that point.
2421 elsif not Analyzed
(Next_Decl
) and then Is_Body
(Next_Decl
) then
2423 -- When a controlled type is frozen, the expander generates stream
2424 -- and controlled type support routines. If the freeze is caused
2425 -- by the stand alone body of Initialize, Adjust and Finalize, the
2426 -- expander will end up using the wrong version of these routines
2427 -- as the body has not been processed yet. To remedy this, detect
2428 -- a late controlled primitive and create a proper spec for it.
2429 -- This ensures that the primitive will override its inherited
2430 -- counterpart before the freeze takes place.
2432 -- If the declaration we just processed is a body, do not attempt
2433 -- to examine Next_Decl as the late primitive idiom can only apply
2434 -- to the first encountered body.
2436 -- The spec of the late primitive is not generated in ASIS mode to
2437 -- ensure a consistent list of primitives that indicates the true
2438 -- semantic structure of the program (which is not relevant when
2439 -- generating executable code.
2441 -- ??? a cleaner approach may be possible and/or this solution
2442 -- could be extended to general-purpose late primitives, TBD.
2444 if not ASIS_Mode
and then not Body_Seen
and then not Is_Body
(Decl
)
2448 if Nkind
(Next_Decl
) = N_Subprogram_Body
then
2449 Handle_Late_Controlled_Primitive
(Next_Decl
);
2454 Freeze_All
(Freeze_From
, Decl
);
2455 Freeze_From
:= Last_Entity
(Current_Scope
);
2461 -- Analyze the contracts of packages and their bodies
2464 Context
:= Parent
(L
);
2466 if Nkind
(Context
) = N_Package_Specification
then
2468 -- When a package has private declarations, its contract must be
2469 -- analyzed at the end of the said declarations. This way both the
2470 -- analysis and freeze actions are properly synchronized in case
2471 -- of private type use within the contract.
2473 if L
= Private_Declarations
(Context
) then
2474 Analyze_Package_Contract
(Defining_Entity
(Context
));
2476 -- Build the bodies of the default initial condition procedures
2477 -- for all types subject to pragma Default_Initial_Condition.
2478 -- From a purely Ada stand point, this is a freezing activity,
2479 -- however freezing is not available under GNATprove_Mode. To
2480 -- accomodate both scenarios, the bodies are build at the end
2481 -- of private declaration analysis.
2483 Build_Default_Init_Cond_Procedure_Bodies
(L
);
2485 -- Otherwise the contract is analyzed at the end of the visible
2488 elsif L
= Visible_Declarations
(Context
)
2489 and then No
(Private_Declarations
(Context
))
2491 Analyze_Package_Contract
(Defining_Entity
(Context
));
2494 elsif Nkind
(Context
) = N_Package_Body
then
2495 Analyze_Package_Body_Contract
(Defining_Entity
(Context
));
2498 -- Analyze the contracts of various constructs now due to the delayed
2499 -- visibility needs of their aspects and pragmas.
2501 Analyze_Contracts
(L
);
2503 if Nkind
(Context
) = N_Package_Body
then
2505 -- Ensure that all abstract states and objects declared in the
2506 -- state space of a package body are utilized as constituents.
2508 Check_Unused_Body_States
(Defining_Entity
(Context
));
2510 -- State refinements are visible up to the end of the package body
2511 -- declarations. Hide the state refinements from visibility to
2512 -- restore the original state conditions.
2514 Remove_Visible_Refinements
(Corresponding_Spec
(Context
));
2517 end Analyze_Declarations
;
2519 -----------------------------------
2520 -- Analyze_Full_Type_Declaration --
2521 -----------------------------------
2523 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2524 Def
: constant Node_Id
:= Type_Definition
(N
);
2525 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2529 Is_Remote
: constant Boolean :=
2530 (Is_Remote_Types
(Current_Scope
)
2531 or else Is_Remote_Call_Interface
(Current_Scope
))
2532 and then not (In_Private_Part
(Current_Scope
)
2533 or else In_Package_Body
(Current_Scope
));
2535 procedure Check_Nonoverridable_Aspects
;
2536 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2537 -- be overridden, and can only be confirmed on derivation.
2539 procedure Check_Ops_From_Incomplete_Type
;
2540 -- If there is a tagged incomplete partial view of the type, traverse
2541 -- the primitives of the incomplete view and change the type of any
2542 -- controlling formals and result to indicate the full view. The
2543 -- primitives will be added to the full type's primitive operations
2544 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2545 -- is called from Process_Incomplete_Dependents).
2547 ----------------------------------
2548 -- Check_Nonoverridable_Aspects --
2549 ----------------------------------
2551 procedure Check_Nonoverridable_Aspects
is
2552 Prev_Aspects
: constant List_Id
:=
2553 Aspect_Specifications
(Parent
(Def_Id
));
2554 Par_Type
: Entity_Id
;
2556 function Has_Aspect_Spec
2558 Aspect_Name
: Name_Id
) return Boolean;
2559 -- Check whether a list of aspect specifications includes an entry
2560 -- for a specific aspect. The list is either that of a partial or
2563 ---------------------
2564 -- Has_Aspect_Spec --
2565 ---------------------
2567 function Has_Aspect_Spec
2569 Aspect_Name
: Name_Id
) return Boolean
2573 Spec
:= First
(Specs
);
2574 while Present
(Spec
) loop
2575 if Chars
(Identifier
(Spec
)) = Aspect_Name
then
2581 end Has_Aspect_Spec
;
2583 -- Start of processing for Check_Nonoverridable_Aspects
2587 -- Get parent type of derived type. Note that Prev is the entity
2588 -- in the partial declaration, but its contents are now those of
2589 -- full view, while Def_Id reflects the partial view.
2591 if Is_Private_Type
(Def_Id
) then
2592 Par_Type
:= Etype
(Full_View
(Def_Id
));
2594 Par_Type
:= Etype
(Def_Id
);
2597 -- If there is an inherited Implicit_Dereference, verify that it is
2598 -- made explicit in the partial view.
2600 if Has_Discriminants
(Base_Type
(Par_Type
))
2601 and then Nkind
(Parent
(Prev
)) = N_Full_Type_Declaration
2602 and then Present
(Discriminant_Specifications
(Parent
(Prev
)))
2603 and then Present
(Get_Reference_Discriminant
(Par_Type
))
2606 not Has_Aspect_Spec
(Prev_Aspects
, Name_Implicit_Dereference
)
2609 ("type does not inherit implicit dereference", Prev
);
2612 -- If one of the views has the aspect specified, verify that it
2613 -- is consistent with that of the parent.
2616 Par_Discr
: constant Entity_Id
:=
2617 Get_Reference_Discriminant
(Par_Type
);
2618 Cur_Discr
: constant Entity_Id
:=
2619 Get_Reference_Discriminant
(Prev
);
2621 if Corresponding_Discriminant
(Cur_Discr
) /= Par_Discr
then
2622 Error_Msg_N
("aspect incosistent with that of parent", N
);
2628 -- TBD : other nonoverridable aspects.
2629 end Check_Nonoverridable_Aspects
;
2631 ------------------------------------
2632 -- Check_Ops_From_Incomplete_Type --
2633 ------------------------------------
2635 procedure Check_Ops_From_Incomplete_Type
is
2642 and then Ekind
(Prev
) = E_Incomplete_Type
2643 and then Is_Tagged_Type
(Prev
)
2644 and then Is_Tagged_Type
(T
)
2646 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2647 while Present
(Elmt
) loop
2650 Formal
:= First_Formal
(Op
);
2651 while Present
(Formal
) loop
2652 if Etype
(Formal
) = Prev
then
2653 Set_Etype
(Formal
, T
);
2656 Next_Formal
(Formal
);
2659 if Etype
(Op
) = Prev
then
2666 end Check_Ops_From_Incomplete_Type
;
2668 -- Start of processing for Analyze_Full_Type_Declaration
2671 Prev
:= Find_Type_Name
(N
);
2673 -- The full view, if present, now points to the current type. If there
2674 -- is an incomplete partial view, set a link to it, to simplify the
2675 -- retrieval of primitive operations of the type.
2677 -- Ada 2005 (AI-50217): If the type was previously decorated when
2678 -- imported through a LIMITED WITH clause, it appears as incomplete
2679 -- but has no full view.
2681 if Ekind
(Prev
) = E_Incomplete_Type
2682 and then Present
(Full_View
(Prev
))
2684 T
:= Full_View
(Prev
);
2685 Set_Incomplete_View
(N
, Parent
(Prev
));
2690 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2692 -- We set the flag Is_First_Subtype here. It is needed to set the
2693 -- corresponding flag for the Implicit class-wide-type created
2694 -- during tagged types processing.
2696 Set_Is_First_Subtype
(T
, True);
2698 -- Only composite types other than array types are allowed to have
2703 -- For derived types, the rule will be checked once we've figured
2704 -- out the parent type.
2706 when N_Derived_Type_Definition
=>
2709 -- For record types, discriminants are allowed, unless we are in
2712 when N_Record_Definition
=>
2713 if Present
(Discriminant_Specifications
(N
)) then
2714 Check_SPARK_05_Restriction
2715 ("discriminant type is not allowed",
2717 (First
(Discriminant_Specifications
(N
))));
2721 if Present
(Discriminant_Specifications
(N
)) then
2723 ("elementary or array type cannot have discriminants",
2725 (First
(Discriminant_Specifications
(N
))));
2729 -- Elaborate the type definition according to kind, and generate
2730 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2731 -- already done (this happens during the reanalysis that follows a call
2732 -- to the high level optimizer).
2734 if not Analyzed
(T
) then
2738 when N_Access_To_Subprogram_Definition
=>
2739 Access_Subprogram_Declaration
(T
, Def
);
2741 -- If this is a remote access to subprogram, we must create the
2742 -- equivalent fat pointer type, and related subprograms.
2745 Process_Remote_AST_Declaration
(N
);
2748 -- Validate categorization rule against access type declaration
2749 -- usually a violation in Pure unit, Shared_Passive unit.
2751 Validate_Access_Type_Declaration
(T
, N
);
2753 when N_Access_To_Object_Definition
=>
2754 Access_Type_Declaration
(T
, Def
);
2756 -- Validate categorization rule against access type declaration
2757 -- usually a violation in Pure unit, Shared_Passive unit.
2759 Validate_Access_Type_Declaration
(T
, N
);
2761 -- If we are in a Remote_Call_Interface package and define a
2762 -- RACW, then calling stubs and specific stream attributes
2766 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2768 Add_RACW_Features
(Def_Id
);
2771 when N_Array_Type_Definition
=>
2772 Array_Type_Declaration
(T
, Def
);
2774 when N_Derived_Type_Definition
=>
2775 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2777 when N_Enumeration_Type_Definition
=>
2778 Enumeration_Type_Declaration
(T
, Def
);
2780 when N_Floating_Point_Definition
=>
2781 Floating_Point_Type_Declaration
(T
, Def
);
2783 when N_Decimal_Fixed_Point_Definition
=>
2784 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2786 when N_Ordinary_Fixed_Point_Definition
=>
2787 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2789 when N_Signed_Integer_Type_Definition
=>
2790 Signed_Integer_Type_Declaration
(T
, Def
);
2792 when N_Modular_Type_Definition
=>
2793 Modular_Type_Declaration
(T
, Def
);
2795 when N_Record_Definition
=>
2796 Record_Type_Declaration
(T
, N
, Prev
);
2798 -- If declaration has a parse error, nothing to elaborate.
2804 raise Program_Error
;
2809 if Etype
(T
) = Any_Type
then
2813 -- Controlled type is not allowed in SPARK
2815 if Is_Visibly_Controlled
(T
) then
2816 Check_SPARK_05_Restriction
("controlled type is not allowed", N
);
2819 -- A type declared within a Ghost region is automatically Ghost
2820 -- (SPARK RM 6.9(2)).
2822 if Ghost_Mode
> None
then
2823 Set_Is_Ghost_Entity
(T
);
2826 -- Some common processing for all types
2828 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2829 Check_Ops_From_Incomplete_Type
;
2831 -- Both the declared entity, and its anonymous base type if one was
2832 -- created, need freeze nodes allocated.
2835 B
: constant Entity_Id
:= Base_Type
(T
);
2838 -- In the case where the base type differs from the first subtype, we
2839 -- pre-allocate a freeze node, and set the proper link to the first
2840 -- subtype. Freeze_Entity will use this preallocated freeze node when
2841 -- it freezes the entity.
2843 -- This does not apply if the base type is a generic type, whose
2844 -- declaration is independent of the current derived definition.
2846 if B
/= T
and then not Is_Generic_Type
(B
) then
2847 Ensure_Freeze_Node
(B
);
2848 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2851 -- A type that is imported through a limited_with clause cannot
2852 -- generate any code, and thus need not be frozen. However, an access
2853 -- type with an imported designated type needs a finalization list,
2854 -- which may be referenced in some other package that has non-limited
2855 -- visibility on the designated type. Thus we must create the
2856 -- finalization list at the point the access type is frozen, to
2857 -- prevent unsatisfied references at link time.
2859 if not From_Limited_With
(T
) or else Is_Access_Type
(T
) then
2860 Set_Has_Delayed_Freeze
(T
);
2864 -- Case where T is the full declaration of some private type which has
2865 -- been swapped in Defining_Identifier (N).
2867 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2868 Process_Full_View
(N
, T
, Def_Id
);
2870 -- Record the reference. The form of this is a little strange, since
2871 -- the full declaration has been swapped in. So the first parameter
2872 -- here represents the entity to which a reference is made which is
2873 -- the "real" entity, i.e. the one swapped in, and the second
2874 -- parameter provides the reference location.
2876 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2877 -- since we don't want a complaint about the full type being an
2878 -- unwanted reference to the private type
2881 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2883 Set_Has_Pragma_Unreferenced
(T
, False);
2884 Generate_Reference
(T
, T
, 'c');
2885 Set_Has_Pragma_Unreferenced
(T
, B
);
2888 Set_Completion_Referenced
(Def_Id
);
2890 -- For completion of incomplete type, process incomplete dependents
2891 -- and always mark the full type as referenced (it is the incomplete
2892 -- type that we get for any real reference).
2894 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2895 Process_Incomplete_Dependents
(N
, T
, Prev
);
2896 Generate_Reference
(Prev
, Def_Id
, 'c');
2897 Set_Completion_Referenced
(Def_Id
);
2899 -- If not private type or incomplete type completion, this is a real
2900 -- definition of a new entity, so record it.
2903 Generate_Definition
(Def_Id
);
2906 -- Propagate any pending access types whose finalization masters need to
2907 -- be fully initialized from the partial to the full view. Guard against
2908 -- an illegal full view that remains unanalyzed.
2910 if Is_Type
(Def_Id
) and then Is_Incomplete_Or_Private_Type
(Prev
) then
2911 Set_Pending_Access_Types
(Def_Id
, Pending_Access_Types
(Prev
));
2914 if Chars
(Scope
(Def_Id
)) = Name_System
2915 and then Chars
(Def_Id
) = Name_Address
2916 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2918 Set_Is_Descendent_Of_Address
(Def_Id
);
2919 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
2920 Set_Is_Descendent_Of_Address
(Prev
);
2923 Set_Optimize_Alignment_Flags
(Def_Id
);
2924 Check_Eliminated
(Def_Id
);
2926 -- If the declaration is a completion and aspects are present, apply
2927 -- them to the entity for the type which is currently the partial
2928 -- view, but which is the one that will be frozen.
2930 if Has_Aspects
(N
) then
2932 -- In most cases the partial view is a private type, and both views
2933 -- appear in different declarative parts. In the unusual case where
2934 -- the partial view is incomplete, perform the analysis on the
2935 -- full view, to prevent freezing anomalies with the corresponding
2936 -- class-wide type, which otherwise might be frozen before the
2937 -- dispatch table is built.
2940 and then Ekind
(Prev
) /= E_Incomplete_Type
2942 Analyze_Aspect_Specifications
(N
, Prev
);
2947 Analyze_Aspect_Specifications
(N
, Def_Id
);
2951 if Is_Derived_Type
(Prev
)
2952 and then Def_Id
/= Prev
2954 Check_Nonoverridable_Aspects
;
2956 end Analyze_Full_Type_Declaration
;
2958 ----------------------------------
2959 -- Analyze_Incomplete_Type_Decl --
2960 ----------------------------------
2962 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2963 F
: constant Boolean := Is_Pure
(Current_Scope
);
2967 Check_SPARK_05_Restriction
("incomplete type is not allowed", N
);
2969 Generate_Definition
(Defining_Identifier
(N
));
2971 -- Process an incomplete declaration. The identifier must not have been
2972 -- declared already in the scope. However, an incomplete declaration may
2973 -- appear in the private part of a package, for a private type that has
2974 -- already been declared.
2976 -- In this case, the discriminants (if any) must match
2978 T
:= Find_Type_Name
(N
);
2980 Set_Ekind
(T
, E_Incomplete_Type
);
2981 Init_Size_Align
(T
);
2982 Set_Is_First_Subtype
(T
, True);
2985 -- An incomplete type declared within a Ghost region is automatically
2986 -- Ghost (SPARK RM 6.9(2)).
2988 if Ghost_Mode
> None
then
2989 Set_Is_Ghost_Entity
(T
);
2992 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2993 -- incomplete types.
2995 if Tagged_Present
(N
) then
2996 Set_Is_Tagged_Type
(T
, True);
2997 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2998 Make_Class_Wide_Type
(T
);
2999 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
3002 Set_Stored_Constraint
(T
, No_Elist
);
3004 if Present
(Discriminant_Specifications
(N
)) then
3006 Process_Discriminants
(N
);
3010 -- If the type has discriminants, nontrivial subtypes may be declared
3011 -- before the full view of the type. The full views of those subtypes
3012 -- will be built after the full view of the type.
3014 Set_Private_Dependents
(T
, New_Elmt_List
);
3016 end Analyze_Incomplete_Type_Decl
;
3018 -----------------------------------
3019 -- Analyze_Interface_Declaration --
3020 -----------------------------------
3022 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
3023 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
3026 Set_Is_Tagged_Type
(T
);
3027 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
3029 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
3030 or else Task_Present
(Def
)
3031 or else Protected_Present
(Def
)
3032 or else Synchronized_Present
(Def
));
3034 -- Type is abstract if full declaration carries keyword, or if previous
3035 -- partial view did.
3037 Set_Is_Abstract_Type
(T
);
3038 Set_Is_Interface
(T
);
3040 -- Type is a limited interface if it includes the keyword limited, task,
3041 -- protected, or synchronized.
3043 Set_Is_Limited_Interface
3044 (T
, Limited_Present
(Def
)
3045 or else Protected_Present
(Def
)
3046 or else Synchronized_Present
(Def
)
3047 or else Task_Present
(Def
));
3049 Set_Interfaces
(T
, New_Elmt_List
);
3050 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
3052 -- Complete the decoration of the class-wide entity if it was already
3053 -- built (i.e. during the creation of the limited view)
3055 if Present
(CW
) then
3056 Set_Is_Interface
(CW
);
3057 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
3060 -- Check runtime support for synchronized interfaces
3062 if (Is_Task_Interface
(T
)
3063 or else Is_Protected_Interface
(T
)
3064 or else Is_Synchronized_Interface
(T
))
3065 and then not RTE_Available
(RE_Select_Specific_Data
)
3067 Error_Msg_CRT
("synchronized interfaces", T
);
3069 end Analyze_Interface_Declaration
;
3071 -----------------------------
3072 -- Analyze_Itype_Reference --
3073 -----------------------------
3075 -- Nothing to do. This node is placed in the tree only for the benefit of
3076 -- back end processing, and has no effect on the semantic processing.
3078 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
3080 pragma Assert
(Is_Itype
(Itype
(N
)));
3082 end Analyze_Itype_Reference
;
3084 --------------------------------
3085 -- Analyze_Number_Declaration --
3086 --------------------------------
3088 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
3089 E
: constant Node_Id
:= Expression
(N
);
3090 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3091 Index
: Interp_Index
;
3096 Generate_Definition
(Id
);
3099 -- A number declared within a Ghost region is automatically Ghost
3100 -- (SPARK RM 6.9(2)).
3102 if Ghost_Mode
> None
then
3103 Set_Is_Ghost_Entity
(Id
);
3106 -- This is an optimization of a common case of an integer literal
3108 if Nkind
(E
) = N_Integer_Literal
then
3109 Set_Is_Static_Expression
(E
, True);
3110 Set_Etype
(E
, Universal_Integer
);
3112 Set_Etype
(Id
, Universal_Integer
);
3113 Set_Ekind
(Id
, E_Named_Integer
);
3114 Set_Is_Frozen
(Id
, True);
3118 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3120 -- Process expression, replacing error by integer zero, to avoid
3121 -- cascaded errors or aborts further along in the processing
3123 -- Replace Error by integer zero, which seems least likely to cause
3127 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
3128 Set_Error_Posted
(E
);
3133 -- Verify that the expression is static and numeric. If
3134 -- the expression is overloaded, we apply the preference
3135 -- rule that favors root numeric types.
3137 if not Is_Overloaded
(E
) then
3139 if Has_Dynamic_Predicate_Aspect
(T
) then
3141 ("subtype has dynamic predicate, "
3142 & "not allowed in number declaration", N
);
3148 Get_First_Interp
(E
, Index
, It
);
3149 while Present
(It
.Typ
) loop
3150 if (Is_Integer_Type
(It
.Typ
) or else Is_Real_Type
(It
.Typ
))
3151 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
3153 if T
= Any_Type
then
3156 elsif It
.Typ
= Universal_Real
3158 It
.Typ
= Universal_Integer
3160 -- Choose universal interpretation over any other
3167 Get_Next_Interp
(Index
, It
);
3171 if Is_Integer_Type
(T
) then
3173 Set_Etype
(Id
, Universal_Integer
);
3174 Set_Ekind
(Id
, E_Named_Integer
);
3176 elsif Is_Real_Type
(T
) then
3178 -- Because the real value is converted to universal_real, this is a
3179 -- legal context for a universal fixed expression.
3181 if T
= Universal_Fixed
then
3183 Loc
: constant Source_Ptr
:= Sloc
(N
);
3184 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
3186 New_Occurrence_Of
(Universal_Real
, Loc
),
3187 Expression
=> Relocate_Node
(E
));
3194 elsif T
= Any_Fixed
then
3195 Error_Msg_N
("illegal context for mixed mode operation", E
);
3197 -- Expression is of the form : universal_fixed * integer. Try to
3198 -- resolve as universal_real.
3200 T
:= Universal_Real
;
3205 Set_Etype
(Id
, Universal_Real
);
3206 Set_Ekind
(Id
, E_Named_Real
);
3209 Wrong_Type
(E
, Any_Numeric
);
3213 Set_Ekind
(Id
, E_Constant
);
3214 Set_Never_Set_In_Source
(Id
, True);
3215 Set_Is_True_Constant
(Id
, True);
3219 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
3220 Set_Etype
(E
, Etype
(Id
));
3223 if not Is_OK_Static_Expression
(E
) then
3224 Flag_Non_Static_Expr
3225 ("non-static expression used in number declaration!", E
);
3226 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
3227 Set_Etype
(E
, Any_Type
);
3230 Analyze_Dimension
(N
);
3231 end Analyze_Number_Declaration
;
3233 --------------------------------
3234 -- Analyze_Object_Declaration --
3235 --------------------------------
3237 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
3238 Loc
: constant Source_Ptr
:= Sloc
(N
);
3239 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3243 E
: Node_Id
:= Expression
(N
);
3244 -- E is set to Expression (N) throughout this routine. When
3245 -- Expression (N) is modified, E is changed accordingly.
3247 Prev_Entity
: Entity_Id
:= Empty
;
3249 function Count_Tasks
(T
: Entity_Id
) return Uint
;
3250 -- This function is called when a non-generic library level object of a
3251 -- task type is declared. Its function is to count the static number of
3252 -- tasks declared within the type (it is only called if Has_Task is set
3253 -- for T). As a side effect, if an array of tasks with non-static bounds
3254 -- or a variant record type is encountered, Check_Restriction is called
3255 -- indicating the count is unknown.
3257 function Delayed_Aspect_Present
return Boolean;
3258 -- If the declaration has an expression that is an aggregate, and it
3259 -- has aspects that require delayed analysis, the resolution of the
3260 -- aggregate must be deferred to the freeze point of the objet. This
3261 -- special processing was created for address clauses, but it must
3262 -- also apply to Alignment. This must be done before the aspect
3263 -- specifications are analyzed because we must handle the aggregate
3264 -- before the analysis of the object declaration is complete.
3266 -- Any other relevant delayed aspects on object declarations ???
3272 function Count_Tasks
(T
: Entity_Id
) return Uint
is
3278 if Is_Task_Type
(T
) then
3281 elsif Is_Record_Type
(T
) then
3282 if Has_Discriminants
(T
) then
3283 Check_Restriction
(Max_Tasks
, N
);
3288 C
:= First_Component
(T
);
3289 while Present
(C
) loop
3290 V
:= V
+ Count_Tasks
(Etype
(C
));
3297 elsif Is_Array_Type
(T
) then
3298 X
:= First_Index
(T
);
3299 V
:= Count_Tasks
(Component_Type
(T
));
3300 while Present
(X
) loop
3303 if not Is_OK_Static_Subtype
(C
) then
3304 Check_Restriction
(Max_Tasks
, N
);
3307 V
:= V
* (UI_Max
(Uint_0
,
3308 Expr_Value
(Type_High_Bound
(C
)) -
3309 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
3322 ----------------------------
3323 -- Delayed_Aspect_Present --
3324 ----------------------------
3326 function Delayed_Aspect_Present
return Boolean is
3331 if Present
(Aspect_Specifications
(N
)) then
3332 A
:= First
(Aspect_Specifications
(N
));
3333 A_Id
:= Get_Aspect_Id
(Chars
(Identifier
(A
)));
3334 while Present
(A
) loop
3335 if A_Id
= Aspect_Alignment
or else A_Id
= Aspect_Address
then
3344 end Delayed_Aspect_Present
;
3348 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
3349 Related_Id
: Entity_Id
;
3351 -- Start of processing for Analyze_Object_Declaration
3354 -- There are three kinds of implicit types generated by an
3355 -- object declaration:
3357 -- 1. Those generated by the original Object Definition
3359 -- 2. Those generated by the Expression
3361 -- 3. Those used to constrain the Object Definition with the
3362 -- expression constraints when the definition is unconstrained.
3364 -- They must be generated in this order to avoid order of elaboration
3365 -- issues. Thus the first step (after entering the name) is to analyze
3366 -- the object definition.
3368 if Constant_Present
(N
) then
3369 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
3371 if Present
(Prev_Entity
)
3373 -- If the homograph is an implicit subprogram, it is overridden
3374 -- by the current declaration.
3376 ((Is_Overloadable
(Prev_Entity
)
3377 and then Is_Inherited_Operation
(Prev_Entity
))
3379 -- The current object is a discriminal generated for an entry
3380 -- family index. Even though the index is a constant, in this
3381 -- particular context there is no true constant redeclaration.
3382 -- Enter_Name will handle the visibility.
3385 (Is_Discriminal
(Id
)
3386 and then Ekind
(Discriminal_Link
(Id
)) =
3387 E_Entry_Index_Parameter
)
3389 -- The current object is the renaming for a generic declared
3390 -- within the instance.
3393 (Ekind
(Prev_Entity
) = E_Package
3394 and then Nkind
(Parent
(Prev_Entity
)) =
3395 N_Package_Renaming_Declaration
3396 and then not Comes_From_Source
(Prev_Entity
)
3398 Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
3400 Prev_Entity
:= Empty
;
3404 -- The object declaration is Ghost when it is subject to pragma Ghost or
3405 -- completes a deferred Ghost constant. Set the mode now to ensure that
3406 -- any nodes generated during analysis and expansion are properly marked
3409 Set_Ghost_Mode
(N
, Prev_Entity
);
3411 if Present
(Prev_Entity
) then
3412 Constant_Redeclaration
(Id
, N
, T
);
3414 Generate_Reference
(Prev_Entity
, Id
, 'c');
3415 Set_Completion_Referenced
(Id
);
3417 if Error_Posted
(N
) then
3419 -- Type mismatch or illegal redeclaration, Do not analyze
3420 -- expression to avoid cascaded errors.
3422 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3424 Set_Ekind
(Id
, E_Variable
);
3428 -- In the normal case, enter identifier at the start to catch premature
3429 -- usage in the initialization expression.
3432 Generate_Definition
(Id
);
3435 Mark_Coextensions
(N
, Object_Definition
(N
));
3437 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3439 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
3441 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3442 and then Protected_Present
3443 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3445 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
3448 if Error_Posted
(Id
) then
3450 Set_Ekind
(Id
, E_Variable
);
3455 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3456 -- out some static checks
3458 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
3460 -- In case of aggregates we must also take care of the correct
3461 -- initialization of nested aggregates bug this is done at the
3462 -- point of the analysis of the aggregate (see sem_aggr.adb).
3464 if Present
(Expression
(N
))
3465 and then Nkind
(Expression
(N
)) = N_Aggregate
3471 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
3473 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
3474 Null_Exclusion_Static_Checks
(N
);
3475 Set_Etype
(Id
, Save_Typ
);
3480 -- Object is marked pure if it is in a pure scope
3482 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3484 -- If deferred constant, make sure context is appropriate. We detect
3485 -- a deferred constant as a constant declaration with no expression.
3486 -- A deferred constant can appear in a package body if its completion
3487 -- is by means of an interface pragma.
3489 if Constant_Present
(N
) and then No
(E
) then
3491 -- A deferred constant may appear in the declarative part of the
3492 -- following constructs:
3496 -- extended return statements
3499 -- subprogram bodies
3502 -- When declared inside a package spec, a deferred constant must be
3503 -- completed by a full constant declaration or pragma Import. In all
3504 -- other cases, the only proper completion is pragma Import. Extended
3505 -- return statements are flagged as invalid contexts because they do
3506 -- not have a declarative part and so cannot accommodate the pragma.
3508 if Ekind
(Current_Scope
) = E_Return_Statement
then
3510 ("invalid context for deferred constant declaration (RM 7.4)",
3513 ("\declaration requires an initialization expression",
3515 Set_Constant_Present
(N
, False);
3517 -- In Ada 83, deferred constant must be of private type
3519 elsif not Is_Private_Type
(T
) then
3520 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3522 ("(Ada 83) deferred constant must be private type", N
);
3526 -- If not a deferred constant, then the object declaration freezes
3527 -- its type, unless the object is of an anonymous type and has delayed
3528 -- aspects. In that case the type is frozen when the object itself is.
3531 Check_Fully_Declared
(T
, N
);
3533 if Has_Delayed_Aspects
(Id
)
3534 and then Is_Array_Type
(T
)
3535 and then Is_Itype
(T
)
3537 Set_Has_Delayed_Freeze
(T
);
3539 Freeze_Before
(N
, T
);
3543 -- If the object was created by a constrained array definition, then
3544 -- set the link in both the anonymous base type and anonymous subtype
3545 -- that are built to represent the array type to point to the object.
3547 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3548 N_Constrained_Array_Definition
3550 Set_Related_Array_Object
(T
, Id
);
3551 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3554 -- Special checks for protected objects not at library level
3556 if Is_Protected_Type
(T
)
3557 and then not Is_Library_Level_Entity
(Id
)
3559 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3561 -- Protected objects with interrupt handlers must be at library level
3563 -- Ada 2005: This test is not needed (and the corresponding clause
3564 -- in the RM is removed) because accessibility checks are sufficient
3565 -- to make handlers not at the library level illegal.
3567 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3568 -- applies to the '95 version of the language as well.
3570 if Has_Interrupt_Handler
(T
) and then Ada_Version
< Ada_95
then
3572 ("interrupt object can only be declared at library level", Id
);
3576 -- The actual subtype of the object is the nominal subtype, unless
3577 -- the nominal one is unconstrained and obtained from the expression.
3581 -- These checks should be performed before the initialization expression
3582 -- is considered, so that the Object_Definition node is still the same
3583 -- as in source code.
3585 -- In SPARK, the nominal subtype is always given by a subtype mark
3586 -- and must not be unconstrained. (The only exception to this is the
3587 -- acceptance of declarations of constants of type String.)
3589 if not Nkind_In
(Object_Definition
(N
), N_Expanded_Name
, N_Identifier
)
3591 Check_SPARK_05_Restriction
3592 ("subtype mark required", Object_Definition
(N
));
3594 elsif Is_Array_Type
(T
)
3595 and then not Is_Constrained
(T
)
3596 and then T
/= Standard_String
3598 Check_SPARK_05_Restriction
3599 ("subtype mark of constrained type expected",
3600 Object_Definition
(N
));
3603 -- There are no aliased objects in SPARK
3605 if Aliased_Present
(N
) then
3606 Check_SPARK_05_Restriction
("aliased object is not allowed", N
);
3609 -- Process initialization expression if present and not in error
3611 if Present
(E
) and then E
/= Error
then
3613 -- Generate an error in case of CPP class-wide object initialization.
3614 -- Required because otherwise the expansion of the class-wide
3615 -- assignment would try to use 'size to initialize the object
3616 -- (primitive that is not available in CPP tagged types).
3618 if Is_Class_Wide_Type
(Act_T
)
3620 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3622 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3624 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3627 ("predefined assignment not available for 'C'P'P tagged types",
3631 Mark_Coextensions
(N
, E
);
3634 -- In case of errors detected in the analysis of the expression,
3635 -- decorate it with the expected type to avoid cascaded errors
3637 if No
(Etype
(E
)) then
3641 -- If an initialization expression is present, then we set the
3642 -- Is_True_Constant flag. It will be reset if this is a variable
3643 -- and it is indeed modified.
3645 Set_Is_True_Constant
(Id
, True);
3647 -- If we are analyzing a constant declaration, set its completion
3648 -- flag after analyzing and resolving the expression.
3650 if Constant_Present
(N
) then
3651 Set_Has_Completion
(Id
);
3654 -- Set type and resolve (type may be overridden later on). Note:
3655 -- Ekind (Id) must still be E_Void at this point so that incorrect
3656 -- early usage within E is properly diagnosed.
3660 -- If the expression is an aggregate we must look ahead to detect
3661 -- the possible presence of an address clause, and defer resolution
3662 -- and expansion of the aggregate to the freeze point of the entity.
3664 -- This is not always legal because the aggregate may contain other
3665 -- references that need freezing, e.g. references to other entities
3666 -- with address clauses. In any case, when compiling with -gnatI the
3667 -- presence of the address clause must be ignored.
3669 if Comes_From_Source
(N
)
3670 and then Expander_Active
3671 and then Nkind
(E
) = N_Aggregate
3673 ((Present
(Following_Address_Clause
(N
))
3674 and then not Ignore_Rep_Clauses
)
3675 or else Delayed_Aspect_Present
)
3683 -- No further action needed if E is a call to an inlined function
3684 -- which returns an unconstrained type and it has been expanded into
3685 -- a procedure call. In that case N has been replaced by an object
3686 -- declaration without initializing expression and it has been
3687 -- analyzed (see Expand_Inlined_Call).
3689 if Back_End_Inlining
3690 and then Expander_Active
3691 and then Nkind
(E
) = N_Function_Call
3692 and then Nkind
(Name
(E
)) in N_Has_Entity
3693 and then Is_Inlined
(Entity
(Name
(E
)))
3694 and then not Is_Constrained
(Etype
(E
))
3695 and then Analyzed
(N
)
3696 and then No
(Expression
(N
))
3698 Ghost_Mode
:= Save_Ghost_Mode
;
3702 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3703 -- node (which was marked already-analyzed), we need to set the type
3704 -- to something other than Any_Access in order to keep gigi happy.
3706 if Etype
(E
) = Any_Access
then
3710 -- If the object is an access to variable, the initialization
3711 -- expression cannot be an access to constant.
3713 if Is_Access_Type
(T
)
3714 and then not Is_Access_Constant
(T
)
3715 and then Is_Access_Type
(Etype
(E
))
3716 and then Is_Access_Constant
(Etype
(E
))
3719 ("access to variable cannot be initialized with an "
3720 & "access-to-constant expression", E
);
3723 if not Assignment_OK
(N
) then
3724 Check_Initialization
(T
, E
);
3727 Check_Unset_Reference
(E
);
3729 -- If this is a variable, then set current value. If this is a
3730 -- declared constant of a scalar type with a static expression,
3731 -- indicate that it is always valid.
3733 if not Constant_Present
(N
) then
3734 if Compile_Time_Known_Value
(E
) then
3735 Set_Current_Value
(Id
, E
);
3738 elsif Is_Scalar_Type
(T
) and then Is_OK_Static_Expression
(E
) then
3739 Set_Is_Known_Valid
(Id
);
3742 -- Deal with setting of null flags
3744 if Is_Access_Type
(T
) then
3745 if Known_Non_Null
(E
) then
3746 Set_Is_Known_Non_Null
(Id
, True);
3747 elsif Known_Null
(E
) and then not Can_Never_Be_Null
(Id
) then
3748 Set_Is_Known_Null
(Id
, True);
3752 -- Check incorrect use of dynamically tagged expressions
3754 if Is_Tagged_Type
(T
) then
3755 Check_Dynamically_Tagged_Expression
3761 Apply_Scalar_Range_Check
(E
, T
);
3762 Apply_Static_Length_Check
(E
, T
);
3764 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3765 and then Comes_From_Source
(Original_Node
(N
))
3767 -- Only call test if needed
3769 and then Restriction_Check_Required
(SPARK_05
)
3770 and then not Is_SPARK_05_Initialization_Expr
(Original_Node
(E
))
3772 Check_SPARK_05_Restriction
3773 ("initialization expression is not appropriate", E
);
3776 -- A formal parameter of a specific tagged type whose related
3777 -- subprogram is subject to pragma Extensions_Visible with value
3778 -- "False" cannot be implicitly converted to a class-wide type by
3779 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3781 if Is_Class_Wide_Type
(T
) and then Is_EVF_Expression
(E
) then
3783 ("formal parameter with Extensions_Visible False cannot be "
3784 & "implicitly converted to class-wide type", E
);
3788 -- If the No_Streams restriction is set, check that the type of the
3789 -- object is not, and does not contain, any subtype derived from
3790 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3791 -- Has_Stream just for efficiency reasons. There is no point in
3792 -- spending time on a Has_Stream check if the restriction is not set.
3794 if Restriction_Check_Required
(No_Streams
) then
3795 if Has_Stream
(T
) then
3796 Check_Restriction
(No_Streams
, N
);
3800 -- Deal with predicate check before we start to do major rewriting. It
3801 -- is OK to initialize and then check the initialized value, since the
3802 -- object goes out of scope if we get a predicate failure. Note that we
3803 -- do this in the analyzer and not the expander because the analyzer
3804 -- does some substantial rewriting in some cases.
3806 -- We need a predicate check if the type has predicates, and if either
3807 -- there is an initializing expression, or for default initialization
3808 -- when we have at least one case of an explicit default initial value
3809 -- and then this is not an internal declaration whose initialization
3810 -- comes later (as for an aggregate expansion).
3812 if not Suppress_Assignment_Checks
(N
)
3813 and then Present
(Predicate_Function
(T
))
3814 and then not No_Initialization
(N
)
3818 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3820 -- If the type has a static predicate and the expression is known at
3821 -- compile time, see if the expression satisfies the predicate.
3824 Check_Expression_Against_Static_Predicate
(E
, T
);
3828 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
3831 -- Case of unconstrained type
3833 if not Is_Definite_Subtype
(T
) then
3835 -- In SPARK, a declaration of unconstrained type is allowed
3836 -- only for constants of type string.
3838 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
3839 Check_SPARK_05_Restriction
3840 ("declaration of object of unconstrained type not allowed", N
);
3843 -- Nothing to do in deferred constant case
3845 if Constant_Present
(N
) and then No
(E
) then
3848 -- Case of no initialization present
3851 if No_Initialization
(N
) then
3854 elsif Is_Class_Wide_Type
(T
) then
3856 ("initialization required in class-wide declaration ", N
);
3860 ("unconstrained subtype not allowed (need initialization)",
3861 Object_Definition
(N
));
3863 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3865 ("\provide initial value or explicit discriminant values",
3866 Object_Definition
(N
));
3869 ("\or give default discriminant values for type&",
3870 Object_Definition
(N
), T
);
3872 elsif Is_Array_Type
(T
) then
3874 ("\provide initial value or explicit array bounds",
3875 Object_Definition
(N
));
3879 -- Case of initialization present but in error. Set initial
3880 -- expression as absent (but do not make above complaints)
3882 elsif E
= Error
then
3883 Set_Expression
(N
, Empty
);
3886 -- Case of initialization present
3889 -- Check restrictions in Ada 83
3891 if not Constant_Present
(N
) then
3893 -- Unconstrained variables not allowed in Ada 83 mode
3895 if Ada_Version
= Ada_83
3896 and then Comes_From_Source
(Object_Definition
(N
))
3899 ("(Ada 83) unconstrained variable not allowed",
3900 Object_Definition
(N
));
3904 -- Now we constrain the variable from the initializing expression
3906 -- If the expression is an aggregate, it has been expanded into
3907 -- individual assignments. Retrieve the actual type from the
3908 -- expanded construct.
3910 if Is_Array_Type
(T
)
3911 and then No_Initialization
(N
)
3912 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3916 -- In case of class-wide interface object declarations we delay
3917 -- the generation of the equivalent record type declarations until
3918 -- its expansion because there are cases in they are not required.
3920 elsif Is_Interface
(T
) then
3923 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3924 -- we should prevent the generation of another Itype with the
3925 -- same name as the one already generated, or we end up with
3926 -- two identical types in GNATprove.
3928 elsif GNATprove_Mode
then
3931 -- If the type is an unchecked union, no subtype can be built from
3932 -- the expression. Rewrite declaration as a renaming, which the
3933 -- back-end can handle properly. This is a rather unusual case,
3934 -- because most unchecked_union declarations have default values
3935 -- for discriminants and are thus not indefinite.
3937 elsif Is_Unchecked_Union
(T
) then
3938 if Constant_Present
(N
) or else Nkind
(E
) = N_Function_Call
then
3939 Set_Ekind
(Id
, E_Constant
);
3941 Set_Ekind
(Id
, E_Variable
);
3944 -- An object declared within a Ghost region is automatically
3945 -- Ghost (SPARK RM 6.9(2)).
3947 if Ghost_Mode
> None
then
3948 Set_Is_Ghost_Entity
(Id
);
3950 -- The Ghost policy in effect at the point of declaration
3951 -- and at the point of completion must match
3952 -- (SPARK RM 6.9(14)).
3954 if Present
(Prev_Entity
)
3955 and then Is_Ghost_Entity
(Prev_Entity
)
3957 Check_Ghost_Completion
(Prev_Entity
, Id
);
3962 Make_Object_Renaming_Declaration
(Loc
,
3963 Defining_Identifier
=> Id
,
3964 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
3967 Set_Renamed_Object
(Id
, E
);
3968 Freeze_Before
(N
, T
);
3971 Ghost_Mode
:= Save_Ghost_Mode
;
3975 -- Ensure that the generated subtype has a unique external name
3976 -- when the related object is public. This guarantees that the
3977 -- subtype and its bounds will not be affected by switches or
3978 -- pragmas that may offset the internal counter due to extra
3981 if Is_Public
(Id
) then
3984 Related_Id
:= Empty
;
3987 Expand_Subtype_From_Expr
3990 Subtype_Indic
=> Object_Definition
(N
),
3992 Related_Id
=> Related_Id
);
3994 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3997 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
3999 if Aliased_Present
(N
) then
4000 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4003 Freeze_Before
(N
, Act_T
);
4004 Freeze_Before
(N
, T
);
4007 elsif Is_Array_Type
(T
)
4008 and then No_Initialization
(N
)
4009 and then Nkind
(Original_Node
(E
)) = N_Aggregate
4011 if not Is_Entity_Name
(Object_Definition
(N
)) then
4013 Check_Compile_Time_Size
(Act_T
);
4015 if Aliased_Present
(N
) then
4016 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4020 -- When the given object definition and the aggregate are specified
4021 -- independently, and their lengths might differ do a length check.
4022 -- This cannot happen if the aggregate is of the form (others =>...)
4024 if not Is_Constrained
(T
) then
4027 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
4029 -- Aggregate is statically illegal. Place back in declaration
4031 Set_Expression
(N
, E
);
4032 Set_No_Initialization
(N
, False);
4034 elsif T
= Etype
(E
) then
4037 elsif Nkind
(E
) = N_Aggregate
4038 and then Present
(Component_Associations
(E
))
4039 and then Present
(Choices
(First
(Component_Associations
(E
))))
4040 and then Nkind
(First
4041 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
4046 Apply_Length_Check
(E
, T
);
4049 -- If the type is limited unconstrained with defaulted discriminants and
4050 -- there is no expression, then the object is constrained by the
4051 -- defaults, so it is worthwhile building the corresponding subtype.
4053 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
4054 and then not Is_Constrained
(T
)
4055 and then Has_Discriminants
(T
)
4058 Act_T
:= Build_Default_Subtype
(T
, N
);
4060 -- Ada 2005: A limited object may be initialized by means of an
4061 -- aggregate. If the type has default discriminants it has an
4062 -- unconstrained nominal type, Its actual subtype will be obtained
4063 -- from the aggregate, and not from the default discriminants.
4068 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
4070 elsif Nkind
(E
) = N_Function_Call
4071 and then Constant_Present
(N
)
4072 and then Has_Unconstrained_Elements
(Etype
(E
))
4074 -- The back-end has problems with constants of a discriminated type
4075 -- with defaults, if the initial value is a function call. We
4076 -- generate an intermediate temporary that will receive a reference
4077 -- to the result of the call. The initialization expression then
4078 -- becomes a dereference of that temporary.
4080 Remove_Side_Effects
(E
);
4082 -- If this is a constant declaration of an unconstrained type and
4083 -- the initialization is an aggregate, we can use the subtype of the
4084 -- aggregate for the declared entity because it is immutable.
4086 elsif not Is_Constrained
(T
)
4087 and then Has_Discriminants
(T
)
4088 and then Constant_Present
(N
)
4089 and then not Has_Unchecked_Union
(T
)
4090 and then Nkind
(E
) = N_Aggregate
4095 -- Check No_Wide_Characters restriction
4097 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
4099 -- Indicate this is not set in source. Certainly true for constants, and
4100 -- true for variables so far (will be reset for a variable if and when
4101 -- we encounter a modification in the source).
4103 Set_Never_Set_In_Source
(Id
);
4105 -- Now establish the proper kind and type of the object
4107 if Constant_Present
(N
) then
4108 Set_Ekind
(Id
, E_Constant
);
4109 Set_Is_True_Constant
(Id
);
4112 Set_Ekind
(Id
, E_Variable
);
4114 -- A variable is set as shared passive if it appears in a shared
4115 -- passive package, and is at the outer level. This is not done for
4116 -- entities generated during expansion, because those are always
4117 -- manipulated locally.
4119 if Is_Shared_Passive
(Current_Scope
)
4120 and then Is_Library_Level_Entity
(Id
)
4121 and then Comes_From_Source
(Id
)
4123 Set_Is_Shared_Passive
(Id
);
4124 Check_Shared_Var
(Id
, T
, N
);
4127 -- Set Has_Initial_Value if initializing expression present. Note
4128 -- that if there is no initializing expression, we leave the state
4129 -- of this flag unchanged (usually it will be False, but notably in
4130 -- the case of exception choice variables, it will already be true).
4133 Set_Has_Initial_Value
(Id
);
4137 -- Initialize alignment and size and capture alignment setting
4139 Init_Alignment
(Id
);
4141 Set_Optimize_Alignment_Flags
(Id
);
4143 -- An object declared within a Ghost region is automatically Ghost
4144 -- (SPARK RM 6.9(2)).
4146 if Ghost_Mode
> None
4147 or else (Present
(Prev_Entity
) and then Is_Ghost_Entity
(Prev_Entity
))
4149 Set_Is_Ghost_Entity
(Id
);
4151 -- The Ghost policy in effect at the point of declaration and at the
4152 -- point of completion must match (SPARK RM 6.9(14)).
4154 if Present
(Prev_Entity
) and then Is_Ghost_Entity
(Prev_Entity
) then
4155 Check_Ghost_Completion
(Prev_Entity
, Id
);
4159 -- Deal with aliased case
4161 if Aliased_Present
(N
) then
4162 Set_Is_Aliased
(Id
);
4164 -- If the object is aliased and the type is unconstrained with
4165 -- defaulted discriminants and there is no expression, then the
4166 -- object is constrained by the defaults, so it is worthwhile
4167 -- building the corresponding subtype.
4169 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4170 -- unconstrained, then only establish an actual subtype if the
4171 -- nominal subtype is indefinite. In definite cases the object is
4172 -- unconstrained in Ada 2005.
4175 and then Is_Record_Type
(T
)
4176 and then not Is_Constrained
(T
)
4177 and then Has_Discriminants
(T
)
4178 and then (Ada_Version
< Ada_2005
4179 or else not Is_Definite_Subtype
(T
))
4181 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
4185 -- Now we can set the type of the object
4187 Set_Etype
(Id
, Act_T
);
4189 -- Non-constant object is marked to be treated as volatile if type is
4190 -- volatile and we clear the Current_Value setting that may have been
4191 -- set above. Doing so for constants isn't required and might interfere
4192 -- with possible uses of the object as a static expression in contexts
4193 -- incompatible with volatility (e.g. as a case-statement alternative).
4195 if Ekind
(Id
) /= E_Constant
and then Treat_As_Volatile
(Etype
(Id
)) then
4196 Set_Treat_As_Volatile
(Id
);
4197 Set_Current_Value
(Id
, Empty
);
4200 -- Deal with controlled types
4202 if Has_Controlled_Component
(Etype
(Id
))
4203 or else Is_Controlled
(Etype
(Id
))
4205 if not Is_Library_Level_Entity
(Id
) then
4206 Check_Restriction
(No_Nested_Finalization
, N
);
4208 Validate_Controlled_Object
(Id
);
4212 if Has_Task
(Etype
(Id
)) then
4213 Check_Restriction
(No_Tasking
, N
);
4215 -- Deal with counting max tasks
4217 -- Nothing to do if inside a generic
4219 if Inside_A_Generic
then
4222 -- If library level entity, then count tasks
4224 elsif Is_Library_Level_Entity
(Id
) then
4225 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
4227 -- If not library level entity, then indicate we don't know max
4228 -- tasks and also check task hierarchy restriction and blocking
4229 -- operation (since starting a task is definitely blocking).
4232 Check_Restriction
(Max_Tasks
, N
);
4233 Check_Restriction
(No_Task_Hierarchy
, N
);
4234 Check_Potentially_Blocking_Operation
(N
);
4237 -- A rather specialized test. If we see two tasks being declared
4238 -- of the same type in the same object declaration, and the task
4239 -- has an entry with an address clause, we know that program error
4240 -- will be raised at run time since we can't have two tasks with
4241 -- entries at the same address.
4243 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
4248 E
:= First_Entity
(Etype
(Id
));
4249 while Present
(E
) loop
4250 if Ekind
(E
) = E_Entry
4251 and then Present
(Get_Attribute_Definition_Clause
4252 (E
, Attribute_Address
))
4254 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4256 ("more than one task with same entry address<<", N
);
4257 Error_Msg_N
("\Program_Error [<<", N
);
4259 Make_Raise_Program_Error
(Loc
,
4260 Reason
=> PE_Duplicated_Entry_Address
));
4270 -- Some simple constant-propagation: if the expression is a constant
4271 -- string initialized with a literal, share the literal. This avoids
4275 and then Is_Entity_Name
(E
)
4276 and then Ekind
(Entity
(E
)) = E_Constant
4277 and then Base_Type
(Etype
(E
)) = Standard_String
4280 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
4282 if Present
(Val
) and then Nkind
(Val
) = N_String_Literal
then
4283 Rewrite
(E
, New_Copy
(Val
));
4288 -- Another optimization: if the nominal subtype is unconstrained and
4289 -- the expression is a function call that returns an unconstrained
4290 -- type, rewrite the declaration as a renaming of the result of the
4291 -- call. The exceptions below are cases where the copy is expected,
4292 -- either by the back end (Aliased case) or by the semantics, as for
4293 -- initializing controlled types or copying tags for classwide types.
4296 and then Nkind
(E
) = N_Explicit_Dereference
4297 and then Nkind
(Original_Node
(E
)) = N_Function_Call
4298 and then not Is_Library_Level_Entity
(Id
)
4299 and then not Is_Constrained
(Underlying_Type
(T
))
4300 and then not Is_Aliased
(Id
)
4301 and then not Is_Class_Wide_Type
(T
)
4302 and then not Is_Controlled_Active
(T
)
4303 and then not Has_Controlled_Component
(Base_Type
(T
))
4304 and then Expander_Active
4307 Make_Object_Renaming_Declaration
(Loc
,
4308 Defining_Identifier
=> Id
,
4309 Access_Definition
=> Empty
,
4310 Subtype_Mark
=> New_Occurrence_Of
4311 (Base_Type
(Etype
(Id
)), Loc
),
4314 Set_Renamed_Object
(Id
, E
);
4316 -- Force generation of debugging information for the constant and for
4317 -- the renamed function call.
4319 Set_Debug_Info_Needed
(Id
);
4320 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
4323 if Present
(Prev_Entity
)
4324 and then Is_Frozen
(Prev_Entity
)
4325 and then not Error_Posted
(Id
)
4327 Error_Msg_N
("full constant declaration appears too late", N
);
4330 Check_Eliminated
(Id
);
4332 -- Deal with setting In_Private_Part flag if in private part
4334 if Ekind
(Scope
(Id
)) = E_Package
4335 and then In_Private_Part
(Scope
(Id
))
4337 Set_In_Private_Part
(Id
);
4340 -- Check for violation of No_Local_Timing_Events
4342 if Restriction_Check_Required
(No_Local_Timing_Events
)
4343 and then not Is_Library_Level_Entity
(Id
)
4344 and then Is_RTE
(Etype
(Id
), RE_Timing_Event
)
4346 Check_Restriction
(No_Local_Timing_Events
, N
);
4350 -- Initialize the refined state of a variable here because this is a
4351 -- common destination for legal and illegal object declarations.
4353 if Ekind
(Id
) = E_Variable
then
4354 Set_Encapsulating_State
(Id
, Empty
);
4357 if Has_Aspects
(N
) then
4358 Analyze_Aspect_Specifications
(N
, Id
);
4361 Analyze_Dimension
(N
);
4363 -- Verify whether the object declaration introduces an illegal hidden
4364 -- state within a package subject to a null abstract state.
4366 if Ekind
(Id
) = E_Variable
then
4367 Check_No_Hidden_State
(Id
);
4370 Ghost_Mode
:= Save_Ghost_Mode
;
4371 end Analyze_Object_Declaration
;
4373 ---------------------------
4374 -- Analyze_Others_Choice --
4375 ---------------------------
4377 -- Nothing to do for the others choice node itself, the semantic analysis
4378 -- of the others choice will occur as part of the processing of the parent
4380 procedure Analyze_Others_Choice
(N
: Node_Id
) is
4381 pragma Warnings
(Off
, N
);
4384 end Analyze_Others_Choice
;
4386 -------------------------------------------
4387 -- Analyze_Private_Extension_Declaration --
4388 -------------------------------------------
4390 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
4391 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
4392 T
: constant Entity_Id
:= Defining_Identifier
(N
);
4393 Parent_Base
: Entity_Id
;
4394 Parent_Type
: Entity_Id
;
4397 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4399 if Is_Non_Empty_List
(Interface_List
(N
)) then
4405 Intf
:= First
(Interface_List
(N
));
4406 while Present
(Intf
) loop
4407 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
4409 Diagnose_Interface
(Intf
, T
);
4415 Generate_Definition
(T
);
4417 -- For other than Ada 2012, just enter the name in the current scope
4419 if Ada_Version
< Ada_2012
then
4422 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4423 -- case of private type that completes an incomplete type.
4430 Prev
:= Find_Type_Name
(N
);
4432 pragma Assert
(Prev
= T
4433 or else (Ekind
(Prev
) = E_Incomplete_Type
4434 and then Present
(Full_View
(Prev
))
4435 and then Full_View
(Prev
) = T
));
4439 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
4440 Parent_Base
:= Base_Type
(Parent_Type
);
4442 if Parent_Type
= Any_Type
or else Etype
(Parent_Type
) = Any_Type
then
4443 Set_Ekind
(T
, Ekind
(Parent_Type
));
4444 Set_Etype
(T
, Any_Type
);
4447 elsif not Is_Tagged_Type
(Parent_Type
) then
4449 ("parent of type extension must be a tagged type ", Indic
);
4452 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
4453 Error_Msg_N
("premature derivation of incomplete type", Indic
);
4456 elsif Is_Concurrent_Type
(Parent_Type
) then
4458 ("parent type of a private extension cannot be "
4459 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
4461 Set_Etype
(T
, Any_Type
);
4462 Set_Ekind
(T
, E_Limited_Private_Type
);
4463 Set_Private_Dependents
(T
, New_Elmt_List
);
4464 Set_Error_Posted
(T
);
4468 -- Perhaps the parent type should be changed to the class-wide type's
4469 -- specific type in this case to prevent cascading errors ???
4471 if Is_Class_Wide_Type
(Parent_Type
) then
4473 ("parent of type extension must not be a class-wide type", Indic
);
4477 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
4478 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
4479 or else In_Private_Part
(Current_Scope
)
4482 Error_Msg_N
("invalid context for private extension", N
);
4485 -- Set common attributes
4487 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
4488 Set_Scope
(T
, Current_Scope
);
4489 Set_Ekind
(T
, E_Record_Type_With_Private
);
4490 Init_Size_Align
(T
);
4491 Set_Default_SSO
(T
);
4493 Set_Etype
(T
, Parent_Base
);
4494 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
4495 Set_Has_Protected
(T
, Has_Task
(Parent_Base
));
4497 Set_Convention
(T
, Convention
(Parent_Type
));
4498 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
4499 Set_Is_First_Subtype
(T
);
4500 Make_Class_Wide_Type
(T
);
4502 if Unknown_Discriminants_Present
(N
) then
4503 Set_Discriminant_Constraint
(T
, No_Elist
);
4506 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
4508 -- Propagate inherited invariant information. The new type has
4509 -- invariants, if the parent type has inheritable invariants,
4510 -- and these invariants can in turn be inherited.
4512 if Has_Inheritable_Invariants
(Parent_Type
) then
4513 Set_Has_Inheritable_Invariants
(T
);
4514 Set_Has_Invariants
(T
);
4517 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4518 -- synchronized formal derived type.
4520 if Ada_Version
>= Ada_2005
and then Synchronized_Present
(N
) then
4521 Set_Is_Limited_Record
(T
);
4523 -- Formal derived type case
4525 if Is_Generic_Type
(T
) then
4527 -- The parent must be a tagged limited type or a synchronized
4530 if (not Is_Tagged_Type
(Parent_Type
)
4531 or else not Is_Limited_Type
(Parent_Type
))
4533 (not Is_Interface
(Parent_Type
)
4534 or else not Is_Synchronized_Interface
(Parent_Type
))
4536 Error_Msg_NE
("parent type of & must be tagged limited " &
4537 "or synchronized", N
, T
);
4540 -- The progenitors (if any) must be limited or synchronized
4543 if Present
(Interfaces
(T
)) then
4546 Iface_Elmt
: Elmt_Id
;
4549 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
4550 while Present
(Iface_Elmt
) loop
4551 Iface
:= Node
(Iface_Elmt
);
4553 if not Is_Limited_Interface
(Iface
)
4554 and then not Is_Synchronized_Interface
(Iface
)
4556 Error_Msg_NE
("progenitor & must be limited " &
4557 "or synchronized", N
, Iface
);
4560 Next_Elmt
(Iface_Elmt
);
4565 -- Regular derived extension, the parent must be a limited or
4566 -- synchronized interface.
4569 if not Is_Interface
(Parent_Type
)
4570 or else (not Is_Limited_Interface
(Parent_Type
)
4571 and then not Is_Synchronized_Interface
(Parent_Type
))
4574 ("parent type of & must be limited interface", N
, T
);
4578 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4579 -- extension with a synchronized parent must be explicitly declared
4580 -- synchronized, because the full view will be a synchronized type.
4581 -- This must be checked before the check for limited types below,
4582 -- to ensure that types declared limited are not allowed to extend
4583 -- synchronized interfaces.
4585 elsif Is_Interface
(Parent_Type
)
4586 and then Is_Synchronized_Interface
(Parent_Type
)
4587 and then not Synchronized_Present
(N
)
4590 ("private extension of& must be explicitly synchronized",
4593 elsif Limited_Present
(N
) then
4594 Set_Is_Limited_Record
(T
);
4596 if not Is_Limited_Type
(Parent_Type
)
4598 (not Is_Interface
(Parent_Type
)
4599 or else not Is_Limited_Interface
(Parent_Type
))
4601 Error_Msg_NE
("parent type& of limited extension must be limited",
4607 if Has_Aspects
(N
) then
4608 Analyze_Aspect_Specifications
(N
, T
);
4610 end Analyze_Private_Extension_Declaration
;
4612 ---------------------------------
4613 -- Analyze_Subtype_Declaration --
4614 ---------------------------------
4616 procedure Analyze_Subtype_Declaration
4618 Skip
: Boolean := False)
4620 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4621 R_Checks
: Check_Result
;
4625 Generate_Definition
(Id
);
4626 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4627 Init_Size_Align
(Id
);
4629 -- The following guard condition on Enter_Name is to handle cases where
4630 -- the defining identifier has already been entered into the scope but
4631 -- the declaration as a whole needs to be analyzed.
4633 -- This case in particular happens for derived enumeration types. The
4634 -- derived enumeration type is processed as an inserted enumeration type
4635 -- declaration followed by a rewritten subtype declaration. The defining
4636 -- identifier, however, is entered into the name scope very early in the
4637 -- processing of the original type declaration and therefore needs to be
4638 -- avoided here, when the created subtype declaration is analyzed. (See
4639 -- Build_Derived_Types)
4641 -- This also happens when the full view of a private type is derived
4642 -- type with constraints. In this case the entity has been introduced
4643 -- in the private declaration.
4645 -- Finally this happens in some complex cases when validity checks are
4646 -- enabled, where the same subtype declaration may be analyzed twice.
4647 -- This can happen if the subtype is created by the pre-analysis of
4648 -- an attribute tht gives the range of a loop statement, and the loop
4649 -- itself appears within an if_statement that will be rewritten during
4653 or else (Present
(Etype
(Id
))
4654 and then (Is_Private_Type
(Etype
(Id
))
4655 or else Is_Task_Type
(Etype
(Id
))
4656 or else Is_Rewrite_Substitution
(N
)))
4660 elsif Current_Entity
(Id
) = Id
then
4667 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4669 -- Class-wide equivalent types of records with unknown discriminants
4670 -- involve the generation of an itype which serves as the private view
4671 -- of a constrained record subtype. In such cases the base type of the
4672 -- current subtype we are processing is the private itype. Use the full
4673 -- of the private itype when decorating various attributes.
4676 and then Is_Private_Type
(T
)
4677 and then Present
(Full_View
(T
))
4682 -- Inherit common attributes
4684 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4685 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4686 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4687 Set_Convention
(Id
, Convention
(T
));
4689 -- If ancestor has predicates then so does the subtype, and in addition
4690 -- we must delay the freeze to properly arrange predicate inheritance.
4692 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4693 -- in which T = ID, so the above tests and assignments do nothing???
4695 if Has_Predicates
(T
)
4696 or else (Present
(Ancestor_Subtype
(T
))
4697 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4699 Set_Has_Predicates
(Id
);
4700 Set_Has_Delayed_Freeze
(Id
);
4703 -- Subtype of Boolean cannot have a constraint in SPARK
4705 if Is_Boolean_Type
(T
)
4706 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4708 Check_SPARK_05_Restriction
4709 ("subtype of Boolean cannot have constraint", N
);
4712 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4714 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4720 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4721 One_Cstr
:= First
(Constraints
(Cstr
));
4722 while Present
(One_Cstr
) loop
4724 -- Index or discriminant constraint in SPARK must be a
4728 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4730 Check_SPARK_05_Restriction
4731 ("subtype mark required", One_Cstr
);
4733 -- String subtype must have a lower bound of 1 in SPARK.
4734 -- Note that we do not need to test for the non-static case
4735 -- here, since that was already taken care of in
4736 -- Process_Range_Expr_In_Decl.
4738 elsif Base_Type
(T
) = Standard_String
then
4739 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4741 if Is_OK_Static_Expression
(Low
)
4742 and then Expr_Value
(Low
) /= 1
4744 Check_SPARK_05_Restriction
4745 ("String subtype must have lower bound of 1", N
);
4755 -- In the case where there is no constraint given in the subtype
4756 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4757 -- semantic attributes must be established here.
4759 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4760 Set_Etype
(Id
, Base_Type
(T
));
4762 -- Subtype of unconstrained array without constraint is not allowed
4765 if Is_Array_Type
(T
) and then not Is_Constrained
(T
) then
4766 Check_SPARK_05_Restriction
4767 ("subtype of unconstrained array must have constraint", N
);
4772 Set_Ekind
(Id
, E_Array_Subtype
);
4773 Copy_Array_Subtype_Attributes
(Id
, T
);
4775 when Decimal_Fixed_Point_Kind
=>
4776 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4777 Set_Digits_Value
(Id
, Digits_Value
(T
));
4778 Set_Delta_Value
(Id
, Delta_Value
(T
));
4779 Set_Scale_Value
(Id
, Scale_Value
(T
));
4780 Set_Small_Value
(Id
, Small_Value
(T
));
4781 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4782 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4783 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4784 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4785 Set_RM_Size
(Id
, RM_Size
(T
));
4787 when Enumeration_Kind
=>
4788 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4789 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4790 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4791 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4792 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4793 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4794 Set_RM_Size
(Id
, RM_Size
(T
));
4795 Inherit_Predicate_Flags
(Id
, T
);
4797 when Ordinary_Fixed_Point_Kind
=>
4798 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4799 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4800 Set_Small_Value
(Id
, Small_Value
(T
));
4801 Set_Delta_Value
(Id
, Delta_Value
(T
));
4802 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4803 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4804 Set_RM_Size
(Id
, RM_Size
(T
));
4807 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4808 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4809 Set_Digits_Value
(Id
, Digits_Value
(T
));
4810 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4812 -- If the floating point type has dimensions, these will be
4813 -- inherited subsequently when Analyze_Dimensions is called.
4815 when Signed_Integer_Kind
=>
4816 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4817 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4818 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4819 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4820 Set_RM_Size
(Id
, RM_Size
(T
));
4821 Inherit_Predicate_Flags
(Id
, T
);
4823 when Modular_Integer_Kind
=>
4824 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4825 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4826 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4827 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4828 Set_RM_Size
(Id
, RM_Size
(T
));
4829 Inherit_Predicate_Flags
(Id
, T
);
4831 when Class_Wide_Kind
=>
4832 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
4833 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4834 Set_Cloned_Subtype
(Id
, T
);
4835 Set_Is_Tagged_Type
(Id
, True);
4836 Set_Has_Unknown_Discriminants
4838 Set_No_Tagged_Streams_Pragma
4839 (Id
, No_Tagged_Streams_Pragma
(T
));
4841 if Ekind
(T
) = E_Class_Wide_Subtype
then
4842 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
4845 when E_Record_Type | E_Record_Subtype
=>
4846 Set_Ekind
(Id
, E_Record_Subtype
);
4848 if Ekind
(T
) = E_Record_Subtype
4849 and then Present
(Cloned_Subtype
(T
))
4851 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
4853 Set_Cloned_Subtype
(Id
, T
);
4856 Set_First_Entity
(Id
, First_Entity
(T
));
4857 Set_Last_Entity
(Id
, Last_Entity
(T
));
4858 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4859 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4860 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4861 Set_Has_Implicit_Dereference
4862 (Id
, Has_Implicit_Dereference
(T
));
4863 Set_Has_Unknown_Discriminants
4864 (Id
, Has_Unknown_Discriminants
(T
));
4866 if Has_Discriminants
(T
) then
4867 Set_Discriminant_Constraint
4868 (Id
, Discriminant_Constraint
(T
));
4869 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4871 elsif Has_Unknown_Discriminants
(Id
) then
4872 Set_Discriminant_Constraint
(Id
, No_Elist
);
4875 if Is_Tagged_Type
(T
) then
4876 Set_Is_Tagged_Type
(Id
, True);
4877 Set_No_Tagged_Streams_Pragma
4878 (Id
, No_Tagged_Streams_Pragma
(T
));
4879 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4880 Set_Direct_Primitive_Operations
4881 (Id
, Direct_Primitive_Operations
(T
));
4882 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4884 if Is_Interface
(T
) then
4885 Set_Is_Interface
(Id
);
4886 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
4890 when Private_Kind
=>
4891 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4892 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4893 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4894 Set_First_Entity
(Id
, First_Entity
(T
));
4895 Set_Last_Entity
(Id
, Last_Entity
(T
));
4896 Set_Private_Dependents
(Id
, New_Elmt_List
);
4897 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4898 Set_Has_Implicit_Dereference
4899 (Id
, Has_Implicit_Dereference
(T
));
4900 Set_Has_Unknown_Discriminants
4901 (Id
, Has_Unknown_Discriminants
(T
));
4902 Set_Known_To_Have_Preelab_Init
4903 (Id
, Known_To_Have_Preelab_Init
(T
));
4905 if Is_Tagged_Type
(T
) then
4906 Set_Is_Tagged_Type
(Id
);
4907 Set_No_Tagged_Streams_Pragma
(Id
,
4908 No_Tagged_Streams_Pragma
(T
));
4909 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4910 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4911 Set_Direct_Primitive_Operations
(Id
,
4912 Direct_Primitive_Operations
(T
));
4915 -- In general the attributes of the subtype of a private type
4916 -- are the attributes of the partial view of parent. However,
4917 -- the full view may be a discriminated type, and the subtype
4918 -- must share the discriminant constraint to generate correct
4919 -- calls to initialization procedures.
4921 if Has_Discriminants
(T
) then
4922 Set_Discriminant_Constraint
4923 (Id
, Discriminant_Constraint
(T
));
4924 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4926 elsif Present
(Full_View
(T
))
4927 and then Has_Discriminants
(Full_View
(T
))
4929 Set_Discriminant_Constraint
4930 (Id
, Discriminant_Constraint
(Full_View
(T
)));
4931 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4933 -- This would seem semantically correct, but apparently
4934 -- generates spurious errors about missing components ???
4936 -- Set_Has_Discriminants (Id);
4939 Prepare_Private_Subtype_Completion
(Id
, N
);
4941 -- If this is the subtype of a constrained private type with
4942 -- discriminants that has got a full view and we also have
4943 -- built a completion just above, show that the completion
4944 -- is a clone of the full view to the back-end.
4946 if Has_Discriminants
(T
)
4947 and then not Has_Unknown_Discriminants
(T
)
4948 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(T
))
4949 and then Present
(Full_View
(T
))
4950 and then Present
(Full_View
(Id
))
4952 Set_Cloned_Subtype
(Full_View
(Id
), Full_View
(T
));
4956 Set_Ekind
(Id
, E_Access_Subtype
);
4957 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4958 Set_Is_Access_Constant
4959 (Id
, Is_Access_Constant
(T
));
4960 Set_Directly_Designated_Type
4961 (Id
, Designated_Type
(T
));
4962 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
4964 -- A Pure library_item must not contain the declaration of a
4965 -- named access type, except within a subprogram, generic
4966 -- subprogram, task unit, or protected unit, or if it has
4967 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4969 if Comes_From_Source
(Id
)
4970 and then In_Pure_Unit
4971 and then not In_Subprogram_Task_Protected_Unit
4972 and then not No_Pool_Assigned
(Id
)
4975 ("named access types not allowed in pure unit", N
);
4978 when Concurrent_Kind
=>
4979 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4980 Set_Corresponding_Record_Type
(Id
,
4981 Corresponding_Record_Type
(T
));
4982 Set_First_Entity
(Id
, First_Entity
(T
));
4983 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
4984 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4985 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4986 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4987 Set_Last_Entity
(Id
, Last_Entity
(T
));
4989 if Is_Tagged_Type
(T
) then
4990 Set_No_Tagged_Streams_Pragma
4991 (Id
, No_Tagged_Streams_Pragma
(T
));
4994 if Has_Discriminants
(T
) then
4995 Set_Discriminant_Constraint
4996 (Id
, Discriminant_Constraint
(T
));
4997 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5000 when Incomplete_Kind
=>
5001 if Ada_Version
>= Ada_2005
then
5003 -- In Ada 2005 an incomplete type can be explicitly tagged:
5004 -- propagate indication. Note that we also have to include
5005 -- subtypes for Ada 2012 extended use of incomplete types.
5007 Set_Ekind
(Id
, E_Incomplete_Subtype
);
5008 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
5009 Set_Private_Dependents
(Id
, New_Elmt_List
);
5011 if Is_Tagged_Type
(Id
) then
5012 Set_No_Tagged_Streams_Pragma
5013 (Id
, No_Tagged_Streams_Pragma
(T
));
5014 Set_Direct_Primitive_Operations
(Id
, New_Elmt_List
);
5017 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5018 -- incomplete type visible through a limited with clause.
5020 if From_Limited_With
(T
)
5021 and then Present
(Non_Limited_View
(T
))
5023 Set_From_Limited_With
(Id
);
5024 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
5026 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5027 -- to the private dependents of the original incomplete
5028 -- type for future transformation.
5031 Append_Elmt
(Id
, Private_Dependents
(T
));
5034 -- If the subtype name denotes an incomplete type an error
5035 -- was already reported by Process_Subtype.
5038 Set_Etype
(Id
, Any_Type
);
5042 raise Program_Error
;
5046 if Etype
(Id
) = Any_Type
then
5050 -- Some common processing on all types
5052 Set_Size_Info
(Id
, T
);
5053 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
5055 -- If the parent type is a generic actual, so is the subtype. This may
5056 -- happen in a nested instance. Why Comes_From_Source test???
5058 if not Comes_From_Source
(N
) then
5059 Set_Is_Generic_Actual_Type
(Id
, Is_Generic_Actual_Type
(T
));
5064 Set_Is_Immediately_Visible
(Id
, True);
5065 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
5066 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
5068 if Is_Interface
(T
) then
5069 Set_Is_Interface
(Id
);
5072 if Present
(Generic_Parent_Type
(N
))
5074 (Nkind
(Parent
(Generic_Parent_Type
(N
))) /=
5075 N_Formal_Type_Declaration
5076 or else Nkind
(Formal_Type_Definition
5077 (Parent
(Generic_Parent_Type
(N
)))) /=
5078 N_Formal_Private_Type_Definition
)
5080 if Is_Tagged_Type
(Id
) then
5082 -- If this is a generic actual subtype for a synchronized type,
5083 -- the primitive operations are those of the corresponding record
5084 -- for which there is a separate subtype declaration.
5086 if Is_Concurrent_Type
(Id
) then
5088 elsif Is_Class_Wide_Type
(Id
) then
5089 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
5091 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
5094 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
5095 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
5099 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
5100 Conditional_Delay
(Id
, Full_View
(T
));
5102 -- The subtypes of components or subcomponents of protected types
5103 -- do not need freeze nodes, which would otherwise appear in the
5104 -- wrong scope (before the freeze node for the protected type). The
5105 -- proper subtypes are those of the subcomponents of the corresponding
5108 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
5109 and then Present
(Scope
(Scope
(Id
))) -- error defense
5110 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
5112 Conditional_Delay
(Id
, T
);
5115 -- Check that Constraint_Error is raised for a scalar subtype indication
5116 -- when the lower or upper bound of a non-null range lies outside the
5117 -- range of the type mark.
5119 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5120 if Is_Scalar_Type
(Etype
(Id
))
5121 and then Scalar_Range
(Id
) /=
5122 Scalar_Range
(Etype
(Subtype_Mark
5123 (Subtype_Indication
(N
))))
5127 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
5129 -- In the array case, check compatibility for each index
5131 elsif Is_Array_Type
(Etype
(Id
)) and then Present
(First_Index
(Id
))
5133 -- This really should be a subprogram that finds the indications
5137 Subt_Index
: Node_Id
:= First_Index
(Id
);
5138 Target_Index
: Node_Id
:=
5140 (Subtype_Mark
(Subtype_Indication
(N
))));
5141 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
5144 while Present
(Subt_Index
) loop
5145 if ((Nkind
(Subt_Index
) = N_Identifier
5146 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
5147 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
5149 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
5152 Target_Typ
: constant Entity_Id
:=
5153 Etype
(Target_Index
);
5157 (Scalar_Range
(Etype
(Subt_Index
)),
5160 Defining_Identifier
(N
));
5162 -- Reset Has_Dynamic_Range_Check on the subtype to
5163 -- prevent elision of the index check due to a dynamic
5164 -- check generated for a preceding index (needed since
5165 -- Insert_Range_Checks tries to avoid generating
5166 -- redundant checks on a given declaration).
5168 Set_Has_Dynamic_Range_Check
(N
, False);
5174 Sloc
(Defining_Identifier
(N
)));
5176 -- Record whether this index involved a dynamic check
5179 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
5183 Next_Index
(Subt_Index
);
5184 Next_Index
(Target_Index
);
5187 -- Finally, mark whether the subtype involves dynamic checks
5189 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
5194 -- A type invariant applies to any subtype in its scope, in particular
5195 -- to a generic actual.
5197 if Has_Invariants
(T
) and then In_Open_Scopes
(Scope
(T
)) then
5198 Set_Has_Invariants
(Id
);
5199 Set_Invariant_Procedure
(Id
, Invariant_Procedure
(T
));
5202 -- Make sure that generic actual types are properly frozen. The subtype
5203 -- is marked as a generic actual type when the enclosing instance is
5204 -- analyzed, so here we identify the subtype from the tree structure.
5207 and then Is_Generic_Actual_Type
(Id
)
5208 and then In_Instance
5209 and then not Comes_From_Source
(N
)
5210 and then Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
5211 and then Is_Frozen
(T
)
5213 Freeze_Before
(N
, Id
);
5216 Set_Optimize_Alignment_Flags
(Id
);
5217 Check_Eliminated
(Id
);
5220 if Has_Aspects
(N
) then
5221 Analyze_Aspect_Specifications
(N
, Id
);
5224 Analyze_Dimension
(N
);
5226 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5227 -- indications on composite types where the constraints are dynamic.
5228 -- Note that object declarations and aggregates generate implicit
5229 -- subtype declarations, which this covers. One special case is that the
5230 -- implicitly generated "=" for discriminated types includes an
5231 -- offending subtype declaration, which is harmless, so we ignore it
5234 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5236 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
5238 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
5239 and then not (Is_Internal
(Id
)
5240 and then Is_TSS
(Scope
(Id
),
5241 TSS_Composite_Equality
))
5242 and then not Within_Init_Proc
5243 and then not All_Composite_Constraints_Static
(Cstr
)
5245 Check_Restriction
(No_Dynamic_Sized_Objects
, Cstr
);
5249 end Analyze_Subtype_Declaration
;
5251 --------------------------------
5252 -- Analyze_Subtype_Indication --
5253 --------------------------------
5255 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
5256 T
: constant Entity_Id
:= Subtype_Mark
(N
);
5257 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
5264 Set_Etype
(N
, Etype
(R
));
5265 Resolve
(R
, Entity
(T
));
5267 Set_Error_Posted
(R
);
5268 Set_Error_Posted
(T
);
5270 end Analyze_Subtype_Indication
;
5272 --------------------------
5273 -- Analyze_Variant_Part --
5274 --------------------------
5276 procedure Analyze_Variant_Part
(N
: Node_Id
) is
5277 Discr_Name
: Node_Id
;
5278 Discr_Type
: Entity_Id
;
5280 procedure Process_Variant
(A
: Node_Id
);
5281 -- Analyze declarations for a single variant
5283 package Analyze_Variant_Choices
is
5284 new Generic_Analyze_Choices
(Process_Variant
);
5285 use Analyze_Variant_Choices
;
5287 ---------------------
5288 -- Process_Variant --
5289 ---------------------
5291 procedure Process_Variant
(A
: Node_Id
) is
5292 CL
: constant Node_Id
:= Component_List
(A
);
5294 if not Null_Present
(CL
) then
5295 Analyze_Declarations
(Component_Items
(CL
));
5297 if Present
(Variant_Part
(CL
)) then
5298 Analyze
(Variant_Part
(CL
));
5301 end Process_Variant
;
5303 -- Start of processing for Analyze_Variant_Part
5306 Discr_Name
:= Name
(N
);
5307 Analyze
(Discr_Name
);
5309 -- If Discr_Name bad, get out (prevent cascaded errors)
5311 if Etype
(Discr_Name
) = Any_Type
then
5315 -- Check invalid discriminant in variant part
5317 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
5318 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
5321 Discr_Type
:= Etype
(Entity
(Discr_Name
));
5323 if not Is_Discrete_Type
(Discr_Type
) then
5325 ("discriminant in a variant part must be of a discrete type",
5330 -- Now analyze the choices, which also analyzes the declarations that
5331 -- are associated with each choice.
5333 Analyze_Choices
(Variants
(N
), Discr_Type
);
5335 -- Note: we used to instantiate and call Check_Choices here to check
5336 -- that the choices covered the discriminant, but it's too early to do
5337 -- that because of statically predicated subtypes, whose analysis may
5338 -- be deferred to their freeze point which may be as late as the freeze
5339 -- point of the containing record. So this call is now to be found in
5340 -- Freeze_Record_Declaration.
5342 end Analyze_Variant_Part
;
5344 ----------------------------
5345 -- Array_Type_Declaration --
5346 ----------------------------
5348 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
5349 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
5350 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
5351 Element_Type
: Entity_Id
;
5352 Implicit_Base
: Entity_Id
;
5354 Related_Id
: Entity_Id
:= Empty
;
5356 P
: constant Node_Id
:= Parent
(Def
);
5360 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5361 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
5363 Index
:= First
(Subtype_Marks
(Def
));
5366 -- Find proper names for the implicit types which may be public. In case
5367 -- of anonymous arrays we use the name of the first object of that type
5371 Related_Id
:= Defining_Identifier
(P
);
5377 while Present
(Index
) loop
5380 -- Test for odd case of trying to index a type by the type itself
5382 if Is_Entity_Name
(Index
) and then Entity
(Index
) = T
then
5383 Error_Msg_N
("type& cannot be indexed by itself", Index
);
5384 Set_Entity
(Index
, Standard_Boolean
);
5385 Set_Etype
(Index
, Standard_Boolean
);
5388 -- Check SPARK restriction requiring a subtype mark
5390 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
5391 Check_SPARK_05_Restriction
("subtype mark required", Index
);
5394 -- Add a subtype declaration for each index of private array type
5395 -- declaration whose etype is also private. For example:
5398 -- type Index is private;
5400 -- type Table is array (Index) of ...
5403 -- This is currently required by the expander for the internally
5404 -- generated equality subprogram of records with variant parts in
5405 -- which the etype of some component is such private type.
5407 if Ekind
(Current_Scope
) = E_Package
5408 and then In_Private_Part
(Current_Scope
)
5409 and then Has_Private_Declaration
(Etype
(Index
))
5412 Loc
: constant Source_Ptr
:= Sloc
(Def
);
5417 New_E
:= Make_Temporary
(Loc
, 'T');
5418 Set_Is_Internal
(New_E
);
5421 Make_Subtype_Declaration
(Loc
,
5422 Defining_Identifier
=> New_E
,
5423 Subtype_Indication
=>
5424 New_Occurrence_Of
(Etype
(Index
), Loc
));
5426 Insert_Before
(Parent
(Def
), Decl
);
5428 Set_Etype
(Index
, New_E
);
5430 -- If the index is a range the Entity attribute is not
5431 -- available. Example:
5434 -- type T is private;
5436 -- type T is new Natural;
5437 -- Table : array (T(1) .. T(10)) of Boolean;
5440 if Nkind
(Index
) /= N_Range
then
5441 Set_Entity
(Index
, New_E
);
5446 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
5448 -- Check error of subtype with predicate for index type
5450 Bad_Predicated_Subtype_Use
5451 ("subtype& has predicate, not allowed as index subtype",
5452 Index
, Etype
(Index
));
5454 -- Move to next index
5457 Nb_Index
:= Nb_Index
+ 1;
5460 -- Process subtype indication if one is present
5462 if Present
(Component_Typ
) then
5463 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
5465 Set_Etype
(Component_Typ
, Element_Type
);
5467 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
5468 Check_SPARK_05_Restriction
5469 ("subtype mark required", Component_Typ
);
5472 -- Ada 2005 (AI-230): Access Definition case
5474 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
5476 -- Indicate that the anonymous access type is created by the
5477 -- array type declaration.
5479 Element_Type
:= Access_Definition
5481 N
=> Access_Definition
(Component_Def
));
5482 Set_Is_Local_Anonymous_Access
(Element_Type
);
5484 -- Propagate the parent. This field is needed if we have to generate
5485 -- the master_id associated with an anonymous access to task type
5486 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5488 Set_Parent
(Element_Type
, Parent
(T
));
5490 -- Ada 2005 (AI-230): In case of components that are anonymous access
5491 -- types the level of accessibility depends on the enclosing type
5494 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
5496 -- Ada 2005 (AI-254)
5499 CD
: constant Node_Id
:=
5500 Access_To_Subprogram_Definition
5501 (Access_Definition
(Component_Def
));
5503 if Present
(CD
) and then Protected_Present
(CD
) then
5505 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
5510 -- Constrained array case
5513 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
5516 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5518 -- Establish Implicit_Base as unconstrained base type
5520 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
5522 Set_Etype
(Implicit_Base
, Implicit_Base
);
5523 Set_Scope
(Implicit_Base
, Current_Scope
);
5524 Set_Has_Delayed_Freeze
(Implicit_Base
);
5525 Set_Default_SSO
(Implicit_Base
);
5527 -- The constrained array type is a subtype of the unconstrained one
5529 Set_Ekind
(T
, E_Array_Subtype
);
5530 Init_Size_Align
(T
);
5531 Set_Etype
(T
, Implicit_Base
);
5532 Set_Scope
(T
, Current_Scope
);
5533 Set_Is_Constrained
(T
);
5535 First
(Discrete_Subtype_Definitions
(Def
)));
5536 Set_Has_Delayed_Freeze
(T
);
5538 -- Complete setup of implicit base type
5540 Set_First_Index
(Implicit_Base
, First_Index
(T
));
5541 Set_Component_Type
(Implicit_Base
, Element_Type
);
5542 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
5543 Set_Has_Protected
(Implicit_Base
, Has_Protected
(Element_Type
));
5544 Set_Component_Size
(Implicit_Base
, Uint_0
);
5545 Set_Packed_Array_Impl_Type
(Implicit_Base
, Empty
);
5546 Set_Has_Controlled_Component
(Implicit_Base
,
5547 Has_Controlled_Component
(Element_Type
)
5548 or else Is_Controlled_Active
(Element_Type
));
5549 Set_Finalize_Storage_Only
(Implicit_Base
,
5550 Finalize_Storage_Only
(Element_Type
));
5552 -- Inherit the "ghostness" from the constrained array type
5554 if Ghost_Mode
> None
or else Is_Ghost_Entity
(T
) then
5555 Set_Is_Ghost_Entity
(Implicit_Base
);
5558 -- Unconstrained array case
5561 Set_Ekind
(T
, E_Array_Type
);
5562 Init_Size_Align
(T
);
5564 Set_Scope
(T
, Current_Scope
);
5565 Set_Component_Size
(T
, Uint_0
);
5566 Set_Is_Constrained
(T
, False);
5567 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
5568 Set_Has_Delayed_Freeze
(T
, True);
5569 Set_Has_Task
(T
, Has_Task
(Element_Type
));
5570 Set_Has_Protected
(T
, Has_Protected
(Element_Type
));
5571 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
5574 Is_Controlled_Active
(Element_Type
));
5575 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
5577 Set_Default_SSO
(T
);
5580 -- Common attributes for both cases
5582 Set_Component_Type
(Base_Type
(T
), Element_Type
);
5583 Set_Packed_Array_Impl_Type
(T
, Empty
);
5585 if Aliased_Present
(Component_Definition
(Def
)) then
5586 Check_SPARK_05_Restriction
5587 ("aliased is not allowed", Component_Definition
(Def
));
5588 Set_Has_Aliased_Components
(Etype
(T
));
5591 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5592 -- array type to ensure that objects of this type are initialized.
5594 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(Element_Type
) then
5595 Set_Can_Never_Be_Null
(T
);
5597 if Null_Exclusion_Present
(Component_Definition
(Def
))
5599 -- No need to check itypes because in their case this check was
5600 -- done at their point of creation
5602 and then not Is_Itype
(Element_Type
)
5605 ("`NOT NULL` not allowed (null already excluded)",
5606 Subtype_Indication
(Component_Definition
(Def
)));
5610 Priv
:= Private_Component
(Element_Type
);
5612 if Present
(Priv
) then
5614 -- Check for circular definitions
5616 if Priv
= Any_Type
then
5617 Set_Component_Type
(Etype
(T
), Any_Type
);
5619 -- There is a gap in the visibility of operations on the composite
5620 -- type only if the component type is defined in a different scope.
5622 elsif Scope
(Priv
) = Current_Scope
then
5625 elsif Is_Limited_Type
(Priv
) then
5626 Set_Is_Limited_Composite
(Etype
(T
));
5627 Set_Is_Limited_Composite
(T
);
5629 Set_Is_Private_Composite
(Etype
(T
));
5630 Set_Is_Private_Composite
(T
);
5634 -- A syntax error in the declaration itself may lead to an empty index
5635 -- list, in which case do a minimal patch.
5637 if No
(First_Index
(T
)) then
5638 Error_Msg_N
("missing index definition in array type declaration", T
);
5641 Indexes
: constant List_Id
:=
5642 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
5644 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
5645 Set_First_Index
(T
, First
(Indexes
));
5650 -- Create a concatenation operator for the new type. Internal array
5651 -- types created for packed entities do not need such, they are
5652 -- compatible with the user-defined type.
5654 if Number_Dimensions
(T
) = 1
5655 and then not Is_Packed_Array_Impl_Type
(T
)
5657 New_Concatenation_Op
(T
);
5660 -- In the case of an unconstrained array the parser has already verified
5661 -- that all the indexes are unconstrained but we still need to make sure
5662 -- that the element type is constrained.
5664 if not Is_Definite_Subtype
(Element_Type
) then
5666 ("unconstrained element type in array declaration",
5667 Subtype_Indication
(Component_Def
));
5669 elsif Is_Abstract_Type
(Element_Type
) then
5671 ("the type of a component cannot be abstract",
5672 Subtype_Indication
(Component_Def
));
5675 -- There may be an invariant declared for the component type, but
5676 -- the construction of the component invariant checking procedure
5677 -- takes place during expansion.
5678 end Array_Type_Declaration
;
5680 ------------------------------------------------------
5681 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5682 ------------------------------------------------------
5684 function Replace_Anonymous_Access_To_Protected_Subprogram
5685 (N
: Node_Id
) return Entity_Id
5687 Loc
: constant Source_Ptr
:= Sloc
(N
);
5689 Curr_Scope
: constant Scope_Stack_Entry
:=
5690 Scope_Stack
.Table
(Scope_Stack
.Last
);
5692 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5695 -- Access definition in declaration
5698 -- Object definition or formal definition with an access definition
5701 -- Declaration of anonymous access to subprogram type
5704 -- Original specification in access to subprogram
5709 Set_Is_Internal
(Anon
);
5712 when N_Component_Declaration |
5713 N_Unconstrained_Array_Definition |
5714 N_Constrained_Array_Definition
=>
5715 Comp
:= Component_Definition
(N
);
5716 Acc
:= Access_Definition
(Comp
);
5718 when N_Discriminant_Specification
=>
5719 Comp
:= Discriminant_Type
(N
);
5722 when N_Parameter_Specification
=>
5723 Comp
:= Parameter_Type
(N
);
5726 when N_Access_Function_Definition
=>
5727 Comp
:= Result_Definition
(N
);
5730 when N_Object_Declaration
=>
5731 Comp
:= Object_Definition
(N
);
5734 when N_Function_Specification
=>
5735 Comp
:= Result_Definition
(N
);
5739 raise Program_Error
;
5742 Spec
:= Access_To_Subprogram_Definition
(Acc
);
5745 Make_Full_Type_Declaration
(Loc
,
5746 Defining_Identifier
=> Anon
,
5747 Type_Definition
=> Copy_Separate_Tree
(Spec
));
5749 Mark_Rewrite_Insertion
(Decl
);
5751 -- In ASIS mode, analyze the profile on the original node, because
5752 -- the separate copy does not provide enough links to recover the
5753 -- original tree. Analysis is limited to type annotations, within
5754 -- a temporary scope that serves as an anonymous subprogram to collect
5755 -- otherwise useless temporaries and itypes.
5759 Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5762 if Nkind
(Spec
) = N_Access_Function_Definition
then
5763 Set_Ekind
(Typ
, E_Function
);
5765 Set_Ekind
(Typ
, E_Procedure
);
5768 Set_Parent
(Typ
, N
);
5769 Set_Scope
(Typ
, Current_Scope
);
5772 -- Nothing to do if procedure is parameterless
5774 if Present
(Parameter_Specifications
(Spec
)) then
5775 Process_Formals
(Parameter_Specifications
(Spec
), Spec
);
5778 if Nkind
(Spec
) = N_Access_Function_Definition
then
5780 Def
: constant Node_Id
:= Result_Definition
(Spec
);
5783 -- The result might itself be an anonymous access type, so
5786 if Nkind
(Def
) = N_Access_Definition
then
5787 if Present
(Access_To_Subprogram_Definition
(Def
)) then
5790 Replace_Anonymous_Access_To_Protected_Subprogram
5793 Find_Type
(Subtype_Mark
(Def
));
5806 -- Insert the new declaration in the nearest enclosing scope. If the
5807 -- node is a body and N is its return type, the declaration belongs in
5808 -- the enclosing scope.
5812 if Nkind
(P
) = N_Subprogram_Body
5813 and then Nkind
(N
) = N_Function_Specification
5818 while Present
(P
) and then not Has_Declarations
(P
) loop
5822 pragma Assert
(Present
(P
));
5824 if Nkind
(P
) = N_Package_Specification
then
5825 Prepend
(Decl
, Visible_Declarations
(P
));
5827 Prepend
(Decl
, Declarations
(P
));
5830 -- Replace the anonymous type with an occurrence of the new declaration.
5831 -- In all cases the rewritten node does not have the null-exclusion
5832 -- attribute because (if present) it was already inherited by the
5833 -- anonymous entity (Anon). Thus, in case of components we do not
5834 -- inherit this attribute.
5836 if Nkind
(N
) = N_Parameter_Specification
then
5837 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5838 Set_Etype
(Defining_Identifier
(N
), Anon
);
5839 Set_Null_Exclusion_Present
(N
, False);
5841 elsif Nkind
(N
) = N_Object_Declaration
then
5842 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5843 Set_Etype
(Defining_Identifier
(N
), Anon
);
5845 elsif Nkind
(N
) = N_Access_Function_Definition
then
5846 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5848 elsif Nkind
(N
) = N_Function_Specification
then
5849 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5850 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
5854 Make_Component_Definition
(Loc
,
5855 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
5858 Mark_Rewrite_Insertion
(Comp
);
5860 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
)
5861 or else (Nkind
(Parent
(N
)) = N_Full_Type_Declaration
5862 and then not Is_Type
(Current_Scope
))
5865 -- Declaration can be analyzed in the current scope.
5870 -- Temporarily remove the current scope (record or subprogram) from
5871 -- the stack to add the new declarations to the enclosing scope.
5872 -- The anonymous entity is an Itype with the proper attributes.
5874 Scope_Stack
.Decrement_Last
;
5876 Set_Is_Itype
(Anon
);
5877 Set_Associated_Node_For_Itype
(Anon
, N
);
5878 Scope_Stack
.Append
(Curr_Scope
);
5881 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
5882 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
5884 end Replace_Anonymous_Access_To_Protected_Subprogram
;
5886 -------------------------------
5887 -- Build_Derived_Access_Type --
5888 -------------------------------
5890 procedure Build_Derived_Access_Type
5892 Parent_Type
: Entity_Id
;
5893 Derived_Type
: Entity_Id
)
5895 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
5897 Desig_Type
: Entity_Id
;
5899 Discr_Con_Elist
: Elist_Id
;
5900 Discr_Con_El
: Elmt_Id
;
5904 -- Set the designated type so it is available in case this is an access
5905 -- to a self-referential type, e.g. a standard list type with a next
5906 -- pointer. Will be reset after subtype is built.
5908 Set_Directly_Designated_Type
5909 (Derived_Type
, Designated_Type
(Parent_Type
));
5911 Subt
:= Process_Subtype
(S
, N
);
5913 if Nkind
(S
) /= N_Subtype_Indication
5914 and then Subt
/= Base_Type
(Subt
)
5916 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
5919 if Ekind
(Derived_Type
) = E_Access_Subtype
then
5921 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5922 Ibase
: constant Entity_Id
:=
5923 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
5924 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
5925 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
5928 Copy_Node
(Pbase
, Ibase
);
5930 Set_Chars
(Ibase
, Svg_Chars
);
5931 Set_Next_Entity
(Ibase
, Svg_Next_E
);
5932 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
5933 Set_Scope
(Ibase
, Scope
(Derived_Type
));
5934 Set_Freeze_Node
(Ibase
, Empty
);
5935 Set_Is_Frozen
(Ibase
, False);
5936 Set_Comes_From_Source
(Ibase
, False);
5937 Set_Is_First_Subtype
(Ibase
, False);
5939 Set_Etype
(Ibase
, Pbase
);
5940 Set_Etype
(Derived_Type
, Ibase
);
5944 Set_Directly_Designated_Type
5945 (Derived_Type
, Designated_Type
(Subt
));
5947 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
5948 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
5949 Set_Size_Info
(Derived_Type
, Parent_Type
);
5950 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
5951 Set_Depends_On_Private
(Derived_Type
,
5952 Has_Private_Component
(Derived_Type
));
5953 Conditional_Delay
(Derived_Type
, Subt
);
5955 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5956 -- that it is not redundant.
5958 if Null_Exclusion_Present
(Type_Definition
(N
)) then
5959 Set_Can_Never_Be_Null
(Derived_Type
);
5961 -- What is with the "AND THEN FALSE" here ???
5963 if Can_Never_Be_Null
(Parent_Type
)
5967 ("`NOT NULL` not allowed (& already excludes null)",
5971 elsif Can_Never_Be_Null
(Parent_Type
) then
5972 Set_Can_Never_Be_Null
(Derived_Type
);
5975 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5976 -- the root type for this information.
5978 -- Apply range checks to discriminants for derived record case
5979 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5981 Desig_Type
:= Designated_Type
(Derived_Type
);
5982 if Is_Composite_Type
(Desig_Type
)
5983 and then (not Is_Array_Type
(Desig_Type
))
5984 and then Has_Discriminants
(Desig_Type
)
5985 and then Base_Type
(Desig_Type
) /= Desig_Type
5987 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
5988 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
5990 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
5991 while Present
(Discr_Con_El
) loop
5992 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
5993 Next_Elmt
(Discr_Con_El
);
5994 Next_Discriminant
(Discr
);
5997 end Build_Derived_Access_Type
;
5999 ------------------------------
6000 -- Build_Derived_Array_Type --
6001 ------------------------------
6003 procedure Build_Derived_Array_Type
6005 Parent_Type
: Entity_Id
;
6006 Derived_Type
: Entity_Id
)
6008 Loc
: constant Source_Ptr
:= Sloc
(N
);
6009 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6010 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6011 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6012 Implicit_Base
: Entity_Id
;
6013 New_Indic
: Node_Id
;
6015 procedure Make_Implicit_Base
;
6016 -- If the parent subtype is constrained, the derived type is a subtype
6017 -- of an implicit base type derived from the parent base.
6019 ------------------------
6020 -- Make_Implicit_Base --
6021 ------------------------
6023 procedure Make_Implicit_Base
is
6026 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6028 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6029 Set_Etype
(Implicit_Base
, Parent_Base
);
6031 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
6032 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
6034 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
6036 -- Inherit the "ghostness" from the parent base type
6038 if Ghost_Mode
> None
or else Is_Ghost_Entity
(Parent_Base
) then
6039 Set_Is_Ghost_Entity
(Implicit_Base
);
6041 end Make_Implicit_Base
;
6043 -- Start of processing for Build_Derived_Array_Type
6046 if not Is_Constrained
(Parent_Type
) then
6047 if Nkind
(Indic
) /= N_Subtype_Indication
then
6048 Set_Ekind
(Derived_Type
, E_Array_Type
);
6050 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6051 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
6053 Set_Has_Delayed_Freeze
(Derived_Type
, True);
6057 Set_Etype
(Derived_Type
, Implicit_Base
);
6060 Make_Subtype_Declaration
(Loc
,
6061 Defining_Identifier
=> Derived_Type
,
6062 Subtype_Indication
=>
6063 Make_Subtype_Indication
(Loc
,
6064 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6065 Constraint
=> Constraint
(Indic
)));
6067 Rewrite
(N
, New_Indic
);
6072 if Nkind
(Indic
) /= N_Subtype_Indication
then
6075 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
6076 Set_Etype
(Derived_Type
, Implicit_Base
);
6077 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6080 Error_Msg_N
("illegal constraint on constrained type", Indic
);
6084 -- If parent type is not a derived type itself, and is declared in
6085 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6086 -- the new type's concatenation operator since Derive_Subprograms
6087 -- will not inherit the parent's operator. If the parent type is
6088 -- unconstrained, the operator is of the unconstrained base type.
6090 if Number_Dimensions
(Parent_Type
) = 1
6091 and then not Is_Limited_Type
(Parent_Type
)
6092 and then not Is_Derived_Type
(Parent_Type
)
6093 and then not Is_Package_Or_Generic_Package
6094 (Scope
(Base_Type
(Parent_Type
)))
6096 if not Is_Constrained
(Parent_Type
)
6097 and then Is_Constrained
(Derived_Type
)
6099 New_Concatenation_Op
(Implicit_Base
);
6101 New_Concatenation_Op
(Derived_Type
);
6104 end Build_Derived_Array_Type
;
6106 -----------------------------------
6107 -- Build_Derived_Concurrent_Type --
6108 -----------------------------------
6110 procedure Build_Derived_Concurrent_Type
6112 Parent_Type
: Entity_Id
;
6113 Derived_Type
: Entity_Id
)
6115 Loc
: constant Source_Ptr
:= Sloc
(N
);
6117 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
6118 Corr_Decl
: Node_Id
;
6119 Corr_Decl_Needed
: Boolean;
6120 -- If the derived type has fewer discriminants than its parent, the
6121 -- corresponding record is also a derived type, in order to account for
6122 -- the bound discriminants. We create a full type declaration for it in
6125 Constraint_Present
: constant Boolean :=
6126 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6127 N_Subtype_Indication
;
6129 D_Constraint
: Node_Id
;
6130 New_Constraint
: Elist_Id
;
6131 Old_Disc
: Entity_Id
;
6132 New_Disc
: Entity_Id
;
6136 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6137 Corr_Decl_Needed
:= False;
6140 if Present
(Discriminant_Specifications
(N
))
6141 and then Constraint_Present
6143 Old_Disc
:= First_Discriminant
(Parent_Type
);
6144 New_Disc
:= First
(Discriminant_Specifications
(N
));
6145 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
6146 Next_Discriminant
(Old_Disc
);
6151 if Present
(Old_Disc
) and then Expander_Active
then
6153 -- The new type has fewer discriminants, so we need to create a new
6154 -- corresponding record, which is derived from the corresponding
6155 -- record of the parent, and has a stored constraint that captures
6156 -- the values of the discriminant constraints. The corresponding
6157 -- record is needed only if expander is active and code generation is
6160 -- The type declaration for the derived corresponding record has the
6161 -- same discriminant part and constraints as the current declaration.
6162 -- Copy the unanalyzed tree to build declaration.
6164 Corr_Decl_Needed
:= True;
6165 New_N
:= Copy_Separate_Tree
(N
);
6168 Make_Full_Type_Declaration
(Loc
,
6169 Defining_Identifier
=> Corr_Record
,
6170 Discriminant_Specifications
=>
6171 Discriminant_Specifications
(New_N
),
6173 Make_Derived_Type_Definition
(Loc
,
6174 Subtype_Indication
=>
6175 Make_Subtype_Indication
(Loc
,
6178 (Corresponding_Record_Type
(Parent_Type
), Loc
),
6181 (Subtype_Indication
(Type_Definition
(New_N
))))));
6184 -- Copy Storage_Size and Relative_Deadline variables if task case
6186 if Is_Task_Type
(Parent_Type
) then
6187 Set_Storage_Size_Variable
(Derived_Type
,
6188 Storage_Size_Variable
(Parent_Type
));
6189 Set_Relative_Deadline_Variable
(Derived_Type
,
6190 Relative_Deadline_Variable
(Parent_Type
));
6193 if Present
(Discriminant_Specifications
(N
)) then
6194 Push_Scope
(Derived_Type
);
6195 Check_Or_Process_Discriminants
(N
, Derived_Type
);
6197 if Constraint_Present
then
6199 Expand_To_Stored_Constraint
6201 Build_Discriminant_Constraints
6203 Subtype_Indication
(Type_Definition
(N
)), True));
6208 elsif Constraint_Present
then
6210 -- Build constrained subtype, copying the constraint, and derive
6211 -- from it to create a derived constrained type.
6214 Loc
: constant Source_Ptr
:= Sloc
(N
);
6215 Anon
: constant Entity_Id
:=
6216 Make_Defining_Identifier
(Loc
,
6217 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
6222 Make_Subtype_Declaration
(Loc
,
6223 Defining_Identifier
=> Anon
,
6224 Subtype_Indication
=>
6225 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
6226 Insert_Before
(N
, Decl
);
6229 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
6230 New_Occurrence_Of
(Anon
, Loc
));
6231 Set_Analyzed
(Derived_Type
, False);
6237 -- By default, operations and private data are inherited from parent.
6238 -- However, in the presence of bound discriminants, a new corresponding
6239 -- record will be created, see below.
6241 Set_Has_Discriminants
6242 (Derived_Type
, Has_Discriminants
(Parent_Type
));
6243 Set_Corresponding_Record_Type
6244 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
6246 -- Is_Constrained is set according the parent subtype, but is set to
6247 -- False if the derived type is declared with new discriminants.
6251 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
6252 and then not Present
(Discriminant_Specifications
(N
)));
6254 if Constraint_Present
then
6255 if not Has_Discriminants
(Parent_Type
) then
6256 Error_Msg_N
("untagged parent must have discriminants", N
);
6258 elsif Present
(Discriminant_Specifications
(N
)) then
6260 -- Verify that new discriminants are used to constrain old ones
6265 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
6267 Old_Disc
:= First_Discriminant
(Parent_Type
);
6269 while Present
(D_Constraint
) loop
6270 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
6272 -- Positional constraint. If it is a reference to a new
6273 -- discriminant, it constrains the corresponding old one.
6275 if Nkind
(D_Constraint
) = N_Identifier
then
6276 New_Disc
:= First_Discriminant
(Derived_Type
);
6277 while Present
(New_Disc
) loop
6278 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
6279 Next_Discriminant
(New_Disc
);
6282 if Present
(New_Disc
) then
6283 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
6287 Next_Discriminant
(Old_Disc
);
6289 -- if this is a named constraint, search by name for the old
6290 -- discriminants constrained by the new one.
6292 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
6294 -- Find new discriminant with that name
6296 New_Disc
:= First_Discriminant
(Derived_Type
);
6297 while Present
(New_Disc
) loop
6299 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
6300 Next_Discriminant
(New_Disc
);
6303 if Present
(New_Disc
) then
6305 -- Verify that new discriminant renames some discriminant
6306 -- of the parent type, and associate the new discriminant
6307 -- with one or more old ones that it renames.
6313 Selector
:= First
(Selector_Names
(D_Constraint
));
6314 while Present
(Selector
) loop
6315 Old_Disc
:= First_Discriminant
(Parent_Type
);
6316 while Present
(Old_Disc
) loop
6317 exit when Chars
(Old_Disc
) = Chars
(Selector
);
6318 Next_Discriminant
(Old_Disc
);
6321 if Present
(Old_Disc
) then
6322 Set_Corresponding_Discriminant
6323 (New_Disc
, Old_Disc
);
6332 Next
(D_Constraint
);
6335 New_Disc
:= First_Discriminant
(Derived_Type
);
6336 while Present
(New_Disc
) loop
6337 if No
(Corresponding_Discriminant
(New_Disc
)) then
6339 ("new discriminant& must constrain old one", N
, New_Disc
);
6342 Subtypes_Statically_Compatible
6344 Etype
(Corresponding_Discriminant
(New_Disc
)))
6347 ("& not statically compatible with parent discriminant",
6351 Next_Discriminant
(New_Disc
);
6355 elsif Present
(Discriminant_Specifications
(N
)) then
6357 ("missing discriminant constraint in untagged derivation", N
);
6360 -- The entity chain of the derived type includes the new discriminants
6361 -- but shares operations with the parent.
6363 if Present
(Discriminant_Specifications
(N
)) then
6364 Old_Disc
:= First_Discriminant
(Parent_Type
);
6365 while Present
(Old_Disc
) loop
6366 if No
(Next_Entity
(Old_Disc
))
6367 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
6370 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
6374 Next_Discriminant
(Old_Disc
);
6378 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
6379 if Has_Discriminants
(Parent_Type
) then
6380 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6381 Set_Discriminant_Constraint
(
6382 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
6386 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
6388 Set_Has_Completion
(Derived_Type
);
6390 if Corr_Decl_Needed
then
6391 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
6392 Insert_After
(N
, Corr_Decl
);
6393 Analyze
(Corr_Decl
);
6394 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
6396 end Build_Derived_Concurrent_Type
;
6398 ------------------------------------
6399 -- Build_Derived_Enumeration_Type --
6400 ------------------------------------
6402 procedure Build_Derived_Enumeration_Type
6404 Parent_Type
: Entity_Id
;
6405 Derived_Type
: Entity_Id
)
6407 Loc
: constant Source_Ptr
:= Sloc
(N
);
6408 Def
: constant Node_Id
:= Type_Definition
(N
);
6409 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
6410 Implicit_Base
: Entity_Id
;
6411 Literal
: Entity_Id
;
6412 New_Lit
: Entity_Id
;
6413 Literals_List
: List_Id
;
6414 Type_Decl
: Node_Id
;
6416 Rang_Expr
: Node_Id
;
6419 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6420 -- not have explicit literals lists we need to process types derived
6421 -- from them specially. This is handled by Derived_Standard_Character.
6422 -- If the parent type is a generic type, there are no literals either,
6423 -- and we construct the same skeletal representation as for the generic
6426 if Is_Standard_Character_Type
(Parent_Type
) then
6427 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
6429 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
6435 if Nkind
(Indic
) /= N_Subtype_Indication
then
6437 Make_Attribute_Reference
(Loc
,
6438 Attribute_Name
=> Name_First
,
6439 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6440 Set_Etype
(Lo
, Derived_Type
);
6443 Make_Attribute_Reference
(Loc
,
6444 Attribute_Name
=> Name_Last
,
6445 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6446 Set_Etype
(Hi
, Derived_Type
);
6448 Set_Scalar_Range
(Derived_Type
,
6454 -- Analyze subtype indication and verify compatibility
6455 -- with parent type.
6457 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
6458 Base_Type
(Parent_Type
)
6461 ("illegal constraint for formal discrete type", N
);
6467 -- If a constraint is present, analyze the bounds to catch
6468 -- premature usage of the derived literals.
6470 if Nkind
(Indic
) = N_Subtype_Indication
6471 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
6473 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
6474 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
6477 -- Introduce an implicit base type for the derived type even if there
6478 -- is no constraint attached to it, since this seems closer to the
6479 -- Ada semantics. Build a full type declaration tree for the derived
6480 -- type using the implicit base type as the defining identifier. The
6481 -- build a subtype declaration tree which applies the constraint (if
6482 -- any) have it replace the derived type declaration.
6484 Literal
:= First_Literal
(Parent_Type
);
6485 Literals_List
:= New_List
;
6486 while Present
(Literal
)
6487 and then Ekind
(Literal
) = E_Enumeration_Literal
6489 -- Literals of the derived type have the same representation as
6490 -- those of the parent type, but this representation can be
6491 -- overridden by an explicit representation clause. Indicate
6492 -- that there is no explicit representation given yet. These
6493 -- derived literals are implicit operations of the new type,
6494 -- and can be overridden by explicit ones.
6496 if Nkind
(Literal
) = N_Defining_Character_Literal
then
6498 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
6500 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
6503 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
6504 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
6505 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
6506 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
6507 Set_Alias
(New_Lit
, Literal
);
6508 Set_Is_Known_Valid
(New_Lit
, True);
6510 Append
(New_Lit
, Literals_List
);
6511 Next_Literal
(Literal
);
6515 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6516 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
6518 -- Indicate the proper nature of the derived type. This must be done
6519 -- before analysis of the literals, to recognize cases when a literal
6520 -- may be hidden by a previous explicit function definition (cf.
6523 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
6524 Set_Etype
(Derived_Type
, Implicit_Base
);
6527 Make_Full_Type_Declaration
(Loc
,
6528 Defining_Identifier
=> Implicit_Base
,
6529 Discriminant_Specifications
=> No_List
,
6531 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
6533 Mark_Rewrite_Insertion
(Type_Decl
);
6534 Insert_Before
(N
, Type_Decl
);
6535 Analyze
(Type_Decl
);
6537 -- The anonymous base now has a full declaration, but this base
6538 -- is not a first subtype.
6540 Set_Is_First_Subtype
(Implicit_Base
, False);
6542 -- After the implicit base is analyzed its Etype needs to be changed
6543 -- to reflect the fact that it is derived from the parent type which
6544 -- was ignored during analysis. We also set the size at this point.
6546 Set_Etype
(Implicit_Base
, Parent_Type
);
6548 Set_Size_Info
(Implicit_Base
, Parent_Type
);
6549 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
6550 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
6552 -- Copy other flags from parent type
6554 Set_Has_Non_Standard_Rep
6555 (Implicit_Base
, Has_Non_Standard_Rep
6557 Set_Has_Pragma_Ordered
6558 (Implicit_Base
, Has_Pragma_Ordered
6560 Set_Has_Delayed_Freeze
(Implicit_Base
);
6562 -- Process the subtype indication including a validation check on the
6563 -- constraint, if any. If a constraint is given, its bounds must be
6564 -- implicitly converted to the new type.
6566 if Nkind
(Indic
) = N_Subtype_Indication
then
6568 R
: constant Node_Id
:=
6569 Range_Expression
(Constraint
(Indic
));
6572 if Nkind
(R
) = N_Range
then
6573 Hi
:= Build_Scalar_Bound
6574 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
6575 Lo
:= Build_Scalar_Bound
6576 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
6579 -- Constraint is a Range attribute. Replace with explicit
6580 -- mention of the bounds of the prefix, which must be a
6583 Analyze
(Prefix
(R
));
6585 Convert_To
(Implicit_Base
,
6586 Make_Attribute_Reference
(Loc
,
6587 Attribute_Name
=> Name_Last
,
6589 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6592 Convert_To
(Implicit_Base
,
6593 Make_Attribute_Reference
(Loc
,
6594 Attribute_Name
=> Name_First
,
6596 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6603 (Type_High_Bound
(Parent_Type
),
6604 Parent_Type
, Implicit_Base
);
6607 (Type_Low_Bound
(Parent_Type
),
6608 Parent_Type
, Implicit_Base
);
6616 -- If we constructed a default range for the case where no range
6617 -- was given, then the expressions in the range must not freeze
6618 -- since they do not correspond to expressions in the source.
6620 if Nkind
(Indic
) /= N_Subtype_Indication
then
6621 Set_Must_Not_Freeze
(Lo
);
6622 Set_Must_Not_Freeze
(Hi
);
6623 Set_Must_Not_Freeze
(Rang_Expr
);
6627 Make_Subtype_Declaration
(Loc
,
6628 Defining_Identifier
=> Derived_Type
,
6629 Subtype_Indication
=>
6630 Make_Subtype_Indication
(Loc
,
6631 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6633 Make_Range_Constraint
(Loc
,
6634 Range_Expression
=> Rang_Expr
))));
6638 -- Propagate the aspects from the original type declaration to the
6639 -- declaration of the implicit base.
6641 Move_Aspects
(From
=> Original_Node
(N
), To
=> Type_Decl
);
6643 -- Apply a range check. Since this range expression doesn't have an
6644 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6647 if Nkind
(Indic
) = N_Subtype_Indication
then
6649 (Range_Expression
(Constraint
(Indic
)), Parent_Type
,
6650 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
6653 end Build_Derived_Enumeration_Type
;
6655 --------------------------------
6656 -- Build_Derived_Numeric_Type --
6657 --------------------------------
6659 procedure Build_Derived_Numeric_Type
6661 Parent_Type
: Entity_Id
;
6662 Derived_Type
: Entity_Id
)
6664 Loc
: constant Source_Ptr
:= Sloc
(N
);
6665 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6666 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6667 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6668 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
6669 N_Subtype_Indication
;
6670 Implicit_Base
: Entity_Id
;
6676 -- Process the subtype indication including a validation check on
6677 -- the constraint if any.
6679 Discard_Node
(Process_Subtype
(Indic
, N
));
6681 -- Introduce an implicit base type for the derived type even if there
6682 -- is no constraint attached to it, since this seems closer to the Ada
6686 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6688 Set_Etype
(Implicit_Base
, Parent_Base
);
6689 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6690 Set_Size_Info
(Implicit_Base
, Parent_Base
);
6691 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
6692 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
6693 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6695 -- Set RM Size for discrete type or decimal fixed-point type
6696 -- Ordinary fixed-point is excluded, why???
6698 if Is_Discrete_Type
(Parent_Base
)
6699 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
6701 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
6704 Set_Has_Delayed_Freeze
(Implicit_Base
);
6706 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
6707 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
6709 Set_Scalar_Range
(Implicit_Base
,
6714 if Has_Infinities
(Parent_Base
) then
6715 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
6718 -- The Derived_Type, which is the entity of the declaration, is a
6719 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6720 -- absence of an explicit constraint.
6722 Set_Etype
(Derived_Type
, Implicit_Base
);
6724 -- If we did not have a constraint, then the Ekind is set from the
6725 -- parent type (otherwise Process_Subtype has set the bounds)
6727 if No_Constraint
then
6728 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
6731 -- If we did not have a range constraint, then set the range from the
6732 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6734 if No_Constraint
or else not Has_Range_Constraint
(Indic
) then
6735 Set_Scalar_Range
(Derived_Type
,
6737 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
6738 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
6739 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6741 if Has_Infinities
(Parent_Type
) then
6742 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
6745 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
6748 Set_Is_Descendent_Of_Address
(Derived_Type
,
6749 Is_Descendent_Of_Address
(Parent_Type
));
6750 Set_Is_Descendent_Of_Address
(Implicit_Base
,
6751 Is_Descendent_Of_Address
(Parent_Type
));
6753 -- Set remaining type-specific fields, depending on numeric type
6755 if Is_Modular_Integer_Type
(Parent_Type
) then
6756 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
6758 Set_Non_Binary_Modulus
6759 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
6762 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6764 elsif Is_Floating_Point_Type
(Parent_Type
) then
6766 -- Digits of base type is always copied from the digits value of
6767 -- the parent base type, but the digits of the derived type will
6768 -- already have been set if there was a constraint present.
6770 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6771 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
6773 if No_Constraint
then
6774 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
6777 elsif Is_Fixed_Point_Type
(Parent_Type
) then
6779 -- Small of base type and derived type are always copied from the
6780 -- parent base type, since smalls never change. The delta of the
6781 -- base type is also copied from the parent base type. However the
6782 -- delta of the derived type will have been set already if a
6783 -- constraint was present.
6785 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
6786 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
6787 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6789 if No_Constraint
then
6790 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6793 -- The scale and machine radix in the decimal case are always
6794 -- copied from the parent base type.
6796 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6797 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6798 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6800 Set_Machine_Radix_10
6801 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6802 Set_Machine_Radix_10
6803 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6805 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6807 if No_Constraint
then
6808 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6811 -- the analysis of the subtype_indication sets the
6812 -- digits value of the derived type.
6819 if Is_Integer_Type
(Parent_Type
) then
6820 Set_Has_Shift_Operator
6821 (Implicit_Base
, Has_Shift_Operator
(Parent_Type
));
6824 -- The type of the bounds is that of the parent type, and they
6825 -- must be converted to the derived type.
6827 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6829 -- The implicit_base should be frozen when the derived type is frozen,
6830 -- but note that it is used in the conversions of the bounds. For fixed
6831 -- types we delay the determination of the bounds until the proper
6832 -- freezing point. For other numeric types this is rejected by GCC, for
6833 -- reasons that are currently unclear (???), so we choose to freeze the
6834 -- implicit base now. In the case of integers and floating point types
6835 -- this is harmless because subsequent representation clauses cannot
6836 -- affect anything, but it is still baffling that we cannot use the
6837 -- same mechanism for all derived numeric types.
6839 -- There is a further complication: actually some representation
6840 -- clauses can affect the implicit base type. For example, attribute
6841 -- definition clauses for stream-oriented attributes need to set the
6842 -- corresponding TSS entries on the base type, and this normally
6843 -- cannot be done after the base type is frozen, so the circuitry in
6844 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6845 -- and not use Set_TSS in this case.
6847 -- There are also consequences for the case of delayed representation
6848 -- aspects for some cases. For example, a Size aspect is delayed and
6849 -- should not be evaluated to the freeze point. This early freezing
6850 -- means that the size attribute evaluation happens too early???
6852 if Is_Fixed_Point_Type
(Parent_Type
) then
6853 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6855 Freeze_Before
(N
, Implicit_Base
);
6857 end Build_Derived_Numeric_Type
;
6859 --------------------------------
6860 -- Build_Derived_Private_Type --
6861 --------------------------------
6863 procedure Build_Derived_Private_Type
6865 Parent_Type
: Entity_Id
;
6866 Derived_Type
: Entity_Id
;
6867 Is_Completion
: Boolean;
6868 Derive_Subps
: Boolean := True)
6870 Loc
: constant Source_Ptr
:= Sloc
(N
);
6871 Par_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6872 Par_Scope
: constant Entity_Id
:= Scope
(Par_Base
);
6873 Full_N
: constant Node_Id
:= New_Copy_Tree
(N
);
6874 Full_Der
: Entity_Id
:= New_Copy
(Derived_Type
);
6877 procedure Build_Full_Derivation
;
6878 -- Build full derivation, i.e. derive from the full view
6880 procedure Copy_And_Build
;
6881 -- Copy derived type declaration, replace parent with its full view,
6882 -- and build derivation
6884 ---------------------------
6885 -- Build_Full_Derivation --
6886 ---------------------------
6888 procedure Build_Full_Derivation
is
6890 -- If parent scope is not open, install the declarations
6892 if not In_Open_Scopes
(Par_Scope
) then
6893 Install_Private_Declarations
(Par_Scope
);
6894 Install_Visible_Declarations
(Par_Scope
);
6896 Uninstall_Declarations
(Par_Scope
);
6898 -- If parent scope is open and in another unit, and parent has a
6899 -- completion, then the derivation is taking place in the visible
6900 -- part of a child unit. In that case retrieve the full view of
6901 -- the parent momentarily.
6903 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
6904 Full_P
:= Full_View
(Parent_Type
);
6905 Exchange_Declarations
(Parent_Type
);
6907 Exchange_Declarations
(Full_P
);
6909 -- Otherwise it is a local derivation
6914 end Build_Full_Derivation
;
6916 --------------------
6917 -- Copy_And_Build --
6918 --------------------
6920 procedure Copy_And_Build
is
6921 Full_Parent
: Entity_Id
:= Parent_Type
;
6924 -- If the parent is itself derived from another private type,
6925 -- installing the private declarations has not affected its
6926 -- privacy status, so use its own full view explicitly.
6928 if Is_Private_Type
(Full_Parent
)
6929 and then Present
(Full_View
(Full_Parent
))
6931 Full_Parent
:= Full_View
(Full_Parent
);
6934 -- And its underlying full view if necessary
6936 if Is_Private_Type
(Full_Parent
)
6937 and then Present
(Underlying_Full_View
(Full_Parent
))
6939 Full_Parent
:= Underlying_Full_View
(Full_Parent
);
6942 -- For record, access and most enumeration types, derivation from
6943 -- the full view requires a fully-fledged declaration. In the other
6944 -- cases, just use an itype.
6946 if Ekind
(Full_Parent
) in Record_Kind
6947 or else Ekind
(Full_Parent
) in Access_Kind
6949 (Ekind
(Full_Parent
) in Enumeration_Kind
6950 and then not Is_Standard_Character_Type
(Full_Parent
)
6951 and then not Is_Generic_Type
(Root_Type
(Full_Parent
)))
6953 -- Copy and adjust declaration to provide a completion for what
6954 -- is originally a private declaration. Indicate that full view
6955 -- is internally generated.
6957 Set_Comes_From_Source
(Full_N
, False);
6958 Set_Comes_From_Source
(Full_Der
, False);
6959 Set_Parent
(Full_Der
, Full_N
);
6960 Set_Defining_Identifier
(Full_N
, Full_Der
);
6962 -- If there are no constraints, adjust the subtype mark
6964 if Nkind
(Subtype_Indication
(Type_Definition
(Full_N
))) /=
6965 N_Subtype_Indication
6967 Set_Subtype_Indication
6968 (Type_Definition
(Full_N
),
6969 New_Occurrence_Of
(Full_Parent
, Sloc
(Full_N
)));
6972 Insert_After
(N
, Full_N
);
6974 -- Build full view of derived type from full view of parent which
6975 -- is now installed. Subprograms have been derived on the partial
6976 -- view, the completion does not derive them anew.
6978 if Ekind
(Full_Parent
) in Record_Kind
then
6980 -- If parent type is tagged, the completion inherits the proper
6981 -- primitive operations.
6983 if Is_Tagged_Type
(Parent_Type
) then
6984 Build_Derived_Record_Type
6985 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
);
6987 Build_Derived_Record_Type
6988 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
=> False);
6993 (Full_N
, Full_Parent
, Full_Der
,
6994 Is_Completion
=> False, Derive_Subps
=> False);
6997 -- The full declaration has been introduced into the tree and
6998 -- processed in the step above. It should not be analyzed again
6999 -- (when encountered later in the current list of declarations)
7000 -- to prevent spurious name conflicts. The full entity remains
7003 Set_Analyzed
(Full_N
);
7007 Make_Defining_Identifier
(Sloc
(Derived_Type
),
7008 Chars
=> Chars
(Derived_Type
));
7009 Set_Is_Itype
(Full_Der
);
7010 Set_Associated_Node_For_Itype
(Full_Der
, N
);
7011 Set_Parent
(Full_Der
, N
);
7013 (N
, Full_Parent
, Full_Der
,
7014 Is_Completion
=> False, Derive_Subps
=> False);
7017 Set_Has_Private_Declaration
(Full_Der
);
7018 Set_Has_Private_Declaration
(Derived_Type
);
7020 Set_Scope
(Full_Der
, Scope
(Derived_Type
));
7021 Set_Is_First_Subtype
(Full_Der
, Is_First_Subtype
(Derived_Type
));
7022 Set_Has_Size_Clause
(Full_Der
, False);
7023 Set_Has_Alignment_Clause
(Full_Der
, False);
7024 Set_Has_Delayed_Freeze
(Full_Der
);
7025 Set_Is_Frozen
(Full_Der
, False);
7026 Set_Freeze_Node
(Full_Der
, Empty
);
7027 Set_Depends_On_Private
(Full_Der
, Has_Private_Component
(Full_Der
));
7028 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
7030 -- The convention on the base type may be set in the private part
7031 -- and not propagated to the subtype until later, so we obtain the
7032 -- convention from the base type of the parent.
7034 Set_Convention
(Full_Der
, Convention
(Base_Type
(Full_Parent
)));
7037 -- Start of processing for Build_Derived_Private_Type
7040 if Is_Tagged_Type
(Parent_Type
) then
7041 Full_P
:= Full_View
(Parent_Type
);
7043 -- A type extension of a type with unknown discriminants is an
7044 -- indefinite type that the back-end cannot handle directly.
7045 -- We treat it as a private type, and build a completion that is
7046 -- derived from the full view of the parent, and hopefully has
7047 -- known discriminants.
7049 -- If the full view of the parent type has an underlying record view,
7050 -- use it to generate the underlying record view of this derived type
7051 -- (required for chains of derivations with unknown discriminants).
7053 -- Minor optimization: we avoid the generation of useless underlying
7054 -- record view entities if the private type declaration has unknown
7055 -- discriminants but its corresponding full view has no
7058 if Has_Unknown_Discriminants
(Parent_Type
)
7059 and then Present
(Full_P
)
7060 and then (Has_Discriminants
(Full_P
)
7061 or else Present
(Underlying_Record_View
(Full_P
)))
7062 and then not In_Open_Scopes
(Par_Scope
)
7063 and then Expander_Active
7066 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
7067 New_Ext
: constant Node_Id
:=
7069 (Record_Extension_Part
(Type_Definition
(N
)));
7073 Build_Derived_Record_Type
7074 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7076 -- Build anonymous completion, as a derivation from the full
7077 -- view of the parent. This is not a completion in the usual
7078 -- sense, because the current type is not private.
7081 Make_Full_Type_Declaration
(Loc
,
7082 Defining_Identifier
=> Full_Der
,
7084 Make_Derived_Type_Definition
(Loc
,
7085 Subtype_Indication
=>
7087 (Subtype_Indication
(Type_Definition
(N
))),
7088 Record_Extension_Part
=> New_Ext
));
7090 -- If the parent type has an underlying record view, use it
7091 -- here to build the new underlying record view.
7093 if Present
(Underlying_Record_View
(Full_P
)) then
7095 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
7097 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
7098 Underlying_Record_View
(Full_P
));
7101 Install_Private_Declarations
(Par_Scope
);
7102 Install_Visible_Declarations
(Par_Scope
);
7103 Insert_Before
(N
, Decl
);
7105 -- Mark entity as an underlying record view before analysis,
7106 -- to avoid generating the list of its primitive operations
7107 -- (which is not really required for this entity) and thus
7108 -- prevent spurious errors associated with missing overriding
7109 -- of abstract primitives (overridden only for Derived_Type).
7111 Set_Ekind
(Full_Der
, E_Record_Type
);
7112 Set_Is_Underlying_Record_View
(Full_Der
);
7113 Set_Default_SSO
(Full_Der
);
7117 pragma Assert
(Has_Discriminants
(Full_Der
)
7118 and then not Has_Unknown_Discriminants
(Full_Der
));
7120 Uninstall_Declarations
(Par_Scope
);
7122 -- Freeze the underlying record view, to prevent generation of
7123 -- useless dispatching information, which is simply shared with
7124 -- the real derived type.
7126 Set_Is_Frozen
(Full_Der
);
7128 -- If the derived type has access discriminants, create
7129 -- references to their anonymous types now, to prevent
7130 -- back-end problems when their first use is in generated
7131 -- bodies of primitives.
7137 E
:= First_Entity
(Full_Der
);
7139 while Present
(E
) loop
7140 if Ekind
(E
) = E_Discriminant
7141 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
7143 Build_Itype_Reference
(Etype
(E
), Decl
);
7150 -- Set up links between real entity and underlying record view
7152 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
7153 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
7156 -- If discriminants are known, build derived record
7159 Build_Derived_Record_Type
7160 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7165 elsif Has_Discriminants
(Parent_Type
) then
7167 -- Build partial view of derived type from partial view of parent.
7168 -- This must be done before building the full derivation because the
7169 -- second derivation will modify the discriminants of the first and
7170 -- the discriminants are chained with the rest of the components in
7171 -- the full derivation.
7173 Build_Derived_Record_Type
7174 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7176 -- Build the full derivation if this is not the anonymous derived
7177 -- base type created by Build_Derived_Record_Type in the constrained
7178 -- case (see point 5. of its head comment) since we build it for the
7179 -- derived subtype. And skip it for protected types altogether, as
7180 -- gigi does not use these types directly.
7182 if Present
(Full_View
(Parent_Type
))
7183 and then not Is_Itype
(Derived_Type
)
7184 and then not (Ekind
(Full_View
(Parent_Type
)) in Protected_Kind
)
7187 Der_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
7189 Last_Discr
: Entity_Id
;
7192 -- If this is not a completion, construct the implicit full
7193 -- view by deriving from the full view of the parent type.
7194 -- But if this is a completion, the derived private type
7195 -- being built is a full view and the full derivation can
7196 -- only be its underlying full view.
7198 Build_Full_Derivation
;
7200 if not Is_Completion
then
7201 Set_Full_View
(Derived_Type
, Full_Der
);
7203 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7206 if not Is_Base_Type
(Derived_Type
) then
7207 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
7210 -- Copy the discriminant list from full view to the partial
7211 -- view (base type and its subtype). Gigi requires that the
7212 -- partial and full views have the same discriminants.
7214 -- Note that since the partial view points to discriminants
7215 -- in the full view, their scope will be that of the full
7216 -- view. This might cause some front end problems and need
7219 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
7220 Set_First_Entity
(Der_Base
, Discr
);
7223 Last_Discr
:= Discr
;
7224 Next_Discriminant
(Discr
);
7225 exit when No
(Discr
);
7228 Set_Last_Entity
(Der_Base
, Last_Discr
);
7229 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
7230 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
7232 Set_Stored_Constraint
7233 (Full_Der
, Stored_Constraint
(Derived_Type
));
7237 elsif Present
(Full_View
(Parent_Type
))
7238 and then Has_Discriminants
(Full_View
(Parent_Type
))
7240 if Has_Unknown_Discriminants
(Parent_Type
)
7241 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7242 N_Subtype_Indication
7245 ("cannot constrain type with unknown discriminants",
7246 Subtype_Indication
(Type_Definition
(N
)));
7250 -- If this is not a completion, construct the implicit full view by
7251 -- deriving from the full view of the parent type. But if this is a
7252 -- completion, the derived private type being built is a full view
7253 -- and the full derivation can only be its underlying full view.
7255 Build_Full_Derivation
;
7257 if not Is_Completion
then
7258 Set_Full_View
(Derived_Type
, Full_Der
);
7260 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7263 -- In any case, the primitive operations are inherited from the
7264 -- parent type, not from the internal full view.
7266 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
7268 if Derive_Subps
then
7269 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7272 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7274 (Derived_Type
, Is_Constrained
(Full_View
(Parent_Type
)));
7277 -- Untagged type, No discriminants on either view
7279 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7280 N_Subtype_Indication
7283 ("illegal constraint on type without discriminants", N
);
7286 if Present
(Discriminant_Specifications
(N
))
7287 and then Present
(Full_View
(Parent_Type
))
7288 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7290 Error_Msg_N
("cannot add discriminants to untagged type", N
);
7293 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7294 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7295 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
7296 Set_Disable_Controlled
(Derived_Type
, Disable_Controlled
7298 Set_Has_Controlled_Component
7299 (Derived_Type
, Has_Controlled_Component
7302 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7304 if not Is_Controlled_Active
(Parent_Type
) then
7305 Set_Finalize_Storage_Only
7306 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
7309 -- If this is not a completion, construct the implicit full view by
7310 -- deriving from the full view of the parent type.
7312 -- ??? If the parent is untagged private and its completion is
7313 -- tagged, this mechanism will not work because we cannot derive from
7314 -- the tagged full view unless we have an extension.
7316 if Present
(Full_View
(Parent_Type
))
7317 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7318 and then not Is_Completion
7320 Build_Full_Derivation
;
7321 Set_Full_View
(Derived_Type
, Full_Der
);
7325 Set_Has_Unknown_Discriminants
(Derived_Type
,
7326 Has_Unknown_Discriminants
(Parent_Type
));
7328 if Is_Private_Type
(Derived_Type
) then
7329 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7332 -- If the parent base type is in scope, add the derived type to its
7333 -- list of private dependents, because its full view may become
7334 -- visible subsequently (in a nested private part, a body, or in a
7335 -- further child unit).
7337 if Is_Private_Type
(Par_Base
) and then In_Open_Scopes
(Par_Scope
) then
7338 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
7340 -- Check for unusual case where a type completed by a private
7341 -- derivation occurs within a package nested in a child unit, and
7342 -- the parent is declared in an ancestor.
7344 if Is_Child_Unit
(Scope
(Current_Scope
))
7345 and then Is_Completion
7346 and then In_Private_Part
(Current_Scope
)
7347 and then Scope
(Parent_Type
) /= Current_Scope
7349 -- Note that if the parent has a completion in the private part,
7350 -- (which is itself a derivation from some other private type)
7351 -- it is that completion that is visible, there is no full view
7352 -- available, and no special processing is needed.
7354 and then Present
(Full_View
(Parent_Type
))
7356 -- In this case, the full view of the parent type will become
7357 -- visible in the body of the enclosing child, and only then will
7358 -- the current type be possibly non-private. Build an underlying
7359 -- full view that will be installed when the enclosing child body
7362 if Present
(Underlying_Full_View
(Derived_Type
)) then
7363 Full_Der
:= Underlying_Full_View
(Derived_Type
);
7365 Build_Full_Derivation
;
7366 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7369 -- The full view will be used to swap entities on entry/exit to
7370 -- the body, and must appear in the entity list for the package.
7372 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
7375 end Build_Derived_Private_Type
;
7377 -------------------------------
7378 -- Build_Derived_Record_Type --
7379 -------------------------------
7383 -- Ideally we would like to use the same model of type derivation for
7384 -- tagged and untagged record types. Unfortunately this is not quite
7385 -- possible because the semantics of representation clauses is different
7386 -- for tagged and untagged records under inheritance. Consider the
7389 -- type R (...) is [tagged] record ... end record;
7390 -- type T (...) is new R (...) [with ...];
7392 -- The representation clauses for T can specify a completely different
7393 -- record layout from R's. Hence the same component can be placed in two
7394 -- very different positions in objects of type T and R. If R and T are
7395 -- tagged types, representation clauses for T can only specify the layout
7396 -- of non inherited components, thus components that are common in R and T
7397 -- have the same position in objects of type R and T.
7399 -- This has two implications. The first is that the entire tree for R's
7400 -- declaration needs to be copied for T in the untagged case, so that T
7401 -- can be viewed as a record type of its own with its own representation
7402 -- clauses. The second implication is the way we handle discriminants.
7403 -- Specifically, in the untagged case we need a way to communicate to Gigi
7404 -- what are the real discriminants in the record, while for the semantics
7405 -- we need to consider those introduced by the user to rename the
7406 -- discriminants in the parent type. This is handled by introducing the
7407 -- notion of stored discriminants. See below for more.
7409 -- Fortunately the way regular components are inherited can be handled in
7410 -- the same way in tagged and untagged types.
7412 -- To complicate things a bit more the private view of a private extension
7413 -- cannot be handled in the same way as the full view (for one thing the
7414 -- semantic rules are somewhat different). We will explain what differs
7417 -- 2. DISCRIMINANTS UNDER INHERITANCE
7419 -- The semantic rules governing the discriminants of derived types are
7422 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7423 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7425 -- If parent type has discriminants, then the discriminants that are
7426 -- declared in the derived type are [3.4 (11)]:
7428 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7431 -- o Otherwise, each discriminant of the parent type (implicitly declared
7432 -- in the same order with the same specifications). In this case, the
7433 -- discriminants are said to be "inherited", or if unknown in the parent
7434 -- are also unknown in the derived type.
7436 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7438 -- o The parent subtype must be constrained;
7440 -- o If the parent type is not a tagged type, then each discriminant of
7441 -- the derived type must be used in the constraint defining a parent
7442 -- subtype. [Implementation note: This ensures that the new discriminant
7443 -- can share storage with an existing discriminant.]
7445 -- For the derived type each discriminant of the parent type is either
7446 -- inherited, constrained to equal some new discriminant of the derived
7447 -- type, or constrained to the value of an expression.
7449 -- When inherited or constrained to equal some new discriminant, the
7450 -- parent discriminant and the discriminant of the derived type are said
7453 -- If a discriminant of the parent type is constrained to a specific value
7454 -- in the derived type definition, then the discriminant is said to be
7455 -- "specified" by that derived type definition.
7457 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7459 -- We have spoken about stored discriminants in point 1 (introduction)
7460 -- above. There are two sort of stored discriminants: implicit and
7461 -- explicit. As long as the derived type inherits the same discriminants as
7462 -- the root record type, stored discriminants are the same as regular
7463 -- discriminants, and are said to be implicit. However, if any discriminant
7464 -- in the root type was renamed in the derived type, then the derived
7465 -- type will contain explicit stored discriminants. Explicit stored
7466 -- discriminants are discriminants in addition to the semantically visible
7467 -- discriminants defined for the derived type. Stored discriminants are
7468 -- used by Gigi to figure out what are the physical discriminants in
7469 -- objects of the derived type (see precise definition in einfo.ads).
7470 -- As an example, consider the following:
7472 -- type R (D1, D2, D3 : Int) is record ... end record;
7473 -- type T1 is new R;
7474 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7475 -- type T3 is new T2;
7476 -- type T4 (Y : Int) is new T3 (Y, 99);
7478 -- The following table summarizes the discriminants and stored
7479 -- discriminants in R and T1 through T4.
7481 -- Type Discrim Stored Discrim Comment
7482 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7483 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7484 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7485 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7486 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7488 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7489 -- find the corresponding discriminant in the parent type, while
7490 -- Original_Record_Component (abbreviated ORC below), the actual physical
7491 -- component that is renamed. Finally the field Is_Completely_Hidden
7492 -- (abbreviated ICH below) is set for all explicit stored discriminants
7493 -- (see einfo.ads for more info). For the above example this gives:
7495 -- Discrim CD ORC ICH
7496 -- ^^^^^^^ ^^ ^^^ ^^^
7497 -- D1 in R empty itself no
7498 -- D2 in R empty itself no
7499 -- D3 in R empty itself no
7501 -- D1 in T1 D1 in R itself no
7502 -- D2 in T1 D2 in R itself no
7503 -- D3 in T1 D3 in R itself no
7505 -- X1 in T2 D3 in T1 D3 in T2 no
7506 -- X2 in T2 D1 in T1 D1 in T2 no
7507 -- D1 in T2 empty itself yes
7508 -- D2 in T2 empty itself yes
7509 -- D3 in T2 empty itself yes
7511 -- X1 in T3 X1 in T2 D3 in T3 no
7512 -- X2 in T3 X2 in T2 D1 in T3 no
7513 -- D1 in T3 empty itself yes
7514 -- D2 in T3 empty itself yes
7515 -- D3 in T3 empty itself yes
7517 -- Y in T4 X1 in T3 D3 in T3 no
7518 -- D1 in T3 empty itself yes
7519 -- D2 in T3 empty itself yes
7520 -- D3 in T3 empty itself yes
7522 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7524 -- Type derivation for tagged types is fairly straightforward. If no
7525 -- discriminants are specified by the derived type, these are inherited
7526 -- from the parent. No explicit stored discriminants are ever necessary.
7527 -- The only manipulation that is done to the tree is that of adding a
7528 -- _parent field with parent type and constrained to the same constraint
7529 -- specified for the parent in the derived type definition. For instance:
7531 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7532 -- type T1 is new R with null record;
7533 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7535 -- are changed into:
7537 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7538 -- _parent : R (D1, D2, D3);
7541 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7542 -- _parent : T1 (X2, 88, X1);
7545 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7546 -- ORC and ICH fields are:
7548 -- Discrim CD ORC ICH
7549 -- ^^^^^^^ ^^ ^^^ ^^^
7550 -- D1 in R empty itself no
7551 -- D2 in R empty itself no
7552 -- D3 in R empty itself no
7554 -- D1 in T1 D1 in R D1 in R no
7555 -- D2 in T1 D2 in R D2 in R no
7556 -- D3 in T1 D3 in R D3 in R no
7558 -- X1 in T2 D3 in T1 D3 in R no
7559 -- X2 in T2 D1 in T1 D1 in R no
7561 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7563 -- Regardless of whether we dealing with a tagged or untagged type
7564 -- we will transform all derived type declarations of the form
7566 -- type T is new R (...) [with ...];
7568 -- subtype S is R (...);
7569 -- type T is new S [with ...];
7571 -- type BT is new R [with ...];
7572 -- subtype T is BT (...);
7574 -- That is, the base derived type is constrained only if it has no
7575 -- discriminants. The reason for doing this is that GNAT's semantic model
7576 -- assumes that a base type with discriminants is unconstrained.
7578 -- Note that, strictly speaking, the above transformation is not always
7579 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7581 -- procedure B34011A is
7582 -- type REC (D : integer := 0) is record
7587 -- type T6 is new Rec;
7588 -- function F return T6;
7593 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7596 -- The definition of Q6.U is illegal. However transforming Q6.U into
7598 -- type BaseU is new T6;
7599 -- subtype U is BaseU (Q6.F.I)
7601 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7602 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7603 -- the transformation described above.
7605 -- There is another instance where the above transformation is incorrect.
7609 -- type Base (D : Integer) is tagged null record;
7610 -- procedure P (X : Base);
7612 -- type Der is new Base (2) with null record;
7613 -- procedure P (X : Der);
7616 -- Then the above transformation turns this into
7618 -- type Der_Base is new Base with null record;
7619 -- -- procedure P (X : Base) is implicitly inherited here
7620 -- -- as procedure P (X : Der_Base).
7622 -- subtype Der is Der_Base (2);
7623 -- procedure P (X : Der);
7624 -- -- The overriding of P (X : Der_Base) is illegal since we
7625 -- -- have a parameter conformance problem.
7627 -- To get around this problem, after having semantically processed Der_Base
7628 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7629 -- Discriminant_Constraint from Der so that when parameter conformance is
7630 -- checked when P is overridden, no semantic errors are flagged.
7632 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7634 -- Regardless of whether we are dealing with a tagged or untagged type
7635 -- we will transform all derived type declarations of the form
7637 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7638 -- type T is new R [with ...];
7640 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7642 -- The reason for such transformation is that it allows us to implement a
7643 -- very clean form of component inheritance as explained below.
7645 -- Note that this transformation is not achieved by direct tree rewriting
7646 -- and manipulation, but rather by redoing the semantic actions that the
7647 -- above transformation will entail. This is done directly in routine
7648 -- Inherit_Components.
7650 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7652 -- In both tagged and untagged derived types, regular non discriminant
7653 -- components are inherited in the derived type from the parent type. In
7654 -- the absence of discriminants component, inheritance is straightforward
7655 -- as components can simply be copied from the parent.
7657 -- If the parent has discriminants, inheriting components constrained with
7658 -- these discriminants requires caution. Consider the following example:
7660 -- type R (D1, D2 : Positive) is [tagged] record
7661 -- S : String (D1 .. D2);
7664 -- type T1 is new R [with null record];
7665 -- type T2 (X : positive) is new R (1, X) [with null record];
7667 -- As explained in 6. above, T1 is rewritten as
7668 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7669 -- which makes the treatment for T1 and T2 identical.
7671 -- What we want when inheriting S, is that references to D1 and D2 in R are
7672 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7673 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7674 -- with either discriminant references in the derived type or expressions.
7675 -- This replacement is achieved as follows: before inheriting R's
7676 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7677 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7678 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7679 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7680 -- by String (1 .. X).
7682 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7684 -- We explain here the rules governing private type extensions relevant to
7685 -- type derivation. These rules are explained on the following example:
7687 -- type D [(...)] is new A [(...)] with private; <-- partial view
7688 -- type D [(...)] is new P [(...)] with null record; <-- full view
7690 -- Type A is called the ancestor subtype of the private extension.
7691 -- Type P is the parent type of the full view of the private extension. It
7692 -- must be A or a type derived from A.
7694 -- The rules concerning the discriminants of private type extensions are
7697 -- o If a private extension inherits known discriminants from the ancestor
7698 -- subtype, then the full view must also inherit its discriminants from
7699 -- the ancestor subtype and the parent subtype of the full view must be
7700 -- constrained if and only if the ancestor subtype is constrained.
7702 -- o If a partial view has unknown discriminants, then the full view may
7703 -- define a definite or an indefinite subtype, with or without
7706 -- o If a partial view has neither known nor unknown discriminants, then
7707 -- the full view must define a definite subtype.
7709 -- o If the ancestor subtype of a private extension has constrained
7710 -- discriminants, then the parent subtype of the full view must impose a
7711 -- statically matching constraint on those discriminants.
7713 -- This means that only the following forms of private extensions are
7716 -- type D is new A with private; <-- partial view
7717 -- type D is new P with null record; <-- full view
7719 -- If A has no discriminants than P has no discriminants, otherwise P must
7720 -- inherit A's discriminants.
7722 -- type D is new A (...) with private; <-- partial view
7723 -- type D is new P (:::) with null record; <-- full view
7725 -- P must inherit A's discriminants and (...) and (:::) must statically
7728 -- subtype A is R (...);
7729 -- type D is new A with private; <-- partial view
7730 -- type D is new P with null record; <-- full view
7732 -- P must have inherited R's discriminants and must be derived from A or
7733 -- any of its subtypes.
7735 -- type D (..) is new A with private; <-- partial view
7736 -- type D (..) is new P [(:::)] with null record; <-- full view
7738 -- No specific constraints on P's discriminants or constraint (:::).
7739 -- Note that A can be unconstrained, but the parent subtype P must either
7740 -- be constrained or (:::) must be present.
7742 -- type D (..) is new A [(...)] with private; <-- partial view
7743 -- type D (..) is new P [(:::)] with null record; <-- full view
7745 -- P's constraints on A's discriminants must statically match those
7746 -- imposed by (...).
7748 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7750 -- The full view of a private extension is handled exactly as described
7751 -- above. The model chose for the private view of a private extension is
7752 -- the same for what concerns discriminants (i.e. they receive the same
7753 -- treatment as in the tagged case). However, the private view of the
7754 -- private extension always inherits the components of the parent base,
7755 -- without replacing any discriminant reference. Strictly speaking this is
7756 -- incorrect. However, Gigi never uses this view to generate code so this
7757 -- is a purely semantic issue. In theory, a set of transformations similar
7758 -- to those given in 5. and 6. above could be applied to private views of
7759 -- private extensions to have the same model of component inheritance as
7760 -- for non private extensions. However, this is not done because it would
7761 -- further complicate private type processing. Semantically speaking, this
7762 -- leaves us in an uncomfortable situation. As an example consider:
7765 -- type R (D : integer) is tagged record
7766 -- S : String (1 .. D);
7768 -- procedure P (X : R);
7769 -- type T is new R (1) with private;
7771 -- type T is new R (1) with null record;
7774 -- This is transformed into:
7777 -- type R (D : integer) is tagged record
7778 -- S : String (1 .. D);
7780 -- procedure P (X : R);
7781 -- type T is new R (1) with private;
7783 -- type BaseT is new R with null record;
7784 -- subtype T is BaseT (1);
7787 -- (strictly speaking the above is incorrect Ada)
7789 -- From the semantic standpoint the private view of private extension T
7790 -- should be flagged as constrained since one can clearly have
7794 -- in a unit withing Pack. However, when deriving subprograms for the
7795 -- private view of private extension T, T must be seen as unconstrained
7796 -- since T has discriminants (this is a constraint of the current
7797 -- subprogram derivation model). Thus, when processing the private view of
7798 -- a private extension such as T, we first mark T as unconstrained, we
7799 -- process it, we perform program derivation and just before returning from
7800 -- Build_Derived_Record_Type we mark T as constrained.
7802 -- ??? Are there are other uncomfortable cases that we will have to
7805 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7807 -- Types that are derived from a visible record type and have a private
7808 -- extension present other peculiarities. They behave mostly like private
7809 -- types, but if they have primitive operations defined, these will not
7810 -- have the proper signatures for further inheritance, because other
7811 -- primitive operations will use the implicit base that we define for
7812 -- private derivations below. This affect subprogram inheritance (see
7813 -- Derive_Subprograms for details). We also derive the implicit base from
7814 -- the base type of the full view, so that the implicit base is a record
7815 -- type and not another private type, This avoids infinite loops.
7817 procedure Build_Derived_Record_Type
7819 Parent_Type
: Entity_Id
;
7820 Derived_Type
: Entity_Id
;
7821 Derive_Subps
: Boolean := True)
7823 Discriminant_Specs
: constant Boolean :=
7824 Present
(Discriminant_Specifications
(N
));
7825 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7826 Loc
: constant Source_Ptr
:= Sloc
(N
);
7827 Private_Extension
: constant Boolean :=
7828 Nkind
(N
) = N_Private_Extension_Declaration
;
7829 Assoc_List
: Elist_Id
;
7830 Constraint_Present
: Boolean;
7832 Discrim
: Entity_Id
;
7834 Inherit_Discrims
: Boolean := False;
7835 Last_Discrim
: Entity_Id
;
7836 New_Base
: Entity_Id
;
7838 New_Discrs
: Elist_Id
;
7839 New_Indic
: Node_Id
;
7840 Parent_Base
: Entity_Id
;
7841 Save_Etype
: Entity_Id
;
7842 Save_Discr_Constr
: Elist_Id
;
7843 Save_Next_Entity
: Entity_Id
;
7846 Discs
: Elist_Id
:= New_Elmt_List
;
7847 -- An empty Discs list means that there were no constraints in the
7848 -- subtype indication or that there was an error processing it.
7851 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7852 and then Present
(Full_View
(Parent_Type
))
7853 and then Has_Discriminants
(Parent_Type
)
7855 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
7857 Parent_Base
:= Base_Type
(Parent_Type
);
7860 -- AI05-0115 : if this is a derivation from a private type in some
7861 -- other scope that may lead to invisible components for the derived
7862 -- type, mark it accordingly.
7864 if Is_Private_Type
(Parent_Type
) then
7865 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
7868 elsif In_Open_Scopes
(Scope
(Parent_Type
))
7869 and then In_Private_Part
(Scope
(Parent_Type
))
7874 Set_Has_Private_Ancestor
(Derived_Type
);
7878 Set_Has_Private_Ancestor
7879 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
7882 -- Before we start the previously documented transformations, here is
7883 -- little fix for size and alignment of tagged types. Normally when we
7884 -- derive type D from type P, we copy the size and alignment of P as the
7885 -- default for D, and in the absence of explicit representation clauses
7886 -- for D, the size and alignment are indeed the same as the parent.
7888 -- But this is wrong for tagged types, since fields may be added, and
7889 -- the default size may need to be larger, and the default alignment may
7890 -- need to be larger.
7892 -- We therefore reset the size and alignment fields in the tagged case.
7893 -- Note that the size and alignment will in any case be at least as
7894 -- large as the parent type (since the derived type has a copy of the
7895 -- parent type in the _parent field)
7897 -- The type is also marked as being tagged here, which is needed when
7898 -- processing components with a self-referential anonymous access type
7899 -- in the call to Check_Anonymous_Access_Components below. Note that
7900 -- this flag is also set later on for completeness.
7903 Set_Is_Tagged_Type
(Derived_Type
);
7904 Init_Size_Align
(Derived_Type
);
7907 -- STEP 0a: figure out what kind of derived type declaration we have
7909 if Private_Extension
then
7911 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
7912 Set_Default_SSO
(Derived_Type
);
7915 Type_Def
:= Type_Definition
(N
);
7917 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7918 -- Parent_Base can be a private type or private extension. However,
7919 -- for tagged types with an extension the newly added fields are
7920 -- visible and hence the Derived_Type is always an E_Record_Type.
7921 -- (except that the parent may have its own private fields).
7922 -- For untagged types we preserve the Ekind of the Parent_Base.
7924 if Present
(Record_Extension_Part
(Type_Def
)) then
7925 Set_Ekind
(Derived_Type
, E_Record_Type
);
7926 Set_Default_SSO
(Derived_Type
);
7928 -- Create internal access types for components with anonymous
7931 if Ada_Version
>= Ada_2005
then
7932 Check_Anonymous_Access_Components
7933 (N
, Derived_Type
, Derived_Type
,
7934 Component_List
(Record_Extension_Part
(Type_Def
)));
7938 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7942 -- Indic can either be an N_Identifier if the subtype indication
7943 -- contains no constraint or an N_Subtype_Indication if the subtype
7944 -- indication has a constraint.
7946 Indic
:= Subtype_Indication
(Type_Def
);
7947 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
7949 -- Check that the type has visible discriminants. The type may be
7950 -- a private type with unknown discriminants whose full view has
7951 -- discriminants which are invisible.
7953 if Constraint_Present
then
7954 if not Has_Discriminants
(Parent_Base
)
7956 (Has_Unknown_Discriminants
(Parent_Base
)
7957 and then Is_Private_Type
(Parent_Base
))
7960 ("invalid constraint: type has no discriminant",
7961 Constraint
(Indic
));
7963 Constraint_Present
:= False;
7964 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7966 elsif Is_Constrained
(Parent_Type
) then
7968 ("invalid constraint: parent type is already constrained",
7969 Constraint
(Indic
));
7971 Constraint_Present
:= False;
7972 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7976 -- STEP 0b: If needed, apply transformation given in point 5. above
7978 if not Private_Extension
7979 and then Has_Discriminants
(Parent_Type
)
7980 and then not Discriminant_Specs
7981 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
7983 -- First, we must analyze the constraint (see comment in point 5.)
7984 -- The constraint may come from the subtype indication of the full
7987 if Constraint_Present
then
7988 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7990 -- If there is no explicit constraint, there might be one that is
7991 -- inherited from a constrained parent type. In that case verify that
7992 -- it conforms to the constraint in the partial view. In perverse
7993 -- cases the parent subtypes of the partial and full view can have
7994 -- different constraints.
7996 elsif Present
(Stored_Constraint
(Parent_Type
)) then
7997 New_Discrs
:= Stored_Constraint
(Parent_Type
);
8000 New_Discrs
:= No_Elist
;
8003 if Has_Discriminants
(Derived_Type
)
8004 and then Has_Private_Declaration
(Derived_Type
)
8005 and then Present
(Discriminant_Constraint
(Derived_Type
))
8006 and then Present
(New_Discrs
)
8008 -- Verify that constraints of the full view statically match
8009 -- those given in the partial view.
8015 C1
:= First_Elmt
(New_Discrs
);
8016 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
8017 while Present
(C1
) and then Present
(C2
) loop
8018 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8020 (Is_OK_Static_Expression
(Node
(C1
))
8021 and then Is_OK_Static_Expression
(Node
(C2
))
8023 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
8028 if Constraint_Present
then
8030 ("constraint not conformant to previous declaration",
8034 ("constraint of full view is incompatible "
8035 & "with partial view", N
);
8045 -- Insert and analyze the declaration for the unconstrained base type
8047 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
8050 Make_Full_Type_Declaration
(Loc
,
8051 Defining_Identifier
=> New_Base
,
8053 Make_Derived_Type_Definition
(Loc
,
8054 Abstract_Present
=> Abstract_Present
(Type_Def
),
8055 Limited_Present
=> Limited_Present
(Type_Def
),
8056 Subtype_Indication
=>
8057 New_Occurrence_Of
(Parent_Base
, Loc
),
8058 Record_Extension_Part
=>
8059 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
8060 Interface_List
=> Interface_List
(Type_Def
)));
8062 Set_Parent
(New_Decl
, Parent
(N
));
8063 Mark_Rewrite_Insertion
(New_Decl
);
8064 Insert_Before
(N
, New_Decl
);
8066 -- In the extension case, make sure ancestor is frozen appropriately
8067 -- (see also non-discriminated case below).
8069 if Present
(Record_Extension_Part
(Type_Def
))
8070 or else Is_Interface
(Parent_Base
)
8072 Freeze_Before
(New_Decl
, Parent_Type
);
8075 -- Note that this call passes False for the Derive_Subps parameter
8076 -- because subprogram derivation is deferred until after creating
8077 -- the subtype (see below).
8080 (New_Decl
, Parent_Base
, New_Base
,
8081 Is_Completion
=> False, Derive_Subps
=> False);
8083 -- ??? This needs re-examination to determine whether the
8084 -- above call can simply be replaced by a call to Analyze.
8086 Set_Analyzed
(New_Decl
);
8088 -- Insert and analyze the declaration for the constrained subtype
8090 if Constraint_Present
then
8092 Make_Subtype_Indication
(Loc
,
8093 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8094 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
8098 Constr_List
: constant List_Id
:= New_List
;
8103 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
8104 while Present
(C
) loop
8107 -- It is safe here to call New_Copy_Tree since we called
8108 -- Force_Evaluation on each constraint previously
8109 -- in Build_Discriminant_Constraints.
8111 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
8117 Make_Subtype_Indication
(Loc
,
8118 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8120 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
8125 Make_Subtype_Declaration
(Loc
,
8126 Defining_Identifier
=> Derived_Type
,
8127 Subtype_Indication
=> New_Indic
));
8131 -- Derivation of subprograms must be delayed until the full subtype
8132 -- has been established, to ensure proper overriding of subprograms
8133 -- inherited by full types. If the derivations occurred as part of
8134 -- the call to Build_Derived_Type above, then the check for type
8135 -- conformance would fail because earlier primitive subprograms
8136 -- could still refer to the full type prior the change to the new
8137 -- subtype and hence would not match the new base type created here.
8138 -- Subprograms are not derived, however, when Derive_Subps is False
8139 -- (since otherwise there could be redundant derivations).
8141 if Derive_Subps
then
8142 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8145 -- For tagged types the Discriminant_Constraint of the new base itype
8146 -- is inherited from the first subtype so that no subtype conformance
8147 -- problem arise when the first subtype overrides primitive
8148 -- operations inherited by the implicit base type.
8151 Set_Discriminant_Constraint
8152 (New_Base
, Discriminant_Constraint
(Derived_Type
));
8158 -- If we get here Derived_Type will have no discriminants or it will be
8159 -- a discriminated unconstrained base type.
8161 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8165 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8166 -- The declaration of a specific descendant of an interface type
8167 -- freezes the interface type (RM 13.14).
8169 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
8170 Freeze_Before
(N
, Parent_Type
);
8173 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8174 -- cannot be declared at a deeper level than its parent type is
8175 -- removed. The check on derivation within a generic body is also
8176 -- relaxed, but there's a restriction that a derived tagged type
8177 -- cannot be declared in a generic body if it's derived directly
8178 -- or indirectly from a formal type of that generic.
8180 if Ada_Version
>= Ada_2005
then
8181 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
8183 Ancestor_Type
: Entity_Id
;
8186 -- Check to see if any ancestor of the derived type is a
8189 Ancestor_Type
:= Parent_Type
;
8190 while not Is_Generic_Type
(Ancestor_Type
)
8191 and then Etype
(Ancestor_Type
) /= Ancestor_Type
8193 Ancestor_Type
:= Etype
(Ancestor_Type
);
8196 -- If the derived type does have a formal type as an
8197 -- ancestor, then it's an error if the derived type is
8198 -- declared within the body of the generic unit that
8199 -- declares the formal type in its generic formal part. It's
8200 -- sufficient to check whether the ancestor type is declared
8201 -- inside the same generic body as the derived type (such as
8202 -- within a nested generic spec), in which case the
8203 -- derivation is legal. If the formal type is declared
8204 -- outside of that generic body, then it's guaranteed that
8205 -- the derived type is declared within the generic body of
8206 -- the generic unit declaring the formal type.
8208 if Is_Generic_Type
(Ancestor_Type
)
8209 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
8210 Enclosing_Generic_Body
(Derived_Type
)
8213 ("parent type of& must not be descendant of formal type"
8214 & " of an enclosing generic body",
8215 Indic
, Derived_Type
);
8220 elsif Type_Access_Level
(Derived_Type
) /=
8221 Type_Access_Level
(Parent_Type
)
8222 and then not Is_Generic_Type
(Derived_Type
)
8224 if Is_Controlled
(Parent_Type
) then
8226 ("controlled type must be declared at the library level",
8230 ("type extension at deeper accessibility level than parent",
8236 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
8239 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
8242 ("parent type of& must not be outside generic body"
8244 Indic
, Derived_Type
);
8250 -- Ada 2005 (AI-251)
8252 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
8254 -- "The declaration of a specific descendant of an interface type
8255 -- freezes the interface type" (RM 13.14).
8260 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
8261 Iface
:= First
(Interface_List
(Type_Def
));
8262 while Present
(Iface
) loop
8263 Freeze_Before
(N
, Etype
(Iface
));
8270 -- STEP 1b : preliminary cleanup of the full view of private types
8272 -- If the type is already marked as having discriminants, then it's the
8273 -- completion of a private type or private extension and we need to
8274 -- retain the discriminants from the partial view if the current
8275 -- declaration has Discriminant_Specifications so that we can verify
8276 -- conformance. However, we must remove any existing components that
8277 -- were inherited from the parent (and attached in Copy_And_Swap)
8278 -- because the full type inherits all appropriate components anyway, and
8279 -- we do not want the partial view's components interfering.
8281 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
8282 Discrim
:= First_Discriminant
(Derived_Type
);
8284 Last_Discrim
:= Discrim
;
8285 Next_Discriminant
(Discrim
);
8286 exit when No
(Discrim
);
8289 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
8291 -- In all other cases wipe out the list of inherited components (even
8292 -- inherited discriminants), it will be properly rebuilt here.
8295 Set_First_Entity
(Derived_Type
, Empty
);
8296 Set_Last_Entity
(Derived_Type
, Empty
);
8299 -- STEP 1c: Initialize some flags for the Derived_Type
8301 -- The following flags must be initialized here so that
8302 -- Process_Discriminants can check that discriminants of tagged types do
8303 -- not have a default initial value and that access discriminants are
8304 -- only specified for limited records. For completeness, these flags are
8305 -- also initialized along with all the other flags below.
8307 -- AI-419: Limitedness is not inherited from an interface parent, so to
8308 -- be limited in that case the type must be explicitly declared as
8309 -- limited. However, task and protected interfaces are always limited.
8311 if Limited_Present
(Type_Def
) then
8312 Set_Is_Limited_Record
(Derived_Type
);
8314 elsif Is_Limited_Record
(Parent_Type
)
8315 or else (Present
(Full_View
(Parent_Type
))
8316 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
8318 if not Is_Interface
(Parent_Type
)
8319 or else Is_Synchronized_Interface
(Parent_Type
)
8320 or else Is_Protected_Interface
(Parent_Type
)
8321 or else Is_Task_Interface
(Parent_Type
)
8323 Set_Is_Limited_Record
(Derived_Type
);
8327 -- STEP 2a: process discriminants of derived type if any
8329 Push_Scope
(Derived_Type
);
8331 if Discriminant_Specs
then
8332 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
8334 -- The following call initializes fields Has_Discriminants and
8335 -- Discriminant_Constraint, unless we are processing the completion
8336 -- of a private type declaration.
8338 Check_Or_Process_Discriminants
(N
, Derived_Type
);
8340 -- For untagged types, the constraint on the Parent_Type must be
8341 -- present and is used to rename the discriminants.
8343 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
8344 Error_Msg_N
("untagged parent must have discriminants", Indic
);
8346 elsif not Is_Tagged
and then not Constraint_Present
then
8348 ("discriminant constraint needed for derived untagged records",
8351 -- Otherwise the parent subtype must be constrained unless we have a
8352 -- private extension.
8354 elsif not Constraint_Present
8355 and then not Private_Extension
8356 and then not Is_Constrained
(Parent_Type
)
8359 ("unconstrained type not allowed in this context", Indic
);
8361 elsif Constraint_Present
then
8362 -- The following call sets the field Corresponding_Discriminant
8363 -- for the discriminants in the Derived_Type.
8365 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
8367 -- For untagged types all new discriminants must rename
8368 -- discriminants in the parent. For private extensions new
8369 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8371 Discrim
:= First_Discriminant
(Derived_Type
);
8372 while Present
(Discrim
) loop
8374 and then No
(Corresponding_Discriminant
(Discrim
))
8377 ("new discriminants must constrain old ones", Discrim
);
8379 elsif Private_Extension
8380 and then Present
(Corresponding_Discriminant
(Discrim
))
8383 ("only static constraints allowed for parent"
8384 & " discriminants in the partial view", Indic
);
8388 -- If a new discriminant is used in the constraint, then its
8389 -- subtype must be statically compatible with the parent
8390 -- discriminant's subtype (3.7(15)).
8392 -- However, if the record contains an array constrained by
8393 -- the discriminant but with some different bound, the compiler
8394 -- attemps to create a smaller range for the discriminant type.
8395 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8396 -- the discriminant type is a scalar type, the check must use
8397 -- the original discriminant type in the parent declaration.
8400 Corr_Disc
: constant Entity_Id
:=
8401 Corresponding_Discriminant
(Discrim
);
8402 Disc_Type
: constant Entity_Id
:= Etype
(Discrim
);
8403 Corr_Type
: Entity_Id
;
8406 if Present
(Corr_Disc
) then
8407 if Is_Scalar_Type
(Disc_Type
) then
8409 Entity
(Discriminant_Type
(Parent
(Corr_Disc
)));
8411 Corr_Type
:= Etype
(Corr_Disc
);
8415 Subtypes_Statically_Compatible
(Disc_Type
, Corr_Type
)
8418 ("subtype must be compatible "
8419 & "with parent discriminant",
8425 Next_Discriminant
(Discrim
);
8428 -- Check whether the constraints of the full view statically
8429 -- match those imposed by the parent subtype [7.3(13)].
8431 if Present
(Stored_Constraint
(Derived_Type
)) then
8436 C1
:= First_Elmt
(Discs
);
8437 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
8438 while Present
(C1
) and then Present
(C2
) loop
8440 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8443 ("not conformant with previous declaration",
8454 -- STEP 2b: No new discriminants, inherit discriminants if any
8457 if Private_Extension
then
8458 Set_Has_Unknown_Discriminants
8460 Has_Unknown_Discriminants
(Parent_Type
)
8461 or else Unknown_Discriminants_Present
(N
));
8463 -- The partial view of the parent may have unknown discriminants,
8464 -- but if the full view has discriminants and the parent type is
8465 -- in scope they must be inherited.
8467 elsif Has_Unknown_Discriminants
(Parent_Type
)
8469 (not Has_Discriminants
(Parent_Type
)
8470 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
8472 Set_Has_Unknown_Discriminants
(Derived_Type
);
8475 if not Has_Unknown_Discriminants
(Derived_Type
)
8476 and then not Has_Unknown_Discriminants
(Parent_Base
)
8477 and then Has_Discriminants
(Parent_Type
)
8479 Inherit_Discrims
:= True;
8480 Set_Has_Discriminants
8481 (Derived_Type
, True);
8482 Set_Discriminant_Constraint
8483 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
8486 -- The following test is true for private types (remember
8487 -- transformation 5. is not applied to those) and in an error
8490 if Constraint_Present
then
8491 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8494 -- For now mark a new derived type as constrained only if it has no
8495 -- discriminants. At the end of Build_Derived_Record_Type we properly
8496 -- set this flag in the case of private extensions. See comments in
8497 -- point 9. just before body of Build_Derived_Record_Type.
8501 not (Inherit_Discrims
8502 or else Has_Unknown_Discriminants
(Derived_Type
)));
8505 -- STEP 3: initialize fields of derived type
8507 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
8508 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
8510 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8511 -- but cannot be interfaces
8513 if not Private_Extension
8514 and then Ekind
(Derived_Type
) /= E_Private_Type
8515 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
8517 if Interface_Present
(Type_Def
) then
8518 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
8521 Set_Interfaces
(Derived_Type
, No_Elist
);
8524 -- Fields inherited from the Parent_Type
8526 Set_Has_Specified_Layout
8527 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
8528 Set_Is_Limited_Composite
8529 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
8530 Set_Is_Private_Composite
8531 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
8533 if Is_Tagged_Type
(Parent_Type
) then
8534 Set_No_Tagged_Streams_Pragma
8535 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8538 -- Fields inherited from the Parent_Base
8540 Set_Has_Controlled_Component
8541 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
8542 Set_Has_Non_Standard_Rep
8543 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8544 Set_Has_Primitive_Operations
8545 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
8547 -- Fields inherited from the Parent_Base in the non-private case
8549 if Ekind
(Derived_Type
) = E_Record_Type
then
8550 Set_Has_Complex_Representation
8551 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
8554 -- Fields inherited from the Parent_Base for record types
8556 if Is_Record_Type
(Derived_Type
) then
8558 Parent_Full
: Entity_Id
;
8561 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8562 -- Parent_Base can be a private type or private extension. Go
8563 -- to the full view here to get the E_Record_Type specific flags.
8565 if Present
(Full_View
(Parent_Base
)) then
8566 Parent_Full
:= Full_View
(Parent_Base
);
8568 Parent_Full
:= Parent_Base
;
8571 Set_OK_To_Reorder_Components
8572 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
8576 -- Set fields for private derived types
8578 if Is_Private_Type
(Derived_Type
) then
8579 Set_Depends_On_Private
(Derived_Type
, True);
8580 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
8582 -- Inherit fields from non private record types. If this is the
8583 -- completion of a derivation from a private type, the parent itself
8584 -- is private, and the attributes come from its full view, which must
8588 if Is_Private_Type
(Parent_Base
)
8589 and then not Is_Record_Type
(Parent_Base
)
8591 Set_Component_Alignment
8592 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
8594 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
8596 Set_Component_Alignment
8597 (Derived_Type
, Component_Alignment
(Parent_Base
));
8599 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
8603 -- Set fields for tagged types
8606 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
8608 -- All tagged types defined in Ada.Finalization are controlled
8610 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
8611 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
8612 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
8614 Set_Is_Controlled
(Derived_Type
);
8616 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
8619 -- Minor optimization: there is no need to generate the class-wide
8620 -- entity associated with an underlying record view.
8622 if not Is_Underlying_Record_View
(Derived_Type
) then
8623 Make_Class_Wide_Type
(Derived_Type
);
8626 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
8628 if Has_Discriminants
(Derived_Type
)
8629 and then Constraint_Present
8631 Set_Stored_Constraint
8632 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
8635 if Ada_Version
>= Ada_2005
then
8637 Ifaces_List
: Elist_Id
;
8640 -- Checks rules 3.9.4 (13/2 and 14/2)
8642 if Comes_From_Source
(Derived_Type
)
8643 and then not Is_Private_Type
(Derived_Type
)
8644 and then Is_Interface
(Parent_Type
)
8645 and then not Is_Interface
(Derived_Type
)
8647 if Is_Task_Interface
(Parent_Type
) then
8649 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8652 elsif Is_Protected_Interface
(Parent_Type
) then
8654 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8659 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8661 Check_Interfaces
(N
, Type_Def
);
8663 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8664 -- not already in the parents.
8668 Ifaces_List
=> Ifaces_List
,
8669 Exclude_Parents
=> True);
8671 Set_Interfaces
(Derived_Type
, Ifaces_List
);
8673 -- If the derived type is the anonymous type created for
8674 -- a declaration whose parent has a constraint, propagate
8675 -- the interface list to the source type. This must be done
8676 -- prior to the completion of the analysis of the source type
8677 -- because the components in the extension may contain current
8678 -- instances whose legality depends on some ancestor.
8680 if Is_Itype
(Derived_Type
) then
8682 Def
: constant Node_Id
:=
8683 Associated_Node_For_Itype
(Derived_Type
);
8686 and then Nkind
(Def
) = N_Full_Type_Declaration
8689 (Defining_Identifier
(Def
), Ifaces_List
);
8694 -- Propagate inherited invariant information of parents
8697 if Ada_Version
>= Ada_2012
8698 and then not Is_Interface
(Derived_Type
)
8700 if Has_Inheritable_Invariants
(Parent_Type
) then
8701 Set_Has_Invariants
(Derived_Type
);
8702 Set_Has_Inheritable_Invariants
(Derived_Type
);
8704 elsif not Is_Empty_Elmt_List
(Ifaces_List
) then
8709 AI
:= First_Elmt
(Ifaces_List
);
8710 while Present
(AI
) loop
8711 if Has_Inheritable_Invariants
(Node
(AI
)) then
8712 Set_Has_Invariants
(Derived_Type
);
8713 Set_Has_Inheritable_Invariants
(Derived_Type
);
8724 -- A type extension is automatically Ghost when one of its
8725 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8726 -- also inherited when the parent type is Ghost, but this is
8727 -- done in Build_Derived_Type as the mechanism also handles
8728 -- untagged derivations.
8730 if Implements_Ghost_Interface
(Derived_Type
) then
8731 Set_Is_Ghost_Entity
(Derived_Type
);
8737 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
8738 Set_Has_Non_Standard_Rep
8739 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8742 -- STEP 4: Inherit components from the parent base and constrain them.
8743 -- Apply the second transformation described in point 6. above.
8745 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
8746 or else not Has_Discriminants
(Parent_Type
)
8747 or else not Is_Constrained
(Parent_Type
)
8751 Constrs
:= Discriminant_Constraint
(Parent_Type
);
8756 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
8758 -- STEP 5a: Copy the parent record declaration for untagged types
8760 if not Is_Tagged
then
8762 -- Discriminant_Constraint (Derived_Type) has been properly
8763 -- constructed. Save it and temporarily set it to Empty because we
8764 -- do not want the call to New_Copy_Tree below to mess this list.
8766 if Has_Discriminants
(Derived_Type
) then
8767 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
8768 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
8770 Save_Discr_Constr
:= No_Elist
;
8773 -- Save the Etype field of Derived_Type. It is correctly set now,
8774 -- but the call to New_Copy tree may remap it to point to itself,
8775 -- which is not what we want. Ditto for the Next_Entity field.
8777 Save_Etype
:= Etype
(Derived_Type
);
8778 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
8780 -- Assoc_List maps all stored discriminants in the Parent_Base to
8781 -- stored discriminants in the Derived_Type. It is fundamental that
8782 -- no types or itypes with discriminants other than the stored
8783 -- discriminants appear in the entities declared inside
8784 -- Derived_Type, since the back end cannot deal with it.
8788 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
8790 -- Restore the fields saved prior to the New_Copy_Tree call
8791 -- and compute the stored constraint.
8793 Set_Etype
(Derived_Type
, Save_Etype
);
8794 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
8796 if Has_Discriminants
(Derived_Type
) then
8797 Set_Discriminant_Constraint
8798 (Derived_Type
, Save_Discr_Constr
);
8799 Set_Stored_Constraint
8800 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
8801 Replace_Components
(Derived_Type
, New_Decl
);
8802 Set_Has_Implicit_Dereference
8803 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
8806 -- Insert the new derived type declaration
8808 Rewrite
(N
, New_Decl
);
8810 -- STEP 5b: Complete the processing for record extensions in generics
8812 -- There is no completion for record extensions declared in the
8813 -- parameter part of a generic, so we need to complete processing for
8814 -- these generic record extensions here. The Record_Type_Definition call
8815 -- will change the Ekind of the components from E_Void to E_Component.
8817 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
8818 Record_Type_Definition
(Empty
, Derived_Type
);
8820 -- STEP 5c: Process the record extension for non private tagged types
8822 elsif not Private_Extension
then
8823 Expand_Record_Extension
(Derived_Type
, Type_Def
);
8825 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8826 -- derived type to propagate some semantic information. This led
8827 -- to other ASIS failures and has been removed.
8829 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8830 -- implemented interfaces if we are in expansion mode
8833 and then Has_Interfaces
(Derived_Type
)
8835 Add_Interface_Tag_Components
(N
, Derived_Type
);
8838 -- Analyze the record extension
8840 Record_Type_Definition
8841 (Record_Extension_Part
(Type_Def
), Derived_Type
);
8846 -- Nothing else to do if there is an error in the derivation.
8847 -- An unusual case: the full view may be derived from a type in an
8848 -- instance, when the partial view was used illegally as an actual
8849 -- in that instance, leading to a circular definition.
8851 if Etype
(Derived_Type
) = Any_Type
8852 or else Etype
(Parent_Type
) = Derived_Type
8857 -- Set delayed freeze and then derive subprograms, we need to do
8858 -- this in this order so that derived subprograms inherit the
8859 -- derived freeze if necessary.
8861 Set_Has_Delayed_Freeze
(Derived_Type
);
8863 if Derive_Subps
then
8864 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8867 -- If we have a private extension which defines a constrained derived
8868 -- type mark as constrained here after we have derived subprograms. See
8869 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8871 if Private_Extension
and then Inherit_Discrims
then
8872 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
8873 Set_Is_Constrained
(Derived_Type
, True);
8874 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
8876 elsif Is_Constrained
(Parent_Type
) then
8878 (Derived_Type
, True);
8879 Set_Discriminant_Constraint
8880 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
8884 -- Update the class-wide type, which shares the now-completed entity
8885 -- list with its specific type. In case of underlying record views,
8886 -- we do not generate the corresponding class wide entity.
8889 and then not Is_Underlying_Record_View
(Derived_Type
)
8892 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
8894 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
8897 Check_Function_Writable_Actuals
(N
);
8898 end Build_Derived_Record_Type
;
8900 ------------------------
8901 -- Build_Derived_Type --
8902 ------------------------
8904 procedure Build_Derived_Type
8906 Parent_Type
: Entity_Id
;
8907 Derived_Type
: Entity_Id
;
8908 Is_Completion
: Boolean;
8909 Derive_Subps
: Boolean := True)
8911 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
8914 -- Set common attributes
8916 Set_Scope
(Derived_Type
, Current_Scope
);
8918 Set_Etype
(Derived_Type
, Parent_Base
);
8919 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8920 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
8921 Set_Has_Protected
(Derived_Type
, Has_Protected
(Parent_Base
));
8923 Set_Size_Info
(Derived_Type
, Parent_Type
);
8924 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
8925 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
8926 Set_Disable_Controlled
(Derived_Type
, Disable_Controlled
(Parent_Type
));
8928 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
8929 Set_Is_Volatile
(Derived_Type
, Is_Volatile
(Parent_Type
));
8931 if Is_Tagged_Type
(Derived_Type
) then
8932 Set_No_Tagged_Streams_Pragma
8933 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8936 -- If the parent has primitive routines, set the derived type link
8938 if Has_Primitive_Operations
(Parent_Type
) then
8939 Set_Derived_Type_Link
(Parent_Base
, Derived_Type
);
8942 -- If the parent type is a private subtype, the convention on the base
8943 -- type may be set in the private part, and not propagated to the
8944 -- subtype until later, so we obtain the convention from the base type.
8946 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
8948 -- Set SSO default for record or array type
8950 if (Is_Array_Type
(Derived_Type
) or else Is_Record_Type
(Derived_Type
))
8951 and then Is_Base_Type
(Derived_Type
)
8953 Set_Default_SSO
(Derived_Type
);
8956 -- Propagate invariant information. The new type has invariants if
8957 -- they are inherited from the parent type, and these invariants can
8958 -- be further inherited, so both flags are set.
8960 -- We similarly inherit predicates
8962 if Has_Predicates
(Parent_Type
) then
8963 Set_Has_Predicates
(Derived_Type
);
8966 -- The derived type inherits the representation clauses of the parent
8968 Inherit_Rep_Item_Chain
(Derived_Type
, Parent_Type
);
8970 -- Propagate the attributes related to pragma Default_Initial_Condition
8971 -- from the parent type to the private extension. A derived type always
8972 -- inherits the default initial condition flag from the parent type. If
8973 -- the derived type carries its own Default_Initial_Condition pragma,
8974 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8975 -- mutually exclusive.
8977 Propagate_Default_Init_Cond_Attributes
8978 (From_Typ
=> Parent_Type
,
8979 To_Typ
=> Derived_Type
,
8980 Parent_To_Derivation
=> True);
8982 -- If the parent type has delayed rep aspects, then mark the derived
8983 -- type as possibly inheriting a delayed rep aspect.
8985 if Has_Delayed_Rep_Aspects
(Parent_Type
) then
8986 Set_May_Inherit_Delayed_Rep_Aspects
(Derived_Type
);
8989 -- Propagate the attributes related to pragma Ghost from the parent type
8990 -- to the derived type or type extension (SPARK RM 6.9(9)).
8992 if Is_Ghost_Entity
(Parent_Type
) then
8993 Set_Is_Ghost_Entity
(Derived_Type
);
8996 -- Type dependent processing
8998 case Ekind
(Parent_Type
) is
8999 when Numeric_Kind
=>
9000 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
9003 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
9007 | Class_Wide_Kind
=>
9008 Build_Derived_Record_Type
9009 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
9012 when Enumeration_Kind
=>
9013 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
9016 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
9018 when Incomplete_Or_Private_Kind
=>
9019 Build_Derived_Private_Type
9020 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
9022 -- For discriminated types, the derivation includes deriving
9023 -- primitive operations. For others it is done below.
9025 if Is_Tagged_Type
(Parent_Type
)
9026 or else Has_Discriminants
(Parent_Type
)
9027 or else (Present
(Full_View
(Parent_Type
))
9028 and then Has_Discriminants
(Full_View
(Parent_Type
)))
9033 when Concurrent_Kind
=>
9034 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
9037 raise Program_Error
;
9040 -- Nothing more to do if some error occurred
9042 if Etype
(Derived_Type
) = Any_Type
then
9046 -- Set delayed freeze and then derive subprograms, we need to do this
9047 -- in this order so that derived subprograms inherit the derived freeze
9050 Set_Has_Delayed_Freeze
(Derived_Type
);
9052 if Derive_Subps
then
9053 Derive_Subprograms
(Parent_Type
, Derived_Type
);
9056 Set_Has_Primitive_Operations
9057 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
9058 end Build_Derived_Type
;
9060 -----------------------
9061 -- Build_Discriminal --
9062 -----------------------
9064 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
9065 D_Minal
: Entity_Id
;
9066 CR_Disc
: Entity_Id
;
9069 -- A discriminal has the same name as the discriminant
9071 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9073 Set_Ekind
(D_Minal
, E_In_Parameter
);
9074 Set_Mechanism
(D_Minal
, Default_Mechanism
);
9075 Set_Etype
(D_Minal
, Etype
(Discrim
));
9076 Set_Scope
(D_Minal
, Current_Scope
);
9078 Set_Discriminal
(Discrim
, D_Minal
);
9079 Set_Discriminal_Link
(D_Minal
, Discrim
);
9081 -- For task types, build at once the discriminants of the corresponding
9082 -- record, which are needed if discriminants are used in entry defaults
9083 -- and in family bounds.
9085 if Is_Concurrent_Type
(Current_Scope
)
9087 Is_Limited_Type
(Current_Scope
)
9089 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9091 Set_Ekind
(CR_Disc
, E_In_Parameter
);
9092 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
9093 Set_Etype
(CR_Disc
, Etype
(Discrim
));
9094 Set_Scope
(CR_Disc
, Current_Scope
);
9095 Set_Discriminal_Link
(CR_Disc
, Discrim
);
9096 Set_CR_Discriminant
(Discrim
, CR_Disc
);
9098 end Build_Discriminal
;
9100 ------------------------------------
9101 -- Build_Discriminant_Constraints --
9102 ------------------------------------
9104 function Build_Discriminant_Constraints
9107 Derived_Def
: Boolean := False) return Elist_Id
9109 C
: constant Node_Id
:= Constraint
(Def
);
9110 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
9112 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
9113 -- Saves the expression corresponding to a given discriminant in T
9115 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
9116 -- Return the Position number within array Discr_Expr of a discriminant
9117 -- D within the discriminant list of the discriminated type T.
9119 procedure Process_Discriminant_Expression
9122 -- If this is a discriminant constraint on a partial view, do not
9123 -- generate an overflow check on the discriminant expression. The check
9124 -- will be generated when constraining the full view. Otherwise the
9125 -- backend creates duplicate symbols for the temporaries corresponding
9126 -- to the expressions to be checked, causing spurious assembler errors.
9132 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
9136 Disc
:= First_Discriminant
(T
);
9137 for J
in Discr_Expr
'Range loop
9142 Next_Discriminant
(Disc
);
9145 -- Note: Since this function is called on discriminants that are
9146 -- known to belong to the discriminated type, falling through the
9147 -- loop with no match signals an internal compiler error.
9149 raise Program_Error
;
9152 -------------------------------------
9153 -- Process_Discriminant_Expression --
9154 -------------------------------------
9156 procedure Process_Discriminant_Expression
9160 BDT
: constant Entity_Id
:= Base_Type
(Etype
(D
));
9163 -- If this is a discriminant constraint on a partial view, do
9164 -- not generate an overflow on the discriminant expression. The
9165 -- check will be generated when constraining the full view.
9167 if Is_Private_Type
(T
)
9168 and then Present
(Full_View
(T
))
9170 Analyze_And_Resolve
(Expr
, BDT
, Suppress
=> Overflow_Check
);
9172 Analyze_And_Resolve
(Expr
, BDT
);
9174 end Process_Discriminant_Expression
;
9176 -- Declarations local to Build_Discriminant_Constraints
9180 Elist
: constant Elist_Id
:= New_Elmt_List
;
9188 Discrim_Present
: Boolean := False;
9190 -- Start of processing for Build_Discriminant_Constraints
9193 -- The following loop will process positional associations only.
9194 -- For a positional association, the (single) discriminant is
9195 -- implicitly specified by position, in textual order (RM 3.7.2).
9197 Discr
:= First_Discriminant
(T
);
9198 Constr
:= First
(Constraints
(C
));
9199 for D
in Discr_Expr
'Range loop
9200 exit when Nkind
(Constr
) = N_Discriminant_Association
;
9203 Error_Msg_N
("too few discriminants given in constraint", C
);
9204 return New_Elmt_List
;
9206 elsif Nkind
(Constr
) = N_Range
9207 or else (Nkind
(Constr
) = N_Attribute_Reference
9208 and then Attribute_Name
(Constr
) = Name_Range
)
9211 ("a range is not a valid discriminant constraint", Constr
);
9212 Discr_Expr
(D
) := Error
;
9215 Process_Discriminant_Expression
(Constr
, Discr
);
9216 Discr_Expr
(D
) := Constr
;
9219 Next_Discriminant
(Discr
);
9223 if No
(Discr
) and then Present
(Constr
) then
9224 Error_Msg_N
("too many discriminants given in constraint", Constr
);
9225 return New_Elmt_List
;
9228 -- Named associations can be given in any order, but if both positional
9229 -- and named associations are used in the same discriminant constraint,
9230 -- then positional associations must occur first, at their normal
9231 -- position. Hence once a named association is used, the rest of the
9232 -- discriminant constraint must use only named associations.
9234 while Present
(Constr
) loop
9236 -- Positional association forbidden after a named association
9238 if Nkind
(Constr
) /= N_Discriminant_Association
then
9239 Error_Msg_N
("positional association follows named one", Constr
);
9240 return New_Elmt_List
;
9242 -- Otherwise it is a named association
9245 -- E records the type of the discriminants in the named
9246 -- association. All the discriminants specified in the same name
9247 -- association must have the same type.
9251 -- Search the list of discriminants in T to see if the simple name
9252 -- given in the constraint matches any of them.
9254 Id
:= First
(Selector_Names
(Constr
));
9255 while Present
(Id
) loop
9258 -- If Original_Discriminant is present, we are processing a
9259 -- generic instantiation and this is an instance node. We need
9260 -- to find the name of the corresponding discriminant in the
9261 -- actual record type T and not the name of the discriminant in
9262 -- the generic formal. Example:
9265 -- type G (D : int) is private;
9267 -- subtype W is G (D => 1);
9269 -- type Rec (X : int) is record ... end record;
9270 -- package Q is new P (G => Rec);
9272 -- At the point of the instantiation, formal type G is Rec
9273 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9274 -- which really looks like "subtype W is Rec (D => 1);" at
9275 -- the point of instantiation, we want to find the discriminant
9276 -- that corresponds to D in Rec, i.e. X.
9278 if Present
(Original_Discriminant
(Id
))
9279 and then In_Instance
9281 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
9285 Discr
:= First_Discriminant
(T
);
9286 while Present
(Discr
) loop
9287 if Chars
(Discr
) = Chars
(Id
) then
9292 Next_Discriminant
(Discr
);
9296 Error_Msg_N
("& does not match any discriminant", Id
);
9297 return New_Elmt_List
;
9299 -- If the parent type is a generic formal, preserve the
9300 -- name of the discriminant for subsequent instances.
9301 -- see comment at the beginning of this if statement.
9303 elsif Is_Generic_Type
(Root_Type
(T
)) then
9304 Set_Original_Discriminant
(Id
, Discr
);
9308 Position
:= Pos_Of_Discr
(T
, Discr
);
9310 if Present
(Discr_Expr
(Position
)) then
9311 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
9314 -- Each discriminant specified in the same named association
9315 -- must be associated with a separate copy of the
9316 -- corresponding expression.
9318 if Present
(Next
(Id
)) then
9319 Expr
:= New_Copy_Tree
(Expression
(Constr
));
9320 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
9322 Expr
:= Expression
(Constr
);
9325 Discr_Expr
(Position
) := Expr
;
9326 Process_Discriminant_Expression
(Expr
, Discr
);
9329 -- A discriminant association with more than one discriminant
9330 -- name is only allowed if the named discriminants are all of
9331 -- the same type (RM 3.7.1(8)).
9334 E
:= Base_Type
(Etype
(Discr
));
9336 elsif Base_Type
(Etype
(Discr
)) /= E
then
9338 ("all discriminants in an association " &
9339 "must have the same type", Id
);
9349 -- A discriminant constraint must provide exactly one value for each
9350 -- discriminant of the type (RM 3.7.1(8)).
9352 for J
in Discr_Expr
'Range loop
9353 if No
(Discr_Expr
(J
)) then
9354 Error_Msg_N
("too few discriminants given in constraint", C
);
9355 return New_Elmt_List
;
9359 -- Determine if there are discriminant expressions in the constraint
9361 for J
in Discr_Expr
'Range loop
9362 if Denotes_Discriminant
9363 (Discr_Expr
(J
), Check_Concurrent
=> True)
9365 Discrim_Present
:= True;
9369 -- Build an element list consisting of the expressions given in the
9370 -- discriminant constraint and apply the appropriate checks. The list
9371 -- is constructed after resolving any named discriminant associations
9372 -- and therefore the expressions appear in the textual order of the
9375 Discr
:= First_Discriminant
(T
);
9376 for J
in Discr_Expr
'Range loop
9377 if Discr_Expr
(J
) /= Error
then
9378 Append_Elmt
(Discr_Expr
(J
), Elist
);
9380 -- If any of the discriminant constraints is given by a
9381 -- discriminant and we are in a derived type declaration we
9382 -- have a discriminant renaming. Establish link between new
9383 -- and old discriminant.
9385 if Denotes_Discriminant
(Discr_Expr
(J
)) then
9387 Set_Corresponding_Discriminant
9388 (Entity
(Discr_Expr
(J
)), Discr
);
9391 -- Force the evaluation of non-discriminant expressions.
9392 -- If we have found a discriminant in the constraint 3.4(26)
9393 -- and 3.8(18) demand that no range checks are performed are
9394 -- after evaluation. If the constraint is for a component
9395 -- definition that has a per-object constraint, expressions are
9396 -- evaluated but not checked either. In all other cases perform
9400 if Discrim_Present
then
9403 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
9405 Has_Per_Object_Constraint
9406 (Defining_Identifier
(Parent
(Parent
(Def
))))
9410 elsif Is_Access_Type
(Etype
(Discr
)) then
9411 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
9414 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
9417 Force_Evaluation
(Discr_Expr
(J
));
9420 -- Check that the designated type of an access discriminant's
9421 -- expression is not a class-wide type unless the discriminant's
9422 -- designated type is also class-wide.
9424 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
9425 and then not Is_Class_Wide_Type
9426 (Designated_Type
(Etype
(Discr
)))
9427 and then Etype
(Discr_Expr
(J
)) /= Any_Type
9428 and then Is_Class_Wide_Type
9429 (Designated_Type
(Etype
(Discr_Expr
(J
))))
9431 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
9433 elsif Is_Access_Type
(Etype
(Discr
))
9434 and then not Is_Access_Constant
(Etype
(Discr
))
9435 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
9436 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
9439 ("constraint for discriminant& must be access to variable",
9444 Next_Discriminant
(Discr
);
9448 end Build_Discriminant_Constraints
;
9450 ---------------------------------
9451 -- Build_Discriminated_Subtype --
9452 ---------------------------------
9454 procedure Build_Discriminated_Subtype
9458 Related_Nod
: Node_Id
;
9459 For_Access
: Boolean := False)
9461 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
9462 Constrained
: constant Boolean :=
9464 and then not Is_Empty_Elmt_List
(Elist
)
9465 and then not Is_Class_Wide_Type
(T
))
9466 or else Is_Constrained
(T
);
9469 if Ekind
(T
) = E_Record_Type
then
9471 Set_Ekind
(Def_Id
, E_Private_Subtype
);
9472 Set_Is_For_Access_Subtype
(Def_Id
, True);
9474 Set_Ekind
(Def_Id
, E_Record_Subtype
);
9477 -- Inherit preelaboration flag from base, for types for which it
9478 -- may have been set: records, private types, protected types.
9480 Set_Known_To_Have_Preelab_Init
9481 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9483 elsif Ekind
(T
) = E_Task_Type
then
9484 Set_Ekind
(Def_Id
, E_Task_Subtype
);
9486 elsif Ekind
(T
) = E_Protected_Type
then
9487 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
9488 Set_Known_To_Have_Preelab_Init
9489 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9491 elsif Is_Private_Type
(T
) then
9492 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
9493 Set_Known_To_Have_Preelab_Init
9494 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9496 -- Private subtypes may have private dependents
9498 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
9500 elsif Is_Class_Wide_Type
(T
) then
9501 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
9504 -- Incomplete type. Attach subtype to list of dependents, to be
9505 -- completed with full view of parent type, unless is it the
9506 -- designated subtype of a record component within an init_proc.
9507 -- This last case arises for a component of an access type whose
9508 -- designated type is incomplete (e.g. a Taft Amendment type).
9509 -- The designated subtype is within an inner scope, and needs no
9510 -- elaboration, because only the access type is needed in the
9511 -- initialization procedure.
9513 Set_Ekind
(Def_Id
, Ekind
(T
));
9515 if For_Access
and then Within_Init_Proc
then
9518 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
9522 Set_Etype
(Def_Id
, T
);
9523 Init_Size_Align
(Def_Id
);
9524 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
9525 Set_Is_Constrained
(Def_Id
, Constrained
);
9527 Set_First_Entity
(Def_Id
, First_Entity
(T
));
9528 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
9529 Set_Has_Implicit_Dereference
9530 (Def_Id
, Has_Implicit_Dereference
(T
));
9532 -- If the subtype is the completion of a private declaration, there may
9533 -- have been representation clauses for the partial view, and they must
9534 -- be preserved. Build_Derived_Type chains the inherited clauses with
9535 -- the ones appearing on the extension. If this comes from a subtype
9536 -- declaration, all clauses are inherited.
9538 if No
(First_Rep_Item
(Def_Id
)) then
9539 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
9542 if Is_Tagged_Type
(T
) then
9543 Set_Is_Tagged_Type
(Def_Id
);
9544 Set_No_Tagged_Streams_Pragma
(Def_Id
, No_Tagged_Streams_Pragma
(T
));
9545 Make_Class_Wide_Type
(Def_Id
);
9548 Set_Stored_Constraint
(Def_Id
, No_Elist
);
9551 Set_Discriminant_Constraint
(Def_Id
, Elist
);
9552 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
9555 if Is_Tagged_Type
(T
) then
9557 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9558 -- concurrent record type (which has the list of primitive
9561 if Ada_Version
>= Ada_2005
9562 and then Is_Concurrent_Type
(T
)
9564 Set_Corresponding_Record_Type
(Def_Id
,
9565 Corresponding_Record_Type
(T
));
9567 Set_Direct_Primitive_Operations
(Def_Id
,
9568 Direct_Primitive_Operations
(T
));
9571 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
9574 -- Subtypes introduced by component declarations do not need to be
9575 -- marked as delayed, and do not get freeze nodes, because the semantics
9576 -- verifies that the parents of the subtypes are frozen before the
9577 -- enclosing record is frozen.
9579 if not Is_Type
(Scope
(Def_Id
)) then
9580 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
9582 if Is_Private_Type
(T
)
9583 and then Present
(Full_View
(T
))
9585 Conditional_Delay
(Def_Id
, Full_View
(T
));
9587 Conditional_Delay
(Def_Id
, T
);
9591 if Is_Record_Type
(T
) then
9592 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
9595 and then not Is_Empty_Elmt_List
(Elist
)
9596 and then not For_Access
9598 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
9599 elsif not For_Access
then
9600 Set_Cloned_Subtype
(Def_Id
, T
);
9603 end Build_Discriminated_Subtype
;
9605 ---------------------------
9606 -- Build_Itype_Reference --
9607 ---------------------------
9609 procedure Build_Itype_Reference
9613 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
9616 -- Itype references are only created for use by the back-end
9618 if Inside_A_Generic
then
9621 Set_Itype
(IR
, Ityp
);
9622 Insert_After
(Nod
, IR
);
9624 end Build_Itype_Reference
;
9626 ------------------------
9627 -- Build_Scalar_Bound --
9628 ------------------------
9630 function Build_Scalar_Bound
9633 Der_T
: Entity_Id
) return Node_Id
9635 New_Bound
: Entity_Id
;
9638 -- Note: not clear why this is needed, how can the original bound
9639 -- be unanalyzed at this point? and if it is, what business do we
9640 -- have messing around with it? and why is the base type of the
9641 -- parent type the right type for the resolution. It probably is
9642 -- not. It is OK for the new bound we are creating, but not for
9643 -- the old one??? Still if it never happens, no problem.
9645 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
9647 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
9648 New_Bound
:= New_Copy
(Bound
);
9649 Set_Etype
(New_Bound
, Der_T
);
9650 Set_Analyzed
(New_Bound
);
9652 elsif Is_Entity_Name
(Bound
) then
9653 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
9655 -- The following is almost certainly wrong. What business do we have
9656 -- relocating a node (Bound) that is presumably still attached to
9657 -- the tree elsewhere???
9660 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
9663 Set_Etype
(New_Bound
, Der_T
);
9665 end Build_Scalar_Bound
;
9667 --------------------------------
9668 -- Build_Underlying_Full_View --
9669 --------------------------------
9671 procedure Build_Underlying_Full_View
9676 Loc
: constant Source_Ptr
:= Sloc
(N
);
9677 Subt
: constant Entity_Id
:=
9678 Make_Defining_Identifier
9679 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
9686 procedure Set_Discriminant_Name
(Id
: Node_Id
);
9687 -- If the derived type has discriminants, they may rename discriminants
9688 -- of the parent. When building the full view of the parent, we need to
9689 -- recover the names of the original discriminants if the constraint is
9690 -- given by named associations.
9692 ---------------------------
9693 -- Set_Discriminant_Name --
9694 ---------------------------
9696 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
9700 Set_Original_Discriminant
(Id
, Empty
);
9702 if Has_Discriminants
(Typ
) then
9703 Disc
:= First_Discriminant
(Typ
);
9704 while Present
(Disc
) loop
9705 if Chars
(Disc
) = Chars
(Id
)
9706 and then Present
(Corresponding_Discriminant
(Disc
))
9708 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
9710 Next_Discriminant
(Disc
);
9713 end Set_Discriminant_Name
;
9715 -- Start of processing for Build_Underlying_Full_View
9718 if Nkind
(N
) = N_Full_Type_Declaration
then
9719 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
9721 elsif Nkind
(N
) = N_Subtype_Declaration
then
9722 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
9724 elsif Nkind
(N
) = N_Component_Declaration
then
9727 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
9730 raise Program_Error
;
9733 C
:= First
(Constraints
(Constr
));
9734 while Present
(C
) loop
9735 if Nkind
(C
) = N_Discriminant_Association
then
9736 Id
:= First
(Selector_Names
(C
));
9737 while Present
(Id
) loop
9738 Set_Discriminant_Name
(Id
);
9747 Make_Subtype_Declaration
(Loc
,
9748 Defining_Identifier
=> Subt
,
9749 Subtype_Indication
=>
9750 Make_Subtype_Indication
(Loc
,
9751 Subtype_Mark
=> New_Occurrence_Of
(Par
, Loc
),
9752 Constraint
=> New_Copy_Tree
(Constr
)));
9754 -- If this is a component subtype for an outer itype, it is not
9755 -- a list member, so simply set the parent link for analysis: if
9756 -- the enclosing type does not need to be in a declarative list,
9757 -- neither do the components.
9759 if Is_List_Member
(N
)
9760 and then Nkind
(N
) /= N_Component_Declaration
9762 Insert_Before
(N
, Indic
);
9764 Set_Parent
(Indic
, Parent
(N
));
9768 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
9769 end Build_Underlying_Full_View
;
9771 -------------------------------
9772 -- Check_Abstract_Overriding --
9773 -------------------------------
9775 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
9776 Alias_Subp
: Entity_Id
;
9782 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
9783 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9784 -- which has pragma Implemented already set. Check whether Subp's entity
9785 -- kind conforms to the implementation kind of the overridden routine.
9787 procedure Check_Pragma_Implemented
9789 Iface_Subp
: Entity_Id
);
9790 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9791 -- Iface_Subp and both entities have pragma Implemented already set on
9792 -- them. Check whether the two implementation kinds are conforming.
9794 procedure Inherit_Pragma_Implemented
9796 Iface_Subp
: Entity_Id
);
9797 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9798 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9799 -- Propagate the implementation kind of Iface_Subp to Subp.
9801 ------------------------------
9802 -- Check_Pragma_Implemented --
9803 ------------------------------
9805 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
9806 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
9807 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
9808 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
9809 Contr_Typ
: Entity_Id
;
9810 Impl_Subp
: Entity_Id
;
9813 -- Subp must have an alias since it is a hidden entity used to link
9814 -- an interface subprogram to its overriding counterpart.
9816 pragma Assert
(Present
(Subp_Alias
));
9818 -- Handle aliases to synchronized wrappers
9820 Impl_Subp
:= Subp_Alias
;
9822 if Is_Primitive_Wrapper
(Impl_Subp
) then
9823 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
9826 -- Extract the type of the controlling formal
9828 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
9830 if Is_Concurrent_Record_Type
(Contr_Typ
) then
9831 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
9834 -- An interface subprogram whose implementation kind is By_Entry must
9835 -- be implemented by an entry.
9837 if Impl_Kind
= Name_By_Entry
9838 and then Ekind
(Impl_Subp
) /= E_Entry
9840 Error_Msg_Node_2
:= Iface_Alias
;
9842 ("type & must implement abstract subprogram & with an entry",
9843 Subp_Alias
, Contr_Typ
);
9845 elsif Impl_Kind
= Name_By_Protected_Procedure
then
9847 -- An interface subprogram whose implementation kind is By_
9848 -- Protected_Procedure cannot be implemented by a primitive
9849 -- procedure of a task type.
9851 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
9852 Error_Msg_Node_2
:= Contr_Typ
;
9854 ("interface subprogram & cannot be implemented by a " &
9855 "primitive procedure of task type &", Subp_Alias
,
9858 -- An interface subprogram whose implementation kind is By_
9859 -- Protected_Procedure must be implemented by a procedure.
9861 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
9862 Error_Msg_Node_2
:= Iface_Alias
;
9864 ("type & must implement abstract subprogram & with a " &
9865 "procedure", Subp_Alias
, Contr_Typ
);
9867 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9868 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9870 Error_Msg_Name_1
:= Impl_Kind
;
9872 ("overriding operation& must have synchronization%",
9876 -- If primitive has Optional synchronization, overriding operation
9877 -- must match if it has an explicit synchronization..
9879 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9880 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9882 Error_Msg_Name_1
:= Impl_Kind
;
9884 ("overriding operation& must have syncrhonization%",
9887 end Check_Pragma_Implemented
;
9889 ------------------------------
9890 -- Check_Pragma_Implemented --
9891 ------------------------------
9893 procedure Check_Pragma_Implemented
9895 Iface_Subp
: Entity_Id
)
9897 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9898 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
9901 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9902 -- and overriding subprogram are different. In general this is an
9903 -- error except when the implementation kind of the overridden
9904 -- subprograms is By_Any or Optional.
9906 if Iface_Kind
/= Subp_Kind
9907 and then Iface_Kind
/= Name_By_Any
9908 and then Iface_Kind
/= Name_Optional
9910 if Iface_Kind
= Name_By_Entry
then
9912 ("incompatible implementation kind, overridden subprogram " &
9913 "is marked By_Entry", Subp
);
9916 ("incompatible implementation kind, overridden subprogram " &
9917 "is marked By_Protected_Procedure", Subp
);
9920 end Check_Pragma_Implemented
;
9922 --------------------------------
9923 -- Inherit_Pragma_Implemented --
9924 --------------------------------
9926 procedure Inherit_Pragma_Implemented
9928 Iface_Subp
: Entity_Id
)
9930 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9931 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
9932 Impl_Prag
: Node_Id
;
9935 -- Since the implementation kind is stored as a representation item
9936 -- rather than a flag, create a pragma node.
9940 Chars
=> Name_Implemented
,
9941 Pragma_Argument_Associations
=> New_List
(
9942 Make_Pragma_Argument_Association
(Loc
,
9943 Expression
=> New_Occurrence_Of
(Subp
, Loc
)),
9945 Make_Pragma_Argument_Association
(Loc
,
9946 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
9948 -- The pragma doesn't need to be analyzed because it is internally
9949 -- built. It is safe to directly register it as a rep item since we
9950 -- are only interested in the characters of the implementation kind.
9952 Record_Rep_Item
(Subp
, Impl_Prag
);
9953 end Inherit_Pragma_Implemented
;
9955 -- Start of processing for Check_Abstract_Overriding
9958 Op_List
:= Primitive_Operations
(T
);
9960 -- Loop to check primitive operations
9962 Elmt
:= First_Elmt
(Op_List
);
9963 while Present
(Elmt
) loop
9964 Subp
:= Node
(Elmt
);
9965 Alias_Subp
:= Alias
(Subp
);
9967 -- Inherited subprograms are identified by the fact that they do not
9968 -- come from source, and the associated source location is the
9969 -- location of the first subtype of the derived type.
9971 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9972 -- subprograms that "require overriding".
9974 -- Special exception, do not complain about failure to override the
9975 -- stream routines _Input and _Output, as well as the primitive
9976 -- operations used in dispatching selects since we always provide
9977 -- automatic overridings for these subprograms.
9979 -- The partial view of T may have been a private extension, for
9980 -- which inherited functions dispatching on result are abstract.
9981 -- If the full view is a null extension, there is no need for
9982 -- overriding in Ada 2005, but wrappers need to be built for them
9983 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9985 if Is_Null_Extension
(T
)
9986 and then Has_Controlling_Result
(Subp
)
9987 and then Ada_Version
>= Ada_2005
9988 and then Present
(Alias_Subp
)
9989 and then not Comes_From_Source
(Subp
)
9990 and then not Is_Abstract_Subprogram
(Alias_Subp
)
9991 and then not Is_Access_Type
(Etype
(Subp
))
9995 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9996 -- processing because this check is done with the aliased
9999 elsif Present
(Interface_Alias
(Subp
)) then
10002 elsif (Is_Abstract_Subprogram
(Subp
)
10003 or else Requires_Overriding
(Subp
)
10005 (Has_Controlling_Result
(Subp
)
10006 and then Present
(Alias_Subp
)
10007 and then not Comes_From_Source
(Subp
)
10008 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
10009 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
10010 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
10011 and then not Is_Abstract_Type
(T
)
10012 and then not Is_Predefined_Interface_Primitive
(Subp
)
10014 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10015 -- with abstract interface types because the check will be done
10016 -- with the aliased entity (otherwise we generate a duplicated
10019 and then not Present
(Interface_Alias
(Subp
))
10021 if Present
(Alias_Subp
) then
10023 -- Only perform the check for a derived subprogram when the
10024 -- type has an explicit record extension. This avoids incorrect
10025 -- flagging of abstract subprograms for the case of a type
10026 -- without an extension that is derived from a formal type
10027 -- with a tagged actual (can occur within a private part).
10029 -- Ada 2005 (AI-391): In the case of an inherited function with
10030 -- a controlling result of the type, the rule does not apply if
10031 -- the type is a null extension (unless the parent function
10032 -- itself is abstract, in which case the function must still be
10033 -- be overridden). The expander will generate an overriding
10034 -- wrapper function calling the parent subprogram (see
10035 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10037 Type_Def
:= Type_Definition
(Parent
(T
));
10039 if Nkind
(Type_Def
) = N_Derived_Type_Definition
10040 and then Present
(Record_Extension_Part
(Type_Def
))
10042 (Ada_Version
< Ada_2005
10043 or else not Is_Null_Extension
(T
)
10044 or else Ekind
(Subp
) = E_Procedure
10045 or else not Has_Controlling_Result
(Subp
)
10046 or else Is_Abstract_Subprogram
(Alias_Subp
)
10047 or else Requires_Overriding
(Subp
)
10048 or else Is_Access_Type
(Etype
(Subp
)))
10050 -- Avoid reporting error in case of abstract predefined
10051 -- primitive inherited from interface type because the
10052 -- body of internally generated predefined primitives
10053 -- of tagged types are generated later by Freeze_Type
10055 if Is_Interface
(Root_Type
(T
))
10056 and then Is_Abstract_Subprogram
(Subp
)
10057 and then Is_Predefined_Dispatching_Operation
(Subp
)
10058 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
10062 -- A null extension is not obliged to override an inherited
10063 -- procedure subject to pragma Extensions_Visible with value
10064 -- False and at least one controlling OUT parameter
10065 -- (SPARK RM 6.1.7(6)).
10067 elsif Is_Null_Extension
(T
)
10068 and then Is_EVF_Procedure
(Subp
)
10074 ("type must be declared abstract or & overridden",
10077 -- Traverse the whole chain of aliased subprograms to
10078 -- complete the error notification. This is especially
10079 -- useful for traceability of the chain of entities when
10080 -- the subprogram corresponds with an interface
10081 -- subprogram (which may be defined in another package).
10083 if Present
(Alias_Subp
) then
10089 while Present
(Alias
(E
)) loop
10091 -- Avoid reporting redundant errors on entities
10092 -- inherited from interfaces
10094 if Sloc
(E
) /= Sloc
(T
) then
10095 Error_Msg_Sloc
:= Sloc
(E
);
10097 ("\& has been inherited #", T
, Subp
);
10103 Error_Msg_Sloc
:= Sloc
(E
);
10105 -- AI05-0068: report if there is an overriding
10106 -- non-abstract subprogram that is invisible.
10109 and then not Is_Abstract_Subprogram
(E
)
10112 ("\& subprogram# is not visible",
10115 -- Clarify the case where a non-null extension must
10116 -- override inherited procedure subject to pragma
10117 -- Extensions_Visible with value False and at least
10118 -- one controlling OUT param.
10120 elsif Is_EVF_Procedure
(E
) then
10122 ("\& # is subject to Extensions_Visible False",
10127 ("\& has been inherited from subprogram #",
10134 -- Ada 2005 (AI-345): Protected or task type implementing
10135 -- abstract interfaces.
10137 elsif Is_Concurrent_Record_Type
(T
)
10138 and then Present
(Interfaces
(T
))
10140 -- There is no need to check here RM 9.4(11.9/3) since we
10141 -- are processing the corresponding record type and the
10142 -- mode of the overriding subprograms was verified by
10143 -- Check_Conformance when the corresponding concurrent
10144 -- type declaration was analyzed.
10147 ("interface subprogram & must be overridden", T
, Subp
);
10149 -- Examine primitive operations of synchronized type to find
10150 -- homonyms that have the wrong profile.
10156 Prim
:= First_Entity
(Corresponding_Concurrent_Type
(T
));
10157 while Present
(Prim
) loop
10158 if Chars
(Prim
) = Chars
(Subp
) then
10160 ("profile is not type conformant with prefixed "
10161 & "view profile of inherited operation&",
10165 Next_Entity
(Prim
);
10171 Error_Msg_Node_2
:= T
;
10173 ("abstract subprogram& not allowed for type&", Subp
);
10175 -- Also post unconditional warning on the type (unconditional
10176 -- so that if there are more than one of these cases, we get
10177 -- them all, and not just the first one).
10179 Error_Msg_Node_2
:= Subp
;
10180 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
10183 -- A subprogram subject to pragma Extensions_Visible with value
10184 -- "True" cannot override a subprogram subject to the same pragma
10185 -- with value "False" (SPARK RM 6.1.7(5)).
10187 elsif Extensions_Visible_Status
(Subp
) = Extensions_Visible_True
10188 and then Present
(Overridden_Operation
(Subp
))
10189 and then Extensions_Visible_Status
(Overridden_Operation
(Subp
)) =
10190 Extensions_Visible_False
10192 Error_Msg_Sloc
:= Sloc
(Overridden_Operation
(Subp
));
10194 ("subprogram & with Extensions_Visible True cannot override "
10195 & "subprogram # with Extensions_Visible False", Subp
);
10198 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10200 -- Subp is an expander-generated procedure which maps an interface
10201 -- alias to a protected wrapper. The interface alias is flagged by
10202 -- pragma Implemented. Ensure that Subp is a procedure when the
10203 -- implementation kind is By_Protected_Procedure or an entry when
10206 if Ada_Version
>= Ada_2012
10207 and then Is_Hidden
(Subp
)
10208 and then Present
(Interface_Alias
(Subp
))
10209 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
10211 Check_Pragma_Implemented
(Subp
);
10214 -- Subp is an interface primitive which overrides another interface
10215 -- primitive marked with pragma Implemented.
10217 if Ada_Version
>= Ada_2012
10218 and then Present
(Overridden_Operation
(Subp
))
10219 and then Has_Rep_Pragma
10220 (Overridden_Operation
(Subp
), Name_Implemented
)
10222 -- If the overriding routine is also marked by Implemented, check
10223 -- that the two implementation kinds are conforming.
10225 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
10226 Check_Pragma_Implemented
10228 Iface_Subp
=> Overridden_Operation
(Subp
));
10230 -- Otherwise the overriding routine inherits the implementation
10231 -- kind from the overridden subprogram.
10234 Inherit_Pragma_Implemented
10236 Iface_Subp
=> Overridden_Operation
(Subp
));
10240 -- If the operation is a wrapper for a synchronized primitive, it
10241 -- may be called indirectly through a dispatching select. We assume
10242 -- that it will be referenced elsewhere indirectly, and suppress
10243 -- warnings about an unused entity.
10245 if Is_Primitive_Wrapper
(Subp
)
10246 and then Present
(Wrapped_Entity
(Subp
))
10248 Set_Referenced
(Wrapped_Entity
(Subp
));
10253 end Check_Abstract_Overriding
;
10255 ------------------------------------------------
10256 -- Check_Access_Discriminant_Requires_Limited --
10257 ------------------------------------------------
10259 procedure Check_Access_Discriminant_Requires_Limited
10264 -- A discriminant_specification for an access discriminant shall appear
10265 -- only in the declaration for a task or protected type, or for a type
10266 -- with the reserved word 'limited' in its definition or in one of its
10267 -- ancestors (RM 3.7(10)).
10269 -- AI-0063: The proper condition is that type must be immutably limited,
10270 -- or else be a partial view.
10272 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
10273 if Is_Limited_View
(Current_Scope
)
10275 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
10276 and then Limited_Present
(Parent
(Current_Scope
)))
10282 ("access discriminants allowed only for limited types", Loc
);
10285 end Check_Access_Discriminant_Requires_Limited
;
10287 -----------------------------------
10288 -- Check_Aliased_Component_Types --
10289 -----------------------------------
10291 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
10295 -- ??? Also need to check components of record extensions, but not
10296 -- components of protected types (which are always limited).
10298 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10299 -- types to be unconstrained. This is safe because it is illegal to
10300 -- create access subtypes to such types with explicit discriminant
10303 if not Is_Limited_Type
(T
) then
10304 if Ekind
(T
) = E_Record_Type
then
10305 C
:= First_Component
(T
);
10306 while Present
(C
) loop
10308 and then Has_Discriminants
(Etype
(C
))
10309 and then not Is_Constrained
(Etype
(C
))
10310 and then not In_Instance_Body
10311 and then Ada_Version
< Ada_2005
10314 ("aliased component must be constrained (RM 3.6(11))",
10318 Next_Component
(C
);
10321 elsif Ekind
(T
) = E_Array_Type
then
10322 if Has_Aliased_Components
(T
)
10323 and then Has_Discriminants
(Component_Type
(T
))
10324 and then not Is_Constrained
(Component_Type
(T
))
10325 and then not In_Instance_Body
10326 and then Ada_Version
< Ada_2005
10329 ("aliased component type must be constrained (RM 3.6(11))",
10334 end Check_Aliased_Component_Types
;
10336 ---------------------------------------
10337 -- Check_Anonymous_Access_Components --
10338 ---------------------------------------
10340 procedure Check_Anonymous_Access_Components
10341 (Typ_Decl
: Node_Id
;
10344 Comp_List
: Node_Id
)
10346 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
10347 Anon_Access
: Entity_Id
;
10350 Comp_Def
: Node_Id
;
10352 Type_Def
: Node_Id
;
10354 procedure Build_Incomplete_Type_Declaration
;
10355 -- If the record type contains components that include an access to the
10356 -- current record, then create an incomplete type declaration for the
10357 -- record, to be used as the designated type of the anonymous access.
10358 -- This is done only once, and only if there is no previous partial
10359 -- view of the type.
10361 function Designates_T
(Subt
: Node_Id
) return Boolean;
10362 -- Check whether a node designates the enclosing record type, or 'Class
10365 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
10366 -- Check whether an access definition includes a reference to
10367 -- the enclosing record type. The reference can be a subtype mark
10368 -- in the access definition itself, a 'Class attribute reference, or
10369 -- recursively a reference appearing in a parameter specification
10370 -- or result definition of an access_to_subprogram definition.
10372 --------------------------------------
10373 -- Build_Incomplete_Type_Declaration --
10374 --------------------------------------
10376 procedure Build_Incomplete_Type_Declaration
is
10381 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10382 -- it's "is new ... with record" or else "is tagged record ...".
10384 Is_Tagged
: constant Boolean :=
10385 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
10387 Present
(Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
10389 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
10390 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
10393 -- If there is a previous partial view, no need to create a new one
10394 -- If the partial view, given by Prev, is incomplete, If Prev is
10395 -- a private declaration, full declaration is flagged accordingly.
10397 if Prev
/= Typ
then
10399 Make_Class_Wide_Type
(Prev
);
10400 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
10401 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10406 elsif Has_Private_Declaration
(Typ
) then
10408 -- If we refer to T'Class inside T, and T is the completion of a
10409 -- private type, then make sure the class-wide type exists.
10412 Make_Class_Wide_Type
(Typ
);
10417 -- If there was a previous anonymous access type, the incomplete
10418 -- type declaration will have been created already.
10420 elsif Present
(Current_Entity
(Typ
))
10421 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
10422 and then Full_View
(Current_Entity
(Typ
)) = Typ
10425 and then Comes_From_Source
(Current_Entity
(Typ
))
10426 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
10428 Make_Class_Wide_Type
(Typ
);
10430 ("incomplete view of tagged type should be declared tagged??",
10431 Parent
(Current_Entity
(Typ
)));
10436 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
10437 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
10439 -- Type has already been inserted into the current scope. Remove
10440 -- it, and add incomplete declaration for type, so that subsequent
10441 -- anonymous access types can use it. The entity is unchained from
10442 -- the homonym list and from immediate visibility. After analysis,
10443 -- the entity in the incomplete declaration becomes immediately
10444 -- visible in the record declaration that follows.
10446 H
:= Current_Entity
(Typ
);
10449 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
10452 and then Homonym
(H
) /= Typ
10454 H
:= Homonym
(Typ
);
10457 Set_Homonym
(H
, Homonym
(Typ
));
10460 Insert_Before
(Typ_Decl
, Decl
);
10462 Set_Full_View
(Inc_T
, Typ
);
10466 -- Create a common class-wide type for both views, and set the
10467 -- Etype of the class-wide type to the full view.
10469 Make_Class_Wide_Type
(Inc_T
);
10470 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
10471 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10474 end Build_Incomplete_Type_Declaration
;
10480 function Designates_T
(Subt
: Node_Id
) return Boolean is
10481 Type_Id
: constant Name_Id
:= Chars
(Typ
);
10483 function Names_T
(Nam
: Node_Id
) return Boolean;
10484 -- The record type has not been introduced in the current scope
10485 -- yet, so we must examine the name of the type itself, either
10486 -- an identifier T, or an expanded name of the form P.T, where
10487 -- P denotes the current scope.
10493 function Names_T
(Nam
: Node_Id
) return Boolean is
10495 if Nkind
(Nam
) = N_Identifier
then
10496 return Chars
(Nam
) = Type_Id
;
10498 elsif Nkind
(Nam
) = N_Selected_Component
then
10499 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
10500 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
10501 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
10503 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
10504 return Chars
(Selector_Name
(Prefix
(Nam
))) =
10505 Chars
(Current_Scope
);
10519 -- Start of processing for Designates_T
10522 if Nkind
(Subt
) = N_Identifier
then
10523 return Chars
(Subt
) = Type_Id
;
10525 -- Reference can be through an expanded name which has not been
10526 -- analyzed yet, and which designates enclosing scopes.
10528 elsif Nkind
(Subt
) = N_Selected_Component
then
10529 if Names_T
(Subt
) then
10532 -- Otherwise it must denote an entity that is already visible.
10533 -- The access definition may name a subtype of the enclosing
10534 -- type, if there is a previous incomplete declaration for it.
10537 Find_Selected_Component
(Subt
);
10539 Is_Entity_Name
(Subt
)
10540 and then Scope
(Entity
(Subt
)) = Current_Scope
10542 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
10544 (Is_Class_Wide_Type
(Entity
(Subt
))
10546 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
10550 -- A reference to the current type may appear as the prefix of
10551 -- a 'Class attribute.
10553 elsif Nkind
(Subt
) = N_Attribute_Reference
10554 and then Attribute_Name
(Subt
) = Name_Class
10556 return Names_T
(Prefix
(Subt
));
10567 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
10568 Param_Spec
: Node_Id
;
10570 Acc_Subprg
: constant Node_Id
:=
10571 Access_To_Subprogram_Definition
(Acc_Def
);
10574 if No
(Acc_Subprg
) then
10575 return Designates_T
(Subtype_Mark
(Acc_Def
));
10578 -- Component is an access_to_subprogram: examine its formals,
10579 -- and result definition in the case of an access_to_function.
10581 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
10582 while Present
(Param_Spec
) loop
10583 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
10584 and then Mentions_T
(Parameter_Type
(Param_Spec
))
10588 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
10595 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
10596 if Nkind
(Result_Definition
(Acc_Subprg
)) =
10597 N_Access_Definition
10599 return Mentions_T
(Result_Definition
(Acc_Subprg
));
10601 return Designates_T
(Result_Definition
(Acc_Subprg
));
10608 -- Start of processing for Check_Anonymous_Access_Components
10611 if No
(Comp_List
) then
10615 Comp
:= First
(Component_Items
(Comp_List
));
10616 while Present
(Comp
) loop
10617 if Nkind
(Comp
) = N_Component_Declaration
10619 (Access_Definition
(Component_Definition
(Comp
)))
10621 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
10623 Comp_Def
:= Component_Definition
(Comp
);
10625 Access_To_Subprogram_Definition
(Access_Definition
(Comp_Def
));
10627 Build_Incomplete_Type_Declaration
;
10628 Anon_Access
:= Make_Temporary
(Loc
, 'S');
10630 -- Create a declaration for the anonymous access type: either
10631 -- an access_to_object or an access_to_subprogram.
10633 if Present
(Acc_Def
) then
10634 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
10636 Make_Access_Function_Definition
(Loc
,
10637 Parameter_Specifications
=>
10638 Parameter_Specifications
(Acc_Def
),
10639 Result_Definition
=> Result_Definition
(Acc_Def
));
10642 Make_Access_Procedure_Definition
(Loc
,
10643 Parameter_Specifications
=>
10644 Parameter_Specifications
(Acc_Def
));
10649 Make_Access_To_Object_Definition
(Loc
,
10650 Subtype_Indication
=>
10652 (Subtype_Mark
(Access_Definition
(Comp_Def
))));
10654 Set_Constant_Present
10655 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
10657 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
10660 Set_Null_Exclusion_Present
10662 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
10665 Make_Full_Type_Declaration
(Loc
,
10666 Defining_Identifier
=> Anon_Access
,
10667 Type_Definition
=> Type_Def
);
10669 Insert_Before
(Typ_Decl
, Decl
);
10672 -- If an access to subprogram, create the extra formals
10674 if Present
(Acc_Def
) then
10675 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
10677 -- If an access to object, preserve entity of designated type,
10678 -- for ASIS use, before rewriting the component definition.
10685 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
10687 -- If the access definition is to the current record,
10688 -- the visible entity at this point is an incomplete
10689 -- type. Retrieve the full view to simplify ASIS queries
10691 if Ekind
(Desig
) = E_Incomplete_Type
then
10692 Desig
:= Full_View
(Desig
);
10696 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
10701 Make_Component_Definition
(Loc
,
10702 Subtype_Indication
=>
10703 New_Occurrence_Of
(Anon_Access
, Loc
)));
10705 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
10706 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
10708 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
10711 Set_Is_Local_Anonymous_Access
(Anon_Access
);
10717 if Present
(Variant_Part
(Comp_List
)) then
10721 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
10722 while Present
(V
) loop
10723 Check_Anonymous_Access_Components
10724 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
10725 Next_Non_Pragma
(V
);
10729 end Check_Anonymous_Access_Components
;
10731 ----------------------
10732 -- Check_Completion --
10733 ----------------------
10735 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
10738 procedure Post_Error
;
10739 -- Post error message for lack of completion for entity E
10745 procedure Post_Error
is
10746 procedure Missing_Body
;
10747 -- Output missing body message
10753 procedure Missing_Body
is
10755 -- Spec is in same unit, so we can post on spec
10757 if In_Same_Source_Unit
(Body_Id
, E
) then
10758 Error_Msg_N
("missing body for &", E
);
10760 -- Spec is in a separate unit, so we have to post on the body
10763 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
10767 -- Start of processing for Post_Error
10770 if not Comes_From_Source
(E
) then
10771 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
10773 -- It may be an anonymous protected type created for a
10774 -- single variable. Post error on variable, if present.
10780 Var
:= First_Entity
(Current_Scope
);
10781 while Present
(Var
) loop
10782 exit when Etype
(Var
) = E
10783 and then Comes_From_Source
(Var
);
10788 if Present
(Var
) then
10795 -- If a generated entity has no completion, then either previous
10796 -- semantic errors have disabled the expansion phase, or else we had
10797 -- missing subunits, or else we are compiling without expansion,
10798 -- or else something is very wrong.
10800 if not Comes_From_Source
(E
) then
10802 (Serious_Errors_Detected
> 0
10803 or else Configurable_Run_Time_Violations
> 0
10804 or else Subunits_Missing
10805 or else not Expander_Active
);
10808 -- Here for source entity
10811 -- Here if no body to post the error message, so we post the error
10812 -- on the declaration that has no completion. This is not really
10813 -- the right place to post it, think about this later ???
10815 if No
(Body_Id
) then
10816 if Is_Type
(E
) then
10818 ("missing full declaration for }", Parent
(E
), E
);
10820 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
10823 -- Package body has no completion for a declaration that appears
10824 -- in the corresponding spec. Post error on the body, with a
10825 -- reference to the non-completed declaration.
10828 Error_Msg_Sloc
:= Sloc
(E
);
10830 if Is_Type
(E
) then
10831 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
10833 elsif Is_Overloadable
(E
)
10834 and then Current_Entity_In_Scope
(E
) /= E
10836 -- It may be that the completion is mistyped and appears as
10837 -- a distinct overloading of the entity.
10840 Candidate
: constant Entity_Id
:=
10841 Current_Entity_In_Scope
(E
);
10842 Decl
: constant Node_Id
:=
10843 Unit_Declaration_Node
(Candidate
);
10846 if Is_Overloadable
(Candidate
)
10847 and then Ekind
(Candidate
) = Ekind
(E
)
10848 and then Nkind
(Decl
) = N_Subprogram_Body
10849 and then Acts_As_Spec
(Decl
)
10851 Check_Type_Conformant
(Candidate
, E
);
10867 Pack_Id
: constant Entity_Id
:= Current_Scope
;
10869 -- Start of processing for Check_Completion
10872 E
:= First_Entity
(Pack_Id
);
10873 while Present
(E
) loop
10874 if Is_Intrinsic_Subprogram
(E
) then
10877 -- The following situation requires special handling: a child unit
10878 -- that appears in the context clause of the body of its parent:
10880 -- procedure Parent.Child (...);
10882 -- with Parent.Child;
10883 -- package body Parent is
10885 -- Here Parent.Child appears as a local entity, but should not be
10886 -- flagged as requiring completion, because it is a compilation
10889 -- Ignore missing completion for a subprogram that does not come from
10890 -- source (including the _Call primitive operation of RAS types,
10891 -- which has to have the flag Comes_From_Source for other purposes):
10892 -- we assume that the expander will provide the missing completion.
10893 -- In case of previous errors, other expansion actions that provide
10894 -- bodies for null procedures with not be invoked, so inhibit message
10897 -- Note that E_Operator is not in the list that follows, because
10898 -- this kind is reserved for predefined operators, that are
10899 -- intrinsic and do not need completion.
10901 elsif Ekind_In
(E
, E_Function
,
10903 E_Generic_Function
,
10904 E_Generic_Procedure
)
10906 if Has_Completion
(E
) then
10909 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
10912 elsif Is_Subprogram
(E
)
10913 and then (not Comes_From_Source
(E
)
10914 or else Chars
(E
) = Name_uCall
)
10919 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
10923 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
10924 and then Null_Present
(Parent
(E
))
10925 and then Serious_Errors_Detected
> 0
10933 elsif Is_Entry
(E
) then
10934 if not Has_Completion
(E
) and then
10935 (Ekind
(Scope
(E
)) = E_Protected_Object
10936 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
10941 elsif Is_Package_Or_Generic_Package
(E
) then
10942 if Unit_Requires_Body
(E
) then
10943 if not Has_Completion
(E
)
10944 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
10950 elsif not Is_Child_Unit
(E
) then
10951 May_Need_Implicit_Body
(E
);
10954 -- A formal incomplete type (Ada 2012) does not require a completion;
10955 -- other incomplete type declarations do.
10957 elsif Ekind
(E
) = E_Incomplete_Type
10958 and then No
(Underlying_Type
(E
))
10959 and then not Is_Generic_Type
(E
)
10963 elsif Ekind_In
(E
, E_Task_Type
, E_Protected_Type
)
10964 and then not Has_Completion
(E
)
10968 -- A single task declared in the current scope is a constant, verify
10969 -- that the body of its anonymous type is in the same scope. If the
10970 -- task is defined elsewhere, this may be a renaming declaration for
10971 -- which no completion is needed.
10973 elsif Ekind
(E
) = E_Constant
10974 and then Ekind
(Etype
(E
)) = E_Task_Type
10975 and then not Has_Completion
(Etype
(E
))
10976 and then Scope
(Etype
(E
)) = Current_Scope
10980 elsif Ekind
(E
) = E_Protected_Object
10981 and then not Has_Completion
(Etype
(E
))
10985 elsif Ekind
(E
) = E_Record_Type
then
10986 if Is_Tagged_Type
(E
) then
10987 Check_Abstract_Overriding
(E
);
10988 Check_Conventions
(E
);
10991 Check_Aliased_Component_Types
(E
);
10993 elsif Ekind
(E
) = E_Array_Type
then
10994 Check_Aliased_Component_Types
(E
);
11000 end Check_Completion
;
11002 ------------------------------------
11003 -- Check_CPP_Type_Has_No_Defaults --
11004 ------------------------------------
11006 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
11007 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
11012 -- Obtain the component list
11014 if Nkind
(Tdef
) = N_Record_Definition
then
11015 Clist
:= Component_List
(Tdef
);
11016 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
11017 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
11020 -- Check all components to ensure no default expressions
11022 if Present
(Clist
) then
11023 Comp
:= First
(Component_Items
(Clist
));
11024 while Present
(Comp
) loop
11025 if Present
(Expression
(Comp
)) then
11027 ("component of imported 'C'P'P type cannot have "
11028 & "default expression", Expression
(Comp
));
11034 end Check_CPP_Type_Has_No_Defaults
;
11036 ----------------------------
11037 -- Check_Delta_Expression --
11038 ----------------------------
11040 procedure Check_Delta_Expression
(E
: Node_Id
) is
11042 if not (Is_Real_Type
(Etype
(E
))) then
11043 Wrong_Type
(E
, Any_Real
);
11045 elsif not Is_OK_Static_Expression
(E
) then
11046 Flag_Non_Static_Expr
11047 ("non-static expression used for delta value!", E
);
11049 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
11050 Error_Msg_N
("delta expression must be positive", E
);
11056 -- If any of above errors occurred, then replace the incorrect
11057 -- expression by the real 0.1, which should prevent further errors.
11060 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
11061 Analyze_And_Resolve
(E
, Standard_Float
);
11062 end Check_Delta_Expression
;
11064 -----------------------------
11065 -- Check_Digits_Expression --
11066 -----------------------------
11068 procedure Check_Digits_Expression
(E
: Node_Id
) is
11070 if not (Is_Integer_Type
(Etype
(E
))) then
11071 Wrong_Type
(E
, Any_Integer
);
11073 elsif not Is_OK_Static_Expression
(E
) then
11074 Flag_Non_Static_Expr
11075 ("non-static expression used for digits value!", E
);
11077 elsif Expr_Value
(E
) <= 0 then
11078 Error_Msg_N
("digits value must be greater than zero", E
);
11084 -- If any of above errors occurred, then replace the incorrect
11085 -- expression by the integer 1, which should prevent further errors.
11087 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
11088 Analyze_And_Resolve
(E
, Standard_Integer
);
11090 end Check_Digits_Expression
;
11092 --------------------------
11093 -- Check_Initialization --
11094 --------------------------
11096 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
11098 -- Special processing for limited types
11100 if Is_Limited_Type
(T
)
11101 and then not In_Instance
11102 and then not In_Inlined_Body
11104 if not OK_For_Limited_Init
(T
, Exp
) then
11106 -- In GNAT mode, this is just a warning, to allow it to be evilly
11107 -- turned off. Otherwise it is a real error.
11111 ("??cannot initialize entities of limited type!", Exp
);
11113 elsif Ada_Version
< Ada_2005
then
11115 -- The side effect removal machinery may generate illegal Ada
11116 -- code to avoid the usage of access types and 'reference in
11117 -- SPARK mode. Since this is legal code with respect to theorem
11118 -- proving, do not emit the error.
11121 and then Nkind
(Exp
) = N_Function_Call
11122 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11123 and then not Comes_From_Source
11124 (Defining_Identifier
(Parent
(Exp
)))
11130 ("cannot initialize entities of limited type", Exp
);
11131 Explain_Limited_Type
(T
, Exp
);
11135 -- Specialize error message according to kind of illegal
11136 -- initial expression.
11138 if Nkind
(Exp
) = N_Type_Conversion
11139 and then Nkind
(Expression
(Exp
)) = N_Function_Call
11142 ("illegal context for call"
11143 & " to function with limited result", Exp
);
11147 ("initialization of limited object requires aggregate "
11148 & "or function call", Exp
);
11154 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11155 -- set unless we can be sure that no range check is required.
11157 if (GNATprove_Mode
or not Expander_Active
)
11158 and then Is_Scalar_Type
(T
)
11159 and then not Is_In_Range
(Exp
, T
, Assume_Valid
=> True)
11161 Set_Do_Range_Check
(Exp
);
11163 end Check_Initialization
;
11165 ----------------------
11166 -- Check_Interfaces --
11167 ----------------------
11169 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
11170 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
11173 Iface_Def
: Node_Id
;
11174 Iface_Typ
: Entity_Id
;
11175 Parent_Node
: Node_Id
;
11177 Is_Task
: Boolean := False;
11178 -- Set True if parent type or any progenitor is a task interface
11180 Is_Protected
: Boolean := False;
11181 -- Set True if parent type or any progenitor is a protected interface
11183 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
11184 -- Check that a progenitor is compatible with declaration. If an error
11185 -- message is output, it is posted on Error_Node.
11191 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
11192 Iface_Id
: constant Entity_Id
:=
11193 Defining_Identifier
(Parent
(Iface_Def
));
11194 Type_Def
: Node_Id
;
11197 if Nkind
(N
) = N_Private_Extension_Declaration
then
11200 Type_Def
:= Type_Definition
(N
);
11203 if Is_Task_Interface
(Iface_Id
) then
11206 elsif Is_Protected_Interface
(Iface_Id
) then
11207 Is_Protected
:= True;
11210 if Is_Synchronized_Interface
(Iface_Id
) then
11212 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11213 -- extension derived from a synchronized interface must explicitly
11214 -- be declared synchronized, because the full view will be a
11215 -- synchronized type.
11217 if Nkind
(N
) = N_Private_Extension_Declaration
then
11218 if not Synchronized_Present
(N
) then
11220 ("private extension of& must be explicitly synchronized",
11224 -- However, by 3.9.4(16/2), a full type that is a record extension
11225 -- is never allowed to derive from a synchronized interface (note
11226 -- that interfaces must be excluded from this check, because those
11227 -- are represented by derived type definitions in some cases).
11229 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11230 and then not Interface_Present
(Type_Definition
(N
))
11232 Error_Msg_N
("record extension cannot derive from synchronized "
11233 & "interface", Error_Node
);
11237 -- Check that the characteristics of the progenitor are compatible
11238 -- with the explicit qualifier in the declaration.
11239 -- The check only applies to qualifiers that come from source.
11240 -- Limited_Present also appears in the declaration of corresponding
11241 -- records, and the check does not apply to them.
11243 if Limited_Present
(Type_Def
)
11245 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
11247 if Is_Limited_Interface
(Parent_Type
)
11248 and then not Is_Limited_Interface
(Iface_Id
)
11251 ("progenitor & must be limited interface",
11252 Error_Node
, Iface_Id
);
11255 (Task_Present
(Iface_Def
)
11256 or else Protected_Present
(Iface_Def
)
11257 or else Synchronized_Present
(Iface_Def
))
11258 and then Nkind
(N
) /= N_Private_Extension_Declaration
11259 and then not Error_Posted
(N
)
11262 ("progenitor & must be limited interface",
11263 Error_Node
, Iface_Id
);
11266 -- Protected interfaces can only inherit from limited, synchronized
11267 -- or protected interfaces.
11269 elsif Nkind
(N
) = N_Full_Type_Declaration
11270 and then Protected_Present
(Type_Def
)
11272 if Limited_Present
(Iface_Def
)
11273 or else Synchronized_Present
(Iface_Def
)
11274 or else Protected_Present
(Iface_Def
)
11278 elsif Task_Present
(Iface_Def
) then
11279 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11280 & "from task interface", Error_Node
);
11283 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11284 & "from non-limited interface", Error_Node
);
11287 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11288 -- limited and synchronized.
11290 elsif Synchronized_Present
(Type_Def
) then
11291 if Limited_Present
(Iface_Def
)
11292 or else Synchronized_Present
(Iface_Def
)
11296 elsif Protected_Present
(Iface_Def
)
11297 and then Nkind
(N
) /= N_Private_Extension_Declaration
11299 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11300 & "from protected interface", Error_Node
);
11302 elsif Task_Present
(Iface_Def
)
11303 and then Nkind
(N
) /= N_Private_Extension_Declaration
11305 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11306 & "from task interface", Error_Node
);
11308 elsif not Is_Limited_Interface
(Iface_Id
) then
11309 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11310 & "from non-limited interface", Error_Node
);
11313 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11314 -- synchronized or task interfaces.
11316 elsif Nkind
(N
) = N_Full_Type_Declaration
11317 and then Task_Present
(Type_Def
)
11319 if Limited_Present
(Iface_Def
)
11320 or else Synchronized_Present
(Iface_Def
)
11321 or else Task_Present
(Iface_Def
)
11325 elsif Protected_Present
(Iface_Def
) then
11326 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11327 & "protected interface", Error_Node
);
11330 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11331 & "non-limited interface", Error_Node
);
11336 -- Start of processing for Check_Interfaces
11339 if Is_Interface
(Parent_Type
) then
11340 if Is_Task_Interface
(Parent_Type
) then
11343 elsif Is_Protected_Interface
(Parent_Type
) then
11344 Is_Protected
:= True;
11348 if Nkind
(N
) = N_Private_Extension_Declaration
then
11350 -- Check that progenitors are compatible with declaration
11352 Iface
:= First
(Interface_List
(Def
));
11353 while Present
(Iface
) loop
11354 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11356 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11357 Iface_Def
:= Type_Definition
(Parent_Node
);
11359 if not Is_Interface
(Iface_Typ
) then
11360 Diagnose_Interface
(Iface
, Iface_Typ
);
11362 Check_Ifaces
(Iface_Def
, Iface
);
11368 if Is_Task
and Is_Protected
then
11370 ("type cannot derive from task and protected interface", N
);
11376 -- Full type declaration of derived type.
11377 -- Check compatibility with parent if it is interface type
11379 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11380 and then Is_Interface
(Parent_Type
)
11382 Parent_Node
:= Parent
(Parent_Type
);
11384 -- More detailed checks for interface varieties
11387 (Iface_Def
=> Type_Definition
(Parent_Node
),
11388 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
11391 Iface
:= First
(Interface_List
(Def
));
11392 while Present
(Iface
) loop
11393 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11395 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11396 Iface_Def
:= Type_Definition
(Parent_Node
);
11398 if not Is_Interface
(Iface_Typ
) then
11399 Diagnose_Interface
(Iface
, Iface_Typ
);
11402 -- "The declaration of a specific descendant of an interface
11403 -- type freezes the interface type" RM 13.14
11405 Freeze_Before
(N
, Iface_Typ
);
11406 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
11412 if Is_Task
and Is_Protected
then
11414 ("type cannot derive from task and protected interface", N
);
11416 end Check_Interfaces
;
11418 ------------------------------------
11419 -- Check_Or_Process_Discriminants --
11420 ------------------------------------
11422 -- If an incomplete or private type declaration was already given for the
11423 -- type, the discriminants may have already been processed if they were
11424 -- present on the incomplete declaration. In this case a full conformance
11425 -- check has been performed in Find_Type_Name, and we then recheck here
11426 -- some properties that can't be checked on the partial view alone.
11427 -- Otherwise we call Process_Discriminants.
11429 procedure Check_Or_Process_Discriminants
11432 Prev
: Entity_Id
:= Empty
)
11435 if Has_Discriminants
(T
) then
11437 -- Discriminants are already set on T if they were already present
11438 -- on the partial view. Make them visible to component declarations.
11442 -- Discriminant on T (full view) referencing expr on partial view
11444 Prev_D
: Entity_Id
;
11445 -- Entity of corresponding discriminant on partial view
11448 -- Discriminant specification for full view, expression is
11449 -- the syntactic copy on full view (which has been checked for
11450 -- conformance with partial view), only used here to post error
11454 D
:= First_Discriminant
(T
);
11455 New_D
:= First
(Discriminant_Specifications
(N
));
11456 while Present
(D
) loop
11457 Prev_D
:= Current_Entity
(D
);
11458 Set_Current_Entity
(D
);
11459 Set_Is_Immediately_Visible
(D
);
11460 Set_Homonym
(D
, Prev_D
);
11462 -- Handle the case where there is an untagged partial view and
11463 -- the full view is tagged: must disallow discriminants with
11464 -- defaults, unless compiling for Ada 2012, which allows a
11465 -- limited tagged type to have defaulted discriminants (see
11466 -- AI05-0214). However, suppress error here if it was already
11467 -- reported on the default expression of the partial view.
11469 if Is_Tagged_Type
(T
)
11470 and then Present
(Expression
(Parent
(D
)))
11471 and then (not Is_Limited_Type
(Current_Scope
)
11472 or else Ada_Version
< Ada_2012
)
11473 and then not Error_Posted
(Expression
(Parent
(D
)))
11475 if Ada_Version
>= Ada_2012
then
11477 ("discriminants of nonlimited tagged type cannot have "
11479 Expression
(New_D
));
11482 ("discriminants of tagged type cannot have defaults",
11483 Expression
(New_D
));
11487 -- Ada 2005 (AI-230): Access discriminant allowed in
11488 -- non-limited record types.
11490 if Ada_Version
< Ada_2005
then
11492 -- This restriction gets applied to the full type here. It
11493 -- has already been applied earlier to the partial view.
11495 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
11498 Next_Discriminant
(D
);
11503 elsif Present
(Discriminant_Specifications
(N
)) then
11504 Process_Discriminants
(N
, Prev
);
11506 end Check_Or_Process_Discriminants
;
11508 ----------------------
11509 -- Check_Real_Bound --
11510 ----------------------
11512 procedure Check_Real_Bound
(Bound
: Node_Id
) is
11514 if not Is_Real_Type
(Etype
(Bound
)) then
11516 ("bound in real type definition must be of real type", Bound
);
11518 elsif not Is_OK_Static_Expression
(Bound
) then
11519 Flag_Non_Static_Expr
11520 ("non-static expression used for real type bound!", Bound
);
11527 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
11529 Resolve
(Bound
, Standard_Float
);
11530 end Check_Real_Bound
;
11532 ------------------------------
11533 -- Complete_Private_Subtype --
11534 ------------------------------
11536 procedure Complete_Private_Subtype
11539 Full_Base
: Entity_Id
;
11540 Related_Nod
: Node_Id
)
11542 Save_Next_Entity
: Entity_Id
;
11543 Save_Homonym
: Entity_Id
;
11546 -- Set semantic attributes for (implicit) private subtype completion.
11547 -- If the full type has no discriminants, then it is a copy of the
11548 -- full view of the base. Otherwise, it is a subtype of the base with
11549 -- a possible discriminant constraint. Save and restore the original
11550 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11551 -- not corrupt the entity chain.
11553 -- Note that the type of the full view is the same entity as the type
11554 -- of the partial view. In this fashion, the subtype has access to the
11555 -- correct view of the parent.
11557 Save_Next_Entity
:= Next_Entity
(Full
);
11558 Save_Homonym
:= Homonym
(Priv
);
11560 case Ekind
(Full_Base
) is
11561 when E_Record_Type |
11567 Copy_Node
(Priv
, Full
);
11569 Set_Has_Discriminants
11570 (Full
, Has_Discriminants
(Full_Base
));
11571 Set_Has_Unknown_Discriminants
11572 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11573 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
11574 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
11576 -- If the underlying base type is constrained, we know that the
11577 -- full view of the subtype is constrained as well (the converse
11578 -- is not necessarily true).
11580 if Is_Constrained
(Full_Base
) then
11581 Set_Is_Constrained
(Full
);
11585 Copy_Node
(Full_Base
, Full
);
11587 Set_Chars
(Full
, Chars
(Priv
));
11588 Conditional_Delay
(Full
, Priv
);
11589 Set_Sloc
(Full
, Sloc
(Priv
));
11592 Set_Next_Entity
(Full
, Save_Next_Entity
);
11593 Set_Homonym
(Full
, Save_Homonym
);
11594 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
11596 -- Set common attributes for all subtypes: kind, convention, etc.
11598 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
11599 Set_Convention
(Full
, Convention
(Full_Base
));
11601 -- The Etype of the full view is inconsistent. Gigi needs to see the
11602 -- structural full view, which is what the current scheme gives: the
11603 -- Etype of the full view is the etype of the full base. However, if the
11604 -- full base is a derived type, the full view then looks like a subtype
11605 -- of the parent, not a subtype of the full base. If instead we write:
11607 -- Set_Etype (Full, Full_Base);
11609 -- then we get inconsistencies in the front-end (confusion between
11610 -- views). Several outstanding bugs are related to this ???
11612 Set_Is_First_Subtype
(Full
, False);
11613 Set_Scope
(Full
, Scope
(Priv
));
11614 Set_Size_Info
(Full
, Full_Base
);
11615 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
11616 Set_Is_Itype
(Full
);
11618 -- A subtype of a private-type-without-discriminants, whose full-view
11619 -- has discriminants with default expressions, is not constrained.
11621 if not Has_Discriminants
(Priv
) then
11622 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
11624 if Has_Discriminants
(Full_Base
) then
11625 Set_Discriminant_Constraint
11626 (Full
, Discriminant_Constraint
(Full_Base
));
11628 -- The partial view may have been indefinite, the full view
11631 Set_Has_Unknown_Discriminants
11632 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11636 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
11637 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
11639 -- Freeze the private subtype entity if its parent is delayed, and not
11640 -- already frozen. We skip this processing if the type is an anonymous
11641 -- subtype of a record component, or is the corresponding record of a
11642 -- protected type, since these are processed when the enclosing type
11645 if not Is_Type
(Scope
(Full
)) then
11646 Set_Has_Delayed_Freeze
(Full
,
11647 Has_Delayed_Freeze
(Full_Base
)
11648 and then (not Is_Frozen
(Full_Base
)));
11651 Set_Freeze_Node
(Full
, Empty
);
11652 Set_Is_Frozen
(Full
, False);
11653 Set_Full_View
(Priv
, Full
);
11655 if Has_Discriminants
(Full
) then
11656 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
11657 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
11659 if Has_Unknown_Discriminants
(Full
) then
11660 Set_Discriminant_Constraint
(Full
, No_Elist
);
11664 if Ekind
(Full_Base
) = E_Record_Type
11665 and then Has_Discriminants
(Full_Base
)
11666 and then Has_Discriminants
(Priv
) -- might not, if errors
11667 and then not Has_Unknown_Discriminants
(Priv
)
11668 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
11670 Create_Constrained_Components
11671 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
11673 -- If the full base is itself derived from private, build a congruent
11674 -- subtype of its underlying type, for use by the back end. For a
11675 -- constrained record component, the declaration cannot be placed on
11676 -- the component list, but it must nevertheless be built an analyzed, to
11677 -- supply enough information for Gigi to compute the size of component.
11679 elsif Ekind
(Full_Base
) in Private_Kind
11680 and then Is_Derived_Type
(Full_Base
)
11681 and then Has_Discriminants
(Full_Base
)
11682 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
11684 if not Is_Itype
(Priv
)
11686 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
11688 Build_Underlying_Full_View
11689 (Parent
(Priv
), Full
, Etype
(Full_Base
));
11691 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
11692 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
11695 elsif Is_Record_Type
(Full_Base
) then
11697 -- Show Full is simply a renaming of Full_Base
11699 Set_Cloned_Subtype
(Full
, Full_Base
);
11702 -- It is unsafe to share the bounds of a scalar type, because the Itype
11703 -- is elaborated on demand, and if a bound is non-static then different
11704 -- orders of elaboration in different units will lead to different
11705 -- external symbols.
11707 if Is_Scalar_Type
(Full_Base
) then
11708 Set_Scalar_Range
(Full
,
11709 Make_Range
(Sloc
(Related_Nod
),
11711 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
11713 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
11715 -- This completion inherits the bounds of the full parent, but if
11716 -- the parent is an unconstrained floating point type, so is the
11719 if Is_Floating_Point_Type
(Full_Base
) then
11720 Set_Includes_Infinities
11721 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
11725 -- ??? It seems that a lot of fields are missing that should be copied
11726 -- from Full_Base to Full. Here are some that are introduced in a
11727 -- non-disruptive way but a cleanup is necessary.
11729 if Is_Tagged_Type
(Full_Base
) then
11730 Set_Is_Tagged_Type
(Full
);
11731 Set_Direct_Primitive_Operations
11732 (Full
, Direct_Primitive_Operations
(Full_Base
));
11733 Set_No_Tagged_Streams_Pragma
11734 (Full
, No_Tagged_Streams_Pragma
(Full_Base
));
11736 -- Inherit class_wide type of full_base in case the partial view was
11737 -- not tagged. Otherwise it has already been created when the private
11738 -- subtype was analyzed.
11740 if No
(Class_Wide_Type
(Full
)) then
11741 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
11744 -- If this is a subtype of a protected or task type, constrain its
11745 -- corresponding record, unless this is a subtype without constraints,
11746 -- i.e. a simple renaming as with an actual subtype in an instance.
11748 elsif Is_Concurrent_Type
(Full_Base
) then
11749 if Has_Discriminants
(Full
)
11750 and then Present
(Corresponding_Record_Type
(Full_Base
))
11752 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
11754 Set_Corresponding_Record_Type
(Full
,
11755 Constrain_Corresponding_Record
11756 (Full
, Corresponding_Record_Type
(Full_Base
), Related_Nod
));
11759 Set_Corresponding_Record_Type
(Full
,
11760 Corresponding_Record_Type
(Full_Base
));
11764 -- Link rep item chain, and also setting of Has_Predicates from private
11765 -- subtype to full subtype, since we will need these on the full subtype
11766 -- to create the predicate function. Note that the full subtype may
11767 -- already have rep items, inherited from the full view of the base
11768 -- type, so we must be sure not to overwrite these entries.
11773 Next_Item
: Node_Id
;
11776 Item
:= First_Rep_Item
(Full
);
11778 -- If no existing rep items on full type, we can just link directly
11779 -- to the list of items on the private type, if any exist.. Same if
11780 -- the rep items are only those inherited from the base
11783 or else Nkind
(Item
) /= N_Aspect_Specification
11784 or else Entity
(Item
) = Full_Base
)
11785 and then Present
(First_Rep_Item
(Priv
))
11787 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
11789 -- Otherwise, search to the end of items currently linked to the full
11790 -- subtype and append the private items to the end. However, if Priv
11791 -- and Full already have the same list of rep items, then the append
11792 -- is not done, as that would create a circularity.
11794 elsif Item
/= First_Rep_Item
(Priv
) then
11797 Next_Item
:= Next_Rep_Item
(Item
);
11798 exit when No
(Next_Item
);
11801 -- If the private view has aspect specifications, the full view
11802 -- inherits them. Since these aspects may already have been
11803 -- attached to the full view during derivation, do not append
11804 -- them if already present.
11806 if Item
= First_Rep_Item
(Priv
) then
11812 -- And link the private type items at the end of the chain
11815 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
11820 -- Make sure Has_Predicates is set on full type if it is set on the
11821 -- private type. Note that it may already be set on the full type and
11822 -- if so, we don't want to unset it. Similarly, propagate information
11823 -- about delayed aspects, because the corresponding pragmas must be
11824 -- analyzed when one of the views is frozen. This last step is needed
11825 -- in particular when the full type is a scalar type for which an
11826 -- anonymous base type is constructed.
11828 if Has_Predicates
(Priv
) then
11829 Set_Has_Predicates
(Full
);
11832 if Has_Delayed_Aspects
(Priv
) then
11833 Set_Has_Delayed_Aspects
(Full
);
11835 end Complete_Private_Subtype
;
11837 ----------------------------
11838 -- Constant_Redeclaration --
11839 ----------------------------
11841 procedure Constant_Redeclaration
11846 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
11847 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
11850 procedure Check_Possible_Deferred_Completion
11851 (Prev_Id
: Entity_Id
;
11852 Prev_Obj_Def
: Node_Id
;
11853 Curr_Obj_Def
: Node_Id
);
11854 -- Determine whether the two object definitions describe the partial
11855 -- and the full view of a constrained deferred constant. Generate
11856 -- a subtype for the full view and verify that it statically matches
11857 -- the subtype of the partial view.
11859 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
11860 -- If deferred constant is an access type initialized with an allocator,
11861 -- check whether there is an illegal recursion in the definition,
11862 -- through a default value of some record subcomponent. This is normally
11863 -- detected when generating init procs, but requires this additional
11864 -- mechanism when expansion is disabled.
11866 ----------------------------------------
11867 -- Check_Possible_Deferred_Completion --
11868 ----------------------------------------
11870 procedure Check_Possible_Deferred_Completion
11871 (Prev_Id
: Entity_Id
;
11872 Prev_Obj_Def
: Node_Id
;
11873 Curr_Obj_Def
: Node_Id
)
11876 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
11877 and then Present
(Constraint
(Prev_Obj_Def
))
11878 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
11879 and then Present
(Constraint
(Curr_Obj_Def
))
11882 Loc
: constant Source_Ptr
:= Sloc
(N
);
11883 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
11884 Decl
: constant Node_Id
:=
11885 Make_Subtype_Declaration
(Loc
,
11886 Defining_Identifier
=> Def_Id
,
11887 Subtype_Indication
=>
11888 Relocate_Node
(Curr_Obj_Def
));
11891 Insert_Before_And_Analyze
(N
, Decl
);
11892 Set_Etype
(Id
, Def_Id
);
11894 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
11895 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
11896 Error_Msg_N
("subtype does not statically match deferred "
11897 & "declaration #", N
);
11901 end Check_Possible_Deferred_Completion
;
11903 ---------------------------------
11904 -- Check_Recursive_Declaration --
11905 ---------------------------------
11907 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
11911 if Is_Record_Type
(Typ
) then
11912 Comp
:= First_Component
(Typ
);
11913 while Present
(Comp
) loop
11914 if Comes_From_Source
(Comp
) then
11915 if Present
(Expression
(Parent
(Comp
)))
11916 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
11917 and then Entity
(Expression
(Parent
(Comp
))) = Prev
11919 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
11921 ("illegal circularity with declaration for & #",
11925 elsif Is_Record_Type
(Etype
(Comp
)) then
11926 Check_Recursive_Declaration
(Etype
(Comp
));
11930 Next_Component
(Comp
);
11933 end Check_Recursive_Declaration
;
11935 -- Start of processing for Constant_Redeclaration
11938 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
11939 if Nkind
(Object_Definition
11940 (Parent
(Prev
))) = N_Subtype_Indication
11942 -- Find type of new declaration. The constraints of the two
11943 -- views must match statically, but there is no point in
11944 -- creating an itype for the full view.
11946 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
11947 Find_Type
(Subtype_Mark
(Obj_Def
));
11948 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
11951 Find_Type
(Obj_Def
);
11952 New_T
:= Entity
(Obj_Def
);
11958 -- The full view may impose a constraint, even if the partial
11959 -- view does not, so construct the subtype.
11961 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
11966 -- Current declaration is illegal, diagnosed below in Enter_Name
11972 -- If previous full declaration or a renaming declaration exists, or if
11973 -- a homograph is present, let Enter_Name handle it, either with an
11974 -- error or with the removal of an overridden implicit subprogram.
11975 -- The previous one is a full declaration if it has an expression
11976 -- (which in the case of an aggregate is indicated by the Init flag).
11978 if Ekind
(Prev
) /= E_Constant
11979 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
11980 or else Present
(Expression
(Parent
(Prev
)))
11981 or else Has_Init_Expression
(Parent
(Prev
))
11982 or else Present
(Full_View
(Prev
))
11986 -- Verify that types of both declarations match, or else that both types
11987 -- are anonymous access types whose designated subtypes statically match
11988 -- (as allowed in Ada 2005 by AI-385).
11990 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
11992 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
11993 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
11994 or else Is_Access_Constant
(Etype
(New_T
)) /=
11995 Is_Access_Constant
(Etype
(Prev
))
11996 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
11997 Can_Never_Be_Null
(Etype
(Prev
))
11998 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
11999 Null_Exclusion_Present
(Parent
(Id
))
12000 or else not Subtypes_Statically_Match
12001 (Designated_Type
(Etype
(Prev
)),
12002 Designated_Type
(Etype
(New_T
))))
12004 Error_Msg_Sloc
:= Sloc
(Prev
);
12005 Error_Msg_N
("type does not match declaration#", N
);
12006 Set_Full_View
(Prev
, Id
);
12007 Set_Etype
(Id
, Any_Type
);
12009 -- A deferred constant whose type is an anonymous array is always
12010 -- illegal (unless imported). A detailed error message might be
12011 -- helpful for Ada beginners.
12013 if Nkind
(Object_Definition
(Parent
(Prev
)))
12014 = N_Constrained_Array_Definition
12015 and then Nkind
(Object_Definition
(N
))
12016 = N_Constrained_Array_Definition
12018 Error_Msg_N
("\each anonymous array is a distinct type", N
);
12019 Error_Msg_N
("a deferred constant must have a named type",
12020 Object_Definition
(Parent
(Prev
)));
12024 Null_Exclusion_Present
(Parent
(Prev
))
12025 and then not Null_Exclusion_Present
(N
)
12027 Error_Msg_Sloc
:= Sloc
(Prev
);
12028 Error_Msg_N
("null-exclusion does not match declaration#", N
);
12029 Set_Full_View
(Prev
, Id
);
12030 Set_Etype
(Id
, Any_Type
);
12032 -- If so, process the full constant declaration
12035 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12036 -- the deferred declaration is constrained, then the subtype defined
12037 -- by the subtype_indication in the full declaration shall match it
12040 Check_Possible_Deferred_Completion
12042 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
12043 Curr_Obj_Def
=> Obj_Def
);
12045 Set_Full_View
(Prev
, Id
);
12046 Set_Is_Public
(Id
, Is_Public
(Prev
));
12047 Set_Is_Internal
(Id
);
12048 Append_Entity
(Id
, Current_Scope
);
12050 -- Check ALIASED present if present before (RM 7.4(7))
12052 if Is_Aliased
(Prev
)
12053 and then not Aliased_Present
(N
)
12055 Error_Msg_Sloc
:= Sloc
(Prev
);
12056 Error_Msg_N
("ALIASED required (see declaration #)", N
);
12059 -- Check that placement is in private part and that the incomplete
12060 -- declaration appeared in the visible part.
12062 if Ekind
(Current_Scope
) = E_Package
12063 and then not In_Private_Part
(Current_Scope
)
12065 Error_Msg_Sloc
:= Sloc
(Prev
);
12067 ("full constant for declaration # must be in private part", N
);
12069 elsif Ekind
(Current_Scope
) = E_Package
12071 List_Containing
(Parent
(Prev
)) /=
12072 Visible_Declarations
(Package_Specification
(Current_Scope
))
12075 ("deferred constant must be declared in visible part",
12079 if Is_Access_Type
(T
)
12080 and then Nkind
(Expression
(N
)) = N_Allocator
12082 Check_Recursive_Declaration
(Designated_Type
(T
));
12085 -- A deferred constant is a visible entity. If type has invariants,
12086 -- verify that the initial value satisfies them.
12088 if Has_Invariants
(T
) and then Present
(Invariant_Procedure
(T
)) then
12090 Make_Invariant_Call
(New_Occurrence_Of
(Prev
, Sloc
(N
))));
12093 end Constant_Redeclaration
;
12095 ----------------------
12096 -- Constrain_Access --
12097 ----------------------
12099 procedure Constrain_Access
12100 (Def_Id
: in out Entity_Id
;
12102 Related_Nod
: Node_Id
)
12104 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12105 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
12106 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
12107 Constraint_OK
: Boolean := True;
12110 if Is_Array_Type
(Desig_Type
) then
12111 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
12113 elsif (Is_Record_Type
(Desig_Type
)
12114 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
12115 and then not Is_Constrained
(Desig_Type
)
12117 -- ??? The following code is a temporary bypass to ignore a
12118 -- discriminant constraint on access type if it is constraining
12119 -- the current record. Avoid creating the implicit subtype of the
12120 -- record we are currently compiling since right now, we cannot
12121 -- handle these. For now, just return the access type itself.
12123 if Desig_Type
= Current_Scope
12124 and then No
(Def_Id
)
12126 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
12127 Def_Id
:= Entity
(Subtype_Mark
(S
));
12129 -- This call added to ensure that the constraint is analyzed
12130 -- (needed for a B test). Note that we still return early from
12131 -- this procedure to avoid recursive processing. ???
12133 Constrain_Discriminated_Type
12134 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
12138 -- Enforce rule that the constraint is illegal if there is an
12139 -- unconstrained view of the designated type. This means that the
12140 -- partial view (either a private type declaration or a derivation
12141 -- from a private type) has no discriminants. (Defect Report
12142 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12144 -- Rule updated for Ada 2005: The private type is said to have
12145 -- a constrained partial view, given that objects of the type
12146 -- can be declared. Furthermore, the rule applies to all access
12147 -- types, unlike the rule concerning default discriminants (see
12150 if (Ekind
(T
) = E_General_Access_Type
or else Ada_Version
>= Ada_2005
)
12151 and then Has_Private_Declaration
(Desig_Type
)
12152 and then In_Open_Scopes
(Scope
(Desig_Type
))
12153 and then Has_Discriminants
(Desig_Type
)
12156 Pack
: constant Node_Id
:=
12157 Unit_Declaration_Node
(Scope
(Desig_Type
));
12162 if Nkind
(Pack
) = N_Package_Declaration
then
12163 Decls
:= Visible_Declarations
(Specification
(Pack
));
12164 Decl
:= First
(Decls
);
12165 while Present
(Decl
) loop
12166 if (Nkind
(Decl
) = N_Private_Type_Declaration
12167 and then Chars
(Defining_Identifier
(Decl
)) =
12168 Chars
(Desig_Type
))
12171 (Nkind
(Decl
) = N_Full_Type_Declaration
12173 Chars
(Defining_Identifier
(Decl
)) =
12175 and then Is_Derived_Type
(Desig_Type
)
12177 Has_Private_Declaration
(Etype
(Desig_Type
)))
12179 if No
(Discriminant_Specifications
(Decl
)) then
12181 ("cannot constrain access type if designated "
12182 & "type has constrained partial view", S
);
12194 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
12195 For_Access
=> True);
12197 elsif Is_Concurrent_Type
(Desig_Type
)
12198 and then not Is_Constrained
(Desig_Type
)
12200 Constrain_Concurrent
(Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
12203 Error_Msg_N
("invalid constraint on access type", S
);
12205 -- We simply ignore an invalid constraint
12207 Desig_Subtype
:= Desig_Type
;
12208 Constraint_OK
:= False;
12211 if No
(Def_Id
) then
12212 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
12214 Set_Ekind
(Def_Id
, E_Access_Subtype
);
12217 if Constraint_OK
then
12218 Set_Etype
(Def_Id
, Base_Type
(T
));
12220 if Is_Private_Type
(Desig_Type
) then
12221 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
12224 Set_Etype
(Def_Id
, Any_Type
);
12227 Set_Size_Info
(Def_Id
, T
);
12228 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
12229 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
12230 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12231 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
12233 Conditional_Delay
(Def_Id
, T
);
12235 -- AI-363 : Subtypes of general access types whose designated types have
12236 -- default discriminants are disallowed. In instances, the rule has to
12237 -- be checked against the actual, of which T is the subtype. In a
12238 -- generic body, the rule is checked assuming that the actual type has
12239 -- defaulted discriminants.
12241 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
12242 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
12243 and then Has_Defaulted_Discriminants
(Desig_Type
)
12245 if Ada_Version
< Ada_2005
then
12247 ("access subtype of general access type would not " &
12248 "be allowed in Ada 2005?y?", S
);
12251 ("access subtype of general access type not allowed", S
);
12254 Error_Msg_N
("\discriminants have defaults", S
);
12256 elsif Is_Access_Type
(T
)
12257 and then Is_Generic_Type
(Desig_Type
)
12258 and then Has_Discriminants
(Desig_Type
)
12259 and then In_Package_Body
(Current_Scope
)
12261 if Ada_Version
< Ada_2005
then
12263 ("access subtype would not be allowed in generic body "
12264 & "in Ada 2005?y?", S
);
12267 ("access subtype not allowed in generic body", S
);
12271 ("\designated type is a discriminated formal", S
);
12274 end Constrain_Access
;
12276 ---------------------
12277 -- Constrain_Array --
12278 ---------------------
12280 procedure Constrain_Array
12281 (Def_Id
: in out Entity_Id
;
12283 Related_Nod
: Node_Id
;
12284 Related_Id
: Entity_Id
;
12285 Suffix
: Character)
12287 C
: constant Node_Id
:= Constraint
(SI
);
12288 Number_Of_Constraints
: Nat
:= 0;
12291 Constraint_OK
: Boolean := True;
12294 T
:= Entity
(Subtype_Mark
(SI
));
12296 if Is_Access_Type
(T
) then
12297 T
:= Designated_Type
(T
);
12300 -- If an index constraint follows a subtype mark in a subtype indication
12301 -- then the type or subtype denoted by the subtype mark must not already
12302 -- impose an index constraint. The subtype mark must denote either an
12303 -- unconstrained array type or an access type whose designated type
12304 -- is such an array type... (RM 3.6.1)
12306 if Is_Constrained
(T
) then
12307 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
12308 Constraint_OK
:= False;
12311 S
:= First
(Constraints
(C
));
12312 while Present
(S
) loop
12313 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
12317 -- In either case, the index constraint must provide a discrete
12318 -- range for each index of the array type and the type of each
12319 -- discrete range must be the same as that of the corresponding
12320 -- index. (RM 3.6.1)
12322 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
12323 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
12324 Constraint_OK
:= False;
12327 S
:= First
(Constraints
(C
));
12328 Index
:= First_Index
(T
);
12331 -- Apply constraints to each index type
12333 for J
in 1 .. Number_Of_Constraints
loop
12334 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
12342 if No
(Def_Id
) then
12344 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
12345 Set_Parent
(Def_Id
, Related_Nod
);
12348 Set_Ekind
(Def_Id
, E_Array_Subtype
);
12351 Set_Size_Info
(Def_Id
, (T
));
12352 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12353 Set_Etype
(Def_Id
, Base_Type
(T
));
12355 if Constraint_OK
then
12356 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
12358 Set_First_Index
(Def_Id
, First_Index
(T
));
12361 Set_Is_Constrained
(Def_Id
, True);
12362 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
12363 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12365 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
12366 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
12368 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12369 -- We need to initialize the attribute because if Def_Id is previously
12370 -- analyzed through a limited_with clause, it will have the attributes
12371 -- of an incomplete type, one of which is an Elist that overlaps the
12372 -- Packed_Array_Impl_Type field.
12374 Set_Packed_Array_Impl_Type
(Def_Id
, Empty
);
12376 -- Build a freeze node if parent still needs one. Also make sure that
12377 -- the Depends_On_Private status is set because the subtype will need
12378 -- reprocessing at the time the base type does, and also we must set a
12379 -- conditional delay.
12381 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
12382 Conditional_Delay
(Def_Id
, T
);
12383 end Constrain_Array
;
12385 ------------------------------
12386 -- Constrain_Component_Type --
12387 ------------------------------
12389 function Constrain_Component_Type
12391 Constrained_Typ
: Entity_Id
;
12392 Related_Node
: Node_Id
;
12394 Constraints
: Elist_Id
) return Entity_Id
12396 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
12397 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
12399 function Build_Constrained_Array_Type
12400 (Old_Type
: Entity_Id
) return Entity_Id
;
12401 -- If Old_Type is an array type, one of whose indexes is constrained
12402 -- by a discriminant, build an Itype whose constraint replaces the
12403 -- discriminant with its value in the constraint.
12405 function Build_Constrained_Discriminated_Type
12406 (Old_Type
: Entity_Id
) return Entity_Id
;
12407 -- Ditto for record components
12409 function Build_Constrained_Access_Type
12410 (Old_Type
: Entity_Id
) return Entity_Id
;
12411 -- Ditto for access types. Makes use of previous two functions, to
12412 -- constrain designated type.
12414 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
12415 -- T is an array or discriminated type, C is a list of constraints
12416 -- that apply to T. This routine builds the constrained subtype.
12418 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
12419 -- Returns True if Expr is a discriminant
12421 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
12422 -- Find the value of discriminant Discrim in Constraint
12424 -----------------------------------
12425 -- Build_Constrained_Access_Type --
12426 -----------------------------------
12428 function Build_Constrained_Access_Type
12429 (Old_Type
: Entity_Id
) return Entity_Id
12431 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
12433 Desig_Subtype
: Entity_Id
;
12437 -- if the original access type was not embedded in the enclosing
12438 -- type definition, there is no need to produce a new access
12439 -- subtype. In fact every access type with an explicit constraint
12440 -- generates an itype whose scope is the enclosing record.
12442 if not Is_Type
(Scope
(Old_Type
)) then
12445 elsif Is_Array_Type
(Desig_Type
) then
12446 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
12448 elsif Has_Discriminants
(Desig_Type
) then
12450 -- This may be an access type to an enclosing record type for
12451 -- which we are constructing the constrained components. Return
12452 -- the enclosing record subtype. This is not always correct,
12453 -- but avoids infinite recursion. ???
12455 Desig_Subtype
:= Any_Type
;
12457 for J
in reverse 0 .. Scope_Stack
.Last
loop
12458 Scop
:= Scope_Stack
.Table
(J
).Entity
;
12461 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
12463 Desig_Subtype
:= Scop
;
12466 exit when not Is_Type
(Scop
);
12469 if Desig_Subtype
= Any_Type
then
12471 Build_Constrained_Discriminated_Type
(Desig_Type
);
12478 if Desig_Subtype
/= Desig_Type
then
12480 -- The Related_Node better be here or else we won't be able
12481 -- to attach new itypes to a node in the tree.
12483 pragma Assert
(Present
(Related_Node
));
12485 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
12487 Set_Etype
(Itype
, Base_Type
(Old_Type
));
12488 Set_Size_Info
(Itype
, (Old_Type
));
12489 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
12490 Set_Depends_On_Private
(Itype
, Has_Private_Component
12492 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
12495 -- The new itype needs freezing when it depends on a not frozen
12496 -- type and the enclosing subtype needs freezing.
12498 if Has_Delayed_Freeze
(Constrained_Typ
)
12499 and then not Is_Frozen
(Constrained_Typ
)
12501 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
12509 end Build_Constrained_Access_Type
;
12511 ----------------------------------
12512 -- Build_Constrained_Array_Type --
12513 ----------------------------------
12515 function Build_Constrained_Array_Type
12516 (Old_Type
: Entity_Id
) return Entity_Id
12520 Old_Index
: Node_Id
;
12521 Range_Node
: Node_Id
;
12522 Constr_List
: List_Id
;
12524 Need_To_Create_Itype
: Boolean := False;
12527 Old_Index
:= First_Index
(Old_Type
);
12528 while Present
(Old_Index
) loop
12529 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12531 if Is_Discriminant
(Lo_Expr
)
12533 Is_Discriminant
(Hi_Expr
)
12535 Need_To_Create_Itype
:= True;
12538 Next_Index
(Old_Index
);
12541 if Need_To_Create_Itype
then
12542 Constr_List
:= New_List
;
12544 Old_Index
:= First_Index
(Old_Type
);
12545 while Present
(Old_Index
) loop
12546 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12548 if Is_Discriminant
(Lo_Expr
) then
12549 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
12552 if Is_Discriminant
(Hi_Expr
) then
12553 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
12558 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
12560 Append
(Range_Node
, To
=> Constr_List
);
12562 Next_Index
(Old_Index
);
12565 return Build_Subtype
(Old_Type
, Constr_List
);
12570 end Build_Constrained_Array_Type
;
12572 ------------------------------------------
12573 -- Build_Constrained_Discriminated_Type --
12574 ------------------------------------------
12576 function Build_Constrained_Discriminated_Type
12577 (Old_Type
: Entity_Id
) return Entity_Id
12580 Constr_List
: List_Id
;
12581 Old_Constraint
: Elmt_Id
;
12583 Need_To_Create_Itype
: Boolean := False;
12586 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12587 while Present
(Old_Constraint
) loop
12588 Expr
:= Node
(Old_Constraint
);
12590 if Is_Discriminant
(Expr
) then
12591 Need_To_Create_Itype
:= True;
12594 Next_Elmt
(Old_Constraint
);
12597 if Need_To_Create_Itype
then
12598 Constr_List
:= New_List
;
12600 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12601 while Present
(Old_Constraint
) loop
12602 Expr
:= Node
(Old_Constraint
);
12604 if Is_Discriminant
(Expr
) then
12605 Expr
:= Get_Discr_Value
(Expr
);
12608 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
12610 Next_Elmt
(Old_Constraint
);
12613 return Build_Subtype
(Old_Type
, Constr_List
);
12618 end Build_Constrained_Discriminated_Type
;
12620 -------------------
12621 -- Build_Subtype --
12622 -------------------
12624 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
12626 Subtyp_Decl
: Node_Id
;
12627 Def_Id
: Entity_Id
;
12628 Btyp
: Entity_Id
:= Base_Type
(T
);
12631 -- The Related_Node better be here or else we won't be able to
12632 -- attach new itypes to a node in the tree.
12634 pragma Assert
(Present
(Related_Node
));
12636 -- If the view of the component's type is incomplete or private
12637 -- with unknown discriminants, then the constraint must be applied
12638 -- to the full type.
12640 if Has_Unknown_Discriminants
(Btyp
)
12641 and then Present
(Underlying_Type
(Btyp
))
12643 Btyp
:= Underlying_Type
(Btyp
);
12647 Make_Subtype_Indication
(Loc
,
12648 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
12649 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
12651 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
12654 Make_Subtype_Declaration
(Loc
,
12655 Defining_Identifier
=> Def_Id
,
12656 Subtype_Indication
=> Indic
);
12658 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
12660 -- Itypes must be analyzed with checks off (see package Itypes)
12662 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
12667 ---------------------
12668 -- Get_Discr_Value --
12669 ---------------------
12671 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
12676 -- The discriminant may be declared for the type, in which case we
12677 -- find it by iterating over the list of discriminants. If the
12678 -- discriminant is inherited from a parent type, it appears as the
12679 -- corresponding discriminant of the current type. This will be the
12680 -- case when constraining an inherited component whose constraint is
12681 -- given by a discriminant of the parent.
12683 D
:= First_Discriminant
(Typ
);
12684 E
:= First_Elmt
(Constraints
);
12686 while Present
(D
) loop
12687 if D
= Entity
(Discrim
)
12688 or else D
= CR_Discriminant
(Entity
(Discrim
))
12689 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
12694 Next_Discriminant
(D
);
12698 -- The Corresponding_Discriminant mechanism is incomplete, because
12699 -- the correspondence between new and old discriminants is not one
12700 -- to one: one new discriminant can constrain several old ones. In
12701 -- that case, scan sequentially the stored_constraint, the list of
12702 -- discriminants of the parents, and the constraints.
12704 -- Previous code checked for the present of the Stored_Constraint
12705 -- list for the derived type, but did not use it at all. Should it
12706 -- be present when the component is a discriminated task type?
12708 if Is_Derived_Type
(Typ
)
12709 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
12711 D
:= First_Discriminant
(Etype
(Typ
));
12712 E
:= First_Elmt
(Constraints
);
12713 while Present
(D
) loop
12714 if D
= Entity
(Discrim
) then
12718 Next_Discriminant
(D
);
12723 -- Something is wrong if we did not find the value
12725 raise Program_Error
;
12726 end Get_Discr_Value
;
12728 ---------------------
12729 -- Is_Discriminant --
12730 ---------------------
12732 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
12733 Discrim_Scope
: Entity_Id
;
12736 if Denotes_Discriminant
(Expr
) then
12737 Discrim_Scope
:= Scope
(Entity
(Expr
));
12739 -- Either we have a reference to one of Typ's discriminants,
12741 pragma Assert
(Discrim_Scope
= Typ
12743 -- or to the discriminants of the parent type, in the case
12744 -- of a derivation of a tagged type with variants.
12746 or else Discrim_Scope
= Etype
(Typ
)
12747 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
12749 -- or same as above for the case where the discriminants
12750 -- were declared in Typ's private view.
12752 or else (Is_Private_Type
(Discrim_Scope
)
12753 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12755 -- or else we are deriving from the full view and the
12756 -- discriminant is declared in the private entity.
12758 or else (Is_Private_Type
(Typ
)
12759 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12761 -- Or we are constrained the corresponding record of a
12762 -- synchronized type that completes a private declaration.
12764 or else (Is_Concurrent_Record_Type
(Typ
)
12766 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
12768 -- or we have a class-wide type, in which case make sure the
12769 -- discriminant found belongs to the root type.
12771 or else (Is_Class_Wide_Type
(Typ
)
12772 and then Etype
(Typ
) = Discrim_Scope
));
12777 -- In all other cases we have something wrong
12780 end Is_Discriminant
;
12782 -- Start of processing for Constrain_Component_Type
12785 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
12786 and then Comes_From_Source
(Parent
(Comp
))
12787 and then Comes_From_Source
12788 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12791 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12793 return Compon_Type
;
12795 elsif Is_Array_Type
(Compon_Type
) then
12796 return Build_Constrained_Array_Type
(Compon_Type
);
12798 elsif Has_Discriminants
(Compon_Type
) then
12799 return Build_Constrained_Discriminated_Type
(Compon_Type
);
12801 elsif Is_Access_Type
(Compon_Type
) then
12802 return Build_Constrained_Access_Type
(Compon_Type
);
12805 return Compon_Type
;
12807 end Constrain_Component_Type
;
12809 --------------------------
12810 -- Constrain_Concurrent --
12811 --------------------------
12813 -- For concurrent types, the associated record value type carries the same
12814 -- discriminants, so when we constrain a concurrent type, we must constrain
12815 -- the corresponding record type as well.
12817 procedure Constrain_Concurrent
12818 (Def_Id
: in out Entity_Id
;
12820 Related_Nod
: Node_Id
;
12821 Related_Id
: Entity_Id
;
12822 Suffix
: Character)
12824 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12825 -- case of a private subtype (needed when only doing semantic analysis).
12827 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
12831 if Is_Access_Type
(T_Ent
) then
12832 T_Ent
:= Designated_Type
(T_Ent
);
12835 T_Val
:= Corresponding_Record_Type
(T_Ent
);
12837 if Present
(T_Val
) then
12839 if No
(Def_Id
) then
12840 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12842 -- Elaborate itype now, as it may be used in a subsequent
12843 -- synchronized operation in another scope.
12845 if Nkind
(Related_Nod
) = N_Full_Type_Declaration
then
12846 Build_Itype_Reference
(Def_Id
, Related_Nod
);
12850 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12852 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12853 Set_Corresponding_Record_Type
(Def_Id
,
12854 Constrain_Corresponding_Record
(Def_Id
, T_Val
, Related_Nod
));
12857 -- If there is no associated record, expansion is disabled and this
12858 -- is a generic context. Create a subtype in any case, so that
12859 -- semantic analysis can proceed.
12861 if No
(Def_Id
) then
12862 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12865 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12867 end Constrain_Concurrent
;
12869 ------------------------------------
12870 -- Constrain_Corresponding_Record --
12871 ------------------------------------
12873 function Constrain_Corresponding_Record
12874 (Prot_Subt
: Entity_Id
;
12875 Corr_Rec
: Entity_Id
;
12876 Related_Nod
: Node_Id
) return Entity_Id
12878 T_Sub
: constant Entity_Id
:=
12879 Create_Itype
(E_Record_Subtype
, Related_Nod
, Corr_Rec
, 'C');
12882 Set_Etype
(T_Sub
, Corr_Rec
);
12883 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
12884 Set_Is_Constrained
(T_Sub
, True);
12885 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
12886 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
12888 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
12889 Set_Discriminant_Constraint
12890 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
12891 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
12892 Create_Constrained_Components
12893 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
12896 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
12898 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
12899 Conditional_Delay
(T_Sub
, Corr_Rec
);
12902 -- This is a component subtype: it will be frozen in the context of
12903 -- the enclosing record's init_proc, so that discriminant references
12904 -- are resolved to discriminals. (Note: we used to skip freezing
12905 -- altogether in that case, which caused errors downstream for
12906 -- components of a bit packed array type).
12908 Set_Has_Delayed_Freeze
(T_Sub
);
12912 end Constrain_Corresponding_Record
;
12914 -----------------------
12915 -- Constrain_Decimal --
12916 -----------------------
12918 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
12919 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12920 C
: constant Node_Id
:= Constraint
(S
);
12921 Loc
: constant Source_Ptr
:= Sloc
(C
);
12922 Range_Expr
: Node_Id
;
12923 Digits_Expr
: Node_Id
;
12928 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
12930 if Nkind
(C
) = N_Range_Constraint
then
12931 Range_Expr
:= Range_Expression
(C
);
12932 Digits_Val
:= Digits_Value
(T
);
12935 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
12937 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
12939 Digits_Expr
:= Digits_Expression
(C
);
12940 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
12942 Check_Digits_Expression
(Digits_Expr
);
12943 Digits_Val
:= Expr_Value
(Digits_Expr
);
12945 if Digits_Val
> Digits_Value
(T
) then
12947 ("digits expression is incompatible with subtype", C
);
12948 Digits_Val
:= Digits_Value
(T
);
12951 if Present
(Range_Constraint
(C
)) then
12952 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
12954 Range_Expr
:= Empty
;
12958 Set_Etype
(Def_Id
, Base_Type
(T
));
12959 Set_Size_Info
(Def_Id
, (T
));
12960 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12961 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
12962 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
12963 Set_Small_Value
(Def_Id
, Small_Value
(T
));
12964 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
12965 Set_Digits_Value
(Def_Id
, Digits_Val
);
12967 -- Manufacture range from given digits value if no range present
12969 if No
(Range_Expr
) then
12970 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
12974 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
12976 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
12979 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
12980 Set_Discrete_RM_Size
(Def_Id
);
12982 -- Unconditionally delay the freeze, since we cannot set size
12983 -- information in all cases correctly until the freeze point.
12985 Set_Has_Delayed_Freeze
(Def_Id
);
12986 end Constrain_Decimal
;
12988 ----------------------------------
12989 -- Constrain_Discriminated_Type --
12990 ----------------------------------
12992 procedure Constrain_Discriminated_Type
12993 (Def_Id
: Entity_Id
;
12995 Related_Nod
: Node_Id
;
12996 For_Access
: Boolean := False)
12998 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13001 Elist
: Elist_Id
:= New_Elmt_List
;
13003 procedure Fixup_Bad_Constraint
;
13004 -- This is called after finding a bad constraint, and after having
13005 -- posted an appropriate error message. The mission is to leave the
13006 -- entity T in as reasonable state as possible.
13008 --------------------------
13009 -- Fixup_Bad_Constraint --
13010 --------------------------
13012 procedure Fixup_Bad_Constraint
is
13014 -- Set a reasonable Ekind for the entity. For an incomplete type,
13015 -- we can't do much, but for other types, we can set the proper
13016 -- corresponding subtype kind.
13018 if Ekind
(T
) = E_Incomplete_Type
then
13019 Set_Ekind
(Def_Id
, Ekind
(T
));
13021 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
13024 -- Set Etype to the known type, to reduce chances of cascaded errors
13026 Set_Etype
(Def_Id
, E
);
13027 Set_Error_Posted
(Def_Id
);
13028 end Fixup_Bad_Constraint
;
13030 -- Start of processing for Constrain_Discriminated_Type
13033 C
:= Constraint
(S
);
13035 -- A discriminant constraint is only allowed in a subtype indication,
13036 -- after a subtype mark. This subtype mark must denote either a type
13037 -- with discriminants, or an access type whose designated type is a
13038 -- type with discriminants. A discriminant constraint specifies the
13039 -- values of these discriminants (RM 3.7.2(5)).
13041 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
13043 if Is_Access_Type
(T
) then
13044 T
:= Designated_Type
(T
);
13047 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
13048 -- Avoid generating an error for access-to-incomplete subtypes.
13050 if Ada_Version
>= Ada_2005
13051 and then Ekind
(T
) = E_Incomplete_Type
13052 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
13053 and then not Is_Itype
(Def_Id
)
13055 -- A little sanity check, emit an error message if the type
13056 -- has discriminants to begin with. Type T may be a regular
13057 -- incomplete type or imported via a limited with clause.
13059 if Has_Discriminants
(T
)
13060 or else (From_Limited_With
(T
)
13061 and then Present
(Non_Limited_View
(T
))
13062 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
13063 N_Full_Type_Declaration
13064 and then Present
(Discriminant_Specifications
13065 (Parent
(Non_Limited_View
(T
)))))
13068 ("(Ada 2005) incomplete subtype may not be constrained", C
);
13070 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13073 Fixup_Bad_Constraint
;
13076 -- Check that the type has visible discriminants. The type may be
13077 -- a private type with unknown discriminants whose full view has
13078 -- discriminants which are invisible.
13080 elsif not Has_Discriminants
(T
)
13082 (Has_Unknown_Discriminants
(T
)
13083 and then Is_Private_Type
(T
))
13085 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13086 Fixup_Bad_Constraint
;
13089 elsif Is_Constrained
(E
)
13090 or else (Ekind
(E
) = E_Class_Wide_Subtype
13091 and then Present
(Discriminant_Constraint
(E
)))
13093 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
13094 Fixup_Bad_Constraint
;
13098 -- T may be an unconstrained subtype (e.g. a generic actual).
13099 -- Constraint applies to the base type.
13101 T
:= Base_Type
(T
);
13103 Elist
:= Build_Discriminant_Constraints
(T
, S
);
13105 -- If the list returned was empty we had an error in building the
13106 -- discriminant constraint. We have also already signalled an error
13107 -- in the incomplete type case
13109 if Is_Empty_Elmt_List
(Elist
) then
13110 Fixup_Bad_Constraint
;
13114 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
13115 end Constrain_Discriminated_Type
;
13117 ---------------------------
13118 -- Constrain_Enumeration --
13119 ---------------------------
13121 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
13122 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13123 C
: constant Node_Id
:= Constraint
(S
);
13126 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13128 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
13130 Set_Etype
(Def_Id
, Base_Type
(T
));
13131 Set_Size_Info
(Def_Id
, (T
));
13132 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13133 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13135 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13137 Set_Discrete_RM_Size
(Def_Id
);
13138 end Constrain_Enumeration
;
13140 ----------------------
13141 -- Constrain_Float --
13142 ----------------------
13144 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
13145 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13151 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
13153 Set_Etype
(Def_Id
, Base_Type
(T
));
13154 Set_Size_Info
(Def_Id
, (T
));
13155 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13157 -- Process the constraint
13159 C
:= Constraint
(S
);
13161 -- Digits constraint present
13163 if Nkind
(C
) = N_Digits_Constraint
then
13165 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13166 Check_Restriction
(No_Obsolescent_Features
, C
);
13168 if Warn_On_Obsolescent_Feature
then
13170 ("subtype digits constraint is an " &
13171 "obsolescent feature (RM J.3(8))?j?", C
);
13174 D
:= Digits_Expression
(C
);
13175 Analyze_And_Resolve
(D
, Any_Integer
);
13176 Check_Digits_Expression
(D
);
13177 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
13179 -- Check that digits value is in range. Obviously we can do this
13180 -- at compile time, but it is strictly a runtime check, and of
13181 -- course there is an ACVC test that checks this.
13183 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
13184 Error_Msg_Uint_1
:= Digits_Value
(T
);
13185 Error_Msg_N
("??digits value is too large, maximum is ^", D
);
13187 Make_Raise_Constraint_Error
(Sloc
(D
),
13188 Reason
=> CE_Range_Check_Failed
);
13189 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13192 C
:= Range_Constraint
(C
);
13194 -- No digits constraint present
13197 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
13200 -- Range constraint present
13202 if Nkind
(C
) = N_Range_Constraint
then
13203 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13205 -- No range constraint present
13208 pragma Assert
(No
(C
));
13209 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13212 Set_Is_Constrained
(Def_Id
);
13213 end Constrain_Float
;
13215 ---------------------
13216 -- Constrain_Index --
13217 ---------------------
13219 procedure Constrain_Index
13222 Related_Nod
: Node_Id
;
13223 Related_Id
: Entity_Id
;
13224 Suffix
: Character;
13225 Suffix_Index
: Nat
)
13227 Def_Id
: Entity_Id
;
13228 R
: Node_Id
:= Empty
;
13229 T
: constant Entity_Id
:= Etype
(Index
);
13233 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
13234 Set_Etype
(Def_Id
, Base_Type
(T
));
13236 if Nkind
(S
) = N_Range
13238 (Nkind
(S
) = N_Attribute_Reference
13239 and then Attribute_Name
(S
) = Name_Range
)
13241 -- A Range attribute will be transformed into N_Range by Resolve
13247 Process_Range_Expr_In_Decl
(R
, T
);
13249 if not Error_Posted
(S
)
13251 (Nkind
(S
) /= N_Range
13252 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
13253 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
13255 if Base_Type
(T
) /= Any_Type
13256 and then Etype
(Low_Bound
(S
)) /= Any_Type
13257 and then Etype
(High_Bound
(S
)) /= Any_Type
13259 Error_Msg_N
("range expected", S
);
13263 elsif Nkind
(S
) = N_Subtype_Indication
then
13265 -- The parser has verified that this is a discrete indication
13267 Resolve_Discrete_Subtype_Indication
(S
, T
);
13268 Bad_Predicated_Subtype_Use
13269 ("subtype& has predicate, not allowed in index constraint",
13270 S
, Entity
(Subtype_Mark
(S
)));
13272 R
:= Range_Expression
(Constraint
(S
));
13274 -- Capture values of bounds and generate temporaries for them if
13275 -- needed, since checks may cause duplication of the expressions
13276 -- which must not be reevaluated.
13278 -- The forced evaluation removes side effects from expressions, which
13279 -- should occur also in GNATprove mode. Otherwise, we end up with
13280 -- unexpected insertions of actions at places where this is not
13281 -- supposed to occur, e.g. on default parameters of a call.
13283 if Expander_Active
or GNATprove_Mode
then
13285 (Low_Bound
(R
), Related_Id
=> Def_Id
, Is_Low_Bound
=> True);
13287 (High_Bound
(R
), Related_Id
=> Def_Id
, Is_High_Bound
=> True);
13290 elsif Nkind
(S
) = N_Discriminant_Association
then
13292 -- Syntactically valid in subtype indication
13294 Error_Msg_N
("invalid index constraint", S
);
13295 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13298 -- Subtype_Mark case, no anonymous subtypes to construct
13303 if Is_Entity_Name
(S
) then
13304 if not Is_Type
(Entity
(S
)) then
13305 Error_Msg_N
("expect subtype mark for index constraint", S
);
13307 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
13308 Wrong_Type
(S
, Base_Type
(T
));
13310 -- Check error of subtype with predicate in index constraint
13313 Bad_Predicated_Subtype_Use
13314 ("subtype& has predicate, not allowed in index constraint",
13321 Error_Msg_N
("invalid index constraint", S
);
13322 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13327 -- Complete construction of the Itype
13329 if Is_Modular_Integer_Type
(T
) then
13330 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13332 elsif Is_Integer_Type
(T
) then
13333 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13336 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13337 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13338 Set_First_Literal
(Def_Id
, First_Literal
(T
));
13341 Set_Size_Info
(Def_Id
, (T
));
13342 Set_RM_Size
(Def_Id
, RM_Size
(T
));
13343 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13345 Set_Scalar_Range
(Def_Id
, R
);
13347 Set_Etype
(S
, Def_Id
);
13348 Set_Discrete_RM_Size
(Def_Id
);
13349 end Constrain_Index
;
13351 -----------------------
13352 -- Constrain_Integer --
13353 -----------------------
13355 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
13356 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13357 C
: constant Node_Id
:= Constraint
(S
);
13360 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13362 if Is_Modular_Integer_Type
(T
) then
13363 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13365 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13368 Set_Etype
(Def_Id
, Base_Type
(T
));
13369 Set_Size_Info
(Def_Id
, (T
));
13370 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13371 Set_Discrete_RM_Size
(Def_Id
);
13372 end Constrain_Integer
;
13374 ------------------------------
13375 -- Constrain_Ordinary_Fixed --
13376 ------------------------------
13378 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
13379 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13385 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
13386 Set_Etype
(Def_Id
, Base_Type
(T
));
13387 Set_Size_Info
(Def_Id
, (T
));
13388 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13389 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13391 -- Process the constraint
13393 C
:= Constraint
(S
);
13395 -- Delta constraint present
13397 if Nkind
(C
) = N_Delta_Constraint
then
13399 Check_SPARK_05_Restriction
("delta constraint is not allowed", S
);
13400 Check_Restriction
(No_Obsolescent_Features
, C
);
13402 if Warn_On_Obsolescent_Feature
then
13404 ("subtype delta constraint is an " &
13405 "obsolescent feature (RM J.3(7))?j?");
13408 D
:= Delta_Expression
(C
);
13409 Analyze_And_Resolve
(D
, Any_Real
);
13410 Check_Delta_Expression
(D
);
13411 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
13413 -- Check that delta value is in range. Obviously we can do this
13414 -- at compile time, but it is strictly a runtime check, and of
13415 -- course there is an ACVC test that checks this.
13417 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
13418 Error_Msg_N
("??delta value is too small", D
);
13420 Make_Raise_Constraint_Error
(Sloc
(D
),
13421 Reason
=> CE_Range_Check_Failed
);
13422 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13425 C
:= Range_Constraint
(C
);
13427 -- No delta constraint present
13430 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13433 -- Range constraint present
13435 if Nkind
(C
) = N_Range_Constraint
then
13436 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13438 -- No range constraint present
13441 pragma Assert
(No
(C
));
13442 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13445 Set_Discrete_RM_Size
(Def_Id
);
13447 -- Unconditionally delay the freeze, since we cannot set size
13448 -- information in all cases correctly until the freeze point.
13450 Set_Has_Delayed_Freeze
(Def_Id
);
13451 end Constrain_Ordinary_Fixed
;
13453 -----------------------
13454 -- Contain_Interface --
13455 -----------------------
13457 function Contain_Interface
13458 (Iface
: Entity_Id
;
13459 Ifaces
: Elist_Id
) return Boolean
13461 Iface_Elmt
: Elmt_Id
;
13464 if Present
(Ifaces
) then
13465 Iface_Elmt
:= First_Elmt
(Ifaces
);
13466 while Present
(Iface_Elmt
) loop
13467 if Node
(Iface_Elmt
) = Iface
then
13471 Next_Elmt
(Iface_Elmt
);
13476 end Contain_Interface
;
13478 ---------------------------
13479 -- Convert_Scalar_Bounds --
13480 ---------------------------
13482 procedure Convert_Scalar_Bounds
13484 Parent_Type
: Entity_Id
;
13485 Derived_Type
: Entity_Id
;
13488 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
13495 -- Defend against previous errors
13497 if No
(Scalar_Range
(Derived_Type
)) then
13498 Check_Error_Detected
;
13502 Lo
:= Build_Scalar_Bound
13503 (Type_Low_Bound
(Derived_Type
),
13504 Parent_Type
, Implicit_Base
);
13506 Hi
:= Build_Scalar_Bound
13507 (Type_High_Bound
(Derived_Type
),
13508 Parent_Type
, Implicit_Base
);
13515 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
13517 Set_Parent
(Rng
, N
);
13518 Set_Scalar_Range
(Derived_Type
, Rng
);
13520 -- Analyze the bounds
13522 Analyze_And_Resolve
(Lo
, Implicit_Base
);
13523 Analyze_And_Resolve
(Hi
, Implicit_Base
);
13525 -- Analyze the range itself, except that we do not analyze it if
13526 -- the bounds are real literals, and we have a fixed-point type.
13527 -- The reason for this is that we delay setting the bounds in this
13528 -- case till we know the final Small and Size values (see circuit
13529 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13531 if Is_Fixed_Point_Type
(Parent_Type
)
13532 and then Nkind
(Lo
) = N_Real_Literal
13533 and then Nkind
(Hi
) = N_Real_Literal
13537 -- Here we do the analysis of the range
13539 -- Note: we do this manually, since if we do a normal Analyze and
13540 -- Resolve call, there are problems with the conversions used for
13541 -- the derived type range.
13544 Set_Etype
(Rng
, Implicit_Base
);
13545 Set_Analyzed
(Rng
, True);
13547 end Convert_Scalar_Bounds
;
13549 -------------------
13550 -- Copy_And_Swap --
13551 -------------------
13553 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
13555 -- Initialize new full declaration entity by copying the pertinent
13556 -- fields of the corresponding private declaration entity.
13558 -- We temporarily set Ekind to a value appropriate for a type to
13559 -- avoid assert failures in Einfo from checking for setting type
13560 -- attributes on something that is not a type. Ekind (Priv) is an
13561 -- appropriate choice, since it allowed the attributes to be set
13562 -- in the first place. This Ekind value will be modified later.
13564 Set_Ekind
(Full
, Ekind
(Priv
));
13566 -- Also set Etype temporarily to Any_Type, again, in the absence
13567 -- of errors, it will be properly reset, and if there are errors,
13568 -- then we want a value of Any_Type to remain.
13570 Set_Etype
(Full
, Any_Type
);
13572 -- Now start copying attributes
13574 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
13576 if Has_Discriminants
(Full
) then
13577 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
13578 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
13581 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
13582 Set_Homonym
(Full
, Homonym
(Priv
));
13583 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
13584 Set_Is_Public
(Full
, Is_Public
(Priv
));
13585 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
13586 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
13587 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
13588 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
13589 Set_Has_Pragma_Unreferenced_Objects
13590 (Full
, Has_Pragma_Unreferenced_Objects
13593 Conditional_Delay
(Full
, Priv
);
13595 if Is_Tagged_Type
(Full
) then
13596 Set_Direct_Primitive_Operations
13597 (Full
, Direct_Primitive_Operations
(Priv
));
13598 Set_No_Tagged_Streams_Pragma
13599 (Full
, No_Tagged_Streams_Pragma
(Priv
));
13601 if Is_Base_Type
(Priv
) then
13602 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
13606 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
13607 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
13608 Set_Scope
(Full
, Scope
(Priv
));
13609 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
13610 Set_First_Entity
(Full
, First_Entity
(Priv
));
13611 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
13613 -- If access types have been recorded for later handling, keep them in
13614 -- the full view so that they get handled when the full view freeze
13615 -- node is expanded.
13617 if Present
(Freeze_Node
(Priv
))
13618 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
13620 Ensure_Freeze_Node
(Full
);
13621 Set_Access_Types_To_Process
13622 (Freeze_Node
(Full
),
13623 Access_Types_To_Process
(Freeze_Node
(Priv
)));
13626 -- Swap the two entities. Now Private is the full type entity and Full
13627 -- is the private one. They will be swapped back at the end of the
13628 -- private part. This swapping ensures that the entity that is visible
13629 -- in the private part is the full declaration.
13631 Exchange_Entities
(Priv
, Full
);
13632 Append_Entity
(Full
, Scope
(Full
));
13635 -------------------------------------
13636 -- Copy_Array_Base_Type_Attributes --
13637 -------------------------------------
13639 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
13641 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
13642 Set_Component_Type
(T1
, Component_Type
(T2
));
13643 Set_Component_Size
(T1
, Component_Size
(T2
));
13644 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
13645 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
13646 Set_Has_Protected
(T1
, Has_Protected
(T2
));
13647 Set_Has_Task
(T1
, Has_Task
(T2
));
13648 Set_Is_Packed
(T1
, Is_Packed
(T2
));
13649 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
13650 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
13651 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
13652 end Copy_Array_Base_Type_Attributes
;
13654 -----------------------------------
13655 -- Copy_Array_Subtype_Attributes --
13656 -----------------------------------
13658 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
13660 Set_Size_Info
(T1
, T2
);
13662 Set_First_Index
(T1
, First_Index
(T2
));
13663 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
13664 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
13665 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
13666 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
13667 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
13668 Inherit_Rep_Item_Chain
(T1
, T2
);
13669 Set_Convention
(T1
, Convention
(T2
));
13670 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
13671 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
13672 Set_Packed_Array_Impl_Type
(T1
, Packed_Array_Impl_Type
(T2
));
13673 end Copy_Array_Subtype_Attributes
;
13675 -----------------------------------
13676 -- Create_Constrained_Components --
13677 -----------------------------------
13679 procedure Create_Constrained_Components
13681 Decl_Node
: Node_Id
;
13683 Constraints
: Elist_Id
)
13685 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
13686 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
13687 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
13688 Assoc_List
: constant List_Id
:= New_List
;
13689 Discr_Val
: Elmt_Id
;
13693 Is_Static
: Boolean := True;
13695 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
13696 -- Collect parent type components that do not appear in a variant part
13698 procedure Create_All_Components
;
13699 -- Iterate over Comp_List to create the components of the subtype
13701 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
13702 -- Creates a new component from Old_Compon, copying all the fields from
13703 -- it, including its Etype, inserts the new component in the Subt entity
13704 -- chain and returns the new component.
13706 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
13707 -- If true, and discriminants are static, collect only components from
13708 -- variants selected by discriminant values.
13710 ------------------------------
13711 -- Collect_Fixed_Components --
13712 ------------------------------
13714 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
13716 -- Build association list for discriminants, and find components of the
13717 -- variant part selected by the values of the discriminants.
13719 Old_C
:= First_Discriminant
(Typ
);
13720 Discr_Val
:= First_Elmt
(Constraints
);
13721 while Present
(Old_C
) loop
13722 Append_To
(Assoc_List
,
13723 Make_Component_Association
(Loc
,
13724 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
13725 Expression
=> New_Copy
(Node
(Discr_Val
))));
13727 Next_Elmt
(Discr_Val
);
13728 Next_Discriminant
(Old_C
);
13731 -- The tag and the possible parent component are unconditionally in
13734 if Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
13735 Old_C
:= First_Component
(Typ
);
13736 while Present
(Old_C
) loop
13737 if Nam_In
(Chars
(Old_C
), Name_uTag
, Name_uParent
) then
13738 Append_Elmt
(Old_C
, Comp_List
);
13741 Next_Component
(Old_C
);
13744 end Collect_Fixed_Components
;
13746 ---------------------------
13747 -- Create_All_Components --
13748 ---------------------------
13750 procedure Create_All_Components
is
13754 Comp
:= First_Elmt
(Comp_List
);
13755 while Present
(Comp
) loop
13756 Old_C
:= Node
(Comp
);
13757 New_C
:= Create_Component
(Old_C
);
13761 Constrain_Component_Type
13762 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
13763 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13767 end Create_All_Components
;
13769 ----------------------
13770 -- Create_Component --
13771 ----------------------
13773 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
13774 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
13777 if Ekind
(Old_Compon
) = E_Discriminant
13778 and then Is_Completely_Hidden
(Old_Compon
)
13780 -- This is a shadow discriminant created for a discriminant of
13781 -- the parent type, which needs to be present in the subtype.
13782 -- Give the shadow discriminant an internal name that cannot
13783 -- conflict with that of visible components.
13785 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
13788 -- Set the parent so we have a proper link for freezing etc. This is
13789 -- not a real parent pointer, since of course our parent does not own
13790 -- up to us and reference us, we are an illegitimate child of the
13791 -- original parent.
13793 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
13795 -- If the old component's Esize was already determined and is a
13796 -- static value, then the new component simply inherits it. Otherwise
13797 -- the old component's size may require run-time determination, but
13798 -- the new component's size still might be statically determinable
13799 -- (if, for example it has a static constraint). In that case we want
13800 -- Layout_Type to recompute the component's size, so we reset its
13801 -- size and positional fields.
13803 if Frontend_Layout_On_Target
13804 and then not Known_Static_Esize
(Old_Compon
)
13806 Set_Esize
(New_Compon
, Uint_0
);
13807 Init_Normalized_First_Bit
(New_Compon
);
13808 Init_Normalized_Position
(New_Compon
);
13809 Init_Normalized_Position_Max
(New_Compon
);
13812 -- We do not want this node marked as Comes_From_Source, since
13813 -- otherwise it would get first class status and a separate cross-
13814 -- reference line would be generated. Illegitimate children do not
13815 -- rate such recognition.
13817 Set_Comes_From_Source
(New_Compon
, False);
13819 -- But it is a real entity, and a birth certificate must be properly
13820 -- registered by entering it into the entity list.
13822 Enter_Name
(New_Compon
);
13825 end Create_Component
;
13827 -----------------------
13828 -- Is_Variant_Record --
13829 -----------------------
13831 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
13833 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
13834 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
13835 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
13838 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
13839 end Is_Variant_Record
;
13841 -- Start of processing for Create_Constrained_Components
13844 pragma Assert
(Subt
/= Base_Type
(Subt
));
13845 pragma Assert
(Typ
= Base_Type
(Typ
));
13847 Set_First_Entity
(Subt
, Empty
);
13848 Set_Last_Entity
(Subt
, Empty
);
13850 -- Check whether constraint is fully static, in which case we can
13851 -- optimize the list of components.
13853 Discr_Val
:= First_Elmt
(Constraints
);
13854 while Present
(Discr_Val
) loop
13855 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
13856 Is_Static
:= False;
13860 Next_Elmt
(Discr_Val
);
13863 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
13867 -- Inherit the discriminants of the parent type
13869 Add_Discriminants
: declare
13875 Old_C
:= First_Discriminant
(Typ
);
13877 while Present
(Old_C
) loop
13878 Num_Disc
:= Num_Disc
+ 1;
13879 New_C
:= Create_Component
(Old_C
);
13880 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13881 Next_Discriminant
(Old_C
);
13884 -- For an untagged derived subtype, the number of discriminants may
13885 -- be smaller than the number of inherited discriminants, because
13886 -- several of them may be renamed by a single new discriminant or
13887 -- constrained. In this case, add the hidden discriminants back into
13888 -- the subtype, because they need to be present if the optimizer of
13889 -- the GCC 4.x back-end decides to break apart assignments between
13890 -- objects using the parent view into member-wise assignments.
13894 if Is_Derived_Type
(Typ
)
13895 and then not Is_Tagged_Type
(Typ
)
13897 Old_C
:= First_Stored_Discriminant
(Typ
);
13899 while Present
(Old_C
) loop
13900 Num_Gird
:= Num_Gird
+ 1;
13901 Next_Stored_Discriminant
(Old_C
);
13905 if Num_Gird
> Num_Disc
then
13907 -- Find out multiple uses of new discriminants, and add hidden
13908 -- components for the extra renamed discriminants. We recognize
13909 -- multiple uses through the Corresponding_Discriminant of a
13910 -- new discriminant: if it constrains several old discriminants,
13911 -- this field points to the last one in the parent type. The
13912 -- stored discriminants of the derived type have the same name
13913 -- as those of the parent.
13917 New_Discr
: Entity_Id
;
13918 Old_Discr
: Entity_Id
;
13921 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
13922 Old_Discr
:= First_Stored_Discriminant
(Typ
);
13923 while Present
(Constr
) loop
13924 if Is_Entity_Name
(Node
(Constr
))
13925 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
13927 New_Discr
:= Entity
(Node
(Constr
));
13929 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
13932 -- The new discriminant has been used to rename a
13933 -- subsequent old discriminant. Introduce a shadow
13934 -- component for the current old discriminant.
13936 New_C
:= Create_Component
(Old_Discr
);
13937 Set_Original_Record_Component
(New_C
, Old_Discr
);
13941 -- The constraint has eliminated the old discriminant.
13942 -- Introduce a shadow component.
13944 New_C
:= Create_Component
(Old_Discr
);
13945 Set_Original_Record_Component
(New_C
, Old_Discr
);
13948 Next_Elmt
(Constr
);
13949 Next_Stored_Discriminant
(Old_Discr
);
13953 end Add_Discriminants
;
13956 and then Is_Variant_Record
(Typ
)
13958 Collect_Fixed_Components
(Typ
);
13960 Gather_Components
(
13962 Component_List
(Type_Definition
(Parent
(Typ
))),
13963 Governed_By
=> Assoc_List
,
13965 Report_Errors
=> Errors
);
13966 pragma Assert
(not Errors
);
13968 Create_All_Components
;
13970 -- If the subtype declaration is created for a tagged type derivation
13971 -- with constraints, we retrieve the record definition of the parent
13972 -- type to select the components of the proper variant.
13975 and then Is_Tagged_Type
(Typ
)
13976 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
13978 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
13979 and then Is_Variant_Record
(Parent_Type
)
13981 Collect_Fixed_Components
(Typ
);
13985 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
13986 Governed_By
=> Assoc_List
,
13988 Report_Errors
=> Errors
);
13990 -- Note: previously there was a check at this point that no errors
13991 -- were detected. As a consequence of AI05-220 there may be an error
13992 -- if an inherited discriminant that controls a variant has a non-
13993 -- static constraint.
13995 -- If the tagged derivation has a type extension, collect all the
13996 -- new components therein.
13998 if Present
(Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
14000 Old_C
:= First_Component
(Typ
);
14001 while Present
(Old_C
) loop
14002 if Original_Record_Component
(Old_C
) = Old_C
14003 and then Chars
(Old_C
) /= Name_uTag
14004 and then Chars
(Old_C
) /= Name_uParent
14006 Append_Elmt
(Old_C
, Comp_List
);
14009 Next_Component
(Old_C
);
14013 Create_All_Components
;
14016 -- If discriminants are not static, or if this is a multi-level type
14017 -- extension, we have to include all components of the parent type.
14019 Old_C
:= First_Component
(Typ
);
14020 while Present
(Old_C
) loop
14021 New_C
:= Create_Component
(Old_C
);
14025 Constrain_Component_Type
14026 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
14027 Set_Is_Public
(New_C
, Is_Public
(Subt
));
14029 Next_Component
(Old_C
);
14034 end Create_Constrained_Components
;
14036 ------------------------------------------
14037 -- Decimal_Fixed_Point_Type_Declaration --
14038 ------------------------------------------
14040 procedure Decimal_Fixed_Point_Type_Declaration
14044 Loc
: constant Source_Ptr
:= Sloc
(Def
);
14045 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
14046 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
14047 Implicit_Base
: Entity_Id
;
14054 Check_SPARK_05_Restriction
14055 ("decimal fixed point type is not allowed", Def
);
14056 Check_Restriction
(No_Fixed_Point
, Def
);
14058 -- Create implicit base type
14061 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
14062 Set_Etype
(Implicit_Base
, Implicit_Base
);
14064 -- Analyze and process delta expression
14066 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
14068 Check_Delta_Expression
(Delta_Expr
);
14069 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
14071 -- Check delta is power of 10, and determine scale value from it
14077 Scale_Val
:= Uint_0
;
14080 if Val
< Ureal_1
then
14081 while Val
< Ureal_1
loop
14082 Val
:= Val
* Ureal_10
;
14083 Scale_Val
:= Scale_Val
+ 1;
14086 if Scale_Val
> 18 then
14087 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
14088 Scale_Val
:= UI_From_Int
(+18);
14092 while Val
> Ureal_1
loop
14093 Val
:= Val
/ Ureal_10
;
14094 Scale_Val
:= Scale_Val
- 1;
14097 if Scale_Val
< -18 then
14098 Error_Msg_N
("scale is less than minimum value of -18", Def
);
14099 Scale_Val
:= UI_From_Int
(-18);
14103 if Val
/= Ureal_1
then
14104 Error_Msg_N
("delta expression must be a power of 10", Def
);
14105 Delta_Val
:= Ureal_10
** (-Scale_Val
);
14109 -- Set delta, scale and small (small = delta for decimal type)
14111 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
14112 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
14113 Set_Small_Value
(Implicit_Base
, Delta_Val
);
14115 -- Analyze and process digits expression
14117 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
14118 Check_Digits_Expression
(Digs_Expr
);
14119 Digs_Val
:= Expr_Value
(Digs_Expr
);
14121 if Digs_Val
> 18 then
14122 Digs_Val
:= UI_From_Int
(+18);
14123 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
14126 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
14127 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
14129 -- Set range of base type from digits value for now. This will be
14130 -- expanded to represent the true underlying base range by Freeze.
14132 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
14134 -- Note: We leave size as zero for now, size will be set at freeze
14135 -- time. We have to do this for ordinary fixed-point, because the size
14136 -- depends on the specified small, and we might as well do the same for
14137 -- decimal fixed-point.
14139 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
14141 -- If there are bounds given in the declaration use them as the
14142 -- bounds of the first named subtype.
14144 if Present
(Real_Range_Specification
(Def
)) then
14146 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
14147 Low
: constant Node_Id
:= Low_Bound
(RRS
);
14148 High
: constant Node_Id
:= High_Bound
(RRS
);
14153 Analyze_And_Resolve
(Low
, Any_Real
);
14154 Analyze_And_Resolve
(High
, Any_Real
);
14155 Check_Real_Bound
(Low
);
14156 Check_Real_Bound
(High
);
14157 Low_Val
:= Expr_Value_R
(Low
);
14158 High_Val
:= Expr_Value_R
(High
);
14160 if Low_Val
< (-Bound_Val
) then
14162 ("range low bound too small for digits value", Low
);
14163 Low_Val
:= -Bound_Val
;
14166 if High_Val
> Bound_Val
then
14168 ("range high bound too large for digits value", High
);
14169 High_Val
:= Bound_Val
;
14172 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
14175 -- If no explicit range, use range that corresponds to given
14176 -- digits value. This will end up as the final range for the
14180 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
14183 -- Complete entity for first subtype. The inheritance of the rep item
14184 -- chain ensures that SPARK-related pragmas are not clobbered when the
14185 -- decimal fixed point type acts as a full view of a private type.
14187 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
14188 Set_Etype
(T
, Implicit_Base
);
14189 Set_Size_Info
(T
, Implicit_Base
);
14190 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
14191 Set_Digits_Value
(T
, Digs_Val
);
14192 Set_Delta_Value
(T
, Delta_Val
);
14193 Set_Small_Value
(T
, Delta_Val
);
14194 Set_Scale_Value
(T
, Scale_Val
);
14195 Set_Is_Constrained
(T
);
14196 end Decimal_Fixed_Point_Type_Declaration
;
14198 -----------------------------------
14199 -- Derive_Progenitor_Subprograms --
14200 -----------------------------------
14202 procedure Derive_Progenitor_Subprograms
14203 (Parent_Type
: Entity_Id
;
14204 Tagged_Type
: Entity_Id
)
14209 Iface_Elmt
: Elmt_Id
;
14210 Iface_Subp
: Entity_Id
;
14211 New_Subp
: Entity_Id
:= Empty
;
14212 Prim_Elmt
: Elmt_Id
;
14217 pragma Assert
(Ada_Version
>= Ada_2005
14218 and then Is_Record_Type
(Tagged_Type
)
14219 and then Is_Tagged_Type
(Tagged_Type
)
14220 and then Has_Interfaces
(Tagged_Type
));
14222 -- Step 1: Transfer to the full-view primitives associated with the
14223 -- partial-view that cover interface primitives. Conceptually this
14224 -- work should be done later by Process_Full_View; done here to
14225 -- simplify its implementation at later stages. It can be safely
14226 -- done here because interfaces must be visible in the partial and
14227 -- private view (RM 7.3(7.3/2)).
14229 -- Small optimization: This work is only required if the parent may
14230 -- have entities whose Alias attribute reference an interface primitive.
14231 -- Such a situation may occur if the parent is an abstract type and the
14232 -- primitive has not been yet overridden or if the parent is a generic
14233 -- formal type covering interfaces.
14235 -- If the tagged type is not abstract, it cannot have abstract
14236 -- primitives (the only entities in the list of primitives of
14237 -- non-abstract tagged types that can reference abstract primitives
14238 -- through its Alias attribute are the internal entities that have
14239 -- attribute Interface_Alias, and these entities are generated later
14240 -- by Add_Internal_Interface_Entities).
14242 if In_Private_Part
(Current_Scope
)
14243 and then (Is_Abstract_Type
(Parent_Type
)
14245 Is_Generic_Type
(Parent_Type
))
14247 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
14248 while Present
(Elmt
) loop
14249 Subp
:= Node
(Elmt
);
14251 -- At this stage it is not possible to have entities in the list
14252 -- of primitives that have attribute Interface_Alias.
14254 pragma Assert
(No
(Interface_Alias
(Subp
)));
14256 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
14258 if Is_Interface
(Typ
) then
14259 E
:= Find_Primitive_Covering_Interface
14260 (Tagged_Type
=> Tagged_Type
,
14261 Iface_Prim
=> Subp
);
14264 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
14266 Replace_Elmt
(Elmt
, E
);
14267 Remove_Homonym
(Subp
);
14275 -- Step 2: Add primitives of progenitors that are not implemented by
14276 -- parents of Tagged_Type.
14278 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
14279 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
14280 while Present
(Iface_Elmt
) loop
14281 Iface
:= Node
(Iface_Elmt
);
14283 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
14284 while Present
(Prim_Elmt
) loop
14285 Iface_Subp
:= Node
(Prim_Elmt
);
14287 -- Exclude derivation of predefined primitives except those
14288 -- that come from source, or are inherited from one that comes
14289 -- from source. Required to catch declarations of equality
14290 -- operators of interfaces. For example:
14292 -- type Iface is interface;
14293 -- function "=" (Left, Right : Iface) return Boolean;
14295 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
14296 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
14298 E
:= Find_Primitive_Covering_Interface
14299 (Tagged_Type
=> Tagged_Type
,
14300 Iface_Prim
=> Iface_Subp
);
14302 -- If not found we derive a new primitive leaving its alias
14303 -- attribute referencing the interface primitive.
14307 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14309 -- Ada 2012 (AI05-0197): If the covering primitive's name
14310 -- differs from the name of the interface primitive then it
14311 -- is a private primitive inherited from a parent type. In
14312 -- such case, given that Tagged_Type covers the interface,
14313 -- the inherited private primitive becomes visible. For such
14314 -- purpose we add a new entity that renames the inherited
14315 -- private primitive.
14317 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
14318 pragma Assert
(Has_Suffix
(E
, 'P'));
14320 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14321 Set_Alias
(New_Subp
, E
);
14322 Set_Is_Abstract_Subprogram
(New_Subp
,
14323 Is_Abstract_Subprogram
(E
));
14325 -- Propagate to the full view interface entities associated
14326 -- with the partial view.
14328 elsif In_Private_Part
(Current_Scope
)
14329 and then Present
(Alias
(E
))
14330 and then Alias
(E
) = Iface_Subp
14332 List_Containing
(Parent
(E
)) /=
14333 Private_Declarations
14335 (Unit_Declaration_Node
(Current_Scope
)))
14337 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
14341 Next_Elmt
(Prim_Elmt
);
14344 Next_Elmt
(Iface_Elmt
);
14347 end Derive_Progenitor_Subprograms
;
14349 -----------------------
14350 -- Derive_Subprogram --
14351 -----------------------
14353 procedure Derive_Subprogram
14354 (New_Subp
: in out Entity_Id
;
14355 Parent_Subp
: Entity_Id
;
14356 Derived_Type
: Entity_Id
;
14357 Parent_Type
: Entity_Id
;
14358 Actual_Subp
: Entity_Id
:= Empty
)
14360 Formal
: Entity_Id
;
14361 -- Formal parameter of parent primitive operation
14363 Formal_Of_Actual
: Entity_Id
;
14364 -- Formal parameter of actual operation, when the derivation is to
14365 -- create a renaming for a primitive operation of an actual in an
14368 New_Formal
: Entity_Id
;
14369 -- Formal of inherited operation
14371 Visible_Subp
: Entity_Id
:= Parent_Subp
;
14373 function Is_Private_Overriding
return Boolean;
14374 -- If Subp is a private overriding of a visible operation, the inherited
14375 -- operation derives from the overridden op (even though its body is the
14376 -- overriding one) and the inherited operation is visible now. See
14377 -- sem_disp to see the full details of the handling of the overridden
14378 -- subprogram, which is removed from the list of primitive operations of
14379 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14380 -- and used to diagnose abstract operations that need overriding in the
14383 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
14384 -- When the type is an anonymous access type, create a new access type
14385 -- designating the derived type.
14387 procedure Set_Derived_Name
;
14388 -- This procedure sets the appropriate Chars name for New_Subp. This
14389 -- is normally just a copy of the parent name. An exception arises for
14390 -- type support subprograms, where the name is changed to reflect the
14391 -- name of the derived type, e.g. if type foo is derived from type bar,
14392 -- then a procedure barDA is derived with a name fooDA.
14394 ---------------------------
14395 -- Is_Private_Overriding --
14396 ---------------------------
14398 function Is_Private_Overriding
return Boolean is
14402 -- If the parent is not a dispatching operation there is no
14403 -- need to investigate overridings
14405 if not Is_Dispatching_Operation
(Parent_Subp
) then
14409 -- The visible operation that is overridden is a homonym of the
14410 -- parent subprogram. We scan the homonym chain to find the one
14411 -- whose alias is the subprogram we are deriving.
14413 Prev
:= Current_Entity
(Parent_Subp
);
14414 while Present
(Prev
) loop
14415 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
14416 and then Alias
(Prev
) = Parent_Subp
14417 and then Scope
(Parent_Subp
) = Scope
(Prev
)
14418 and then not Is_Hidden
(Prev
)
14420 Visible_Subp
:= Prev
;
14424 Prev
:= Homonym
(Prev
);
14428 end Is_Private_Overriding
;
14434 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
14435 Id_Type
: constant Entity_Id
:= Etype
(Id
);
14436 Acc_Type
: Entity_Id
;
14437 Par
: constant Node_Id
:= Parent
(Derived_Type
);
14440 -- When the type is an anonymous access type, create a new access
14441 -- type designating the derived type. This itype must be elaborated
14442 -- at the point of the derivation, not on subsequent calls that may
14443 -- be out of the proper scope for Gigi, so we insert a reference to
14444 -- it after the derivation.
14446 if Ekind
(Id_Type
) = E_Anonymous_Access_Type
then
14448 Desig_Typ
: Entity_Id
:= Designated_Type
(Id_Type
);
14451 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
14452 and then Present
(Full_View
(Desig_Typ
))
14453 and then not Is_Private_Type
(Parent_Type
)
14455 Desig_Typ
:= Full_View
(Desig_Typ
);
14458 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
14460 -- Ada 2005 (AI-251): Handle also derivations of abstract
14461 -- interface primitives.
14463 or else (Is_Interface
(Desig_Typ
)
14464 and then not Is_Class_Wide_Type
(Desig_Typ
))
14466 Acc_Type
:= New_Copy
(Id_Type
);
14467 Set_Etype
(Acc_Type
, Acc_Type
);
14468 Set_Scope
(Acc_Type
, New_Subp
);
14470 -- Set size of anonymous access type. If we have an access
14471 -- to an unconstrained array, this is a fat pointer, so it
14472 -- is sizes at twice addtress size.
14474 if Is_Array_Type
(Desig_Typ
)
14475 and then not Is_Constrained
(Desig_Typ
)
14477 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
14479 -- Other cases use a thin pointer
14482 Init_Size
(Acc_Type
, System_Address_Size
);
14485 -- Set remaining characterstics of anonymous access type
14487 Init_Alignment
(Acc_Type
);
14488 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
14490 Set_Etype
(New_Id
, Acc_Type
);
14491 Set_Scope
(New_Id
, New_Subp
);
14493 -- Create a reference to it
14495 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
14498 Set_Etype
(New_Id
, Id_Type
);
14502 -- In Ada2012, a formal may have an incomplete type but the type
14503 -- derivation that inherits the primitive follows the full view.
14505 elsif Base_Type
(Id_Type
) = Base_Type
(Parent_Type
)
14507 (Ekind
(Id_Type
) = E_Record_Type_With_Private
14508 and then Present
(Full_View
(Id_Type
))
14510 Base_Type
(Full_View
(Id_Type
)) = Base_Type
(Parent_Type
))
14512 (Ada_Version
>= Ada_2012
14513 and then Ekind
(Id_Type
) = E_Incomplete_Type
14514 and then Full_View
(Id_Type
) = Parent_Type
)
14516 -- Constraint checks on formals are generated during expansion,
14517 -- based on the signature of the original subprogram. The bounds
14518 -- of the derived type are not relevant, and thus we can use
14519 -- the base type for the formals. However, the return type may be
14520 -- used in a context that requires that the proper static bounds
14521 -- be used (a case statement, for example) and for those cases
14522 -- we must use the derived type (first subtype), not its base.
14524 -- If the derived_type_definition has no constraints, we know that
14525 -- the derived type has the same constraints as the first subtype
14526 -- of the parent, and we can also use it rather than its base,
14527 -- which can lead to more efficient code.
14529 if Etype
(Id
) = Parent_Type
then
14530 if Is_Scalar_Type
(Parent_Type
)
14532 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
14534 Set_Etype
(New_Id
, Derived_Type
);
14536 elsif Nkind
(Par
) = N_Full_Type_Declaration
14538 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
14541 (Subtype_Indication
(Type_Definition
(Par
)))
14543 Set_Etype
(New_Id
, Derived_Type
);
14546 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14550 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14554 Set_Etype
(New_Id
, Etype
(Id
));
14558 ----------------------
14559 -- Set_Derived_Name --
14560 ----------------------
14562 procedure Set_Derived_Name
is
14563 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
14565 if Nm
= TSS_Null
then
14566 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
14568 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
14570 end Set_Derived_Name
;
14572 -- Start of processing for Derive_Subprogram
14575 New_Subp
:= New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
14576 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
14578 -- Check whether the inherited subprogram is a private operation that
14579 -- should be inherited but not yet made visible. Such subprograms can
14580 -- become visible at a later point (e.g., the private part of a public
14581 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14582 -- following predicate is true, then this is not such a private
14583 -- operation and the subprogram simply inherits the name of the parent
14584 -- subprogram. Note the special check for the names of controlled
14585 -- operations, which are currently exempted from being inherited with
14586 -- a hidden name because they must be findable for generation of
14587 -- implicit run-time calls.
14589 if not Is_Hidden
(Parent_Subp
)
14590 or else Is_Internal
(Parent_Subp
)
14591 or else Is_Private_Overriding
14592 or else Is_Internal_Name
(Chars
(Parent_Subp
))
14593 or else Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14599 -- An inherited dispatching equality will be overridden by an internally
14600 -- generated one, or by an explicit one, so preserve its name and thus
14601 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14602 -- private operation it may become invisible if the full view has
14603 -- progenitors, and the dispatch table will be malformed.
14604 -- We check that the type is limited to handle the anomalous declaration
14605 -- of Limited_Controlled, which is derived from a non-limited type, and
14606 -- which is handled specially elsewhere as well.
14608 elsif Chars
(Parent_Subp
) = Name_Op_Eq
14609 and then Is_Dispatching_Operation
(Parent_Subp
)
14610 and then Etype
(Parent_Subp
) = Standard_Boolean
14611 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
14613 Etype
(First_Formal
(Parent_Subp
)) =
14614 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
14618 -- If parent is hidden, this can be a regular derivation if the
14619 -- parent is immediately visible in a non-instantiating context,
14620 -- or if we are in the private part of an instance. This test
14621 -- should still be refined ???
14623 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14624 -- operation as a non-visible operation in cases where the parent
14625 -- subprogram might not be visible now, but was visible within the
14626 -- original generic, so it would be wrong to make the inherited
14627 -- subprogram non-visible now. (Not clear if this test is fully
14628 -- correct; are there any cases where we should declare the inherited
14629 -- operation as not visible to avoid it being overridden, e.g., when
14630 -- the parent type is a generic actual with private primitives ???)
14632 -- (they should be treated the same as other private inherited
14633 -- subprograms, but it's not clear how to do this cleanly). ???
14635 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14636 and then Is_Immediately_Visible
(Parent_Subp
)
14637 and then not In_Instance
)
14638 or else In_Instance_Not_Visible
14642 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14643 -- overrides an interface primitive because interface primitives
14644 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14646 elsif Ada_Version
>= Ada_2005
14647 and then Is_Dispatching_Operation
(Parent_Subp
)
14648 and then Covers_Some_Interface
(Parent_Subp
)
14652 -- Otherwise, the type is inheriting a private operation, so enter
14653 -- it with a special name so it can't be overridden.
14656 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
14659 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
14661 if Present
(Actual_Subp
) then
14662 Replace_Type
(Actual_Subp
, New_Subp
);
14664 Replace_Type
(Parent_Subp
, New_Subp
);
14667 Conditional_Delay
(New_Subp
, Parent_Subp
);
14669 -- If we are creating a renaming for a primitive operation of an
14670 -- actual of a generic derived type, we must examine the signature
14671 -- of the actual primitive, not that of the generic formal, which for
14672 -- example may be an interface. However the name and initial value
14673 -- of the inherited operation are those of the formal primitive.
14675 Formal
:= First_Formal
(Parent_Subp
);
14677 if Present
(Actual_Subp
) then
14678 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
14680 Formal_Of_Actual
:= Empty
;
14683 while Present
(Formal
) loop
14684 New_Formal
:= New_Copy
(Formal
);
14686 -- Normally we do not go copying parents, but in the case of
14687 -- formals, we need to link up to the declaration (which is the
14688 -- parameter specification), and it is fine to link up to the
14689 -- original formal's parameter specification in this case.
14691 Set_Parent
(New_Formal
, Parent
(Formal
));
14692 Append_Entity
(New_Formal
, New_Subp
);
14694 if Present
(Formal_Of_Actual
) then
14695 Replace_Type
(Formal_Of_Actual
, New_Formal
);
14696 Next_Formal
(Formal_Of_Actual
);
14698 Replace_Type
(Formal
, New_Formal
);
14701 Next_Formal
(Formal
);
14704 -- If this derivation corresponds to a tagged generic actual, then
14705 -- primitive operations rename those of the actual. Otherwise the
14706 -- primitive operations rename those of the parent type, If the parent
14707 -- renames an intrinsic operator, so does the new subprogram. We except
14708 -- concatenation, which is always properly typed, and does not get
14709 -- expanded as other intrinsic operations.
14711 if No
(Actual_Subp
) then
14712 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
14713 Set_Is_Intrinsic_Subprogram
(New_Subp
);
14715 if Present
(Alias
(Parent_Subp
))
14716 and then Chars
(Parent_Subp
) /= Name_Op_Concat
14718 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
14720 Set_Alias
(New_Subp
, Parent_Subp
);
14724 Set_Alias
(New_Subp
, Parent_Subp
);
14728 Set_Alias
(New_Subp
, Actual_Subp
);
14731 -- Inherit the "ghostness" from the parent subprogram
14733 if Is_Ghost_Entity
(Alias
(New_Subp
)) then
14734 Set_Is_Ghost_Entity
(New_Subp
);
14737 -- Derived subprograms of a tagged type must inherit the convention
14738 -- of the parent subprogram (a requirement of AI-117). Derived
14739 -- subprograms of untagged types simply get convention Ada by default.
14741 -- If the derived type is a tagged generic formal type with unknown
14742 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14744 -- However, if the type is derived from a generic formal, the further
14745 -- inherited subprogram has the convention of the non-generic ancestor.
14746 -- Otherwise there would be no way to override the operation.
14747 -- (This is subject to forthcoming ARG discussions).
14749 if Is_Tagged_Type
(Derived_Type
) then
14750 if Is_Generic_Type
(Derived_Type
)
14751 and then Has_Unknown_Discriminants
(Derived_Type
)
14753 Set_Convention
(New_Subp
, Convention_Intrinsic
);
14756 if Is_Generic_Type
(Parent_Type
)
14757 and then Has_Unknown_Discriminants
(Parent_Type
)
14759 Set_Convention
(New_Subp
, Convention
(Alias
(Parent_Subp
)));
14761 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
14766 -- Predefined controlled operations retain their name even if the parent
14767 -- is hidden (see above), but they are not primitive operations if the
14768 -- ancestor is not visible, for example if the parent is a private
14769 -- extension completed with a controlled extension. Note that a full
14770 -- type that is controlled can break privacy: the flag Is_Controlled is
14771 -- set on both views of the type.
14773 if Is_Controlled
(Parent_Type
)
14774 and then Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14777 and then Is_Hidden
(Parent_Subp
)
14778 and then not Is_Visibly_Controlled
(Parent_Type
)
14780 Set_Is_Hidden
(New_Subp
);
14783 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
14784 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
14786 if Ekind
(Parent_Subp
) = E_Procedure
then
14787 Set_Is_Valued_Procedure
14788 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
14790 Set_Has_Controlling_Result
14791 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
14794 -- No_Return must be inherited properly. If this is overridden in the
14795 -- case of a dispatching operation, then a check is made in Sem_Disp
14796 -- that the overriding operation is also No_Return (no such check is
14797 -- required for the case of non-dispatching operation.
14799 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
14801 -- A derived function with a controlling result is abstract. If the
14802 -- Derived_Type is a nonabstract formal generic derived type, then
14803 -- inherited operations are not abstract: the required check is done at
14804 -- instantiation time. If the derivation is for a generic actual, the
14805 -- function is not abstract unless the actual is.
14807 if Is_Generic_Type
(Derived_Type
)
14808 and then not Is_Abstract_Type
(Derived_Type
)
14812 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14813 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14815 -- A subprogram subject to pragma Extensions_Visible with value False
14816 -- requires overriding if the subprogram has at least one controlling
14817 -- OUT parameter (SPARK RM 6.1.7(6)).
14819 elsif Ada_Version
>= Ada_2005
14820 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14821 or else (Is_Tagged_Type
(Derived_Type
)
14822 and then Etype
(New_Subp
) = Derived_Type
14823 and then not Is_Null_Extension
(Derived_Type
))
14824 or else (Is_Tagged_Type
(Derived_Type
)
14825 and then Ekind
(Etype
(New_Subp
)) =
14826 E_Anonymous_Access_Type
14827 and then Designated_Type
(Etype
(New_Subp
)) =
14829 and then not Is_Null_Extension
(Derived_Type
))
14830 or else (Comes_From_Source
(Alias
(New_Subp
))
14831 and then Is_EVF_Procedure
(Alias
(New_Subp
))))
14832 and then No
(Actual_Subp
)
14834 if not Is_Tagged_Type
(Derived_Type
)
14835 or else Is_Abstract_Type
(Derived_Type
)
14836 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
14838 Set_Is_Abstract_Subprogram
(New_Subp
);
14840 Set_Requires_Overriding
(New_Subp
);
14843 elsif Ada_Version
< Ada_2005
14844 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14845 or else (Is_Tagged_Type
(Derived_Type
)
14846 and then Etype
(New_Subp
) = Derived_Type
14847 and then No
(Actual_Subp
)))
14849 Set_Is_Abstract_Subprogram
(New_Subp
);
14851 -- AI05-0097 : an inherited operation that dispatches on result is
14852 -- abstract if the derived type is abstract, even if the parent type
14853 -- is concrete and the derived type is a null extension.
14855 elsif Has_Controlling_Result
(Alias
(New_Subp
))
14856 and then Is_Abstract_Type
(Etype
(New_Subp
))
14858 Set_Is_Abstract_Subprogram
(New_Subp
);
14860 -- Finally, if the parent type is abstract we must verify that all
14861 -- inherited operations are either non-abstract or overridden, or that
14862 -- the derived type itself is abstract (this check is performed at the
14863 -- end of a package declaration, in Check_Abstract_Overriding). A
14864 -- private overriding in the parent type will not be visible in the
14865 -- derivation if we are not in an inner package or in a child unit of
14866 -- the parent type, in which case the abstractness of the inherited
14867 -- operation is carried to the new subprogram.
14869 elsif Is_Abstract_Type
(Parent_Type
)
14870 and then not In_Open_Scopes
(Scope
(Parent_Type
))
14871 and then Is_Private_Overriding
14872 and then Is_Abstract_Subprogram
(Visible_Subp
)
14874 if No
(Actual_Subp
) then
14875 Set_Alias
(New_Subp
, Visible_Subp
);
14876 Set_Is_Abstract_Subprogram
(New_Subp
, True);
14879 -- If this is a derivation for an instance of a formal derived
14880 -- type, abstractness comes from the primitive operation of the
14881 -- actual, not from the operation inherited from the ancestor.
14883 Set_Is_Abstract_Subprogram
14884 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
14888 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
14890 -- Check for case of a derived subprogram for the instantiation of a
14891 -- formal derived tagged type, if so mark the subprogram as dispatching
14892 -- and inherit the dispatching attributes of the actual subprogram. The
14893 -- derived subprogram is effectively renaming of the actual subprogram,
14894 -- so it needs to have the same attributes as the actual.
14896 if Present
(Actual_Subp
)
14897 and then Is_Dispatching_Operation
(Actual_Subp
)
14899 Set_Is_Dispatching_Operation
(New_Subp
);
14901 if Present
(DTC_Entity
(Actual_Subp
)) then
14902 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
14903 Set_DT_Position_Value
(New_Subp
, DT_Position
(Actual_Subp
));
14907 -- Indicate that a derived subprogram does not require a body and that
14908 -- it does not require processing of default expressions.
14910 Set_Has_Completion
(New_Subp
);
14911 Set_Default_Expressions_Processed
(New_Subp
);
14913 if Ekind
(New_Subp
) = E_Function
then
14914 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
14916 end Derive_Subprogram
;
14918 ------------------------
14919 -- Derive_Subprograms --
14920 ------------------------
14922 procedure Derive_Subprograms
14923 (Parent_Type
: Entity_Id
;
14924 Derived_Type
: Entity_Id
;
14925 Generic_Actual
: Entity_Id
:= Empty
)
14927 Op_List
: constant Elist_Id
:=
14928 Collect_Primitive_Operations
(Parent_Type
);
14930 function Check_Derived_Type
return Boolean;
14931 -- Check that all the entities derived from Parent_Type are found in
14932 -- the list of primitives of Derived_Type exactly in the same order.
14934 procedure Derive_Interface_Subprogram
14935 (New_Subp
: in out Entity_Id
;
14937 Actual_Subp
: Entity_Id
);
14938 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14939 -- (which is an interface primitive). If Generic_Actual is present then
14940 -- Actual_Subp is the actual subprogram corresponding with the generic
14941 -- subprogram Subp.
14943 function Check_Derived_Type
return Boolean is
14947 New_Subp
: Entity_Id
;
14952 -- Traverse list of entities in the current scope searching for
14953 -- an incomplete type whose full-view is derived type
14955 E
:= First_Entity
(Scope
(Derived_Type
));
14956 while Present
(E
) and then E
/= Derived_Type
loop
14957 if Ekind
(E
) = E_Incomplete_Type
14958 and then Present
(Full_View
(E
))
14959 and then Full_View
(E
) = Derived_Type
14961 -- Disable this test if Derived_Type completes an incomplete
14962 -- type because in such case more primitives can be added
14963 -- later to the list of primitives of Derived_Type by routine
14964 -- Process_Incomplete_Dependents
14969 E
:= Next_Entity
(E
);
14972 List
:= Collect_Primitive_Operations
(Derived_Type
);
14973 Elmt
:= First_Elmt
(List
);
14975 Op_Elmt
:= First_Elmt
(Op_List
);
14976 while Present
(Op_Elmt
) loop
14977 Subp
:= Node
(Op_Elmt
);
14978 New_Subp
:= Node
(Elmt
);
14980 -- At this early stage Derived_Type has no entities with attribute
14981 -- Interface_Alias. In addition, such primitives are always
14982 -- located at the end of the list of primitives of Parent_Type.
14983 -- Therefore, if found we can safely stop processing pending
14986 exit when Present
(Interface_Alias
(Subp
));
14988 -- Handle hidden entities
14990 if not Is_Predefined_Dispatching_Operation
(Subp
)
14991 and then Is_Hidden
(Subp
)
14993 if Present
(New_Subp
)
14994 and then Primitive_Names_Match
(Subp
, New_Subp
)
15000 if not Present
(New_Subp
)
15001 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
15002 or else not Primitive_Names_Match
(Subp
, New_Subp
)
15010 Next_Elmt
(Op_Elmt
);
15014 end Check_Derived_Type
;
15016 ---------------------------------
15017 -- Derive_Interface_Subprogram --
15018 ---------------------------------
15020 procedure Derive_Interface_Subprogram
15021 (New_Subp
: in out Entity_Id
;
15023 Actual_Subp
: Entity_Id
)
15025 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
15026 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
15029 pragma Assert
(Is_Interface
(Iface_Type
));
15032 (New_Subp
=> New_Subp
,
15033 Parent_Subp
=> Iface_Subp
,
15034 Derived_Type
=> Derived_Type
,
15035 Parent_Type
=> Iface_Type
,
15036 Actual_Subp
=> Actual_Subp
);
15038 -- Given that this new interface entity corresponds with a primitive
15039 -- of the parent that was not overridden we must leave it associated
15040 -- with its parent primitive to ensure that it will share the same
15041 -- dispatch table slot when overridden. We must set the Alias to Subp
15042 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15043 -- (in case we inherited Subp from Iface_Type via a nonabstract
15044 -- generic formal type).
15046 if No
(Actual_Subp
) then
15047 Set_Alias
(New_Subp
, Subp
);
15050 T
: Entity_Id
:= Find_Dispatching_Type
(Subp
);
15052 while Etype
(T
) /= T
loop
15053 if Is_Generic_Type
(T
) and then not Is_Abstract_Type
(T
) then
15054 Set_Is_Abstract_Subprogram
(New_Subp
, False);
15062 -- For instantiations this is not needed since the previous call to
15063 -- Derive_Subprogram leaves the entity well decorated.
15066 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
15069 end Derive_Interface_Subprogram
;
15073 Alias_Subp
: Entity_Id
;
15074 Act_List
: Elist_Id
;
15075 Act_Elmt
: Elmt_Id
;
15076 Act_Subp
: Entity_Id
:= Empty
;
15078 Need_Search
: Boolean := False;
15079 New_Subp
: Entity_Id
:= Empty
;
15080 Parent_Base
: Entity_Id
;
15083 -- Start of processing for Derive_Subprograms
15086 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
15087 and then Has_Discriminants
(Parent_Type
)
15088 and then Present
(Full_View
(Parent_Type
))
15090 Parent_Base
:= Full_View
(Parent_Type
);
15092 Parent_Base
:= Parent_Type
;
15095 if Present
(Generic_Actual
) then
15096 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
15097 Act_Elmt
:= First_Elmt
(Act_List
);
15099 Act_List
:= No_Elist
;
15100 Act_Elmt
:= No_Elmt
;
15103 -- Derive primitives inherited from the parent. Note that if the generic
15104 -- actual is present, this is not really a type derivation, it is a
15105 -- completion within an instance.
15107 -- Case 1: Derived_Type does not implement interfaces
15109 if not Is_Tagged_Type
(Derived_Type
)
15110 or else (not Has_Interfaces
(Derived_Type
)
15111 and then not (Present
(Generic_Actual
)
15112 and then Has_Interfaces
(Generic_Actual
)))
15114 Elmt
:= First_Elmt
(Op_List
);
15115 while Present
(Elmt
) loop
15116 Subp
:= Node
(Elmt
);
15118 -- Literals are derived earlier in the process of building the
15119 -- derived type, and are skipped here.
15121 if Ekind
(Subp
) = E_Enumeration_Literal
then
15124 -- The actual is a direct descendant and the common primitive
15125 -- operations appear in the same order.
15127 -- If the generic parent type is present, the derived type is an
15128 -- instance of a formal derived type, and within the instance its
15129 -- operations are those of the actual. We derive from the formal
15130 -- type but make the inherited operations aliases of the
15131 -- corresponding operations of the actual.
15134 pragma Assert
(No
(Node
(Act_Elmt
))
15135 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
15138 (Subp
, Node
(Act_Elmt
),
15139 Skip_Controlling_Formals
=> True)));
15142 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
15144 if Present
(Act_Elmt
) then
15145 Next_Elmt
(Act_Elmt
);
15152 -- Case 2: Derived_Type implements interfaces
15155 -- If the parent type has no predefined primitives we remove
15156 -- predefined primitives from the list of primitives of generic
15157 -- actual to simplify the complexity of this algorithm.
15159 if Present
(Generic_Actual
) then
15161 Has_Predefined_Primitives
: Boolean := False;
15164 -- Check if the parent type has predefined primitives
15166 Elmt
:= First_Elmt
(Op_List
);
15167 while Present
(Elmt
) loop
15168 Subp
:= Node
(Elmt
);
15170 if Is_Predefined_Dispatching_Operation
(Subp
)
15171 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
15173 Has_Predefined_Primitives
:= True;
15180 -- Remove predefined primitives of Generic_Actual. We must use
15181 -- an auxiliary list because in case of tagged types the value
15182 -- returned by Collect_Primitive_Operations is the value stored
15183 -- in its Primitive_Operations attribute (and we don't want to
15184 -- modify its current contents).
15186 if not Has_Predefined_Primitives
then
15188 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
15191 Elmt
:= First_Elmt
(Act_List
);
15192 while Present
(Elmt
) loop
15193 Subp
:= Node
(Elmt
);
15195 if not Is_Predefined_Dispatching_Operation
(Subp
)
15196 or else Comes_From_Source
(Subp
)
15198 Append_Elmt
(Subp
, Aux_List
);
15204 Act_List
:= Aux_List
;
15208 Act_Elmt
:= First_Elmt
(Act_List
);
15209 Act_Subp
:= Node
(Act_Elmt
);
15213 -- Stage 1: If the generic actual is not present we derive the
15214 -- primitives inherited from the parent type. If the generic parent
15215 -- type is present, the derived type is an instance of a formal
15216 -- derived type, and within the instance its operations are those of
15217 -- the actual. We derive from the formal type but make the inherited
15218 -- operations aliases of the corresponding operations of the actual.
15220 Elmt
:= First_Elmt
(Op_List
);
15221 while Present
(Elmt
) loop
15222 Subp
:= Node
(Elmt
);
15223 Alias_Subp
:= Ultimate_Alias
(Subp
);
15225 -- Do not derive internal entities of the parent that link
15226 -- interface primitives with their covering primitive. These
15227 -- entities will be added to this type when frozen.
15229 if Present
(Interface_Alias
(Subp
)) then
15233 -- If the generic actual is present find the corresponding
15234 -- operation in the generic actual. If the parent type is a
15235 -- direct ancestor of the derived type then, even if it is an
15236 -- interface, the operations are inherited from the primary
15237 -- dispatch table and are in the proper order. If we detect here
15238 -- that primitives are not in the same order we traverse the list
15239 -- of primitive operations of the actual to find the one that
15240 -- implements the interface primitive.
15244 (Present
(Generic_Actual
)
15245 and then Present
(Act_Subp
)
15247 (Primitive_Names_Match
(Subp
, Act_Subp
)
15249 Type_Conformant
(Subp
, Act_Subp
,
15250 Skip_Controlling_Formals
=> True)))
15252 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
15253 Use_Full_View
=> True));
15255 -- Remember that we need searching for all pending primitives
15257 Need_Search
:= True;
15259 -- Handle entities associated with interface primitives
15261 if Present
(Alias_Subp
)
15262 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15263 and then not Is_Predefined_Dispatching_Operation
(Subp
)
15265 -- Search for the primitive in the homonym chain
15268 Find_Primitive_Covering_Interface
15269 (Tagged_Type
=> Generic_Actual
,
15270 Iface_Prim
=> Alias_Subp
);
15272 -- Previous search may not locate primitives covering
15273 -- interfaces defined in generics units or instantiations.
15274 -- (it fails if the covering primitive has formals whose
15275 -- type is also defined in generics or instantiations).
15276 -- In such case we search in the list of primitives of the
15277 -- generic actual for the internal entity that links the
15278 -- interface primitive and the covering primitive.
15281 and then Is_Generic_Type
(Parent_Type
)
15283 -- This code has been designed to handle only generic
15284 -- formals that implement interfaces that are defined
15285 -- in a generic unit or instantiation. If this code is
15286 -- needed for other cases we must review it because
15287 -- (given that it relies on Original_Location to locate
15288 -- the primitive of Generic_Actual that covers the
15289 -- interface) it could leave linked through attribute
15290 -- Alias entities of unrelated instantiations).
15294 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
15296 Instantiation_Depth
15297 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
15300 Iface_Prim_Loc
: constant Source_Ptr
:=
15301 Original_Location
(Sloc
(Alias_Subp
));
15308 First_Elmt
(Primitive_Operations
(Generic_Actual
));
15310 Search
: while Present
(Elmt
) loop
15311 Prim
:= Node
(Elmt
);
15313 if Present
(Interface_Alias
(Prim
))
15314 and then Original_Location
15315 (Sloc
(Interface_Alias
(Prim
))) =
15318 Act_Subp
:= Alias
(Prim
);
15327 pragma Assert
(Present
(Act_Subp
)
15328 or else Is_Abstract_Type
(Generic_Actual
)
15329 or else Serious_Errors_Detected
> 0);
15331 -- Handle predefined primitives plus the rest of user-defined
15335 Act_Elmt
:= First_Elmt
(Act_List
);
15336 while Present
(Act_Elmt
) loop
15337 Act_Subp
:= Node
(Act_Elmt
);
15339 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
15340 and then Type_Conformant
15342 Skip_Controlling_Formals
=> True)
15343 and then No
(Interface_Alias
(Act_Subp
));
15345 Next_Elmt
(Act_Elmt
);
15348 if No
(Act_Elmt
) then
15354 -- Case 1: If the parent is a limited interface then it has the
15355 -- predefined primitives of synchronized interfaces. However, the
15356 -- actual type may be a non-limited type and hence it does not
15357 -- have such primitives.
15359 if Present
(Generic_Actual
)
15360 and then not Present
(Act_Subp
)
15361 and then Is_Limited_Interface
(Parent_Base
)
15362 and then Is_Predefined_Interface_Primitive
(Subp
)
15366 -- Case 2: Inherit entities associated with interfaces that were
15367 -- not covered by the parent type. We exclude here null interface
15368 -- primitives because they do not need special management.
15370 -- We also exclude interface operations that are renamings. If the
15371 -- subprogram is an explicit renaming of an interface primitive,
15372 -- it is a regular primitive operation, and the presence of its
15373 -- alias is not relevant: it has to be derived like any other
15376 elsif Present
(Alias
(Subp
))
15377 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
15378 N_Subprogram_Renaming_Declaration
15379 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15381 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
15382 and then Null_Present
(Parent
(Alias_Subp
)))
15384 -- If this is an abstract private type then we transfer the
15385 -- derivation of the interface primitive from the partial view
15386 -- to the full view. This is safe because all the interfaces
15387 -- must be visible in the partial view. Done to avoid adding
15388 -- a new interface derivation to the private part of the
15389 -- enclosing package; otherwise this new derivation would be
15390 -- decorated as hidden when the analysis of the enclosing
15391 -- package completes.
15393 if Is_Abstract_Type
(Derived_Type
)
15394 and then In_Private_Part
(Current_Scope
)
15395 and then Has_Private_Declaration
(Derived_Type
)
15398 Partial_View
: Entity_Id
;
15403 Partial_View
:= First_Entity
(Current_Scope
);
15405 exit when No
(Partial_View
)
15406 or else (Has_Private_Declaration
(Partial_View
)
15408 Full_View
(Partial_View
) = Derived_Type
);
15410 Next_Entity
(Partial_View
);
15413 -- If the partial view was not found then the source code
15414 -- has errors and the derivation is not needed.
15416 if Present
(Partial_View
) then
15418 First_Elmt
(Primitive_Operations
(Partial_View
));
15419 while Present
(Elmt
) loop
15420 Ent
:= Node
(Elmt
);
15422 if Present
(Alias
(Ent
))
15423 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
15426 (Ent
, Primitive_Operations
(Derived_Type
));
15433 -- If the interface primitive was not found in the
15434 -- partial view then this interface primitive was
15435 -- overridden. We add a derivation to activate in
15436 -- Derive_Progenitor_Subprograms the machinery to
15440 Derive_Interface_Subprogram
15441 (New_Subp
=> New_Subp
,
15443 Actual_Subp
=> Act_Subp
);
15448 Derive_Interface_Subprogram
15449 (New_Subp
=> New_Subp
,
15451 Actual_Subp
=> Act_Subp
);
15454 -- Case 3: Common derivation
15458 (New_Subp
=> New_Subp
,
15459 Parent_Subp
=> Subp
,
15460 Derived_Type
=> Derived_Type
,
15461 Parent_Type
=> Parent_Base
,
15462 Actual_Subp
=> Act_Subp
);
15465 -- No need to update Act_Elm if we must search for the
15466 -- corresponding operation in the generic actual
15469 and then Present
(Act_Elmt
)
15471 Next_Elmt
(Act_Elmt
);
15472 Act_Subp
:= Node
(Act_Elmt
);
15479 -- Inherit additional operations from progenitors. If the derived
15480 -- type is a generic actual, there are not new primitive operations
15481 -- for the type because it has those of the actual, and therefore
15482 -- nothing needs to be done. The renamings generated above are not
15483 -- primitive operations, and their purpose is simply to make the
15484 -- proper operations visible within an instantiation.
15486 if No
(Generic_Actual
) then
15487 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
15491 -- Final check: Direct descendants must have their primitives in the
15492 -- same order. We exclude from this test untagged types and instances
15493 -- of formal derived types. We skip this test if we have already
15494 -- reported serious errors in the sources.
15496 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
15497 or else Present
(Generic_Actual
)
15498 or else Serious_Errors_Detected
> 0
15499 or else Check_Derived_Type
);
15500 end Derive_Subprograms
;
15502 --------------------------------
15503 -- Derived_Standard_Character --
15504 --------------------------------
15506 procedure Derived_Standard_Character
15508 Parent_Type
: Entity_Id
;
15509 Derived_Type
: Entity_Id
)
15511 Loc
: constant Source_Ptr
:= Sloc
(N
);
15512 Def
: constant Node_Id
:= Type_Definition
(N
);
15513 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15514 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
15515 Implicit_Base
: constant Entity_Id
:=
15517 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
15523 Discard_Node
(Process_Subtype
(Indic
, N
));
15525 Set_Etype
(Implicit_Base
, Parent_Base
);
15526 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
15527 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
15529 Set_Is_Character_Type
(Implicit_Base
, True);
15530 Set_Has_Delayed_Freeze
(Implicit_Base
);
15532 -- The bounds of the implicit base are the bounds of the parent base.
15533 -- Note that their type is the parent base.
15535 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
15536 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
15538 Set_Scalar_Range
(Implicit_Base
,
15541 High_Bound
=> Hi
));
15543 Conditional_Delay
(Derived_Type
, Parent_Type
);
15545 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
15546 Set_Etype
(Derived_Type
, Implicit_Base
);
15547 Set_Size_Info
(Derived_Type
, Parent_Type
);
15549 if Unknown_RM_Size
(Derived_Type
) then
15550 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
15553 Set_Is_Character_Type
(Derived_Type
, True);
15555 if Nkind
(Indic
) /= N_Subtype_Indication
then
15557 -- If no explicit constraint, the bounds are those
15558 -- of the parent type.
15560 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
15561 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
15562 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
15565 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
15567 -- Because the implicit base is used in the conversion of the bounds, we
15568 -- have to freeze it now. This is similar to what is done for numeric
15569 -- types, and it equally suspicious, but otherwise a non-static bound
15570 -- will have a reference to an unfrozen type, which is rejected by Gigi
15571 -- (???). This requires specific care for definition of stream
15572 -- attributes. For details, see comments at the end of
15573 -- Build_Derived_Numeric_Type.
15575 Freeze_Before
(N
, Implicit_Base
);
15576 end Derived_Standard_Character
;
15578 ------------------------------
15579 -- Derived_Type_Declaration --
15580 ------------------------------
15582 procedure Derived_Type_Declaration
15585 Is_Completion
: Boolean)
15587 Parent_Type
: Entity_Id
;
15589 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
15590 -- Check whether the parent type is a generic formal, or derives
15591 -- directly or indirectly from one.
15593 ------------------------
15594 -- Comes_From_Generic --
15595 ------------------------
15597 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
15599 if Is_Generic_Type
(Typ
) then
15602 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
15605 elsif Is_Private_Type
(Typ
)
15606 and then Present
(Full_View
(Typ
))
15607 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
15611 elsif Is_Generic_Actual_Type
(Typ
) then
15617 end Comes_From_Generic
;
15621 Def
: constant Node_Id
:= Type_Definition
(N
);
15622 Iface_Def
: Node_Id
;
15623 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15624 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
15625 Parent_Node
: Node_Id
;
15628 -- Start of processing for Derived_Type_Declaration
15631 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
15633 -- Ada 2005 (AI-251): In case of interface derivation check that the
15634 -- parent is also an interface.
15636 if Interface_Present
(Def
) then
15637 Check_SPARK_05_Restriction
("interface is not allowed", Def
);
15639 if not Is_Interface
(Parent_Type
) then
15640 Diagnose_Interface
(Indic
, Parent_Type
);
15643 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
15644 Iface_Def
:= Type_Definition
(Parent_Node
);
15646 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15647 -- other limited interfaces.
15649 if Limited_Present
(Def
) then
15650 if Limited_Present
(Iface_Def
) then
15653 elsif Protected_Present
(Iface_Def
) then
15655 ("descendant of & must be declared as a protected "
15656 & "interface", N
, Parent_Type
);
15658 elsif Synchronized_Present
(Iface_Def
) then
15660 ("descendant of & must be declared as a synchronized "
15661 & "interface", N
, Parent_Type
);
15663 elsif Task_Present
(Iface_Def
) then
15665 ("descendant of & must be declared as a task interface",
15670 ("(Ada 2005) limited interface cannot inherit from "
15671 & "non-limited interface", Indic
);
15674 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15675 -- from non-limited or limited interfaces.
15677 elsif not Protected_Present
(Def
)
15678 and then not Synchronized_Present
(Def
)
15679 and then not Task_Present
(Def
)
15681 if Limited_Present
(Iface_Def
) then
15684 elsif Protected_Present
(Iface_Def
) then
15686 ("descendant of & must be declared as a protected "
15687 & "interface", N
, Parent_Type
);
15689 elsif Synchronized_Present
(Iface_Def
) then
15691 ("descendant of & must be declared as a synchronized "
15692 & "interface", N
, Parent_Type
);
15694 elsif Task_Present
(Iface_Def
) then
15696 ("descendant of & must be declared as a task interface",
15705 if Is_Tagged_Type
(Parent_Type
)
15706 and then Is_Concurrent_Type
(Parent_Type
)
15707 and then not Is_Interface
(Parent_Type
)
15710 ("parent type of a record extension cannot be a synchronized "
15711 & "tagged type (RM 3.9.1 (3/1))", N
);
15712 Set_Etype
(T
, Any_Type
);
15716 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15719 if Is_Tagged_Type
(Parent_Type
)
15720 and then Is_Non_Empty_List
(Interface_List
(Def
))
15727 Intf
:= First
(Interface_List
(Def
));
15728 while Present
(Intf
) loop
15729 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
15731 if not Is_Interface
(T
) then
15732 Diagnose_Interface
(Intf
, T
);
15734 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15735 -- a limited type from having a nonlimited progenitor.
15737 elsif (Limited_Present
(Def
)
15738 or else (not Is_Interface
(Parent_Type
)
15739 and then Is_Limited_Type
(Parent_Type
)))
15740 and then not Is_Limited_Interface
(T
)
15743 ("progenitor interface& of limited type must be limited",
15752 if Parent_Type
= Any_Type
15753 or else Etype
(Parent_Type
) = Any_Type
15754 or else (Is_Class_Wide_Type
(Parent_Type
)
15755 and then Etype
(Parent_Type
) = T
)
15757 -- If Parent_Type is undefined or illegal, make new type into a
15758 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15759 -- errors. If this is a self-definition, emit error now.
15761 if T
= Parent_Type
or else T
= Etype
(Parent_Type
) then
15762 Error_Msg_N
("type cannot be used in its own definition", Indic
);
15765 Set_Ekind
(T
, Ekind
(Parent_Type
));
15766 Set_Etype
(T
, Any_Type
);
15767 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
15769 if Is_Tagged_Type
(T
)
15770 and then Is_Record_Type
(T
)
15772 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
15778 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15779 -- an interface is special because the list of interfaces in the full
15780 -- view can be given in any order. For example:
15782 -- type A is interface;
15783 -- type B is interface and A;
15784 -- type D is new B with private;
15786 -- type D is new A and B with null record; -- 1 --
15788 -- In this case we perform the following transformation of -1-:
15790 -- type D is new B and A with null record;
15792 -- If the parent of the full-view covers the parent of the partial-view
15793 -- we have two possible cases:
15795 -- 1) They have the same parent
15796 -- 2) The parent of the full-view implements some further interfaces
15798 -- In both cases we do not need to perform the transformation. In the
15799 -- first case the source program is correct and the transformation is
15800 -- not needed; in the second case the source program does not fulfill
15801 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15804 -- This transformation not only simplifies the rest of the analysis of
15805 -- this type declaration but also simplifies the correct generation of
15806 -- the object layout to the expander.
15808 if In_Private_Part
(Current_Scope
)
15809 and then Is_Interface
(Parent_Type
)
15813 Partial_View
: Entity_Id
;
15814 Partial_View_Parent
: Entity_Id
;
15815 New_Iface
: Node_Id
;
15818 -- Look for the associated private type declaration
15820 Partial_View
:= First_Entity
(Current_Scope
);
15822 exit when No
(Partial_View
)
15823 or else (Has_Private_Declaration
(Partial_View
)
15824 and then Full_View
(Partial_View
) = T
);
15826 Next_Entity
(Partial_View
);
15829 -- If the partial view was not found then the source code has
15830 -- errors and the transformation is not needed.
15832 if Present
(Partial_View
) then
15833 Partial_View_Parent
:= Etype
(Partial_View
);
15835 -- If the parent of the full-view covers the parent of the
15836 -- partial-view we have nothing else to do.
15838 if Interface_Present_In_Ancestor
15839 (Parent_Type
, Partial_View_Parent
)
15843 -- Traverse the list of interfaces of the full-view to look
15844 -- for the parent of the partial-view and perform the tree
15848 Iface
:= First
(Interface_List
(Def
));
15849 while Present
(Iface
) loop
15850 if Etype
(Iface
) = Etype
(Partial_View
) then
15851 Rewrite
(Subtype_Indication
(Def
),
15852 New_Copy
(Subtype_Indication
15853 (Parent
(Partial_View
))));
15856 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
15857 Append
(New_Iface
, Interface_List
(Def
));
15859 -- Analyze the transformed code
15861 Derived_Type_Declaration
(T
, N
, Is_Completion
);
15872 -- Only composite types other than array types are allowed to have
15875 if Present
(Discriminant_Specifications
(N
)) then
15876 if (Is_Elementary_Type
(Parent_Type
)
15878 Is_Array_Type
(Parent_Type
))
15879 and then not Error_Posted
(N
)
15882 ("elementary or array type cannot have discriminants",
15883 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
15884 Set_Has_Discriminants
(T
, False);
15886 -- The type is allowed to have discriminants
15889 Check_SPARK_05_Restriction
("discriminant type is not allowed", N
);
15893 -- In Ada 83, a derived type defined in a package specification cannot
15894 -- be used for further derivation until the end of its visible part.
15895 -- Note that derivation in the private part of the package is allowed.
15897 if Ada_Version
= Ada_83
15898 and then Is_Derived_Type
(Parent_Type
)
15899 and then In_Visible_Part
(Scope
(Parent_Type
))
15901 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
15903 ("(Ada 83): premature use of type for derivation", Indic
);
15907 -- Check for early use of incomplete or private type
15909 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
15910 Error_Msg_N
("premature derivation of incomplete type", Indic
);
15913 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
15914 and then not Comes_From_Generic
(Parent_Type
))
15915 or else Has_Private_Component
(Parent_Type
)
15917 -- The ancestor type of a formal type can be incomplete, in which
15918 -- case only the operations of the partial view are available in the
15919 -- generic. Subsequent checks may be required when the full view is
15920 -- analyzed to verify that a derivation from a tagged type has an
15923 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
15926 elsif No
(Underlying_Type
(Parent_Type
))
15927 or else Has_Private_Component
(Parent_Type
)
15930 ("premature derivation of derived or private type", Indic
);
15932 -- Flag the type itself as being in error, this prevents some
15933 -- nasty problems with subsequent uses of the malformed type.
15935 Set_Error_Posted
(T
);
15937 -- Check that within the immediate scope of an untagged partial
15938 -- view it's illegal to derive from the partial view if the
15939 -- full view is tagged. (7.3(7))
15941 -- We verify that the Parent_Type is a partial view by checking
15942 -- that it is not a Full_Type_Declaration (i.e. a private type or
15943 -- private extension declaration), to distinguish a partial view
15944 -- from a derivation from a private type which also appears as
15945 -- E_Private_Type. If the parent base type is not declared in an
15946 -- enclosing scope there is no need to check.
15948 elsif Present
(Full_View
(Parent_Type
))
15949 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
15950 and then not Is_Tagged_Type
(Parent_Type
)
15951 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
15952 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
15955 ("premature derivation from type with tagged full view",
15960 -- Check that form of derivation is appropriate
15962 Taggd
:= Is_Tagged_Type
(Parent_Type
);
15964 -- Set the parent type to the class-wide type's specific type in this
15965 -- case to prevent cascading errors
15967 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
15968 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
15969 Set_Etype
(T
, Etype
(Parent_Type
));
15973 if Present
(Extension
) and then not Taggd
then
15975 ("type derived from untagged type cannot have extension", Indic
);
15977 elsif No
(Extension
) and then Taggd
then
15979 -- If this declaration is within a private part (or body) of a
15980 -- generic instantiation then the derivation is allowed (the parent
15981 -- type can only appear tagged in this case if it's a generic actual
15982 -- type, since it would otherwise have been rejected in the analysis
15983 -- of the generic template).
15985 if not Is_Generic_Actual_Type
(Parent_Type
)
15986 or else In_Visible_Part
(Scope
(Parent_Type
))
15988 if Is_Class_Wide_Type
(Parent_Type
) then
15990 ("parent type must not be a class-wide type", Indic
);
15992 -- Use specific type to prevent cascaded errors.
15994 Parent_Type
:= Etype
(Parent_Type
);
15998 ("type derived from tagged type must have extension", Indic
);
16003 -- AI-443: Synchronized formal derived types require a private
16004 -- extension. There is no point in checking the ancestor type or
16005 -- the progenitors since the construct is wrong to begin with.
16007 if Ada_Version
>= Ada_2005
16008 and then Is_Generic_Type
(T
)
16009 and then Present
(Original_Node
(N
))
16012 Decl
: constant Node_Id
:= Original_Node
(N
);
16015 if Nkind
(Decl
) = N_Formal_Type_Declaration
16016 and then Nkind
(Formal_Type_Definition
(Decl
)) =
16017 N_Formal_Derived_Type_Definition
16018 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
16019 and then No
(Extension
)
16021 -- Avoid emitting a duplicate error message
16023 and then not Error_Posted
(Indic
)
16026 ("synchronized derived type must have extension", N
);
16031 if Null_Exclusion_Present
(Def
)
16032 and then not Is_Access_Type
(Parent_Type
)
16034 Error_Msg_N
("null exclusion can only apply to an access type", N
);
16037 -- Avoid deriving parent primitives of underlying record views
16039 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
16040 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
16042 -- AI-419: The parent type of an explicitly limited derived type must
16043 -- be a limited type or a limited interface.
16045 if Limited_Present
(Def
) then
16046 Set_Is_Limited_Record
(T
);
16048 if Is_Interface
(T
) then
16049 Set_Is_Limited_Interface
(T
);
16052 if not Is_Limited_Type
(Parent_Type
)
16054 (not Is_Interface
(Parent_Type
)
16055 or else not Is_Limited_Interface
(Parent_Type
))
16057 -- AI05-0096: a derivation in the private part of an instance is
16058 -- legal if the generic formal is untagged limited, and the actual
16061 if Is_Generic_Actual_Type
(Parent_Type
)
16062 and then In_Private_Part
(Current_Scope
)
16065 (Generic_Parent_Type
(Parent
(Parent_Type
)))
16071 ("parent type& of limited type must be limited",
16077 -- In SPARK, there are no derived type definitions other than type
16078 -- extensions of tagged record types.
16080 if No
(Extension
) then
16081 Check_SPARK_05_Restriction
16082 ("derived type is not allowed", Original_Node
(N
));
16084 end Derived_Type_Declaration
;
16086 ------------------------
16087 -- Diagnose_Interface --
16088 ------------------------
16090 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
16092 if not Is_Interface
(E
) and then E
/= Any_Type
then
16093 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
16095 end Diagnose_Interface
;
16097 ----------------------------------
16098 -- Enumeration_Type_Declaration --
16099 ----------------------------------
16101 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16108 -- Create identifier node representing lower bound
16110 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16111 L
:= First
(Literals
(Def
));
16112 Set_Chars
(B_Node
, Chars
(L
));
16113 Set_Entity
(B_Node
, L
);
16114 Set_Etype
(B_Node
, T
);
16115 Set_Is_Static_Expression
(B_Node
, True);
16117 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
16118 Set_Low_Bound
(R_Node
, B_Node
);
16120 Set_Ekind
(T
, E_Enumeration_Type
);
16121 Set_First_Literal
(T
, L
);
16123 Set_Is_Constrained
(T
);
16127 -- Loop through literals of enumeration type setting pos and rep values
16128 -- except that if the Ekind is already set, then it means the literal
16129 -- was already constructed (case of a derived type declaration and we
16130 -- should not disturb the Pos and Rep values.
16132 while Present
(L
) loop
16133 if Ekind
(L
) /= E_Enumeration_Literal
then
16134 Set_Ekind
(L
, E_Enumeration_Literal
);
16135 Set_Enumeration_Pos
(L
, Ev
);
16136 Set_Enumeration_Rep
(L
, Ev
);
16137 Set_Is_Known_Valid
(L
, True);
16141 New_Overloaded_Entity
(L
);
16142 Generate_Definition
(L
);
16143 Set_Convention
(L
, Convention_Intrinsic
);
16145 -- Case of character literal
16147 if Nkind
(L
) = N_Defining_Character_Literal
then
16148 Set_Is_Character_Type
(T
, True);
16150 -- Check violation of No_Wide_Characters
16152 if Restriction_Check_Required
(No_Wide_Characters
) then
16153 Get_Name_String
(Chars
(L
));
16155 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
16156 Check_Restriction
(No_Wide_Characters
, L
);
16165 -- Now create a node representing upper bound
16167 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16168 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
16169 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
16170 Set_Etype
(B_Node
, T
);
16171 Set_Is_Static_Expression
(B_Node
, True);
16173 Set_High_Bound
(R_Node
, B_Node
);
16175 -- Initialize various fields of the type. Some of this information
16176 -- may be overwritten later through rep.clauses.
16178 Set_Scalar_Range
(T
, R_Node
);
16179 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
16180 Set_Enum_Esize
(T
);
16181 Set_Enum_Pos_To_Rep
(T
, Empty
);
16183 -- Set Discard_Names if configuration pragma set, or if there is
16184 -- a parameterless pragma in the current declarative region
16186 if Global_Discard_Names
or else Discard_Names
(Scope
(T
)) then
16187 Set_Discard_Names
(T
);
16190 -- Process end label if there is one
16192 if Present
(Def
) then
16193 Process_End_Label
(Def
, 'e', T
);
16195 end Enumeration_Type_Declaration
;
16197 ---------------------------------
16198 -- Expand_To_Stored_Constraint --
16199 ---------------------------------
16201 function Expand_To_Stored_Constraint
16203 Constraint
: Elist_Id
) return Elist_Id
16205 Explicitly_Discriminated_Type
: Entity_Id
;
16206 Expansion
: Elist_Id
;
16207 Discriminant
: Entity_Id
;
16209 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
16210 -- Find the nearest type that actually specifies discriminants
16212 ---------------------------------
16213 -- Type_With_Explicit_Discrims --
16214 ---------------------------------
16216 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
16217 Typ
: constant E
:= Base_Type
(Id
);
16220 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
16221 if Present
(Full_View
(Typ
)) then
16222 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
16226 if Has_Discriminants
(Typ
) then
16231 if Etype
(Typ
) = Typ
then
16233 elsif Has_Discriminants
(Typ
) then
16236 return Type_With_Explicit_Discrims
(Etype
(Typ
));
16239 end Type_With_Explicit_Discrims
;
16241 -- Start of processing for Expand_To_Stored_Constraint
16244 if No
(Constraint
) or else Is_Empty_Elmt_List
(Constraint
) then
16248 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
16250 if No
(Explicitly_Discriminated_Type
) then
16254 Expansion
:= New_Elmt_List
;
16257 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
16258 while Present
(Discriminant
) loop
16260 (Get_Discriminant_Value
16261 (Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
16263 Next_Stored_Discriminant
(Discriminant
);
16267 end Expand_To_Stored_Constraint
;
16269 ---------------------------
16270 -- Find_Hidden_Interface --
16271 ---------------------------
16273 function Find_Hidden_Interface
16275 Dest
: Elist_Id
) return Entity_Id
16278 Iface_Elmt
: Elmt_Id
;
16281 if Present
(Src
) and then Present
(Dest
) then
16282 Iface_Elmt
:= First_Elmt
(Src
);
16283 while Present
(Iface_Elmt
) loop
16284 Iface
:= Node
(Iface_Elmt
);
16286 if Is_Interface
(Iface
)
16287 and then not Contain_Interface
(Iface
, Dest
)
16292 Next_Elmt
(Iface_Elmt
);
16297 end Find_Hidden_Interface
;
16299 --------------------
16300 -- Find_Type_Name --
16301 --------------------
16303 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
16304 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
16306 New_Id
: Entity_Id
;
16307 Prev_Par
: Node_Id
;
16309 procedure Check_Duplicate_Aspects
;
16310 -- Check that aspects specified in a completion have not been specified
16311 -- already in the partial view. Type_Invariant and others can be
16312 -- specified on either view but never on both.
16314 procedure Tag_Mismatch
;
16315 -- Diagnose a tagged partial view whose full view is untagged.
16316 -- We post the message on the full view, with a reference to
16317 -- the previous partial view. The partial view can be private
16318 -- or incomplete, and these are handled in a different manner,
16319 -- so we determine the position of the error message from the
16320 -- respective slocs of both.
16322 -----------------------------
16323 -- Check_Duplicate_Aspects --
16324 -----------------------------
16326 procedure Check_Duplicate_Aspects
is
16327 Prev_Aspects
: constant List_Id
:= Aspect_Specifications
(Prev_Par
);
16328 Full_Aspects
: constant List_Id
:= Aspect_Specifications
(N
);
16329 F_Spec
, P_Spec
: Node_Id
;
16332 if Present
(Full_Aspects
) then
16333 F_Spec
:= First
(Full_Aspects
);
16334 while Present
(F_Spec
) loop
16335 if Present
(Prev_Aspects
) then
16336 P_Spec
:= First
(Prev_Aspects
);
16337 while Present
(P_Spec
) loop
16338 if Chars
(Identifier
(P_Spec
)) =
16339 Chars
(Identifier
(F_Spec
))
16342 ("aspect already specified in private declaration",
16352 if Has_Discriminants
(Prev
)
16353 and then not Has_Unknown_Discriminants
(Prev
)
16354 and then Chars
(Identifier
(F_Spec
)) =
16355 Name_Implicit_Dereference
16357 Error_Msg_N
("cannot specify aspect " &
16358 "if partial view has known discriminants", F_Spec
);
16364 end Check_Duplicate_Aspects
;
16370 procedure Tag_Mismatch
is
16372 if Sloc
(Prev
) < Sloc
(Id
) then
16373 if Ada_Version
>= Ada_2012
16374 and then Nkind
(N
) = N_Private_Type_Declaration
16377 ("declaration of private } must be a tagged type ", Id
, Prev
);
16380 ("full declaration of } must be a tagged type ", Id
, Prev
);
16384 if Ada_Version
>= Ada_2012
16385 and then Nkind
(N
) = N_Private_Type_Declaration
16388 ("declaration of private } must be a tagged type ", Prev
, Id
);
16391 ("full declaration of } must be a tagged type ", Prev
, Id
);
16396 -- Start of processing for Find_Type_Name
16399 -- Find incomplete declaration, if one was given
16401 Prev
:= Current_Entity_In_Scope
(Id
);
16403 -- New type declaration
16409 -- Previous declaration exists
16412 Prev_Par
:= Parent
(Prev
);
16414 -- Error if not incomplete/private case except if previous
16415 -- declaration is implicit, etc. Enter_Name will emit error if
16418 if not Is_Incomplete_Or_Private_Type
(Prev
) then
16422 -- Check invalid completion of private or incomplete type
16424 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
16425 N_Task_Type_Declaration
,
16426 N_Protected_Type_Declaration
)
16428 (Ada_Version
< Ada_2012
16429 or else not Is_Incomplete_Type
(Prev
)
16430 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
16431 N_Private_Extension_Declaration
))
16433 -- Completion must be a full type declarations (RM 7.3(4))
16435 Error_Msg_Sloc
:= Sloc
(Prev
);
16436 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
16438 -- Set scope of Id to avoid cascaded errors. Entity is never
16439 -- examined again, except when saving globals in generics.
16441 Set_Scope
(Id
, Current_Scope
);
16444 -- If this is a repeated incomplete declaration, no further
16445 -- checks are possible.
16447 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
16451 -- Case of full declaration of incomplete type
16453 elsif Ekind
(Prev
) = E_Incomplete_Type
16454 and then (Ada_Version
< Ada_2012
16455 or else No
(Full_View
(Prev
))
16456 or else not Is_Private_Type
(Full_View
(Prev
)))
16458 -- Indicate that the incomplete declaration has a matching full
16459 -- declaration. The defining occurrence of the incomplete
16460 -- declaration remains the visible one, and the procedure
16461 -- Get_Full_View dereferences it whenever the type is used.
16463 if Present
(Full_View
(Prev
)) then
16464 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16467 Set_Full_View
(Prev
, Id
);
16468 Append_Entity
(Id
, Current_Scope
);
16469 Set_Is_Public
(Id
, Is_Public
(Prev
));
16470 Set_Is_Internal
(Id
);
16473 -- If the incomplete view is tagged, a class_wide type has been
16474 -- created already. Use it for the private type as well, in order
16475 -- to prevent multiple incompatible class-wide types that may be
16476 -- created for self-referential anonymous access components.
16478 if Is_Tagged_Type
(Prev
)
16479 and then Present
(Class_Wide_Type
(Prev
))
16481 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
16482 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
16484 -- The type of the classwide type is the current Id. Previously
16485 -- this was not done for private declarations because of order-
16486 -- of elaboration issues in the back-end, but gigi now handles
16489 Set_Etype
(Class_Wide_Type
(Id
), Id
);
16492 -- Case of full declaration of private type
16495 -- If the private type was a completion of an incomplete type then
16496 -- update Prev to reference the private type
16498 if Ada_Version
>= Ada_2012
16499 and then Ekind
(Prev
) = E_Incomplete_Type
16500 and then Present
(Full_View
(Prev
))
16501 and then Is_Private_Type
(Full_View
(Prev
))
16503 Prev
:= Full_View
(Prev
);
16504 Prev_Par
:= Parent
(Prev
);
16507 if Nkind
(N
) = N_Full_Type_Declaration
16509 (Type_Definition
(N
), N_Record_Definition
,
16510 N_Derived_Type_Definition
)
16511 and then Interface_Present
(Type_Definition
(N
))
16514 ("completion of private type cannot be an interface", N
);
16517 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
16518 if Etype
(Prev
) /= Prev
then
16520 -- Prev is a private subtype or a derived type, and needs
16523 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16526 elsif Ekind
(Prev
) = E_Private_Type
16527 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16528 N_Protected_Type_Declaration
)
16531 ("completion of nonlimited type cannot be limited", N
);
16533 elsif Ekind
(Prev
) = E_Record_Type_With_Private
16534 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16535 N_Protected_Type_Declaration
)
16537 if not Is_Limited_Record
(Prev
) then
16539 ("completion of nonlimited type cannot be limited", N
);
16541 elsif No
(Interface_List
(N
)) then
16543 ("completion of tagged private type must be tagged",
16548 -- Ada 2005 (AI-251): Private extension declaration of a task
16549 -- type or a protected type. This case arises when covering
16550 -- interface types.
16552 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16553 N_Protected_Type_Declaration
)
16557 elsif Nkind
(N
) /= N_Full_Type_Declaration
16558 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
16561 ("full view of private extension must be an extension", N
);
16563 elsif not (Abstract_Present
(Parent
(Prev
)))
16564 and then Abstract_Present
(Type_Definition
(N
))
16567 ("full view of non-abstract extension cannot be abstract", N
);
16570 if not In_Private_Part
(Current_Scope
) then
16572 ("declaration of full view must appear in private part", N
);
16575 if Ada_Version
>= Ada_2012
then
16576 Check_Duplicate_Aspects
;
16579 Copy_And_Swap
(Prev
, Id
);
16580 Set_Has_Private_Declaration
(Prev
);
16581 Set_Has_Private_Declaration
(Id
);
16583 -- AI12-0133: Indicate whether we have a partial view with
16584 -- unknown discriminants, in which case initialization of objects
16585 -- of the type do not receive an invariant check.
16587 Set_Partial_View_Has_Unknown_Discr
16588 (Prev
, Has_Unknown_Discriminants
(Id
));
16590 -- Preserve aspect and iterator flags that may have been set on
16591 -- the partial view.
16593 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
16594 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
16596 -- If no error, propagate freeze_node from private to full view.
16597 -- It may have been generated for an early operational item.
16599 if Present
(Freeze_Node
(Id
))
16600 and then Serious_Errors_Detected
= 0
16601 and then No
(Full_View
(Id
))
16603 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
16604 Set_Freeze_Node
(Id
, Empty
);
16605 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
16608 Set_Full_View
(Id
, Prev
);
16612 -- Verify that full declaration conforms to partial one
16614 if Is_Incomplete_Or_Private_Type
(Prev
)
16615 and then Present
(Discriminant_Specifications
(Prev_Par
))
16617 if Present
(Discriminant_Specifications
(N
)) then
16618 if Ekind
(Prev
) = E_Incomplete_Type
then
16619 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
16621 Check_Discriminant_Conformance
(N
, Prev
, Id
);
16626 ("missing discriminants in full type declaration", N
);
16628 -- To avoid cascaded errors on subsequent use, share the
16629 -- discriminants of the partial view.
16631 Set_Discriminant_Specifications
(N
,
16632 Discriminant_Specifications
(Prev_Par
));
16636 -- A prior untagged partial view can have an associated class-wide
16637 -- type due to use of the class attribute, and in this case the full
16638 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16639 -- of incomplete tagged declarations, but we check for it.
16642 and then (Is_Tagged_Type
(Prev
)
16643 or else Present
(Class_Wide_Type
(Prev
)))
16645 -- Ada 2012 (AI05-0162): A private type may be the completion of
16646 -- an incomplete type.
16648 if Ada_Version
>= Ada_2012
16649 and then Is_Incomplete_Type
(Prev
)
16650 and then Nkind_In
(N
, N_Private_Type_Declaration
,
16651 N_Private_Extension_Declaration
)
16653 -- No need to check private extensions since they are tagged
16655 if Nkind
(N
) = N_Private_Type_Declaration
16656 and then not Tagged_Present
(N
)
16661 -- The full declaration is either a tagged type (including
16662 -- a synchronized type that implements interfaces) or a
16663 -- type extension, otherwise this is an error.
16665 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16666 N_Protected_Type_Declaration
)
16668 if No
(Interface_List
(N
)) and then not Error_Posted
(N
) then
16672 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
16674 -- Indicate that the previous declaration (tagged incomplete
16675 -- or private declaration) requires the same on the full one.
16677 if not Tagged_Present
(Type_Definition
(N
)) then
16679 Set_Is_Tagged_Type
(Id
);
16682 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
16683 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
16685 ("full declaration of } must be a record extension",
16688 -- Set some attributes to produce a usable full view
16690 Set_Is_Tagged_Type
(Id
);
16699 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
16700 and then Present
(Premature_Use
(Parent
(Prev
)))
16702 Error_Msg_Sloc
:= Sloc
(N
);
16704 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
16709 end Find_Type_Name
;
16711 -------------------------
16712 -- Find_Type_Of_Object --
16713 -------------------------
16715 function Find_Type_Of_Object
16716 (Obj_Def
: Node_Id
;
16717 Related_Nod
: Node_Id
) return Entity_Id
16719 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
16720 P
: Node_Id
:= Parent
(Obj_Def
);
16725 -- If the parent is a component_definition node we climb to the
16726 -- component_declaration node
16728 if Nkind
(P
) = N_Component_Definition
then
16732 -- Case of an anonymous array subtype
16734 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
16735 N_Unconstrained_Array_Definition
)
16738 Array_Type_Declaration
(T
, Obj_Def
);
16740 -- Create an explicit subtype whenever possible
16742 elsif Nkind
(P
) /= N_Component_Declaration
16743 and then Def_Kind
= N_Subtype_Indication
16745 -- Base name of subtype on object name, which will be unique in
16746 -- the current scope.
16748 -- If this is a duplicate declaration, return base type, to avoid
16749 -- generating duplicate anonymous types.
16751 if Error_Posted
(P
) then
16752 Analyze
(Subtype_Mark
(Obj_Def
));
16753 return Entity
(Subtype_Mark
(Obj_Def
));
16758 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
16760 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
16762 Insert_Action
(Obj_Def
,
16763 Make_Subtype_Declaration
(Sloc
(P
),
16764 Defining_Identifier
=> T
,
16765 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
16767 -- This subtype may need freezing, and this will not be done
16768 -- automatically if the object declaration is not in declarative
16769 -- part. Since this is an object declaration, the type cannot always
16770 -- be frozen here. Deferred constants do not freeze their type
16771 -- (which often enough will be private).
16773 if Nkind
(P
) = N_Object_Declaration
16774 and then Constant_Present
(P
)
16775 and then No
(Expression
(P
))
16779 -- Here we freeze the base type of object type to catch premature use
16780 -- of discriminated private type without a full view.
16783 Insert_Actions
(Obj_Def
, Freeze_Entity
(Base_Type
(T
), P
));
16786 -- Ada 2005 AI-406: the object definition in an object declaration
16787 -- can be an access definition.
16789 elsif Def_Kind
= N_Access_Definition
then
16790 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
16792 Set_Is_Local_Anonymous_Access
16794 V
=> (Ada_Version
< Ada_2012
)
16795 or else (Nkind
(P
) /= N_Object_Declaration
)
16796 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
16798 -- Otherwise, the object definition is just a subtype_mark
16801 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
16803 -- If expansion is disabled an object definition that is an aggregate
16804 -- will not get expanded and may lead to scoping problems in the back
16805 -- end, if the object is referenced in an inner scope. In that case
16806 -- create an itype reference for the object definition now. This
16807 -- may be redundant in some cases, but harmless.
16810 and then Nkind
(Related_Nod
) = N_Object_Declaration
16813 Build_Itype_Reference
(T
, Related_Nod
);
16818 end Find_Type_Of_Object
;
16820 --------------------------------
16821 -- Find_Type_Of_Subtype_Indic --
16822 --------------------------------
16824 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
16828 -- Case of subtype mark with a constraint
16830 if Nkind
(S
) = N_Subtype_Indication
then
16831 Find_Type
(Subtype_Mark
(S
));
16832 Typ
:= Entity
(Subtype_Mark
(S
));
16835 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
16838 ("incorrect constraint for this kind of type", Constraint
(S
));
16839 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
16842 -- Otherwise we have a subtype mark without a constraint
16844 elsif Error_Posted
(S
) then
16845 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
16853 -- Check No_Wide_Characters restriction
16855 Check_Wide_Character_Restriction
(Typ
, S
);
16858 end Find_Type_Of_Subtype_Indic
;
16860 -------------------------------------
16861 -- Floating_Point_Type_Declaration --
16862 -------------------------------------
16864 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16865 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
16866 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
16868 Base_Typ
: Entity_Id
;
16869 Implicit_Base
: Entity_Id
;
16872 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
16873 -- Find if given digits value, and possibly a specified range, allows
16874 -- derivation from specified type
16876 function Find_Base_Type
return Entity_Id
;
16877 -- Find a predefined base type that Def can derive from, or generate
16878 -- an error and substitute Long_Long_Float if none exists.
16880 ---------------------
16881 -- Can_Derive_From --
16882 ---------------------
16884 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
16885 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
16888 -- Check specified "digits" constraint
16890 if Digs_Val
> Digits_Value
(E
) then
16894 -- Check for matching range, if specified
16896 if Present
(Spec
) then
16897 if Expr_Value_R
(Type_Low_Bound
(E
)) >
16898 Expr_Value_R
(Low_Bound
(Spec
))
16903 if Expr_Value_R
(Type_High_Bound
(E
)) <
16904 Expr_Value_R
(High_Bound
(Spec
))
16911 end Can_Derive_From
;
16913 --------------------
16914 -- Find_Base_Type --
16915 --------------------
16917 function Find_Base_Type
return Entity_Id
is
16918 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
16921 -- Iterate over the predefined types in order, returning the first
16922 -- one that Def can derive from.
16924 while Present
(Choice
) loop
16925 if Can_Derive_From
(Node
(Choice
)) then
16926 return Node
(Choice
);
16929 Next_Elmt
(Choice
);
16932 -- If we can't derive from any existing type, use Long_Long_Float
16933 -- and give appropriate message explaining the problem.
16935 if Digs_Val
> Max_Digs_Val
then
16936 -- It might be the case that there is a type with the requested
16937 -- range, just not the combination of digits and range.
16940 ("no predefined type has requested range and precision",
16941 Real_Range_Specification
(Def
));
16945 ("range too large for any predefined type",
16946 Real_Range_Specification
(Def
));
16949 return Standard_Long_Long_Float
;
16950 end Find_Base_Type
;
16952 -- Start of processing for Floating_Point_Type_Declaration
16955 Check_Restriction
(No_Floating_Point
, Def
);
16957 -- Create an implicit base type
16960 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
16962 -- Analyze and verify digits value
16964 Analyze_And_Resolve
(Digs
, Any_Integer
);
16965 Check_Digits_Expression
(Digs
);
16966 Digs_Val
:= Expr_Value
(Digs
);
16968 -- Process possible range spec and find correct type to derive from
16970 Process_Real_Range_Specification
(Def
);
16972 -- Check that requested number of digits is not too high.
16974 if Digs_Val
> Max_Digs_Val
then
16976 -- The check for Max_Base_Digits may be somewhat expensive, as it
16977 -- requires reading System, so only do it when necessary.
16980 Max_Base_Digits
: constant Uint
:=
16983 (Parent
(RTE
(RE_Max_Base_Digits
))));
16986 if Digs_Val
> Max_Base_Digits
then
16987 Error_Msg_Uint_1
:= Max_Base_Digits
;
16988 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
16990 elsif No
(Real_Range_Specification
(Def
)) then
16991 Error_Msg_Uint_1
:= Max_Digs_Val
;
16992 Error_Msg_N
("types with more than ^ digits need range spec "
16993 & "(RM 3.5.7(6))", Digs
);
16998 -- Find a suitable type to derive from or complain and use a substitute
17000 Base_Typ
:= Find_Base_Type
;
17002 -- If there are bounds given in the declaration use them as the bounds
17003 -- of the type, otherwise use the bounds of the predefined base type
17004 -- that was chosen based on the Digits value.
17006 if Present
(Real_Range_Specification
(Def
)) then
17007 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
17008 Set_Is_Constrained
(T
);
17010 -- The bounds of this range must be converted to machine numbers
17011 -- in accordance with RM 4.9(38).
17013 Bound
:= Type_Low_Bound
(T
);
17015 if Nkind
(Bound
) = N_Real_Literal
then
17017 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17018 Set_Is_Machine_Number
(Bound
);
17021 Bound
:= Type_High_Bound
(T
);
17023 if Nkind
(Bound
) = N_Real_Literal
then
17025 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17026 Set_Is_Machine_Number
(Bound
);
17030 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
17033 -- Complete definition of implicit base and declared first subtype. The
17034 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17035 -- are not clobbered when the floating point type acts as a full view of
17038 Set_Etype
(Implicit_Base
, Base_Typ
);
17039 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
17040 Set_Size_Info
(Implicit_Base
, Base_Typ
);
17041 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
17042 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
17043 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
17044 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
17046 Set_Ekind
(T
, E_Floating_Point_Subtype
);
17047 Set_Etype
(T
, Implicit_Base
);
17048 Set_Size_Info
(T
, Implicit_Base
);
17049 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
17050 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
17051 Set_Digits_Value
(T
, Digs_Val
);
17052 end Floating_Point_Type_Declaration
;
17054 ----------------------------
17055 -- Get_Discriminant_Value --
17056 ----------------------------
17058 -- This is the situation:
17060 -- There is a non-derived type
17062 -- type T0 (Dx, Dy, Dz...)
17064 -- There are zero or more levels of derivation, with each derivation
17065 -- either purely inheriting the discriminants, or defining its own.
17067 -- type Ti is new Ti-1
17069 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17071 -- subtype Ti is ...
17073 -- The subtype issue is avoided by the use of Original_Record_Component,
17074 -- and the fact that derived subtypes also derive the constraints.
17076 -- This chain leads back from
17078 -- Typ_For_Constraint
17080 -- Typ_For_Constraint has discriminants, and the value for each
17081 -- discriminant is given by its corresponding Elmt of Constraints.
17083 -- Discriminant is some discriminant in this hierarchy
17085 -- We need to return its value
17087 -- We do this by recursively searching each level, and looking for
17088 -- Discriminant. Once we get to the bottom, we start backing up
17089 -- returning the value for it which may in turn be a discriminant
17090 -- further up, so on the backup we continue the substitution.
17092 function Get_Discriminant_Value
17093 (Discriminant
: Entity_Id
;
17094 Typ_For_Constraint
: Entity_Id
;
17095 Constraint
: Elist_Id
) return Node_Id
17097 function Root_Corresponding_Discriminant
17098 (Discr
: Entity_Id
) return Entity_Id
;
17099 -- Given a discriminant, traverse the chain of inherited discriminants
17100 -- and return the topmost discriminant.
17102 function Search_Derivation_Levels
17104 Discrim_Values
: Elist_Id
;
17105 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
17106 -- This is the routine that performs the recursive search of levels
17107 -- as described above.
17109 -------------------------------------
17110 -- Root_Corresponding_Discriminant --
17111 -------------------------------------
17113 function Root_Corresponding_Discriminant
17114 (Discr
: Entity_Id
) return Entity_Id
17120 while Present
(Corresponding_Discriminant
(D
)) loop
17121 D
:= Corresponding_Discriminant
(D
);
17125 end Root_Corresponding_Discriminant
;
17127 ------------------------------
17128 -- Search_Derivation_Levels --
17129 ------------------------------
17131 function Search_Derivation_Levels
17133 Discrim_Values
: Elist_Id
;
17134 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
17138 Result
: Node_Or_Entity_Id
;
17139 Result_Entity
: Node_Id
;
17142 -- If inappropriate type, return Error, this happens only in
17143 -- cascaded error situations, and we want to avoid a blow up.
17145 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
17149 -- Look deeper if possible. Use Stored_Constraints only for
17150 -- untagged types. For tagged types use the given constraint.
17151 -- This asymmetry needs explanation???
17153 if not Stored_Discrim_Values
17154 and then Present
(Stored_Constraint
(Ti
))
17155 and then not Is_Tagged_Type
(Ti
)
17158 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
17161 Td
: constant Entity_Id
:= Etype
(Ti
);
17165 Result
:= Discriminant
;
17168 if Present
(Stored_Constraint
(Ti
)) then
17170 Search_Derivation_Levels
17171 (Td
, Stored_Constraint
(Ti
), True);
17174 Search_Derivation_Levels
17175 (Td
, Discrim_Values
, Stored_Discrim_Values
);
17181 -- Extra underlying places to search, if not found above. For
17182 -- concurrent types, the relevant discriminant appears in the
17183 -- corresponding record. For a type derived from a private type
17184 -- without discriminant, the full view inherits the discriminants
17185 -- of the full view of the parent.
17187 if Result
= Discriminant
then
17188 if Is_Concurrent_Type
(Ti
)
17189 and then Present
(Corresponding_Record_Type
(Ti
))
17192 Search_Derivation_Levels
(
17193 Corresponding_Record_Type
(Ti
),
17195 Stored_Discrim_Values
);
17197 elsif Is_Private_Type
(Ti
)
17198 and then not Has_Discriminants
(Ti
)
17199 and then Present
(Full_View
(Ti
))
17200 and then Etype
(Full_View
(Ti
)) /= Ti
17203 Search_Derivation_Levels
(
17206 Stored_Discrim_Values
);
17210 -- If Result is not a (reference to a) discriminant, return it,
17211 -- otherwise set Result_Entity to the discriminant.
17213 if Nkind
(Result
) = N_Defining_Identifier
then
17214 pragma Assert
(Result
= Discriminant
);
17215 Result_Entity
:= Result
;
17218 if not Denotes_Discriminant
(Result
) then
17222 Result_Entity
:= Entity
(Result
);
17225 -- See if this level of derivation actually has discriminants because
17226 -- tagged derivations can add them, hence the lower levels need not
17229 if not Has_Discriminants
(Ti
) then
17233 -- Scan Ti's discriminants for Result_Entity, and return its
17234 -- corresponding value, if any.
17236 Result_Entity
:= Original_Record_Component
(Result_Entity
);
17238 Assoc
:= First_Elmt
(Discrim_Values
);
17240 if Stored_Discrim_Values
then
17241 Disc
:= First_Stored_Discriminant
(Ti
);
17243 Disc
:= First_Discriminant
(Ti
);
17246 while Present
(Disc
) loop
17247 pragma Assert
(Present
(Assoc
));
17249 if Original_Record_Component
(Disc
) = Result_Entity
then
17250 return Node
(Assoc
);
17255 if Stored_Discrim_Values
then
17256 Next_Stored_Discriminant
(Disc
);
17258 Next_Discriminant
(Disc
);
17262 -- Could not find it
17265 end Search_Derivation_Levels
;
17269 Result
: Node_Or_Entity_Id
;
17271 -- Start of processing for Get_Discriminant_Value
17274 -- ??? This routine is a gigantic mess and will be deleted. For the
17275 -- time being just test for the trivial case before calling recurse.
17277 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
17283 D
:= First_Discriminant
(Typ_For_Constraint
);
17284 E
:= First_Elmt
(Constraint
);
17285 while Present
(D
) loop
17286 if Chars
(D
) = Chars
(Discriminant
) then
17290 Next_Discriminant
(D
);
17296 Result
:= Search_Derivation_Levels
17297 (Typ_For_Constraint
, Constraint
, False);
17299 -- ??? hack to disappear when this routine is gone
17301 if Nkind
(Result
) = N_Defining_Identifier
then
17307 D
:= First_Discriminant
(Typ_For_Constraint
);
17308 E
:= First_Elmt
(Constraint
);
17309 while Present
(D
) loop
17310 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
17314 Next_Discriminant
(D
);
17320 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
17322 end Get_Discriminant_Value
;
17324 --------------------------
17325 -- Has_Range_Constraint --
17326 --------------------------
17328 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
17329 C
: constant Node_Id
:= Constraint
(N
);
17332 if Nkind
(C
) = N_Range_Constraint
then
17335 elsif Nkind
(C
) = N_Digits_Constraint
then
17337 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
17338 or else Present
(Range_Constraint
(C
));
17340 elsif Nkind
(C
) = N_Delta_Constraint
then
17341 return Present
(Range_Constraint
(C
));
17346 end Has_Range_Constraint
;
17348 ------------------------
17349 -- Inherit_Components --
17350 ------------------------
17352 function Inherit_Components
17354 Parent_Base
: Entity_Id
;
17355 Derived_Base
: Entity_Id
;
17356 Is_Tagged
: Boolean;
17357 Inherit_Discr
: Boolean;
17358 Discs
: Elist_Id
) return Elist_Id
17360 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
17362 procedure Inherit_Component
17363 (Old_C
: Entity_Id
;
17364 Plain_Discrim
: Boolean := False;
17365 Stored_Discrim
: Boolean := False);
17366 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17367 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17368 -- True, Old_C is a stored discriminant. If they are both false then
17369 -- Old_C is a regular component.
17371 -----------------------
17372 -- Inherit_Component --
17373 -----------------------
17375 procedure Inherit_Component
17376 (Old_C
: Entity_Id
;
17377 Plain_Discrim
: Boolean := False;
17378 Stored_Discrim
: Boolean := False)
17380 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
17381 -- Id denotes the entity of an access discriminant or anonymous
17382 -- access component. Set the type of Id to either the same type of
17383 -- Old_C or create a new one depending on whether the parent and
17384 -- the child types are in the same scope.
17386 ------------------------
17387 -- Set_Anonymous_Type --
17388 ------------------------
17390 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
17391 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
17394 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
17395 Set_Etype
(Id
, Old_Typ
);
17397 -- The parent and the derived type are in two different scopes.
17398 -- Reuse the type of the original discriminant / component by
17399 -- copying it in order to preserve all attributes.
17403 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
17406 Set_Etype
(Id
, Typ
);
17408 -- Since we do not generate component declarations for
17409 -- inherited components, associate the itype with the
17412 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
17413 Set_Scope
(Typ
, Derived_Base
);
17416 end Set_Anonymous_Type
;
17418 -- Local variables and constants
17420 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
17422 Corr_Discrim
: Entity_Id
;
17423 Discrim
: Entity_Id
;
17425 -- Start of processing for Inherit_Component
17428 pragma Assert
(not Is_Tagged
or not Stored_Discrim
);
17430 Set_Parent
(New_C
, Parent
(Old_C
));
17432 -- Regular discriminants and components must be inserted in the scope
17433 -- of the Derived_Base. Do it here.
17435 if not Stored_Discrim
then
17436 Enter_Name
(New_C
);
17439 -- For tagged types the Original_Record_Component must point to
17440 -- whatever this field was pointing to in the parent type. This has
17441 -- already been achieved by the call to New_Copy above.
17443 if not Is_Tagged
then
17444 Set_Original_Record_Component
(New_C
, New_C
);
17447 -- Set the proper type of an access discriminant
17449 if Ekind
(New_C
) = E_Discriminant
17450 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
17452 Set_Anonymous_Type
(New_C
);
17455 -- If we have inherited a component then see if its Etype contains
17456 -- references to Parent_Base discriminants. In this case, replace
17457 -- these references with the constraints given in Discs. We do not
17458 -- do this for the partial view of private types because this is
17459 -- not needed (only the components of the full view will be used
17460 -- for code generation) and cause problem. We also avoid this
17461 -- transformation in some error situations.
17463 if Ekind
(New_C
) = E_Component
then
17465 -- Set the proper type of an anonymous access component
17467 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
17468 Set_Anonymous_Type
(New_C
);
17470 elsif (Is_Private_Type
(Derived_Base
)
17471 and then not Is_Generic_Type
(Derived_Base
))
17472 or else (Is_Empty_Elmt_List
(Discs
)
17473 and then not Expander_Active
)
17475 Set_Etype
(New_C
, Etype
(Old_C
));
17478 -- The current component introduces a circularity of the
17481 -- limited with Pack_2;
17482 -- package Pack_1 is
17483 -- type T_1 is tagged record
17484 -- Comp : access Pack_2.T_2;
17490 -- package Pack_2 is
17491 -- type T_2 is new Pack_1.T_1 with ...;
17496 Constrain_Component_Type
17497 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
17501 -- In derived tagged types it is illegal to reference a non
17502 -- discriminant component in the parent type. To catch this, mark
17503 -- these components with an Ekind of E_Void. This will be reset in
17504 -- Record_Type_Definition after processing the record extension of
17505 -- the derived type.
17507 -- If the declaration is a private extension, there is no further
17508 -- record extension to process, and the components retain their
17509 -- current kind, because they are visible at this point.
17511 if Is_Tagged
and then Ekind
(New_C
) = E_Component
17512 and then Nkind
(N
) /= N_Private_Extension_Declaration
17514 Set_Ekind
(New_C
, E_Void
);
17517 if Plain_Discrim
then
17518 Set_Corresponding_Discriminant
(New_C
, Old_C
);
17519 Build_Discriminal
(New_C
);
17521 -- If we are explicitly inheriting a stored discriminant it will be
17522 -- completely hidden.
17524 elsif Stored_Discrim
then
17525 Set_Corresponding_Discriminant
(New_C
, Empty
);
17526 Set_Discriminal
(New_C
, Empty
);
17527 Set_Is_Completely_Hidden
(New_C
);
17529 -- Set the Original_Record_Component of each discriminant in the
17530 -- derived base to point to the corresponding stored that we just
17533 Discrim
:= First_Discriminant
(Derived_Base
);
17534 while Present
(Discrim
) loop
17535 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
17537 -- Corr_Discrim could be missing in an error situation
17539 if Present
(Corr_Discrim
)
17540 and then Original_Record_Component
(Corr_Discrim
) = Old_C
17542 Set_Original_Record_Component
(Discrim
, New_C
);
17545 Next_Discriminant
(Discrim
);
17548 Append_Entity
(New_C
, Derived_Base
);
17551 if not Is_Tagged
then
17552 Append_Elmt
(Old_C
, Assoc_List
);
17553 Append_Elmt
(New_C
, Assoc_List
);
17555 end Inherit_Component
;
17557 -- Variables local to Inherit_Component
17559 Loc
: constant Source_Ptr
:= Sloc
(N
);
17561 Parent_Discrim
: Entity_Id
;
17562 Stored_Discrim
: Entity_Id
;
17564 Component
: Entity_Id
;
17566 -- Start of processing for Inherit_Components
17569 if not Is_Tagged
then
17570 Append_Elmt
(Parent_Base
, Assoc_List
);
17571 Append_Elmt
(Derived_Base
, Assoc_List
);
17574 -- Inherit parent discriminants if needed
17576 if Inherit_Discr
then
17577 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
17578 while Present
(Parent_Discrim
) loop
17579 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
17580 Next_Discriminant
(Parent_Discrim
);
17584 -- Create explicit stored discrims for untagged types when necessary
17586 if not Has_Unknown_Discriminants
(Derived_Base
)
17587 and then Has_Discriminants
(Parent_Base
)
17588 and then not Is_Tagged
17591 or else First_Discriminant
(Parent_Base
) /=
17592 First_Stored_Discriminant
(Parent_Base
))
17594 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
17595 while Present
(Stored_Discrim
) loop
17596 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
17597 Next_Stored_Discriminant
(Stored_Discrim
);
17601 -- See if we can apply the second transformation for derived types, as
17602 -- explained in point 6. in the comments above Build_Derived_Record_Type
17603 -- This is achieved by appending Derived_Base discriminants into Discs,
17604 -- which has the side effect of returning a non empty Discs list to the
17605 -- caller of Inherit_Components, which is what we want. This must be
17606 -- done for private derived types if there are explicit stored
17607 -- discriminants, to ensure that we can retrieve the values of the
17608 -- constraints provided in the ancestors.
17611 and then Is_Empty_Elmt_List
(Discs
)
17612 and then Present
(First_Discriminant
(Derived_Base
))
17614 (not Is_Private_Type
(Derived_Base
)
17615 or else Is_Completely_Hidden
17616 (First_Stored_Discriminant
(Derived_Base
))
17617 or else Is_Generic_Type
(Derived_Base
))
17619 D
:= First_Discriminant
(Derived_Base
);
17620 while Present
(D
) loop
17621 Append_Elmt
(New_Occurrence_Of
(D
, Loc
), Discs
);
17622 Next_Discriminant
(D
);
17626 -- Finally, inherit non-discriminant components unless they are not
17627 -- visible because defined or inherited from the full view of the
17628 -- parent. Don't inherit the _parent field of the parent type.
17630 Component
:= First_Entity
(Parent_Base
);
17631 while Present
(Component
) loop
17633 -- Ada 2005 (AI-251): Do not inherit components associated with
17634 -- secondary tags of the parent.
17636 if Ekind
(Component
) = E_Component
17637 and then Present
(Related_Type
(Component
))
17641 elsif Ekind
(Component
) /= E_Component
17642 or else Chars
(Component
) = Name_uParent
17646 -- If the derived type is within the parent type's declarative
17647 -- region, then the components can still be inherited even though
17648 -- they aren't visible at this point. This can occur for cases
17649 -- such as within public child units where the components must
17650 -- become visible upon entering the child unit's private part.
17652 elsif not Is_Visible_Component
(Component
)
17653 and then not In_Open_Scopes
(Scope
(Parent_Base
))
17657 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
17658 E_Limited_Private_Type
)
17663 Inherit_Component
(Component
);
17666 Next_Entity
(Component
);
17669 -- For tagged derived types, inherited discriminants cannot be used in
17670 -- component declarations of the record extension part. To achieve this
17671 -- we mark the inherited discriminants as not visible.
17673 if Is_Tagged
and then Inherit_Discr
then
17674 D
:= First_Discriminant
(Derived_Base
);
17675 while Present
(D
) loop
17676 Set_Is_Immediately_Visible
(D
, False);
17677 Next_Discriminant
(D
);
17682 end Inherit_Components
;
17684 -----------------------------
17685 -- Inherit_Predicate_Flags --
17686 -----------------------------
17688 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
) is
17690 Set_Has_Predicates
(Subt
, Has_Predicates
(Par
));
17691 Set_Has_Static_Predicate_Aspect
17692 (Subt
, Has_Static_Predicate_Aspect
(Par
));
17693 Set_Has_Dynamic_Predicate_Aspect
17694 (Subt
, Has_Dynamic_Predicate_Aspect
(Par
));
17695 end Inherit_Predicate_Flags
;
17697 ----------------------
17698 -- Is_EVF_Procedure --
17699 ----------------------
17701 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean is
17702 Formal
: Entity_Id
;
17705 -- Examine the formals of an Extensions_Visible False procedure looking
17706 -- for a controlling OUT parameter.
17708 if Ekind
(Subp
) = E_Procedure
17709 and then Extensions_Visible_Status
(Subp
) = Extensions_Visible_False
17711 Formal
:= First_Formal
(Subp
);
17712 while Present
(Formal
) loop
17713 if Ekind
(Formal
) = E_Out_Parameter
17714 and then Is_Controlling_Formal
(Formal
)
17719 Next_Formal
(Formal
);
17724 end Is_EVF_Procedure
;
17726 -----------------------
17727 -- Is_Null_Extension --
17728 -----------------------
17730 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
17731 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
17732 Comp_List
: Node_Id
;
17736 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
17737 or else not Is_Tagged_Type
(T
)
17738 or else Nkind
(Type_Definition
(Type_Decl
)) /=
17739 N_Derived_Type_Definition
17740 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
17746 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
17748 if Present
(Discriminant_Specifications
(Type_Decl
)) then
17751 elsif Present
(Comp_List
)
17752 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
17754 Comp
:= First
(Component_Items
(Comp_List
));
17756 -- Only user-defined components are relevant. The component list
17757 -- may also contain a parent component and internal components
17758 -- corresponding to secondary tags, but these do not determine
17759 -- whether this is a null extension.
17761 while Present
(Comp
) loop
17762 if Comes_From_Source
(Comp
) then
17774 end Is_Null_Extension
;
17776 ------------------------------
17777 -- Is_Valid_Constraint_Kind --
17778 ------------------------------
17780 function Is_Valid_Constraint_Kind
17781 (T_Kind
: Type_Kind
;
17782 Constraint_Kind
: Node_Kind
) return Boolean
17786 when Enumeration_Kind |
17788 return Constraint_Kind
= N_Range_Constraint
;
17790 when Decimal_Fixed_Point_Kind
=>
17791 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17792 N_Range_Constraint
);
17794 when Ordinary_Fixed_Point_Kind
=>
17795 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
17796 N_Range_Constraint
);
17799 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17800 N_Range_Constraint
);
17807 E_Incomplete_Type |
17810 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
17813 return True; -- Error will be detected later
17815 end Is_Valid_Constraint_Kind
;
17817 --------------------------
17818 -- Is_Visible_Component --
17819 --------------------------
17821 function Is_Visible_Component
17823 N
: Node_Id
:= Empty
) return Boolean
17825 Original_Comp
: Entity_Id
:= Empty
;
17826 Original_Type
: Entity_Id
;
17827 Type_Scope
: Entity_Id
;
17829 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
17830 -- Check whether parent type of inherited component is declared locally,
17831 -- possibly within a nested package or instance. The current scope is
17832 -- the derived record itself.
17834 -------------------
17835 -- Is_Local_Type --
17836 -------------------
17838 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
17842 Scop
:= Scope
(Typ
);
17843 while Present
(Scop
)
17844 and then Scop
/= Standard_Standard
17846 if Scop
= Scope
(Current_Scope
) then
17850 Scop
:= Scope
(Scop
);
17856 -- Start of processing for Is_Visible_Component
17859 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
17860 Original_Comp
:= Original_Record_Component
(C
);
17863 if No
(Original_Comp
) then
17865 -- Premature usage, or previous error
17870 Original_Type
:= Scope
(Original_Comp
);
17871 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
17874 -- This test only concerns tagged types
17876 if not Is_Tagged_Type
(Original_Type
) then
17879 -- If it is _Parent or _Tag, there is no visibility issue
17881 elsif not Comes_From_Source
(Original_Comp
) then
17884 -- Discriminants are visible unless the (private) type has unknown
17885 -- discriminants. If the discriminant reference is inserted for a
17886 -- discriminant check on a full view it is also visible.
17888 elsif Ekind
(Original_Comp
) = E_Discriminant
17890 (not Has_Unknown_Discriminants
(Original_Type
)
17891 or else (Present
(N
)
17892 and then Nkind
(N
) = N_Selected_Component
17893 and then Nkind
(Prefix
(N
)) = N_Type_Conversion
17894 and then not Comes_From_Source
(Prefix
(N
))))
17898 -- In the body of an instantiation, no need to check for the visibility
17901 elsif In_Instance_Body
then
17904 -- If the component has been declared in an ancestor which is currently
17905 -- a private type, then it is not visible. The same applies if the
17906 -- component's containing type is not in an open scope and the original
17907 -- component's enclosing type is a visible full view of a private type
17908 -- (which can occur in cases where an attempt is being made to reference
17909 -- a component in a sibling package that is inherited from a visible
17910 -- component of a type in an ancestor package; the component in the
17911 -- sibling package should not be visible even though the component it
17912 -- inherited from is visible). This does not apply however in the case
17913 -- where the scope of the type is a private child unit, or when the
17914 -- parent comes from a local package in which the ancestor is currently
17915 -- visible. The latter suppression of visibility is needed for cases
17916 -- that are tested in B730006.
17918 elsif Is_Private_Type
(Original_Type
)
17920 (not Is_Private_Descendant
(Type_Scope
)
17921 and then not In_Open_Scopes
(Type_Scope
)
17922 and then Has_Private_Declaration
(Original_Type
))
17924 -- If the type derives from an entity in a formal package, there
17925 -- are no additional visible components.
17927 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
17928 N_Formal_Package_Declaration
17932 -- if we are not in the private part of the current package, there
17933 -- are no additional visible components.
17935 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
17936 and then not In_Private_Part
(Scope
(Current_Scope
))
17941 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
17942 and then In_Open_Scopes
(Scope
(Original_Type
))
17943 and then Is_Local_Type
(Type_Scope
);
17946 -- There is another weird way in which a component may be invisible when
17947 -- the private and the full view are not derived from the same ancestor.
17948 -- Here is an example :
17950 -- type A1 is tagged record F1 : integer; end record;
17951 -- type A2 is new A1 with record F2 : integer; end record;
17952 -- type T is new A1 with private;
17954 -- type T is new A2 with null record;
17956 -- In this case, the full view of T inherits F1 and F2 but the private
17957 -- view inherits only F1
17961 Ancestor
: Entity_Id
:= Scope
(C
);
17965 if Ancestor
= Original_Type
then
17968 -- The ancestor may have a partial view of the original type,
17969 -- but if the full view is in scope, as in a child body, the
17970 -- component is visible.
17972 elsif In_Private_Part
(Scope
(Original_Type
))
17973 and then Full_View
(Ancestor
) = Original_Type
17977 elsif Ancestor
= Etype
(Ancestor
) then
17979 -- No further ancestors to examine
17984 Ancestor
:= Etype
(Ancestor
);
17988 end Is_Visible_Component
;
17990 --------------------------
17991 -- Make_Class_Wide_Type --
17992 --------------------------
17994 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
17995 CW_Type
: Entity_Id
;
17997 Next_E
: Entity_Id
;
18000 if Present
(Class_Wide_Type
(T
)) then
18002 -- The class-wide type is a partially decorated entity created for a
18003 -- unanalyzed tagged type referenced through a limited with clause.
18004 -- When the tagged type is analyzed, its class-wide type needs to be
18005 -- redecorated. Note that we reuse the entity created by Decorate_
18006 -- Tagged_Type in order to preserve all links.
18008 if Materialize_Entity
(Class_Wide_Type
(T
)) then
18009 CW_Type
:= Class_Wide_Type
(T
);
18010 Set_Materialize_Entity
(CW_Type
, False);
18012 -- The class wide type can have been defined by the partial view, in
18013 -- which case everything is already done.
18019 -- Default case, we need to create a new class-wide type
18023 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
18026 -- Inherit root type characteristics
18028 CW_Name
:= Chars
(CW_Type
);
18029 Next_E
:= Next_Entity
(CW_Type
);
18030 Copy_Node
(T
, CW_Type
);
18031 Set_Comes_From_Source
(CW_Type
, False);
18032 Set_Chars
(CW_Type
, CW_Name
);
18033 Set_Parent
(CW_Type
, Parent
(T
));
18034 Set_Next_Entity
(CW_Type
, Next_E
);
18036 -- Ensure we have a new freeze node for the class-wide type. The partial
18037 -- view may have freeze action of its own, requiring a proper freeze
18038 -- node, and the same freeze node cannot be shared between the two
18041 Set_Has_Delayed_Freeze
(CW_Type
);
18042 Set_Freeze_Node
(CW_Type
, Empty
);
18044 -- Customize the class-wide type: It has no prim. op., it cannot be
18045 -- abstract and its Etype points back to the specific root type.
18047 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
18048 Set_Is_Tagged_Type
(CW_Type
, True);
18049 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
18050 Set_Is_Abstract_Type
(CW_Type
, False);
18051 Set_Is_Constrained
(CW_Type
, False);
18052 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
18053 Set_Default_SSO
(CW_Type
);
18055 if Ekind
(T
) = E_Class_Wide_Subtype
then
18056 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
18058 Set_Etype
(CW_Type
, T
);
18061 Set_No_Tagged_Streams_Pragma
(CW_Type
, No_Tagged_Streams
);
18063 -- If this is the class_wide type of a constrained subtype, it does
18064 -- not have discriminants.
18066 Set_Has_Discriminants
(CW_Type
,
18067 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
18069 Set_Has_Unknown_Discriminants
(CW_Type
, True);
18070 Set_Class_Wide_Type
(T
, CW_Type
);
18071 Set_Equivalent_Type
(CW_Type
, Empty
);
18073 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18075 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
18077 -- Inherit the "ghostness" from the root tagged type
18079 if Ghost_Mode
> None
or else Is_Ghost_Entity
(T
) then
18080 Set_Is_Ghost_Entity
(CW_Type
);
18082 end Make_Class_Wide_Type
;
18088 procedure Make_Index
18090 Related_Nod
: Node_Id
;
18091 Related_Id
: Entity_Id
:= Empty
;
18092 Suffix_Index
: Nat
:= 1;
18093 In_Iter_Schm
: Boolean := False)
18097 Def_Id
: Entity_Id
:= Empty
;
18098 Found
: Boolean := False;
18101 -- For a discrete range used in a constrained array definition and
18102 -- defined by a range, an implicit conversion to the predefined type
18103 -- INTEGER is assumed if each bound is either a numeric literal, a named
18104 -- number, or an attribute, and the type of both bounds (prior to the
18105 -- implicit conversion) is the type universal_integer. Otherwise, both
18106 -- bounds must be of the same discrete type, other than universal
18107 -- integer; this type must be determinable independently of the
18108 -- context, but using the fact that the type must be discrete and that
18109 -- both bounds must have the same type.
18111 -- Character literals also have a universal type in the absence of
18112 -- of additional context, and are resolved to Standard_Character.
18114 if Nkind
(N
) = N_Range
then
18116 -- The index is given by a range constraint. The bounds are known
18117 -- to be of a consistent type.
18119 if not Is_Overloaded
(N
) then
18122 -- For universal bounds, choose the specific predefined type
18124 if T
= Universal_Integer
then
18125 T
:= Standard_Integer
;
18127 elsif T
= Any_Character
then
18128 Ambiguous_Character
(Low_Bound
(N
));
18130 T
:= Standard_Character
;
18133 -- The node may be overloaded because some user-defined operators
18134 -- are available, but if a universal interpretation exists it is
18135 -- also the selected one.
18137 elsif Universal_Interpretation
(N
) = Universal_Integer
then
18138 T
:= Standard_Integer
;
18144 Ind
: Interp_Index
;
18148 Get_First_Interp
(N
, Ind
, It
);
18149 while Present
(It
.Typ
) loop
18150 if Is_Discrete_Type
(It
.Typ
) then
18153 and then not Covers
(It
.Typ
, T
)
18154 and then not Covers
(T
, It
.Typ
)
18156 Error_Msg_N
("ambiguous bounds in discrete range", N
);
18164 Get_Next_Interp
(Ind
, It
);
18167 if T
= Any_Type
then
18168 Error_Msg_N
("discrete type required for range", N
);
18169 Set_Etype
(N
, Any_Type
);
18172 elsif T
= Universal_Integer
then
18173 T
:= Standard_Integer
;
18178 if not Is_Discrete_Type
(T
) then
18179 Error_Msg_N
("discrete type required for range", N
);
18180 Set_Etype
(N
, Any_Type
);
18184 if Nkind
(Low_Bound
(N
)) = N_Attribute_Reference
18185 and then Attribute_Name
(Low_Bound
(N
)) = Name_First
18186 and then Is_Entity_Name
(Prefix
(Low_Bound
(N
)))
18187 and then Is_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18188 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18190 -- The type of the index will be the type of the prefix, as long
18191 -- as the upper bound is 'Last of the same type.
18193 Def_Id
:= Entity
(Prefix
(Low_Bound
(N
)));
18195 if Nkind
(High_Bound
(N
)) /= N_Attribute_Reference
18196 or else Attribute_Name
(High_Bound
(N
)) /= Name_Last
18197 or else not Is_Entity_Name
(Prefix
(High_Bound
(N
)))
18198 or else Entity
(Prefix
(High_Bound
(N
))) /= Def_Id
18205 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
18207 elsif Nkind
(N
) = N_Subtype_Indication
then
18209 -- The index is given by a subtype with a range constraint
18211 T
:= Base_Type
(Entity
(Subtype_Mark
(N
)));
18213 if not Is_Discrete_Type
(T
) then
18214 Error_Msg_N
("discrete type required for range", N
);
18215 Set_Etype
(N
, Any_Type
);
18219 R
:= Range_Expression
(Constraint
(N
));
18222 Process_Range_Expr_In_Decl
18223 (R
, Entity
(Subtype_Mark
(N
)), In_Iter_Schm
=> In_Iter_Schm
);
18225 elsif Nkind
(N
) = N_Attribute_Reference
then
18227 -- Catch beginner's error (use of attribute other than 'Range)
18229 if Attribute_Name
(N
) /= Name_Range
then
18230 Error_Msg_N
("expect attribute ''Range", N
);
18231 Set_Etype
(N
, Any_Type
);
18235 -- If the node denotes the range of a type mark, that is also the
18236 -- resulting type, and we do not need to create an Itype for it.
18238 if Is_Entity_Name
(Prefix
(N
))
18239 and then Comes_From_Source
(N
)
18240 and then Is_Type
(Entity
(Prefix
(N
)))
18241 and then Is_Discrete_Type
(Entity
(Prefix
(N
)))
18243 Def_Id
:= Entity
(Prefix
(N
));
18246 Analyze_And_Resolve
(N
);
18250 -- If none of the above, must be a subtype. We convert this to a
18251 -- range attribute reference because in the case of declared first
18252 -- named subtypes, the types in the range reference can be different
18253 -- from the type of the entity. A range attribute normalizes the
18254 -- reference and obtains the correct types for the bounds.
18256 -- This transformation is in the nature of an expansion, is only
18257 -- done if expansion is active. In particular, it is not done on
18258 -- formal generic types, because we need to retain the name of the
18259 -- original index for instantiation purposes.
18262 if not Is_Entity_Name
(N
) or else not Is_Type
(Entity
(N
)) then
18263 Error_Msg_N
("invalid subtype mark in discrete range ", N
);
18264 Set_Etype
(N
, Any_Integer
);
18268 -- The type mark may be that of an incomplete type. It is only
18269 -- now that we can get the full view, previous analysis does
18270 -- not look specifically for a type mark.
18272 Set_Entity
(N
, Get_Full_View
(Entity
(N
)));
18273 Set_Etype
(N
, Entity
(N
));
18274 Def_Id
:= Entity
(N
);
18276 if not Is_Discrete_Type
(Def_Id
) then
18277 Error_Msg_N
("discrete type required for index", N
);
18278 Set_Etype
(N
, Any_Type
);
18283 if Expander_Active
then
18285 Make_Attribute_Reference
(Sloc
(N
),
18286 Attribute_Name
=> Name_Range
,
18287 Prefix
=> Relocate_Node
(N
)));
18289 -- The original was a subtype mark that does not freeze. This
18290 -- means that the rewritten version must not freeze either.
18292 Set_Must_Not_Freeze
(N
);
18293 Set_Must_Not_Freeze
(Prefix
(N
));
18294 Analyze_And_Resolve
(N
);
18298 -- If expander is inactive, type is legal, nothing else to construct
18305 if not Is_Discrete_Type
(T
) then
18306 Error_Msg_N
("discrete type required for range", N
);
18307 Set_Etype
(N
, Any_Type
);
18310 elsif T
= Any_Type
then
18311 Set_Etype
(N
, Any_Type
);
18315 -- We will now create the appropriate Itype to describe the range, but
18316 -- first a check. If we originally had a subtype, then we just label
18317 -- the range with this subtype. Not only is there no need to construct
18318 -- a new subtype, but it is wrong to do so for two reasons:
18320 -- 1. A legality concern, if we have a subtype, it must not freeze,
18321 -- and the Itype would cause freezing incorrectly
18323 -- 2. An efficiency concern, if we created an Itype, it would not be
18324 -- recognized as the same type for the purposes of eliminating
18325 -- checks in some circumstances.
18327 -- We signal this case by setting the subtype entity in Def_Id
18329 if No
(Def_Id
) then
18331 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
18332 Set_Etype
(Def_Id
, Base_Type
(T
));
18334 if Is_Signed_Integer_Type
(T
) then
18335 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
18337 elsif Is_Modular_Integer_Type
(T
) then
18338 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
18341 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
18342 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
18343 Set_First_Literal
(Def_Id
, First_Literal
(T
));
18346 Set_Size_Info
(Def_Id
, (T
));
18347 Set_RM_Size
(Def_Id
, RM_Size
(T
));
18348 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
18350 Set_Scalar_Range
(Def_Id
, R
);
18351 Conditional_Delay
(Def_Id
, T
);
18353 if Nkind
(N
) = N_Subtype_Indication
then
18354 Inherit_Predicate_Flags
(Def_Id
, Entity
(Subtype_Mark
(N
)));
18357 -- In the subtype indication case, if the immediate parent of the
18358 -- new subtype is non-static, then the subtype we create is non-
18359 -- static, even if its bounds are static.
18361 if Nkind
(N
) = N_Subtype_Indication
18362 and then not Is_OK_Static_Subtype
(Entity
(Subtype_Mark
(N
)))
18364 Set_Is_Non_Static_Subtype
(Def_Id
);
18368 -- Final step is to label the index with this constructed type
18370 Set_Etype
(N
, Def_Id
);
18373 ------------------------------
18374 -- Modular_Type_Declaration --
18375 ------------------------------
18377 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
18378 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
18381 procedure Set_Modular_Size
(Bits
: Int
);
18382 -- Sets RM_Size to Bits, and Esize to normal word size above this
18384 ----------------------
18385 -- Set_Modular_Size --
18386 ----------------------
18388 procedure Set_Modular_Size
(Bits
: Int
) is
18390 Set_RM_Size
(T
, UI_From_Int
(Bits
));
18395 elsif Bits
<= 16 then
18396 Init_Esize
(T
, 16);
18398 elsif Bits
<= 32 then
18399 Init_Esize
(T
, 32);
18402 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
18405 if not Non_Binary_Modulus
(T
) and then Esize
(T
) = RM_Size
(T
) then
18406 Set_Is_Known_Valid
(T
);
18408 end Set_Modular_Size
;
18410 -- Start of processing for Modular_Type_Declaration
18413 -- If the mod expression is (exactly) 2 * literal, where literal is
18414 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18416 if Warn_On_Suspicious_Modulus_Value
18417 and then Nkind
(Mod_Expr
) = N_Op_Multiply
18418 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
18419 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
18420 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
18421 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
18424 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr
);
18427 -- Proceed with analysis of mod expression
18429 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
18431 Set_Ekind
(T
, E_Modular_Integer_Type
);
18432 Init_Alignment
(T
);
18433 Set_Is_Constrained
(T
);
18435 if not Is_OK_Static_Expression
(Mod_Expr
) then
18436 Flag_Non_Static_Expr
18437 ("non-static expression used for modular type bound!", Mod_Expr
);
18438 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18440 M_Val
:= Expr_Value
(Mod_Expr
);
18444 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
18445 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18448 if M_Val
> 2 ** Standard_Long_Integer_Size
then
18449 Check_Restriction
(No_Long_Long_Integers
, Mod_Expr
);
18452 Set_Modulus
(T
, M_Val
);
18454 -- Create bounds for the modular type based on the modulus given in
18455 -- the type declaration and then analyze and resolve those bounds.
18457 Set_Scalar_Range
(T
,
18458 Make_Range
(Sloc
(Mod_Expr
),
18459 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
18460 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
18462 -- Properly analyze the literals for the range. We do this manually
18463 -- because we can't go calling Resolve, since we are resolving these
18464 -- bounds with the type, and this type is certainly not complete yet.
18466 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
18467 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
18468 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
18469 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
18471 -- Loop through powers of two to find number of bits required
18473 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
18477 if M_Val
= 2 ** Bits
then
18478 Set_Modular_Size
(Bits
);
18483 elsif M_Val
< 2 ** Bits
then
18484 Check_SPARK_05_Restriction
("modulus should be a power of 2", T
);
18485 Set_Non_Binary_Modulus
(T
);
18487 if Bits
> System_Max_Nonbinary_Modulus_Power
then
18488 Error_Msg_Uint_1
:=
18489 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
18491 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
18492 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18496 -- In the nonbinary case, set size as per RM 13.3(55)
18498 Set_Modular_Size
(Bits
);
18505 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18506 -- so we just signal an error and set the maximum size.
18508 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
18509 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
18511 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18512 Init_Alignment
(T
);
18514 end Modular_Type_Declaration
;
18516 --------------------------
18517 -- New_Concatenation_Op --
18518 --------------------------
18520 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
18521 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
18524 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
18525 -- Create abbreviated declaration for the formal of a predefined
18526 -- Operator 'Op' of type 'Typ'
18528 --------------------
18529 -- Make_Op_Formal --
18530 --------------------
18532 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
18533 Formal
: Entity_Id
;
18535 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
18536 Set_Etype
(Formal
, Typ
);
18537 Set_Mechanism
(Formal
, Default_Mechanism
);
18539 end Make_Op_Formal
;
18541 -- Start of processing for New_Concatenation_Op
18544 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
18546 Set_Ekind
(Op
, E_Operator
);
18547 Set_Scope
(Op
, Current_Scope
);
18548 Set_Etype
(Op
, Typ
);
18549 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
18550 Set_Is_Immediately_Visible
(Op
);
18551 Set_Is_Intrinsic_Subprogram
(Op
);
18552 Set_Has_Completion
(Op
);
18553 Append_Entity
(Op
, Current_Scope
);
18555 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
18557 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18558 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18559 end New_Concatenation_Op
;
18561 -------------------------
18562 -- OK_For_Limited_Init --
18563 -------------------------
18565 -- ???Check all calls of this, and compare the conditions under which it's
18568 function OK_For_Limited_Init
18570 Exp
: Node_Id
) return Boolean
18573 return Is_CPP_Constructor_Call
(Exp
)
18574 or else (Ada_Version
>= Ada_2005
18575 and then not Debug_Flag_Dot_L
18576 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
18577 end OK_For_Limited_Init
;
18579 -------------------------------
18580 -- OK_For_Limited_Init_In_05 --
18581 -------------------------------
18583 function OK_For_Limited_Init_In_05
18585 Exp
: Node_Id
) return Boolean
18588 -- An object of a limited interface type can be initialized with any
18589 -- expression of a nonlimited descendant type.
18591 if Is_Class_Wide_Type
(Typ
)
18592 and then Is_Limited_Interface
(Typ
)
18593 and then not Is_Limited_Type
(Etype
(Exp
))
18598 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18599 -- case of limited aggregates (including extension aggregates), and
18600 -- function calls. The function call may have been given in prefixed
18601 -- notation, in which case the original node is an indexed component.
18602 -- If the function is parameterless, the original node was an explicit
18603 -- dereference. The function may also be parameterless, in which case
18604 -- the source node is just an identifier.
18606 -- A branch of a conditional expression may have been removed if the
18607 -- condition is statically known. This happens during expansion, and
18608 -- thus will not happen if previous errors were encountered. The check
18609 -- will have been performed on the chosen branch, which replaces the
18610 -- original conditional expression.
18616 case Nkind
(Original_Node
(Exp
)) is
18617 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
18620 when N_Identifier
=>
18621 return Present
(Entity
(Original_Node
(Exp
)))
18622 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
18624 when N_Qualified_Expression
=>
18626 OK_For_Limited_Init_In_05
18627 (Typ
, Expression
(Original_Node
(Exp
)));
18629 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18630 -- with a function call, the expander has rewritten the call into an
18631 -- N_Type_Conversion node to force displacement of the pointer to
18632 -- reference the component containing the secondary dispatch table.
18633 -- Otherwise a type conversion is not a legal context.
18634 -- A return statement for a build-in-place function returning a
18635 -- synchronized type also introduces an unchecked conversion.
18637 when N_Type_Conversion |
18638 N_Unchecked_Type_Conversion
=>
18639 return not Comes_From_Source
(Exp
)
18641 OK_For_Limited_Init_In_05
18642 (Typ
, Expression
(Original_Node
(Exp
)));
18644 when N_Indexed_Component |
18645 N_Selected_Component |
18646 N_Explicit_Dereference
=>
18647 return Nkind
(Exp
) = N_Function_Call
;
18649 -- A use of 'Input is a function call, hence allowed. Normally the
18650 -- attribute will be changed to a call, but the attribute by itself
18651 -- can occur with -gnatc.
18653 when N_Attribute_Reference
=>
18654 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
18656 -- For a case expression, all dependent expressions must be legal
18658 when N_Case_Expression
=>
18663 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
18664 while Present
(Alt
) loop
18665 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
18675 -- For an if expression, all dependent expressions must be legal
18677 when N_If_Expression
=>
18679 Then_Expr
: constant Node_Id
:=
18680 Next
(First
(Expressions
(Original_Node
(Exp
))));
18681 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
18683 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
18685 OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
18691 end OK_For_Limited_Init_In_05
;
18693 -------------------------------------------
18694 -- Ordinary_Fixed_Point_Type_Declaration --
18695 -------------------------------------------
18697 procedure Ordinary_Fixed_Point_Type_Declaration
18701 Loc
: constant Source_Ptr
:= Sloc
(Def
);
18702 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
18703 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
18704 Implicit_Base
: Entity_Id
;
18711 Check_Restriction
(No_Fixed_Point
, Def
);
18713 -- Create implicit base type
18716 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
18717 Set_Etype
(Implicit_Base
, Implicit_Base
);
18719 -- Analyze and process delta expression
18721 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
18723 Check_Delta_Expression
(Delta_Expr
);
18724 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
18726 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
18728 -- Compute default small from given delta, which is the largest power
18729 -- of two that does not exceed the given delta value.
18739 if Delta_Val
< Ureal_1
then
18740 while Delta_Val
< Tmp
loop
18741 Tmp
:= Tmp
/ Ureal_2
;
18742 Scale
:= Scale
+ 1;
18747 Tmp
:= Tmp
* Ureal_2
;
18748 exit when Tmp
> Delta_Val
;
18749 Scale
:= Scale
- 1;
18753 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
18756 Set_Small_Value
(Implicit_Base
, Small_Val
);
18758 -- If no range was given, set a dummy range
18760 if RRS
<= Empty_Or_Error
then
18761 Low_Val
:= -Small_Val
;
18762 High_Val
:= Small_Val
;
18764 -- Otherwise analyze and process given range
18768 Low
: constant Node_Id
:= Low_Bound
(RRS
);
18769 High
: constant Node_Id
:= High_Bound
(RRS
);
18772 Analyze_And_Resolve
(Low
, Any_Real
);
18773 Analyze_And_Resolve
(High
, Any_Real
);
18774 Check_Real_Bound
(Low
);
18775 Check_Real_Bound
(High
);
18777 -- Obtain and set the range
18779 Low_Val
:= Expr_Value_R
(Low
);
18780 High_Val
:= Expr_Value_R
(High
);
18782 if Low_Val
> High_Val
then
18783 Error_Msg_NE
("??fixed point type& has null range", Def
, T
);
18788 -- The range for both the implicit base and the declared first subtype
18789 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18790 -- set a temporary range in place. Note that the bounds of the base
18791 -- type will be widened to be symmetrical and to fill the available
18792 -- bits when the type is frozen.
18794 -- We could do this with all discrete types, and probably should, but
18795 -- we absolutely have to do it for fixed-point, since the end-points
18796 -- of the range and the size are determined by the small value, which
18797 -- could be reset before the freeze point.
18799 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
18800 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
18802 -- Complete definition of first subtype. The inheritance of the rep item
18803 -- chain ensures that SPARK-related pragmas are not clobbered when the
18804 -- ordinary fixed point type acts as a full view of a private type.
18806 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
18807 Set_Etype
(T
, Implicit_Base
);
18808 Init_Size_Align
(T
);
18809 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
18810 Set_Small_Value
(T
, Small_Val
);
18811 Set_Delta_Value
(T
, Delta_Val
);
18812 Set_Is_Constrained
(T
);
18813 end Ordinary_Fixed_Point_Type_Declaration
;
18815 ----------------------------------
18816 -- Preanalyze_Assert_Expression --
18817 ----------------------------------
18819 procedure Preanalyze_Assert_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18821 In_Assertion_Expr
:= In_Assertion_Expr
+ 1;
18822 Preanalyze_Spec_Expression
(N
, T
);
18823 In_Assertion_Expr
:= In_Assertion_Expr
- 1;
18824 end Preanalyze_Assert_Expression
;
18826 -----------------------------------
18827 -- Preanalyze_Default_Expression --
18828 -----------------------------------
18830 procedure Preanalyze_Default_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18831 Save_In_Default_Expr
: constant Boolean := In_Default_Expr
;
18833 In_Default_Expr
:= True;
18834 Preanalyze_Spec_Expression
(N
, T
);
18835 In_Default_Expr
:= Save_In_Default_Expr
;
18836 end Preanalyze_Default_Expression
;
18838 --------------------------------
18839 -- Preanalyze_Spec_Expression --
18840 --------------------------------
18842 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18843 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
18845 In_Spec_Expression
:= True;
18846 Preanalyze_And_Resolve
(N
, T
);
18847 In_Spec_Expression
:= Save_In_Spec_Expression
;
18848 end Preanalyze_Spec_Expression
;
18850 ----------------------------------------
18851 -- Prepare_Private_Subtype_Completion --
18852 ----------------------------------------
18854 procedure Prepare_Private_Subtype_Completion
18856 Related_Nod
: Node_Id
)
18858 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
18859 Full_B
: Entity_Id
:= Full_View
(Id_B
);
18863 if Present
(Full_B
) then
18865 -- Get to the underlying full view if necessary
18867 if Is_Private_Type
(Full_B
)
18868 and then Present
(Underlying_Full_View
(Full_B
))
18870 Full_B
:= Underlying_Full_View
(Full_B
);
18873 -- The Base_Type is already completed, we can complete the subtype
18874 -- now. We have to create a new entity with the same name, Thus we
18875 -- can't use Create_Itype.
18877 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
18878 Set_Is_Itype
(Full
);
18879 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
18880 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
18883 -- The parent subtype may be private, but the base might not, in some
18884 -- nested instances. In that case, the subtype does not need to be
18885 -- exchanged. It would still be nice to make private subtypes and their
18886 -- bases consistent at all times ???
18888 if Is_Private_Type
(Id_B
) then
18889 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
18891 end Prepare_Private_Subtype_Completion
;
18893 ---------------------------
18894 -- Process_Discriminants --
18895 ---------------------------
18897 procedure Process_Discriminants
18899 Prev
: Entity_Id
:= Empty
)
18901 Elist
: constant Elist_Id
:= New_Elmt_List
;
18904 Discr_Number
: Uint
;
18905 Discr_Type
: Entity_Id
;
18906 Default_Present
: Boolean := False;
18907 Default_Not_Present
: Boolean := False;
18910 -- A composite type other than an array type can have discriminants.
18911 -- On entry, the current scope is the composite type.
18913 -- The discriminants are initially entered into the scope of the type
18914 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18915 -- use, as explained at the end of this procedure.
18917 Discr
:= First
(Discriminant_Specifications
(N
));
18918 while Present
(Discr
) loop
18919 Enter_Name
(Defining_Identifier
(Discr
));
18921 -- For navigation purposes we add a reference to the discriminant
18922 -- in the entity for the type. If the current declaration is a
18923 -- completion, place references on the partial view. Otherwise the
18924 -- type is the current scope.
18926 if Present
(Prev
) then
18928 -- The references go on the partial view, if present. If the
18929 -- partial view has discriminants, the references have been
18930 -- generated already.
18932 if not Has_Discriminants
(Prev
) then
18933 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
18937 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
18940 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
18941 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
18943 -- Ada 2005 (AI-254)
18945 if Present
(Access_To_Subprogram_Definition
18946 (Discriminant_Type
(Discr
)))
18947 and then Protected_Present
(Access_To_Subprogram_Definition
18948 (Discriminant_Type
(Discr
)))
18951 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
18955 Find_Type
(Discriminant_Type
(Discr
));
18956 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
18958 if Error_Posted
(Discriminant_Type
(Discr
)) then
18959 Discr_Type
:= Any_Type
;
18963 -- Handling of discriminants that are access types
18965 if Is_Access_Type
(Discr_Type
) then
18967 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18968 -- limited record types
18970 if Ada_Version
< Ada_2005
then
18971 Check_Access_Discriminant_Requires_Limited
18972 (Discr
, Discriminant_Type
(Discr
));
18975 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
18977 ("(Ada 83) access discriminant not allowed", Discr
);
18980 -- If not access type, must be a discrete type
18982 elsif not Is_Discrete_Type
(Discr_Type
) then
18984 ("discriminants must have a discrete or access type",
18985 Discriminant_Type
(Discr
));
18988 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
18990 -- If a discriminant specification includes the assignment compound
18991 -- delimiter followed by an expression, the expression is the default
18992 -- expression of the discriminant; the default expression must be of
18993 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18994 -- a default expression, we do the special preanalysis, since this
18995 -- expression does not freeze (see section "Handling of Default and
18996 -- Per-Object Expressions" in spec of package Sem).
18998 if Present
(Expression
(Discr
)) then
18999 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
19003 if Nkind
(N
) = N_Formal_Type_Declaration
then
19005 ("discriminant defaults not allowed for formal type",
19006 Expression
(Discr
));
19008 -- Flag an error for a tagged type with defaulted discriminants,
19009 -- excluding limited tagged types when compiling for Ada 2012
19010 -- (see AI05-0214).
19012 elsif Is_Tagged_Type
(Current_Scope
)
19013 and then (not Is_Limited_Type
(Current_Scope
)
19014 or else Ada_Version
< Ada_2012
)
19015 and then Comes_From_Source
(N
)
19017 -- Note: see similar test in Check_Or_Process_Discriminants, to
19018 -- handle the (illegal) case of the completion of an untagged
19019 -- view with discriminants with defaults by a tagged full view.
19020 -- We skip the check if Discr does not come from source, to
19021 -- account for the case of an untagged derived type providing
19022 -- defaults for a renamed discriminant from a private untagged
19023 -- ancestor with a tagged full view (ACATS B460006).
19025 if Ada_Version
>= Ada_2012
then
19027 ("discriminants of nonlimited tagged type cannot have"
19029 Expression
(Discr
));
19032 ("discriminants of tagged type cannot have defaults",
19033 Expression
(Discr
));
19037 Default_Present
:= True;
19038 Append_Elmt
(Expression
(Discr
), Elist
);
19040 -- Tag the defining identifiers for the discriminants with
19041 -- their corresponding default expressions from the tree.
19043 Set_Discriminant_Default_Value
19044 (Defining_Identifier
(Discr
), Expression
(Discr
));
19047 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19048 -- gets set unless we can be sure that no range check is required.
19050 if (GNATprove_Mode
or not Expander_Active
)
19053 (Expression
(Discr
), Discr_Type
, Assume_Valid
=> True)
19055 Set_Do_Range_Check
(Expression
(Discr
));
19058 -- No default discriminant value given
19061 Default_Not_Present
:= True;
19064 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19065 -- Discr_Type but with the null-exclusion attribute
19067 if Ada_Version
>= Ada_2005
then
19069 -- Ada 2005 (AI-231): Static checks
19071 if Can_Never_Be_Null
(Discr_Type
) then
19072 Null_Exclusion_Static_Checks
(Discr
);
19074 elsif Is_Access_Type
(Discr_Type
)
19075 and then Null_Exclusion_Present
(Discr
)
19077 -- No need to check itypes because in their case this check
19078 -- was done at their point of creation
19080 and then not Is_Itype
(Discr_Type
)
19082 if Can_Never_Be_Null
(Discr_Type
) then
19084 ("`NOT NULL` not allowed (& already excludes null)",
19089 Set_Etype
(Defining_Identifier
(Discr
),
19090 Create_Null_Excluding_Itype
19092 Related_Nod
=> Discr
));
19094 -- Check for improper null exclusion if the type is otherwise
19095 -- legal for a discriminant.
19097 elsif Null_Exclusion_Present
(Discr
)
19098 and then Is_Discrete_Type
(Discr_Type
)
19101 ("null exclusion can only apply to an access type", Discr
);
19104 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19105 -- can't have defaults. Synchronized types, or types that are
19106 -- explicitly limited are fine, but special tests apply to derived
19107 -- types in generics: in a generic body we have to assume the
19108 -- worst, and therefore defaults are not allowed if the parent is
19109 -- a generic formal private type (see ACATS B370001).
19111 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
19112 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
19113 or else Is_Limited_Record
(Current_Scope
)
19114 or else Is_Concurrent_Type
(Current_Scope
)
19115 or else Is_Concurrent_Record_Type
(Current_Scope
)
19116 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
19118 if not Is_Derived_Type
(Current_Scope
)
19119 or else not Is_Generic_Type
(Etype
(Current_Scope
))
19120 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
19121 or else Limited_Present
19122 (Type_Definition
(Parent
(Current_Scope
)))
19128 ("access discriminants of nonlimited types cannot "
19129 & "have defaults", Expression
(Discr
));
19132 elsif Present
(Expression
(Discr
)) then
19134 ("(Ada 2005) access discriminants of nonlimited types "
19135 & "cannot have defaults", Expression
(Discr
));
19140 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19141 -- This check is relevant only when SPARK_Mode is on as it is not a
19142 -- standard Ada legality rule.
19145 and then Is_Effectively_Volatile
(Defining_Identifier
(Discr
))
19147 Error_Msg_N
("discriminant cannot be volatile", Discr
);
19153 -- An element list consisting of the default expressions of the
19154 -- discriminants is constructed in the above loop and used to set
19155 -- the Discriminant_Constraint attribute for the type. If an object
19156 -- is declared of this (record or task) type without any explicit
19157 -- discriminant constraint given, this element list will form the
19158 -- actual parameters for the corresponding initialization procedure
19161 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
19162 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
19164 -- Default expressions must be provided either for all or for none
19165 -- of the discriminants of a discriminant part. (RM 3.7.1)
19167 if Default_Present
and then Default_Not_Present
then
19169 ("incomplete specification of defaults for discriminants", N
);
19172 -- The use of the name of a discriminant is not allowed in default
19173 -- expressions of a discriminant part if the specification of the
19174 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19176 -- To detect this, the discriminant names are entered initially with an
19177 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19178 -- attempt to use a void entity (for example in an expression that is
19179 -- type-checked) produces the error message: premature usage. Now after
19180 -- completing the semantic analysis of the discriminant part, we can set
19181 -- the Ekind of all the discriminants appropriately.
19183 Discr
:= First
(Discriminant_Specifications
(N
));
19184 Discr_Number
:= Uint_1
;
19185 while Present
(Discr
) loop
19186 Id
:= Defining_Identifier
(Discr
);
19187 Set_Ekind
(Id
, E_Discriminant
);
19188 Init_Component_Location
(Id
);
19190 Set_Discriminant_Number
(Id
, Discr_Number
);
19192 -- Make sure this is always set, even in illegal programs
19194 Set_Corresponding_Discriminant
(Id
, Empty
);
19196 -- Initialize the Original_Record_Component to the entity itself.
19197 -- Inherit_Components will propagate the right value to
19198 -- discriminants in derived record types.
19200 Set_Original_Record_Component
(Id
, Id
);
19202 -- Create the discriminal for the discriminant
19204 Build_Discriminal
(Id
);
19207 Discr_Number
:= Discr_Number
+ 1;
19210 Set_Has_Discriminants
(Current_Scope
);
19211 end Process_Discriminants
;
19213 -----------------------
19214 -- Process_Full_View --
19215 -----------------------
19217 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
19218 procedure Collect_Implemented_Interfaces
19220 Ifaces
: Elist_Id
);
19221 -- Ada 2005: Gather all the interfaces that Typ directly or
19222 -- inherently implements. Duplicate entries are not added to
19223 -- the list Ifaces.
19225 ------------------------------------
19226 -- Collect_Implemented_Interfaces --
19227 ------------------------------------
19229 procedure Collect_Implemented_Interfaces
19234 Iface_Elmt
: Elmt_Id
;
19237 -- Abstract interfaces are only associated with tagged record types
19239 if not Is_Tagged_Type
(Typ
) or else not Is_Record_Type
(Typ
) then
19243 -- Recursively climb to the ancestors
19245 if Etype
(Typ
) /= Typ
19247 -- Protect the frontend against wrong cyclic declarations like:
19249 -- type B is new A with private;
19250 -- type C is new A with private;
19252 -- type B is new C with null record;
19253 -- type C is new B with null record;
19255 and then Etype
(Typ
) /= Priv_T
19256 and then Etype
(Typ
) /= Full_T
19258 -- Keep separate the management of private type declarations
19260 if Ekind
(Typ
) = E_Record_Type_With_Private
then
19262 -- Handle the following illegal usage:
19263 -- type Private_Type is tagged private;
19265 -- type Private_Type is new Type_Implementing_Iface;
19267 if Present
(Full_View
(Typ
))
19268 and then Etype
(Typ
) /= Full_View
(Typ
)
19270 if Is_Interface
(Etype
(Typ
)) then
19271 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19274 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19277 -- Non-private types
19280 if Is_Interface
(Etype
(Typ
)) then
19281 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19284 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19288 -- Handle entities in the list of abstract interfaces
19290 if Present
(Interfaces
(Typ
)) then
19291 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
19292 while Present
(Iface_Elmt
) loop
19293 Iface
:= Node
(Iface_Elmt
);
19295 pragma Assert
(Is_Interface
(Iface
));
19297 if not Contain_Interface
(Iface
, Ifaces
) then
19298 Append_Elmt
(Iface
, Ifaces
);
19299 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
19302 Next_Elmt
(Iface_Elmt
);
19305 end Collect_Implemented_Interfaces
;
19309 Full_Indic
: Node_Id
;
19310 Full_Parent
: Entity_Id
;
19311 Priv_Parent
: Entity_Id
;
19313 -- Start of processing for Process_Full_View
19316 -- First some sanity checks that must be done after semantic
19317 -- decoration of the full view and thus cannot be placed with other
19318 -- similar checks in Find_Type_Name
19320 if not Is_Limited_Type
(Priv_T
)
19321 and then (Is_Limited_Type
(Full_T
)
19322 or else Is_Limited_Composite
(Full_T
))
19324 if In_Instance
then
19328 ("completion of nonlimited type cannot be limited", Full_T
);
19329 Explain_Limited_Type
(Full_T
, Full_T
);
19332 elsif Is_Abstract_Type
(Full_T
)
19333 and then not Is_Abstract_Type
(Priv_T
)
19336 ("completion of nonabstract type cannot be abstract", Full_T
);
19338 elsif Is_Tagged_Type
(Priv_T
)
19339 and then Is_Limited_Type
(Priv_T
)
19340 and then not Is_Limited_Type
(Full_T
)
19342 -- If pragma CPP_Class was applied to the private declaration
19343 -- propagate the limitedness to the full-view
19345 if Is_CPP_Class
(Priv_T
) then
19346 Set_Is_Limited_Record
(Full_T
);
19348 -- GNAT allow its own definition of Limited_Controlled to disobey
19349 -- this rule in order in ease the implementation. This test is safe
19350 -- because Root_Controlled is defined in a child of System that
19351 -- normal programs are not supposed to use.
19353 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
19354 Set_Is_Limited_Composite
(Full_T
);
19357 ("completion of limited tagged type must be limited", Full_T
);
19360 elsif Is_Generic_Type
(Priv_T
) then
19361 Error_Msg_N
("generic type cannot have a completion", Full_T
);
19364 -- Check that ancestor interfaces of private and full views are
19365 -- consistent. We omit this check for synchronized types because
19366 -- they are performed on the corresponding record type when frozen.
19368 if Ada_Version
>= Ada_2005
19369 and then Is_Tagged_Type
(Priv_T
)
19370 and then Is_Tagged_Type
(Full_T
)
19371 and then not Is_Concurrent_Type
(Full_T
)
19375 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19376 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19379 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
19380 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
19382 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19383 -- an interface type if and only if the full type is descendant
19384 -- of the interface type (AARM 7.3 (7.3/2)).
19386 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
19388 if Present
(Iface
) then
19390 ("interface in partial view& not implemented by full type "
19391 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19394 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
19396 if Present
(Iface
) then
19398 ("interface & not implemented by partial view "
19399 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19404 if Is_Tagged_Type
(Priv_T
)
19405 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19406 and then Is_Derived_Type
(Full_T
)
19408 Priv_Parent
:= Etype
(Priv_T
);
19410 -- The full view of a private extension may have been transformed
19411 -- into an unconstrained derived type declaration and a subtype
19412 -- declaration (see build_derived_record_type for details).
19414 if Nkind
(N
) = N_Subtype_Declaration
then
19415 Full_Indic
:= Subtype_Indication
(N
);
19416 Full_Parent
:= Etype
(Base_Type
(Full_T
));
19418 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
19419 Full_Parent
:= Etype
(Full_T
);
19422 -- Check that the parent type of the full type is a descendant of
19423 -- the ancestor subtype given in the private extension. If either
19424 -- entity has an Etype equal to Any_Type then we had some previous
19425 -- error situation [7.3(8)].
19427 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
19430 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19431 -- any order. Therefore we don't have to check that its parent must
19432 -- be a descendant of the parent of the private type declaration.
19434 elsif Is_Interface
(Priv_Parent
)
19435 and then Is_Interface
(Full_Parent
)
19439 -- Ada 2005 (AI-251): If the parent of the private type declaration
19440 -- is an interface there is no need to check that it is an ancestor
19441 -- of the associated full type declaration. The required tests for
19442 -- this case are performed by Build_Derived_Record_Type.
19444 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
19445 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
19448 ("parent of full type must descend from parent"
19449 & " of private extension", Full_Indic
);
19451 -- First check a formal restriction, and then proceed with checking
19452 -- Ada rules. Since the formal restriction is not a serious error, we
19453 -- don't prevent further error detection for this check, hence the
19457 -- In formal mode, when completing a private extension the type
19458 -- named in the private part must be exactly the same as that
19459 -- named in the visible part.
19461 if Priv_Parent
/= Full_Parent
then
19462 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
19463 Check_SPARK_05_Restriction
("% expected", Full_Indic
);
19466 -- Check the rules of 7.3(10): if the private extension inherits
19467 -- known discriminants, then the full type must also inherit those
19468 -- discriminants from the same (ancestor) type, and the parent
19469 -- subtype of the full type must be constrained if and only if
19470 -- the ancestor subtype of the private extension is constrained.
19472 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
19473 and then not Has_Unknown_Discriminants
(Priv_T
)
19474 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
19477 Priv_Indic
: constant Node_Id
:=
19478 Subtype_Indication
(Parent
(Priv_T
));
19480 Priv_Constr
: constant Boolean :=
19481 Is_Constrained
(Priv_Parent
)
19483 Nkind
(Priv_Indic
) = N_Subtype_Indication
19485 Is_Constrained
(Entity
(Priv_Indic
));
19487 Full_Constr
: constant Boolean :=
19488 Is_Constrained
(Full_Parent
)
19490 Nkind
(Full_Indic
) = N_Subtype_Indication
19492 Is_Constrained
(Entity
(Full_Indic
));
19494 Priv_Discr
: Entity_Id
;
19495 Full_Discr
: Entity_Id
;
19498 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
19499 Full_Discr
:= First_Discriminant
(Full_Parent
);
19500 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
19501 if Original_Record_Component
(Priv_Discr
) =
19502 Original_Record_Component
(Full_Discr
)
19504 Corresponding_Discriminant
(Priv_Discr
) =
19505 Corresponding_Discriminant
(Full_Discr
)
19512 Next_Discriminant
(Priv_Discr
);
19513 Next_Discriminant
(Full_Discr
);
19516 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
19518 ("full view must inherit discriminants of the parent"
19519 & " type used in the private extension", Full_Indic
);
19521 elsif Priv_Constr
and then not Full_Constr
then
19523 ("parent subtype of full type must be constrained",
19526 elsif Full_Constr
and then not Priv_Constr
then
19528 ("parent subtype of full type must be unconstrained",
19533 -- Check the rules of 7.3(12): if a partial view has neither
19534 -- known or unknown discriminants, then the full type
19535 -- declaration shall define a definite subtype.
19537 elsif not Has_Unknown_Discriminants
(Priv_T
)
19538 and then not Has_Discriminants
(Priv_T
)
19539 and then not Is_Constrained
(Full_T
)
19542 ("full view must define a constrained type if partial view"
19543 & " has no discriminants", Full_T
);
19546 -- ??????? Do we implement the following properly ?????
19547 -- If the ancestor subtype of a private extension has constrained
19548 -- discriminants, then the parent subtype of the full view shall
19549 -- impose a statically matching constraint on those discriminants
19554 -- For untagged types, verify that a type without discriminants is
19555 -- not completed with an unconstrained type. A separate error message
19556 -- is produced if the full type has defaulted discriminants.
19558 if Is_Definite_Subtype
(Priv_T
)
19559 and then not Is_Definite_Subtype
(Full_T
)
19561 Error_Msg_Sloc
:= Sloc
(Parent
(Priv_T
));
19563 ("full view of& not compatible with declaration#",
19566 if not Is_Tagged_Type
(Full_T
) then
19568 ("\one is constrained, the other unconstrained", Full_T
);
19573 -- AI-419: verify that the use of "limited" is consistent
19576 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
19579 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19580 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
19582 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
19584 if not Limited_Present
(Parent
(Priv_T
))
19585 and then not Synchronized_Present
(Parent
(Priv_T
))
19586 and then Limited_Present
(Type_Definition
(Orig_Decl
))
19589 ("full view of non-limited extension cannot be limited", N
);
19591 -- Conversely, if the partial view carries the limited keyword,
19592 -- the full view must as well, even if it may be redundant.
19594 elsif Limited_Present
(Parent
(Priv_T
))
19595 and then not Limited_Present
(Type_Definition
(Orig_Decl
))
19598 ("full view of limited extension must be explicitly limited",
19604 -- Ada 2005 (AI-443): A synchronized private extension must be
19605 -- completed by a task or protected type.
19607 if Ada_Version
>= Ada_2005
19608 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19609 and then Synchronized_Present
(Parent
(Priv_T
))
19610 and then not Is_Concurrent_Type
(Full_T
)
19612 Error_Msg_N
("full view of synchronized extension must " &
19613 "be synchronized type", N
);
19616 -- Ada 2005 AI-363: if the full view has discriminants with
19617 -- defaults, it is illegal to declare constrained access subtypes
19618 -- whose designated type is the current type. This allows objects
19619 -- of the type that are declared in the heap to be unconstrained.
19621 if not Has_Unknown_Discriminants
(Priv_T
)
19622 and then not Has_Discriminants
(Priv_T
)
19623 and then Has_Discriminants
(Full_T
)
19625 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
19627 Set_Has_Constrained_Partial_View
(Full_T
);
19628 Set_Has_Constrained_Partial_View
(Priv_T
);
19631 -- Create a full declaration for all its subtypes recorded in
19632 -- Private_Dependents and swap them similarly to the base type. These
19633 -- are subtypes that have been define before the full declaration of
19634 -- the private type. We also swap the entry in Private_Dependents list
19635 -- so we can properly restore the private view on exit from the scope.
19638 Priv_Elmt
: Elmt_Id
;
19639 Priv_Scop
: Entity_Id
;
19644 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
19645 while Present
(Priv_Elmt
) loop
19646 Priv
:= Node
(Priv_Elmt
);
19647 Priv_Scop
:= Scope
(Priv
);
19649 if Ekind_In
(Priv
, E_Private_Subtype
,
19650 E_Limited_Private_Subtype
,
19651 E_Record_Subtype_With_Private
)
19653 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
19654 Set_Is_Itype
(Full
);
19655 Set_Parent
(Full
, Parent
(Priv
));
19656 Set_Associated_Node_For_Itype
(Full
, N
);
19658 -- Now we need to complete the private subtype, but since the
19659 -- base type has already been swapped, we must also swap the
19660 -- subtypes (and thus, reverse the arguments in the call to
19661 -- Complete_Private_Subtype). Also note that we may need to
19662 -- re-establish the scope of the private subtype.
19664 Copy_And_Swap
(Priv
, Full
);
19666 if not In_Open_Scopes
(Priv_Scop
) then
19667 Push_Scope
(Priv_Scop
);
19670 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19672 Priv_Scop
:= Empty
;
19675 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
19677 if Present
(Priv_Scop
) then
19681 Replace_Elmt
(Priv_Elmt
, Full
);
19684 Next_Elmt
(Priv_Elmt
);
19688 -- If the private view was tagged, copy the new primitive operations
19689 -- from the private view to the full view.
19691 if Is_Tagged_Type
(Full_T
) then
19693 Disp_Typ
: Entity_Id
;
19694 Full_List
: Elist_Id
;
19696 Prim_Elmt
: Elmt_Id
;
19697 Priv_List
: Elist_Id
;
19701 L
: Elist_Id
) return Boolean;
19702 -- Determine whether list L contains element E
19710 L
: Elist_Id
) return Boolean
19712 List_Elmt
: Elmt_Id
;
19715 List_Elmt
:= First_Elmt
(L
);
19716 while Present
(List_Elmt
) loop
19717 if Node
(List_Elmt
) = E
then
19721 Next_Elmt
(List_Elmt
);
19727 -- Start of processing
19730 if Is_Tagged_Type
(Priv_T
) then
19731 Priv_List
:= Primitive_Operations
(Priv_T
);
19732 Prim_Elmt
:= First_Elmt
(Priv_List
);
19734 -- In the case of a concurrent type completing a private tagged
19735 -- type, primitives may have been declared in between the two
19736 -- views. These subprograms need to be wrapped the same way
19737 -- entries and protected procedures are handled because they
19738 -- cannot be directly shared by the two views.
19740 if Is_Concurrent_Type
(Full_T
) then
19742 Conc_Typ
: constant Entity_Id
:=
19743 Corresponding_Record_Type
(Full_T
);
19744 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
19745 Wrap_Spec
: Node_Id
;
19748 while Present
(Prim_Elmt
) loop
19749 Prim
:= Node
(Prim_Elmt
);
19751 if Comes_From_Source
(Prim
)
19752 and then not Is_Abstract_Subprogram
(Prim
)
19755 Make_Subprogram_Declaration
(Sloc
(Prim
),
19759 Obj_Typ
=> Conc_Typ
,
19761 Parameter_Specifications
(
19764 Insert_After
(Curr_Nod
, Wrap_Spec
);
19765 Curr_Nod
:= Wrap_Spec
;
19767 Analyze
(Wrap_Spec
);
19770 Next_Elmt
(Prim_Elmt
);
19776 -- For non-concurrent types, transfer explicit primitives, but
19777 -- omit those inherited from the parent of the private view
19778 -- since they will be re-inherited later on.
19781 Full_List
:= Primitive_Operations
(Full_T
);
19783 while Present
(Prim_Elmt
) loop
19784 Prim
:= Node
(Prim_Elmt
);
19786 if Comes_From_Source
(Prim
)
19787 and then not Contains
(Prim
, Full_List
)
19789 Append_Elmt
(Prim
, Full_List
);
19792 Next_Elmt
(Prim_Elmt
);
19796 -- Untagged private view
19799 Full_List
:= Primitive_Operations
(Full_T
);
19801 -- In this case the partial view is untagged, so here we locate
19802 -- all of the earlier primitives that need to be treated as
19803 -- dispatching (those that appear between the two views). Note
19804 -- that these additional operations must all be new operations
19805 -- (any earlier operations that override inherited operations
19806 -- of the full view will already have been inserted in the
19807 -- primitives list, marked by Check_Operation_From_Private_View
19808 -- as dispatching. Note that implicit "/=" operators are
19809 -- excluded from being added to the primitives list since they
19810 -- shouldn't be treated as dispatching (tagged "/=" is handled
19813 Prim
:= Next_Entity
(Full_T
);
19814 while Present
(Prim
) and then Prim
/= Priv_T
loop
19815 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
19816 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
19818 if Disp_Typ
= Full_T
19819 and then (Chars
(Prim
) /= Name_Op_Ne
19820 or else Comes_From_Source
(Prim
))
19822 Check_Controlling_Formals
(Full_T
, Prim
);
19824 if not Is_Dispatching_Operation
(Prim
) then
19825 Append_Elmt
(Prim
, Full_List
);
19826 Set_Is_Dispatching_Operation
(Prim
, True);
19827 Set_DT_Position_Value
(Prim
, No_Uint
);
19830 elsif Is_Dispatching_Operation
(Prim
)
19831 and then Disp_Typ
/= Full_T
19834 -- Verify that it is not otherwise controlled by a
19835 -- formal or a return value of type T.
19837 Check_Controlling_Formals
(Disp_Typ
, Prim
);
19841 Next_Entity
(Prim
);
19845 -- For the tagged case, the two views can share the same primitive
19846 -- operations list and the same class-wide type. Update attributes
19847 -- of the class-wide type which depend on the full declaration.
19849 if Is_Tagged_Type
(Priv_T
) then
19850 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
19851 Set_Class_Wide_Type
19852 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
19854 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
19856 (Class_Wide_Type
(Priv_T
), Has_Protected
(Full_T
));
19861 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19863 if Known_To_Have_Preelab_Init
(Priv_T
) then
19865 -- Case where there is a pragma Preelaborable_Initialization. We
19866 -- always allow this in predefined units, which is cheating a bit,
19867 -- but it means we don't have to struggle to meet the requirements in
19868 -- the RM for having Preelaborable Initialization. Otherwise we
19869 -- require that the type meets the RM rules. But we can't check that
19870 -- yet, because of the rule about overriding Initialize, so we simply
19871 -- set a flag that will be checked at freeze time.
19873 if not In_Predefined_Unit
(Full_T
) then
19874 Set_Must_Have_Preelab_Init
(Full_T
);
19878 -- If pragma CPP_Class was applied to the private type declaration,
19879 -- propagate it now to the full type declaration.
19881 if Is_CPP_Class
(Priv_T
) then
19882 Set_Is_CPP_Class
(Full_T
);
19883 Set_Convention
(Full_T
, Convention_CPP
);
19885 -- Check that components of imported CPP types do not have default
19888 Check_CPP_Type_Has_No_Defaults
(Full_T
);
19891 -- If the private view has user specified stream attributes, then so has
19894 -- Why the test, how could these flags be already set in Full_T ???
19896 if Has_Specified_Stream_Read
(Priv_T
) then
19897 Set_Has_Specified_Stream_Read
(Full_T
);
19900 if Has_Specified_Stream_Write
(Priv_T
) then
19901 Set_Has_Specified_Stream_Write
(Full_T
);
19904 if Has_Specified_Stream_Input
(Priv_T
) then
19905 Set_Has_Specified_Stream_Input
(Full_T
);
19908 if Has_Specified_Stream_Output
(Priv_T
) then
19909 Set_Has_Specified_Stream_Output
(Full_T
);
19912 -- Propagate the attributes related to pragma Default_Initial_Condition
19913 -- from the private to the full view. Note that both flags are mutually
19916 if Has_Default_Init_Cond
(Priv_T
)
19917 or else Has_Inherited_Default_Init_Cond
(Priv_T
)
19919 Propagate_Default_Init_Cond_Attributes
19920 (From_Typ
=> Priv_T
,
19922 Private_To_Full_View
=> True);
19924 -- In the case where the full view is derived from another private type,
19925 -- the attributes related to pragma Default_Initial_Condition must be
19926 -- propagated from the full to the private view to maintain consistency
19930 -- type Parent_Typ is private
19931 -- with Default_Initial_Condition ...;
19933 -- type Parent_Typ is ...;
19936 -- with Pack; use Pack;
19937 -- package Pack_2 is
19938 -- type Deriv_Typ is private; -- must inherit
19940 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19943 elsif Has_Default_Init_Cond
(Full_T
)
19944 or else Has_Inherited_Default_Init_Cond
(Full_T
)
19946 Propagate_Default_Init_Cond_Attributes
19947 (From_Typ
=> Full_T
,
19949 Private_To_Full_View
=> True);
19952 if Is_Ghost_Entity
(Priv_T
) then
19954 -- The Ghost policy in effect at the point of declaration and at the
19955 -- point of completion must match (SPARK RM 6.9(14)).
19957 Check_Ghost_Completion
(Priv_T
, Full_T
);
19959 -- In the case where the private view of a tagged type lacks a parent
19960 -- type and is subject to pragma Ghost, ensure that the parent type
19961 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19963 if Is_Derived_Type
(Full_T
) then
19964 Check_Ghost_Derivation
(Full_T
);
19967 -- Propagate the attributes related to pragma Ghost from the private
19968 -- to the full view.
19970 Mark_Full_View_As_Ghost
(Priv_T
, Full_T
);
19973 -- Propagate invariants to full type
19975 if Has_Invariants
(Priv_T
) then
19976 Set_Has_Invariants
(Full_T
);
19977 Set_Invariant_Procedure
(Full_T
, Invariant_Procedure
(Priv_T
));
19980 if Has_Inheritable_Invariants
(Priv_T
) then
19981 Set_Has_Inheritable_Invariants
(Full_T
);
19984 -- Check hidden inheritance of class-wide type invariants
19986 if Ada_Version
>= Ada_2012
19987 and then not Has_Inheritable_Invariants
(Full_T
)
19988 and then In_Private_Part
(Current_Scope
)
19989 and then Has_Interfaces
(Full_T
)
19996 Collect_Interfaces
(Full_T
, Ifaces
, Exclude_Parents
=> True);
19998 AI
:= First_Elmt
(Ifaces
);
19999 while Present
(AI
) loop
20000 if Has_Inheritable_Invariants
(Node
(AI
)) then
20002 ("hidden inheritance of class-wide type invariants " &
20012 -- Propagate predicates to full type, and predicate function if already
20013 -- defined. It is not clear that this can actually happen? the partial
20014 -- view cannot be frozen yet, and the predicate function has not been
20015 -- built. Still it is a cheap check and seems safer to make it.
20017 if Has_Predicates
(Priv_T
) then
20018 if Present
(Predicate_Function
(Priv_T
)) then
20019 Set_Predicate_Function
(Full_T
, Predicate_Function
(Priv_T
));
20022 Set_Has_Predicates
(Full_T
);
20024 end Process_Full_View
;
20026 -----------------------------------
20027 -- Process_Incomplete_Dependents --
20028 -----------------------------------
20030 procedure Process_Incomplete_Dependents
20032 Full_T
: Entity_Id
;
20035 Inc_Elmt
: Elmt_Id
;
20036 Priv_Dep
: Entity_Id
;
20037 New_Subt
: Entity_Id
;
20039 Disc_Constraint
: Elist_Id
;
20042 if No
(Private_Dependents
(Inc_T
)) then
20046 -- Itypes that may be generated by the completion of an incomplete
20047 -- subtype are not used by the back-end and not attached to the tree.
20048 -- They are created only for constraint-checking purposes.
20050 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
20051 while Present
(Inc_Elmt
) loop
20052 Priv_Dep
:= Node
(Inc_Elmt
);
20054 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
20056 -- An Access_To_Subprogram type may have a return type or a
20057 -- parameter type that is incomplete. Replace with the full view.
20059 if Etype
(Priv_Dep
) = Inc_T
then
20060 Set_Etype
(Priv_Dep
, Full_T
);
20064 Formal
: Entity_Id
;
20067 Formal
:= First_Formal
(Priv_Dep
);
20068 while Present
(Formal
) loop
20069 if Etype
(Formal
) = Inc_T
then
20070 Set_Etype
(Formal
, Full_T
);
20073 Next_Formal
(Formal
);
20077 elsif Is_Overloadable
(Priv_Dep
) then
20079 -- If a subprogram in the incomplete dependents list is primitive
20080 -- for a tagged full type then mark it as a dispatching operation,
20081 -- check whether it overrides an inherited subprogram, and check
20082 -- restrictions on its controlling formals. Note that a protected
20083 -- operation is never dispatching: only its wrapper operation
20084 -- (which has convention Ada) is.
20086 if Is_Tagged_Type
(Full_T
)
20087 and then Is_Primitive
(Priv_Dep
)
20088 and then Convention
(Priv_Dep
) /= Convention_Protected
20090 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
20091 Set_Is_Dispatching_Operation
(Priv_Dep
);
20092 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
20095 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
20097 -- Can happen during processing of a body before the completion
20098 -- of a TA type. Ignore, because spec is also on dependent list.
20102 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20103 -- corresponding subtype of the full view.
20105 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
20106 Set_Subtype_Indication
20107 (Parent
(Priv_Dep
), New_Occurrence_Of
(Full_T
, Sloc
(Priv_Dep
)));
20108 Set_Etype
(Priv_Dep
, Full_T
);
20109 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
20110 Set_Analyzed
(Parent
(Priv_Dep
), False);
20112 -- Reanalyze the declaration, suppressing the call to
20113 -- Enter_Name to avoid duplicate names.
20115 Analyze_Subtype_Declaration
20116 (N
=> Parent
(Priv_Dep
),
20119 -- Dependent is a subtype
20122 -- We build a new subtype indication using the full view of the
20123 -- incomplete parent. The discriminant constraints have been
20124 -- elaborated already at the point of the subtype declaration.
20126 New_Subt
:= Create_Itype
(E_Void
, N
);
20128 if Has_Discriminants
(Full_T
) then
20129 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
20131 Disc_Constraint
:= No_Elist
;
20134 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
20135 Set_Full_View
(Priv_Dep
, New_Subt
);
20138 Next_Elmt
(Inc_Elmt
);
20140 end Process_Incomplete_Dependents
;
20142 --------------------------------
20143 -- Process_Range_Expr_In_Decl --
20144 --------------------------------
20146 procedure Process_Range_Expr_In_Decl
20149 Subtyp
: Entity_Id
:= Empty
;
20150 Check_List
: List_Id
:= Empty_List
;
20151 R_Check_Off
: Boolean := False;
20152 In_Iter_Schm
: Boolean := False)
20155 R_Checks
: Check_Result
;
20156 Insert_Node
: Node_Id
;
20157 Def_Id
: Entity_Id
;
20160 Analyze_And_Resolve
(R
, Base_Type
(T
));
20162 if Nkind
(R
) = N_Range
then
20164 -- In SPARK, all ranges should be static, with the exception of the
20165 -- discrete type definition of a loop parameter specification.
20167 if not In_Iter_Schm
20168 and then not Is_OK_Static_Range
(R
)
20170 Check_SPARK_05_Restriction
("range should be static", R
);
20173 Lo
:= Low_Bound
(R
);
20174 Hi
:= High_Bound
(R
);
20176 -- Validity checks on the range of a quantified expression are
20177 -- delayed until the construct is transformed into a loop.
20179 if Nkind
(Parent
(R
)) = N_Loop_Parameter_Specification
20180 and then Nkind
(Parent
(Parent
(R
))) = N_Quantified_Expression
20184 -- We need to ensure validity of the bounds here, because if we
20185 -- go ahead and do the expansion, then the expanded code will get
20186 -- analyzed with range checks suppressed and we miss the check.
20188 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20189 -- the temporaries generated by routine Remove_Side_Effects by means
20190 -- of validity checks must use the same names. When a range appears
20191 -- in the parent of a generic, the range is processed with checks
20192 -- disabled as part of the generic context and with checks enabled
20193 -- for code generation purposes. This leads to link issues as the
20194 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20195 -- template sees the temporaries generated by Remove_Side_Effects.
20198 Validity_Check_Range
(R
, Subtyp
);
20201 -- If there were errors in the declaration, try and patch up some
20202 -- common mistakes in the bounds. The cases handled are literals
20203 -- which are Integer where the expected type is Real and vice versa.
20204 -- These corrections allow the compilation process to proceed further
20205 -- along since some basic assumptions of the format of the bounds
20208 if Etype
(R
) = Any_Type
then
20209 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20211 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
20213 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20215 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
20217 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20219 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
20221 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20223 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
20230 -- If the bounds of the range have been mistakenly given as string
20231 -- literals (perhaps in place of character literals), then an error
20232 -- has already been reported, but we rewrite the string literal as a
20233 -- bound of the range's type to avoid blowups in later processing
20234 -- that looks at static values.
20236 if Nkind
(Lo
) = N_String_Literal
then
20238 Make_Attribute_Reference
(Sloc
(Lo
),
20239 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Lo
)),
20240 Attribute_Name
=> Name_First
));
20241 Analyze_And_Resolve
(Lo
);
20244 if Nkind
(Hi
) = N_String_Literal
then
20246 Make_Attribute_Reference
(Sloc
(Hi
),
20247 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Hi
)),
20248 Attribute_Name
=> Name_First
));
20249 Analyze_And_Resolve
(Hi
);
20252 -- If bounds aren't scalar at this point then exit, avoiding
20253 -- problems with further processing of the range in this procedure.
20255 if not Is_Scalar_Type
(Etype
(Lo
)) then
20259 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20260 -- then range of the base type. Here we check whether the bounds
20261 -- are in the range of the subtype itself. Note that if the bounds
20262 -- represent the null range the Constraint_Error exception should
20265 -- ??? The following code should be cleaned up as follows
20267 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20268 -- is done in the call to Range_Check (R, T); below
20270 -- 2. The use of R_Check_Off should be investigated and possibly
20271 -- removed, this would clean up things a bit.
20273 if Is_Null_Range
(Lo
, Hi
) then
20277 -- Capture values of bounds and generate temporaries for them
20278 -- if needed, before applying checks, since checks may cause
20279 -- duplication of the expression without forcing evaluation.
20281 -- The forced evaluation removes side effects from expressions,
20282 -- which should occur also in GNATprove mode. Otherwise, we end up
20283 -- with unexpected insertions of actions at places where this is
20284 -- not supposed to occur, e.g. on default parameters of a call.
20286 if Expander_Active
or GNATprove_Mode
then
20288 -- Call Force_Evaluation to create declarations as needed to
20289 -- deal with side effects, and also create typ_FIRST/LAST
20290 -- entities for bounds if we have a subtype name.
20292 -- Note: we do this transformation even if expansion is not
20293 -- active if we are in GNATprove_Mode since the transformation
20294 -- is in general required to ensure that the resulting tree has
20295 -- proper Ada semantics.
20298 (Lo
, Related_Id
=> Subtyp
, Is_Low_Bound
=> True);
20300 (Hi
, Related_Id
=> Subtyp
, Is_High_Bound
=> True);
20303 -- We use a flag here instead of suppressing checks on the type
20304 -- because the type we check against isn't necessarily the place
20305 -- where we put the check.
20307 if not R_Check_Off
then
20308 R_Checks
:= Get_Range_Checks
(R
, T
);
20310 -- Look up tree to find an appropriate insertion point. We
20311 -- can't just use insert_actions because later processing
20312 -- depends on the insertion node. Prior to Ada 2012 the
20313 -- insertion point could only be a declaration or a loop, but
20314 -- quantified expressions can appear within any context in an
20315 -- expression, and the insertion point can be any statement,
20316 -- pragma, or declaration.
20318 Insert_Node
:= Parent
(R
);
20319 while Present
(Insert_Node
) loop
20321 Nkind
(Insert_Node
) in N_Declaration
20324 (Insert_Node
, N_Component_Declaration
,
20325 N_Loop_Parameter_Specification
,
20326 N_Function_Specification
,
20327 N_Procedure_Specification
);
20329 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
20330 or else Nkind
(Insert_Node
) in
20331 N_Statement_Other_Than_Procedure_Call
20332 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
20335 Insert_Node
:= Parent
(Insert_Node
);
20338 -- Why would Type_Decl not be present??? Without this test,
20339 -- short regression tests fail.
20341 if Present
(Insert_Node
) then
20343 -- Case of loop statement. Verify that the range is part
20344 -- of the subtype indication of the iteration scheme.
20346 if Nkind
(Insert_Node
) = N_Loop_Statement
then
20351 Indic
:= Parent
(R
);
20352 while Present
(Indic
)
20353 and then Nkind
(Indic
) /= N_Subtype_Indication
20355 Indic
:= Parent
(Indic
);
20358 if Present
(Indic
) then
20359 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
20361 Insert_Range_Checks
20365 Sloc
(Insert_Node
),
20367 Do_Before
=> True);
20371 -- Insertion before a declaration. If the declaration
20372 -- includes discriminants, the list of applicable checks
20373 -- is given by the caller.
20375 elsif Nkind
(Insert_Node
) in N_Declaration
then
20376 Def_Id
:= Defining_Identifier
(Insert_Node
);
20378 if (Ekind
(Def_Id
) = E_Record_Type
20379 and then Depends_On_Discriminant
(R
))
20381 (Ekind
(Def_Id
) = E_Protected_Type
20382 and then Has_Discriminants
(Def_Id
))
20384 Append_Range_Checks
20386 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
20389 Insert_Range_Checks
20391 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
20395 -- Insertion before a statement. Range appears in the
20396 -- context of a quantified expression. Insertion will
20397 -- take place when expression is expanded.
20406 -- Case of other than an explicit N_Range node
20408 -- The forced evaluation removes side effects from expressions, which
20409 -- should occur also in GNATprove mode. Otherwise, we end up with
20410 -- unexpected insertions of actions at places where this is not
20411 -- supposed to occur, e.g. on default parameters of a call.
20413 elsif Expander_Active
or GNATprove_Mode
then
20414 Get_Index_Bounds
(R
, Lo
, Hi
);
20415 Force_Evaluation
(Lo
);
20416 Force_Evaluation
(Hi
);
20418 end Process_Range_Expr_In_Decl
;
20420 --------------------------------------
20421 -- Process_Real_Range_Specification --
20422 --------------------------------------
20424 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
20425 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
20428 Err
: Boolean := False;
20430 procedure Analyze_Bound
(N
: Node_Id
);
20431 -- Analyze and check one bound
20433 -------------------
20434 -- Analyze_Bound --
20435 -------------------
20437 procedure Analyze_Bound
(N
: Node_Id
) is
20439 Analyze_And_Resolve
(N
, Any_Real
);
20441 if not Is_OK_Static_Expression
(N
) then
20442 Flag_Non_Static_Expr
20443 ("bound in real type definition is not static!", N
);
20448 -- Start of processing for Process_Real_Range_Specification
20451 if Present
(Spec
) then
20452 Lo
:= Low_Bound
(Spec
);
20453 Hi
:= High_Bound
(Spec
);
20454 Analyze_Bound
(Lo
);
20455 Analyze_Bound
(Hi
);
20457 -- If error, clear away junk range specification
20460 Set_Real_Range_Specification
(Def
, Empty
);
20463 end Process_Real_Range_Specification
;
20465 ---------------------
20466 -- Process_Subtype --
20467 ---------------------
20469 function Process_Subtype
20471 Related_Nod
: Node_Id
;
20472 Related_Id
: Entity_Id
:= Empty
;
20473 Suffix
: Character := ' ') return Entity_Id
20476 Def_Id
: Entity_Id
;
20477 Error_Node
: Node_Id
;
20478 Full_View_Id
: Entity_Id
;
20479 Subtype_Mark_Id
: Entity_Id
;
20481 May_Have_Null_Exclusion
: Boolean;
20483 procedure Check_Incomplete
(T
: Entity_Id
);
20484 -- Called to verify that an incomplete type is not used prematurely
20486 ----------------------
20487 -- Check_Incomplete --
20488 ----------------------
20490 procedure Check_Incomplete
(T
: Entity_Id
) is
20492 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20494 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
20496 not (Ada_Version
>= Ada_2005
20498 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
20499 or else (Nkind
(Parent
(T
)) = N_Subtype_Indication
20500 and then Nkind
(Parent
(Parent
(T
))) =
20501 N_Subtype_Declaration
)))
20503 Error_Msg_N
("invalid use of type before its full declaration", T
);
20505 end Check_Incomplete
;
20507 -- Start of processing for Process_Subtype
20510 -- Case of no constraints present
20512 if Nkind
(S
) /= N_Subtype_Indication
then
20514 Check_Incomplete
(S
);
20517 -- Ada 2005 (AI-231): Static check
20519 if Ada_Version
>= Ada_2005
20520 and then Present
(P
)
20521 and then Null_Exclusion_Present
(P
)
20522 and then Nkind
(P
) /= N_Access_To_Object_Definition
20523 and then not Is_Access_Type
(Entity
(S
))
20525 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
20528 -- The following is ugly, can't we have a range or even a flag???
20530 May_Have_Null_Exclusion
:=
20531 Nkind_In
(P
, N_Access_Definition
,
20532 N_Access_Function_Definition
,
20533 N_Access_Procedure_Definition
,
20534 N_Access_To_Object_Definition
,
20536 N_Component_Definition
)
20538 Nkind_In
(P
, N_Derived_Type_Definition
,
20539 N_Discriminant_Specification
,
20540 N_Formal_Object_Declaration
,
20541 N_Object_Declaration
,
20542 N_Object_Renaming_Declaration
,
20543 N_Parameter_Specification
,
20544 N_Subtype_Declaration
);
20546 -- Create an Itype that is a duplicate of Entity (S) but with the
20547 -- null-exclusion attribute.
20549 if May_Have_Null_Exclusion
20550 and then Is_Access_Type
(Entity
(S
))
20551 and then Null_Exclusion_Present
(P
)
20553 -- No need to check the case of an access to object definition.
20554 -- It is correct to define double not-null pointers.
20557 -- type Not_Null_Int_Ptr is not null access Integer;
20558 -- type Acc is not null access Not_Null_Int_Ptr;
20560 and then Nkind
(P
) /= N_Access_To_Object_Definition
20562 if Can_Never_Be_Null
(Entity
(S
)) then
20563 case Nkind
(Related_Nod
) is
20564 when N_Full_Type_Declaration
=>
20565 if Nkind
(Type_Definition
(Related_Nod
))
20566 in N_Array_Type_Definition
20570 (Component_Definition
20571 (Type_Definition
(Related_Nod
)));
20574 Subtype_Indication
(Type_Definition
(Related_Nod
));
20577 when N_Subtype_Declaration
=>
20578 Error_Node
:= Subtype_Indication
(Related_Nod
);
20580 when N_Object_Declaration
=>
20581 Error_Node
:= Object_Definition
(Related_Nod
);
20583 when N_Component_Declaration
=>
20585 Subtype_Indication
(Component_Definition
(Related_Nod
));
20587 when N_Allocator
=>
20588 Error_Node
:= Expression
(Related_Nod
);
20591 pragma Assert
(False);
20592 Error_Node
:= Related_Nod
;
20596 ("`NOT NULL` not allowed (& already excludes null)",
20602 Create_Null_Excluding_Itype
20604 Related_Nod
=> P
));
20605 Set_Entity
(S
, Etype
(S
));
20610 -- Case of constraint present, so that we have an N_Subtype_Indication
20611 -- node (this node is created only if constraints are present).
20614 Find_Type
(Subtype_Mark
(S
));
20616 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
20618 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
20619 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
20621 Check_Incomplete
(Subtype_Mark
(S
));
20625 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
20627 -- Explicit subtype declaration case
20629 if Nkind
(P
) = N_Subtype_Declaration
then
20630 Def_Id
:= Defining_Identifier
(P
);
20632 -- Explicit derived type definition case
20634 elsif Nkind
(P
) = N_Derived_Type_Definition
then
20635 Def_Id
:= Defining_Identifier
(Parent
(P
));
20637 -- Implicit case, the Def_Id must be created as an implicit type.
20638 -- The one exception arises in the case of concurrent types, array
20639 -- and access types, where other subsidiary implicit types may be
20640 -- created and must appear before the main implicit type. In these
20641 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20642 -- has not yet been called to create Def_Id.
20645 if Is_Array_Type
(Subtype_Mark_Id
)
20646 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
20647 or else Is_Access_Type
(Subtype_Mark_Id
)
20651 -- For the other cases, we create a new unattached Itype,
20652 -- and set the indication to ensure it gets attached later.
20656 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20660 -- If the kind of constraint is invalid for this kind of type,
20661 -- then give an error, and then pretend no constraint was given.
20663 if not Is_Valid_Constraint_Kind
20664 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
20667 ("incorrect constraint for this kind of type", Constraint
(S
));
20669 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
20671 -- Set Ekind of orphan itype, to prevent cascaded errors
20673 if Present
(Def_Id
) then
20674 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
20677 -- Make recursive call, having got rid of the bogus constraint
20679 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
20682 -- Remaining processing depends on type. Select on Base_Type kind to
20683 -- ensure getting to the concrete type kind in the case of a private
20684 -- subtype (needed when only doing semantic analysis).
20686 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
20687 when Access_Kind
=>
20689 -- If this is a constraint on a class-wide type, discard it.
20690 -- There is currently no way to express a partial discriminant
20691 -- constraint on a type with unknown discriminants. This is
20692 -- a pathology that the ACATS wisely decides not to test.
20694 if Is_Class_Wide_Type
(Designated_Type
(Subtype_Mark_Id
)) then
20695 if Comes_From_Source
(S
) then
20697 ("constraint on class-wide type ignored??",
20701 if Nkind
(P
) = N_Subtype_Declaration
then
20702 Set_Subtype_Indication
(P
,
20703 New_Occurrence_Of
(Subtype_Mark_Id
, Sloc
(S
)));
20706 return Subtype_Mark_Id
;
20709 Constrain_Access
(Def_Id
, S
, Related_Nod
);
20712 and then Is_Itype
(Designated_Type
(Def_Id
))
20713 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
20714 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
20716 Build_Itype_Reference
20717 (Designated_Type
(Def_Id
), Related_Nod
);
20721 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
20723 when Decimal_Fixed_Point_Kind
=>
20724 Constrain_Decimal
(Def_Id
, S
);
20726 when Enumeration_Kind
=>
20727 Constrain_Enumeration
(Def_Id
, S
);
20728 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20730 when Ordinary_Fixed_Point_Kind
=>
20731 Constrain_Ordinary_Fixed
(Def_Id
, S
);
20734 Constrain_Float
(Def_Id
, S
);
20736 when Integer_Kind
=>
20737 Constrain_Integer
(Def_Id
, S
);
20738 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20740 when E_Record_Type |
20743 E_Incomplete_Type
=>
20744 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20746 if Ekind
(Def_Id
) = E_Incomplete_Type
then
20747 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20750 when Private_Kind
=>
20751 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20752 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20754 -- In case of an invalid constraint prevent further processing
20755 -- since the type constructed is missing expected fields.
20757 if Etype
(Def_Id
) = Any_Type
then
20761 -- If the full view is that of a task with discriminants,
20762 -- we must constrain both the concurrent type and its
20763 -- corresponding record type. Otherwise we will just propagate
20764 -- the constraint to the full view, if available.
20766 if Present
(Full_View
(Subtype_Mark_Id
))
20767 and then Has_Discriminants
(Subtype_Mark_Id
)
20768 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
20771 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20773 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
20774 Constrain_Concurrent
(Full_View_Id
, S
,
20775 Related_Nod
, Related_Id
, Suffix
);
20776 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
20777 Set_Full_View
(Def_Id
, Full_View_Id
);
20779 -- Introduce an explicit reference to the private subtype,
20780 -- to prevent scope anomalies in gigi if first use appears
20781 -- in a nested context, e.g. a later function body.
20782 -- Should this be generated in other contexts than a full
20783 -- type declaration?
20785 if Is_Itype
(Def_Id
)
20787 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
20789 Build_Itype_Reference
(Def_Id
, Parent
(P
));
20793 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
20796 when Concurrent_Kind
=>
20797 Constrain_Concurrent
(Def_Id
, S
,
20798 Related_Nod
, Related_Id
, Suffix
);
20801 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
20804 -- Size and Convention are always inherited from the base type
20806 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
20807 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
20811 end Process_Subtype
;
20813 --------------------------------------------
20814 -- Propagate_Default_Init_Cond_Attributes --
20815 --------------------------------------------
20817 procedure Propagate_Default_Init_Cond_Attributes
20818 (From_Typ
: Entity_Id
;
20819 To_Typ
: Entity_Id
;
20820 Parent_To_Derivation
: Boolean := False;
20821 Private_To_Full_View
: Boolean := False)
20823 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
);
20824 -- Remove the default initial procedure (if any) from the rep chain of
20827 ----------------------------------------
20828 -- Remove_Default_Init_Cond_Procedure --
20829 ----------------------------------------
20831 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
) is
20832 Found
: Boolean := False;
20838 Subp
:= Subprograms_For_Type
(Typ
);
20839 while Present
(Subp
) loop
20840 if Is_Default_Init_Cond_Procedure
(Subp
) then
20846 Subp
:= Subprograms_For_Type
(Subp
);
20850 Set_Subprograms_For_Type
(Prev
, Subprograms_For_Type
(Subp
));
20851 Set_Subprograms_For_Type
(Subp
, Empty
);
20853 end Remove_Default_Init_Cond_Procedure
;
20857 Inherit_Procedure
: Boolean := False;
20859 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20862 if Has_Default_Init_Cond
(From_Typ
) then
20864 -- A derived type inherits the attributes from its parent type
20866 if Parent_To_Derivation
then
20867 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20869 -- A full view shares the attributes with its private view
20872 Set_Has_Default_Init_Cond
(To_Typ
);
20875 Inherit_Procedure
:= True;
20877 -- Due to the order of expansion, a derived private type is processed
20878 -- by two routines which both attempt to set the attributes related
20879 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20880 -- Process_Full_View.
20883 -- type Parent_Typ is private
20884 -- with Default_Initial_Condition ...;
20886 -- type Parent_Typ is ...;
20889 -- with Pack; use Pack;
20890 -- package Pack_2 is
20891 -- type Deriv_Typ is private
20892 -- with Default_Initial_Condition ...;
20894 -- type Deriv_Typ is new Parent_Typ;
20897 -- When Build_Derived_Type operates, it sets the attributes on the
20898 -- full view without taking into account that the private view may
20899 -- define its own default initial condition procedure. This becomes
20900 -- apparent in Process_Full_View which must undo some of the work by
20901 -- Build_Derived_Type and propagate the attributes from the private
20902 -- to the full view.
20904 if Private_To_Full_View
then
20905 Set_Has_Inherited_Default_Init_Cond
(To_Typ
, False);
20906 Remove_Default_Init_Cond_Procedure
(To_Typ
);
20909 -- A type must inherit the default initial condition procedure from a
20910 -- parent type when the parent itself is inheriting the procedure or
20911 -- when it is defining one. This circuitry is also used when dealing
20912 -- with the private / full view of a type.
20914 elsif Has_Inherited_Default_Init_Cond
(From_Typ
)
20915 or (Parent_To_Derivation
20916 and Present
(Get_Pragma
20917 (From_Typ
, Pragma_Default_Initial_Condition
)))
20919 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20920 Inherit_Procedure
:= True;
20923 if Inherit_Procedure
20924 and then No
(Default_Init_Cond_Procedure
(To_Typ
))
20926 Set_Default_Init_Cond_Procedure
20927 (To_Typ
, Default_Init_Cond_Procedure
(From_Typ
));
20929 end Propagate_Default_Init_Cond_Attributes
;
20931 -----------------------------
20932 -- Record_Type_Declaration --
20933 -----------------------------
20935 procedure Record_Type_Declaration
20940 Def
: constant Node_Id
:= Type_Definition
(N
);
20941 Is_Tagged
: Boolean;
20942 Tag_Comp
: Entity_Id
;
20945 -- These flags must be initialized before calling Process_Discriminants
20946 -- because this routine makes use of them.
20948 Set_Ekind
(T
, E_Record_Type
);
20950 Init_Size_Align
(T
);
20951 Set_Interfaces
(T
, No_Elist
);
20952 Set_Stored_Constraint
(T
, No_Elist
);
20953 Set_Default_SSO
(T
);
20957 if Ada_Version
< Ada_2005
or else not Interface_Present
(Def
) then
20958 if Limited_Present
(Def
) then
20959 Check_SPARK_05_Restriction
("limited is not allowed", N
);
20962 if Abstract_Present
(Def
) then
20963 Check_SPARK_05_Restriction
("abstract is not allowed", N
);
20966 -- The flag Is_Tagged_Type might have already been set by
20967 -- Find_Type_Name if it detected an error for declaration T. This
20968 -- arises in the case of private tagged types where the full view
20969 -- omits the word tagged.
20972 Tagged_Present
(Def
)
20973 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
20975 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
20978 Set_Is_Tagged_Type
(T
, True);
20979 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
20982 -- Type is abstract if full declaration carries keyword, or if
20983 -- previous partial view did.
20985 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
20986 or else Abstract_Present
(Def
));
20989 Check_SPARK_05_Restriction
("interface is not allowed", N
);
20992 Analyze_Interface_Declaration
(T
, Def
);
20994 if Present
(Discriminant_Specifications
(N
)) then
20996 ("interface types cannot have discriminants",
20997 Defining_Identifier
20998 (First
(Discriminant_Specifications
(N
))));
21002 -- First pass: if there are self-referential access components,
21003 -- create the required anonymous access type declarations, and if
21004 -- need be an incomplete type declaration for T itself.
21006 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
21008 if Ada_Version
>= Ada_2005
21009 and then Present
(Interface_List
(Def
))
21011 Check_Interfaces
(N
, Def
);
21014 Ifaces_List
: Elist_Id
;
21017 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21018 -- already in the parents.
21022 Ifaces_List
=> Ifaces_List
,
21023 Exclude_Parents
=> True);
21025 Set_Interfaces
(T
, Ifaces_List
);
21029 -- Records constitute a scope for the component declarations within.
21030 -- The scope is created prior to the processing of these declarations.
21031 -- Discriminants are processed first, so that they are visible when
21032 -- processing the other components. The Ekind of the record type itself
21033 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21035 -- Enter record scope
21039 -- If an incomplete or private type declaration was already given for
21040 -- the type, then this scope already exists, and the discriminants have
21041 -- been declared within. We must verify that the full declaration
21042 -- matches the incomplete one.
21044 Check_Or_Process_Discriminants
(N
, T
, Prev
);
21046 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
21047 Set_Has_Delayed_Freeze
(T
, True);
21049 -- For tagged types add a manually analyzed component corresponding
21050 -- to the component _tag, the corresponding piece of tree will be
21051 -- expanded as part of the freezing actions if it is not a CPP_Class.
21055 -- Do not add the tag unless we are in expansion mode
21057 if Expander_Active
then
21058 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
21059 Enter_Name
(Tag_Comp
);
21061 Set_Ekind
(Tag_Comp
, E_Component
);
21062 Set_Is_Tag
(Tag_Comp
);
21063 Set_Is_Aliased
(Tag_Comp
);
21064 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
21065 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
21066 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
21067 Init_Component_Location
(Tag_Comp
);
21069 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21070 -- implemented interfaces.
21072 if Has_Interfaces
(T
) then
21073 Add_Interface_Tag_Components
(N
, T
);
21077 Make_Class_Wide_Type
(T
);
21078 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
21081 -- We must suppress range checks when processing record components in
21082 -- the presence of discriminants, since we don't want spurious checks to
21083 -- be generated during their analysis, but Suppress_Range_Checks flags
21084 -- must be reset the after processing the record definition.
21086 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21087 -- couldn't we just use the normal range check suppression method here.
21088 -- That would seem cleaner ???
21090 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
21091 Set_Kill_Range_Checks
(T
, True);
21092 Record_Type_Definition
(Def
, Prev
);
21093 Set_Kill_Range_Checks
(T
, False);
21095 Record_Type_Definition
(Def
, Prev
);
21098 -- Exit from record scope
21102 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21103 -- the implemented interfaces and associate them an aliased entity.
21106 and then not Is_Empty_List
(Interface_List
(Def
))
21108 Derive_Progenitor_Subprograms
(T
, T
);
21111 Check_Function_Writable_Actuals
(N
);
21112 end Record_Type_Declaration
;
21114 ----------------------------
21115 -- Record_Type_Definition --
21116 ----------------------------
21118 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
21119 Component
: Entity_Id
;
21120 Ctrl_Components
: Boolean := False;
21121 Final_Storage_Only
: Boolean;
21125 if Ekind
(Prev_T
) = E_Incomplete_Type
then
21126 T
:= Full_View
(Prev_T
);
21131 -- In SPARK, tagged types and type extensions may only be declared in
21132 -- the specification of library unit packages.
21134 if Present
(Def
) and then Is_Tagged_Type
(T
) then
21140 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
21141 Typ
:= Parent
(Def
);
21144 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
21145 Typ
:= Parent
(Parent
(Def
));
21148 Ctxt
:= Parent
(Typ
);
21150 if Nkind
(Ctxt
) = N_Package_Body
21151 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
21153 Check_SPARK_05_Restriction
21154 ("type should be defined in package specification", Typ
);
21156 elsif Nkind
(Ctxt
) /= N_Package_Specification
21157 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
21159 Check_SPARK_05_Restriction
21160 ("type should be defined in library unit package", Typ
);
21165 Final_Storage_Only
:= not Is_Controlled_Active
(T
);
21167 -- Ada 2005: Check whether an explicit Limited is present in a derived
21168 -- type declaration.
21170 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
21171 and then Limited_Present
(Parent
(Def
))
21173 Set_Is_Limited_Record
(T
);
21176 -- If the component list of a record type is defined by the reserved
21177 -- word null and there is no discriminant part, then the record type has
21178 -- no components and all records of the type are null records (RM 3.7)
21179 -- This procedure is also called to process the extension part of a
21180 -- record extension, in which case the current scope may have inherited
21184 or else No
(Component_List
(Def
))
21185 or else Null_Present
(Component_List
(Def
))
21187 if not Is_Tagged_Type
(T
) then
21188 Check_SPARK_05_Restriction
("untagged record cannot be null", Def
);
21192 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
21194 if Present
(Variant_Part
(Component_List
(Def
))) then
21195 Check_SPARK_05_Restriction
("variant part is not allowed", Def
);
21196 Analyze
(Variant_Part
(Component_List
(Def
)));
21200 -- After completing the semantic analysis of the record definition,
21201 -- record components, both new and inherited, are accessible. Set their
21202 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21203 -- whose Ekind may be void.
21205 Component
:= First_Entity
(Current_Scope
);
21206 while Present
(Component
) loop
21207 if Ekind
(Component
) = E_Void
21208 and then not Is_Itype
(Component
)
21210 Set_Ekind
(Component
, E_Component
);
21211 Init_Component_Location
(Component
);
21214 if Has_Task
(Etype
(Component
)) then
21218 if Has_Protected
(Etype
(Component
)) then
21219 Set_Has_Protected
(T
);
21222 if Ekind
(Component
) /= E_Component
then
21225 -- Do not set Has_Controlled_Component on a class-wide equivalent
21226 -- type. See Make_CW_Equivalent_Type.
21228 elsif not Is_Class_Wide_Equivalent_Type
(T
)
21229 and then (Has_Controlled_Component
(Etype
(Component
))
21230 or else (Chars
(Component
) /= Name_uParent
21231 and then Is_Controlled_Active
21232 (Etype
(Component
))))
21234 Set_Has_Controlled_Component
(T
, True);
21235 Final_Storage_Only
:=
21237 and then Finalize_Storage_Only
(Etype
(Component
));
21238 Ctrl_Components
:= True;
21241 Next_Entity
(Component
);
21244 -- A Type is Finalize_Storage_Only only if all its controlled components
21247 if Ctrl_Components
then
21248 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
21251 -- Place reference to end record on the proper entity, which may
21252 -- be a partial view.
21254 if Present
(Def
) then
21255 Process_End_Label
(Def
, 'e', Prev_T
);
21257 end Record_Type_Definition
;
21259 ------------------------
21260 -- Replace_Components --
21261 ------------------------
21263 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
21264 function Process
(N
: Node_Id
) return Traverse_Result
;
21270 function Process
(N
: Node_Id
) return Traverse_Result
is
21274 if Nkind
(N
) = N_Discriminant_Specification
then
21275 Comp
:= First_Discriminant
(Typ
);
21276 while Present
(Comp
) loop
21277 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21278 Set_Defining_Identifier
(N
, Comp
);
21282 Next_Discriminant
(Comp
);
21285 elsif Nkind
(N
) = N_Component_Declaration
then
21286 Comp
:= First_Component
(Typ
);
21287 while Present
(Comp
) loop
21288 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21289 Set_Defining_Identifier
(N
, Comp
);
21293 Next_Component
(Comp
);
21300 procedure Replace
is new Traverse_Proc
(Process
);
21302 -- Start of processing for Replace_Components
21306 end Replace_Components
;
21308 -------------------------------
21309 -- Set_Completion_Referenced --
21310 -------------------------------
21312 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
21314 -- If in main unit, mark entity that is a completion as referenced,
21315 -- warnings go on the partial view when needed.
21317 if In_Extended_Main_Source_Unit
(E
) then
21318 Set_Referenced
(E
);
21320 end Set_Completion_Referenced
;
21322 ---------------------
21323 -- Set_Default_SSO --
21324 ---------------------
21326 procedure Set_Default_SSO
(T
: Entity_Id
) is
21328 case Opt
.Default_SSO
is
21332 Set_SSO_Set_Low_By_Default
(T
, True);
21334 Set_SSO_Set_High_By_Default
(T
, True);
21336 raise Program_Error
;
21338 end Set_Default_SSO
;
21340 ---------------------
21341 -- Set_Fixed_Range --
21342 ---------------------
21344 -- The range for fixed-point types is complicated by the fact that we
21345 -- do not know the exact end points at the time of the declaration. This
21346 -- is true for three reasons:
21348 -- A size clause may affect the fudging of the end-points.
21349 -- A small clause may affect the values of the end-points.
21350 -- We try to include the end-points if it does not affect the size.
21352 -- This means that the actual end-points must be established at the
21353 -- point when the type is frozen. Meanwhile, we first narrow the range
21354 -- as permitted (so that it will fit if necessary in a small specified
21355 -- size), and then build a range subtree with these narrowed bounds.
21356 -- Set_Fixed_Range constructs the range from real literal values, and
21357 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21359 -- The parent of this range is set to point to the entity so that it is
21360 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21361 -- other scalar types, which are just pointers to the range in the
21362 -- original tree, this would otherwise be an orphan).
21364 -- The tree is left unanalyzed. When the type is frozen, the processing
21365 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21366 -- analyzed, and uses this as an indication that it should complete
21367 -- work on the range (it will know the final small and size values).
21369 procedure Set_Fixed_Range
21375 S
: constant Node_Id
:=
21377 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
21378 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
21380 Set_Scalar_Range
(E
, S
);
21383 -- Before the freeze point, the bounds of a fixed point are universal
21384 -- and carry the corresponding type.
21386 Set_Etype
(Low_Bound
(S
), Universal_Real
);
21387 Set_Etype
(High_Bound
(S
), Universal_Real
);
21388 end Set_Fixed_Range
;
21390 ----------------------------------
21391 -- Set_Scalar_Range_For_Subtype --
21392 ----------------------------------
21394 procedure Set_Scalar_Range_For_Subtype
21395 (Def_Id
: Entity_Id
;
21399 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
21402 -- Defend against previous error
21404 if Nkind
(R
) = N_Error
then
21408 Set_Scalar_Range
(Def_Id
, R
);
21410 -- We need to link the range into the tree before resolving it so
21411 -- that types that are referenced, including importantly the subtype
21412 -- itself, are properly frozen (Freeze_Expression requires that the
21413 -- expression be properly linked into the tree). Of course if it is
21414 -- already linked in, then we do not disturb the current link.
21416 if No
(Parent
(R
)) then
21417 Set_Parent
(R
, Def_Id
);
21420 -- Reset the kind of the subtype during analysis of the range, to
21421 -- catch possible premature use in the bounds themselves.
21423 Set_Ekind
(Def_Id
, E_Void
);
21424 Process_Range_Expr_In_Decl
(R
, Subt
, Subtyp
=> Def_Id
);
21425 Set_Ekind
(Def_Id
, Kind
);
21426 end Set_Scalar_Range_For_Subtype
;
21428 --------------------------------------------------------
21429 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21430 --------------------------------------------------------
21432 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21436 -- Make sure set if encountered during Expand_To_Stored_Constraint
21438 Set_Stored_Constraint
(E
, No_Elist
);
21440 -- Give it the right value
21442 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
21443 Set_Stored_Constraint
(E
,
21444 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
21446 end Set_Stored_Constraint_From_Discriminant_Constraint
;
21448 -------------------------------------
21449 -- Signed_Integer_Type_Declaration --
21450 -------------------------------------
21452 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
21453 Implicit_Base
: Entity_Id
;
21454 Base_Typ
: Entity_Id
;
21457 Errs
: Boolean := False;
21461 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
21462 -- Determine whether given bounds allow derivation from specified type
21464 procedure Check_Bound
(Expr
: Node_Id
);
21465 -- Check bound to make sure it is integral and static. If not, post
21466 -- appropriate error message and set Errs flag
21468 ---------------------
21469 -- Can_Derive_From --
21470 ---------------------
21472 -- Note we check both bounds against both end values, to deal with
21473 -- strange types like ones with a range of 0 .. -12341234.
21475 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
21476 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
21477 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
21479 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
21481 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
21482 end Can_Derive_From
;
21488 procedure Check_Bound
(Expr
: Node_Id
) is
21490 -- If a range constraint is used as an integer type definition, each
21491 -- bound of the range must be defined by a static expression of some
21492 -- integer type, but the two bounds need not have the same integer
21493 -- type (Negative bounds are allowed.) (RM 3.5.4)
21495 if not Is_Integer_Type
(Etype
(Expr
)) then
21497 ("integer type definition bounds must be of integer type", Expr
);
21500 elsif not Is_OK_Static_Expression
(Expr
) then
21501 Flag_Non_Static_Expr
21502 ("non-static expression used for integer type bound!", Expr
);
21505 -- The bounds are folded into literals, and we set their type to be
21506 -- universal, to avoid typing difficulties: we cannot set the type
21507 -- of the literal to the new type, because this would be a forward
21508 -- reference for the back end, and if the original type is user-
21509 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21512 if Is_Entity_Name
(Expr
) then
21513 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
21516 Set_Etype
(Expr
, Universal_Integer
);
21520 -- Start of processing for Signed_Integer_Type_Declaration
21523 -- Create an anonymous base type
21526 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
21528 -- Analyze and check the bounds, they can be of any integer type
21530 Lo
:= Low_Bound
(Def
);
21531 Hi
:= High_Bound
(Def
);
21533 -- Arbitrarily use Integer as the type if either bound had an error
21535 if Hi
= Error
or else Lo
= Error
then
21536 Base_Typ
:= Any_Integer
;
21537 Set_Error_Posted
(T
, True);
21539 -- Here both bounds are OK expressions
21542 Analyze_And_Resolve
(Lo
, Any_Integer
);
21543 Analyze_And_Resolve
(Hi
, Any_Integer
);
21549 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21550 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21553 -- Find type to derive from
21555 Lo_Val
:= Expr_Value
(Lo
);
21556 Hi_Val
:= Expr_Value
(Hi
);
21558 if Can_Derive_From
(Standard_Short_Short_Integer
) then
21559 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
21561 elsif Can_Derive_From
(Standard_Short_Integer
) then
21562 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
21564 elsif Can_Derive_From
(Standard_Integer
) then
21565 Base_Typ
:= Base_Type
(Standard_Integer
);
21567 elsif Can_Derive_From
(Standard_Long_Integer
) then
21568 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
21570 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
21571 Check_Restriction
(No_Long_Long_Integers
, Def
);
21572 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21575 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21576 Error_Msg_N
("integer type definition bounds out of range", Def
);
21577 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21578 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21582 -- Complete both implicit base and declared first subtype entities. The
21583 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21584 -- are not clobbered when the signed integer type acts as a full view of
21587 Set_Etype
(Implicit_Base
, Base_Typ
);
21588 Set_Size_Info
(Implicit_Base
, Base_Typ
);
21589 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
21590 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
21591 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
21593 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
21594 Set_Etype
(T
, Implicit_Base
);
21595 Set_Size_Info
(T
, Implicit_Base
);
21596 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
21597 Set_Scalar_Range
(T
, Def
);
21598 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
21599 Set_Is_Constrained
(T
);
21600 end Signed_Integer_Type_Declaration
;