Fix memory leaks in tree-vect-data-refs.c
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob35d2b9810bf89c3b041274267f823e1f11367d03
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Ghost; use Ghost;
44 with Itypes; use Itypes;
45 with Layout; use Layout;
46 with Lib; use Lib;
47 with Lib.Xref; use Lib.Xref;
48 with Namet; use Namet;
49 with Nmake; use Nmake;
50 with Opt; use Opt;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Case; use Sem_Case;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch6; use Sem_Ch6;
59 with Sem_Ch7; use Sem_Ch7;
60 with Sem_Ch8; use Sem_Ch8;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
361 procedure Constrain_Access
362 (Def_Id : in out Entity_Id;
363 S : Node_Id;
364 Related_Nod : Node_Id);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
369 procedure Constrain_Array
370 (Def_Id : in out Entity_Id;
371 SI : Node_Id;
372 Related_Nod : Node_Id;
373 Related_Id : Entity_Id;
374 Suffix : Character);
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
386 procedure Constrain_Concurrent
387 (Def_Id : in out Entity_Id;
388 SI : Node_Id;
389 Related_Nod : Node_Id;
390 Related_Id : Entity_Id;
391 Suffix : Character);
392 -- Apply list of discriminant constraints to an unconstrained concurrent
393 -- type.
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
404 -- Related_Nod gives the place where this type has to be inserted
405 -- in the tree.
407 -- The last two arguments are used to create its external name if needed.
409 function Constrain_Corresponding_Record
410 (Prot_Subt : Entity_Id;
411 Corr_Rec : Entity_Id;
412 Related_Nod : Node_Id) return Entity_Id;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
420 procedure Constrain_Discriminated_Type
421 (Def_Id : Entity_Id;
422 S : Node_Id;
423 Related_Nod : Node_Id;
424 For_Access : Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430 -- of For_Access.
432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
440 procedure Constrain_Index
441 (Index : Node_Id;
442 S : Node_Id;
443 Related_Nod : Node_Id;
444 Related_Id : Entity_Id;
445 Suffix : Character;
446 Suffix_Index : Nat);
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454 -- Build subtype of a signed or modular integer type
456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
460 procedure Copy_And_Swap (Priv, Full : Entity_Id);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
465 procedure Decimal_Fixed_Point_Type_Declaration
466 (T : Entity_Id;
467 Def : Node_Id);
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
471 procedure Complete_Private_Subtype
472 (Priv : Entity_Id;
473 Full : Entity_Id;
474 Full_Base : Entity_Id;
475 Related_Nod : Node_Id);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type : Entity_Id;
482 Tagged_Type : Entity_Id);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
491 procedure Derived_Standard_Character
492 (N : Node_Id;
493 Parent_Type : Entity_Id;
494 Derived_Type : Entity_Id);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
498 procedure Derived_Type_Declaration
499 (T : Entity_Id;
500 N : Node_Id;
501 Is_Completion : Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
515 function Expand_To_Stored_Constraint
516 (Typ : Entity_Id;
517 Constraint : Elist_Id) return Elist_Id;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
522 function Find_Type_Of_Object
523 (Obj_Def : Node_Id;
524 Related_Nod : Node_Id) return Entity_Id;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Create a new float and apply the constraint to obtain subtype of it
531 function Has_Range_Constraint (N : Node_Id) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
537 function Inherit_Components
538 (N : Node_Id;
539 Parent_Base : Entity_Id;
540 Derived_Base : Entity_Id;
541 Is_Tagged : Boolean;
542 Inherit_Discr : Boolean;
543 Discs : Elist_Id) return Elist_Id;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
549 -- N is the original derived type declaration
551 -- Is_Tagged is set if we are dealing with tagged types
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
563 -- which gets treated as
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
571 -- (Old_Component => New_Component),
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
608 procedure Prepare_Private_Subtype_Completion
609 (Id : Entity_Id;
610 Related_Nod : Node_Id);
611 -- Id is a subtype of some private type. Creates the full declaration
612 -- associated with Id whenever possible, i.e. when the full declaration
613 -- of the base type is already known. Records each subtype into
614 -- Private_Dependents of the base type.
616 procedure Process_Incomplete_Dependents
617 (N : Node_Id;
618 Full_T : Entity_Id;
619 Inc_T : Entity_Id);
620 -- Process all entities that depend on an incomplete type. There include
621 -- subtypes, subprogram types that mention the incomplete type in their
622 -- profiles, and subprogram with access parameters that designate the
623 -- incomplete type.
625 -- Inc_T is the defining identifier of an incomplete type declaration, its
626 -- Ekind is E_Incomplete_Type.
628 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
630 -- Full_T is N's defining identifier.
632 -- Subtypes of incomplete types with discriminants are completed when the
633 -- parent type is. This is simpler than private subtypes, because they can
634 -- only appear in the same scope, and there is no need to exchange views.
635 -- Similarly, access_to_subprogram types may have a parameter or a return
636 -- type that is an incomplete type, and that must be replaced with the
637 -- full type.
639 -- If the full type is tagged, subprogram with access parameters that
640 -- designated the incomplete may be primitive operations of the full type,
641 -- and have to be processed accordingly.
643 procedure Process_Real_Range_Specification (Def : Node_Id);
644 -- Given the type definition for a real type, this procedure processes and
645 -- checks the real range specification of this type definition if one is
646 -- present. If errors are found, error messages are posted, and the
647 -- Real_Range_Specification of Def is reset to Empty.
649 procedure Propagate_Default_Init_Cond_Attributes
650 (From_Typ : Entity_Id;
651 To_Typ : Entity_Id;
652 Parent_To_Derivation : Boolean := False;
653 Private_To_Full_View : Boolean := False);
654 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
655 -- all attributes related to pragma Default_Initial_Condition from From_Typ
656 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
657 -- the creation of a derived type. Flag Private_To_Full_View should be set
658 -- when processing both views of a private type.
660 procedure Record_Type_Declaration
661 (T : Entity_Id;
662 N : Node_Id;
663 Prev : Entity_Id);
664 -- Process a record type declaration (for both untagged and tagged
665 -- records). Parameters T and N are exactly like in procedure
666 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
667 -- for this routine. If this is the completion of an incomplete type
668 -- declaration, Prev is the entity of the incomplete declaration, used for
669 -- cross-referencing. Otherwise Prev = T.
671 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
672 -- This routine is used to process the actual record type definition (both
673 -- for untagged and tagged records). Def is a record type definition node.
674 -- This procedure analyzes the components in this record type definition.
675 -- Prev_T is the entity for the enclosing record type. It is provided so
676 -- that its Has_Task flag can be set if any of the component have Has_Task
677 -- set. If the declaration is the completion of an incomplete type
678 -- declaration, Prev_T is the original incomplete type, whose full view is
679 -- the record type.
681 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
682 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
683 -- build a copy of the declaration tree of the parent, and we create
684 -- independently the list of components for the derived type. Semantic
685 -- information uses the component entities, but record representation
686 -- clauses are validated on the declaration tree. This procedure replaces
687 -- discriminants and components in the declaration with those that have
688 -- been created by Inherit_Components.
690 procedure Set_Fixed_Range
691 (E : Entity_Id;
692 Loc : Source_Ptr;
693 Lo : Ureal;
694 Hi : Ureal);
695 -- Build a range node with the given bounds and set it as the Scalar_Range
696 -- of the given fixed-point type entity. Loc is the source location used
697 -- for the constructed range. See body for further details.
699 procedure Set_Scalar_Range_For_Subtype
700 (Def_Id : Entity_Id;
701 R : Node_Id;
702 Subt : Entity_Id);
703 -- This routine is used to set the scalar range field for a subtype given
704 -- Def_Id, the entity for the subtype, and R, the range expression for the
705 -- scalar range. Subt provides the parent subtype to be used to analyze,
706 -- resolve, and check the given range.
708 procedure Set_Default_SSO (T : Entity_Id);
709 -- T is the entity for an array or record being declared. This procedure
710 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
711 -- to the setting of Opt.Default_SSO.
713 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
714 -- Create a new signed integer entity, and apply the constraint to obtain
715 -- the required first named subtype of this type.
717 procedure Set_Stored_Constraint_From_Discriminant_Constraint
718 (E : Entity_Id);
719 -- E is some record type. This routine computes E's Stored_Constraint
720 -- from its Discriminant_Constraint.
722 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
723 -- Check that an entity in a list of progenitors is an interface,
724 -- emit error otherwise.
726 -----------------------
727 -- Access_Definition --
728 -----------------------
730 function Access_Definition
731 (Related_Nod : Node_Id;
732 N : Node_Id) return Entity_Id
734 Anon_Type : Entity_Id;
735 Anon_Scope : Entity_Id;
736 Desig_Type : Entity_Id;
737 Enclosing_Prot_Type : Entity_Id := Empty;
739 begin
740 Check_SPARK_05_Restriction ("access type is not allowed", N);
742 if Is_Entry (Current_Scope)
743 and then Is_Task_Type (Etype (Scope (Current_Scope)))
744 then
745 Error_Msg_N ("task entries cannot have access parameters", N);
746 return Empty;
747 end if;
749 -- Ada 2005: For an object declaration the corresponding anonymous
750 -- type is declared in the current scope.
752 -- If the access definition is the return type of another access to
753 -- function, scope is the current one, because it is the one of the
754 -- current type declaration, except for the pathological case below.
756 if Nkind_In (Related_Nod, N_Object_Declaration,
757 N_Access_Function_Definition)
758 then
759 Anon_Scope := Current_Scope;
761 -- A pathological case: function returning access functions that
762 -- return access functions, etc. Each anonymous access type created
763 -- is in the enclosing scope of the outermost function.
765 declare
766 Par : Node_Id;
768 begin
769 Par := Related_Nod;
770 while Nkind_In (Par, N_Access_Function_Definition,
771 N_Access_Definition)
772 loop
773 Par := Parent (Par);
774 end loop;
776 if Nkind (Par) = N_Function_Specification then
777 Anon_Scope := Scope (Defining_Entity (Par));
778 end if;
779 end;
781 -- For the anonymous function result case, retrieve the scope of the
782 -- function specification's associated entity rather than using the
783 -- current scope. The current scope will be the function itself if the
784 -- formal part is currently being analyzed, but will be the parent scope
785 -- in the case of a parameterless function, and we always want to use
786 -- the function's parent scope. Finally, if the function is a child
787 -- unit, we must traverse the tree to retrieve the proper entity.
789 elsif Nkind (Related_Nod) = N_Function_Specification
790 and then Nkind (Parent (N)) /= N_Parameter_Specification
791 then
792 -- If the current scope is a protected type, the anonymous access
793 -- is associated with one of the protected operations, and must
794 -- be available in the scope that encloses the protected declaration.
795 -- Otherwise the type is in the scope enclosing the subprogram.
797 -- If the function has formals, The return type of a subprogram
798 -- declaration is analyzed in the scope of the subprogram (see
799 -- Process_Formals) and thus the protected type, if present, is
800 -- the scope of the current function scope.
802 if Ekind (Current_Scope) = E_Protected_Type then
803 Enclosing_Prot_Type := Current_Scope;
805 elsif Ekind (Current_Scope) = E_Function
806 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
807 then
808 Enclosing_Prot_Type := Scope (Current_Scope);
809 end if;
811 if Present (Enclosing_Prot_Type) then
812 Anon_Scope := Scope (Enclosing_Prot_Type);
814 else
815 Anon_Scope := Scope (Defining_Entity (Related_Nod));
816 end if;
818 -- For an access type definition, if the current scope is a child
819 -- unit it is the scope of the type.
821 elsif Is_Compilation_Unit (Current_Scope) then
822 Anon_Scope := Current_Scope;
824 -- For access formals, access components, and access discriminants, the
825 -- scope is that of the enclosing declaration,
827 else
828 Anon_Scope := Scope (Current_Scope);
829 end if;
831 Anon_Type :=
832 Create_Itype
833 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
835 if All_Present (N)
836 and then Ada_Version >= Ada_2005
837 then
838 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
839 end if;
841 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
842 -- the corresponding semantic routine
844 if Present (Access_To_Subprogram_Definition (N)) then
846 -- Compiler runtime units are compiled in Ada 2005 mode when building
847 -- the runtime library but must also be compilable in Ada 95 mode
848 -- (when bootstrapping the compiler).
850 Check_Compiler_Unit ("anonymous access to subprogram", N);
852 Access_Subprogram_Declaration
853 (T_Name => Anon_Type,
854 T_Def => Access_To_Subprogram_Definition (N));
856 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
857 Set_Ekind
858 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
859 else
860 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
861 end if;
863 Set_Can_Use_Internal_Rep
864 (Anon_Type, not Always_Compatible_Rep_On_Target);
866 -- If the anonymous access is associated with a protected operation,
867 -- create a reference to it after the enclosing protected definition
868 -- because the itype will be used in the subsequent bodies.
870 -- If the anonymous access itself is protected, a full type
871 -- declaratiton will be created for it, so that the equivalent
872 -- record type can be constructed. For further details, see
873 -- Replace_Anonymous_Access_To_Protected-Subprogram.
875 if Ekind (Current_Scope) = E_Protected_Type
876 and then not Protected_Present (Access_To_Subprogram_Definition (N))
877 then
878 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
879 end if;
881 return Anon_Type;
882 end if;
884 Find_Type (Subtype_Mark (N));
885 Desig_Type := Entity (Subtype_Mark (N));
887 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
888 Set_Etype (Anon_Type, Anon_Type);
890 -- Make sure the anonymous access type has size and alignment fields
891 -- set, as required by gigi. This is necessary in the case of the
892 -- Task_Body_Procedure.
894 if not Has_Private_Component (Desig_Type) then
895 Layout_Type (Anon_Type);
896 end if;
898 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
899 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
900 -- the null value is allowed. In Ada 95 the null value is never allowed.
902 if Ada_Version >= Ada_2005 then
903 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
904 else
905 Set_Can_Never_Be_Null (Anon_Type, True);
906 end if;
908 -- The anonymous access type is as public as the discriminated type or
909 -- subprogram that defines it. It is imported (for back-end purposes)
910 -- if the designated type is.
912 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
914 -- Ada 2005 (AI-231): Propagate the access-constant attribute
916 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
918 -- The context is either a subprogram declaration, object declaration,
919 -- or an access discriminant, in a private or a full type declaration.
920 -- In the case of a subprogram, if the designated type is incomplete,
921 -- the operation will be a primitive operation of the full type, to be
922 -- updated subsequently. If the type is imported through a limited_with
923 -- clause, the subprogram is not a primitive operation of the type
924 -- (which is declared elsewhere in some other scope).
926 if Ekind (Desig_Type) = E_Incomplete_Type
927 and then not From_Limited_With (Desig_Type)
928 and then Is_Overloadable (Current_Scope)
929 then
930 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
931 Set_Has_Delayed_Freeze (Current_Scope);
932 end if;
934 -- Ada 2005: If the designated type is an interface that may contain
935 -- tasks, create a Master entity for the declaration. This must be done
936 -- before expansion of the full declaration, because the declaration may
937 -- include an expression that is an allocator, whose expansion needs the
938 -- proper Master for the created tasks.
940 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
941 then
942 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
943 then
944 Build_Class_Wide_Master (Anon_Type);
946 -- Similarly, if the type is an anonymous access that designates
947 -- tasks, create a master entity for it in the current context.
949 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
950 then
951 Build_Master_Entity (Defining_Identifier (Related_Nod));
952 Build_Master_Renaming (Anon_Type);
953 end if;
954 end if;
956 -- For a private component of a protected type, it is imperative that
957 -- the back-end elaborate the type immediately after the protected
958 -- declaration, because this type will be used in the declarations
959 -- created for the component within each protected body, so we must
960 -- create an itype reference for it now.
962 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
963 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
965 -- Similarly, if the access definition is the return result of a
966 -- function, create an itype reference for it because it will be used
967 -- within the function body. For a regular function that is not a
968 -- compilation unit, insert reference after the declaration. For a
969 -- protected operation, insert it after the enclosing protected type
970 -- declaration. In either case, do not create a reference for a type
971 -- obtained through a limited_with clause, because this would introduce
972 -- semantic dependencies.
974 -- Similarly, do not create a reference if the designated type is a
975 -- generic formal, because no use of it will reach the backend.
977 elsif Nkind (Related_Nod) = N_Function_Specification
978 and then not From_Limited_With (Desig_Type)
979 and then not Is_Generic_Type (Desig_Type)
980 then
981 if Present (Enclosing_Prot_Type) then
982 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
984 elsif Is_List_Member (Parent (Related_Nod))
985 and then Nkind (Parent (N)) /= N_Parameter_Specification
986 then
987 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
988 end if;
990 -- Finally, create an itype reference for an object declaration of an
991 -- anonymous access type. This is strictly necessary only for deferred
992 -- constants, but in any case will avoid out-of-scope problems in the
993 -- back-end.
995 elsif Nkind (Related_Nod) = N_Object_Declaration then
996 Build_Itype_Reference (Anon_Type, Related_Nod);
997 end if;
999 return Anon_Type;
1000 end Access_Definition;
1002 -----------------------------------
1003 -- Access_Subprogram_Declaration --
1004 -----------------------------------
1006 procedure Access_Subprogram_Declaration
1007 (T_Name : Entity_Id;
1008 T_Def : Node_Id)
1010 procedure Check_For_Premature_Usage (Def : Node_Id);
1011 -- Check that type T_Name is not used, directly or recursively, as a
1012 -- parameter or a return type in Def. Def is either a subtype, an
1013 -- access_definition, or an access_to_subprogram_definition.
1015 -------------------------------
1016 -- Check_For_Premature_Usage --
1017 -------------------------------
1019 procedure Check_For_Premature_Usage (Def : Node_Id) is
1020 Param : Node_Id;
1022 begin
1023 -- Check for a subtype mark
1025 if Nkind (Def) in N_Has_Etype then
1026 if Etype (Def) = T_Name then
1027 Error_Msg_N
1028 ("type& cannot be used before end of its declaration", Def);
1029 end if;
1031 -- If this is not a subtype, then this is an access_definition
1033 elsif Nkind (Def) = N_Access_Definition then
1034 if Present (Access_To_Subprogram_Definition (Def)) then
1035 Check_For_Premature_Usage
1036 (Access_To_Subprogram_Definition (Def));
1037 else
1038 Check_For_Premature_Usage (Subtype_Mark (Def));
1039 end if;
1041 -- The only cases left are N_Access_Function_Definition and
1042 -- N_Access_Procedure_Definition.
1044 else
1045 if Present (Parameter_Specifications (Def)) then
1046 Param := First (Parameter_Specifications (Def));
1047 while Present (Param) loop
1048 Check_For_Premature_Usage (Parameter_Type (Param));
1049 Param := Next (Param);
1050 end loop;
1051 end if;
1053 if Nkind (Def) = N_Access_Function_Definition then
1054 Check_For_Premature_Usage (Result_Definition (Def));
1055 end if;
1056 end if;
1057 end Check_For_Premature_Usage;
1059 -- Local variables
1061 Formals : constant List_Id := Parameter_Specifications (T_Def);
1062 Formal : Entity_Id;
1063 D_Ityp : Node_Id;
1064 Desig_Type : constant Entity_Id :=
1065 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1067 -- Start of processing for Access_Subprogram_Declaration
1069 begin
1070 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1072 -- Associate the Itype node with the inner full-type declaration or
1073 -- subprogram spec or entry body. This is required to handle nested
1074 -- anonymous declarations. For example:
1076 -- procedure P
1077 -- (X : access procedure
1078 -- (Y : access procedure
1079 -- (Z : access T)))
1081 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1082 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1083 N_Private_Type_Declaration,
1084 N_Private_Extension_Declaration,
1085 N_Procedure_Specification,
1086 N_Function_Specification,
1087 N_Entry_Body)
1089 or else
1090 Nkind_In (D_Ityp, N_Object_Declaration,
1091 N_Object_Renaming_Declaration,
1092 N_Formal_Object_Declaration,
1093 N_Formal_Type_Declaration,
1094 N_Task_Type_Declaration,
1095 N_Protected_Type_Declaration))
1096 loop
1097 D_Ityp := Parent (D_Ityp);
1098 pragma Assert (D_Ityp /= Empty);
1099 end loop;
1101 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1103 if Nkind_In (D_Ityp, N_Procedure_Specification,
1104 N_Function_Specification)
1105 then
1106 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1108 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1109 N_Object_Declaration,
1110 N_Object_Renaming_Declaration,
1111 N_Formal_Type_Declaration)
1112 then
1113 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1114 end if;
1116 if Nkind (T_Def) = N_Access_Function_Definition then
1117 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1118 declare
1119 Acc : constant Node_Id := Result_Definition (T_Def);
1121 begin
1122 if Present (Access_To_Subprogram_Definition (Acc))
1123 and then
1124 Protected_Present (Access_To_Subprogram_Definition (Acc))
1125 then
1126 Set_Etype
1127 (Desig_Type,
1128 Replace_Anonymous_Access_To_Protected_Subprogram
1129 (T_Def));
1131 else
1132 Set_Etype
1133 (Desig_Type,
1134 Access_Definition (T_Def, Result_Definition (T_Def)));
1135 end if;
1136 end;
1138 else
1139 Analyze (Result_Definition (T_Def));
1141 declare
1142 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1144 begin
1145 -- If a null exclusion is imposed on the result type, then
1146 -- create a null-excluding itype (an access subtype) and use
1147 -- it as the function's Etype.
1149 if Is_Access_Type (Typ)
1150 and then Null_Exclusion_In_Return_Present (T_Def)
1151 then
1152 Set_Etype (Desig_Type,
1153 Create_Null_Excluding_Itype
1154 (T => Typ,
1155 Related_Nod => T_Def,
1156 Scope_Id => Current_Scope));
1158 else
1159 if From_Limited_With (Typ) then
1161 -- AI05-151: Incomplete types are allowed in all basic
1162 -- declarations, including access to subprograms.
1164 if Ada_Version >= Ada_2012 then
1165 null;
1167 else
1168 Error_Msg_NE
1169 ("illegal use of incomplete type&",
1170 Result_Definition (T_Def), Typ);
1171 end if;
1173 elsif Ekind (Current_Scope) = E_Package
1174 and then In_Private_Part (Current_Scope)
1175 then
1176 if Ekind (Typ) = E_Incomplete_Type then
1177 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1179 elsif Is_Class_Wide_Type (Typ)
1180 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1181 then
1182 Append_Elmt
1183 (Desig_Type, Private_Dependents (Etype (Typ)));
1184 end if;
1185 end if;
1187 Set_Etype (Desig_Type, Typ);
1188 end if;
1189 end;
1190 end if;
1192 if not (Is_Type (Etype (Desig_Type))) then
1193 Error_Msg_N
1194 ("expect type in function specification",
1195 Result_Definition (T_Def));
1196 end if;
1198 else
1199 Set_Etype (Desig_Type, Standard_Void_Type);
1200 end if;
1202 if Present (Formals) then
1203 Push_Scope (Desig_Type);
1205 -- Some special tests here. These special tests can be removed
1206 -- if and when Itypes always have proper parent pointers to their
1207 -- declarations???
1209 -- Special test 1) Link defining_identifier of formals. Required by
1210 -- First_Formal to provide its functionality.
1212 declare
1213 F : Node_Id;
1215 begin
1216 F := First (Formals);
1218 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1219 -- when it is part of an unconstrained type and subtype expansion
1220 -- is disabled. To avoid back-end problems with shared profiles,
1221 -- use previous subprogram type as the designated type, and then
1222 -- remove scope added above.
1224 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1225 then
1226 Set_Etype (T_Name, T_Name);
1227 Init_Size_Align (T_Name);
1228 Set_Directly_Designated_Type (T_Name,
1229 Scope (Defining_Identifier (F)));
1230 End_Scope;
1231 return;
1232 end if;
1234 while Present (F) loop
1235 if No (Parent (Defining_Identifier (F))) then
1236 Set_Parent (Defining_Identifier (F), F);
1237 end if;
1239 Next (F);
1240 end loop;
1241 end;
1243 Process_Formals (Formals, Parent (T_Def));
1245 -- Special test 2) End_Scope requires that the parent pointer be set
1246 -- to something reasonable, but Itypes don't have parent pointers. So
1247 -- we set it and then unset it ???
1249 Set_Parent (Desig_Type, T_Name);
1250 End_Scope;
1251 Set_Parent (Desig_Type, Empty);
1252 end if;
1254 -- Check for premature usage of the type being defined
1256 Check_For_Premature_Usage (T_Def);
1258 -- The return type and/or any parameter type may be incomplete. Mark the
1259 -- subprogram_type as depending on the incomplete type, so that it can
1260 -- be updated when the full type declaration is seen. This only applies
1261 -- to incomplete types declared in some enclosing scope, not to limited
1262 -- views from other packages.
1264 -- Prior to Ada 2012, access to functions can only have in_parameters.
1266 if Present (Formals) then
1267 Formal := First_Formal (Desig_Type);
1268 while Present (Formal) loop
1269 if Ekind (Formal) /= E_In_Parameter
1270 and then Nkind (T_Def) = N_Access_Function_Definition
1271 and then Ada_Version < Ada_2012
1272 then
1273 Error_Msg_N ("functions can only have IN parameters", Formal);
1274 end if;
1276 if Ekind (Etype (Formal)) = E_Incomplete_Type
1277 and then In_Open_Scopes (Scope (Etype (Formal)))
1278 then
1279 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1280 Set_Has_Delayed_Freeze (Desig_Type);
1281 end if;
1283 Next_Formal (Formal);
1284 end loop;
1285 end if;
1287 -- Check whether an indirect call without actuals may be possible. This
1288 -- is used when resolving calls whose result is then indexed.
1290 May_Need_Actuals (Desig_Type);
1292 -- If the return type is incomplete, this is legal as long as the type
1293 -- is declared in the current scope and will be completed in it (rather
1294 -- than being part of limited view).
1296 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1297 and then not Has_Delayed_Freeze (Desig_Type)
1298 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1299 then
1300 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1301 Set_Has_Delayed_Freeze (Desig_Type);
1302 end if;
1304 Check_Delayed_Subprogram (Desig_Type);
1306 if Protected_Present (T_Def) then
1307 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1308 Set_Convention (Desig_Type, Convention_Protected);
1309 else
1310 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1311 end if;
1313 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1315 Set_Etype (T_Name, T_Name);
1316 Init_Size_Align (T_Name);
1317 Set_Directly_Designated_Type (T_Name, Desig_Type);
1319 Generate_Reference_To_Formals (T_Name);
1321 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1323 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1325 Check_Restriction (No_Access_Subprograms, T_Def);
1326 end Access_Subprogram_Declaration;
1328 ----------------------------
1329 -- Access_Type_Declaration --
1330 ----------------------------
1332 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1333 P : constant Node_Id := Parent (Def);
1334 S : constant Node_Id := Subtype_Indication (Def);
1336 Full_Desig : Entity_Id;
1338 begin
1339 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1341 -- Check for permissible use of incomplete type
1343 if Nkind (S) /= N_Subtype_Indication then
1344 Analyze (S);
1346 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1347 Set_Directly_Designated_Type (T, Entity (S));
1349 -- If the designated type is a limited view, we cannot tell if
1350 -- the full view contains tasks, and there is no way to handle
1351 -- that full view in a client. We create a master entity for the
1352 -- scope, which will be used when a client determines that one
1353 -- is needed.
1355 if From_Limited_With (Entity (S))
1356 and then not Is_Class_Wide_Type (Entity (S))
1357 then
1358 Set_Ekind (T, E_Access_Type);
1359 Build_Master_Entity (T);
1360 Build_Master_Renaming (T);
1361 end if;
1363 else
1364 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1365 end if;
1367 -- If the access definition is of the form: ACCESS NOT NULL ..
1368 -- the subtype indication must be of an access type. Create
1369 -- a null-excluding subtype of it.
1371 if Null_Excluding_Subtype (Def) then
1372 if not Is_Access_Type (Entity (S)) then
1373 Error_Msg_N ("null exclusion must apply to access type", Def);
1375 else
1376 declare
1377 Loc : constant Source_Ptr := Sloc (S);
1378 Decl : Node_Id;
1379 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1381 begin
1382 Decl :=
1383 Make_Subtype_Declaration (Loc,
1384 Defining_Identifier => Nam,
1385 Subtype_Indication =>
1386 New_Occurrence_Of (Entity (S), Loc));
1387 Set_Null_Exclusion_Present (Decl);
1388 Insert_Before (Parent (Def), Decl);
1389 Analyze (Decl);
1390 Set_Entity (S, Nam);
1391 end;
1392 end if;
1393 end if;
1395 else
1396 Set_Directly_Designated_Type (T,
1397 Process_Subtype (S, P, T, 'P'));
1398 end if;
1400 if All_Present (Def) or Constant_Present (Def) then
1401 Set_Ekind (T, E_General_Access_Type);
1402 else
1403 Set_Ekind (T, E_Access_Type);
1404 end if;
1406 Full_Desig := Designated_Type (T);
1408 if Base_Type (Full_Desig) = T then
1409 Error_Msg_N ("access type cannot designate itself", S);
1411 -- In Ada 2005, the type may have a limited view through some unit in
1412 -- its own context, allowing the following circularity that cannot be
1413 -- detected earlier.
1415 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1416 then
1417 Error_Msg_N
1418 ("access type cannot designate its own classwide type", S);
1420 -- Clean up indication of tagged status to prevent cascaded errors
1422 Set_Is_Tagged_Type (T, False);
1423 end if;
1425 Set_Etype (T, T);
1427 -- If the type has appeared already in a with_type clause, it is frozen
1428 -- and the pointer size is already set. Else, initialize.
1430 if not From_Limited_With (T) then
1431 Init_Size_Align (T);
1432 end if;
1434 -- Note that Has_Task is always false, since the access type itself
1435 -- is not a task type. See Einfo for more description on this point.
1436 -- Exactly the same consideration applies to Has_Controlled_Component
1437 -- and to Has_Protected.
1439 Set_Has_Task (T, False);
1440 Set_Has_Controlled_Component (T, False);
1441 Set_Has_Protected (T, False);
1443 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1444 -- problems where an incomplete view of this entity has been previously
1445 -- established by a limited with and an overlaid version of this field
1446 -- (Stored_Constraint) was initialized for the incomplete view.
1448 -- This reset is performed in most cases except where the access type
1449 -- has been created for the purposes of allocating or deallocating a
1450 -- build-in-place object. Such access types have explicitly set pools
1451 -- and finalization masters.
1453 if No (Associated_Storage_Pool (T)) then
1454 Set_Finalization_Master (T, Empty);
1455 end if;
1457 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1458 -- attributes
1460 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1461 Set_Is_Access_Constant (T, Constant_Present (Def));
1462 end Access_Type_Declaration;
1464 ----------------------------------
1465 -- Add_Interface_Tag_Components --
1466 ----------------------------------
1468 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1469 Loc : constant Source_Ptr := Sloc (N);
1470 L : List_Id;
1471 Last_Tag : Node_Id;
1473 procedure Add_Tag (Iface : Entity_Id);
1474 -- Add tag for one of the progenitor interfaces
1476 -------------
1477 -- Add_Tag --
1478 -------------
1480 procedure Add_Tag (Iface : Entity_Id) is
1481 Decl : Node_Id;
1482 Def : Node_Id;
1483 Tag : Entity_Id;
1484 Offset : Entity_Id;
1486 begin
1487 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1489 -- This is a reasonable place to propagate predicates
1491 if Has_Predicates (Iface) then
1492 Set_Has_Predicates (Typ);
1493 end if;
1495 Def :=
1496 Make_Component_Definition (Loc,
1497 Aliased_Present => True,
1498 Subtype_Indication =>
1499 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1501 Tag := Make_Temporary (Loc, 'V');
1503 Decl :=
1504 Make_Component_Declaration (Loc,
1505 Defining_Identifier => Tag,
1506 Component_Definition => Def);
1508 Analyze_Component_Declaration (Decl);
1510 Set_Analyzed (Decl);
1511 Set_Ekind (Tag, E_Component);
1512 Set_Is_Tag (Tag);
1513 Set_Is_Aliased (Tag);
1514 Set_Related_Type (Tag, Iface);
1515 Init_Component_Location (Tag);
1517 pragma Assert (Is_Frozen (Iface));
1519 Set_DT_Entry_Count (Tag,
1520 DT_Entry_Count (First_Entity (Iface)));
1522 if No (Last_Tag) then
1523 Prepend (Decl, L);
1524 else
1525 Insert_After (Last_Tag, Decl);
1526 end if;
1528 Last_Tag := Decl;
1530 -- If the ancestor has discriminants we need to give special support
1531 -- to store the offset_to_top value of the secondary dispatch tables.
1532 -- For this purpose we add a supplementary component just after the
1533 -- field that contains the tag associated with each secondary DT.
1535 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1536 Def :=
1537 Make_Component_Definition (Loc,
1538 Subtype_Indication =>
1539 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1541 Offset := Make_Temporary (Loc, 'V');
1543 Decl :=
1544 Make_Component_Declaration (Loc,
1545 Defining_Identifier => Offset,
1546 Component_Definition => Def);
1548 Analyze_Component_Declaration (Decl);
1550 Set_Analyzed (Decl);
1551 Set_Ekind (Offset, E_Component);
1552 Set_Is_Aliased (Offset);
1553 Set_Related_Type (Offset, Iface);
1554 Init_Component_Location (Offset);
1555 Insert_After (Last_Tag, Decl);
1556 Last_Tag := Decl;
1557 end if;
1558 end Add_Tag;
1560 -- Local variables
1562 Elmt : Elmt_Id;
1563 Ext : Node_Id;
1564 Comp : Node_Id;
1566 -- Start of processing for Add_Interface_Tag_Components
1568 begin
1569 if not RTE_Available (RE_Interface_Tag) then
1570 Error_Msg
1571 ("(Ada 2005) interface types not supported by this run-time!",
1572 Sloc (N));
1573 return;
1574 end if;
1576 if Ekind (Typ) /= E_Record_Type
1577 or else (Is_Concurrent_Record_Type (Typ)
1578 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1579 or else (not Is_Concurrent_Record_Type (Typ)
1580 and then No (Interfaces (Typ))
1581 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1582 then
1583 return;
1584 end if;
1586 -- Find the current last tag
1588 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1589 Ext := Record_Extension_Part (Type_Definition (N));
1590 else
1591 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1592 Ext := Type_Definition (N);
1593 end if;
1595 Last_Tag := Empty;
1597 if not (Present (Component_List (Ext))) then
1598 Set_Null_Present (Ext, False);
1599 L := New_List;
1600 Set_Component_List (Ext,
1601 Make_Component_List (Loc,
1602 Component_Items => L,
1603 Null_Present => False));
1604 else
1605 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1606 L := Component_Items
1607 (Component_List
1608 (Record_Extension_Part
1609 (Type_Definition (N))));
1610 else
1611 L := Component_Items
1612 (Component_List
1613 (Type_Definition (N)));
1614 end if;
1616 -- Find the last tag component
1618 Comp := First (L);
1619 while Present (Comp) loop
1620 if Nkind (Comp) = N_Component_Declaration
1621 and then Is_Tag (Defining_Identifier (Comp))
1622 then
1623 Last_Tag := Comp;
1624 end if;
1626 Next (Comp);
1627 end loop;
1628 end if;
1630 -- At this point L references the list of components and Last_Tag
1631 -- references the current last tag (if any). Now we add the tag
1632 -- corresponding with all the interfaces that are not implemented
1633 -- by the parent.
1635 if Present (Interfaces (Typ)) then
1636 Elmt := First_Elmt (Interfaces (Typ));
1637 while Present (Elmt) loop
1638 Add_Tag (Node (Elmt));
1639 Next_Elmt (Elmt);
1640 end loop;
1641 end if;
1642 end Add_Interface_Tag_Components;
1644 -------------------------------------
1645 -- Add_Internal_Interface_Entities --
1646 -------------------------------------
1648 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1649 Elmt : Elmt_Id;
1650 Iface : Entity_Id;
1651 Iface_Elmt : Elmt_Id;
1652 Iface_Prim : Entity_Id;
1653 Ifaces_List : Elist_Id;
1654 New_Subp : Entity_Id := Empty;
1655 Prim : Entity_Id;
1656 Restore_Scope : Boolean := False;
1658 begin
1659 pragma Assert (Ada_Version >= Ada_2005
1660 and then Is_Record_Type (Tagged_Type)
1661 and then Is_Tagged_Type (Tagged_Type)
1662 and then Has_Interfaces (Tagged_Type)
1663 and then not Is_Interface (Tagged_Type));
1665 -- Ensure that the internal entities are added to the scope of the type
1667 if Scope (Tagged_Type) /= Current_Scope then
1668 Push_Scope (Scope (Tagged_Type));
1669 Restore_Scope := True;
1670 end if;
1672 Collect_Interfaces (Tagged_Type, Ifaces_List);
1674 Iface_Elmt := First_Elmt (Ifaces_List);
1675 while Present (Iface_Elmt) loop
1676 Iface := Node (Iface_Elmt);
1678 -- Originally we excluded here from this processing interfaces that
1679 -- are parents of Tagged_Type because their primitives are located
1680 -- in the primary dispatch table (and hence no auxiliary internal
1681 -- entities are required to handle secondary dispatch tables in such
1682 -- case). However, these auxiliary entities are also required to
1683 -- handle derivations of interfaces in formals of generics (see
1684 -- Derive_Subprograms).
1686 Elmt := First_Elmt (Primitive_Operations (Iface));
1687 while Present (Elmt) loop
1688 Iface_Prim := Node (Elmt);
1690 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1691 Prim :=
1692 Find_Primitive_Covering_Interface
1693 (Tagged_Type => Tagged_Type,
1694 Iface_Prim => Iface_Prim);
1696 if No (Prim) and then Serious_Errors_Detected > 0 then
1697 goto Continue;
1698 end if;
1700 pragma Assert (Present (Prim));
1702 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1703 -- differs from the name of the interface primitive then it is
1704 -- a private primitive inherited from a parent type. In such
1705 -- case, given that Tagged_Type covers the interface, the
1706 -- inherited private primitive becomes visible. For such
1707 -- purpose we add a new entity that renames the inherited
1708 -- private primitive.
1710 if Chars (Prim) /= Chars (Iface_Prim) then
1711 pragma Assert (Has_Suffix (Prim, 'P'));
1712 Derive_Subprogram
1713 (New_Subp => New_Subp,
1714 Parent_Subp => Iface_Prim,
1715 Derived_Type => Tagged_Type,
1716 Parent_Type => Iface);
1717 Set_Alias (New_Subp, Prim);
1718 Set_Is_Abstract_Subprogram
1719 (New_Subp, Is_Abstract_Subprogram (Prim));
1720 end if;
1722 Derive_Subprogram
1723 (New_Subp => New_Subp,
1724 Parent_Subp => Iface_Prim,
1725 Derived_Type => Tagged_Type,
1726 Parent_Type => Iface);
1728 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1729 -- associated with interface types. These entities are
1730 -- only registered in the list of primitives of its
1731 -- corresponding tagged type because they are only used
1732 -- to fill the contents of the secondary dispatch tables.
1733 -- Therefore they are removed from the homonym chains.
1735 Set_Is_Hidden (New_Subp);
1736 Set_Is_Internal (New_Subp);
1737 Set_Alias (New_Subp, Prim);
1738 Set_Is_Abstract_Subprogram
1739 (New_Subp, Is_Abstract_Subprogram (Prim));
1740 Set_Interface_Alias (New_Subp, Iface_Prim);
1742 -- If the returned type is an interface then propagate it to
1743 -- the returned type. Needed by the thunk to generate the code
1744 -- which displaces "this" to reference the corresponding
1745 -- secondary dispatch table in the returned object.
1747 if Is_Interface (Etype (Iface_Prim)) then
1748 Set_Etype (New_Subp, Etype (Iface_Prim));
1749 end if;
1751 -- Internal entities associated with interface types are only
1752 -- registered in the list of primitives of the tagged type.
1753 -- They are only used to fill the contents of the secondary
1754 -- dispatch tables. Therefore they are not needed in the
1755 -- homonym chains.
1757 Remove_Homonym (New_Subp);
1759 -- Hidden entities associated with interfaces must have set
1760 -- the Has_Delay_Freeze attribute to ensure that, in case
1761 -- of locally defined tagged types (or compiling with static
1762 -- dispatch tables generation disabled) the corresponding
1763 -- entry of the secondary dispatch table is filled when such
1764 -- an entity is frozen. This is an expansion activity that must
1765 -- be suppressed for ASIS because it leads to gigi elaboration
1766 -- issues in annotate mode.
1768 if not ASIS_Mode then
1769 Set_Has_Delayed_Freeze (New_Subp);
1770 end if;
1771 end if;
1773 <<Continue>>
1774 Next_Elmt (Elmt);
1775 end loop;
1777 Next_Elmt (Iface_Elmt);
1778 end loop;
1780 if Restore_Scope then
1781 Pop_Scope;
1782 end if;
1783 end Add_Internal_Interface_Entities;
1785 -----------------------------------
1786 -- Analyze_Component_Declaration --
1787 -----------------------------------
1789 procedure Analyze_Component_Declaration (N : Node_Id) is
1790 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1791 Id : constant Entity_Id := Defining_Identifier (N);
1792 E : constant Node_Id := Expression (N);
1793 Typ : constant Node_Id :=
1794 Subtype_Indication (Component_Definition (N));
1795 T : Entity_Id;
1796 P : Entity_Id;
1798 function Contains_POC (Constr : Node_Id) return Boolean;
1799 -- Determines whether a constraint uses the discriminant of a record
1800 -- type thus becoming a per-object constraint (POC).
1802 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1803 -- Typ is the type of the current component, check whether this type is
1804 -- a limited type. Used to validate declaration against that of
1805 -- enclosing record.
1807 ------------------
1808 -- Contains_POC --
1809 ------------------
1811 function Contains_POC (Constr : Node_Id) return Boolean is
1812 begin
1813 -- Prevent cascaded errors
1815 if Error_Posted (Constr) then
1816 return False;
1817 end if;
1819 case Nkind (Constr) is
1820 when N_Attribute_Reference =>
1821 return Attribute_Name (Constr) = Name_Access
1822 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1824 when N_Discriminant_Association =>
1825 return Denotes_Discriminant (Expression (Constr));
1827 when N_Identifier =>
1828 return Denotes_Discriminant (Constr);
1830 when N_Index_Or_Discriminant_Constraint =>
1831 declare
1832 IDC : Node_Id;
1834 begin
1835 IDC := First (Constraints (Constr));
1836 while Present (IDC) loop
1838 -- One per-object constraint is sufficient
1840 if Contains_POC (IDC) then
1841 return True;
1842 end if;
1844 Next (IDC);
1845 end loop;
1847 return False;
1848 end;
1850 when N_Range =>
1851 return Denotes_Discriminant (Low_Bound (Constr))
1852 or else
1853 Denotes_Discriminant (High_Bound (Constr));
1855 when N_Range_Constraint =>
1856 return Denotes_Discriminant (Range_Expression (Constr));
1858 when others =>
1859 return False;
1861 end case;
1862 end Contains_POC;
1864 ----------------------
1865 -- Is_Known_Limited --
1866 ----------------------
1868 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1869 P : constant Entity_Id := Etype (Typ);
1870 R : constant Entity_Id := Root_Type (Typ);
1872 begin
1873 if Is_Limited_Record (Typ) then
1874 return True;
1876 -- If the root type is limited (and not a limited interface)
1877 -- so is the current type
1879 elsif Is_Limited_Record (R)
1880 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1881 then
1882 return True;
1884 -- Else the type may have a limited interface progenitor, but a
1885 -- limited record parent.
1887 elsif R /= P and then Is_Limited_Record (P) then
1888 return True;
1890 else
1891 return False;
1892 end if;
1893 end Is_Known_Limited;
1895 -- Start of processing for Analyze_Component_Declaration
1897 begin
1898 Generate_Definition (Id);
1899 Enter_Name (Id);
1901 if Present (Typ) then
1902 T := Find_Type_Of_Object
1903 (Subtype_Indication (Component_Definition (N)), N);
1905 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1906 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1907 end if;
1909 -- Ada 2005 (AI-230): Access Definition case
1911 else
1912 pragma Assert (Present
1913 (Access_Definition (Component_Definition (N))));
1915 T := Access_Definition
1916 (Related_Nod => N,
1917 N => Access_Definition (Component_Definition (N)));
1918 Set_Is_Local_Anonymous_Access (T);
1920 -- Ada 2005 (AI-254)
1922 if Present (Access_To_Subprogram_Definition
1923 (Access_Definition (Component_Definition (N))))
1924 and then Protected_Present (Access_To_Subprogram_Definition
1925 (Access_Definition
1926 (Component_Definition (N))))
1927 then
1928 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1929 end if;
1930 end if;
1932 -- If the subtype is a constrained subtype of the enclosing record,
1933 -- (which must have a partial view) the back-end does not properly
1934 -- handle the recursion. Rewrite the component declaration with an
1935 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1936 -- the tree directly because side effects have already been removed from
1937 -- discriminant constraints.
1939 if Ekind (T) = E_Access_Subtype
1940 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1941 and then Comes_From_Source (T)
1942 and then Nkind (Parent (T)) = N_Subtype_Declaration
1943 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1944 then
1945 Rewrite
1946 (Subtype_Indication (Component_Definition (N)),
1947 New_Copy_Tree (Subtype_Indication (Parent (T))));
1948 T := Find_Type_Of_Object
1949 (Subtype_Indication (Component_Definition (N)), N);
1950 end if;
1952 -- If the component declaration includes a default expression, then we
1953 -- check that the component is not of a limited type (RM 3.7(5)),
1954 -- and do the special preanalysis of the expression (see section on
1955 -- "Handling of Default and Per-Object Expressions" in the spec of
1956 -- package Sem).
1958 if Present (E) then
1959 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1960 Preanalyze_Default_Expression (E, T);
1961 Check_Initialization (T, E);
1963 if Ada_Version >= Ada_2005
1964 and then Ekind (T) = E_Anonymous_Access_Type
1965 and then Etype (E) /= Any_Type
1966 then
1967 -- Check RM 3.9.2(9): "if the expected type for an expression is
1968 -- an anonymous access-to-specific tagged type, then the object
1969 -- designated by the expression shall not be dynamically tagged
1970 -- unless it is a controlling operand in a call on a dispatching
1971 -- operation"
1973 if Is_Tagged_Type (Directly_Designated_Type (T))
1974 and then
1975 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1976 and then
1977 Ekind (Directly_Designated_Type (Etype (E))) =
1978 E_Class_Wide_Type
1979 then
1980 Error_Msg_N
1981 ("access to specific tagged type required (RM 3.9.2(9))", E);
1982 end if;
1984 -- (Ada 2005: AI-230): Accessibility check for anonymous
1985 -- components
1987 if Type_Access_Level (Etype (E)) >
1988 Deepest_Type_Access_Level (T)
1989 then
1990 Error_Msg_N
1991 ("expression has deeper access level than component " &
1992 "(RM 3.10.2 (12.2))", E);
1993 end if;
1995 -- The initialization expression is a reference to an access
1996 -- discriminant. The type of the discriminant is always deeper
1997 -- than any access type.
1999 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2000 and then Is_Entity_Name (E)
2001 and then Ekind (Entity (E)) = E_In_Parameter
2002 and then Present (Discriminal_Link (Entity (E)))
2003 then
2004 Error_Msg_N
2005 ("discriminant has deeper accessibility level than target",
2007 end if;
2008 end if;
2009 end if;
2011 -- The parent type may be a private view with unknown discriminants,
2012 -- and thus unconstrained. Regular components must be constrained.
2014 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2015 if Is_Class_Wide_Type (T) then
2016 Error_Msg_N
2017 ("class-wide subtype with unknown discriminants" &
2018 " in component declaration",
2019 Subtype_Indication (Component_Definition (N)));
2020 else
2021 Error_Msg_N
2022 ("unconstrained subtype in component declaration",
2023 Subtype_Indication (Component_Definition (N)));
2024 end if;
2026 -- Components cannot be abstract, except for the special case of
2027 -- the _Parent field (case of extending an abstract tagged type)
2029 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2030 Error_Msg_N ("type of a component cannot be abstract", N);
2031 end if;
2033 Set_Etype (Id, T);
2034 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2036 -- The component declaration may have a per-object constraint, set
2037 -- the appropriate flag in the defining identifier of the subtype.
2039 if Present (Subtype_Indication (Component_Definition (N))) then
2040 declare
2041 Sindic : constant Node_Id :=
2042 Subtype_Indication (Component_Definition (N));
2043 begin
2044 if Nkind (Sindic) = N_Subtype_Indication
2045 and then Present (Constraint (Sindic))
2046 and then Contains_POC (Constraint (Sindic))
2047 then
2048 Set_Has_Per_Object_Constraint (Id);
2049 end if;
2050 end;
2051 end if;
2053 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2054 -- out some static checks.
2056 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2057 Null_Exclusion_Static_Checks (N);
2058 end if;
2060 -- If this component is private (or depends on a private type), flag the
2061 -- record type to indicate that some operations are not available.
2063 P := Private_Component (T);
2065 if Present (P) then
2067 -- Check for circular definitions
2069 if P = Any_Type then
2070 Set_Etype (Id, Any_Type);
2072 -- There is a gap in the visibility of operations only if the
2073 -- component type is not defined in the scope of the record type.
2075 elsif Scope (P) = Scope (Current_Scope) then
2076 null;
2078 elsif Is_Limited_Type (P) then
2079 Set_Is_Limited_Composite (Current_Scope);
2081 else
2082 Set_Is_Private_Composite (Current_Scope);
2083 end if;
2084 end if;
2086 if P /= Any_Type
2087 and then Is_Limited_Type (T)
2088 and then Chars (Id) /= Name_uParent
2089 and then Is_Tagged_Type (Current_Scope)
2090 then
2091 if Is_Derived_Type (Current_Scope)
2092 and then not Is_Known_Limited (Current_Scope)
2093 then
2094 Error_Msg_N
2095 ("extension of nonlimited type cannot have limited components",
2098 if Is_Interface (Root_Type (Current_Scope)) then
2099 Error_Msg_N
2100 ("\limitedness is not inherited from limited interface", N);
2101 Error_Msg_N ("\add LIMITED to type indication", N);
2102 end if;
2104 Explain_Limited_Type (T, N);
2105 Set_Etype (Id, Any_Type);
2106 Set_Is_Limited_Composite (Current_Scope, False);
2108 elsif not Is_Derived_Type (Current_Scope)
2109 and then not Is_Limited_Record (Current_Scope)
2110 and then not Is_Concurrent_Type (Current_Scope)
2111 then
2112 Error_Msg_N
2113 ("nonlimited tagged type cannot have limited components", N);
2114 Explain_Limited_Type (T, N);
2115 Set_Etype (Id, Any_Type);
2116 Set_Is_Limited_Composite (Current_Scope, False);
2117 end if;
2118 end if;
2120 -- If the component is an unconstrained task or protected type with
2121 -- discriminants, the component and the enclosing record are limited
2122 -- and the component is constrained by its default values. Compute
2123 -- its actual subtype, else it may be allocated the maximum size by
2124 -- the backend, and possibly overflow.
2126 if Is_Concurrent_Type (T)
2127 and then not Is_Constrained (T)
2128 and then Has_Discriminants (T)
2129 and then not Has_Discriminants (Current_Scope)
2130 then
2131 declare
2132 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2134 begin
2135 Set_Etype (Id, Act_T);
2137 -- Rewrite component definition to use the constrained subtype
2139 Rewrite (Component_Definition (N),
2140 Make_Component_Definition (Loc,
2141 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2142 end;
2143 end if;
2145 Set_Original_Record_Component (Id, Id);
2147 if Has_Aspects (N) then
2148 Analyze_Aspect_Specifications (N, Id);
2149 end if;
2151 Analyze_Dimension (N);
2152 end Analyze_Component_Declaration;
2154 --------------------------
2155 -- Analyze_Declarations --
2156 --------------------------
2158 procedure Analyze_Declarations (L : List_Id) is
2159 Decl : Node_Id;
2161 procedure Adjust_Decl;
2162 -- Adjust Decl not to include implicit label declarations, since these
2163 -- have strange Sloc values that result in elaboration check problems.
2164 -- (They have the sloc of the label as found in the source, and that
2165 -- is ahead of the current declarative part).
2167 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2168 -- Determine whether Body_Decl denotes the body of a late controlled
2169 -- primitive (either Initialize, Adjust or Finalize). If this is the
2170 -- case, add a proper spec if the body lacks one. The spec is inserted
2171 -- before Body_Decl and immedately analyzed.
2173 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2174 -- Spec_Id is the entity of a package that may define abstract states.
2175 -- If the states have visible refinement, remove the visibility of each
2176 -- constituent at the end of the package body declarations.
2178 -----------------
2179 -- Adjust_Decl --
2180 -----------------
2182 procedure Adjust_Decl is
2183 begin
2184 while Present (Prev (Decl))
2185 and then Nkind (Decl) = N_Implicit_Label_Declaration
2186 loop
2187 Prev (Decl);
2188 end loop;
2189 end Adjust_Decl;
2191 --------------------------------------
2192 -- Handle_Late_Controlled_Primitive --
2193 --------------------------------------
2195 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2196 Body_Spec : constant Node_Id := Specification (Body_Decl);
2197 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2198 Loc : constant Source_Ptr := Sloc (Body_Id);
2199 Params : constant List_Id :=
2200 Parameter_Specifications (Body_Spec);
2201 Spec : Node_Id;
2202 Spec_Id : Entity_Id;
2203 Typ : Node_Id;
2205 begin
2206 -- Consider only procedure bodies whose name matches one of the three
2207 -- controlled primitives.
2209 if Nkind (Body_Spec) /= N_Procedure_Specification
2210 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2211 Name_Finalize,
2212 Name_Initialize)
2213 then
2214 return;
2216 -- A controlled primitive must have exactly one formal which is not
2217 -- an anonymous access type.
2219 elsif List_Length (Params) /= 1 then
2220 return;
2221 end if;
2223 Typ := Parameter_Type (First (Params));
2225 if Nkind (Typ) = N_Access_Definition then
2226 return;
2227 end if;
2229 Find_Type (Typ);
2231 -- The type of the formal must be derived from [Limited_]Controlled
2233 if not Is_Controlled (Entity (Typ)) then
2234 return;
2235 end if;
2237 -- Check whether a specification exists for this body. We do not
2238 -- analyze the spec of the body in full, because it will be analyzed
2239 -- again when the body is properly analyzed, and we cannot create
2240 -- duplicate entries in the formals chain. We look for an explicit
2241 -- specification because the body may be an overriding operation and
2242 -- an inherited spec may be present.
2244 Spec_Id := Current_Entity (Body_Id);
2246 while Present (Spec_Id) loop
2247 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2248 and then Scope (Spec_Id) = Current_Scope
2249 and then Present (First_Formal (Spec_Id))
2250 and then No (Next_Formal (First_Formal (Spec_Id)))
2251 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2252 and then Comes_From_Source (Spec_Id)
2253 then
2254 return;
2255 end if;
2257 Spec_Id := Homonym (Spec_Id);
2258 end loop;
2260 -- At this point the body is known to be a late controlled primitive.
2261 -- Generate a matching spec and insert it before the body. Note the
2262 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2263 -- tree in this case.
2265 Spec := Copy_Separate_Tree (Body_Spec);
2267 -- Ensure that the subprogram declaration does not inherit the null
2268 -- indicator from the body as we now have a proper spec/body pair.
2270 Set_Null_Present (Spec, False);
2272 Insert_Before_And_Analyze (Body_Decl,
2273 Make_Subprogram_Declaration (Loc, Specification => Spec));
2274 end Handle_Late_Controlled_Primitive;
2276 --------------------------------
2277 -- Remove_Visible_Refinements --
2278 --------------------------------
2280 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2281 State_Elmt : Elmt_Id;
2282 begin
2283 if Present (Abstract_States (Spec_Id)) then
2284 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2285 while Present (State_Elmt) loop
2286 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2287 Next_Elmt (State_Elmt);
2288 end loop;
2289 end if;
2290 end Remove_Visible_Refinements;
2292 -- Local variables
2294 Context : Node_Id := Empty;
2295 Freeze_From : Entity_Id := Empty;
2296 Next_Decl : Node_Id;
2298 Body_Seen : Boolean := False;
2299 -- Flag set when the first body [stub] is encountered
2301 -- Start of processing for Analyze_Declarations
2303 begin
2304 if Restriction_Check_Required (SPARK_05) then
2305 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2306 end if;
2308 Decl := First (L);
2309 while Present (Decl) loop
2311 -- Package spec cannot contain a package declaration in SPARK
2313 if Nkind (Decl) = N_Package_Declaration
2314 and then Nkind (Parent (L)) = N_Package_Specification
2315 then
2316 Check_SPARK_05_Restriction
2317 ("package specification cannot contain a package declaration",
2318 Decl);
2319 end if;
2321 -- Complete analysis of declaration
2323 Analyze (Decl);
2324 Next_Decl := Next (Decl);
2326 if No (Freeze_From) then
2327 Freeze_From := First_Entity (Current_Scope);
2328 end if;
2330 -- At the end of a declarative part, freeze remaining entities
2331 -- declared in it. The end of the visible declarations of package
2332 -- specification is not the end of a declarative part if private
2333 -- declarations are present. The end of a package declaration is a
2334 -- freezing point only if it a library package. A task definition or
2335 -- protected type definition is not a freeze point either. Finally,
2336 -- we do not freeze entities in generic scopes, because there is no
2337 -- code generated for them and freeze nodes will be generated for
2338 -- the instance.
2340 -- The end of a package instantiation is not a freeze point, but
2341 -- for now we make it one, because the generic body is inserted
2342 -- (currently) immediately after. Generic instantiations will not
2343 -- be a freeze point once delayed freezing of bodies is implemented.
2344 -- (This is needed in any case for early instantiations ???).
2346 if No (Next_Decl) then
2347 if Nkind_In (Parent (L), N_Component_List,
2348 N_Task_Definition,
2349 N_Protected_Definition)
2350 then
2351 null;
2353 elsif Nkind (Parent (L)) /= N_Package_Specification then
2354 if Nkind (Parent (L)) = N_Package_Body then
2355 Freeze_From := First_Entity (Current_Scope);
2356 end if;
2358 -- There may have been several freezing points previously,
2359 -- for example object declarations or subprogram bodies, but
2360 -- at the end of a declarative part we check freezing from
2361 -- the beginning, even though entities may already be frozen,
2362 -- in order to perform visibility checks on delayed aspects.
2364 Adjust_Decl;
2365 Freeze_All (First_Entity (Current_Scope), Decl);
2366 Freeze_From := Last_Entity (Current_Scope);
2368 elsif Scope (Current_Scope) /= Standard_Standard
2369 and then not Is_Child_Unit (Current_Scope)
2370 and then No (Generic_Parent (Parent (L)))
2371 then
2372 null;
2374 elsif L /= Visible_Declarations (Parent (L))
2375 or else No (Private_Declarations (Parent (L)))
2376 or else Is_Empty_List (Private_Declarations (Parent (L)))
2377 then
2378 Adjust_Decl;
2379 Freeze_All (First_Entity (Current_Scope), Decl);
2380 Freeze_From := Last_Entity (Current_Scope);
2382 -- At the end of the visible declarations the expressions in
2383 -- aspects of all entities declared so far must be resolved.
2384 -- The entities themselves might be frozen later, and the
2385 -- generated pragmas and attribute definition clauses analyzed
2386 -- in full at that point, but name resolution must take place
2387 -- now.
2388 -- In addition to being the proper semantics, this is mandatory
2389 -- within generic units, because global name capture requires
2390 -- those expressions to be analyzed, given that the generated
2391 -- pragmas do not appear in the original generic tree.
2393 elsif Serious_Errors_Detected = 0 then
2394 declare
2395 E : Entity_Id;
2397 begin
2398 E := First_Entity (Current_Scope);
2399 while Present (E) loop
2400 Resolve_Aspect_Expressions (E);
2401 Next_Entity (E);
2402 end loop;
2403 end;
2404 end if;
2406 -- If next node is a body then freeze all types before the body.
2407 -- An exception occurs for some expander-generated bodies. If these
2408 -- are generated at places where in general language rules would not
2409 -- allow a freeze point, then we assume that the expander has
2410 -- explicitly checked that all required types are properly frozen,
2411 -- and we do not cause general freezing here. This special circuit
2412 -- is used when the encountered body is marked as having already
2413 -- been analyzed.
2415 -- In all other cases (bodies that come from source, and expander
2416 -- generated bodies that have not been analyzed yet), freeze all
2417 -- types now. Note that in the latter case, the expander must take
2418 -- care to attach the bodies at a proper place in the tree so as to
2419 -- not cause unwanted freezing at that point.
2421 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2423 -- When a controlled type is frozen, the expander generates stream
2424 -- and controlled type support routines. If the freeze is caused
2425 -- by the stand alone body of Initialize, Adjust and Finalize, the
2426 -- expander will end up using the wrong version of these routines
2427 -- as the body has not been processed yet. To remedy this, detect
2428 -- a late controlled primitive and create a proper spec for it.
2429 -- This ensures that the primitive will override its inherited
2430 -- counterpart before the freeze takes place.
2432 -- If the declaration we just processed is a body, do not attempt
2433 -- to examine Next_Decl as the late primitive idiom can only apply
2434 -- to the first encountered body.
2436 -- The spec of the late primitive is not generated in ASIS mode to
2437 -- ensure a consistent list of primitives that indicates the true
2438 -- semantic structure of the program (which is not relevant when
2439 -- generating executable code.
2441 -- ??? a cleaner approach may be possible and/or this solution
2442 -- could be extended to general-purpose late primitives, TBD.
2444 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2445 then
2446 Body_Seen := True;
2448 if Nkind (Next_Decl) = N_Subprogram_Body then
2449 Handle_Late_Controlled_Primitive (Next_Decl);
2450 end if;
2451 end if;
2453 Adjust_Decl;
2454 Freeze_All (Freeze_From, Decl);
2455 Freeze_From := Last_Entity (Current_Scope);
2456 end if;
2458 Decl := Next_Decl;
2459 end loop;
2461 -- Analyze the contracts of packages and their bodies
2463 if Present (L) then
2464 Context := Parent (L);
2466 if Nkind (Context) = N_Package_Specification then
2468 -- When a package has private declarations, its contract must be
2469 -- analyzed at the end of the said declarations. This way both the
2470 -- analysis and freeze actions are properly synchronized in case
2471 -- of private type use within the contract.
2473 if L = Private_Declarations (Context) then
2474 Analyze_Package_Contract (Defining_Entity (Context));
2476 -- Build the bodies of the default initial condition procedures
2477 -- for all types subject to pragma Default_Initial_Condition.
2478 -- From a purely Ada stand point, this is a freezing activity,
2479 -- however freezing is not available under GNATprove_Mode. To
2480 -- accomodate both scenarios, the bodies are build at the end
2481 -- of private declaration analysis.
2483 Build_Default_Init_Cond_Procedure_Bodies (L);
2485 -- Otherwise the contract is analyzed at the end of the visible
2486 -- declarations.
2488 elsif L = Visible_Declarations (Context)
2489 and then No (Private_Declarations (Context))
2490 then
2491 Analyze_Package_Contract (Defining_Entity (Context));
2492 end if;
2494 elsif Nkind (Context) = N_Package_Body then
2495 Analyze_Package_Body_Contract (Defining_Entity (Context));
2496 end if;
2498 -- Analyze the contracts of various constructs now due to the delayed
2499 -- visibility needs of their aspects and pragmas.
2501 Analyze_Contracts (L);
2503 if Nkind (Context) = N_Package_Body then
2505 -- Ensure that all abstract states and objects declared in the
2506 -- state space of a package body are utilized as constituents.
2508 Check_Unused_Body_States (Defining_Entity (Context));
2510 -- State refinements are visible up to the end of the package body
2511 -- declarations. Hide the state refinements from visibility to
2512 -- restore the original state conditions.
2514 Remove_Visible_Refinements (Corresponding_Spec (Context));
2515 end if;
2516 end if;
2517 end Analyze_Declarations;
2519 -----------------------------------
2520 -- Analyze_Full_Type_Declaration --
2521 -----------------------------------
2523 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2524 Def : constant Node_Id := Type_Definition (N);
2525 Def_Id : constant Entity_Id := Defining_Identifier (N);
2526 T : Entity_Id;
2527 Prev : Entity_Id;
2529 Is_Remote : constant Boolean :=
2530 (Is_Remote_Types (Current_Scope)
2531 or else Is_Remote_Call_Interface (Current_Scope))
2532 and then not (In_Private_Part (Current_Scope)
2533 or else In_Package_Body (Current_Scope));
2535 procedure Check_Nonoverridable_Aspects;
2536 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2537 -- be overridden, and can only be confirmed on derivation.
2539 procedure Check_Ops_From_Incomplete_Type;
2540 -- If there is a tagged incomplete partial view of the type, traverse
2541 -- the primitives of the incomplete view and change the type of any
2542 -- controlling formals and result to indicate the full view. The
2543 -- primitives will be added to the full type's primitive operations
2544 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2545 -- is called from Process_Incomplete_Dependents).
2547 ----------------------------------
2548 -- Check_Nonoverridable_Aspects --
2549 ----------------------------------
2551 procedure Check_Nonoverridable_Aspects is
2552 Prev_Aspects : constant List_Id :=
2553 Aspect_Specifications (Parent (Def_Id));
2554 Par_Type : Entity_Id;
2556 function Has_Aspect_Spec
2557 (Specs : List_Id;
2558 Aspect_Name : Name_Id) return Boolean;
2559 -- Check whether a list of aspect specifications includes an entry
2560 -- for a specific aspect. The list is either that of a partial or
2561 -- a full view.
2563 ---------------------
2564 -- Has_Aspect_Spec --
2565 ---------------------
2567 function Has_Aspect_Spec
2568 (Specs : List_Id;
2569 Aspect_Name : Name_Id) return Boolean
2571 Spec : Node_Id;
2572 begin
2573 Spec := First (Specs);
2574 while Present (Spec) loop
2575 if Chars (Identifier (Spec)) = Aspect_Name then
2576 return True;
2577 end if;
2578 Next (Spec);
2579 end loop;
2580 return False;
2581 end Has_Aspect_Spec;
2583 -- Start of processing for Check_Nonoverridable_Aspects
2585 begin
2587 -- Get parent type of derived type. Note that Prev is the entity
2588 -- in the partial declaration, but its contents are now those of
2589 -- full view, while Def_Id reflects the partial view.
2591 if Is_Private_Type (Def_Id) then
2592 Par_Type := Etype (Full_View (Def_Id));
2593 else
2594 Par_Type := Etype (Def_Id);
2595 end if;
2597 -- If there is an inherited Implicit_Dereference, verify that it is
2598 -- made explicit in the partial view.
2600 if Has_Discriminants (Base_Type (Par_Type))
2601 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2602 and then Present (Discriminant_Specifications (Parent (Prev)))
2603 and then Present (Get_Reference_Discriminant (Par_Type))
2604 then
2606 not Has_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference)
2607 then
2608 Error_Msg_N
2609 ("type does not inherit implicit dereference", Prev);
2611 else
2612 -- If one of the views has the aspect specified, verify that it
2613 -- is consistent with that of the parent.
2615 declare
2616 Par_Discr : constant Entity_Id :=
2617 Get_Reference_Discriminant (Par_Type);
2618 Cur_Discr : constant Entity_Id :=
2619 Get_Reference_Discriminant (Prev);
2620 begin
2621 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
2622 Error_Msg_N ("aspect incosistent with that of parent", N);
2623 end if;
2624 end;
2625 end if;
2626 end if;
2628 -- TBD : other nonoverridable aspects.
2629 end Check_Nonoverridable_Aspects;
2631 ------------------------------------
2632 -- Check_Ops_From_Incomplete_Type --
2633 ------------------------------------
2635 procedure Check_Ops_From_Incomplete_Type is
2636 Elmt : Elmt_Id;
2637 Formal : Entity_Id;
2638 Op : Entity_Id;
2640 begin
2641 if Prev /= T
2642 and then Ekind (Prev) = E_Incomplete_Type
2643 and then Is_Tagged_Type (Prev)
2644 and then Is_Tagged_Type (T)
2645 then
2646 Elmt := First_Elmt (Primitive_Operations (Prev));
2647 while Present (Elmt) loop
2648 Op := Node (Elmt);
2650 Formal := First_Formal (Op);
2651 while Present (Formal) loop
2652 if Etype (Formal) = Prev then
2653 Set_Etype (Formal, T);
2654 end if;
2656 Next_Formal (Formal);
2657 end loop;
2659 if Etype (Op) = Prev then
2660 Set_Etype (Op, T);
2661 end if;
2663 Next_Elmt (Elmt);
2664 end loop;
2665 end if;
2666 end Check_Ops_From_Incomplete_Type;
2668 -- Start of processing for Analyze_Full_Type_Declaration
2670 begin
2671 Prev := Find_Type_Name (N);
2673 -- The full view, if present, now points to the current type. If there
2674 -- is an incomplete partial view, set a link to it, to simplify the
2675 -- retrieval of primitive operations of the type.
2677 -- Ada 2005 (AI-50217): If the type was previously decorated when
2678 -- imported through a LIMITED WITH clause, it appears as incomplete
2679 -- but has no full view.
2681 if Ekind (Prev) = E_Incomplete_Type
2682 and then Present (Full_View (Prev))
2683 then
2684 T := Full_View (Prev);
2685 Set_Incomplete_View (N, Parent (Prev));
2686 else
2687 T := Prev;
2688 end if;
2690 Set_Is_Pure (T, Is_Pure (Current_Scope));
2692 -- We set the flag Is_First_Subtype here. It is needed to set the
2693 -- corresponding flag for the Implicit class-wide-type created
2694 -- during tagged types processing.
2696 Set_Is_First_Subtype (T, True);
2698 -- Only composite types other than array types are allowed to have
2699 -- discriminants.
2701 case Nkind (Def) is
2703 -- For derived types, the rule will be checked once we've figured
2704 -- out the parent type.
2706 when N_Derived_Type_Definition =>
2707 null;
2709 -- For record types, discriminants are allowed, unless we are in
2710 -- SPARK.
2712 when N_Record_Definition =>
2713 if Present (Discriminant_Specifications (N)) then
2714 Check_SPARK_05_Restriction
2715 ("discriminant type is not allowed",
2716 Defining_Identifier
2717 (First (Discriminant_Specifications (N))));
2718 end if;
2720 when others =>
2721 if Present (Discriminant_Specifications (N)) then
2722 Error_Msg_N
2723 ("elementary or array type cannot have discriminants",
2724 Defining_Identifier
2725 (First (Discriminant_Specifications (N))));
2726 end if;
2727 end case;
2729 -- Elaborate the type definition according to kind, and generate
2730 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2731 -- already done (this happens during the reanalysis that follows a call
2732 -- to the high level optimizer).
2734 if not Analyzed (T) then
2735 Set_Analyzed (T);
2737 case Nkind (Def) is
2738 when N_Access_To_Subprogram_Definition =>
2739 Access_Subprogram_Declaration (T, Def);
2741 -- If this is a remote access to subprogram, we must create the
2742 -- equivalent fat pointer type, and related subprograms.
2744 if Is_Remote then
2745 Process_Remote_AST_Declaration (N);
2746 end if;
2748 -- Validate categorization rule against access type declaration
2749 -- usually a violation in Pure unit, Shared_Passive unit.
2751 Validate_Access_Type_Declaration (T, N);
2753 when N_Access_To_Object_Definition =>
2754 Access_Type_Declaration (T, Def);
2756 -- Validate categorization rule against access type declaration
2757 -- usually a violation in Pure unit, Shared_Passive unit.
2759 Validate_Access_Type_Declaration (T, N);
2761 -- If we are in a Remote_Call_Interface package and define a
2762 -- RACW, then calling stubs and specific stream attributes
2763 -- must be added.
2765 if Is_Remote
2766 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2767 then
2768 Add_RACW_Features (Def_Id);
2769 end if;
2771 when N_Array_Type_Definition =>
2772 Array_Type_Declaration (T, Def);
2774 when N_Derived_Type_Definition =>
2775 Derived_Type_Declaration (T, N, T /= Def_Id);
2777 when N_Enumeration_Type_Definition =>
2778 Enumeration_Type_Declaration (T, Def);
2780 when N_Floating_Point_Definition =>
2781 Floating_Point_Type_Declaration (T, Def);
2783 when N_Decimal_Fixed_Point_Definition =>
2784 Decimal_Fixed_Point_Type_Declaration (T, Def);
2786 when N_Ordinary_Fixed_Point_Definition =>
2787 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2789 when N_Signed_Integer_Type_Definition =>
2790 Signed_Integer_Type_Declaration (T, Def);
2792 when N_Modular_Type_Definition =>
2793 Modular_Type_Declaration (T, Def);
2795 when N_Record_Definition =>
2796 Record_Type_Declaration (T, N, Prev);
2798 -- If declaration has a parse error, nothing to elaborate.
2800 when N_Error =>
2801 null;
2803 when others =>
2804 raise Program_Error;
2806 end case;
2807 end if;
2809 if Etype (T) = Any_Type then
2810 return;
2811 end if;
2813 -- Controlled type is not allowed in SPARK
2815 if Is_Visibly_Controlled (T) then
2816 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2817 end if;
2819 -- A type declared within a Ghost region is automatically Ghost
2820 -- (SPARK RM 6.9(2)).
2822 if Ghost_Mode > None then
2823 Set_Is_Ghost_Entity (T);
2824 end if;
2826 -- Some common processing for all types
2828 Set_Depends_On_Private (T, Has_Private_Component (T));
2829 Check_Ops_From_Incomplete_Type;
2831 -- Both the declared entity, and its anonymous base type if one was
2832 -- created, need freeze nodes allocated.
2834 declare
2835 B : constant Entity_Id := Base_Type (T);
2837 begin
2838 -- In the case where the base type differs from the first subtype, we
2839 -- pre-allocate a freeze node, and set the proper link to the first
2840 -- subtype. Freeze_Entity will use this preallocated freeze node when
2841 -- it freezes the entity.
2843 -- This does not apply if the base type is a generic type, whose
2844 -- declaration is independent of the current derived definition.
2846 if B /= T and then not Is_Generic_Type (B) then
2847 Ensure_Freeze_Node (B);
2848 Set_First_Subtype_Link (Freeze_Node (B), T);
2849 end if;
2851 -- A type that is imported through a limited_with clause cannot
2852 -- generate any code, and thus need not be frozen. However, an access
2853 -- type with an imported designated type needs a finalization list,
2854 -- which may be referenced in some other package that has non-limited
2855 -- visibility on the designated type. Thus we must create the
2856 -- finalization list at the point the access type is frozen, to
2857 -- prevent unsatisfied references at link time.
2859 if not From_Limited_With (T) or else Is_Access_Type (T) then
2860 Set_Has_Delayed_Freeze (T);
2861 end if;
2862 end;
2864 -- Case where T is the full declaration of some private type which has
2865 -- been swapped in Defining_Identifier (N).
2867 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2868 Process_Full_View (N, T, Def_Id);
2870 -- Record the reference. The form of this is a little strange, since
2871 -- the full declaration has been swapped in. So the first parameter
2872 -- here represents the entity to which a reference is made which is
2873 -- the "real" entity, i.e. the one swapped in, and the second
2874 -- parameter provides the reference location.
2876 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2877 -- since we don't want a complaint about the full type being an
2878 -- unwanted reference to the private type
2880 declare
2881 B : constant Boolean := Has_Pragma_Unreferenced (T);
2882 begin
2883 Set_Has_Pragma_Unreferenced (T, False);
2884 Generate_Reference (T, T, 'c');
2885 Set_Has_Pragma_Unreferenced (T, B);
2886 end;
2888 Set_Completion_Referenced (Def_Id);
2890 -- For completion of incomplete type, process incomplete dependents
2891 -- and always mark the full type as referenced (it is the incomplete
2892 -- type that we get for any real reference).
2894 elsif Ekind (Prev) = E_Incomplete_Type then
2895 Process_Incomplete_Dependents (N, T, Prev);
2896 Generate_Reference (Prev, Def_Id, 'c');
2897 Set_Completion_Referenced (Def_Id);
2899 -- If not private type or incomplete type completion, this is a real
2900 -- definition of a new entity, so record it.
2902 else
2903 Generate_Definition (Def_Id);
2904 end if;
2906 -- Propagate any pending access types whose finalization masters need to
2907 -- be fully initialized from the partial to the full view. Guard against
2908 -- an illegal full view that remains unanalyzed.
2910 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
2911 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
2912 end if;
2914 if Chars (Scope (Def_Id)) = Name_System
2915 and then Chars (Def_Id) = Name_Address
2916 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2917 then
2918 Set_Is_Descendent_Of_Address (Def_Id);
2919 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2920 Set_Is_Descendent_Of_Address (Prev);
2921 end if;
2923 Set_Optimize_Alignment_Flags (Def_Id);
2924 Check_Eliminated (Def_Id);
2926 -- If the declaration is a completion and aspects are present, apply
2927 -- them to the entity for the type which is currently the partial
2928 -- view, but which is the one that will be frozen.
2930 if Has_Aspects (N) then
2932 -- In most cases the partial view is a private type, and both views
2933 -- appear in different declarative parts. In the unusual case where
2934 -- the partial view is incomplete, perform the analysis on the
2935 -- full view, to prevent freezing anomalies with the corresponding
2936 -- class-wide type, which otherwise might be frozen before the
2937 -- dispatch table is built.
2939 if Prev /= Def_Id
2940 and then Ekind (Prev) /= E_Incomplete_Type
2941 then
2942 Analyze_Aspect_Specifications (N, Prev);
2944 -- Normal case
2946 else
2947 Analyze_Aspect_Specifications (N, Def_Id);
2948 end if;
2949 end if;
2951 if Is_Derived_Type (Prev)
2952 and then Def_Id /= Prev
2953 then
2954 Check_Nonoverridable_Aspects;
2955 end if;
2956 end Analyze_Full_Type_Declaration;
2958 ----------------------------------
2959 -- Analyze_Incomplete_Type_Decl --
2960 ----------------------------------
2962 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2963 F : constant Boolean := Is_Pure (Current_Scope);
2964 T : Entity_Id;
2966 begin
2967 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2969 Generate_Definition (Defining_Identifier (N));
2971 -- Process an incomplete declaration. The identifier must not have been
2972 -- declared already in the scope. However, an incomplete declaration may
2973 -- appear in the private part of a package, for a private type that has
2974 -- already been declared.
2976 -- In this case, the discriminants (if any) must match
2978 T := Find_Type_Name (N);
2980 Set_Ekind (T, E_Incomplete_Type);
2981 Init_Size_Align (T);
2982 Set_Is_First_Subtype (T, True);
2983 Set_Etype (T, T);
2985 -- An incomplete type declared within a Ghost region is automatically
2986 -- Ghost (SPARK RM 6.9(2)).
2988 if Ghost_Mode > None then
2989 Set_Is_Ghost_Entity (T);
2990 end if;
2992 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2993 -- incomplete types.
2995 if Tagged_Present (N) then
2996 Set_Is_Tagged_Type (T, True);
2997 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2998 Make_Class_Wide_Type (T);
2999 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3000 end if;
3002 Set_Stored_Constraint (T, No_Elist);
3004 if Present (Discriminant_Specifications (N)) then
3005 Push_Scope (T);
3006 Process_Discriminants (N);
3007 End_Scope;
3008 end if;
3010 -- If the type has discriminants, nontrivial subtypes may be declared
3011 -- before the full view of the type. The full views of those subtypes
3012 -- will be built after the full view of the type.
3014 Set_Private_Dependents (T, New_Elmt_List);
3015 Set_Is_Pure (T, F);
3016 end Analyze_Incomplete_Type_Decl;
3018 -----------------------------------
3019 -- Analyze_Interface_Declaration --
3020 -----------------------------------
3022 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3023 CW : constant Entity_Id := Class_Wide_Type (T);
3025 begin
3026 Set_Is_Tagged_Type (T);
3027 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3029 Set_Is_Limited_Record (T, Limited_Present (Def)
3030 or else Task_Present (Def)
3031 or else Protected_Present (Def)
3032 or else Synchronized_Present (Def));
3034 -- Type is abstract if full declaration carries keyword, or if previous
3035 -- partial view did.
3037 Set_Is_Abstract_Type (T);
3038 Set_Is_Interface (T);
3040 -- Type is a limited interface if it includes the keyword limited, task,
3041 -- protected, or synchronized.
3043 Set_Is_Limited_Interface
3044 (T, Limited_Present (Def)
3045 or else Protected_Present (Def)
3046 or else Synchronized_Present (Def)
3047 or else Task_Present (Def));
3049 Set_Interfaces (T, New_Elmt_List);
3050 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3052 -- Complete the decoration of the class-wide entity if it was already
3053 -- built (i.e. during the creation of the limited view)
3055 if Present (CW) then
3056 Set_Is_Interface (CW);
3057 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3058 end if;
3060 -- Check runtime support for synchronized interfaces
3062 if (Is_Task_Interface (T)
3063 or else Is_Protected_Interface (T)
3064 or else Is_Synchronized_Interface (T))
3065 and then not RTE_Available (RE_Select_Specific_Data)
3066 then
3067 Error_Msg_CRT ("synchronized interfaces", T);
3068 end if;
3069 end Analyze_Interface_Declaration;
3071 -----------------------------
3072 -- Analyze_Itype_Reference --
3073 -----------------------------
3075 -- Nothing to do. This node is placed in the tree only for the benefit of
3076 -- back end processing, and has no effect on the semantic processing.
3078 procedure Analyze_Itype_Reference (N : Node_Id) is
3079 begin
3080 pragma Assert (Is_Itype (Itype (N)));
3081 null;
3082 end Analyze_Itype_Reference;
3084 --------------------------------
3085 -- Analyze_Number_Declaration --
3086 --------------------------------
3088 procedure Analyze_Number_Declaration (N : Node_Id) is
3089 E : constant Node_Id := Expression (N);
3090 Id : constant Entity_Id := Defining_Identifier (N);
3091 Index : Interp_Index;
3092 It : Interp;
3093 T : Entity_Id;
3095 begin
3096 Generate_Definition (Id);
3097 Enter_Name (Id);
3099 -- A number declared within a Ghost region is automatically Ghost
3100 -- (SPARK RM 6.9(2)).
3102 if Ghost_Mode > None then
3103 Set_Is_Ghost_Entity (Id);
3104 end if;
3106 -- This is an optimization of a common case of an integer literal
3108 if Nkind (E) = N_Integer_Literal then
3109 Set_Is_Static_Expression (E, True);
3110 Set_Etype (E, Universal_Integer);
3112 Set_Etype (Id, Universal_Integer);
3113 Set_Ekind (Id, E_Named_Integer);
3114 Set_Is_Frozen (Id, True);
3115 return;
3116 end if;
3118 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3120 -- Process expression, replacing error by integer zero, to avoid
3121 -- cascaded errors or aborts further along in the processing
3123 -- Replace Error by integer zero, which seems least likely to cause
3124 -- cascaded errors.
3126 if E = Error then
3127 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3128 Set_Error_Posted (E);
3129 end if;
3131 Analyze (E);
3133 -- Verify that the expression is static and numeric. If
3134 -- the expression is overloaded, we apply the preference
3135 -- rule that favors root numeric types.
3137 if not Is_Overloaded (E) then
3138 T := Etype (E);
3139 if Has_Dynamic_Predicate_Aspect (T) then
3140 Error_Msg_N
3141 ("subtype has dynamic predicate, "
3142 & "not allowed in number declaration", N);
3143 end if;
3145 else
3146 T := Any_Type;
3148 Get_First_Interp (E, Index, It);
3149 while Present (It.Typ) loop
3150 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3151 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3152 then
3153 if T = Any_Type then
3154 T := It.Typ;
3156 elsif It.Typ = Universal_Real
3157 or else
3158 It.Typ = Universal_Integer
3159 then
3160 -- Choose universal interpretation over any other
3162 T := It.Typ;
3163 exit;
3164 end if;
3165 end if;
3167 Get_Next_Interp (Index, It);
3168 end loop;
3169 end if;
3171 if Is_Integer_Type (T) then
3172 Resolve (E, T);
3173 Set_Etype (Id, Universal_Integer);
3174 Set_Ekind (Id, E_Named_Integer);
3176 elsif Is_Real_Type (T) then
3178 -- Because the real value is converted to universal_real, this is a
3179 -- legal context for a universal fixed expression.
3181 if T = Universal_Fixed then
3182 declare
3183 Loc : constant Source_Ptr := Sloc (N);
3184 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3185 Subtype_Mark =>
3186 New_Occurrence_Of (Universal_Real, Loc),
3187 Expression => Relocate_Node (E));
3189 begin
3190 Rewrite (E, Conv);
3191 Analyze (E);
3192 end;
3194 elsif T = Any_Fixed then
3195 Error_Msg_N ("illegal context for mixed mode operation", E);
3197 -- Expression is of the form : universal_fixed * integer. Try to
3198 -- resolve as universal_real.
3200 T := Universal_Real;
3201 Set_Etype (E, T);
3202 end if;
3204 Resolve (E, T);
3205 Set_Etype (Id, Universal_Real);
3206 Set_Ekind (Id, E_Named_Real);
3208 else
3209 Wrong_Type (E, Any_Numeric);
3210 Resolve (E, T);
3212 Set_Etype (Id, T);
3213 Set_Ekind (Id, E_Constant);
3214 Set_Never_Set_In_Source (Id, True);
3215 Set_Is_True_Constant (Id, True);
3216 return;
3217 end if;
3219 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3220 Set_Etype (E, Etype (Id));
3221 end if;
3223 if not Is_OK_Static_Expression (E) then
3224 Flag_Non_Static_Expr
3225 ("non-static expression used in number declaration!", E);
3226 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3227 Set_Etype (E, Any_Type);
3228 end if;
3230 Analyze_Dimension (N);
3231 end Analyze_Number_Declaration;
3233 --------------------------------
3234 -- Analyze_Object_Declaration --
3235 --------------------------------
3237 procedure Analyze_Object_Declaration (N : Node_Id) is
3238 Loc : constant Source_Ptr := Sloc (N);
3239 Id : constant Entity_Id := Defining_Identifier (N);
3240 Act_T : Entity_Id;
3241 T : Entity_Id;
3243 E : Node_Id := Expression (N);
3244 -- E is set to Expression (N) throughout this routine. When
3245 -- Expression (N) is modified, E is changed accordingly.
3247 Prev_Entity : Entity_Id := Empty;
3249 function Count_Tasks (T : Entity_Id) return Uint;
3250 -- This function is called when a non-generic library level object of a
3251 -- task type is declared. Its function is to count the static number of
3252 -- tasks declared within the type (it is only called if Has_Task is set
3253 -- for T). As a side effect, if an array of tasks with non-static bounds
3254 -- or a variant record type is encountered, Check_Restriction is called
3255 -- indicating the count is unknown.
3257 function Delayed_Aspect_Present return Boolean;
3258 -- If the declaration has an expression that is an aggregate, and it
3259 -- has aspects that require delayed analysis, the resolution of the
3260 -- aggregate must be deferred to the freeze point of the objet. This
3261 -- special processing was created for address clauses, but it must
3262 -- also apply to Alignment. This must be done before the aspect
3263 -- specifications are analyzed because we must handle the aggregate
3264 -- before the analysis of the object declaration is complete.
3266 -- Any other relevant delayed aspects on object declarations ???
3268 -----------------
3269 -- Count_Tasks --
3270 -----------------
3272 function Count_Tasks (T : Entity_Id) return Uint is
3273 C : Entity_Id;
3274 X : Node_Id;
3275 V : Uint;
3277 begin
3278 if Is_Task_Type (T) then
3279 return Uint_1;
3281 elsif Is_Record_Type (T) then
3282 if Has_Discriminants (T) then
3283 Check_Restriction (Max_Tasks, N);
3284 return Uint_0;
3286 else
3287 V := Uint_0;
3288 C := First_Component (T);
3289 while Present (C) loop
3290 V := V + Count_Tasks (Etype (C));
3291 Next_Component (C);
3292 end loop;
3294 return V;
3295 end if;
3297 elsif Is_Array_Type (T) then
3298 X := First_Index (T);
3299 V := Count_Tasks (Component_Type (T));
3300 while Present (X) loop
3301 C := Etype (X);
3303 if not Is_OK_Static_Subtype (C) then
3304 Check_Restriction (Max_Tasks, N);
3305 return Uint_0;
3306 else
3307 V := V * (UI_Max (Uint_0,
3308 Expr_Value (Type_High_Bound (C)) -
3309 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3310 end if;
3312 Next_Index (X);
3313 end loop;
3315 return V;
3317 else
3318 return Uint_0;
3319 end if;
3320 end Count_Tasks;
3322 ----------------------------
3323 -- Delayed_Aspect_Present --
3324 ----------------------------
3326 function Delayed_Aspect_Present return Boolean is
3327 A : Node_Id;
3328 A_Id : Aspect_Id;
3330 begin
3331 if Present (Aspect_Specifications (N)) then
3332 A := First (Aspect_Specifications (N));
3333 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3334 while Present (A) loop
3335 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3336 return True;
3337 end if;
3339 Next (A);
3340 end loop;
3341 end if;
3343 return False;
3344 end Delayed_Aspect_Present;
3346 -- Local variables
3348 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
3349 Related_Id : Entity_Id;
3351 -- Start of processing for Analyze_Object_Declaration
3353 begin
3354 -- There are three kinds of implicit types generated by an
3355 -- object declaration:
3357 -- 1. Those generated by the original Object Definition
3359 -- 2. Those generated by the Expression
3361 -- 3. Those used to constrain the Object Definition with the
3362 -- expression constraints when the definition is unconstrained.
3364 -- They must be generated in this order to avoid order of elaboration
3365 -- issues. Thus the first step (after entering the name) is to analyze
3366 -- the object definition.
3368 if Constant_Present (N) then
3369 Prev_Entity := Current_Entity_In_Scope (Id);
3371 if Present (Prev_Entity)
3372 and then
3373 -- If the homograph is an implicit subprogram, it is overridden
3374 -- by the current declaration.
3376 ((Is_Overloadable (Prev_Entity)
3377 and then Is_Inherited_Operation (Prev_Entity))
3379 -- The current object is a discriminal generated for an entry
3380 -- family index. Even though the index is a constant, in this
3381 -- particular context there is no true constant redeclaration.
3382 -- Enter_Name will handle the visibility.
3384 or else
3385 (Is_Discriminal (Id)
3386 and then Ekind (Discriminal_Link (Id)) =
3387 E_Entry_Index_Parameter)
3389 -- The current object is the renaming for a generic declared
3390 -- within the instance.
3392 or else
3393 (Ekind (Prev_Entity) = E_Package
3394 and then Nkind (Parent (Prev_Entity)) =
3395 N_Package_Renaming_Declaration
3396 and then not Comes_From_Source (Prev_Entity)
3397 and then
3398 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3399 then
3400 Prev_Entity := Empty;
3401 end if;
3402 end if;
3404 -- The object declaration is Ghost when it is subject to pragma Ghost or
3405 -- completes a deferred Ghost constant. Set the mode now to ensure that
3406 -- any nodes generated during analysis and expansion are properly marked
3407 -- as Ghost.
3409 Set_Ghost_Mode (N, Prev_Entity);
3411 if Present (Prev_Entity) then
3412 Constant_Redeclaration (Id, N, T);
3414 Generate_Reference (Prev_Entity, Id, 'c');
3415 Set_Completion_Referenced (Id);
3417 if Error_Posted (N) then
3419 -- Type mismatch or illegal redeclaration, Do not analyze
3420 -- expression to avoid cascaded errors.
3422 T := Find_Type_Of_Object (Object_Definition (N), N);
3423 Set_Etype (Id, T);
3424 Set_Ekind (Id, E_Variable);
3425 goto Leave;
3426 end if;
3428 -- In the normal case, enter identifier at the start to catch premature
3429 -- usage in the initialization expression.
3431 else
3432 Generate_Definition (Id);
3433 Enter_Name (Id);
3435 Mark_Coextensions (N, Object_Definition (N));
3437 T := Find_Type_Of_Object (Object_Definition (N), N);
3439 if Nkind (Object_Definition (N)) = N_Access_Definition
3440 and then Present
3441 (Access_To_Subprogram_Definition (Object_Definition (N)))
3442 and then Protected_Present
3443 (Access_To_Subprogram_Definition (Object_Definition (N)))
3444 then
3445 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3446 end if;
3448 if Error_Posted (Id) then
3449 Set_Etype (Id, T);
3450 Set_Ekind (Id, E_Variable);
3451 goto Leave;
3452 end if;
3453 end if;
3455 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3456 -- out some static checks
3458 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3460 -- In case of aggregates we must also take care of the correct
3461 -- initialization of nested aggregates bug this is done at the
3462 -- point of the analysis of the aggregate (see sem_aggr.adb).
3464 if Present (Expression (N))
3465 and then Nkind (Expression (N)) = N_Aggregate
3466 then
3467 null;
3469 else
3470 declare
3471 Save_Typ : constant Entity_Id := Etype (Id);
3472 begin
3473 Set_Etype (Id, T); -- Temp. decoration for static checks
3474 Null_Exclusion_Static_Checks (N);
3475 Set_Etype (Id, Save_Typ);
3476 end;
3477 end if;
3478 end if;
3480 -- Object is marked pure if it is in a pure scope
3482 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3484 -- If deferred constant, make sure context is appropriate. We detect
3485 -- a deferred constant as a constant declaration with no expression.
3486 -- A deferred constant can appear in a package body if its completion
3487 -- is by means of an interface pragma.
3489 if Constant_Present (N) and then No (E) then
3491 -- A deferred constant may appear in the declarative part of the
3492 -- following constructs:
3494 -- blocks
3495 -- entry bodies
3496 -- extended return statements
3497 -- package specs
3498 -- package bodies
3499 -- subprogram bodies
3500 -- task bodies
3502 -- When declared inside a package spec, a deferred constant must be
3503 -- completed by a full constant declaration or pragma Import. In all
3504 -- other cases, the only proper completion is pragma Import. Extended
3505 -- return statements are flagged as invalid contexts because they do
3506 -- not have a declarative part and so cannot accommodate the pragma.
3508 if Ekind (Current_Scope) = E_Return_Statement then
3509 Error_Msg_N
3510 ("invalid context for deferred constant declaration (RM 7.4)",
3512 Error_Msg_N
3513 ("\declaration requires an initialization expression",
3515 Set_Constant_Present (N, False);
3517 -- In Ada 83, deferred constant must be of private type
3519 elsif not Is_Private_Type (T) then
3520 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3521 Error_Msg_N
3522 ("(Ada 83) deferred constant must be private type", N);
3523 end if;
3524 end if;
3526 -- If not a deferred constant, then the object declaration freezes
3527 -- its type, unless the object is of an anonymous type and has delayed
3528 -- aspects. In that case the type is frozen when the object itself is.
3530 else
3531 Check_Fully_Declared (T, N);
3533 if Has_Delayed_Aspects (Id)
3534 and then Is_Array_Type (T)
3535 and then Is_Itype (T)
3536 then
3537 Set_Has_Delayed_Freeze (T);
3538 else
3539 Freeze_Before (N, T);
3540 end if;
3541 end if;
3543 -- If the object was created by a constrained array definition, then
3544 -- set the link in both the anonymous base type and anonymous subtype
3545 -- that are built to represent the array type to point to the object.
3547 if Nkind (Object_Definition (Declaration_Node (Id))) =
3548 N_Constrained_Array_Definition
3549 then
3550 Set_Related_Array_Object (T, Id);
3551 Set_Related_Array_Object (Base_Type (T), Id);
3552 end if;
3554 -- Special checks for protected objects not at library level
3556 if Is_Protected_Type (T)
3557 and then not Is_Library_Level_Entity (Id)
3558 then
3559 Check_Restriction (No_Local_Protected_Objects, Id);
3561 -- Protected objects with interrupt handlers must be at library level
3563 -- Ada 2005: This test is not needed (and the corresponding clause
3564 -- in the RM is removed) because accessibility checks are sufficient
3565 -- to make handlers not at the library level illegal.
3567 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3568 -- applies to the '95 version of the language as well.
3570 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3571 Error_Msg_N
3572 ("interrupt object can only be declared at library level", Id);
3573 end if;
3574 end if;
3576 -- The actual subtype of the object is the nominal subtype, unless
3577 -- the nominal one is unconstrained and obtained from the expression.
3579 Act_T := T;
3581 -- These checks should be performed before the initialization expression
3582 -- is considered, so that the Object_Definition node is still the same
3583 -- as in source code.
3585 -- In SPARK, the nominal subtype is always given by a subtype mark
3586 -- and must not be unconstrained. (The only exception to this is the
3587 -- acceptance of declarations of constants of type String.)
3589 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
3590 then
3591 Check_SPARK_05_Restriction
3592 ("subtype mark required", Object_Definition (N));
3594 elsif Is_Array_Type (T)
3595 and then not Is_Constrained (T)
3596 and then T /= Standard_String
3597 then
3598 Check_SPARK_05_Restriction
3599 ("subtype mark of constrained type expected",
3600 Object_Definition (N));
3601 end if;
3603 -- There are no aliased objects in SPARK
3605 if Aliased_Present (N) then
3606 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3607 end if;
3609 -- Process initialization expression if present and not in error
3611 if Present (E) and then E /= Error then
3613 -- Generate an error in case of CPP class-wide object initialization.
3614 -- Required because otherwise the expansion of the class-wide
3615 -- assignment would try to use 'size to initialize the object
3616 -- (primitive that is not available in CPP tagged types).
3618 if Is_Class_Wide_Type (Act_T)
3619 and then
3620 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3621 or else
3622 (Present (Full_View (Root_Type (Etype (Act_T))))
3623 and then
3624 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3625 then
3626 Error_Msg_N
3627 ("predefined assignment not available for 'C'P'P tagged types",
3629 end if;
3631 Mark_Coextensions (N, E);
3632 Analyze (E);
3634 -- In case of errors detected in the analysis of the expression,
3635 -- decorate it with the expected type to avoid cascaded errors
3637 if No (Etype (E)) then
3638 Set_Etype (E, T);
3639 end if;
3641 -- If an initialization expression is present, then we set the
3642 -- Is_True_Constant flag. It will be reset if this is a variable
3643 -- and it is indeed modified.
3645 Set_Is_True_Constant (Id, True);
3647 -- If we are analyzing a constant declaration, set its completion
3648 -- flag after analyzing and resolving the expression.
3650 if Constant_Present (N) then
3651 Set_Has_Completion (Id);
3652 end if;
3654 -- Set type and resolve (type may be overridden later on). Note:
3655 -- Ekind (Id) must still be E_Void at this point so that incorrect
3656 -- early usage within E is properly diagnosed.
3658 Set_Etype (Id, T);
3660 -- If the expression is an aggregate we must look ahead to detect
3661 -- the possible presence of an address clause, and defer resolution
3662 -- and expansion of the aggregate to the freeze point of the entity.
3664 -- This is not always legal because the aggregate may contain other
3665 -- references that need freezing, e.g. references to other entities
3666 -- with address clauses. In any case, when compiling with -gnatI the
3667 -- presence of the address clause must be ignored.
3669 if Comes_From_Source (N)
3670 and then Expander_Active
3671 and then Nkind (E) = N_Aggregate
3672 and then
3673 ((Present (Following_Address_Clause (N))
3674 and then not Ignore_Rep_Clauses)
3675 or else Delayed_Aspect_Present)
3676 then
3677 Set_Etype (E, T);
3679 else
3680 Resolve (E, T);
3681 end if;
3683 -- No further action needed if E is a call to an inlined function
3684 -- which returns an unconstrained type and it has been expanded into
3685 -- a procedure call. In that case N has been replaced by an object
3686 -- declaration without initializing expression and it has been
3687 -- analyzed (see Expand_Inlined_Call).
3689 if Back_End_Inlining
3690 and then Expander_Active
3691 and then Nkind (E) = N_Function_Call
3692 and then Nkind (Name (E)) in N_Has_Entity
3693 and then Is_Inlined (Entity (Name (E)))
3694 and then not Is_Constrained (Etype (E))
3695 and then Analyzed (N)
3696 and then No (Expression (N))
3697 then
3698 Ghost_Mode := Save_Ghost_Mode;
3699 return;
3700 end if;
3702 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3703 -- node (which was marked already-analyzed), we need to set the type
3704 -- to something other than Any_Access in order to keep gigi happy.
3706 if Etype (E) = Any_Access then
3707 Set_Etype (E, T);
3708 end if;
3710 -- If the object is an access to variable, the initialization
3711 -- expression cannot be an access to constant.
3713 if Is_Access_Type (T)
3714 and then not Is_Access_Constant (T)
3715 and then Is_Access_Type (Etype (E))
3716 and then Is_Access_Constant (Etype (E))
3717 then
3718 Error_Msg_N
3719 ("access to variable cannot be initialized with an "
3720 & "access-to-constant expression", E);
3721 end if;
3723 if not Assignment_OK (N) then
3724 Check_Initialization (T, E);
3725 end if;
3727 Check_Unset_Reference (E);
3729 -- If this is a variable, then set current value. If this is a
3730 -- declared constant of a scalar type with a static expression,
3731 -- indicate that it is always valid.
3733 if not Constant_Present (N) then
3734 if Compile_Time_Known_Value (E) then
3735 Set_Current_Value (Id, E);
3736 end if;
3738 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3739 Set_Is_Known_Valid (Id);
3740 end if;
3742 -- Deal with setting of null flags
3744 if Is_Access_Type (T) then
3745 if Known_Non_Null (E) then
3746 Set_Is_Known_Non_Null (Id, True);
3747 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3748 Set_Is_Known_Null (Id, True);
3749 end if;
3750 end if;
3752 -- Check incorrect use of dynamically tagged expressions
3754 if Is_Tagged_Type (T) then
3755 Check_Dynamically_Tagged_Expression
3756 (Expr => E,
3757 Typ => T,
3758 Related_Nod => N);
3759 end if;
3761 Apply_Scalar_Range_Check (E, T);
3762 Apply_Static_Length_Check (E, T);
3764 if Nkind (Original_Node (N)) = N_Object_Declaration
3765 and then Comes_From_Source (Original_Node (N))
3767 -- Only call test if needed
3769 and then Restriction_Check_Required (SPARK_05)
3770 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3771 then
3772 Check_SPARK_05_Restriction
3773 ("initialization expression is not appropriate", E);
3774 end if;
3776 -- A formal parameter of a specific tagged type whose related
3777 -- subprogram is subject to pragma Extensions_Visible with value
3778 -- "False" cannot be implicitly converted to a class-wide type by
3779 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3781 if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then
3782 Error_Msg_N
3783 ("formal parameter with Extensions_Visible False cannot be "
3784 & "implicitly converted to class-wide type", E);
3785 end if;
3786 end if;
3788 -- If the No_Streams restriction is set, check that the type of the
3789 -- object is not, and does not contain, any subtype derived from
3790 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3791 -- Has_Stream just for efficiency reasons. There is no point in
3792 -- spending time on a Has_Stream check if the restriction is not set.
3794 if Restriction_Check_Required (No_Streams) then
3795 if Has_Stream (T) then
3796 Check_Restriction (No_Streams, N);
3797 end if;
3798 end if;
3800 -- Deal with predicate check before we start to do major rewriting. It
3801 -- is OK to initialize and then check the initialized value, since the
3802 -- object goes out of scope if we get a predicate failure. Note that we
3803 -- do this in the analyzer and not the expander because the analyzer
3804 -- does some substantial rewriting in some cases.
3806 -- We need a predicate check if the type has predicates, and if either
3807 -- there is an initializing expression, or for default initialization
3808 -- when we have at least one case of an explicit default initial value
3809 -- and then this is not an internal declaration whose initialization
3810 -- comes later (as for an aggregate expansion).
3812 if not Suppress_Assignment_Checks (N)
3813 and then Present (Predicate_Function (T))
3814 and then not No_Initialization (N)
3815 and then
3816 (Present (E)
3817 or else
3818 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3819 then
3820 -- If the type has a static predicate and the expression is known at
3821 -- compile time, see if the expression satisfies the predicate.
3823 if Present (E) then
3824 Check_Expression_Against_Static_Predicate (E, T);
3825 end if;
3827 Insert_After (N,
3828 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3829 end if;
3831 -- Case of unconstrained type
3833 if not Is_Definite_Subtype (T) then
3835 -- In SPARK, a declaration of unconstrained type is allowed
3836 -- only for constants of type string.
3838 if Is_String_Type (T) and then not Constant_Present (N) then
3839 Check_SPARK_05_Restriction
3840 ("declaration of object of unconstrained type not allowed", N);
3841 end if;
3843 -- Nothing to do in deferred constant case
3845 if Constant_Present (N) and then No (E) then
3846 null;
3848 -- Case of no initialization present
3850 elsif No (E) then
3851 if No_Initialization (N) then
3852 null;
3854 elsif Is_Class_Wide_Type (T) then
3855 Error_Msg_N
3856 ("initialization required in class-wide declaration ", N);
3858 else
3859 Error_Msg_N
3860 ("unconstrained subtype not allowed (need initialization)",
3861 Object_Definition (N));
3863 if Is_Record_Type (T) and then Has_Discriminants (T) then
3864 Error_Msg_N
3865 ("\provide initial value or explicit discriminant values",
3866 Object_Definition (N));
3868 Error_Msg_NE
3869 ("\or give default discriminant values for type&",
3870 Object_Definition (N), T);
3872 elsif Is_Array_Type (T) then
3873 Error_Msg_N
3874 ("\provide initial value or explicit array bounds",
3875 Object_Definition (N));
3876 end if;
3877 end if;
3879 -- Case of initialization present but in error. Set initial
3880 -- expression as absent (but do not make above complaints)
3882 elsif E = Error then
3883 Set_Expression (N, Empty);
3884 E := Empty;
3886 -- Case of initialization present
3888 else
3889 -- Check restrictions in Ada 83
3891 if not Constant_Present (N) then
3893 -- Unconstrained variables not allowed in Ada 83 mode
3895 if Ada_Version = Ada_83
3896 and then Comes_From_Source (Object_Definition (N))
3897 then
3898 Error_Msg_N
3899 ("(Ada 83) unconstrained variable not allowed",
3900 Object_Definition (N));
3901 end if;
3902 end if;
3904 -- Now we constrain the variable from the initializing expression
3906 -- If the expression is an aggregate, it has been expanded into
3907 -- individual assignments. Retrieve the actual type from the
3908 -- expanded construct.
3910 if Is_Array_Type (T)
3911 and then No_Initialization (N)
3912 and then Nkind (Original_Node (E)) = N_Aggregate
3913 then
3914 Act_T := Etype (E);
3916 -- In case of class-wide interface object declarations we delay
3917 -- the generation of the equivalent record type declarations until
3918 -- its expansion because there are cases in they are not required.
3920 elsif Is_Interface (T) then
3921 null;
3923 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3924 -- we should prevent the generation of another Itype with the
3925 -- same name as the one already generated, or we end up with
3926 -- two identical types in GNATprove.
3928 elsif GNATprove_Mode then
3929 null;
3931 -- If the type is an unchecked union, no subtype can be built from
3932 -- the expression. Rewrite declaration as a renaming, which the
3933 -- back-end can handle properly. This is a rather unusual case,
3934 -- because most unchecked_union declarations have default values
3935 -- for discriminants and are thus not indefinite.
3937 elsif Is_Unchecked_Union (T) then
3938 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
3939 Set_Ekind (Id, E_Constant);
3940 else
3941 Set_Ekind (Id, E_Variable);
3942 end if;
3944 -- An object declared within a Ghost region is automatically
3945 -- Ghost (SPARK RM 6.9(2)).
3947 if Ghost_Mode > None then
3948 Set_Is_Ghost_Entity (Id);
3950 -- The Ghost policy in effect at the point of declaration
3951 -- and at the point of completion must match
3952 -- (SPARK RM 6.9(14)).
3954 if Present (Prev_Entity)
3955 and then Is_Ghost_Entity (Prev_Entity)
3956 then
3957 Check_Ghost_Completion (Prev_Entity, Id);
3958 end if;
3959 end if;
3961 Rewrite (N,
3962 Make_Object_Renaming_Declaration (Loc,
3963 Defining_Identifier => Id,
3964 Subtype_Mark => New_Occurrence_Of (T, Loc),
3965 Name => E));
3967 Set_Renamed_Object (Id, E);
3968 Freeze_Before (N, T);
3969 Set_Is_Frozen (Id);
3971 Ghost_Mode := Save_Ghost_Mode;
3972 return;
3974 else
3975 -- Ensure that the generated subtype has a unique external name
3976 -- when the related object is public. This guarantees that the
3977 -- subtype and its bounds will not be affected by switches or
3978 -- pragmas that may offset the internal counter due to extra
3979 -- generated code.
3981 if Is_Public (Id) then
3982 Related_Id := Id;
3983 else
3984 Related_Id := Empty;
3985 end if;
3987 Expand_Subtype_From_Expr
3988 (N => N,
3989 Unc_Type => T,
3990 Subtype_Indic => Object_Definition (N),
3991 Exp => E,
3992 Related_Id => Related_Id);
3994 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3995 end if;
3997 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3999 if Aliased_Present (N) then
4000 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4001 end if;
4003 Freeze_Before (N, Act_T);
4004 Freeze_Before (N, T);
4005 end if;
4007 elsif Is_Array_Type (T)
4008 and then No_Initialization (N)
4009 and then Nkind (Original_Node (E)) = N_Aggregate
4010 then
4011 if not Is_Entity_Name (Object_Definition (N)) then
4012 Act_T := Etype (E);
4013 Check_Compile_Time_Size (Act_T);
4015 if Aliased_Present (N) then
4016 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4017 end if;
4018 end if;
4020 -- When the given object definition and the aggregate are specified
4021 -- independently, and their lengths might differ do a length check.
4022 -- This cannot happen if the aggregate is of the form (others =>...)
4024 if not Is_Constrained (T) then
4025 null;
4027 elsif Nkind (E) = N_Raise_Constraint_Error then
4029 -- Aggregate is statically illegal. Place back in declaration
4031 Set_Expression (N, E);
4032 Set_No_Initialization (N, False);
4034 elsif T = Etype (E) then
4035 null;
4037 elsif Nkind (E) = N_Aggregate
4038 and then Present (Component_Associations (E))
4039 and then Present (Choices (First (Component_Associations (E))))
4040 and then Nkind (First
4041 (Choices (First (Component_Associations (E))))) = N_Others_Choice
4042 then
4043 null;
4045 else
4046 Apply_Length_Check (E, T);
4047 end if;
4049 -- If the type is limited unconstrained with defaulted discriminants and
4050 -- there is no expression, then the object is constrained by the
4051 -- defaults, so it is worthwhile building the corresponding subtype.
4053 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4054 and then not Is_Constrained (T)
4055 and then Has_Discriminants (T)
4056 then
4057 if No (E) then
4058 Act_T := Build_Default_Subtype (T, N);
4059 else
4060 -- Ada 2005: A limited object may be initialized by means of an
4061 -- aggregate. If the type has default discriminants it has an
4062 -- unconstrained nominal type, Its actual subtype will be obtained
4063 -- from the aggregate, and not from the default discriminants.
4065 Act_T := Etype (E);
4066 end if;
4068 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4070 elsif Nkind (E) = N_Function_Call
4071 and then Constant_Present (N)
4072 and then Has_Unconstrained_Elements (Etype (E))
4073 then
4074 -- The back-end has problems with constants of a discriminated type
4075 -- with defaults, if the initial value is a function call. We
4076 -- generate an intermediate temporary that will receive a reference
4077 -- to the result of the call. The initialization expression then
4078 -- becomes a dereference of that temporary.
4080 Remove_Side_Effects (E);
4082 -- If this is a constant declaration of an unconstrained type and
4083 -- the initialization is an aggregate, we can use the subtype of the
4084 -- aggregate for the declared entity because it is immutable.
4086 elsif not Is_Constrained (T)
4087 and then Has_Discriminants (T)
4088 and then Constant_Present (N)
4089 and then not Has_Unchecked_Union (T)
4090 and then Nkind (E) = N_Aggregate
4091 then
4092 Act_T := Etype (E);
4093 end if;
4095 -- Check No_Wide_Characters restriction
4097 Check_Wide_Character_Restriction (T, Object_Definition (N));
4099 -- Indicate this is not set in source. Certainly true for constants, and
4100 -- true for variables so far (will be reset for a variable if and when
4101 -- we encounter a modification in the source).
4103 Set_Never_Set_In_Source (Id);
4105 -- Now establish the proper kind and type of the object
4107 if Constant_Present (N) then
4108 Set_Ekind (Id, E_Constant);
4109 Set_Is_True_Constant (Id);
4111 else
4112 Set_Ekind (Id, E_Variable);
4114 -- A variable is set as shared passive if it appears in a shared
4115 -- passive package, and is at the outer level. This is not done for
4116 -- entities generated during expansion, because those are always
4117 -- manipulated locally.
4119 if Is_Shared_Passive (Current_Scope)
4120 and then Is_Library_Level_Entity (Id)
4121 and then Comes_From_Source (Id)
4122 then
4123 Set_Is_Shared_Passive (Id);
4124 Check_Shared_Var (Id, T, N);
4125 end if;
4127 -- Set Has_Initial_Value if initializing expression present. Note
4128 -- that if there is no initializing expression, we leave the state
4129 -- of this flag unchanged (usually it will be False, but notably in
4130 -- the case of exception choice variables, it will already be true).
4132 if Present (E) then
4133 Set_Has_Initial_Value (Id);
4134 end if;
4135 end if;
4137 -- Initialize alignment and size and capture alignment setting
4139 Init_Alignment (Id);
4140 Init_Esize (Id);
4141 Set_Optimize_Alignment_Flags (Id);
4143 -- An object declared within a Ghost region is automatically Ghost
4144 -- (SPARK RM 6.9(2)).
4146 if Ghost_Mode > None
4147 or else (Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity))
4148 then
4149 Set_Is_Ghost_Entity (Id);
4151 -- The Ghost policy in effect at the point of declaration and at the
4152 -- point of completion must match (SPARK RM 6.9(14)).
4154 if Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity) then
4155 Check_Ghost_Completion (Prev_Entity, Id);
4156 end if;
4157 end if;
4159 -- Deal with aliased case
4161 if Aliased_Present (N) then
4162 Set_Is_Aliased (Id);
4164 -- If the object is aliased and the type is unconstrained with
4165 -- defaulted discriminants and there is no expression, then the
4166 -- object is constrained by the defaults, so it is worthwhile
4167 -- building the corresponding subtype.
4169 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4170 -- unconstrained, then only establish an actual subtype if the
4171 -- nominal subtype is indefinite. In definite cases the object is
4172 -- unconstrained in Ada 2005.
4174 if No (E)
4175 and then Is_Record_Type (T)
4176 and then not Is_Constrained (T)
4177 and then Has_Discriminants (T)
4178 and then (Ada_Version < Ada_2005
4179 or else not Is_Definite_Subtype (T))
4180 then
4181 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4182 end if;
4183 end if;
4185 -- Now we can set the type of the object
4187 Set_Etype (Id, Act_T);
4189 -- Non-constant object is marked to be treated as volatile if type is
4190 -- volatile and we clear the Current_Value setting that may have been
4191 -- set above. Doing so for constants isn't required and might interfere
4192 -- with possible uses of the object as a static expression in contexts
4193 -- incompatible with volatility (e.g. as a case-statement alternative).
4195 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4196 Set_Treat_As_Volatile (Id);
4197 Set_Current_Value (Id, Empty);
4198 end if;
4200 -- Deal with controlled types
4202 if Has_Controlled_Component (Etype (Id))
4203 or else Is_Controlled (Etype (Id))
4204 then
4205 if not Is_Library_Level_Entity (Id) then
4206 Check_Restriction (No_Nested_Finalization, N);
4207 else
4208 Validate_Controlled_Object (Id);
4209 end if;
4210 end if;
4212 if Has_Task (Etype (Id)) then
4213 Check_Restriction (No_Tasking, N);
4215 -- Deal with counting max tasks
4217 -- Nothing to do if inside a generic
4219 if Inside_A_Generic then
4220 null;
4222 -- If library level entity, then count tasks
4224 elsif Is_Library_Level_Entity (Id) then
4225 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4227 -- If not library level entity, then indicate we don't know max
4228 -- tasks and also check task hierarchy restriction and blocking
4229 -- operation (since starting a task is definitely blocking).
4231 else
4232 Check_Restriction (Max_Tasks, N);
4233 Check_Restriction (No_Task_Hierarchy, N);
4234 Check_Potentially_Blocking_Operation (N);
4235 end if;
4237 -- A rather specialized test. If we see two tasks being declared
4238 -- of the same type in the same object declaration, and the task
4239 -- has an entry with an address clause, we know that program error
4240 -- will be raised at run time since we can't have two tasks with
4241 -- entries at the same address.
4243 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4244 declare
4245 E : Entity_Id;
4247 begin
4248 E := First_Entity (Etype (Id));
4249 while Present (E) loop
4250 if Ekind (E) = E_Entry
4251 and then Present (Get_Attribute_Definition_Clause
4252 (E, Attribute_Address))
4253 then
4254 Error_Msg_Warn := SPARK_Mode /= On;
4255 Error_Msg_N
4256 ("more than one task with same entry address<<", N);
4257 Error_Msg_N ("\Program_Error [<<", N);
4258 Insert_Action (N,
4259 Make_Raise_Program_Error (Loc,
4260 Reason => PE_Duplicated_Entry_Address));
4261 exit;
4262 end if;
4264 Next_Entity (E);
4265 end loop;
4266 end;
4267 end if;
4268 end if;
4270 -- Some simple constant-propagation: if the expression is a constant
4271 -- string initialized with a literal, share the literal. This avoids
4272 -- a run-time copy.
4274 if Present (E)
4275 and then Is_Entity_Name (E)
4276 and then Ekind (Entity (E)) = E_Constant
4277 and then Base_Type (Etype (E)) = Standard_String
4278 then
4279 declare
4280 Val : constant Node_Id := Constant_Value (Entity (E));
4281 begin
4282 if Present (Val) and then Nkind (Val) = N_String_Literal then
4283 Rewrite (E, New_Copy (Val));
4284 end if;
4285 end;
4286 end if;
4288 -- Another optimization: if the nominal subtype is unconstrained and
4289 -- the expression is a function call that returns an unconstrained
4290 -- type, rewrite the declaration as a renaming of the result of the
4291 -- call. The exceptions below are cases where the copy is expected,
4292 -- either by the back end (Aliased case) or by the semantics, as for
4293 -- initializing controlled types or copying tags for classwide types.
4295 if Present (E)
4296 and then Nkind (E) = N_Explicit_Dereference
4297 and then Nkind (Original_Node (E)) = N_Function_Call
4298 and then not Is_Library_Level_Entity (Id)
4299 and then not Is_Constrained (Underlying_Type (T))
4300 and then not Is_Aliased (Id)
4301 and then not Is_Class_Wide_Type (T)
4302 and then not Is_Controlled_Active (T)
4303 and then not Has_Controlled_Component (Base_Type (T))
4304 and then Expander_Active
4305 then
4306 Rewrite (N,
4307 Make_Object_Renaming_Declaration (Loc,
4308 Defining_Identifier => Id,
4309 Access_Definition => Empty,
4310 Subtype_Mark => New_Occurrence_Of
4311 (Base_Type (Etype (Id)), Loc),
4312 Name => E));
4314 Set_Renamed_Object (Id, E);
4316 -- Force generation of debugging information for the constant and for
4317 -- the renamed function call.
4319 Set_Debug_Info_Needed (Id);
4320 Set_Debug_Info_Needed (Entity (Prefix (E)));
4321 end if;
4323 if Present (Prev_Entity)
4324 and then Is_Frozen (Prev_Entity)
4325 and then not Error_Posted (Id)
4326 then
4327 Error_Msg_N ("full constant declaration appears too late", N);
4328 end if;
4330 Check_Eliminated (Id);
4332 -- Deal with setting In_Private_Part flag if in private part
4334 if Ekind (Scope (Id)) = E_Package
4335 and then In_Private_Part (Scope (Id))
4336 then
4337 Set_In_Private_Part (Id);
4338 end if;
4340 -- Check for violation of No_Local_Timing_Events
4342 if Restriction_Check_Required (No_Local_Timing_Events)
4343 and then not Is_Library_Level_Entity (Id)
4344 and then Is_RTE (Etype (Id), RE_Timing_Event)
4345 then
4346 Check_Restriction (No_Local_Timing_Events, N);
4347 end if;
4349 <<Leave>>
4350 -- Initialize the refined state of a variable here because this is a
4351 -- common destination for legal and illegal object declarations.
4353 if Ekind (Id) = E_Variable then
4354 Set_Encapsulating_State (Id, Empty);
4355 end if;
4357 if Has_Aspects (N) then
4358 Analyze_Aspect_Specifications (N, Id);
4359 end if;
4361 Analyze_Dimension (N);
4363 -- Verify whether the object declaration introduces an illegal hidden
4364 -- state within a package subject to a null abstract state.
4366 if Ekind (Id) = E_Variable then
4367 Check_No_Hidden_State (Id);
4368 end if;
4370 Ghost_Mode := Save_Ghost_Mode;
4371 end Analyze_Object_Declaration;
4373 ---------------------------
4374 -- Analyze_Others_Choice --
4375 ---------------------------
4377 -- Nothing to do for the others choice node itself, the semantic analysis
4378 -- of the others choice will occur as part of the processing of the parent
4380 procedure Analyze_Others_Choice (N : Node_Id) is
4381 pragma Warnings (Off, N);
4382 begin
4383 null;
4384 end Analyze_Others_Choice;
4386 -------------------------------------------
4387 -- Analyze_Private_Extension_Declaration --
4388 -------------------------------------------
4390 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4391 Indic : constant Node_Id := Subtype_Indication (N);
4392 T : constant Entity_Id := Defining_Identifier (N);
4393 Parent_Base : Entity_Id;
4394 Parent_Type : Entity_Id;
4396 begin
4397 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4399 if Is_Non_Empty_List (Interface_List (N)) then
4400 declare
4401 Intf : Node_Id;
4402 T : Entity_Id;
4404 begin
4405 Intf := First (Interface_List (N));
4406 while Present (Intf) loop
4407 T := Find_Type_Of_Subtype_Indic (Intf);
4409 Diagnose_Interface (Intf, T);
4410 Next (Intf);
4411 end loop;
4412 end;
4413 end if;
4415 Generate_Definition (T);
4417 -- For other than Ada 2012, just enter the name in the current scope
4419 if Ada_Version < Ada_2012 then
4420 Enter_Name (T);
4422 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4423 -- case of private type that completes an incomplete type.
4425 else
4426 declare
4427 Prev : Entity_Id;
4429 begin
4430 Prev := Find_Type_Name (N);
4432 pragma Assert (Prev = T
4433 or else (Ekind (Prev) = E_Incomplete_Type
4434 and then Present (Full_View (Prev))
4435 and then Full_View (Prev) = T));
4436 end;
4437 end if;
4439 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4440 Parent_Base := Base_Type (Parent_Type);
4442 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4443 Set_Ekind (T, Ekind (Parent_Type));
4444 Set_Etype (T, Any_Type);
4445 goto Leave;
4447 elsif not Is_Tagged_Type (Parent_Type) then
4448 Error_Msg_N
4449 ("parent of type extension must be a tagged type ", Indic);
4450 goto Leave;
4452 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4453 Error_Msg_N ("premature derivation of incomplete type", Indic);
4454 goto Leave;
4456 elsif Is_Concurrent_Type (Parent_Type) then
4457 Error_Msg_N
4458 ("parent type of a private extension cannot be "
4459 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4461 Set_Etype (T, Any_Type);
4462 Set_Ekind (T, E_Limited_Private_Type);
4463 Set_Private_Dependents (T, New_Elmt_List);
4464 Set_Error_Posted (T);
4465 goto Leave;
4466 end if;
4468 -- Perhaps the parent type should be changed to the class-wide type's
4469 -- specific type in this case to prevent cascading errors ???
4471 if Is_Class_Wide_Type (Parent_Type) then
4472 Error_Msg_N
4473 ("parent of type extension must not be a class-wide type", Indic);
4474 goto Leave;
4475 end if;
4477 if (not Is_Package_Or_Generic_Package (Current_Scope)
4478 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4479 or else In_Private_Part (Current_Scope)
4481 then
4482 Error_Msg_N ("invalid context for private extension", N);
4483 end if;
4485 -- Set common attributes
4487 Set_Is_Pure (T, Is_Pure (Current_Scope));
4488 Set_Scope (T, Current_Scope);
4489 Set_Ekind (T, E_Record_Type_With_Private);
4490 Init_Size_Align (T);
4491 Set_Default_SSO (T);
4493 Set_Etype (T, Parent_Base);
4494 Set_Has_Task (T, Has_Task (Parent_Base));
4495 Set_Has_Protected (T, Has_Task (Parent_Base));
4497 Set_Convention (T, Convention (Parent_Type));
4498 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4499 Set_Is_First_Subtype (T);
4500 Make_Class_Wide_Type (T);
4502 if Unknown_Discriminants_Present (N) then
4503 Set_Discriminant_Constraint (T, No_Elist);
4504 end if;
4506 Build_Derived_Record_Type (N, Parent_Type, T);
4508 -- Propagate inherited invariant information. The new type has
4509 -- invariants, if the parent type has inheritable invariants,
4510 -- and these invariants can in turn be inherited.
4512 if Has_Inheritable_Invariants (Parent_Type) then
4513 Set_Has_Inheritable_Invariants (T);
4514 Set_Has_Invariants (T);
4515 end if;
4517 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4518 -- synchronized formal derived type.
4520 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4521 Set_Is_Limited_Record (T);
4523 -- Formal derived type case
4525 if Is_Generic_Type (T) then
4527 -- The parent must be a tagged limited type or a synchronized
4528 -- interface.
4530 if (not Is_Tagged_Type (Parent_Type)
4531 or else not Is_Limited_Type (Parent_Type))
4532 and then
4533 (not Is_Interface (Parent_Type)
4534 or else not Is_Synchronized_Interface (Parent_Type))
4535 then
4536 Error_Msg_NE ("parent type of & must be tagged limited " &
4537 "or synchronized", N, T);
4538 end if;
4540 -- The progenitors (if any) must be limited or synchronized
4541 -- interfaces.
4543 if Present (Interfaces (T)) then
4544 declare
4545 Iface : Entity_Id;
4546 Iface_Elmt : Elmt_Id;
4548 begin
4549 Iface_Elmt := First_Elmt (Interfaces (T));
4550 while Present (Iface_Elmt) loop
4551 Iface := Node (Iface_Elmt);
4553 if not Is_Limited_Interface (Iface)
4554 and then not Is_Synchronized_Interface (Iface)
4555 then
4556 Error_Msg_NE ("progenitor & must be limited " &
4557 "or synchronized", N, Iface);
4558 end if;
4560 Next_Elmt (Iface_Elmt);
4561 end loop;
4562 end;
4563 end if;
4565 -- Regular derived extension, the parent must be a limited or
4566 -- synchronized interface.
4568 else
4569 if not Is_Interface (Parent_Type)
4570 or else (not Is_Limited_Interface (Parent_Type)
4571 and then not Is_Synchronized_Interface (Parent_Type))
4572 then
4573 Error_Msg_NE
4574 ("parent type of & must be limited interface", N, T);
4575 end if;
4576 end if;
4578 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4579 -- extension with a synchronized parent must be explicitly declared
4580 -- synchronized, because the full view will be a synchronized type.
4581 -- This must be checked before the check for limited types below,
4582 -- to ensure that types declared limited are not allowed to extend
4583 -- synchronized interfaces.
4585 elsif Is_Interface (Parent_Type)
4586 and then Is_Synchronized_Interface (Parent_Type)
4587 and then not Synchronized_Present (N)
4588 then
4589 Error_Msg_NE
4590 ("private extension of& must be explicitly synchronized",
4591 N, Parent_Type);
4593 elsif Limited_Present (N) then
4594 Set_Is_Limited_Record (T);
4596 if not Is_Limited_Type (Parent_Type)
4597 and then
4598 (not Is_Interface (Parent_Type)
4599 or else not Is_Limited_Interface (Parent_Type))
4600 then
4601 Error_Msg_NE ("parent type& of limited extension must be limited",
4602 N, Parent_Type);
4603 end if;
4604 end if;
4606 <<Leave>>
4607 if Has_Aspects (N) then
4608 Analyze_Aspect_Specifications (N, T);
4609 end if;
4610 end Analyze_Private_Extension_Declaration;
4612 ---------------------------------
4613 -- Analyze_Subtype_Declaration --
4614 ---------------------------------
4616 procedure Analyze_Subtype_Declaration
4617 (N : Node_Id;
4618 Skip : Boolean := False)
4620 Id : constant Entity_Id := Defining_Identifier (N);
4621 R_Checks : Check_Result;
4622 T : Entity_Id;
4624 begin
4625 Generate_Definition (Id);
4626 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4627 Init_Size_Align (Id);
4629 -- The following guard condition on Enter_Name is to handle cases where
4630 -- the defining identifier has already been entered into the scope but
4631 -- the declaration as a whole needs to be analyzed.
4633 -- This case in particular happens for derived enumeration types. The
4634 -- derived enumeration type is processed as an inserted enumeration type
4635 -- declaration followed by a rewritten subtype declaration. The defining
4636 -- identifier, however, is entered into the name scope very early in the
4637 -- processing of the original type declaration and therefore needs to be
4638 -- avoided here, when the created subtype declaration is analyzed. (See
4639 -- Build_Derived_Types)
4641 -- This also happens when the full view of a private type is derived
4642 -- type with constraints. In this case the entity has been introduced
4643 -- in the private declaration.
4645 -- Finally this happens in some complex cases when validity checks are
4646 -- enabled, where the same subtype declaration may be analyzed twice.
4647 -- This can happen if the subtype is created by the pre-analysis of
4648 -- an attribute tht gives the range of a loop statement, and the loop
4649 -- itself appears within an if_statement that will be rewritten during
4650 -- expansion.
4652 if Skip
4653 or else (Present (Etype (Id))
4654 and then (Is_Private_Type (Etype (Id))
4655 or else Is_Task_Type (Etype (Id))
4656 or else Is_Rewrite_Substitution (N)))
4657 then
4658 null;
4660 elsif Current_Entity (Id) = Id then
4661 null;
4663 else
4664 Enter_Name (Id);
4665 end if;
4667 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4669 -- Class-wide equivalent types of records with unknown discriminants
4670 -- involve the generation of an itype which serves as the private view
4671 -- of a constrained record subtype. In such cases the base type of the
4672 -- current subtype we are processing is the private itype. Use the full
4673 -- of the private itype when decorating various attributes.
4675 if Is_Itype (T)
4676 and then Is_Private_Type (T)
4677 and then Present (Full_View (T))
4678 then
4679 T := Full_View (T);
4680 end if;
4682 -- Inherit common attributes
4684 Set_Is_Volatile (Id, Is_Volatile (T));
4685 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4686 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4687 Set_Convention (Id, Convention (T));
4689 -- If ancestor has predicates then so does the subtype, and in addition
4690 -- we must delay the freeze to properly arrange predicate inheritance.
4692 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4693 -- in which T = ID, so the above tests and assignments do nothing???
4695 if Has_Predicates (T)
4696 or else (Present (Ancestor_Subtype (T))
4697 and then Has_Predicates (Ancestor_Subtype (T)))
4698 then
4699 Set_Has_Predicates (Id);
4700 Set_Has_Delayed_Freeze (Id);
4701 end if;
4703 -- Subtype of Boolean cannot have a constraint in SPARK
4705 if Is_Boolean_Type (T)
4706 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4707 then
4708 Check_SPARK_05_Restriction
4709 ("subtype of Boolean cannot have constraint", N);
4710 end if;
4712 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4713 declare
4714 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4715 One_Cstr : Node_Id;
4716 Low : Node_Id;
4717 High : Node_Id;
4719 begin
4720 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4721 One_Cstr := First (Constraints (Cstr));
4722 while Present (One_Cstr) loop
4724 -- Index or discriminant constraint in SPARK must be a
4725 -- subtype mark.
4727 if not
4728 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4729 then
4730 Check_SPARK_05_Restriction
4731 ("subtype mark required", One_Cstr);
4733 -- String subtype must have a lower bound of 1 in SPARK.
4734 -- Note that we do not need to test for the non-static case
4735 -- here, since that was already taken care of in
4736 -- Process_Range_Expr_In_Decl.
4738 elsif Base_Type (T) = Standard_String then
4739 Get_Index_Bounds (One_Cstr, Low, High);
4741 if Is_OK_Static_Expression (Low)
4742 and then Expr_Value (Low) /= 1
4743 then
4744 Check_SPARK_05_Restriction
4745 ("String subtype must have lower bound of 1", N);
4746 end if;
4747 end if;
4749 Next (One_Cstr);
4750 end loop;
4751 end if;
4752 end;
4753 end if;
4755 -- In the case where there is no constraint given in the subtype
4756 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4757 -- semantic attributes must be established here.
4759 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4760 Set_Etype (Id, Base_Type (T));
4762 -- Subtype of unconstrained array without constraint is not allowed
4763 -- in SPARK.
4765 if Is_Array_Type (T) and then not Is_Constrained (T) then
4766 Check_SPARK_05_Restriction
4767 ("subtype of unconstrained array must have constraint", N);
4768 end if;
4770 case Ekind (T) is
4771 when Array_Kind =>
4772 Set_Ekind (Id, E_Array_Subtype);
4773 Copy_Array_Subtype_Attributes (Id, T);
4775 when Decimal_Fixed_Point_Kind =>
4776 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4777 Set_Digits_Value (Id, Digits_Value (T));
4778 Set_Delta_Value (Id, Delta_Value (T));
4779 Set_Scale_Value (Id, Scale_Value (T));
4780 Set_Small_Value (Id, Small_Value (T));
4781 Set_Scalar_Range (Id, Scalar_Range (T));
4782 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4783 Set_Is_Constrained (Id, Is_Constrained (T));
4784 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4785 Set_RM_Size (Id, RM_Size (T));
4787 when Enumeration_Kind =>
4788 Set_Ekind (Id, E_Enumeration_Subtype);
4789 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4790 Set_Scalar_Range (Id, Scalar_Range (T));
4791 Set_Is_Character_Type (Id, Is_Character_Type (T));
4792 Set_Is_Constrained (Id, Is_Constrained (T));
4793 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4794 Set_RM_Size (Id, RM_Size (T));
4795 Inherit_Predicate_Flags (Id, T);
4797 when Ordinary_Fixed_Point_Kind =>
4798 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4799 Set_Scalar_Range (Id, Scalar_Range (T));
4800 Set_Small_Value (Id, Small_Value (T));
4801 Set_Delta_Value (Id, Delta_Value (T));
4802 Set_Is_Constrained (Id, Is_Constrained (T));
4803 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4804 Set_RM_Size (Id, RM_Size (T));
4806 when Float_Kind =>
4807 Set_Ekind (Id, E_Floating_Point_Subtype);
4808 Set_Scalar_Range (Id, Scalar_Range (T));
4809 Set_Digits_Value (Id, Digits_Value (T));
4810 Set_Is_Constrained (Id, Is_Constrained (T));
4812 -- If the floating point type has dimensions, these will be
4813 -- inherited subsequently when Analyze_Dimensions is called.
4815 when Signed_Integer_Kind =>
4816 Set_Ekind (Id, E_Signed_Integer_Subtype);
4817 Set_Scalar_Range (Id, Scalar_Range (T));
4818 Set_Is_Constrained (Id, Is_Constrained (T));
4819 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4820 Set_RM_Size (Id, RM_Size (T));
4821 Inherit_Predicate_Flags (Id, T);
4823 when Modular_Integer_Kind =>
4824 Set_Ekind (Id, E_Modular_Integer_Subtype);
4825 Set_Scalar_Range (Id, Scalar_Range (T));
4826 Set_Is_Constrained (Id, Is_Constrained (T));
4827 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4828 Set_RM_Size (Id, RM_Size (T));
4829 Inherit_Predicate_Flags (Id, T);
4831 when Class_Wide_Kind =>
4832 Set_Ekind (Id, E_Class_Wide_Subtype);
4833 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4834 Set_Cloned_Subtype (Id, T);
4835 Set_Is_Tagged_Type (Id, True);
4836 Set_Has_Unknown_Discriminants
4837 (Id, True);
4838 Set_No_Tagged_Streams_Pragma
4839 (Id, No_Tagged_Streams_Pragma (T));
4841 if Ekind (T) = E_Class_Wide_Subtype then
4842 Set_Equivalent_Type (Id, Equivalent_Type (T));
4843 end if;
4845 when E_Record_Type | E_Record_Subtype =>
4846 Set_Ekind (Id, E_Record_Subtype);
4848 if Ekind (T) = E_Record_Subtype
4849 and then Present (Cloned_Subtype (T))
4850 then
4851 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4852 else
4853 Set_Cloned_Subtype (Id, T);
4854 end if;
4856 Set_First_Entity (Id, First_Entity (T));
4857 Set_Last_Entity (Id, Last_Entity (T));
4858 Set_Has_Discriminants (Id, Has_Discriminants (T));
4859 Set_Is_Constrained (Id, Is_Constrained (T));
4860 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4861 Set_Has_Implicit_Dereference
4862 (Id, Has_Implicit_Dereference (T));
4863 Set_Has_Unknown_Discriminants
4864 (Id, Has_Unknown_Discriminants (T));
4866 if Has_Discriminants (T) then
4867 Set_Discriminant_Constraint
4868 (Id, Discriminant_Constraint (T));
4869 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4871 elsif Has_Unknown_Discriminants (Id) then
4872 Set_Discriminant_Constraint (Id, No_Elist);
4873 end if;
4875 if Is_Tagged_Type (T) then
4876 Set_Is_Tagged_Type (Id, True);
4877 Set_No_Tagged_Streams_Pragma
4878 (Id, No_Tagged_Streams_Pragma (T));
4879 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4880 Set_Direct_Primitive_Operations
4881 (Id, Direct_Primitive_Operations (T));
4882 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4884 if Is_Interface (T) then
4885 Set_Is_Interface (Id);
4886 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4887 end if;
4888 end if;
4890 when Private_Kind =>
4891 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4892 Set_Has_Discriminants (Id, Has_Discriminants (T));
4893 Set_Is_Constrained (Id, Is_Constrained (T));
4894 Set_First_Entity (Id, First_Entity (T));
4895 Set_Last_Entity (Id, Last_Entity (T));
4896 Set_Private_Dependents (Id, New_Elmt_List);
4897 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4898 Set_Has_Implicit_Dereference
4899 (Id, Has_Implicit_Dereference (T));
4900 Set_Has_Unknown_Discriminants
4901 (Id, Has_Unknown_Discriminants (T));
4902 Set_Known_To_Have_Preelab_Init
4903 (Id, Known_To_Have_Preelab_Init (T));
4905 if Is_Tagged_Type (T) then
4906 Set_Is_Tagged_Type (Id);
4907 Set_No_Tagged_Streams_Pragma (Id,
4908 No_Tagged_Streams_Pragma (T));
4909 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4910 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4911 Set_Direct_Primitive_Operations (Id,
4912 Direct_Primitive_Operations (T));
4913 end if;
4915 -- In general the attributes of the subtype of a private type
4916 -- are the attributes of the partial view of parent. However,
4917 -- the full view may be a discriminated type, and the subtype
4918 -- must share the discriminant constraint to generate correct
4919 -- calls to initialization procedures.
4921 if Has_Discriminants (T) then
4922 Set_Discriminant_Constraint
4923 (Id, Discriminant_Constraint (T));
4924 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4926 elsif Present (Full_View (T))
4927 and then Has_Discriminants (Full_View (T))
4928 then
4929 Set_Discriminant_Constraint
4930 (Id, Discriminant_Constraint (Full_View (T)));
4931 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4933 -- This would seem semantically correct, but apparently
4934 -- generates spurious errors about missing components ???
4936 -- Set_Has_Discriminants (Id);
4937 end if;
4939 Prepare_Private_Subtype_Completion (Id, N);
4941 -- If this is the subtype of a constrained private type with
4942 -- discriminants that has got a full view and we also have
4943 -- built a completion just above, show that the completion
4944 -- is a clone of the full view to the back-end.
4946 if Has_Discriminants (T)
4947 and then not Has_Unknown_Discriminants (T)
4948 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4949 and then Present (Full_View (T))
4950 and then Present (Full_View (Id))
4951 then
4952 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4953 end if;
4955 when Access_Kind =>
4956 Set_Ekind (Id, E_Access_Subtype);
4957 Set_Is_Constrained (Id, Is_Constrained (T));
4958 Set_Is_Access_Constant
4959 (Id, Is_Access_Constant (T));
4960 Set_Directly_Designated_Type
4961 (Id, Designated_Type (T));
4962 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4964 -- A Pure library_item must not contain the declaration of a
4965 -- named access type, except within a subprogram, generic
4966 -- subprogram, task unit, or protected unit, or if it has
4967 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4969 if Comes_From_Source (Id)
4970 and then In_Pure_Unit
4971 and then not In_Subprogram_Task_Protected_Unit
4972 and then not No_Pool_Assigned (Id)
4973 then
4974 Error_Msg_N
4975 ("named access types not allowed in pure unit", N);
4976 end if;
4978 when Concurrent_Kind =>
4979 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4980 Set_Corresponding_Record_Type (Id,
4981 Corresponding_Record_Type (T));
4982 Set_First_Entity (Id, First_Entity (T));
4983 Set_First_Private_Entity (Id, First_Private_Entity (T));
4984 Set_Has_Discriminants (Id, Has_Discriminants (T));
4985 Set_Is_Constrained (Id, Is_Constrained (T));
4986 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4987 Set_Last_Entity (Id, Last_Entity (T));
4989 if Is_Tagged_Type (T) then
4990 Set_No_Tagged_Streams_Pragma
4991 (Id, No_Tagged_Streams_Pragma (T));
4992 end if;
4994 if Has_Discriminants (T) then
4995 Set_Discriminant_Constraint
4996 (Id, Discriminant_Constraint (T));
4997 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4998 end if;
5000 when Incomplete_Kind =>
5001 if Ada_Version >= Ada_2005 then
5003 -- In Ada 2005 an incomplete type can be explicitly tagged:
5004 -- propagate indication. Note that we also have to include
5005 -- subtypes for Ada 2012 extended use of incomplete types.
5007 Set_Ekind (Id, E_Incomplete_Subtype);
5008 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5009 Set_Private_Dependents (Id, New_Elmt_List);
5011 if Is_Tagged_Type (Id) then
5012 Set_No_Tagged_Streams_Pragma
5013 (Id, No_Tagged_Streams_Pragma (T));
5014 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5015 end if;
5017 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5018 -- incomplete type visible through a limited with clause.
5020 if From_Limited_With (T)
5021 and then Present (Non_Limited_View (T))
5022 then
5023 Set_From_Limited_With (Id);
5024 Set_Non_Limited_View (Id, Non_Limited_View (T));
5026 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5027 -- to the private dependents of the original incomplete
5028 -- type for future transformation.
5030 else
5031 Append_Elmt (Id, Private_Dependents (T));
5032 end if;
5034 -- If the subtype name denotes an incomplete type an error
5035 -- was already reported by Process_Subtype.
5037 else
5038 Set_Etype (Id, Any_Type);
5039 end if;
5041 when others =>
5042 raise Program_Error;
5043 end case;
5044 end if;
5046 if Etype (Id) = Any_Type then
5047 goto Leave;
5048 end if;
5050 -- Some common processing on all types
5052 Set_Size_Info (Id, T);
5053 Set_First_Rep_Item (Id, First_Rep_Item (T));
5055 -- If the parent type is a generic actual, so is the subtype. This may
5056 -- happen in a nested instance. Why Comes_From_Source test???
5058 if not Comes_From_Source (N) then
5059 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5060 end if;
5062 T := Etype (Id);
5064 Set_Is_Immediately_Visible (Id, True);
5065 Set_Depends_On_Private (Id, Has_Private_Component (T));
5066 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
5068 if Is_Interface (T) then
5069 Set_Is_Interface (Id);
5070 end if;
5072 if Present (Generic_Parent_Type (N))
5073 and then
5074 (Nkind (Parent (Generic_Parent_Type (N))) /=
5075 N_Formal_Type_Declaration
5076 or else Nkind (Formal_Type_Definition
5077 (Parent (Generic_Parent_Type (N)))) /=
5078 N_Formal_Private_Type_Definition)
5079 then
5080 if Is_Tagged_Type (Id) then
5082 -- If this is a generic actual subtype for a synchronized type,
5083 -- the primitive operations are those of the corresponding record
5084 -- for which there is a separate subtype declaration.
5086 if Is_Concurrent_Type (Id) then
5087 null;
5088 elsif Is_Class_Wide_Type (Id) then
5089 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5090 else
5091 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5092 end if;
5094 elsif Scope (Etype (Id)) /= Standard_Standard then
5095 Derive_Subprograms (Generic_Parent_Type (N), Id);
5096 end if;
5097 end if;
5099 if Is_Private_Type (T) and then Present (Full_View (T)) then
5100 Conditional_Delay (Id, Full_View (T));
5102 -- The subtypes of components or subcomponents of protected types
5103 -- do not need freeze nodes, which would otherwise appear in the
5104 -- wrong scope (before the freeze node for the protected type). The
5105 -- proper subtypes are those of the subcomponents of the corresponding
5106 -- record.
5108 elsif Ekind (Scope (Id)) /= E_Protected_Type
5109 and then Present (Scope (Scope (Id))) -- error defense
5110 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5111 then
5112 Conditional_Delay (Id, T);
5113 end if;
5115 -- Check that Constraint_Error is raised for a scalar subtype indication
5116 -- when the lower or upper bound of a non-null range lies outside the
5117 -- range of the type mark.
5119 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5120 if Is_Scalar_Type (Etype (Id))
5121 and then Scalar_Range (Id) /=
5122 Scalar_Range (Etype (Subtype_Mark
5123 (Subtype_Indication (N))))
5124 then
5125 Apply_Range_Check
5126 (Scalar_Range (Id),
5127 Etype (Subtype_Mark (Subtype_Indication (N))));
5129 -- In the array case, check compatibility for each index
5131 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5132 then
5133 -- This really should be a subprogram that finds the indications
5134 -- to check???
5136 declare
5137 Subt_Index : Node_Id := First_Index (Id);
5138 Target_Index : Node_Id :=
5139 First_Index (Etype
5140 (Subtype_Mark (Subtype_Indication (N))));
5141 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5143 begin
5144 while Present (Subt_Index) loop
5145 if ((Nkind (Subt_Index) = N_Identifier
5146 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5147 or else Nkind (Subt_Index) = N_Subtype_Indication)
5148 and then
5149 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5150 then
5151 declare
5152 Target_Typ : constant Entity_Id :=
5153 Etype (Target_Index);
5154 begin
5155 R_Checks :=
5156 Get_Range_Checks
5157 (Scalar_Range (Etype (Subt_Index)),
5158 Target_Typ,
5159 Etype (Subt_Index),
5160 Defining_Identifier (N));
5162 -- Reset Has_Dynamic_Range_Check on the subtype to
5163 -- prevent elision of the index check due to a dynamic
5164 -- check generated for a preceding index (needed since
5165 -- Insert_Range_Checks tries to avoid generating
5166 -- redundant checks on a given declaration).
5168 Set_Has_Dynamic_Range_Check (N, False);
5170 Insert_Range_Checks
5171 (R_Checks,
5173 Target_Typ,
5174 Sloc (Defining_Identifier (N)));
5176 -- Record whether this index involved a dynamic check
5178 Has_Dyn_Chk :=
5179 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5180 end;
5181 end if;
5183 Next_Index (Subt_Index);
5184 Next_Index (Target_Index);
5185 end loop;
5187 -- Finally, mark whether the subtype involves dynamic checks
5189 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5190 end;
5191 end if;
5192 end if;
5194 -- A type invariant applies to any subtype in its scope, in particular
5195 -- to a generic actual.
5197 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5198 Set_Has_Invariants (Id);
5199 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5200 end if;
5202 -- Make sure that generic actual types are properly frozen. The subtype
5203 -- is marked as a generic actual type when the enclosing instance is
5204 -- analyzed, so here we identify the subtype from the tree structure.
5206 if Expander_Active
5207 and then Is_Generic_Actual_Type (Id)
5208 and then In_Instance
5209 and then not Comes_From_Source (N)
5210 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5211 and then Is_Frozen (T)
5212 then
5213 Freeze_Before (N, Id);
5214 end if;
5216 Set_Optimize_Alignment_Flags (Id);
5217 Check_Eliminated (Id);
5219 <<Leave>>
5220 if Has_Aspects (N) then
5221 Analyze_Aspect_Specifications (N, Id);
5222 end if;
5224 Analyze_Dimension (N);
5226 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5227 -- indications on composite types where the constraints are dynamic.
5228 -- Note that object declarations and aggregates generate implicit
5229 -- subtype declarations, which this covers. One special case is that the
5230 -- implicitly generated "=" for discriminated types includes an
5231 -- offending subtype declaration, which is harmless, so we ignore it
5232 -- here.
5234 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5235 declare
5236 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5237 begin
5238 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5239 and then not (Is_Internal (Id)
5240 and then Is_TSS (Scope (Id),
5241 TSS_Composite_Equality))
5242 and then not Within_Init_Proc
5243 and then not All_Composite_Constraints_Static (Cstr)
5244 then
5245 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5246 end if;
5247 end;
5248 end if;
5249 end Analyze_Subtype_Declaration;
5251 --------------------------------
5252 -- Analyze_Subtype_Indication --
5253 --------------------------------
5255 procedure Analyze_Subtype_Indication (N : Node_Id) is
5256 T : constant Entity_Id := Subtype_Mark (N);
5257 R : constant Node_Id := Range_Expression (Constraint (N));
5259 begin
5260 Analyze (T);
5262 if R /= Error then
5263 Analyze (R);
5264 Set_Etype (N, Etype (R));
5265 Resolve (R, Entity (T));
5266 else
5267 Set_Error_Posted (R);
5268 Set_Error_Posted (T);
5269 end if;
5270 end Analyze_Subtype_Indication;
5272 --------------------------
5273 -- Analyze_Variant_Part --
5274 --------------------------
5276 procedure Analyze_Variant_Part (N : Node_Id) is
5277 Discr_Name : Node_Id;
5278 Discr_Type : Entity_Id;
5280 procedure Process_Variant (A : Node_Id);
5281 -- Analyze declarations for a single variant
5283 package Analyze_Variant_Choices is
5284 new Generic_Analyze_Choices (Process_Variant);
5285 use Analyze_Variant_Choices;
5287 ---------------------
5288 -- Process_Variant --
5289 ---------------------
5291 procedure Process_Variant (A : Node_Id) is
5292 CL : constant Node_Id := Component_List (A);
5293 begin
5294 if not Null_Present (CL) then
5295 Analyze_Declarations (Component_Items (CL));
5297 if Present (Variant_Part (CL)) then
5298 Analyze (Variant_Part (CL));
5299 end if;
5300 end if;
5301 end Process_Variant;
5303 -- Start of processing for Analyze_Variant_Part
5305 begin
5306 Discr_Name := Name (N);
5307 Analyze (Discr_Name);
5309 -- If Discr_Name bad, get out (prevent cascaded errors)
5311 if Etype (Discr_Name) = Any_Type then
5312 return;
5313 end if;
5315 -- Check invalid discriminant in variant part
5317 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5318 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5319 end if;
5321 Discr_Type := Etype (Entity (Discr_Name));
5323 if not Is_Discrete_Type (Discr_Type) then
5324 Error_Msg_N
5325 ("discriminant in a variant part must be of a discrete type",
5326 Name (N));
5327 return;
5328 end if;
5330 -- Now analyze the choices, which also analyzes the declarations that
5331 -- are associated with each choice.
5333 Analyze_Choices (Variants (N), Discr_Type);
5335 -- Note: we used to instantiate and call Check_Choices here to check
5336 -- that the choices covered the discriminant, but it's too early to do
5337 -- that because of statically predicated subtypes, whose analysis may
5338 -- be deferred to their freeze point which may be as late as the freeze
5339 -- point of the containing record. So this call is now to be found in
5340 -- Freeze_Record_Declaration.
5342 end Analyze_Variant_Part;
5344 ----------------------------
5345 -- Array_Type_Declaration --
5346 ----------------------------
5348 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5349 Component_Def : constant Node_Id := Component_Definition (Def);
5350 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5351 Element_Type : Entity_Id;
5352 Implicit_Base : Entity_Id;
5353 Index : Node_Id;
5354 Related_Id : Entity_Id := Empty;
5355 Nb_Index : Nat;
5356 P : constant Node_Id := Parent (Def);
5357 Priv : Entity_Id;
5359 begin
5360 if Nkind (Def) = N_Constrained_Array_Definition then
5361 Index := First (Discrete_Subtype_Definitions (Def));
5362 else
5363 Index := First (Subtype_Marks (Def));
5364 end if;
5366 -- Find proper names for the implicit types which may be public. In case
5367 -- of anonymous arrays we use the name of the first object of that type
5368 -- as prefix.
5370 if No (T) then
5371 Related_Id := Defining_Identifier (P);
5372 else
5373 Related_Id := T;
5374 end if;
5376 Nb_Index := 1;
5377 while Present (Index) loop
5378 Analyze (Index);
5380 -- Test for odd case of trying to index a type by the type itself
5382 if Is_Entity_Name (Index) and then Entity (Index) = T then
5383 Error_Msg_N ("type& cannot be indexed by itself", Index);
5384 Set_Entity (Index, Standard_Boolean);
5385 Set_Etype (Index, Standard_Boolean);
5386 end if;
5388 -- Check SPARK restriction requiring a subtype mark
5390 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5391 Check_SPARK_05_Restriction ("subtype mark required", Index);
5392 end if;
5394 -- Add a subtype declaration for each index of private array type
5395 -- declaration whose etype is also private. For example:
5397 -- package Pkg is
5398 -- type Index is private;
5399 -- private
5400 -- type Table is array (Index) of ...
5401 -- end;
5403 -- This is currently required by the expander for the internally
5404 -- generated equality subprogram of records with variant parts in
5405 -- which the etype of some component is such private type.
5407 if Ekind (Current_Scope) = E_Package
5408 and then In_Private_Part (Current_Scope)
5409 and then Has_Private_Declaration (Etype (Index))
5410 then
5411 declare
5412 Loc : constant Source_Ptr := Sloc (Def);
5413 New_E : Entity_Id;
5414 Decl : Entity_Id;
5416 begin
5417 New_E := Make_Temporary (Loc, 'T');
5418 Set_Is_Internal (New_E);
5420 Decl :=
5421 Make_Subtype_Declaration (Loc,
5422 Defining_Identifier => New_E,
5423 Subtype_Indication =>
5424 New_Occurrence_Of (Etype (Index), Loc));
5426 Insert_Before (Parent (Def), Decl);
5427 Analyze (Decl);
5428 Set_Etype (Index, New_E);
5430 -- If the index is a range the Entity attribute is not
5431 -- available. Example:
5433 -- package Pkg is
5434 -- type T is private;
5435 -- private
5436 -- type T is new Natural;
5437 -- Table : array (T(1) .. T(10)) of Boolean;
5438 -- end Pkg;
5440 if Nkind (Index) /= N_Range then
5441 Set_Entity (Index, New_E);
5442 end if;
5443 end;
5444 end if;
5446 Make_Index (Index, P, Related_Id, Nb_Index);
5448 -- Check error of subtype with predicate for index type
5450 Bad_Predicated_Subtype_Use
5451 ("subtype& has predicate, not allowed as index subtype",
5452 Index, Etype (Index));
5454 -- Move to next index
5456 Next_Index (Index);
5457 Nb_Index := Nb_Index + 1;
5458 end loop;
5460 -- Process subtype indication if one is present
5462 if Present (Component_Typ) then
5463 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5465 Set_Etype (Component_Typ, Element_Type);
5467 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5468 Check_SPARK_05_Restriction
5469 ("subtype mark required", Component_Typ);
5470 end if;
5472 -- Ada 2005 (AI-230): Access Definition case
5474 else pragma Assert (Present (Access_Definition (Component_Def)));
5476 -- Indicate that the anonymous access type is created by the
5477 -- array type declaration.
5479 Element_Type := Access_Definition
5480 (Related_Nod => P,
5481 N => Access_Definition (Component_Def));
5482 Set_Is_Local_Anonymous_Access (Element_Type);
5484 -- Propagate the parent. This field is needed if we have to generate
5485 -- the master_id associated with an anonymous access to task type
5486 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5488 Set_Parent (Element_Type, Parent (T));
5490 -- Ada 2005 (AI-230): In case of components that are anonymous access
5491 -- types the level of accessibility depends on the enclosing type
5492 -- declaration
5494 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5496 -- Ada 2005 (AI-254)
5498 declare
5499 CD : constant Node_Id :=
5500 Access_To_Subprogram_Definition
5501 (Access_Definition (Component_Def));
5502 begin
5503 if Present (CD) and then Protected_Present (CD) then
5504 Element_Type :=
5505 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5506 end if;
5507 end;
5508 end if;
5510 -- Constrained array case
5512 if No (T) then
5513 T := Create_Itype (E_Void, P, Related_Id, 'T');
5514 end if;
5516 if Nkind (Def) = N_Constrained_Array_Definition then
5518 -- Establish Implicit_Base as unconstrained base type
5520 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5522 Set_Etype (Implicit_Base, Implicit_Base);
5523 Set_Scope (Implicit_Base, Current_Scope);
5524 Set_Has_Delayed_Freeze (Implicit_Base);
5525 Set_Default_SSO (Implicit_Base);
5527 -- The constrained array type is a subtype of the unconstrained one
5529 Set_Ekind (T, E_Array_Subtype);
5530 Init_Size_Align (T);
5531 Set_Etype (T, Implicit_Base);
5532 Set_Scope (T, Current_Scope);
5533 Set_Is_Constrained (T);
5534 Set_First_Index (T,
5535 First (Discrete_Subtype_Definitions (Def)));
5536 Set_Has_Delayed_Freeze (T);
5538 -- Complete setup of implicit base type
5540 Set_First_Index (Implicit_Base, First_Index (T));
5541 Set_Component_Type (Implicit_Base, Element_Type);
5542 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5543 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5544 Set_Component_Size (Implicit_Base, Uint_0);
5545 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5546 Set_Has_Controlled_Component (Implicit_Base,
5547 Has_Controlled_Component (Element_Type)
5548 or else Is_Controlled_Active (Element_Type));
5549 Set_Finalize_Storage_Only (Implicit_Base,
5550 Finalize_Storage_Only (Element_Type));
5552 -- Inherit the "ghostness" from the constrained array type
5554 if Ghost_Mode > None or else Is_Ghost_Entity (T) then
5555 Set_Is_Ghost_Entity (Implicit_Base);
5556 end if;
5558 -- Unconstrained array case
5560 else
5561 Set_Ekind (T, E_Array_Type);
5562 Init_Size_Align (T);
5563 Set_Etype (T, T);
5564 Set_Scope (T, Current_Scope);
5565 Set_Component_Size (T, Uint_0);
5566 Set_Is_Constrained (T, False);
5567 Set_First_Index (T, First (Subtype_Marks (Def)));
5568 Set_Has_Delayed_Freeze (T, True);
5569 Set_Has_Task (T, Has_Task (Element_Type));
5570 Set_Has_Protected (T, Has_Protected (Element_Type));
5571 Set_Has_Controlled_Component (T, Has_Controlled_Component
5572 (Element_Type)
5573 or else
5574 Is_Controlled_Active (Element_Type));
5575 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5576 (Element_Type));
5577 Set_Default_SSO (T);
5578 end if;
5580 -- Common attributes for both cases
5582 Set_Component_Type (Base_Type (T), Element_Type);
5583 Set_Packed_Array_Impl_Type (T, Empty);
5585 if Aliased_Present (Component_Definition (Def)) then
5586 Check_SPARK_05_Restriction
5587 ("aliased is not allowed", Component_Definition (Def));
5588 Set_Has_Aliased_Components (Etype (T));
5589 end if;
5591 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5592 -- array type to ensure that objects of this type are initialized.
5594 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5595 Set_Can_Never_Be_Null (T);
5597 if Null_Exclusion_Present (Component_Definition (Def))
5599 -- No need to check itypes because in their case this check was
5600 -- done at their point of creation
5602 and then not Is_Itype (Element_Type)
5603 then
5604 Error_Msg_N
5605 ("`NOT NULL` not allowed (null already excluded)",
5606 Subtype_Indication (Component_Definition (Def)));
5607 end if;
5608 end if;
5610 Priv := Private_Component (Element_Type);
5612 if Present (Priv) then
5614 -- Check for circular definitions
5616 if Priv = Any_Type then
5617 Set_Component_Type (Etype (T), Any_Type);
5619 -- There is a gap in the visibility of operations on the composite
5620 -- type only if the component type is defined in a different scope.
5622 elsif Scope (Priv) = Current_Scope then
5623 null;
5625 elsif Is_Limited_Type (Priv) then
5626 Set_Is_Limited_Composite (Etype (T));
5627 Set_Is_Limited_Composite (T);
5628 else
5629 Set_Is_Private_Composite (Etype (T));
5630 Set_Is_Private_Composite (T);
5631 end if;
5632 end if;
5634 -- A syntax error in the declaration itself may lead to an empty index
5635 -- list, in which case do a minimal patch.
5637 if No (First_Index (T)) then
5638 Error_Msg_N ("missing index definition in array type declaration", T);
5640 declare
5641 Indexes : constant List_Id :=
5642 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5643 begin
5644 Set_Discrete_Subtype_Definitions (Def, Indexes);
5645 Set_First_Index (T, First (Indexes));
5646 return;
5647 end;
5648 end if;
5650 -- Create a concatenation operator for the new type. Internal array
5651 -- types created for packed entities do not need such, they are
5652 -- compatible with the user-defined type.
5654 if Number_Dimensions (T) = 1
5655 and then not Is_Packed_Array_Impl_Type (T)
5656 then
5657 New_Concatenation_Op (T);
5658 end if;
5660 -- In the case of an unconstrained array the parser has already verified
5661 -- that all the indexes are unconstrained but we still need to make sure
5662 -- that the element type is constrained.
5664 if not Is_Definite_Subtype (Element_Type) then
5665 Error_Msg_N
5666 ("unconstrained element type in array declaration",
5667 Subtype_Indication (Component_Def));
5669 elsif Is_Abstract_Type (Element_Type) then
5670 Error_Msg_N
5671 ("the type of a component cannot be abstract",
5672 Subtype_Indication (Component_Def));
5673 end if;
5675 -- There may be an invariant declared for the component type, but
5676 -- the construction of the component invariant checking procedure
5677 -- takes place during expansion.
5678 end Array_Type_Declaration;
5680 ------------------------------------------------------
5681 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5682 ------------------------------------------------------
5684 function Replace_Anonymous_Access_To_Protected_Subprogram
5685 (N : Node_Id) return Entity_Id
5687 Loc : constant Source_Ptr := Sloc (N);
5689 Curr_Scope : constant Scope_Stack_Entry :=
5690 Scope_Stack.Table (Scope_Stack.Last);
5692 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5694 Acc : Node_Id;
5695 -- Access definition in declaration
5697 Comp : Node_Id;
5698 -- Object definition or formal definition with an access definition
5700 Decl : Node_Id;
5701 -- Declaration of anonymous access to subprogram type
5703 Spec : Node_Id;
5704 -- Original specification in access to subprogram
5706 P : Node_Id;
5708 begin
5709 Set_Is_Internal (Anon);
5711 case Nkind (N) is
5712 when N_Component_Declaration |
5713 N_Unconstrained_Array_Definition |
5714 N_Constrained_Array_Definition =>
5715 Comp := Component_Definition (N);
5716 Acc := Access_Definition (Comp);
5718 when N_Discriminant_Specification =>
5719 Comp := Discriminant_Type (N);
5720 Acc := Comp;
5722 when N_Parameter_Specification =>
5723 Comp := Parameter_Type (N);
5724 Acc := Comp;
5726 when N_Access_Function_Definition =>
5727 Comp := Result_Definition (N);
5728 Acc := Comp;
5730 when N_Object_Declaration =>
5731 Comp := Object_Definition (N);
5732 Acc := Comp;
5734 when N_Function_Specification =>
5735 Comp := Result_Definition (N);
5736 Acc := Comp;
5738 when others =>
5739 raise Program_Error;
5740 end case;
5742 Spec := Access_To_Subprogram_Definition (Acc);
5744 Decl :=
5745 Make_Full_Type_Declaration (Loc,
5746 Defining_Identifier => Anon,
5747 Type_Definition => Copy_Separate_Tree (Spec));
5749 Mark_Rewrite_Insertion (Decl);
5751 -- In ASIS mode, analyze the profile on the original node, because
5752 -- the separate copy does not provide enough links to recover the
5753 -- original tree. Analysis is limited to type annotations, within
5754 -- a temporary scope that serves as an anonymous subprogram to collect
5755 -- otherwise useless temporaries and itypes.
5757 if ASIS_Mode then
5758 declare
5759 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5761 begin
5762 if Nkind (Spec) = N_Access_Function_Definition then
5763 Set_Ekind (Typ, E_Function);
5764 else
5765 Set_Ekind (Typ, E_Procedure);
5766 end if;
5768 Set_Parent (Typ, N);
5769 Set_Scope (Typ, Current_Scope);
5770 Push_Scope (Typ);
5772 -- Nothing to do if procedure is parameterless
5774 if Present (Parameter_Specifications (Spec)) then
5775 Process_Formals (Parameter_Specifications (Spec), Spec);
5776 end if;
5778 if Nkind (Spec) = N_Access_Function_Definition then
5779 declare
5780 Def : constant Node_Id := Result_Definition (Spec);
5782 begin
5783 -- The result might itself be an anonymous access type, so
5784 -- have to recurse.
5786 if Nkind (Def) = N_Access_Definition then
5787 if Present (Access_To_Subprogram_Definition (Def)) then
5788 Set_Etype
5789 (Def,
5790 Replace_Anonymous_Access_To_Protected_Subprogram
5791 (Spec));
5792 else
5793 Find_Type (Subtype_Mark (Def));
5794 end if;
5796 else
5797 Find_Type (Def);
5798 end if;
5799 end;
5800 end if;
5802 End_Scope;
5803 end;
5804 end if;
5806 -- Insert the new declaration in the nearest enclosing scope. If the
5807 -- node is a body and N is its return type, the declaration belongs in
5808 -- the enclosing scope.
5810 P := Parent (N);
5812 if Nkind (P) = N_Subprogram_Body
5813 and then Nkind (N) = N_Function_Specification
5814 then
5815 P := Parent (P);
5816 end if;
5818 while Present (P) and then not Has_Declarations (P) loop
5819 P := Parent (P);
5820 end loop;
5822 pragma Assert (Present (P));
5824 if Nkind (P) = N_Package_Specification then
5825 Prepend (Decl, Visible_Declarations (P));
5826 else
5827 Prepend (Decl, Declarations (P));
5828 end if;
5830 -- Replace the anonymous type with an occurrence of the new declaration.
5831 -- In all cases the rewritten node does not have the null-exclusion
5832 -- attribute because (if present) it was already inherited by the
5833 -- anonymous entity (Anon). Thus, in case of components we do not
5834 -- inherit this attribute.
5836 if Nkind (N) = N_Parameter_Specification then
5837 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5838 Set_Etype (Defining_Identifier (N), Anon);
5839 Set_Null_Exclusion_Present (N, False);
5841 elsif Nkind (N) = N_Object_Declaration then
5842 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5843 Set_Etype (Defining_Identifier (N), Anon);
5845 elsif Nkind (N) = N_Access_Function_Definition then
5846 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5848 elsif Nkind (N) = N_Function_Specification then
5849 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5850 Set_Etype (Defining_Unit_Name (N), Anon);
5852 else
5853 Rewrite (Comp,
5854 Make_Component_Definition (Loc,
5855 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5856 end if;
5858 Mark_Rewrite_Insertion (Comp);
5860 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
5861 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
5862 and then not Is_Type (Current_Scope))
5863 then
5865 -- Declaration can be analyzed in the current scope.
5867 Analyze (Decl);
5869 else
5870 -- Temporarily remove the current scope (record or subprogram) from
5871 -- the stack to add the new declarations to the enclosing scope.
5872 -- The anonymous entity is an Itype with the proper attributes.
5874 Scope_Stack.Decrement_Last;
5875 Analyze (Decl);
5876 Set_Is_Itype (Anon);
5877 Set_Associated_Node_For_Itype (Anon, N);
5878 Scope_Stack.Append (Curr_Scope);
5879 end if;
5881 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5882 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5883 return Anon;
5884 end Replace_Anonymous_Access_To_Protected_Subprogram;
5886 -------------------------------
5887 -- Build_Derived_Access_Type --
5888 -------------------------------
5890 procedure Build_Derived_Access_Type
5891 (N : Node_Id;
5892 Parent_Type : Entity_Id;
5893 Derived_Type : Entity_Id)
5895 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5897 Desig_Type : Entity_Id;
5898 Discr : Entity_Id;
5899 Discr_Con_Elist : Elist_Id;
5900 Discr_Con_El : Elmt_Id;
5901 Subt : Entity_Id;
5903 begin
5904 -- Set the designated type so it is available in case this is an access
5905 -- to a self-referential type, e.g. a standard list type with a next
5906 -- pointer. Will be reset after subtype is built.
5908 Set_Directly_Designated_Type
5909 (Derived_Type, Designated_Type (Parent_Type));
5911 Subt := Process_Subtype (S, N);
5913 if Nkind (S) /= N_Subtype_Indication
5914 and then Subt /= Base_Type (Subt)
5915 then
5916 Set_Ekind (Derived_Type, E_Access_Subtype);
5917 end if;
5919 if Ekind (Derived_Type) = E_Access_Subtype then
5920 declare
5921 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5922 Ibase : constant Entity_Id :=
5923 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5924 Svg_Chars : constant Name_Id := Chars (Ibase);
5925 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5927 begin
5928 Copy_Node (Pbase, Ibase);
5930 Set_Chars (Ibase, Svg_Chars);
5931 Set_Next_Entity (Ibase, Svg_Next_E);
5932 Set_Sloc (Ibase, Sloc (Derived_Type));
5933 Set_Scope (Ibase, Scope (Derived_Type));
5934 Set_Freeze_Node (Ibase, Empty);
5935 Set_Is_Frozen (Ibase, False);
5936 Set_Comes_From_Source (Ibase, False);
5937 Set_Is_First_Subtype (Ibase, False);
5939 Set_Etype (Ibase, Pbase);
5940 Set_Etype (Derived_Type, Ibase);
5941 end;
5942 end if;
5944 Set_Directly_Designated_Type
5945 (Derived_Type, Designated_Type (Subt));
5947 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5948 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5949 Set_Size_Info (Derived_Type, Parent_Type);
5950 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5951 Set_Depends_On_Private (Derived_Type,
5952 Has_Private_Component (Derived_Type));
5953 Conditional_Delay (Derived_Type, Subt);
5955 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5956 -- that it is not redundant.
5958 if Null_Exclusion_Present (Type_Definition (N)) then
5959 Set_Can_Never_Be_Null (Derived_Type);
5961 -- What is with the "AND THEN FALSE" here ???
5963 if Can_Never_Be_Null (Parent_Type)
5964 and then False
5965 then
5966 Error_Msg_NE
5967 ("`NOT NULL` not allowed (& already excludes null)",
5968 N, Parent_Type);
5969 end if;
5971 elsif Can_Never_Be_Null (Parent_Type) then
5972 Set_Can_Never_Be_Null (Derived_Type);
5973 end if;
5975 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5976 -- the root type for this information.
5978 -- Apply range checks to discriminants for derived record case
5979 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5981 Desig_Type := Designated_Type (Derived_Type);
5982 if Is_Composite_Type (Desig_Type)
5983 and then (not Is_Array_Type (Desig_Type))
5984 and then Has_Discriminants (Desig_Type)
5985 and then Base_Type (Desig_Type) /= Desig_Type
5986 then
5987 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5988 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5990 Discr := First_Discriminant (Base_Type (Desig_Type));
5991 while Present (Discr_Con_El) loop
5992 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5993 Next_Elmt (Discr_Con_El);
5994 Next_Discriminant (Discr);
5995 end loop;
5996 end if;
5997 end Build_Derived_Access_Type;
5999 ------------------------------
6000 -- Build_Derived_Array_Type --
6001 ------------------------------
6003 procedure Build_Derived_Array_Type
6004 (N : Node_Id;
6005 Parent_Type : Entity_Id;
6006 Derived_Type : Entity_Id)
6008 Loc : constant Source_Ptr := Sloc (N);
6009 Tdef : constant Node_Id := Type_Definition (N);
6010 Indic : constant Node_Id := Subtype_Indication (Tdef);
6011 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6012 Implicit_Base : Entity_Id;
6013 New_Indic : Node_Id;
6015 procedure Make_Implicit_Base;
6016 -- If the parent subtype is constrained, the derived type is a subtype
6017 -- of an implicit base type derived from the parent base.
6019 ------------------------
6020 -- Make_Implicit_Base --
6021 ------------------------
6023 procedure Make_Implicit_Base is
6024 begin
6025 Implicit_Base :=
6026 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6028 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6029 Set_Etype (Implicit_Base, Parent_Base);
6031 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6032 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6034 Set_Has_Delayed_Freeze (Implicit_Base, True);
6036 -- Inherit the "ghostness" from the parent base type
6038 if Ghost_Mode > None or else Is_Ghost_Entity (Parent_Base) then
6039 Set_Is_Ghost_Entity (Implicit_Base);
6040 end if;
6041 end Make_Implicit_Base;
6043 -- Start of processing for Build_Derived_Array_Type
6045 begin
6046 if not Is_Constrained (Parent_Type) then
6047 if Nkind (Indic) /= N_Subtype_Indication then
6048 Set_Ekind (Derived_Type, E_Array_Type);
6050 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6051 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6053 Set_Has_Delayed_Freeze (Derived_Type, True);
6055 else
6056 Make_Implicit_Base;
6057 Set_Etype (Derived_Type, Implicit_Base);
6059 New_Indic :=
6060 Make_Subtype_Declaration (Loc,
6061 Defining_Identifier => Derived_Type,
6062 Subtype_Indication =>
6063 Make_Subtype_Indication (Loc,
6064 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6065 Constraint => Constraint (Indic)));
6067 Rewrite (N, New_Indic);
6068 Analyze (N);
6069 end if;
6071 else
6072 if Nkind (Indic) /= N_Subtype_Indication then
6073 Make_Implicit_Base;
6075 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6076 Set_Etype (Derived_Type, Implicit_Base);
6077 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6079 else
6080 Error_Msg_N ("illegal constraint on constrained type", Indic);
6081 end if;
6082 end if;
6084 -- If parent type is not a derived type itself, and is declared in
6085 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6086 -- the new type's concatenation operator since Derive_Subprograms
6087 -- will not inherit the parent's operator. If the parent type is
6088 -- unconstrained, the operator is of the unconstrained base type.
6090 if Number_Dimensions (Parent_Type) = 1
6091 and then not Is_Limited_Type (Parent_Type)
6092 and then not Is_Derived_Type (Parent_Type)
6093 and then not Is_Package_Or_Generic_Package
6094 (Scope (Base_Type (Parent_Type)))
6095 then
6096 if not Is_Constrained (Parent_Type)
6097 and then Is_Constrained (Derived_Type)
6098 then
6099 New_Concatenation_Op (Implicit_Base);
6100 else
6101 New_Concatenation_Op (Derived_Type);
6102 end if;
6103 end if;
6104 end Build_Derived_Array_Type;
6106 -----------------------------------
6107 -- Build_Derived_Concurrent_Type --
6108 -----------------------------------
6110 procedure Build_Derived_Concurrent_Type
6111 (N : Node_Id;
6112 Parent_Type : Entity_Id;
6113 Derived_Type : Entity_Id)
6115 Loc : constant Source_Ptr := Sloc (N);
6117 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6118 Corr_Decl : Node_Id;
6119 Corr_Decl_Needed : Boolean;
6120 -- If the derived type has fewer discriminants than its parent, the
6121 -- corresponding record is also a derived type, in order to account for
6122 -- the bound discriminants. We create a full type declaration for it in
6123 -- this case.
6125 Constraint_Present : constant Boolean :=
6126 Nkind (Subtype_Indication (Type_Definition (N))) =
6127 N_Subtype_Indication;
6129 D_Constraint : Node_Id;
6130 New_Constraint : Elist_Id;
6131 Old_Disc : Entity_Id;
6132 New_Disc : Entity_Id;
6133 New_N : Node_Id;
6135 begin
6136 Set_Stored_Constraint (Derived_Type, No_Elist);
6137 Corr_Decl_Needed := False;
6138 Old_Disc := Empty;
6140 if Present (Discriminant_Specifications (N))
6141 and then Constraint_Present
6142 then
6143 Old_Disc := First_Discriminant (Parent_Type);
6144 New_Disc := First (Discriminant_Specifications (N));
6145 while Present (New_Disc) and then Present (Old_Disc) loop
6146 Next_Discriminant (Old_Disc);
6147 Next (New_Disc);
6148 end loop;
6149 end if;
6151 if Present (Old_Disc) and then Expander_Active then
6153 -- The new type has fewer discriminants, so we need to create a new
6154 -- corresponding record, which is derived from the corresponding
6155 -- record of the parent, and has a stored constraint that captures
6156 -- the values of the discriminant constraints. The corresponding
6157 -- record is needed only if expander is active and code generation is
6158 -- enabled.
6160 -- The type declaration for the derived corresponding record has the
6161 -- same discriminant part and constraints as the current declaration.
6162 -- Copy the unanalyzed tree to build declaration.
6164 Corr_Decl_Needed := True;
6165 New_N := Copy_Separate_Tree (N);
6167 Corr_Decl :=
6168 Make_Full_Type_Declaration (Loc,
6169 Defining_Identifier => Corr_Record,
6170 Discriminant_Specifications =>
6171 Discriminant_Specifications (New_N),
6172 Type_Definition =>
6173 Make_Derived_Type_Definition (Loc,
6174 Subtype_Indication =>
6175 Make_Subtype_Indication (Loc,
6176 Subtype_Mark =>
6177 New_Occurrence_Of
6178 (Corresponding_Record_Type (Parent_Type), Loc),
6179 Constraint =>
6180 Constraint
6181 (Subtype_Indication (Type_Definition (New_N))))));
6182 end if;
6184 -- Copy Storage_Size and Relative_Deadline variables if task case
6186 if Is_Task_Type (Parent_Type) then
6187 Set_Storage_Size_Variable (Derived_Type,
6188 Storage_Size_Variable (Parent_Type));
6189 Set_Relative_Deadline_Variable (Derived_Type,
6190 Relative_Deadline_Variable (Parent_Type));
6191 end if;
6193 if Present (Discriminant_Specifications (N)) then
6194 Push_Scope (Derived_Type);
6195 Check_Or_Process_Discriminants (N, Derived_Type);
6197 if Constraint_Present then
6198 New_Constraint :=
6199 Expand_To_Stored_Constraint
6200 (Parent_Type,
6201 Build_Discriminant_Constraints
6202 (Parent_Type,
6203 Subtype_Indication (Type_Definition (N)), True));
6204 end if;
6206 End_Scope;
6208 elsif Constraint_Present then
6210 -- Build constrained subtype, copying the constraint, and derive
6211 -- from it to create a derived constrained type.
6213 declare
6214 Loc : constant Source_Ptr := Sloc (N);
6215 Anon : constant Entity_Id :=
6216 Make_Defining_Identifier (Loc,
6217 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6218 Decl : Node_Id;
6220 begin
6221 Decl :=
6222 Make_Subtype_Declaration (Loc,
6223 Defining_Identifier => Anon,
6224 Subtype_Indication =>
6225 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6226 Insert_Before (N, Decl);
6227 Analyze (Decl);
6229 Rewrite (Subtype_Indication (Type_Definition (N)),
6230 New_Occurrence_Of (Anon, Loc));
6231 Set_Analyzed (Derived_Type, False);
6232 Analyze (N);
6233 return;
6234 end;
6235 end if;
6237 -- By default, operations and private data are inherited from parent.
6238 -- However, in the presence of bound discriminants, a new corresponding
6239 -- record will be created, see below.
6241 Set_Has_Discriminants
6242 (Derived_Type, Has_Discriminants (Parent_Type));
6243 Set_Corresponding_Record_Type
6244 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6246 -- Is_Constrained is set according the parent subtype, but is set to
6247 -- False if the derived type is declared with new discriminants.
6249 Set_Is_Constrained
6250 (Derived_Type,
6251 (Is_Constrained (Parent_Type) or else Constraint_Present)
6252 and then not Present (Discriminant_Specifications (N)));
6254 if Constraint_Present then
6255 if not Has_Discriminants (Parent_Type) then
6256 Error_Msg_N ("untagged parent must have discriminants", N);
6258 elsif Present (Discriminant_Specifications (N)) then
6260 -- Verify that new discriminants are used to constrain old ones
6262 D_Constraint :=
6263 First
6264 (Constraints
6265 (Constraint (Subtype_Indication (Type_Definition (N)))));
6267 Old_Disc := First_Discriminant (Parent_Type);
6269 while Present (D_Constraint) loop
6270 if Nkind (D_Constraint) /= N_Discriminant_Association then
6272 -- Positional constraint. If it is a reference to a new
6273 -- discriminant, it constrains the corresponding old one.
6275 if Nkind (D_Constraint) = N_Identifier then
6276 New_Disc := First_Discriminant (Derived_Type);
6277 while Present (New_Disc) loop
6278 exit when Chars (New_Disc) = Chars (D_Constraint);
6279 Next_Discriminant (New_Disc);
6280 end loop;
6282 if Present (New_Disc) then
6283 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6284 end if;
6285 end if;
6287 Next_Discriminant (Old_Disc);
6289 -- if this is a named constraint, search by name for the old
6290 -- discriminants constrained by the new one.
6292 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6294 -- Find new discriminant with that name
6296 New_Disc := First_Discriminant (Derived_Type);
6297 while Present (New_Disc) loop
6298 exit when
6299 Chars (New_Disc) = Chars (Expression (D_Constraint));
6300 Next_Discriminant (New_Disc);
6301 end loop;
6303 if Present (New_Disc) then
6305 -- Verify that new discriminant renames some discriminant
6306 -- of the parent type, and associate the new discriminant
6307 -- with one or more old ones that it renames.
6309 declare
6310 Selector : Node_Id;
6312 begin
6313 Selector := First (Selector_Names (D_Constraint));
6314 while Present (Selector) loop
6315 Old_Disc := First_Discriminant (Parent_Type);
6316 while Present (Old_Disc) loop
6317 exit when Chars (Old_Disc) = Chars (Selector);
6318 Next_Discriminant (Old_Disc);
6319 end loop;
6321 if Present (Old_Disc) then
6322 Set_Corresponding_Discriminant
6323 (New_Disc, Old_Disc);
6324 end if;
6326 Next (Selector);
6327 end loop;
6328 end;
6329 end if;
6330 end if;
6332 Next (D_Constraint);
6333 end loop;
6335 New_Disc := First_Discriminant (Derived_Type);
6336 while Present (New_Disc) loop
6337 if No (Corresponding_Discriminant (New_Disc)) then
6338 Error_Msg_NE
6339 ("new discriminant& must constrain old one", N, New_Disc);
6341 elsif not
6342 Subtypes_Statically_Compatible
6343 (Etype (New_Disc),
6344 Etype (Corresponding_Discriminant (New_Disc)))
6345 then
6346 Error_Msg_NE
6347 ("& not statically compatible with parent discriminant",
6348 N, New_Disc);
6349 end if;
6351 Next_Discriminant (New_Disc);
6352 end loop;
6353 end if;
6355 elsif Present (Discriminant_Specifications (N)) then
6356 Error_Msg_N
6357 ("missing discriminant constraint in untagged derivation", N);
6358 end if;
6360 -- The entity chain of the derived type includes the new discriminants
6361 -- but shares operations with the parent.
6363 if Present (Discriminant_Specifications (N)) then
6364 Old_Disc := First_Discriminant (Parent_Type);
6365 while Present (Old_Disc) loop
6366 if No (Next_Entity (Old_Disc))
6367 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6368 then
6369 Set_Next_Entity
6370 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6371 exit;
6372 end if;
6374 Next_Discriminant (Old_Disc);
6375 end loop;
6377 else
6378 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6379 if Has_Discriminants (Parent_Type) then
6380 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6381 Set_Discriminant_Constraint (
6382 Derived_Type, Discriminant_Constraint (Parent_Type));
6383 end if;
6384 end if;
6386 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6388 Set_Has_Completion (Derived_Type);
6390 if Corr_Decl_Needed then
6391 Set_Stored_Constraint (Derived_Type, New_Constraint);
6392 Insert_After (N, Corr_Decl);
6393 Analyze (Corr_Decl);
6394 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6395 end if;
6396 end Build_Derived_Concurrent_Type;
6398 ------------------------------------
6399 -- Build_Derived_Enumeration_Type --
6400 ------------------------------------
6402 procedure Build_Derived_Enumeration_Type
6403 (N : Node_Id;
6404 Parent_Type : Entity_Id;
6405 Derived_Type : Entity_Id)
6407 Loc : constant Source_Ptr := Sloc (N);
6408 Def : constant Node_Id := Type_Definition (N);
6409 Indic : constant Node_Id := Subtype_Indication (Def);
6410 Implicit_Base : Entity_Id;
6411 Literal : Entity_Id;
6412 New_Lit : Entity_Id;
6413 Literals_List : List_Id;
6414 Type_Decl : Node_Id;
6415 Hi, Lo : Node_Id;
6416 Rang_Expr : Node_Id;
6418 begin
6419 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6420 -- not have explicit literals lists we need to process types derived
6421 -- from them specially. This is handled by Derived_Standard_Character.
6422 -- If the parent type is a generic type, there are no literals either,
6423 -- and we construct the same skeletal representation as for the generic
6424 -- parent type.
6426 if Is_Standard_Character_Type (Parent_Type) then
6427 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6429 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6430 declare
6431 Lo : Node_Id;
6432 Hi : Node_Id;
6434 begin
6435 if Nkind (Indic) /= N_Subtype_Indication then
6436 Lo :=
6437 Make_Attribute_Reference (Loc,
6438 Attribute_Name => Name_First,
6439 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6440 Set_Etype (Lo, Derived_Type);
6442 Hi :=
6443 Make_Attribute_Reference (Loc,
6444 Attribute_Name => Name_Last,
6445 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6446 Set_Etype (Hi, Derived_Type);
6448 Set_Scalar_Range (Derived_Type,
6449 Make_Range (Loc,
6450 Low_Bound => Lo,
6451 High_Bound => Hi));
6452 else
6454 -- Analyze subtype indication and verify compatibility
6455 -- with parent type.
6457 if Base_Type (Process_Subtype (Indic, N)) /=
6458 Base_Type (Parent_Type)
6459 then
6460 Error_Msg_N
6461 ("illegal constraint for formal discrete type", N);
6462 end if;
6463 end if;
6464 end;
6466 else
6467 -- If a constraint is present, analyze the bounds to catch
6468 -- premature usage of the derived literals.
6470 if Nkind (Indic) = N_Subtype_Indication
6471 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6472 then
6473 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6474 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6475 end if;
6477 -- Introduce an implicit base type for the derived type even if there
6478 -- is no constraint attached to it, since this seems closer to the
6479 -- Ada semantics. Build a full type declaration tree for the derived
6480 -- type using the implicit base type as the defining identifier. The
6481 -- build a subtype declaration tree which applies the constraint (if
6482 -- any) have it replace the derived type declaration.
6484 Literal := First_Literal (Parent_Type);
6485 Literals_List := New_List;
6486 while Present (Literal)
6487 and then Ekind (Literal) = E_Enumeration_Literal
6488 loop
6489 -- Literals of the derived type have the same representation as
6490 -- those of the parent type, but this representation can be
6491 -- overridden by an explicit representation clause. Indicate
6492 -- that there is no explicit representation given yet. These
6493 -- derived literals are implicit operations of the new type,
6494 -- and can be overridden by explicit ones.
6496 if Nkind (Literal) = N_Defining_Character_Literal then
6497 New_Lit :=
6498 Make_Defining_Character_Literal (Loc, Chars (Literal));
6499 else
6500 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6501 end if;
6503 Set_Ekind (New_Lit, E_Enumeration_Literal);
6504 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6505 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6506 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6507 Set_Alias (New_Lit, Literal);
6508 Set_Is_Known_Valid (New_Lit, True);
6510 Append (New_Lit, Literals_List);
6511 Next_Literal (Literal);
6512 end loop;
6514 Implicit_Base :=
6515 Make_Defining_Identifier (Sloc (Derived_Type),
6516 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6518 -- Indicate the proper nature of the derived type. This must be done
6519 -- before analysis of the literals, to recognize cases when a literal
6520 -- may be hidden by a previous explicit function definition (cf.
6521 -- c83031a).
6523 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6524 Set_Etype (Derived_Type, Implicit_Base);
6526 Type_Decl :=
6527 Make_Full_Type_Declaration (Loc,
6528 Defining_Identifier => Implicit_Base,
6529 Discriminant_Specifications => No_List,
6530 Type_Definition =>
6531 Make_Enumeration_Type_Definition (Loc, Literals_List));
6533 Mark_Rewrite_Insertion (Type_Decl);
6534 Insert_Before (N, Type_Decl);
6535 Analyze (Type_Decl);
6537 -- The anonymous base now has a full declaration, but this base
6538 -- is not a first subtype.
6540 Set_Is_First_Subtype (Implicit_Base, False);
6542 -- After the implicit base is analyzed its Etype needs to be changed
6543 -- to reflect the fact that it is derived from the parent type which
6544 -- was ignored during analysis. We also set the size at this point.
6546 Set_Etype (Implicit_Base, Parent_Type);
6548 Set_Size_Info (Implicit_Base, Parent_Type);
6549 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6550 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6552 -- Copy other flags from parent type
6554 Set_Has_Non_Standard_Rep
6555 (Implicit_Base, Has_Non_Standard_Rep
6556 (Parent_Type));
6557 Set_Has_Pragma_Ordered
6558 (Implicit_Base, Has_Pragma_Ordered
6559 (Parent_Type));
6560 Set_Has_Delayed_Freeze (Implicit_Base);
6562 -- Process the subtype indication including a validation check on the
6563 -- constraint, if any. If a constraint is given, its bounds must be
6564 -- implicitly converted to the new type.
6566 if Nkind (Indic) = N_Subtype_Indication then
6567 declare
6568 R : constant Node_Id :=
6569 Range_Expression (Constraint (Indic));
6571 begin
6572 if Nkind (R) = N_Range then
6573 Hi := Build_Scalar_Bound
6574 (High_Bound (R), Parent_Type, Implicit_Base);
6575 Lo := Build_Scalar_Bound
6576 (Low_Bound (R), Parent_Type, Implicit_Base);
6578 else
6579 -- Constraint is a Range attribute. Replace with explicit
6580 -- mention of the bounds of the prefix, which must be a
6581 -- subtype.
6583 Analyze (Prefix (R));
6584 Hi :=
6585 Convert_To (Implicit_Base,
6586 Make_Attribute_Reference (Loc,
6587 Attribute_Name => Name_Last,
6588 Prefix =>
6589 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6591 Lo :=
6592 Convert_To (Implicit_Base,
6593 Make_Attribute_Reference (Loc,
6594 Attribute_Name => Name_First,
6595 Prefix =>
6596 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6597 end if;
6598 end;
6600 else
6601 Hi :=
6602 Build_Scalar_Bound
6603 (Type_High_Bound (Parent_Type),
6604 Parent_Type, Implicit_Base);
6605 Lo :=
6606 Build_Scalar_Bound
6607 (Type_Low_Bound (Parent_Type),
6608 Parent_Type, Implicit_Base);
6609 end if;
6611 Rang_Expr :=
6612 Make_Range (Loc,
6613 Low_Bound => Lo,
6614 High_Bound => Hi);
6616 -- If we constructed a default range for the case where no range
6617 -- was given, then the expressions in the range must not freeze
6618 -- since they do not correspond to expressions in the source.
6620 if Nkind (Indic) /= N_Subtype_Indication then
6621 Set_Must_Not_Freeze (Lo);
6622 Set_Must_Not_Freeze (Hi);
6623 Set_Must_Not_Freeze (Rang_Expr);
6624 end if;
6626 Rewrite (N,
6627 Make_Subtype_Declaration (Loc,
6628 Defining_Identifier => Derived_Type,
6629 Subtype_Indication =>
6630 Make_Subtype_Indication (Loc,
6631 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6632 Constraint =>
6633 Make_Range_Constraint (Loc,
6634 Range_Expression => Rang_Expr))));
6636 Analyze (N);
6638 -- Propagate the aspects from the original type declaration to the
6639 -- declaration of the implicit base.
6641 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6643 -- Apply a range check. Since this range expression doesn't have an
6644 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6645 -- this right???
6647 if Nkind (Indic) = N_Subtype_Indication then
6648 Apply_Range_Check
6649 (Range_Expression (Constraint (Indic)), Parent_Type,
6650 Source_Typ => Entity (Subtype_Mark (Indic)));
6651 end if;
6652 end if;
6653 end Build_Derived_Enumeration_Type;
6655 --------------------------------
6656 -- Build_Derived_Numeric_Type --
6657 --------------------------------
6659 procedure Build_Derived_Numeric_Type
6660 (N : Node_Id;
6661 Parent_Type : Entity_Id;
6662 Derived_Type : Entity_Id)
6664 Loc : constant Source_Ptr := Sloc (N);
6665 Tdef : constant Node_Id := Type_Definition (N);
6666 Indic : constant Node_Id := Subtype_Indication (Tdef);
6667 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6668 No_Constraint : constant Boolean := Nkind (Indic) /=
6669 N_Subtype_Indication;
6670 Implicit_Base : Entity_Id;
6672 Lo : Node_Id;
6673 Hi : Node_Id;
6675 begin
6676 -- Process the subtype indication including a validation check on
6677 -- the constraint if any.
6679 Discard_Node (Process_Subtype (Indic, N));
6681 -- Introduce an implicit base type for the derived type even if there
6682 -- is no constraint attached to it, since this seems closer to the Ada
6683 -- semantics.
6685 Implicit_Base :=
6686 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6688 Set_Etype (Implicit_Base, Parent_Base);
6689 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6690 Set_Size_Info (Implicit_Base, Parent_Base);
6691 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6692 Set_Parent (Implicit_Base, Parent (Derived_Type));
6693 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6695 -- Set RM Size for discrete type or decimal fixed-point type
6696 -- Ordinary fixed-point is excluded, why???
6698 if Is_Discrete_Type (Parent_Base)
6699 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6700 then
6701 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6702 end if;
6704 Set_Has_Delayed_Freeze (Implicit_Base);
6706 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6707 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6709 Set_Scalar_Range (Implicit_Base,
6710 Make_Range (Loc,
6711 Low_Bound => Lo,
6712 High_Bound => Hi));
6714 if Has_Infinities (Parent_Base) then
6715 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6716 end if;
6718 -- The Derived_Type, which is the entity of the declaration, is a
6719 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6720 -- absence of an explicit constraint.
6722 Set_Etype (Derived_Type, Implicit_Base);
6724 -- If we did not have a constraint, then the Ekind is set from the
6725 -- parent type (otherwise Process_Subtype has set the bounds)
6727 if No_Constraint then
6728 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6729 end if;
6731 -- If we did not have a range constraint, then set the range from the
6732 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6734 if No_Constraint or else not Has_Range_Constraint (Indic) then
6735 Set_Scalar_Range (Derived_Type,
6736 Make_Range (Loc,
6737 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6738 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6739 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6741 if Has_Infinities (Parent_Type) then
6742 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6743 end if;
6745 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6746 end if;
6748 Set_Is_Descendent_Of_Address (Derived_Type,
6749 Is_Descendent_Of_Address (Parent_Type));
6750 Set_Is_Descendent_Of_Address (Implicit_Base,
6751 Is_Descendent_Of_Address (Parent_Type));
6753 -- Set remaining type-specific fields, depending on numeric type
6755 if Is_Modular_Integer_Type (Parent_Type) then
6756 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6758 Set_Non_Binary_Modulus
6759 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6761 Set_Is_Known_Valid
6762 (Implicit_Base, Is_Known_Valid (Parent_Base));
6764 elsif Is_Floating_Point_Type (Parent_Type) then
6766 -- Digits of base type is always copied from the digits value of
6767 -- the parent base type, but the digits of the derived type will
6768 -- already have been set if there was a constraint present.
6770 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6771 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6773 if No_Constraint then
6774 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6775 end if;
6777 elsif Is_Fixed_Point_Type (Parent_Type) then
6779 -- Small of base type and derived type are always copied from the
6780 -- parent base type, since smalls never change. The delta of the
6781 -- base type is also copied from the parent base type. However the
6782 -- delta of the derived type will have been set already if a
6783 -- constraint was present.
6785 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6786 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6787 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6789 if No_Constraint then
6790 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6791 end if;
6793 -- The scale and machine radix in the decimal case are always
6794 -- copied from the parent base type.
6796 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6797 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6798 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6800 Set_Machine_Radix_10
6801 (Derived_Type, Machine_Radix_10 (Parent_Base));
6802 Set_Machine_Radix_10
6803 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6805 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6807 if No_Constraint then
6808 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6810 else
6811 -- the analysis of the subtype_indication sets the
6812 -- digits value of the derived type.
6814 null;
6815 end if;
6816 end if;
6817 end if;
6819 if Is_Integer_Type (Parent_Type) then
6820 Set_Has_Shift_Operator
6821 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6822 end if;
6824 -- The type of the bounds is that of the parent type, and they
6825 -- must be converted to the derived type.
6827 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6829 -- The implicit_base should be frozen when the derived type is frozen,
6830 -- but note that it is used in the conversions of the bounds. For fixed
6831 -- types we delay the determination of the bounds until the proper
6832 -- freezing point. For other numeric types this is rejected by GCC, for
6833 -- reasons that are currently unclear (???), so we choose to freeze the
6834 -- implicit base now. In the case of integers and floating point types
6835 -- this is harmless because subsequent representation clauses cannot
6836 -- affect anything, but it is still baffling that we cannot use the
6837 -- same mechanism for all derived numeric types.
6839 -- There is a further complication: actually some representation
6840 -- clauses can affect the implicit base type. For example, attribute
6841 -- definition clauses for stream-oriented attributes need to set the
6842 -- corresponding TSS entries on the base type, and this normally
6843 -- cannot be done after the base type is frozen, so the circuitry in
6844 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6845 -- and not use Set_TSS in this case.
6847 -- There are also consequences for the case of delayed representation
6848 -- aspects for some cases. For example, a Size aspect is delayed and
6849 -- should not be evaluated to the freeze point. This early freezing
6850 -- means that the size attribute evaluation happens too early???
6852 if Is_Fixed_Point_Type (Parent_Type) then
6853 Conditional_Delay (Implicit_Base, Parent_Type);
6854 else
6855 Freeze_Before (N, Implicit_Base);
6856 end if;
6857 end Build_Derived_Numeric_Type;
6859 --------------------------------
6860 -- Build_Derived_Private_Type --
6861 --------------------------------
6863 procedure Build_Derived_Private_Type
6864 (N : Node_Id;
6865 Parent_Type : Entity_Id;
6866 Derived_Type : Entity_Id;
6867 Is_Completion : Boolean;
6868 Derive_Subps : Boolean := True)
6870 Loc : constant Source_Ptr := Sloc (N);
6871 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6872 Par_Scope : constant Entity_Id := Scope (Par_Base);
6873 Full_N : constant Node_Id := New_Copy_Tree (N);
6874 Full_Der : Entity_Id := New_Copy (Derived_Type);
6875 Full_P : Entity_Id;
6877 procedure Build_Full_Derivation;
6878 -- Build full derivation, i.e. derive from the full view
6880 procedure Copy_And_Build;
6881 -- Copy derived type declaration, replace parent with its full view,
6882 -- and build derivation
6884 ---------------------------
6885 -- Build_Full_Derivation --
6886 ---------------------------
6888 procedure Build_Full_Derivation is
6889 begin
6890 -- If parent scope is not open, install the declarations
6892 if not In_Open_Scopes (Par_Scope) then
6893 Install_Private_Declarations (Par_Scope);
6894 Install_Visible_Declarations (Par_Scope);
6895 Copy_And_Build;
6896 Uninstall_Declarations (Par_Scope);
6898 -- If parent scope is open and in another unit, and parent has a
6899 -- completion, then the derivation is taking place in the visible
6900 -- part of a child unit. In that case retrieve the full view of
6901 -- the parent momentarily.
6903 elsif not In_Same_Source_Unit (N, Parent_Type) then
6904 Full_P := Full_View (Parent_Type);
6905 Exchange_Declarations (Parent_Type);
6906 Copy_And_Build;
6907 Exchange_Declarations (Full_P);
6909 -- Otherwise it is a local derivation
6911 else
6912 Copy_And_Build;
6913 end if;
6914 end Build_Full_Derivation;
6916 --------------------
6917 -- Copy_And_Build --
6918 --------------------
6920 procedure Copy_And_Build is
6921 Full_Parent : Entity_Id := Parent_Type;
6923 begin
6924 -- If the parent is itself derived from another private type,
6925 -- installing the private declarations has not affected its
6926 -- privacy status, so use its own full view explicitly.
6928 if Is_Private_Type (Full_Parent)
6929 and then Present (Full_View (Full_Parent))
6930 then
6931 Full_Parent := Full_View (Full_Parent);
6932 end if;
6934 -- And its underlying full view if necessary
6936 if Is_Private_Type (Full_Parent)
6937 and then Present (Underlying_Full_View (Full_Parent))
6938 then
6939 Full_Parent := Underlying_Full_View (Full_Parent);
6940 end if;
6942 -- For record, access and most enumeration types, derivation from
6943 -- the full view requires a fully-fledged declaration. In the other
6944 -- cases, just use an itype.
6946 if Ekind (Full_Parent) in Record_Kind
6947 or else Ekind (Full_Parent) in Access_Kind
6948 or else
6949 (Ekind (Full_Parent) in Enumeration_Kind
6950 and then not Is_Standard_Character_Type (Full_Parent)
6951 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6952 then
6953 -- Copy and adjust declaration to provide a completion for what
6954 -- is originally a private declaration. Indicate that full view
6955 -- is internally generated.
6957 Set_Comes_From_Source (Full_N, False);
6958 Set_Comes_From_Source (Full_Der, False);
6959 Set_Parent (Full_Der, Full_N);
6960 Set_Defining_Identifier (Full_N, Full_Der);
6962 -- If there are no constraints, adjust the subtype mark
6964 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6965 N_Subtype_Indication
6966 then
6967 Set_Subtype_Indication
6968 (Type_Definition (Full_N),
6969 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6970 end if;
6972 Insert_After (N, Full_N);
6974 -- Build full view of derived type from full view of parent which
6975 -- is now installed. Subprograms have been derived on the partial
6976 -- view, the completion does not derive them anew.
6978 if Ekind (Full_Parent) in Record_Kind then
6980 -- If parent type is tagged, the completion inherits the proper
6981 -- primitive operations.
6983 if Is_Tagged_Type (Parent_Type) then
6984 Build_Derived_Record_Type
6985 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6986 else
6987 Build_Derived_Record_Type
6988 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6989 end if;
6991 else
6992 Build_Derived_Type
6993 (Full_N, Full_Parent, Full_Der,
6994 Is_Completion => False, Derive_Subps => False);
6995 end if;
6997 -- The full declaration has been introduced into the tree and
6998 -- processed in the step above. It should not be analyzed again
6999 -- (when encountered later in the current list of declarations)
7000 -- to prevent spurious name conflicts. The full entity remains
7001 -- invisible.
7003 Set_Analyzed (Full_N);
7005 else
7006 Full_Der :=
7007 Make_Defining_Identifier (Sloc (Derived_Type),
7008 Chars => Chars (Derived_Type));
7009 Set_Is_Itype (Full_Der);
7010 Set_Associated_Node_For_Itype (Full_Der, N);
7011 Set_Parent (Full_Der, N);
7012 Build_Derived_Type
7013 (N, Full_Parent, Full_Der,
7014 Is_Completion => False, Derive_Subps => False);
7015 end if;
7017 Set_Has_Private_Declaration (Full_Der);
7018 Set_Has_Private_Declaration (Derived_Type);
7020 Set_Scope (Full_Der, Scope (Derived_Type));
7021 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7022 Set_Has_Size_Clause (Full_Der, False);
7023 Set_Has_Alignment_Clause (Full_Der, False);
7024 Set_Has_Delayed_Freeze (Full_Der);
7025 Set_Is_Frozen (Full_Der, False);
7026 Set_Freeze_Node (Full_Der, Empty);
7027 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7028 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7030 -- The convention on the base type may be set in the private part
7031 -- and not propagated to the subtype until later, so we obtain the
7032 -- convention from the base type of the parent.
7034 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7035 end Copy_And_Build;
7037 -- Start of processing for Build_Derived_Private_Type
7039 begin
7040 if Is_Tagged_Type (Parent_Type) then
7041 Full_P := Full_View (Parent_Type);
7043 -- A type extension of a type with unknown discriminants is an
7044 -- indefinite type that the back-end cannot handle directly.
7045 -- We treat it as a private type, and build a completion that is
7046 -- derived from the full view of the parent, and hopefully has
7047 -- known discriminants.
7049 -- If the full view of the parent type has an underlying record view,
7050 -- use it to generate the underlying record view of this derived type
7051 -- (required for chains of derivations with unknown discriminants).
7053 -- Minor optimization: we avoid the generation of useless underlying
7054 -- record view entities if the private type declaration has unknown
7055 -- discriminants but its corresponding full view has no
7056 -- discriminants.
7058 if Has_Unknown_Discriminants (Parent_Type)
7059 and then Present (Full_P)
7060 and then (Has_Discriminants (Full_P)
7061 or else Present (Underlying_Record_View (Full_P)))
7062 and then not In_Open_Scopes (Par_Scope)
7063 and then Expander_Active
7064 then
7065 declare
7066 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7067 New_Ext : constant Node_Id :=
7068 Copy_Separate_Tree
7069 (Record_Extension_Part (Type_Definition (N)));
7070 Decl : Node_Id;
7072 begin
7073 Build_Derived_Record_Type
7074 (N, Parent_Type, Derived_Type, Derive_Subps);
7076 -- Build anonymous completion, as a derivation from the full
7077 -- view of the parent. This is not a completion in the usual
7078 -- sense, because the current type is not private.
7080 Decl :=
7081 Make_Full_Type_Declaration (Loc,
7082 Defining_Identifier => Full_Der,
7083 Type_Definition =>
7084 Make_Derived_Type_Definition (Loc,
7085 Subtype_Indication =>
7086 New_Copy_Tree
7087 (Subtype_Indication (Type_Definition (N))),
7088 Record_Extension_Part => New_Ext));
7090 -- If the parent type has an underlying record view, use it
7091 -- here to build the new underlying record view.
7093 if Present (Underlying_Record_View (Full_P)) then
7094 pragma Assert
7095 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7096 = N_Identifier);
7097 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7098 Underlying_Record_View (Full_P));
7099 end if;
7101 Install_Private_Declarations (Par_Scope);
7102 Install_Visible_Declarations (Par_Scope);
7103 Insert_Before (N, Decl);
7105 -- Mark entity as an underlying record view before analysis,
7106 -- to avoid generating the list of its primitive operations
7107 -- (which is not really required for this entity) and thus
7108 -- prevent spurious errors associated with missing overriding
7109 -- of abstract primitives (overridden only for Derived_Type).
7111 Set_Ekind (Full_Der, E_Record_Type);
7112 Set_Is_Underlying_Record_View (Full_Der);
7113 Set_Default_SSO (Full_Der);
7115 Analyze (Decl);
7117 pragma Assert (Has_Discriminants (Full_Der)
7118 and then not Has_Unknown_Discriminants (Full_Der));
7120 Uninstall_Declarations (Par_Scope);
7122 -- Freeze the underlying record view, to prevent generation of
7123 -- useless dispatching information, which is simply shared with
7124 -- the real derived type.
7126 Set_Is_Frozen (Full_Der);
7128 -- If the derived type has access discriminants, create
7129 -- references to their anonymous types now, to prevent
7130 -- back-end problems when their first use is in generated
7131 -- bodies of primitives.
7133 declare
7134 E : Entity_Id;
7136 begin
7137 E := First_Entity (Full_Der);
7139 while Present (E) loop
7140 if Ekind (E) = E_Discriminant
7141 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7142 then
7143 Build_Itype_Reference (Etype (E), Decl);
7144 end if;
7146 Next_Entity (E);
7147 end loop;
7148 end;
7150 -- Set up links between real entity and underlying record view
7152 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7153 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7154 end;
7156 -- If discriminants are known, build derived record
7158 else
7159 Build_Derived_Record_Type
7160 (N, Parent_Type, Derived_Type, Derive_Subps);
7161 end if;
7163 return;
7165 elsif Has_Discriminants (Parent_Type) then
7167 -- Build partial view of derived type from partial view of parent.
7168 -- This must be done before building the full derivation because the
7169 -- second derivation will modify the discriminants of the first and
7170 -- the discriminants are chained with the rest of the components in
7171 -- the full derivation.
7173 Build_Derived_Record_Type
7174 (N, Parent_Type, Derived_Type, Derive_Subps);
7176 -- Build the full derivation if this is not the anonymous derived
7177 -- base type created by Build_Derived_Record_Type in the constrained
7178 -- case (see point 5. of its head comment) since we build it for the
7179 -- derived subtype. And skip it for protected types altogether, as
7180 -- gigi does not use these types directly.
7182 if Present (Full_View (Parent_Type))
7183 and then not Is_Itype (Derived_Type)
7184 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7185 then
7186 declare
7187 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7188 Discr : Entity_Id;
7189 Last_Discr : Entity_Id;
7191 begin
7192 -- If this is not a completion, construct the implicit full
7193 -- view by deriving from the full view of the parent type.
7194 -- But if this is a completion, the derived private type
7195 -- being built is a full view and the full derivation can
7196 -- only be its underlying full view.
7198 Build_Full_Derivation;
7200 if not Is_Completion then
7201 Set_Full_View (Derived_Type, Full_Der);
7202 else
7203 Set_Underlying_Full_View (Derived_Type, Full_Der);
7204 end if;
7206 if not Is_Base_Type (Derived_Type) then
7207 Set_Full_View (Der_Base, Base_Type (Full_Der));
7208 end if;
7210 -- Copy the discriminant list from full view to the partial
7211 -- view (base type and its subtype). Gigi requires that the
7212 -- partial and full views have the same discriminants.
7214 -- Note that since the partial view points to discriminants
7215 -- in the full view, their scope will be that of the full
7216 -- view. This might cause some front end problems and need
7217 -- adjustment???
7219 Discr := First_Discriminant (Base_Type (Full_Der));
7220 Set_First_Entity (Der_Base, Discr);
7222 loop
7223 Last_Discr := Discr;
7224 Next_Discriminant (Discr);
7225 exit when No (Discr);
7226 end loop;
7228 Set_Last_Entity (Der_Base, Last_Discr);
7229 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7230 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7232 Set_Stored_Constraint
7233 (Full_Der, Stored_Constraint (Derived_Type));
7234 end;
7235 end if;
7237 elsif Present (Full_View (Parent_Type))
7238 and then Has_Discriminants (Full_View (Parent_Type))
7239 then
7240 if Has_Unknown_Discriminants (Parent_Type)
7241 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7242 N_Subtype_Indication
7243 then
7244 Error_Msg_N
7245 ("cannot constrain type with unknown discriminants",
7246 Subtype_Indication (Type_Definition (N)));
7247 return;
7248 end if;
7250 -- If this is not a completion, construct the implicit full view by
7251 -- deriving from the full view of the parent type. But if this is a
7252 -- completion, the derived private type being built is a full view
7253 -- and the full derivation can only be its underlying full view.
7255 Build_Full_Derivation;
7257 if not Is_Completion then
7258 Set_Full_View (Derived_Type, Full_Der);
7259 else
7260 Set_Underlying_Full_View (Derived_Type, Full_Der);
7261 end if;
7263 -- In any case, the primitive operations are inherited from the
7264 -- parent type, not from the internal full view.
7266 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7268 if Derive_Subps then
7269 Derive_Subprograms (Parent_Type, Derived_Type);
7270 end if;
7272 Set_Stored_Constraint (Derived_Type, No_Elist);
7273 Set_Is_Constrained
7274 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7276 else
7277 -- Untagged type, No discriminants on either view
7279 if Nkind (Subtype_Indication (Type_Definition (N))) =
7280 N_Subtype_Indication
7281 then
7282 Error_Msg_N
7283 ("illegal constraint on type without discriminants", N);
7284 end if;
7286 if Present (Discriminant_Specifications (N))
7287 and then Present (Full_View (Parent_Type))
7288 and then not Is_Tagged_Type (Full_View (Parent_Type))
7289 then
7290 Error_Msg_N ("cannot add discriminants to untagged type", N);
7291 end if;
7293 Set_Stored_Constraint (Derived_Type, No_Elist);
7294 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7295 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7296 Set_Disable_Controlled (Derived_Type, Disable_Controlled
7297 (Parent_Type));
7298 Set_Has_Controlled_Component
7299 (Derived_Type, Has_Controlled_Component
7300 (Parent_Type));
7302 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7304 if not Is_Controlled_Active (Parent_Type) then
7305 Set_Finalize_Storage_Only
7306 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7307 end if;
7309 -- If this is not a completion, construct the implicit full view by
7310 -- deriving from the full view of the parent type.
7312 -- ??? If the parent is untagged private and its completion is
7313 -- tagged, this mechanism will not work because we cannot derive from
7314 -- the tagged full view unless we have an extension.
7316 if Present (Full_View (Parent_Type))
7317 and then not Is_Tagged_Type (Full_View (Parent_Type))
7318 and then not Is_Completion
7319 then
7320 Build_Full_Derivation;
7321 Set_Full_View (Derived_Type, Full_Der);
7322 end if;
7323 end if;
7325 Set_Has_Unknown_Discriminants (Derived_Type,
7326 Has_Unknown_Discriminants (Parent_Type));
7328 if Is_Private_Type (Derived_Type) then
7329 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7330 end if;
7332 -- If the parent base type is in scope, add the derived type to its
7333 -- list of private dependents, because its full view may become
7334 -- visible subsequently (in a nested private part, a body, or in a
7335 -- further child unit).
7337 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7338 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7340 -- Check for unusual case where a type completed by a private
7341 -- derivation occurs within a package nested in a child unit, and
7342 -- the parent is declared in an ancestor.
7344 if Is_Child_Unit (Scope (Current_Scope))
7345 and then Is_Completion
7346 and then In_Private_Part (Current_Scope)
7347 and then Scope (Parent_Type) /= Current_Scope
7349 -- Note that if the parent has a completion in the private part,
7350 -- (which is itself a derivation from some other private type)
7351 -- it is that completion that is visible, there is no full view
7352 -- available, and no special processing is needed.
7354 and then Present (Full_View (Parent_Type))
7355 then
7356 -- In this case, the full view of the parent type will become
7357 -- visible in the body of the enclosing child, and only then will
7358 -- the current type be possibly non-private. Build an underlying
7359 -- full view that will be installed when the enclosing child body
7360 -- is compiled.
7362 if Present (Underlying_Full_View (Derived_Type)) then
7363 Full_Der := Underlying_Full_View (Derived_Type);
7364 else
7365 Build_Full_Derivation;
7366 Set_Underlying_Full_View (Derived_Type, Full_Der);
7367 end if;
7369 -- The full view will be used to swap entities on entry/exit to
7370 -- the body, and must appear in the entity list for the package.
7372 Append_Entity (Full_Der, Scope (Derived_Type));
7373 end if;
7374 end if;
7375 end Build_Derived_Private_Type;
7377 -------------------------------
7378 -- Build_Derived_Record_Type --
7379 -------------------------------
7381 -- 1. INTRODUCTION
7383 -- Ideally we would like to use the same model of type derivation for
7384 -- tagged and untagged record types. Unfortunately this is not quite
7385 -- possible because the semantics of representation clauses is different
7386 -- for tagged and untagged records under inheritance. Consider the
7387 -- following:
7389 -- type R (...) is [tagged] record ... end record;
7390 -- type T (...) is new R (...) [with ...];
7392 -- The representation clauses for T can specify a completely different
7393 -- record layout from R's. Hence the same component can be placed in two
7394 -- very different positions in objects of type T and R. If R and T are
7395 -- tagged types, representation clauses for T can only specify the layout
7396 -- of non inherited components, thus components that are common in R and T
7397 -- have the same position in objects of type R and T.
7399 -- This has two implications. The first is that the entire tree for R's
7400 -- declaration needs to be copied for T in the untagged case, so that T
7401 -- can be viewed as a record type of its own with its own representation
7402 -- clauses. The second implication is the way we handle discriminants.
7403 -- Specifically, in the untagged case we need a way to communicate to Gigi
7404 -- what are the real discriminants in the record, while for the semantics
7405 -- we need to consider those introduced by the user to rename the
7406 -- discriminants in the parent type. This is handled by introducing the
7407 -- notion of stored discriminants. See below for more.
7409 -- Fortunately the way regular components are inherited can be handled in
7410 -- the same way in tagged and untagged types.
7412 -- To complicate things a bit more the private view of a private extension
7413 -- cannot be handled in the same way as the full view (for one thing the
7414 -- semantic rules are somewhat different). We will explain what differs
7415 -- below.
7417 -- 2. DISCRIMINANTS UNDER INHERITANCE
7419 -- The semantic rules governing the discriminants of derived types are
7420 -- quite subtle.
7422 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7423 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7425 -- If parent type has discriminants, then the discriminants that are
7426 -- declared in the derived type are [3.4 (11)]:
7428 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7429 -- there is one;
7431 -- o Otherwise, each discriminant of the parent type (implicitly declared
7432 -- in the same order with the same specifications). In this case, the
7433 -- discriminants are said to be "inherited", or if unknown in the parent
7434 -- are also unknown in the derived type.
7436 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7438 -- o The parent subtype must be constrained;
7440 -- o If the parent type is not a tagged type, then each discriminant of
7441 -- the derived type must be used in the constraint defining a parent
7442 -- subtype. [Implementation note: This ensures that the new discriminant
7443 -- can share storage with an existing discriminant.]
7445 -- For the derived type each discriminant of the parent type is either
7446 -- inherited, constrained to equal some new discriminant of the derived
7447 -- type, or constrained to the value of an expression.
7449 -- When inherited or constrained to equal some new discriminant, the
7450 -- parent discriminant and the discriminant of the derived type are said
7451 -- to "correspond".
7453 -- If a discriminant of the parent type is constrained to a specific value
7454 -- in the derived type definition, then the discriminant is said to be
7455 -- "specified" by that derived type definition.
7457 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7459 -- We have spoken about stored discriminants in point 1 (introduction)
7460 -- above. There are two sort of stored discriminants: implicit and
7461 -- explicit. As long as the derived type inherits the same discriminants as
7462 -- the root record type, stored discriminants are the same as regular
7463 -- discriminants, and are said to be implicit. However, if any discriminant
7464 -- in the root type was renamed in the derived type, then the derived
7465 -- type will contain explicit stored discriminants. Explicit stored
7466 -- discriminants are discriminants in addition to the semantically visible
7467 -- discriminants defined for the derived type. Stored discriminants are
7468 -- used by Gigi to figure out what are the physical discriminants in
7469 -- objects of the derived type (see precise definition in einfo.ads).
7470 -- As an example, consider the following:
7472 -- type R (D1, D2, D3 : Int) is record ... end record;
7473 -- type T1 is new R;
7474 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7475 -- type T3 is new T2;
7476 -- type T4 (Y : Int) is new T3 (Y, 99);
7478 -- The following table summarizes the discriminants and stored
7479 -- discriminants in R and T1 through T4.
7481 -- Type Discrim Stored Discrim Comment
7482 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7483 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7484 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7485 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7486 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7488 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7489 -- find the corresponding discriminant in the parent type, while
7490 -- Original_Record_Component (abbreviated ORC below), the actual physical
7491 -- component that is renamed. Finally the field Is_Completely_Hidden
7492 -- (abbreviated ICH below) is set for all explicit stored discriminants
7493 -- (see einfo.ads for more info). For the above example this gives:
7495 -- Discrim CD ORC ICH
7496 -- ^^^^^^^ ^^ ^^^ ^^^
7497 -- D1 in R empty itself no
7498 -- D2 in R empty itself no
7499 -- D3 in R empty itself no
7501 -- D1 in T1 D1 in R itself no
7502 -- D2 in T1 D2 in R itself no
7503 -- D3 in T1 D3 in R itself no
7505 -- X1 in T2 D3 in T1 D3 in T2 no
7506 -- X2 in T2 D1 in T1 D1 in T2 no
7507 -- D1 in T2 empty itself yes
7508 -- D2 in T2 empty itself yes
7509 -- D3 in T2 empty itself yes
7511 -- X1 in T3 X1 in T2 D3 in T3 no
7512 -- X2 in T3 X2 in T2 D1 in T3 no
7513 -- D1 in T3 empty itself yes
7514 -- D2 in T3 empty itself yes
7515 -- D3 in T3 empty itself yes
7517 -- Y in T4 X1 in T3 D3 in T3 no
7518 -- D1 in T3 empty itself yes
7519 -- D2 in T3 empty itself yes
7520 -- D3 in T3 empty itself yes
7522 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7524 -- Type derivation for tagged types is fairly straightforward. If no
7525 -- discriminants are specified by the derived type, these are inherited
7526 -- from the parent. No explicit stored discriminants are ever necessary.
7527 -- The only manipulation that is done to the tree is that of adding a
7528 -- _parent field with parent type and constrained to the same constraint
7529 -- specified for the parent in the derived type definition. For instance:
7531 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7532 -- type T1 is new R with null record;
7533 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7535 -- are changed into:
7537 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7538 -- _parent : R (D1, D2, D3);
7539 -- end record;
7541 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7542 -- _parent : T1 (X2, 88, X1);
7543 -- end record;
7545 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7546 -- ORC and ICH fields are:
7548 -- Discrim CD ORC ICH
7549 -- ^^^^^^^ ^^ ^^^ ^^^
7550 -- D1 in R empty itself no
7551 -- D2 in R empty itself no
7552 -- D3 in R empty itself no
7554 -- D1 in T1 D1 in R D1 in R no
7555 -- D2 in T1 D2 in R D2 in R no
7556 -- D3 in T1 D3 in R D3 in R no
7558 -- X1 in T2 D3 in T1 D3 in R no
7559 -- X2 in T2 D1 in T1 D1 in R no
7561 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7563 -- Regardless of whether we dealing with a tagged or untagged type
7564 -- we will transform all derived type declarations of the form
7566 -- type T is new R (...) [with ...];
7567 -- or
7568 -- subtype S is R (...);
7569 -- type T is new S [with ...];
7570 -- into
7571 -- type BT is new R [with ...];
7572 -- subtype T is BT (...);
7574 -- That is, the base derived type is constrained only if it has no
7575 -- discriminants. The reason for doing this is that GNAT's semantic model
7576 -- assumes that a base type with discriminants is unconstrained.
7578 -- Note that, strictly speaking, the above transformation is not always
7579 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7581 -- procedure B34011A is
7582 -- type REC (D : integer := 0) is record
7583 -- I : Integer;
7584 -- end record;
7586 -- package P is
7587 -- type T6 is new Rec;
7588 -- function F return T6;
7589 -- end P;
7591 -- use P;
7592 -- package Q6 is
7593 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7594 -- end Q6;
7596 -- The definition of Q6.U is illegal. However transforming Q6.U into
7598 -- type BaseU is new T6;
7599 -- subtype U is BaseU (Q6.F.I)
7601 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7602 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7603 -- the transformation described above.
7605 -- There is another instance where the above transformation is incorrect.
7606 -- Consider:
7608 -- package Pack is
7609 -- type Base (D : Integer) is tagged null record;
7610 -- procedure P (X : Base);
7612 -- type Der is new Base (2) with null record;
7613 -- procedure P (X : Der);
7614 -- end Pack;
7616 -- Then the above transformation turns this into
7618 -- type Der_Base is new Base with null record;
7619 -- -- procedure P (X : Base) is implicitly inherited here
7620 -- -- as procedure P (X : Der_Base).
7622 -- subtype Der is Der_Base (2);
7623 -- procedure P (X : Der);
7624 -- -- The overriding of P (X : Der_Base) is illegal since we
7625 -- -- have a parameter conformance problem.
7627 -- To get around this problem, after having semantically processed Der_Base
7628 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7629 -- Discriminant_Constraint from Der so that when parameter conformance is
7630 -- checked when P is overridden, no semantic errors are flagged.
7632 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7634 -- Regardless of whether we are dealing with a tagged or untagged type
7635 -- we will transform all derived type declarations of the form
7637 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7638 -- type T is new R [with ...];
7639 -- into
7640 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7642 -- The reason for such transformation is that it allows us to implement a
7643 -- very clean form of component inheritance as explained below.
7645 -- Note that this transformation is not achieved by direct tree rewriting
7646 -- and manipulation, but rather by redoing the semantic actions that the
7647 -- above transformation will entail. This is done directly in routine
7648 -- Inherit_Components.
7650 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7652 -- In both tagged and untagged derived types, regular non discriminant
7653 -- components are inherited in the derived type from the parent type. In
7654 -- the absence of discriminants component, inheritance is straightforward
7655 -- as components can simply be copied from the parent.
7657 -- If the parent has discriminants, inheriting components constrained with
7658 -- these discriminants requires caution. Consider the following example:
7660 -- type R (D1, D2 : Positive) is [tagged] record
7661 -- S : String (D1 .. D2);
7662 -- end record;
7664 -- type T1 is new R [with null record];
7665 -- type T2 (X : positive) is new R (1, X) [with null record];
7667 -- As explained in 6. above, T1 is rewritten as
7668 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7669 -- which makes the treatment for T1 and T2 identical.
7671 -- What we want when inheriting S, is that references to D1 and D2 in R are
7672 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7673 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7674 -- with either discriminant references in the derived type or expressions.
7675 -- This replacement is achieved as follows: before inheriting R's
7676 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7677 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7678 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7679 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7680 -- by String (1 .. X).
7682 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7684 -- We explain here the rules governing private type extensions relevant to
7685 -- type derivation. These rules are explained on the following example:
7687 -- type D [(...)] is new A [(...)] with private; <-- partial view
7688 -- type D [(...)] is new P [(...)] with null record; <-- full view
7690 -- Type A is called the ancestor subtype of the private extension.
7691 -- Type P is the parent type of the full view of the private extension. It
7692 -- must be A or a type derived from A.
7694 -- The rules concerning the discriminants of private type extensions are
7695 -- [7.3(10-13)]:
7697 -- o If a private extension inherits known discriminants from the ancestor
7698 -- subtype, then the full view must also inherit its discriminants from
7699 -- the ancestor subtype and the parent subtype of the full view must be
7700 -- constrained if and only if the ancestor subtype is constrained.
7702 -- o If a partial view has unknown discriminants, then the full view may
7703 -- define a definite or an indefinite subtype, with or without
7704 -- discriminants.
7706 -- o If a partial view has neither known nor unknown discriminants, then
7707 -- the full view must define a definite subtype.
7709 -- o If the ancestor subtype of a private extension has constrained
7710 -- discriminants, then the parent subtype of the full view must impose a
7711 -- statically matching constraint on those discriminants.
7713 -- This means that only the following forms of private extensions are
7714 -- allowed:
7716 -- type D is new A with private; <-- partial view
7717 -- type D is new P with null record; <-- full view
7719 -- If A has no discriminants than P has no discriminants, otherwise P must
7720 -- inherit A's discriminants.
7722 -- type D is new A (...) with private; <-- partial view
7723 -- type D is new P (:::) with null record; <-- full view
7725 -- P must inherit A's discriminants and (...) and (:::) must statically
7726 -- match.
7728 -- subtype A is R (...);
7729 -- type D is new A with private; <-- partial view
7730 -- type D is new P with null record; <-- full view
7732 -- P must have inherited R's discriminants and must be derived from A or
7733 -- any of its subtypes.
7735 -- type D (..) is new A with private; <-- partial view
7736 -- type D (..) is new P [(:::)] with null record; <-- full view
7738 -- No specific constraints on P's discriminants or constraint (:::).
7739 -- Note that A can be unconstrained, but the parent subtype P must either
7740 -- be constrained or (:::) must be present.
7742 -- type D (..) is new A [(...)] with private; <-- partial view
7743 -- type D (..) is new P [(:::)] with null record; <-- full view
7745 -- P's constraints on A's discriminants must statically match those
7746 -- imposed by (...).
7748 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7750 -- The full view of a private extension is handled exactly as described
7751 -- above. The model chose for the private view of a private extension is
7752 -- the same for what concerns discriminants (i.e. they receive the same
7753 -- treatment as in the tagged case). However, the private view of the
7754 -- private extension always inherits the components of the parent base,
7755 -- without replacing any discriminant reference. Strictly speaking this is
7756 -- incorrect. However, Gigi never uses this view to generate code so this
7757 -- is a purely semantic issue. In theory, a set of transformations similar
7758 -- to those given in 5. and 6. above could be applied to private views of
7759 -- private extensions to have the same model of component inheritance as
7760 -- for non private extensions. However, this is not done because it would
7761 -- further complicate private type processing. Semantically speaking, this
7762 -- leaves us in an uncomfortable situation. As an example consider:
7764 -- package Pack is
7765 -- type R (D : integer) is tagged record
7766 -- S : String (1 .. D);
7767 -- end record;
7768 -- procedure P (X : R);
7769 -- type T is new R (1) with private;
7770 -- private
7771 -- type T is new R (1) with null record;
7772 -- end;
7774 -- This is transformed into:
7776 -- package Pack is
7777 -- type R (D : integer) is tagged record
7778 -- S : String (1 .. D);
7779 -- end record;
7780 -- procedure P (X : R);
7781 -- type T is new R (1) with private;
7782 -- private
7783 -- type BaseT is new R with null record;
7784 -- subtype T is BaseT (1);
7785 -- end;
7787 -- (strictly speaking the above is incorrect Ada)
7789 -- From the semantic standpoint the private view of private extension T
7790 -- should be flagged as constrained since one can clearly have
7792 -- Obj : T;
7794 -- in a unit withing Pack. However, when deriving subprograms for the
7795 -- private view of private extension T, T must be seen as unconstrained
7796 -- since T has discriminants (this is a constraint of the current
7797 -- subprogram derivation model). Thus, when processing the private view of
7798 -- a private extension such as T, we first mark T as unconstrained, we
7799 -- process it, we perform program derivation and just before returning from
7800 -- Build_Derived_Record_Type we mark T as constrained.
7802 -- ??? Are there are other uncomfortable cases that we will have to
7803 -- deal with.
7805 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7807 -- Types that are derived from a visible record type and have a private
7808 -- extension present other peculiarities. They behave mostly like private
7809 -- types, but if they have primitive operations defined, these will not
7810 -- have the proper signatures for further inheritance, because other
7811 -- primitive operations will use the implicit base that we define for
7812 -- private derivations below. This affect subprogram inheritance (see
7813 -- Derive_Subprograms for details). We also derive the implicit base from
7814 -- the base type of the full view, so that the implicit base is a record
7815 -- type and not another private type, This avoids infinite loops.
7817 procedure Build_Derived_Record_Type
7818 (N : Node_Id;
7819 Parent_Type : Entity_Id;
7820 Derived_Type : Entity_Id;
7821 Derive_Subps : Boolean := True)
7823 Discriminant_Specs : constant Boolean :=
7824 Present (Discriminant_Specifications (N));
7825 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7826 Loc : constant Source_Ptr := Sloc (N);
7827 Private_Extension : constant Boolean :=
7828 Nkind (N) = N_Private_Extension_Declaration;
7829 Assoc_List : Elist_Id;
7830 Constraint_Present : Boolean;
7831 Constrs : Elist_Id;
7832 Discrim : Entity_Id;
7833 Indic : Node_Id;
7834 Inherit_Discrims : Boolean := False;
7835 Last_Discrim : Entity_Id;
7836 New_Base : Entity_Id;
7837 New_Decl : Node_Id;
7838 New_Discrs : Elist_Id;
7839 New_Indic : Node_Id;
7840 Parent_Base : Entity_Id;
7841 Save_Etype : Entity_Id;
7842 Save_Discr_Constr : Elist_Id;
7843 Save_Next_Entity : Entity_Id;
7844 Type_Def : Node_Id;
7846 Discs : Elist_Id := New_Elmt_List;
7847 -- An empty Discs list means that there were no constraints in the
7848 -- subtype indication or that there was an error processing it.
7850 begin
7851 if Ekind (Parent_Type) = E_Record_Type_With_Private
7852 and then Present (Full_View (Parent_Type))
7853 and then Has_Discriminants (Parent_Type)
7854 then
7855 Parent_Base := Base_Type (Full_View (Parent_Type));
7856 else
7857 Parent_Base := Base_Type (Parent_Type);
7858 end if;
7860 -- AI05-0115 : if this is a derivation from a private type in some
7861 -- other scope that may lead to invisible components for the derived
7862 -- type, mark it accordingly.
7864 if Is_Private_Type (Parent_Type) then
7865 if Scope (Parent_Type) = Scope (Derived_Type) then
7866 null;
7868 elsif In_Open_Scopes (Scope (Parent_Type))
7869 and then In_Private_Part (Scope (Parent_Type))
7870 then
7871 null;
7873 else
7874 Set_Has_Private_Ancestor (Derived_Type);
7875 end if;
7877 else
7878 Set_Has_Private_Ancestor
7879 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7880 end if;
7882 -- Before we start the previously documented transformations, here is
7883 -- little fix for size and alignment of tagged types. Normally when we
7884 -- derive type D from type P, we copy the size and alignment of P as the
7885 -- default for D, and in the absence of explicit representation clauses
7886 -- for D, the size and alignment are indeed the same as the parent.
7888 -- But this is wrong for tagged types, since fields may be added, and
7889 -- the default size may need to be larger, and the default alignment may
7890 -- need to be larger.
7892 -- We therefore reset the size and alignment fields in the tagged case.
7893 -- Note that the size and alignment will in any case be at least as
7894 -- large as the parent type (since the derived type has a copy of the
7895 -- parent type in the _parent field)
7897 -- The type is also marked as being tagged here, which is needed when
7898 -- processing components with a self-referential anonymous access type
7899 -- in the call to Check_Anonymous_Access_Components below. Note that
7900 -- this flag is also set later on for completeness.
7902 if Is_Tagged then
7903 Set_Is_Tagged_Type (Derived_Type);
7904 Init_Size_Align (Derived_Type);
7905 end if;
7907 -- STEP 0a: figure out what kind of derived type declaration we have
7909 if Private_Extension then
7910 Type_Def := N;
7911 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7912 Set_Default_SSO (Derived_Type);
7914 else
7915 Type_Def := Type_Definition (N);
7917 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7918 -- Parent_Base can be a private type or private extension. However,
7919 -- for tagged types with an extension the newly added fields are
7920 -- visible and hence the Derived_Type is always an E_Record_Type.
7921 -- (except that the parent may have its own private fields).
7922 -- For untagged types we preserve the Ekind of the Parent_Base.
7924 if Present (Record_Extension_Part (Type_Def)) then
7925 Set_Ekind (Derived_Type, E_Record_Type);
7926 Set_Default_SSO (Derived_Type);
7928 -- Create internal access types for components with anonymous
7929 -- access types.
7931 if Ada_Version >= Ada_2005 then
7932 Check_Anonymous_Access_Components
7933 (N, Derived_Type, Derived_Type,
7934 Component_List (Record_Extension_Part (Type_Def)));
7935 end if;
7937 else
7938 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7939 end if;
7940 end if;
7942 -- Indic can either be an N_Identifier if the subtype indication
7943 -- contains no constraint or an N_Subtype_Indication if the subtype
7944 -- indication has a constraint.
7946 Indic := Subtype_Indication (Type_Def);
7947 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7949 -- Check that the type has visible discriminants. The type may be
7950 -- a private type with unknown discriminants whose full view has
7951 -- discriminants which are invisible.
7953 if Constraint_Present then
7954 if not Has_Discriminants (Parent_Base)
7955 or else
7956 (Has_Unknown_Discriminants (Parent_Base)
7957 and then Is_Private_Type (Parent_Base))
7958 then
7959 Error_Msg_N
7960 ("invalid constraint: type has no discriminant",
7961 Constraint (Indic));
7963 Constraint_Present := False;
7964 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7966 elsif Is_Constrained (Parent_Type) then
7967 Error_Msg_N
7968 ("invalid constraint: parent type is already constrained",
7969 Constraint (Indic));
7971 Constraint_Present := False;
7972 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7973 end if;
7974 end if;
7976 -- STEP 0b: If needed, apply transformation given in point 5. above
7978 if not Private_Extension
7979 and then Has_Discriminants (Parent_Type)
7980 and then not Discriminant_Specs
7981 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7982 then
7983 -- First, we must analyze the constraint (see comment in point 5.)
7984 -- The constraint may come from the subtype indication of the full
7985 -- declaration.
7987 if Constraint_Present then
7988 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7990 -- If there is no explicit constraint, there might be one that is
7991 -- inherited from a constrained parent type. In that case verify that
7992 -- it conforms to the constraint in the partial view. In perverse
7993 -- cases the parent subtypes of the partial and full view can have
7994 -- different constraints.
7996 elsif Present (Stored_Constraint (Parent_Type)) then
7997 New_Discrs := Stored_Constraint (Parent_Type);
7999 else
8000 New_Discrs := No_Elist;
8001 end if;
8003 if Has_Discriminants (Derived_Type)
8004 and then Has_Private_Declaration (Derived_Type)
8005 and then Present (Discriminant_Constraint (Derived_Type))
8006 and then Present (New_Discrs)
8007 then
8008 -- Verify that constraints of the full view statically match
8009 -- those given in the partial view.
8011 declare
8012 C1, C2 : Elmt_Id;
8014 begin
8015 C1 := First_Elmt (New_Discrs);
8016 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8017 while Present (C1) and then Present (C2) loop
8018 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8019 or else
8020 (Is_OK_Static_Expression (Node (C1))
8021 and then Is_OK_Static_Expression (Node (C2))
8022 and then
8023 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8024 then
8025 null;
8027 else
8028 if Constraint_Present then
8029 Error_Msg_N
8030 ("constraint not conformant to previous declaration",
8031 Node (C1));
8032 else
8033 Error_Msg_N
8034 ("constraint of full view is incompatible "
8035 & "with partial view", N);
8036 end if;
8037 end if;
8039 Next_Elmt (C1);
8040 Next_Elmt (C2);
8041 end loop;
8042 end;
8043 end if;
8045 -- Insert and analyze the declaration for the unconstrained base type
8047 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8049 New_Decl :=
8050 Make_Full_Type_Declaration (Loc,
8051 Defining_Identifier => New_Base,
8052 Type_Definition =>
8053 Make_Derived_Type_Definition (Loc,
8054 Abstract_Present => Abstract_Present (Type_Def),
8055 Limited_Present => Limited_Present (Type_Def),
8056 Subtype_Indication =>
8057 New_Occurrence_Of (Parent_Base, Loc),
8058 Record_Extension_Part =>
8059 Relocate_Node (Record_Extension_Part (Type_Def)),
8060 Interface_List => Interface_List (Type_Def)));
8062 Set_Parent (New_Decl, Parent (N));
8063 Mark_Rewrite_Insertion (New_Decl);
8064 Insert_Before (N, New_Decl);
8066 -- In the extension case, make sure ancestor is frozen appropriately
8067 -- (see also non-discriminated case below).
8069 if Present (Record_Extension_Part (Type_Def))
8070 or else Is_Interface (Parent_Base)
8071 then
8072 Freeze_Before (New_Decl, Parent_Type);
8073 end if;
8075 -- Note that this call passes False for the Derive_Subps parameter
8076 -- because subprogram derivation is deferred until after creating
8077 -- the subtype (see below).
8079 Build_Derived_Type
8080 (New_Decl, Parent_Base, New_Base,
8081 Is_Completion => False, Derive_Subps => False);
8083 -- ??? This needs re-examination to determine whether the
8084 -- above call can simply be replaced by a call to Analyze.
8086 Set_Analyzed (New_Decl);
8088 -- Insert and analyze the declaration for the constrained subtype
8090 if Constraint_Present then
8091 New_Indic :=
8092 Make_Subtype_Indication (Loc,
8093 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8094 Constraint => Relocate_Node (Constraint (Indic)));
8096 else
8097 declare
8098 Constr_List : constant List_Id := New_List;
8099 C : Elmt_Id;
8100 Expr : Node_Id;
8102 begin
8103 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8104 while Present (C) loop
8105 Expr := Node (C);
8107 -- It is safe here to call New_Copy_Tree since we called
8108 -- Force_Evaluation on each constraint previously
8109 -- in Build_Discriminant_Constraints.
8111 Append (New_Copy_Tree (Expr), To => Constr_List);
8113 Next_Elmt (C);
8114 end loop;
8116 New_Indic :=
8117 Make_Subtype_Indication (Loc,
8118 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8119 Constraint =>
8120 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8121 end;
8122 end if;
8124 Rewrite (N,
8125 Make_Subtype_Declaration (Loc,
8126 Defining_Identifier => Derived_Type,
8127 Subtype_Indication => New_Indic));
8129 Analyze (N);
8131 -- Derivation of subprograms must be delayed until the full subtype
8132 -- has been established, to ensure proper overriding of subprograms
8133 -- inherited by full types. If the derivations occurred as part of
8134 -- the call to Build_Derived_Type above, then the check for type
8135 -- conformance would fail because earlier primitive subprograms
8136 -- could still refer to the full type prior the change to the new
8137 -- subtype and hence would not match the new base type created here.
8138 -- Subprograms are not derived, however, when Derive_Subps is False
8139 -- (since otherwise there could be redundant derivations).
8141 if Derive_Subps then
8142 Derive_Subprograms (Parent_Type, Derived_Type);
8143 end if;
8145 -- For tagged types the Discriminant_Constraint of the new base itype
8146 -- is inherited from the first subtype so that no subtype conformance
8147 -- problem arise when the first subtype overrides primitive
8148 -- operations inherited by the implicit base type.
8150 if Is_Tagged then
8151 Set_Discriminant_Constraint
8152 (New_Base, Discriminant_Constraint (Derived_Type));
8153 end if;
8155 return;
8156 end if;
8158 -- If we get here Derived_Type will have no discriminants or it will be
8159 -- a discriminated unconstrained base type.
8161 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8163 if Is_Tagged then
8165 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8166 -- The declaration of a specific descendant of an interface type
8167 -- freezes the interface type (RM 13.14).
8169 if not Private_Extension or else Is_Interface (Parent_Base) then
8170 Freeze_Before (N, Parent_Type);
8171 end if;
8173 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8174 -- cannot be declared at a deeper level than its parent type is
8175 -- removed. The check on derivation within a generic body is also
8176 -- relaxed, but there's a restriction that a derived tagged type
8177 -- cannot be declared in a generic body if it's derived directly
8178 -- or indirectly from a formal type of that generic.
8180 if Ada_Version >= Ada_2005 then
8181 if Present (Enclosing_Generic_Body (Derived_Type)) then
8182 declare
8183 Ancestor_Type : Entity_Id;
8185 begin
8186 -- Check to see if any ancestor of the derived type is a
8187 -- formal type.
8189 Ancestor_Type := Parent_Type;
8190 while not Is_Generic_Type (Ancestor_Type)
8191 and then Etype (Ancestor_Type) /= Ancestor_Type
8192 loop
8193 Ancestor_Type := Etype (Ancestor_Type);
8194 end loop;
8196 -- If the derived type does have a formal type as an
8197 -- ancestor, then it's an error if the derived type is
8198 -- declared within the body of the generic unit that
8199 -- declares the formal type in its generic formal part. It's
8200 -- sufficient to check whether the ancestor type is declared
8201 -- inside the same generic body as the derived type (such as
8202 -- within a nested generic spec), in which case the
8203 -- derivation is legal. If the formal type is declared
8204 -- outside of that generic body, then it's guaranteed that
8205 -- the derived type is declared within the generic body of
8206 -- the generic unit declaring the formal type.
8208 if Is_Generic_Type (Ancestor_Type)
8209 and then Enclosing_Generic_Body (Ancestor_Type) /=
8210 Enclosing_Generic_Body (Derived_Type)
8211 then
8212 Error_Msg_NE
8213 ("parent type of& must not be descendant of formal type"
8214 & " of an enclosing generic body",
8215 Indic, Derived_Type);
8216 end if;
8217 end;
8218 end if;
8220 elsif Type_Access_Level (Derived_Type) /=
8221 Type_Access_Level (Parent_Type)
8222 and then not Is_Generic_Type (Derived_Type)
8223 then
8224 if Is_Controlled (Parent_Type) then
8225 Error_Msg_N
8226 ("controlled type must be declared at the library level",
8227 Indic);
8228 else
8229 Error_Msg_N
8230 ("type extension at deeper accessibility level than parent",
8231 Indic);
8232 end if;
8234 else
8235 declare
8236 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8237 begin
8238 if Present (GB)
8239 and then GB /= Enclosing_Generic_Body (Parent_Base)
8240 then
8241 Error_Msg_NE
8242 ("parent type of& must not be outside generic body"
8243 & " (RM 3.9.1(4))",
8244 Indic, Derived_Type);
8245 end if;
8246 end;
8247 end if;
8248 end if;
8250 -- Ada 2005 (AI-251)
8252 if Ada_Version >= Ada_2005 and then Is_Tagged then
8254 -- "The declaration of a specific descendant of an interface type
8255 -- freezes the interface type" (RM 13.14).
8257 declare
8258 Iface : Node_Id;
8259 begin
8260 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8261 Iface := First (Interface_List (Type_Def));
8262 while Present (Iface) loop
8263 Freeze_Before (N, Etype (Iface));
8264 Next (Iface);
8265 end loop;
8266 end if;
8267 end;
8268 end if;
8270 -- STEP 1b : preliminary cleanup of the full view of private types
8272 -- If the type is already marked as having discriminants, then it's the
8273 -- completion of a private type or private extension and we need to
8274 -- retain the discriminants from the partial view if the current
8275 -- declaration has Discriminant_Specifications so that we can verify
8276 -- conformance. However, we must remove any existing components that
8277 -- were inherited from the parent (and attached in Copy_And_Swap)
8278 -- because the full type inherits all appropriate components anyway, and
8279 -- we do not want the partial view's components interfering.
8281 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8282 Discrim := First_Discriminant (Derived_Type);
8283 loop
8284 Last_Discrim := Discrim;
8285 Next_Discriminant (Discrim);
8286 exit when No (Discrim);
8287 end loop;
8289 Set_Last_Entity (Derived_Type, Last_Discrim);
8291 -- In all other cases wipe out the list of inherited components (even
8292 -- inherited discriminants), it will be properly rebuilt here.
8294 else
8295 Set_First_Entity (Derived_Type, Empty);
8296 Set_Last_Entity (Derived_Type, Empty);
8297 end if;
8299 -- STEP 1c: Initialize some flags for the Derived_Type
8301 -- The following flags must be initialized here so that
8302 -- Process_Discriminants can check that discriminants of tagged types do
8303 -- not have a default initial value and that access discriminants are
8304 -- only specified for limited records. For completeness, these flags are
8305 -- also initialized along with all the other flags below.
8307 -- AI-419: Limitedness is not inherited from an interface parent, so to
8308 -- be limited in that case the type must be explicitly declared as
8309 -- limited. However, task and protected interfaces are always limited.
8311 if Limited_Present (Type_Def) then
8312 Set_Is_Limited_Record (Derived_Type);
8314 elsif Is_Limited_Record (Parent_Type)
8315 or else (Present (Full_View (Parent_Type))
8316 and then Is_Limited_Record (Full_View (Parent_Type)))
8317 then
8318 if not Is_Interface (Parent_Type)
8319 or else Is_Synchronized_Interface (Parent_Type)
8320 or else Is_Protected_Interface (Parent_Type)
8321 or else Is_Task_Interface (Parent_Type)
8322 then
8323 Set_Is_Limited_Record (Derived_Type);
8324 end if;
8325 end if;
8327 -- STEP 2a: process discriminants of derived type if any
8329 Push_Scope (Derived_Type);
8331 if Discriminant_Specs then
8332 Set_Has_Unknown_Discriminants (Derived_Type, False);
8334 -- The following call initializes fields Has_Discriminants and
8335 -- Discriminant_Constraint, unless we are processing the completion
8336 -- of a private type declaration.
8338 Check_Or_Process_Discriminants (N, Derived_Type);
8340 -- For untagged types, the constraint on the Parent_Type must be
8341 -- present and is used to rename the discriminants.
8343 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8344 Error_Msg_N ("untagged parent must have discriminants", Indic);
8346 elsif not Is_Tagged and then not Constraint_Present then
8347 Error_Msg_N
8348 ("discriminant constraint needed for derived untagged records",
8349 Indic);
8351 -- Otherwise the parent subtype must be constrained unless we have a
8352 -- private extension.
8354 elsif not Constraint_Present
8355 and then not Private_Extension
8356 and then not Is_Constrained (Parent_Type)
8357 then
8358 Error_Msg_N
8359 ("unconstrained type not allowed in this context", Indic);
8361 elsif Constraint_Present then
8362 -- The following call sets the field Corresponding_Discriminant
8363 -- for the discriminants in the Derived_Type.
8365 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8367 -- For untagged types all new discriminants must rename
8368 -- discriminants in the parent. For private extensions new
8369 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8371 Discrim := First_Discriminant (Derived_Type);
8372 while Present (Discrim) loop
8373 if not Is_Tagged
8374 and then No (Corresponding_Discriminant (Discrim))
8375 then
8376 Error_Msg_N
8377 ("new discriminants must constrain old ones", Discrim);
8379 elsif Private_Extension
8380 and then Present (Corresponding_Discriminant (Discrim))
8381 then
8382 Error_Msg_N
8383 ("only static constraints allowed for parent"
8384 & " discriminants in the partial view", Indic);
8385 exit;
8386 end if;
8388 -- If a new discriminant is used in the constraint, then its
8389 -- subtype must be statically compatible with the parent
8390 -- discriminant's subtype (3.7(15)).
8392 -- However, if the record contains an array constrained by
8393 -- the discriminant but with some different bound, the compiler
8394 -- attemps to create a smaller range for the discriminant type.
8395 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8396 -- the discriminant type is a scalar type, the check must use
8397 -- the original discriminant type in the parent declaration.
8399 declare
8400 Corr_Disc : constant Entity_Id :=
8401 Corresponding_Discriminant (Discrim);
8402 Disc_Type : constant Entity_Id := Etype (Discrim);
8403 Corr_Type : Entity_Id;
8405 begin
8406 if Present (Corr_Disc) then
8407 if Is_Scalar_Type (Disc_Type) then
8408 Corr_Type :=
8409 Entity (Discriminant_Type (Parent (Corr_Disc)));
8410 else
8411 Corr_Type := Etype (Corr_Disc);
8412 end if;
8414 if not
8415 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8416 then
8417 Error_Msg_N
8418 ("subtype must be compatible "
8419 & "with parent discriminant",
8420 Discrim);
8421 end if;
8422 end if;
8423 end;
8425 Next_Discriminant (Discrim);
8426 end loop;
8428 -- Check whether the constraints of the full view statically
8429 -- match those imposed by the parent subtype [7.3(13)].
8431 if Present (Stored_Constraint (Derived_Type)) then
8432 declare
8433 C1, C2 : Elmt_Id;
8435 begin
8436 C1 := First_Elmt (Discs);
8437 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8438 while Present (C1) and then Present (C2) loop
8439 if not
8440 Fully_Conformant_Expressions (Node (C1), Node (C2))
8441 then
8442 Error_Msg_N
8443 ("not conformant with previous declaration",
8444 Node (C1));
8445 end if;
8447 Next_Elmt (C1);
8448 Next_Elmt (C2);
8449 end loop;
8450 end;
8451 end if;
8452 end if;
8454 -- STEP 2b: No new discriminants, inherit discriminants if any
8456 else
8457 if Private_Extension then
8458 Set_Has_Unknown_Discriminants
8459 (Derived_Type,
8460 Has_Unknown_Discriminants (Parent_Type)
8461 or else Unknown_Discriminants_Present (N));
8463 -- The partial view of the parent may have unknown discriminants,
8464 -- but if the full view has discriminants and the parent type is
8465 -- in scope they must be inherited.
8467 elsif Has_Unknown_Discriminants (Parent_Type)
8468 and then
8469 (not Has_Discriminants (Parent_Type)
8470 or else not In_Open_Scopes (Scope (Parent_Type)))
8471 then
8472 Set_Has_Unknown_Discriminants (Derived_Type);
8473 end if;
8475 if not Has_Unknown_Discriminants (Derived_Type)
8476 and then not Has_Unknown_Discriminants (Parent_Base)
8477 and then Has_Discriminants (Parent_Type)
8478 then
8479 Inherit_Discrims := True;
8480 Set_Has_Discriminants
8481 (Derived_Type, True);
8482 Set_Discriminant_Constraint
8483 (Derived_Type, Discriminant_Constraint (Parent_Base));
8484 end if;
8486 -- The following test is true for private types (remember
8487 -- transformation 5. is not applied to those) and in an error
8488 -- situation.
8490 if Constraint_Present then
8491 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8492 end if;
8494 -- For now mark a new derived type as constrained only if it has no
8495 -- discriminants. At the end of Build_Derived_Record_Type we properly
8496 -- set this flag in the case of private extensions. See comments in
8497 -- point 9. just before body of Build_Derived_Record_Type.
8499 Set_Is_Constrained
8500 (Derived_Type,
8501 not (Inherit_Discrims
8502 or else Has_Unknown_Discriminants (Derived_Type)));
8503 end if;
8505 -- STEP 3: initialize fields of derived type
8507 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8508 Set_Stored_Constraint (Derived_Type, No_Elist);
8510 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8511 -- but cannot be interfaces
8513 if not Private_Extension
8514 and then Ekind (Derived_Type) /= E_Private_Type
8515 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8516 then
8517 if Interface_Present (Type_Def) then
8518 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8519 end if;
8521 Set_Interfaces (Derived_Type, No_Elist);
8522 end if;
8524 -- Fields inherited from the Parent_Type
8526 Set_Has_Specified_Layout
8527 (Derived_Type, Has_Specified_Layout (Parent_Type));
8528 Set_Is_Limited_Composite
8529 (Derived_Type, Is_Limited_Composite (Parent_Type));
8530 Set_Is_Private_Composite
8531 (Derived_Type, Is_Private_Composite (Parent_Type));
8533 if Is_Tagged_Type (Parent_Type) then
8534 Set_No_Tagged_Streams_Pragma
8535 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8536 end if;
8538 -- Fields inherited from the Parent_Base
8540 Set_Has_Controlled_Component
8541 (Derived_Type, Has_Controlled_Component (Parent_Base));
8542 Set_Has_Non_Standard_Rep
8543 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8544 Set_Has_Primitive_Operations
8545 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8547 -- Fields inherited from the Parent_Base in the non-private case
8549 if Ekind (Derived_Type) = E_Record_Type then
8550 Set_Has_Complex_Representation
8551 (Derived_Type, Has_Complex_Representation (Parent_Base));
8552 end if;
8554 -- Fields inherited from the Parent_Base for record types
8556 if Is_Record_Type (Derived_Type) then
8557 declare
8558 Parent_Full : Entity_Id;
8560 begin
8561 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8562 -- Parent_Base can be a private type or private extension. Go
8563 -- to the full view here to get the E_Record_Type specific flags.
8565 if Present (Full_View (Parent_Base)) then
8566 Parent_Full := Full_View (Parent_Base);
8567 else
8568 Parent_Full := Parent_Base;
8569 end if;
8571 Set_OK_To_Reorder_Components
8572 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8573 end;
8574 end if;
8576 -- Set fields for private derived types
8578 if Is_Private_Type (Derived_Type) then
8579 Set_Depends_On_Private (Derived_Type, True);
8580 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8582 -- Inherit fields from non private record types. If this is the
8583 -- completion of a derivation from a private type, the parent itself
8584 -- is private, and the attributes come from its full view, which must
8585 -- be present.
8587 else
8588 if Is_Private_Type (Parent_Base)
8589 and then not Is_Record_Type (Parent_Base)
8590 then
8591 Set_Component_Alignment
8592 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8593 Set_C_Pass_By_Copy
8594 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8595 else
8596 Set_Component_Alignment
8597 (Derived_Type, Component_Alignment (Parent_Base));
8598 Set_C_Pass_By_Copy
8599 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8600 end if;
8601 end if;
8603 -- Set fields for tagged types
8605 if Is_Tagged then
8606 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8608 -- All tagged types defined in Ada.Finalization are controlled
8610 if Chars (Scope (Derived_Type)) = Name_Finalization
8611 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8612 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8613 then
8614 Set_Is_Controlled (Derived_Type);
8615 else
8616 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8617 end if;
8619 -- Minor optimization: there is no need to generate the class-wide
8620 -- entity associated with an underlying record view.
8622 if not Is_Underlying_Record_View (Derived_Type) then
8623 Make_Class_Wide_Type (Derived_Type);
8624 end if;
8626 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8628 if Has_Discriminants (Derived_Type)
8629 and then Constraint_Present
8630 then
8631 Set_Stored_Constraint
8632 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8633 end if;
8635 if Ada_Version >= Ada_2005 then
8636 declare
8637 Ifaces_List : Elist_Id;
8639 begin
8640 -- Checks rules 3.9.4 (13/2 and 14/2)
8642 if Comes_From_Source (Derived_Type)
8643 and then not Is_Private_Type (Derived_Type)
8644 and then Is_Interface (Parent_Type)
8645 and then not Is_Interface (Derived_Type)
8646 then
8647 if Is_Task_Interface (Parent_Type) then
8648 Error_Msg_N
8649 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8650 Derived_Type);
8652 elsif Is_Protected_Interface (Parent_Type) then
8653 Error_Msg_N
8654 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8655 Derived_Type);
8656 end if;
8657 end if;
8659 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8661 Check_Interfaces (N, Type_Def);
8663 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8664 -- not already in the parents.
8666 Collect_Interfaces
8667 (T => Derived_Type,
8668 Ifaces_List => Ifaces_List,
8669 Exclude_Parents => True);
8671 Set_Interfaces (Derived_Type, Ifaces_List);
8673 -- If the derived type is the anonymous type created for
8674 -- a declaration whose parent has a constraint, propagate
8675 -- the interface list to the source type. This must be done
8676 -- prior to the completion of the analysis of the source type
8677 -- because the components in the extension may contain current
8678 -- instances whose legality depends on some ancestor.
8680 if Is_Itype (Derived_Type) then
8681 declare
8682 Def : constant Node_Id :=
8683 Associated_Node_For_Itype (Derived_Type);
8684 begin
8685 if Present (Def)
8686 and then Nkind (Def) = N_Full_Type_Declaration
8687 then
8688 Set_Interfaces
8689 (Defining_Identifier (Def), Ifaces_List);
8690 end if;
8691 end;
8692 end if;
8694 -- Propagate inherited invariant information of parents
8695 -- and progenitors
8697 if Ada_Version >= Ada_2012
8698 and then not Is_Interface (Derived_Type)
8699 then
8700 if Has_Inheritable_Invariants (Parent_Type) then
8701 Set_Has_Invariants (Derived_Type);
8702 Set_Has_Inheritable_Invariants (Derived_Type);
8704 elsif not Is_Empty_Elmt_List (Ifaces_List) then
8705 declare
8706 AI : Elmt_Id;
8708 begin
8709 AI := First_Elmt (Ifaces_List);
8710 while Present (AI) loop
8711 if Has_Inheritable_Invariants (Node (AI)) then
8712 Set_Has_Invariants (Derived_Type);
8713 Set_Has_Inheritable_Invariants (Derived_Type);
8715 exit;
8716 end if;
8718 Next_Elmt (AI);
8719 end loop;
8720 end;
8721 end if;
8722 end if;
8724 -- A type extension is automatically Ghost when one of its
8725 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8726 -- also inherited when the parent type is Ghost, but this is
8727 -- done in Build_Derived_Type as the mechanism also handles
8728 -- untagged derivations.
8730 if Implements_Ghost_Interface (Derived_Type) then
8731 Set_Is_Ghost_Entity (Derived_Type);
8732 end if;
8733 end;
8734 end if;
8736 else
8737 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8738 Set_Has_Non_Standard_Rep
8739 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8740 end if;
8742 -- STEP 4: Inherit components from the parent base and constrain them.
8743 -- Apply the second transformation described in point 6. above.
8745 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8746 or else not Has_Discriminants (Parent_Type)
8747 or else not Is_Constrained (Parent_Type)
8748 then
8749 Constrs := Discs;
8750 else
8751 Constrs := Discriminant_Constraint (Parent_Type);
8752 end if;
8754 Assoc_List :=
8755 Inherit_Components
8756 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8758 -- STEP 5a: Copy the parent record declaration for untagged types
8760 if not Is_Tagged then
8762 -- Discriminant_Constraint (Derived_Type) has been properly
8763 -- constructed. Save it and temporarily set it to Empty because we
8764 -- do not want the call to New_Copy_Tree below to mess this list.
8766 if Has_Discriminants (Derived_Type) then
8767 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8768 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8769 else
8770 Save_Discr_Constr := No_Elist;
8771 end if;
8773 -- Save the Etype field of Derived_Type. It is correctly set now,
8774 -- but the call to New_Copy tree may remap it to point to itself,
8775 -- which is not what we want. Ditto for the Next_Entity field.
8777 Save_Etype := Etype (Derived_Type);
8778 Save_Next_Entity := Next_Entity (Derived_Type);
8780 -- Assoc_List maps all stored discriminants in the Parent_Base to
8781 -- stored discriminants in the Derived_Type. It is fundamental that
8782 -- no types or itypes with discriminants other than the stored
8783 -- discriminants appear in the entities declared inside
8784 -- Derived_Type, since the back end cannot deal with it.
8786 New_Decl :=
8787 New_Copy_Tree
8788 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8790 -- Restore the fields saved prior to the New_Copy_Tree call
8791 -- and compute the stored constraint.
8793 Set_Etype (Derived_Type, Save_Etype);
8794 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8796 if Has_Discriminants (Derived_Type) then
8797 Set_Discriminant_Constraint
8798 (Derived_Type, Save_Discr_Constr);
8799 Set_Stored_Constraint
8800 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8801 Replace_Components (Derived_Type, New_Decl);
8802 Set_Has_Implicit_Dereference
8803 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8804 end if;
8806 -- Insert the new derived type declaration
8808 Rewrite (N, New_Decl);
8810 -- STEP 5b: Complete the processing for record extensions in generics
8812 -- There is no completion for record extensions declared in the
8813 -- parameter part of a generic, so we need to complete processing for
8814 -- these generic record extensions here. The Record_Type_Definition call
8815 -- will change the Ekind of the components from E_Void to E_Component.
8817 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8818 Record_Type_Definition (Empty, Derived_Type);
8820 -- STEP 5c: Process the record extension for non private tagged types
8822 elsif not Private_Extension then
8823 Expand_Record_Extension (Derived_Type, Type_Def);
8825 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8826 -- derived type to propagate some semantic information. This led
8827 -- to other ASIS failures and has been removed.
8829 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8830 -- implemented interfaces if we are in expansion mode
8832 if Expander_Active
8833 and then Has_Interfaces (Derived_Type)
8834 then
8835 Add_Interface_Tag_Components (N, Derived_Type);
8836 end if;
8838 -- Analyze the record extension
8840 Record_Type_Definition
8841 (Record_Extension_Part (Type_Def), Derived_Type);
8842 end if;
8844 End_Scope;
8846 -- Nothing else to do if there is an error in the derivation.
8847 -- An unusual case: the full view may be derived from a type in an
8848 -- instance, when the partial view was used illegally as an actual
8849 -- in that instance, leading to a circular definition.
8851 if Etype (Derived_Type) = Any_Type
8852 or else Etype (Parent_Type) = Derived_Type
8853 then
8854 return;
8855 end if;
8857 -- Set delayed freeze and then derive subprograms, we need to do
8858 -- this in this order so that derived subprograms inherit the
8859 -- derived freeze if necessary.
8861 Set_Has_Delayed_Freeze (Derived_Type);
8863 if Derive_Subps then
8864 Derive_Subprograms (Parent_Type, Derived_Type);
8865 end if;
8867 -- If we have a private extension which defines a constrained derived
8868 -- type mark as constrained here after we have derived subprograms. See
8869 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8871 if Private_Extension and then Inherit_Discrims then
8872 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8873 Set_Is_Constrained (Derived_Type, True);
8874 Set_Discriminant_Constraint (Derived_Type, Discs);
8876 elsif Is_Constrained (Parent_Type) then
8877 Set_Is_Constrained
8878 (Derived_Type, True);
8879 Set_Discriminant_Constraint
8880 (Derived_Type, Discriminant_Constraint (Parent_Type));
8881 end if;
8882 end if;
8884 -- Update the class-wide type, which shares the now-completed entity
8885 -- list with its specific type. In case of underlying record views,
8886 -- we do not generate the corresponding class wide entity.
8888 if Is_Tagged
8889 and then not Is_Underlying_Record_View (Derived_Type)
8890 then
8891 Set_First_Entity
8892 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8893 Set_Last_Entity
8894 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8895 end if;
8897 Check_Function_Writable_Actuals (N);
8898 end Build_Derived_Record_Type;
8900 ------------------------
8901 -- Build_Derived_Type --
8902 ------------------------
8904 procedure Build_Derived_Type
8905 (N : Node_Id;
8906 Parent_Type : Entity_Id;
8907 Derived_Type : Entity_Id;
8908 Is_Completion : Boolean;
8909 Derive_Subps : Boolean := True)
8911 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8913 begin
8914 -- Set common attributes
8916 Set_Scope (Derived_Type, Current_Scope);
8918 Set_Etype (Derived_Type, Parent_Base);
8919 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8920 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8921 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8923 Set_Size_Info (Derived_Type, Parent_Type);
8924 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8925 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8926 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
8928 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8929 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
8931 if Is_Tagged_Type (Derived_Type) then
8932 Set_No_Tagged_Streams_Pragma
8933 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8934 end if;
8936 -- If the parent has primitive routines, set the derived type link
8938 if Has_Primitive_Operations (Parent_Type) then
8939 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8940 end if;
8942 -- If the parent type is a private subtype, the convention on the base
8943 -- type may be set in the private part, and not propagated to the
8944 -- subtype until later, so we obtain the convention from the base type.
8946 Set_Convention (Derived_Type, Convention (Parent_Base));
8948 -- Set SSO default for record or array type
8950 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8951 and then Is_Base_Type (Derived_Type)
8952 then
8953 Set_Default_SSO (Derived_Type);
8954 end if;
8956 -- Propagate invariant information. The new type has invariants if
8957 -- they are inherited from the parent type, and these invariants can
8958 -- be further inherited, so both flags are set.
8960 -- We similarly inherit predicates
8962 if Has_Predicates (Parent_Type) then
8963 Set_Has_Predicates (Derived_Type);
8964 end if;
8966 -- The derived type inherits the representation clauses of the parent
8968 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
8970 -- Propagate the attributes related to pragma Default_Initial_Condition
8971 -- from the parent type to the private extension. A derived type always
8972 -- inherits the default initial condition flag from the parent type. If
8973 -- the derived type carries its own Default_Initial_Condition pragma,
8974 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8975 -- mutually exclusive.
8977 Propagate_Default_Init_Cond_Attributes
8978 (From_Typ => Parent_Type,
8979 To_Typ => Derived_Type,
8980 Parent_To_Derivation => True);
8982 -- If the parent type has delayed rep aspects, then mark the derived
8983 -- type as possibly inheriting a delayed rep aspect.
8985 if Has_Delayed_Rep_Aspects (Parent_Type) then
8986 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8987 end if;
8989 -- Propagate the attributes related to pragma Ghost from the parent type
8990 -- to the derived type or type extension (SPARK RM 6.9(9)).
8992 if Is_Ghost_Entity (Parent_Type) then
8993 Set_Is_Ghost_Entity (Derived_Type);
8994 end if;
8996 -- Type dependent processing
8998 case Ekind (Parent_Type) is
8999 when Numeric_Kind =>
9000 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9002 when Array_Kind =>
9003 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9005 when E_Record_Type
9006 | E_Record_Subtype
9007 | Class_Wide_Kind =>
9008 Build_Derived_Record_Type
9009 (N, Parent_Type, Derived_Type, Derive_Subps);
9010 return;
9012 when Enumeration_Kind =>
9013 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9015 when Access_Kind =>
9016 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9018 when Incomplete_Or_Private_Kind =>
9019 Build_Derived_Private_Type
9020 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9022 -- For discriminated types, the derivation includes deriving
9023 -- primitive operations. For others it is done below.
9025 if Is_Tagged_Type (Parent_Type)
9026 or else Has_Discriminants (Parent_Type)
9027 or else (Present (Full_View (Parent_Type))
9028 and then Has_Discriminants (Full_View (Parent_Type)))
9029 then
9030 return;
9031 end if;
9033 when Concurrent_Kind =>
9034 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9036 when others =>
9037 raise Program_Error;
9038 end case;
9040 -- Nothing more to do if some error occurred
9042 if Etype (Derived_Type) = Any_Type then
9043 return;
9044 end if;
9046 -- Set delayed freeze and then derive subprograms, we need to do this
9047 -- in this order so that derived subprograms inherit the derived freeze
9048 -- if necessary.
9050 Set_Has_Delayed_Freeze (Derived_Type);
9052 if Derive_Subps then
9053 Derive_Subprograms (Parent_Type, Derived_Type);
9054 end if;
9056 Set_Has_Primitive_Operations
9057 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9058 end Build_Derived_Type;
9060 -----------------------
9061 -- Build_Discriminal --
9062 -----------------------
9064 procedure Build_Discriminal (Discrim : Entity_Id) is
9065 D_Minal : Entity_Id;
9066 CR_Disc : Entity_Id;
9068 begin
9069 -- A discriminal has the same name as the discriminant
9071 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9073 Set_Ekind (D_Minal, E_In_Parameter);
9074 Set_Mechanism (D_Minal, Default_Mechanism);
9075 Set_Etype (D_Minal, Etype (Discrim));
9076 Set_Scope (D_Minal, Current_Scope);
9078 Set_Discriminal (Discrim, D_Minal);
9079 Set_Discriminal_Link (D_Minal, Discrim);
9081 -- For task types, build at once the discriminants of the corresponding
9082 -- record, which are needed if discriminants are used in entry defaults
9083 -- and in family bounds.
9085 if Is_Concurrent_Type (Current_Scope)
9086 or else
9087 Is_Limited_Type (Current_Scope)
9088 then
9089 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9091 Set_Ekind (CR_Disc, E_In_Parameter);
9092 Set_Mechanism (CR_Disc, Default_Mechanism);
9093 Set_Etype (CR_Disc, Etype (Discrim));
9094 Set_Scope (CR_Disc, Current_Scope);
9095 Set_Discriminal_Link (CR_Disc, Discrim);
9096 Set_CR_Discriminant (Discrim, CR_Disc);
9097 end if;
9098 end Build_Discriminal;
9100 ------------------------------------
9101 -- Build_Discriminant_Constraints --
9102 ------------------------------------
9104 function Build_Discriminant_Constraints
9105 (T : Entity_Id;
9106 Def : Node_Id;
9107 Derived_Def : Boolean := False) return Elist_Id
9109 C : constant Node_Id := Constraint (Def);
9110 Nb_Discr : constant Nat := Number_Discriminants (T);
9112 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9113 -- Saves the expression corresponding to a given discriminant in T
9115 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9116 -- Return the Position number within array Discr_Expr of a discriminant
9117 -- D within the discriminant list of the discriminated type T.
9119 procedure Process_Discriminant_Expression
9120 (Expr : Node_Id;
9121 D : Entity_Id);
9122 -- If this is a discriminant constraint on a partial view, do not
9123 -- generate an overflow check on the discriminant expression. The check
9124 -- will be generated when constraining the full view. Otherwise the
9125 -- backend creates duplicate symbols for the temporaries corresponding
9126 -- to the expressions to be checked, causing spurious assembler errors.
9128 ------------------
9129 -- Pos_Of_Discr --
9130 ------------------
9132 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9133 Disc : Entity_Id;
9135 begin
9136 Disc := First_Discriminant (T);
9137 for J in Discr_Expr'Range loop
9138 if Disc = D then
9139 return J;
9140 end if;
9142 Next_Discriminant (Disc);
9143 end loop;
9145 -- Note: Since this function is called on discriminants that are
9146 -- known to belong to the discriminated type, falling through the
9147 -- loop with no match signals an internal compiler error.
9149 raise Program_Error;
9150 end Pos_Of_Discr;
9152 -------------------------------------
9153 -- Process_Discriminant_Expression --
9154 -------------------------------------
9156 procedure Process_Discriminant_Expression
9157 (Expr : Node_Id;
9158 D : Entity_Id)
9160 BDT : constant Entity_Id := Base_Type (Etype (D));
9162 begin
9163 -- If this is a discriminant constraint on a partial view, do
9164 -- not generate an overflow on the discriminant expression. The
9165 -- check will be generated when constraining the full view.
9167 if Is_Private_Type (T)
9168 and then Present (Full_View (T))
9169 then
9170 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9171 else
9172 Analyze_And_Resolve (Expr, BDT);
9173 end if;
9174 end Process_Discriminant_Expression;
9176 -- Declarations local to Build_Discriminant_Constraints
9178 Discr : Entity_Id;
9179 E : Entity_Id;
9180 Elist : constant Elist_Id := New_Elmt_List;
9182 Constr : Node_Id;
9183 Expr : Node_Id;
9184 Id : Node_Id;
9185 Position : Nat;
9186 Found : Boolean;
9188 Discrim_Present : Boolean := False;
9190 -- Start of processing for Build_Discriminant_Constraints
9192 begin
9193 -- The following loop will process positional associations only.
9194 -- For a positional association, the (single) discriminant is
9195 -- implicitly specified by position, in textual order (RM 3.7.2).
9197 Discr := First_Discriminant (T);
9198 Constr := First (Constraints (C));
9199 for D in Discr_Expr'Range loop
9200 exit when Nkind (Constr) = N_Discriminant_Association;
9202 if No (Constr) then
9203 Error_Msg_N ("too few discriminants given in constraint", C);
9204 return New_Elmt_List;
9206 elsif Nkind (Constr) = N_Range
9207 or else (Nkind (Constr) = N_Attribute_Reference
9208 and then Attribute_Name (Constr) = Name_Range)
9209 then
9210 Error_Msg_N
9211 ("a range is not a valid discriminant constraint", Constr);
9212 Discr_Expr (D) := Error;
9214 else
9215 Process_Discriminant_Expression (Constr, Discr);
9216 Discr_Expr (D) := Constr;
9217 end if;
9219 Next_Discriminant (Discr);
9220 Next (Constr);
9221 end loop;
9223 if No (Discr) and then Present (Constr) then
9224 Error_Msg_N ("too many discriminants given in constraint", Constr);
9225 return New_Elmt_List;
9226 end if;
9228 -- Named associations can be given in any order, but if both positional
9229 -- and named associations are used in the same discriminant constraint,
9230 -- then positional associations must occur first, at their normal
9231 -- position. Hence once a named association is used, the rest of the
9232 -- discriminant constraint must use only named associations.
9234 while Present (Constr) loop
9236 -- Positional association forbidden after a named association
9238 if Nkind (Constr) /= N_Discriminant_Association then
9239 Error_Msg_N ("positional association follows named one", Constr);
9240 return New_Elmt_List;
9242 -- Otherwise it is a named association
9244 else
9245 -- E records the type of the discriminants in the named
9246 -- association. All the discriminants specified in the same name
9247 -- association must have the same type.
9249 E := Empty;
9251 -- Search the list of discriminants in T to see if the simple name
9252 -- given in the constraint matches any of them.
9254 Id := First (Selector_Names (Constr));
9255 while Present (Id) loop
9256 Found := False;
9258 -- If Original_Discriminant is present, we are processing a
9259 -- generic instantiation and this is an instance node. We need
9260 -- to find the name of the corresponding discriminant in the
9261 -- actual record type T and not the name of the discriminant in
9262 -- the generic formal. Example:
9264 -- generic
9265 -- type G (D : int) is private;
9266 -- package P is
9267 -- subtype W is G (D => 1);
9268 -- end package;
9269 -- type Rec (X : int) is record ... end record;
9270 -- package Q is new P (G => Rec);
9272 -- At the point of the instantiation, formal type G is Rec
9273 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9274 -- which really looks like "subtype W is Rec (D => 1);" at
9275 -- the point of instantiation, we want to find the discriminant
9276 -- that corresponds to D in Rec, i.e. X.
9278 if Present (Original_Discriminant (Id))
9279 and then In_Instance
9280 then
9281 Discr := Find_Corresponding_Discriminant (Id, T);
9282 Found := True;
9284 else
9285 Discr := First_Discriminant (T);
9286 while Present (Discr) loop
9287 if Chars (Discr) = Chars (Id) then
9288 Found := True;
9289 exit;
9290 end if;
9292 Next_Discriminant (Discr);
9293 end loop;
9295 if not Found then
9296 Error_Msg_N ("& does not match any discriminant", Id);
9297 return New_Elmt_List;
9299 -- If the parent type is a generic formal, preserve the
9300 -- name of the discriminant for subsequent instances.
9301 -- see comment at the beginning of this if statement.
9303 elsif Is_Generic_Type (Root_Type (T)) then
9304 Set_Original_Discriminant (Id, Discr);
9305 end if;
9306 end if;
9308 Position := Pos_Of_Discr (T, Discr);
9310 if Present (Discr_Expr (Position)) then
9311 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9313 else
9314 -- Each discriminant specified in the same named association
9315 -- must be associated with a separate copy of the
9316 -- corresponding expression.
9318 if Present (Next (Id)) then
9319 Expr := New_Copy_Tree (Expression (Constr));
9320 Set_Parent (Expr, Parent (Expression (Constr)));
9321 else
9322 Expr := Expression (Constr);
9323 end if;
9325 Discr_Expr (Position) := Expr;
9326 Process_Discriminant_Expression (Expr, Discr);
9327 end if;
9329 -- A discriminant association with more than one discriminant
9330 -- name is only allowed if the named discriminants are all of
9331 -- the same type (RM 3.7.1(8)).
9333 if E = Empty then
9334 E := Base_Type (Etype (Discr));
9336 elsif Base_Type (Etype (Discr)) /= E then
9337 Error_Msg_N
9338 ("all discriminants in an association " &
9339 "must have the same type", Id);
9340 end if;
9342 Next (Id);
9343 end loop;
9344 end if;
9346 Next (Constr);
9347 end loop;
9349 -- A discriminant constraint must provide exactly one value for each
9350 -- discriminant of the type (RM 3.7.1(8)).
9352 for J in Discr_Expr'Range loop
9353 if No (Discr_Expr (J)) then
9354 Error_Msg_N ("too few discriminants given in constraint", C);
9355 return New_Elmt_List;
9356 end if;
9357 end loop;
9359 -- Determine if there are discriminant expressions in the constraint
9361 for J in Discr_Expr'Range loop
9362 if Denotes_Discriminant
9363 (Discr_Expr (J), Check_Concurrent => True)
9364 then
9365 Discrim_Present := True;
9366 end if;
9367 end loop;
9369 -- Build an element list consisting of the expressions given in the
9370 -- discriminant constraint and apply the appropriate checks. The list
9371 -- is constructed after resolving any named discriminant associations
9372 -- and therefore the expressions appear in the textual order of the
9373 -- discriminants.
9375 Discr := First_Discriminant (T);
9376 for J in Discr_Expr'Range loop
9377 if Discr_Expr (J) /= Error then
9378 Append_Elmt (Discr_Expr (J), Elist);
9380 -- If any of the discriminant constraints is given by a
9381 -- discriminant and we are in a derived type declaration we
9382 -- have a discriminant renaming. Establish link between new
9383 -- and old discriminant.
9385 if Denotes_Discriminant (Discr_Expr (J)) then
9386 if Derived_Def then
9387 Set_Corresponding_Discriminant
9388 (Entity (Discr_Expr (J)), Discr);
9389 end if;
9391 -- Force the evaluation of non-discriminant expressions.
9392 -- If we have found a discriminant in the constraint 3.4(26)
9393 -- and 3.8(18) demand that no range checks are performed are
9394 -- after evaluation. If the constraint is for a component
9395 -- definition that has a per-object constraint, expressions are
9396 -- evaluated but not checked either. In all other cases perform
9397 -- a range check.
9399 else
9400 if Discrim_Present then
9401 null;
9403 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9404 and then
9405 Has_Per_Object_Constraint
9406 (Defining_Identifier (Parent (Parent (Def))))
9407 then
9408 null;
9410 elsif Is_Access_Type (Etype (Discr)) then
9411 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9413 else
9414 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9415 end if;
9417 Force_Evaluation (Discr_Expr (J));
9418 end if;
9420 -- Check that the designated type of an access discriminant's
9421 -- expression is not a class-wide type unless the discriminant's
9422 -- designated type is also class-wide.
9424 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9425 and then not Is_Class_Wide_Type
9426 (Designated_Type (Etype (Discr)))
9427 and then Etype (Discr_Expr (J)) /= Any_Type
9428 and then Is_Class_Wide_Type
9429 (Designated_Type (Etype (Discr_Expr (J))))
9430 then
9431 Wrong_Type (Discr_Expr (J), Etype (Discr));
9433 elsif Is_Access_Type (Etype (Discr))
9434 and then not Is_Access_Constant (Etype (Discr))
9435 and then Is_Access_Type (Etype (Discr_Expr (J)))
9436 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9437 then
9438 Error_Msg_NE
9439 ("constraint for discriminant& must be access to variable",
9440 Def, Discr);
9441 end if;
9442 end if;
9444 Next_Discriminant (Discr);
9445 end loop;
9447 return Elist;
9448 end Build_Discriminant_Constraints;
9450 ---------------------------------
9451 -- Build_Discriminated_Subtype --
9452 ---------------------------------
9454 procedure Build_Discriminated_Subtype
9455 (T : Entity_Id;
9456 Def_Id : Entity_Id;
9457 Elist : Elist_Id;
9458 Related_Nod : Node_Id;
9459 For_Access : Boolean := False)
9461 Has_Discrs : constant Boolean := Has_Discriminants (T);
9462 Constrained : constant Boolean :=
9463 (Has_Discrs
9464 and then not Is_Empty_Elmt_List (Elist)
9465 and then not Is_Class_Wide_Type (T))
9466 or else Is_Constrained (T);
9468 begin
9469 if Ekind (T) = E_Record_Type then
9470 if For_Access then
9471 Set_Ekind (Def_Id, E_Private_Subtype);
9472 Set_Is_For_Access_Subtype (Def_Id, True);
9473 else
9474 Set_Ekind (Def_Id, E_Record_Subtype);
9475 end if;
9477 -- Inherit preelaboration flag from base, for types for which it
9478 -- may have been set: records, private types, protected types.
9480 Set_Known_To_Have_Preelab_Init
9481 (Def_Id, Known_To_Have_Preelab_Init (T));
9483 elsif Ekind (T) = E_Task_Type then
9484 Set_Ekind (Def_Id, E_Task_Subtype);
9486 elsif Ekind (T) = E_Protected_Type then
9487 Set_Ekind (Def_Id, E_Protected_Subtype);
9488 Set_Known_To_Have_Preelab_Init
9489 (Def_Id, Known_To_Have_Preelab_Init (T));
9491 elsif Is_Private_Type (T) then
9492 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9493 Set_Known_To_Have_Preelab_Init
9494 (Def_Id, Known_To_Have_Preelab_Init (T));
9496 -- Private subtypes may have private dependents
9498 Set_Private_Dependents (Def_Id, New_Elmt_List);
9500 elsif Is_Class_Wide_Type (T) then
9501 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9503 else
9504 -- Incomplete type. Attach subtype to list of dependents, to be
9505 -- completed with full view of parent type, unless is it the
9506 -- designated subtype of a record component within an init_proc.
9507 -- This last case arises for a component of an access type whose
9508 -- designated type is incomplete (e.g. a Taft Amendment type).
9509 -- The designated subtype is within an inner scope, and needs no
9510 -- elaboration, because only the access type is needed in the
9511 -- initialization procedure.
9513 Set_Ekind (Def_Id, Ekind (T));
9515 if For_Access and then Within_Init_Proc then
9516 null;
9517 else
9518 Append_Elmt (Def_Id, Private_Dependents (T));
9519 end if;
9520 end if;
9522 Set_Etype (Def_Id, T);
9523 Init_Size_Align (Def_Id);
9524 Set_Has_Discriminants (Def_Id, Has_Discrs);
9525 Set_Is_Constrained (Def_Id, Constrained);
9527 Set_First_Entity (Def_Id, First_Entity (T));
9528 Set_Last_Entity (Def_Id, Last_Entity (T));
9529 Set_Has_Implicit_Dereference
9530 (Def_Id, Has_Implicit_Dereference (T));
9532 -- If the subtype is the completion of a private declaration, there may
9533 -- have been representation clauses for the partial view, and they must
9534 -- be preserved. Build_Derived_Type chains the inherited clauses with
9535 -- the ones appearing on the extension. If this comes from a subtype
9536 -- declaration, all clauses are inherited.
9538 if No (First_Rep_Item (Def_Id)) then
9539 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9540 end if;
9542 if Is_Tagged_Type (T) then
9543 Set_Is_Tagged_Type (Def_Id);
9544 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9545 Make_Class_Wide_Type (Def_Id);
9546 end if;
9548 Set_Stored_Constraint (Def_Id, No_Elist);
9550 if Has_Discrs then
9551 Set_Discriminant_Constraint (Def_Id, Elist);
9552 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9553 end if;
9555 if Is_Tagged_Type (T) then
9557 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9558 -- concurrent record type (which has the list of primitive
9559 -- operations).
9561 if Ada_Version >= Ada_2005
9562 and then Is_Concurrent_Type (T)
9563 then
9564 Set_Corresponding_Record_Type (Def_Id,
9565 Corresponding_Record_Type (T));
9566 else
9567 Set_Direct_Primitive_Operations (Def_Id,
9568 Direct_Primitive_Operations (T));
9569 end if;
9571 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9572 end if;
9574 -- Subtypes introduced by component declarations do not need to be
9575 -- marked as delayed, and do not get freeze nodes, because the semantics
9576 -- verifies that the parents of the subtypes are frozen before the
9577 -- enclosing record is frozen.
9579 if not Is_Type (Scope (Def_Id)) then
9580 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9582 if Is_Private_Type (T)
9583 and then Present (Full_View (T))
9584 then
9585 Conditional_Delay (Def_Id, Full_View (T));
9586 else
9587 Conditional_Delay (Def_Id, T);
9588 end if;
9589 end if;
9591 if Is_Record_Type (T) then
9592 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9594 if Has_Discrs
9595 and then not Is_Empty_Elmt_List (Elist)
9596 and then not For_Access
9597 then
9598 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9599 elsif not For_Access then
9600 Set_Cloned_Subtype (Def_Id, T);
9601 end if;
9602 end if;
9603 end Build_Discriminated_Subtype;
9605 ---------------------------
9606 -- Build_Itype_Reference --
9607 ---------------------------
9609 procedure Build_Itype_Reference
9610 (Ityp : Entity_Id;
9611 Nod : Node_Id)
9613 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9614 begin
9616 -- Itype references are only created for use by the back-end
9618 if Inside_A_Generic then
9619 return;
9620 else
9621 Set_Itype (IR, Ityp);
9622 Insert_After (Nod, IR);
9623 end if;
9624 end Build_Itype_Reference;
9626 ------------------------
9627 -- Build_Scalar_Bound --
9628 ------------------------
9630 function Build_Scalar_Bound
9631 (Bound : Node_Id;
9632 Par_T : Entity_Id;
9633 Der_T : Entity_Id) return Node_Id
9635 New_Bound : Entity_Id;
9637 begin
9638 -- Note: not clear why this is needed, how can the original bound
9639 -- be unanalyzed at this point? and if it is, what business do we
9640 -- have messing around with it? and why is the base type of the
9641 -- parent type the right type for the resolution. It probably is
9642 -- not. It is OK for the new bound we are creating, but not for
9643 -- the old one??? Still if it never happens, no problem.
9645 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9647 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9648 New_Bound := New_Copy (Bound);
9649 Set_Etype (New_Bound, Der_T);
9650 Set_Analyzed (New_Bound);
9652 elsif Is_Entity_Name (Bound) then
9653 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9655 -- The following is almost certainly wrong. What business do we have
9656 -- relocating a node (Bound) that is presumably still attached to
9657 -- the tree elsewhere???
9659 else
9660 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9661 end if;
9663 Set_Etype (New_Bound, Der_T);
9664 return New_Bound;
9665 end Build_Scalar_Bound;
9667 --------------------------------
9668 -- Build_Underlying_Full_View --
9669 --------------------------------
9671 procedure Build_Underlying_Full_View
9672 (N : Node_Id;
9673 Typ : Entity_Id;
9674 Par : Entity_Id)
9676 Loc : constant Source_Ptr := Sloc (N);
9677 Subt : constant Entity_Id :=
9678 Make_Defining_Identifier
9679 (Loc, New_External_Name (Chars (Typ), 'S'));
9681 Constr : Node_Id;
9682 Indic : Node_Id;
9683 C : Node_Id;
9684 Id : Node_Id;
9686 procedure Set_Discriminant_Name (Id : Node_Id);
9687 -- If the derived type has discriminants, they may rename discriminants
9688 -- of the parent. When building the full view of the parent, we need to
9689 -- recover the names of the original discriminants if the constraint is
9690 -- given by named associations.
9692 ---------------------------
9693 -- Set_Discriminant_Name --
9694 ---------------------------
9696 procedure Set_Discriminant_Name (Id : Node_Id) is
9697 Disc : Entity_Id;
9699 begin
9700 Set_Original_Discriminant (Id, Empty);
9702 if Has_Discriminants (Typ) then
9703 Disc := First_Discriminant (Typ);
9704 while Present (Disc) loop
9705 if Chars (Disc) = Chars (Id)
9706 and then Present (Corresponding_Discriminant (Disc))
9707 then
9708 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9709 end if;
9710 Next_Discriminant (Disc);
9711 end loop;
9712 end if;
9713 end Set_Discriminant_Name;
9715 -- Start of processing for Build_Underlying_Full_View
9717 begin
9718 if Nkind (N) = N_Full_Type_Declaration then
9719 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9721 elsif Nkind (N) = N_Subtype_Declaration then
9722 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9724 elsif Nkind (N) = N_Component_Declaration then
9725 Constr :=
9726 New_Copy_Tree
9727 (Constraint (Subtype_Indication (Component_Definition (N))));
9729 else
9730 raise Program_Error;
9731 end if;
9733 C := First (Constraints (Constr));
9734 while Present (C) loop
9735 if Nkind (C) = N_Discriminant_Association then
9736 Id := First (Selector_Names (C));
9737 while Present (Id) loop
9738 Set_Discriminant_Name (Id);
9739 Next (Id);
9740 end loop;
9741 end if;
9743 Next (C);
9744 end loop;
9746 Indic :=
9747 Make_Subtype_Declaration (Loc,
9748 Defining_Identifier => Subt,
9749 Subtype_Indication =>
9750 Make_Subtype_Indication (Loc,
9751 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9752 Constraint => New_Copy_Tree (Constr)));
9754 -- If this is a component subtype for an outer itype, it is not
9755 -- a list member, so simply set the parent link for analysis: if
9756 -- the enclosing type does not need to be in a declarative list,
9757 -- neither do the components.
9759 if Is_List_Member (N)
9760 and then Nkind (N) /= N_Component_Declaration
9761 then
9762 Insert_Before (N, Indic);
9763 else
9764 Set_Parent (Indic, Parent (N));
9765 end if;
9767 Analyze (Indic);
9768 Set_Underlying_Full_View (Typ, Full_View (Subt));
9769 end Build_Underlying_Full_View;
9771 -------------------------------
9772 -- Check_Abstract_Overriding --
9773 -------------------------------
9775 procedure Check_Abstract_Overriding (T : Entity_Id) is
9776 Alias_Subp : Entity_Id;
9777 Elmt : Elmt_Id;
9778 Op_List : Elist_Id;
9779 Subp : Entity_Id;
9780 Type_Def : Node_Id;
9782 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9783 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9784 -- which has pragma Implemented already set. Check whether Subp's entity
9785 -- kind conforms to the implementation kind of the overridden routine.
9787 procedure Check_Pragma_Implemented
9788 (Subp : Entity_Id;
9789 Iface_Subp : Entity_Id);
9790 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9791 -- Iface_Subp and both entities have pragma Implemented already set on
9792 -- them. Check whether the two implementation kinds are conforming.
9794 procedure Inherit_Pragma_Implemented
9795 (Subp : Entity_Id;
9796 Iface_Subp : Entity_Id);
9797 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9798 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9799 -- Propagate the implementation kind of Iface_Subp to Subp.
9801 ------------------------------
9802 -- Check_Pragma_Implemented --
9803 ------------------------------
9805 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9806 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9807 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9808 Subp_Alias : constant Entity_Id := Alias (Subp);
9809 Contr_Typ : Entity_Id;
9810 Impl_Subp : Entity_Id;
9812 begin
9813 -- Subp must have an alias since it is a hidden entity used to link
9814 -- an interface subprogram to its overriding counterpart.
9816 pragma Assert (Present (Subp_Alias));
9818 -- Handle aliases to synchronized wrappers
9820 Impl_Subp := Subp_Alias;
9822 if Is_Primitive_Wrapper (Impl_Subp) then
9823 Impl_Subp := Wrapped_Entity (Impl_Subp);
9824 end if;
9826 -- Extract the type of the controlling formal
9828 Contr_Typ := Etype (First_Formal (Subp_Alias));
9830 if Is_Concurrent_Record_Type (Contr_Typ) then
9831 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9832 end if;
9834 -- An interface subprogram whose implementation kind is By_Entry must
9835 -- be implemented by an entry.
9837 if Impl_Kind = Name_By_Entry
9838 and then Ekind (Impl_Subp) /= E_Entry
9839 then
9840 Error_Msg_Node_2 := Iface_Alias;
9841 Error_Msg_NE
9842 ("type & must implement abstract subprogram & with an entry",
9843 Subp_Alias, Contr_Typ);
9845 elsif Impl_Kind = Name_By_Protected_Procedure then
9847 -- An interface subprogram whose implementation kind is By_
9848 -- Protected_Procedure cannot be implemented by a primitive
9849 -- procedure of a task type.
9851 if Ekind (Contr_Typ) /= E_Protected_Type then
9852 Error_Msg_Node_2 := Contr_Typ;
9853 Error_Msg_NE
9854 ("interface subprogram & cannot be implemented by a " &
9855 "primitive procedure of task type &", Subp_Alias,
9856 Iface_Alias);
9858 -- An interface subprogram whose implementation kind is By_
9859 -- Protected_Procedure must be implemented by a procedure.
9861 elsif Ekind (Impl_Subp) /= E_Procedure then
9862 Error_Msg_Node_2 := Iface_Alias;
9863 Error_Msg_NE
9864 ("type & must implement abstract subprogram & with a " &
9865 "procedure", Subp_Alias, Contr_Typ);
9867 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9868 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9869 then
9870 Error_Msg_Name_1 := Impl_Kind;
9871 Error_Msg_N
9872 ("overriding operation& must have synchronization%",
9873 Subp_Alias);
9874 end if;
9876 -- If primitive has Optional synchronization, overriding operation
9877 -- must match if it has an explicit synchronization..
9879 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9880 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9881 then
9882 Error_Msg_Name_1 := Impl_Kind;
9883 Error_Msg_N
9884 ("overriding operation& must have syncrhonization%",
9885 Subp_Alias);
9886 end if;
9887 end Check_Pragma_Implemented;
9889 ------------------------------
9890 -- Check_Pragma_Implemented --
9891 ------------------------------
9893 procedure Check_Pragma_Implemented
9894 (Subp : Entity_Id;
9895 Iface_Subp : Entity_Id)
9897 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9898 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9900 begin
9901 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9902 -- and overriding subprogram are different. In general this is an
9903 -- error except when the implementation kind of the overridden
9904 -- subprograms is By_Any or Optional.
9906 if Iface_Kind /= Subp_Kind
9907 and then Iface_Kind /= Name_By_Any
9908 and then Iface_Kind /= Name_Optional
9909 then
9910 if Iface_Kind = Name_By_Entry then
9911 Error_Msg_N
9912 ("incompatible implementation kind, overridden subprogram " &
9913 "is marked By_Entry", Subp);
9914 else
9915 Error_Msg_N
9916 ("incompatible implementation kind, overridden subprogram " &
9917 "is marked By_Protected_Procedure", Subp);
9918 end if;
9919 end if;
9920 end Check_Pragma_Implemented;
9922 --------------------------------
9923 -- Inherit_Pragma_Implemented --
9924 --------------------------------
9926 procedure Inherit_Pragma_Implemented
9927 (Subp : Entity_Id;
9928 Iface_Subp : Entity_Id)
9930 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9931 Loc : constant Source_Ptr := Sloc (Subp);
9932 Impl_Prag : Node_Id;
9934 begin
9935 -- Since the implementation kind is stored as a representation item
9936 -- rather than a flag, create a pragma node.
9938 Impl_Prag :=
9939 Make_Pragma (Loc,
9940 Chars => Name_Implemented,
9941 Pragma_Argument_Associations => New_List (
9942 Make_Pragma_Argument_Association (Loc,
9943 Expression => New_Occurrence_Of (Subp, Loc)),
9945 Make_Pragma_Argument_Association (Loc,
9946 Expression => Make_Identifier (Loc, Iface_Kind))));
9948 -- The pragma doesn't need to be analyzed because it is internally
9949 -- built. It is safe to directly register it as a rep item since we
9950 -- are only interested in the characters of the implementation kind.
9952 Record_Rep_Item (Subp, Impl_Prag);
9953 end Inherit_Pragma_Implemented;
9955 -- Start of processing for Check_Abstract_Overriding
9957 begin
9958 Op_List := Primitive_Operations (T);
9960 -- Loop to check primitive operations
9962 Elmt := First_Elmt (Op_List);
9963 while Present (Elmt) loop
9964 Subp := Node (Elmt);
9965 Alias_Subp := Alias (Subp);
9967 -- Inherited subprograms are identified by the fact that they do not
9968 -- come from source, and the associated source location is the
9969 -- location of the first subtype of the derived type.
9971 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9972 -- subprograms that "require overriding".
9974 -- Special exception, do not complain about failure to override the
9975 -- stream routines _Input and _Output, as well as the primitive
9976 -- operations used in dispatching selects since we always provide
9977 -- automatic overridings for these subprograms.
9979 -- The partial view of T may have been a private extension, for
9980 -- which inherited functions dispatching on result are abstract.
9981 -- If the full view is a null extension, there is no need for
9982 -- overriding in Ada 2005, but wrappers need to be built for them
9983 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9985 if Is_Null_Extension (T)
9986 and then Has_Controlling_Result (Subp)
9987 and then Ada_Version >= Ada_2005
9988 and then Present (Alias_Subp)
9989 and then not Comes_From_Source (Subp)
9990 and then not Is_Abstract_Subprogram (Alias_Subp)
9991 and then not Is_Access_Type (Etype (Subp))
9992 then
9993 null;
9995 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9996 -- processing because this check is done with the aliased
9997 -- entity
9999 elsif Present (Interface_Alias (Subp)) then
10000 null;
10002 elsif (Is_Abstract_Subprogram (Subp)
10003 or else Requires_Overriding (Subp)
10004 or else
10005 (Has_Controlling_Result (Subp)
10006 and then Present (Alias_Subp)
10007 and then not Comes_From_Source (Subp)
10008 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10009 and then not Is_TSS (Subp, TSS_Stream_Input)
10010 and then not Is_TSS (Subp, TSS_Stream_Output)
10011 and then not Is_Abstract_Type (T)
10012 and then not Is_Predefined_Interface_Primitive (Subp)
10014 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10015 -- with abstract interface types because the check will be done
10016 -- with the aliased entity (otherwise we generate a duplicated
10017 -- error message).
10019 and then not Present (Interface_Alias (Subp))
10020 then
10021 if Present (Alias_Subp) then
10023 -- Only perform the check for a derived subprogram when the
10024 -- type has an explicit record extension. This avoids incorrect
10025 -- flagging of abstract subprograms for the case of a type
10026 -- without an extension that is derived from a formal type
10027 -- with a tagged actual (can occur within a private part).
10029 -- Ada 2005 (AI-391): In the case of an inherited function with
10030 -- a controlling result of the type, the rule does not apply if
10031 -- the type is a null extension (unless the parent function
10032 -- itself is abstract, in which case the function must still be
10033 -- be overridden). The expander will generate an overriding
10034 -- wrapper function calling the parent subprogram (see
10035 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10037 Type_Def := Type_Definition (Parent (T));
10039 if Nkind (Type_Def) = N_Derived_Type_Definition
10040 and then Present (Record_Extension_Part (Type_Def))
10041 and then
10042 (Ada_Version < Ada_2005
10043 or else not Is_Null_Extension (T)
10044 or else Ekind (Subp) = E_Procedure
10045 or else not Has_Controlling_Result (Subp)
10046 or else Is_Abstract_Subprogram (Alias_Subp)
10047 or else Requires_Overriding (Subp)
10048 or else Is_Access_Type (Etype (Subp)))
10049 then
10050 -- Avoid reporting error in case of abstract predefined
10051 -- primitive inherited from interface type because the
10052 -- body of internally generated predefined primitives
10053 -- of tagged types are generated later by Freeze_Type
10055 if Is_Interface (Root_Type (T))
10056 and then Is_Abstract_Subprogram (Subp)
10057 and then Is_Predefined_Dispatching_Operation (Subp)
10058 and then not Comes_From_Source (Ultimate_Alias (Subp))
10059 then
10060 null;
10062 -- A null extension is not obliged to override an inherited
10063 -- procedure subject to pragma Extensions_Visible with value
10064 -- False and at least one controlling OUT parameter
10065 -- (SPARK RM 6.1.7(6)).
10067 elsif Is_Null_Extension (T)
10068 and then Is_EVF_Procedure (Subp)
10069 then
10070 null;
10072 else
10073 Error_Msg_NE
10074 ("type must be declared abstract or & overridden",
10075 T, Subp);
10077 -- Traverse the whole chain of aliased subprograms to
10078 -- complete the error notification. This is especially
10079 -- useful for traceability of the chain of entities when
10080 -- the subprogram corresponds with an interface
10081 -- subprogram (which may be defined in another package).
10083 if Present (Alias_Subp) then
10084 declare
10085 E : Entity_Id;
10087 begin
10088 E := Subp;
10089 while Present (Alias (E)) loop
10091 -- Avoid reporting redundant errors on entities
10092 -- inherited from interfaces
10094 if Sloc (E) /= Sloc (T) then
10095 Error_Msg_Sloc := Sloc (E);
10096 Error_Msg_NE
10097 ("\& has been inherited #", T, Subp);
10098 end if;
10100 E := Alias (E);
10101 end loop;
10103 Error_Msg_Sloc := Sloc (E);
10105 -- AI05-0068: report if there is an overriding
10106 -- non-abstract subprogram that is invisible.
10108 if Is_Hidden (E)
10109 and then not Is_Abstract_Subprogram (E)
10110 then
10111 Error_Msg_NE
10112 ("\& subprogram# is not visible",
10113 T, Subp);
10115 -- Clarify the case where a non-null extension must
10116 -- override inherited procedure subject to pragma
10117 -- Extensions_Visible with value False and at least
10118 -- one controlling OUT param.
10120 elsif Is_EVF_Procedure (E) then
10121 Error_Msg_NE
10122 ("\& # is subject to Extensions_Visible False",
10123 T, Subp);
10125 else
10126 Error_Msg_NE
10127 ("\& has been inherited from subprogram #",
10128 T, Subp);
10129 end if;
10130 end;
10131 end if;
10132 end if;
10134 -- Ada 2005 (AI-345): Protected or task type implementing
10135 -- abstract interfaces.
10137 elsif Is_Concurrent_Record_Type (T)
10138 and then Present (Interfaces (T))
10139 then
10140 -- There is no need to check here RM 9.4(11.9/3) since we
10141 -- are processing the corresponding record type and the
10142 -- mode of the overriding subprograms was verified by
10143 -- Check_Conformance when the corresponding concurrent
10144 -- type declaration was analyzed.
10146 Error_Msg_NE
10147 ("interface subprogram & must be overridden", T, Subp);
10149 -- Examine primitive operations of synchronized type to find
10150 -- homonyms that have the wrong profile.
10152 declare
10153 Prim : Entity_Id;
10155 begin
10156 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10157 while Present (Prim) loop
10158 if Chars (Prim) = Chars (Subp) then
10159 Error_Msg_NE
10160 ("profile is not type conformant with prefixed "
10161 & "view profile of inherited operation&",
10162 Prim, Subp);
10163 end if;
10165 Next_Entity (Prim);
10166 end loop;
10167 end;
10168 end if;
10170 else
10171 Error_Msg_Node_2 := T;
10172 Error_Msg_N
10173 ("abstract subprogram& not allowed for type&", Subp);
10175 -- Also post unconditional warning on the type (unconditional
10176 -- so that if there are more than one of these cases, we get
10177 -- them all, and not just the first one).
10179 Error_Msg_Node_2 := Subp;
10180 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10181 end if;
10183 -- A subprogram subject to pragma Extensions_Visible with value
10184 -- "True" cannot override a subprogram subject to the same pragma
10185 -- with value "False" (SPARK RM 6.1.7(5)).
10187 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10188 and then Present (Overridden_Operation (Subp))
10189 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10190 Extensions_Visible_False
10191 then
10192 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10193 Error_Msg_N
10194 ("subprogram & with Extensions_Visible True cannot override "
10195 & "subprogram # with Extensions_Visible False", Subp);
10196 end if;
10198 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10200 -- Subp is an expander-generated procedure which maps an interface
10201 -- alias to a protected wrapper. The interface alias is flagged by
10202 -- pragma Implemented. Ensure that Subp is a procedure when the
10203 -- implementation kind is By_Protected_Procedure or an entry when
10204 -- By_Entry.
10206 if Ada_Version >= Ada_2012
10207 and then Is_Hidden (Subp)
10208 and then Present (Interface_Alias (Subp))
10209 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10210 then
10211 Check_Pragma_Implemented (Subp);
10212 end if;
10214 -- Subp is an interface primitive which overrides another interface
10215 -- primitive marked with pragma Implemented.
10217 if Ada_Version >= Ada_2012
10218 and then Present (Overridden_Operation (Subp))
10219 and then Has_Rep_Pragma
10220 (Overridden_Operation (Subp), Name_Implemented)
10221 then
10222 -- If the overriding routine is also marked by Implemented, check
10223 -- that the two implementation kinds are conforming.
10225 if Has_Rep_Pragma (Subp, Name_Implemented) then
10226 Check_Pragma_Implemented
10227 (Subp => Subp,
10228 Iface_Subp => Overridden_Operation (Subp));
10230 -- Otherwise the overriding routine inherits the implementation
10231 -- kind from the overridden subprogram.
10233 else
10234 Inherit_Pragma_Implemented
10235 (Subp => Subp,
10236 Iface_Subp => Overridden_Operation (Subp));
10237 end if;
10238 end if;
10240 -- If the operation is a wrapper for a synchronized primitive, it
10241 -- may be called indirectly through a dispatching select. We assume
10242 -- that it will be referenced elsewhere indirectly, and suppress
10243 -- warnings about an unused entity.
10245 if Is_Primitive_Wrapper (Subp)
10246 and then Present (Wrapped_Entity (Subp))
10247 then
10248 Set_Referenced (Wrapped_Entity (Subp));
10249 end if;
10251 Next_Elmt (Elmt);
10252 end loop;
10253 end Check_Abstract_Overriding;
10255 ------------------------------------------------
10256 -- Check_Access_Discriminant_Requires_Limited --
10257 ------------------------------------------------
10259 procedure Check_Access_Discriminant_Requires_Limited
10260 (D : Node_Id;
10261 Loc : Node_Id)
10263 begin
10264 -- A discriminant_specification for an access discriminant shall appear
10265 -- only in the declaration for a task or protected type, or for a type
10266 -- with the reserved word 'limited' in its definition or in one of its
10267 -- ancestors (RM 3.7(10)).
10269 -- AI-0063: The proper condition is that type must be immutably limited,
10270 -- or else be a partial view.
10272 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10273 if Is_Limited_View (Current_Scope)
10274 or else
10275 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10276 and then Limited_Present (Parent (Current_Scope)))
10277 then
10278 null;
10280 else
10281 Error_Msg_N
10282 ("access discriminants allowed only for limited types", Loc);
10283 end if;
10284 end if;
10285 end Check_Access_Discriminant_Requires_Limited;
10287 -----------------------------------
10288 -- Check_Aliased_Component_Types --
10289 -----------------------------------
10291 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10292 C : Entity_Id;
10294 begin
10295 -- ??? Also need to check components of record extensions, but not
10296 -- components of protected types (which are always limited).
10298 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10299 -- types to be unconstrained. This is safe because it is illegal to
10300 -- create access subtypes to such types with explicit discriminant
10301 -- constraints.
10303 if not Is_Limited_Type (T) then
10304 if Ekind (T) = E_Record_Type then
10305 C := First_Component (T);
10306 while Present (C) loop
10307 if Is_Aliased (C)
10308 and then Has_Discriminants (Etype (C))
10309 and then not Is_Constrained (Etype (C))
10310 and then not In_Instance_Body
10311 and then Ada_Version < Ada_2005
10312 then
10313 Error_Msg_N
10314 ("aliased component must be constrained (RM 3.6(11))",
10316 end if;
10318 Next_Component (C);
10319 end loop;
10321 elsif Ekind (T) = E_Array_Type then
10322 if Has_Aliased_Components (T)
10323 and then Has_Discriminants (Component_Type (T))
10324 and then not Is_Constrained (Component_Type (T))
10325 and then not In_Instance_Body
10326 and then Ada_Version < Ada_2005
10327 then
10328 Error_Msg_N
10329 ("aliased component type must be constrained (RM 3.6(11))",
10331 end if;
10332 end if;
10333 end if;
10334 end Check_Aliased_Component_Types;
10336 ---------------------------------------
10337 -- Check_Anonymous_Access_Components --
10338 ---------------------------------------
10340 procedure Check_Anonymous_Access_Components
10341 (Typ_Decl : Node_Id;
10342 Typ : Entity_Id;
10343 Prev : Entity_Id;
10344 Comp_List : Node_Id)
10346 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10347 Anon_Access : Entity_Id;
10348 Acc_Def : Node_Id;
10349 Comp : Node_Id;
10350 Comp_Def : Node_Id;
10351 Decl : Node_Id;
10352 Type_Def : Node_Id;
10354 procedure Build_Incomplete_Type_Declaration;
10355 -- If the record type contains components that include an access to the
10356 -- current record, then create an incomplete type declaration for the
10357 -- record, to be used as the designated type of the anonymous access.
10358 -- This is done only once, and only if there is no previous partial
10359 -- view of the type.
10361 function Designates_T (Subt : Node_Id) return Boolean;
10362 -- Check whether a node designates the enclosing record type, or 'Class
10363 -- of that type
10365 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10366 -- Check whether an access definition includes a reference to
10367 -- the enclosing record type. The reference can be a subtype mark
10368 -- in the access definition itself, a 'Class attribute reference, or
10369 -- recursively a reference appearing in a parameter specification
10370 -- or result definition of an access_to_subprogram definition.
10372 --------------------------------------
10373 -- Build_Incomplete_Type_Declaration --
10374 --------------------------------------
10376 procedure Build_Incomplete_Type_Declaration is
10377 Decl : Node_Id;
10378 Inc_T : Entity_Id;
10379 H : Entity_Id;
10381 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10382 -- it's "is new ... with record" or else "is tagged record ...".
10384 Is_Tagged : constant Boolean :=
10385 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10386 and then
10387 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10388 or else
10389 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10390 and then Tagged_Present (Type_Definition (Typ_Decl)));
10392 begin
10393 -- If there is a previous partial view, no need to create a new one
10394 -- If the partial view, given by Prev, is incomplete, If Prev is
10395 -- a private declaration, full declaration is flagged accordingly.
10397 if Prev /= Typ then
10398 if Is_Tagged then
10399 Make_Class_Wide_Type (Prev);
10400 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10401 Set_Etype (Class_Wide_Type (Typ), Typ);
10402 end if;
10404 return;
10406 elsif Has_Private_Declaration (Typ) then
10408 -- If we refer to T'Class inside T, and T is the completion of a
10409 -- private type, then make sure the class-wide type exists.
10411 if Is_Tagged then
10412 Make_Class_Wide_Type (Typ);
10413 end if;
10415 return;
10417 -- If there was a previous anonymous access type, the incomplete
10418 -- type declaration will have been created already.
10420 elsif Present (Current_Entity (Typ))
10421 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10422 and then Full_View (Current_Entity (Typ)) = Typ
10423 then
10424 if Is_Tagged
10425 and then Comes_From_Source (Current_Entity (Typ))
10426 and then not Is_Tagged_Type (Current_Entity (Typ))
10427 then
10428 Make_Class_Wide_Type (Typ);
10429 Error_Msg_N
10430 ("incomplete view of tagged type should be declared tagged??",
10431 Parent (Current_Entity (Typ)));
10432 end if;
10433 return;
10435 else
10436 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10437 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10439 -- Type has already been inserted into the current scope. Remove
10440 -- it, and add incomplete declaration for type, so that subsequent
10441 -- anonymous access types can use it. The entity is unchained from
10442 -- the homonym list and from immediate visibility. After analysis,
10443 -- the entity in the incomplete declaration becomes immediately
10444 -- visible in the record declaration that follows.
10446 H := Current_Entity (Typ);
10448 if H = Typ then
10449 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10450 else
10451 while Present (H)
10452 and then Homonym (H) /= Typ
10453 loop
10454 H := Homonym (Typ);
10455 end loop;
10457 Set_Homonym (H, Homonym (Typ));
10458 end if;
10460 Insert_Before (Typ_Decl, Decl);
10461 Analyze (Decl);
10462 Set_Full_View (Inc_T, Typ);
10464 if Is_Tagged then
10466 -- Create a common class-wide type for both views, and set the
10467 -- Etype of the class-wide type to the full view.
10469 Make_Class_Wide_Type (Inc_T);
10470 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10471 Set_Etype (Class_Wide_Type (Typ), Typ);
10472 end if;
10473 end if;
10474 end Build_Incomplete_Type_Declaration;
10476 ------------------
10477 -- Designates_T --
10478 ------------------
10480 function Designates_T (Subt : Node_Id) return Boolean is
10481 Type_Id : constant Name_Id := Chars (Typ);
10483 function Names_T (Nam : Node_Id) return Boolean;
10484 -- The record type has not been introduced in the current scope
10485 -- yet, so we must examine the name of the type itself, either
10486 -- an identifier T, or an expanded name of the form P.T, where
10487 -- P denotes the current scope.
10489 -------------
10490 -- Names_T --
10491 -------------
10493 function Names_T (Nam : Node_Id) return Boolean is
10494 begin
10495 if Nkind (Nam) = N_Identifier then
10496 return Chars (Nam) = Type_Id;
10498 elsif Nkind (Nam) = N_Selected_Component then
10499 if Chars (Selector_Name (Nam)) = Type_Id then
10500 if Nkind (Prefix (Nam)) = N_Identifier then
10501 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10503 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10504 return Chars (Selector_Name (Prefix (Nam))) =
10505 Chars (Current_Scope);
10506 else
10507 return False;
10508 end if;
10510 else
10511 return False;
10512 end if;
10514 else
10515 return False;
10516 end if;
10517 end Names_T;
10519 -- Start of processing for Designates_T
10521 begin
10522 if Nkind (Subt) = N_Identifier then
10523 return Chars (Subt) = Type_Id;
10525 -- Reference can be through an expanded name which has not been
10526 -- analyzed yet, and which designates enclosing scopes.
10528 elsif Nkind (Subt) = N_Selected_Component then
10529 if Names_T (Subt) then
10530 return True;
10532 -- Otherwise it must denote an entity that is already visible.
10533 -- The access definition may name a subtype of the enclosing
10534 -- type, if there is a previous incomplete declaration for it.
10536 else
10537 Find_Selected_Component (Subt);
10538 return
10539 Is_Entity_Name (Subt)
10540 and then Scope (Entity (Subt)) = Current_Scope
10541 and then
10542 (Chars (Base_Type (Entity (Subt))) = Type_Id
10543 or else
10544 (Is_Class_Wide_Type (Entity (Subt))
10545 and then
10546 Chars (Etype (Base_Type (Entity (Subt)))) =
10547 Type_Id));
10548 end if;
10550 -- A reference to the current type may appear as the prefix of
10551 -- a 'Class attribute.
10553 elsif Nkind (Subt) = N_Attribute_Reference
10554 and then Attribute_Name (Subt) = Name_Class
10555 then
10556 return Names_T (Prefix (Subt));
10558 else
10559 return False;
10560 end if;
10561 end Designates_T;
10563 ----------------
10564 -- Mentions_T --
10565 ----------------
10567 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10568 Param_Spec : Node_Id;
10570 Acc_Subprg : constant Node_Id :=
10571 Access_To_Subprogram_Definition (Acc_Def);
10573 begin
10574 if No (Acc_Subprg) then
10575 return Designates_T (Subtype_Mark (Acc_Def));
10576 end if;
10578 -- Component is an access_to_subprogram: examine its formals,
10579 -- and result definition in the case of an access_to_function.
10581 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10582 while Present (Param_Spec) loop
10583 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10584 and then Mentions_T (Parameter_Type (Param_Spec))
10585 then
10586 return True;
10588 elsif Designates_T (Parameter_Type (Param_Spec)) then
10589 return True;
10590 end if;
10592 Next (Param_Spec);
10593 end loop;
10595 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10596 if Nkind (Result_Definition (Acc_Subprg)) =
10597 N_Access_Definition
10598 then
10599 return Mentions_T (Result_Definition (Acc_Subprg));
10600 else
10601 return Designates_T (Result_Definition (Acc_Subprg));
10602 end if;
10603 end if;
10605 return False;
10606 end Mentions_T;
10608 -- Start of processing for Check_Anonymous_Access_Components
10610 begin
10611 if No (Comp_List) then
10612 return;
10613 end if;
10615 Comp := First (Component_Items (Comp_List));
10616 while Present (Comp) loop
10617 if Nkind (Comp) = N_Component_Declaration
10618 and then Present
10619 (Access_Definition (Component_Definition (Comp)))
10620 and then
10621 Mentions_T (Access_Definition (Component_Definition (Comp)))
10622 then
10623 Comp_Def := Component_Definition (Comp);
10624 Acc_Def :=
10625 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10627 Build_Incomplete_Type_Declaration;
10628 Anon_Access := Make_Temporary (Loc, 'S');
10630 -- Create a declaration for the anonymous access type: either
10631 -- an access_to_object or an access_to_subprogram.
10633 if Present (Acc_Def) then
10634 if Nkind (Acc_Def) = N_Access_Function_Definition then
10635 Type_Def :=
10636 Make_Access_Function_Definition (Loc,
10637 Parameter_Specifications =>
10638 Parameter_Specifications (Acc_Def),
10639 Result_Definition => Result_Definition (Acc_Def));
10640 else
10641 Type_Def :=
10642 Make_Access_Procedure_Definition (Loc,
10643 Parameter_Specifications =>
10644 Parameter_Specifications (Acc_Def));
10645 end if;
10647 else
10648 Type_Def :=
10649 Make_Access_To_Object_Definition (Loc,
10650 Subtype_Indication =>
10651 Relocate_Node
10652 (Subtype_Mark (Access_Definition (Comp_Def))));
10654 Set_Constant_Present
10655 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10656 Set_All_Present
10657 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10658 end if;
10660 Set_Null_Exclusion_Present
10661 (Type_Def,
10662 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10664 Decl :=
10665 Make_Full_Type_Declaration (Loc,
10666 Defining_Identifier => Anon_Access,
10667 Type_Definition => Type_Def);
10669 Insert_Before (Typ_Decl, Decl);
10670 Analyze (Decl);
10672 -- If an access to subprogram, create the extra formals
10674 if Present (Acc_Def) then
10675 Create_Extra_Formals (Designated_Type (Anon_Access));
10677 -- If an access to object, preserve entity of designated type,
10678 -- for ASIS use, before rewriting the component definition.
10680 else
10681 declare
10682 Desig : Entity_Id;
10684 begin
10685 Desig := Entity (Subtype_Indication (Type_Def));
10687 -- If the access definition is to the current record,
10688 -- the visible entity at this point is an incomplete
10689 -- type. Retrieve the full view to simplify ASIS queries
10691 if Ekind (Desig) = E_Incomplete_Type then
10692 Desig := Full_View (Desig);
10693 end if;
10695 Set_Entity
10696 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10697 end;
10698 end if;
10700 Rewrite (Comp_Def,
10701 Make_Component_Definition (Loc,
10702 Subtype_Indication =>
10703 New_Occurrence_Of (Anon_Access, Loc)));
10705 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10706 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10707 else
10708 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10709 end if;
10711 Set_Is_Local_Anonymous_Access (Anon_Access);
10712 end if;
10714 Next (Comp);
10715 end loop;
10717 if Present (Variant_Part (Comp_List)) then
10718 declare
10719 V : Node_Id;
10720 begin
10721 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10722 while Present (V) loop
10723 Check_Anonymous_Access_Components
10724 (Typ_Decl, Typ, Prev, Component_List (V));
10725 Next_Non_Pragma (V);
10726 end loop;
10727 end;
10728 end if;
10729 end Check_Anonymous_Access_Components;
10731 ----------------------
10732 -- Check_Completion --
10733 ----------------------
10735 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10736 E : Entity_Id;
10738 procedure Post_Error;
10739 -- Post error message for lack of completion for entity E
10741 ----------------
10742 -- Post_Error --
10743 ----------------
10745 procedure Post_Error is
10746 procedure Missing_Body;
10747 -- Output missing body message
10749 ------------------
10750 -- Missing_Body --
10751 ------------------
10753 procedure Missing_Body is
10754 begin
10755 -- Spec is in same unit, so we can post on spec
10757 if In_Same_Source_Unit (Body_Id, E) then
10758 Error_Msg_N ("missing body for &", E);
10760 -- Spec is in a separate unit, so we have to post on the body
10762 else
10763 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10764 end if;
10765 end Missing_Body;
10767 -- Start of processing for Post_Error
10769 begin
10770 if not Comes_From_Source (E) then
10771 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10773 -- It may be an anonymous protected type created for a
10774 -- single variable. Post error on variable, if present.
10776 declare
10777 Var : Entity_Id;
10779 begin
10780 Var := First_Entity (Current_Scope);
10781 while Present (Var) loop
10782 exit when Etype (Var) = E
10783 and then Comes_From_Source (Var);
10785 Next_Entity (Var);
10786 end loop;
10788 if Present (Var) then
10789 E := Var;
10790 end if;
10791 end;
10792 end if;
10793 end if;
10795 -- If a generated entity has no completion, then either previous
10796 -- semantic errors have disabled the expansion phase, or else we had
10797 -- missing subunits, or else we are compiling without expansion,
10798 -- or else something is very wrong.
10800 if not Comes_From_Source (E) then
10801 pragma Assert
10802 (Serious_Errors_Detected > 0
10803 or else Configurable_Run_Time_Violations > 0
10804 or else Subunits_Missing
10805 or else not Expander_Active);
10806 return;
10808 -- Here for source entity
10810 else
10811 -- Here if no body to post the error message, so we post the error
10812 -- on the declaration that has no completion. This is not really
10813 -- the right place to post it, think about this later ???
10815 if No (Body_Id) then
10816 if Is_Type (E) then
10817 Error_Msg_NE
10818 ("missing full declaration for }", Parent (E), E);
10819 else
10820 Error_Msg_NE ("missing body for &", Parent (E), E);
10821 end if;
10823 -- Package body has no completion for a declaration that appears
10824 -- in the corresponding spec. Post error on the body, with a
10825 -- reference to the non-completed declaration.
10827 else
10828 Error_Msg_Sloc := Sloc (E);
10830 if Is_Type (E) then
10831 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10833 elsif Is_Overloadable (E)
10834 and then Current_Entity_In_Scope (E) /= E
10835 then
10836 -- It may be that the completion is mistyped and appears as
10837 -- a distinct overloading of the entity.
10839 declare
10840 Candidate : constant Entity_Id :=
10841 Current_Entity_In_Scope (E);
10842 Decl : constant Node_Id :=
10843 Unit_Declaration_Node (Candidate);
10845 begin
10846 if Is_Overloadable (Candidate)
10847 and then Ekind (Candidate) = Ekind (E)
10848 and then Nkind (Decl) = N_Subprogram_Body
10849 and then Acts_As_Spec (Decl)
10850 then
10851 Check_Type_Conformant (Candidate, E);
10853 else
10854 Missing_Body;
10855 end if;
10856 end;
10858 else
10859 Missing_Body;
10860 end if;
10861 end if;
10862 end if;
10863 end Post_Error;
10865 -- Local variables
10867 Pack_Id : constant Entity_Id := Current_Scope;
10869 -- Start of processing for Check_Completion
10871 begin
10872 E := First_Entity (Pack_Id);
10873 while Present (E) loop
10874 if Is_Intrinsic_Subprogram (E) then
10875 null;
10877 -- The following situation requires special handling: a child unit
10878 -- that appears in the context clause of the body of its parent:
10880 -- procedure Parent.Child (...);
10882 -- with Parent.Child;
10883 -- package body Parent is
10885 -- Here Parent.Child appears as a local entity, but should not be
10886 -- flagged as requiring completion, because it is a compilation
10887 -- unit.
10889 -- Ignore missing completion for a subprogram that does not come from
10890 -- source (including the _Call primitive operation of RAS types,
10891 -- which has to have the flag Comes_From_Source for other purposes):
10892 -- we assume that the expander will provide the missing completion.
10893 -- In case of previous errors, other expansion actions that provide
10894 -- bodies for null procedures with not be invoked, so inhibit message
10895 -- in those cases.
10897 -- Note that E_Operator is not in the list that follows, because
10898 -- this kind is reserved for predefined operators, that are
10899 -- intrinsic and do not need completion.
10901 elsif Ekind_In (E, E_Function,
10902 E_Procedure,
10903 E_Generic_Function,
10904 E_Generic_Procedure)
10905 then
10906 if Has_Completion (E) then
10907 null;
10909 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10910 null;
10912 elsif Is_Subprogram (E)
10913 and then (not Comes_From_Source (E)
10914 or else Chars (E) = Name_uCall)
10915 then
10916 null;
10918 elsif
10919 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10920 then
10921 null;
10923 elsif Nkind (Parent (E)) = N_Procedure_Specification
10924 and then Null_Present (Parent (E))
10925 and then Serious_Errors_Detected > 0
10926 then
10927 null;
10929 else
10930 Post_Error;
10931 end if;
10933 elsif Is_Entry (E) then
10934 if not Has_Completion (E) and then
10935 (Ekind (Scope (E)) = E_Protected_Object
10936 or else Ekind (Scope (E)) = E_Protected_Type)
10937 then
10938 Post_Error;
10939 end if;
10941 elsif Is_Package_Or_Generic_Package (E) then
10942 if Unit_Requires_Body (E) then
10943 if not Has_Completion (E)
10944 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10945 N_Compilation_Unit
10946 then
10947 Post_Error;
10948 end if;
10950 elsif not Is_Child_Unit (E) then
10951 May_Need_Implicit_Body (E);
10952 end if;
10954 -- A formal incomplete type (Ada 2012) does not require a completion;
10955 -- other incomplete type declarations do.
10957 elsif Ekind (E) = E_Incomplete_Type
10958 and then No (Underlying_Type (E))
10959 and then not Is_Generic_Type (E)
10960 then
10961 Post_Error;
10963 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10964 and then not Has_Completion (E)
10965 then
10966 Post_Error;
10968 -- A single task declared in the current scope is a constant, verify
10969 -- that the body of its anonymous type is in the same scope. If the
10970 -- task is defined elsewhere, this may be a renaming declaration for
10971 -- which no completion is needed.
10973 elsif Ekind (E) = E_Constant
10974 and then Ekind (Etype (E)) = E_Task_Type
10975 and then not Has_Completion (Etype (E))
10976 and then Scope (Etype (E)) = Current_Scope
10977 then
10978 Post_Error;
10980 elsif Ekind (E) = E_Protected_Object
10981 and then not Has_Completion (Etype (E))
10982 then
10983 Post_Error;
10985 elsif Ekind (E) = E_Record_Type then
10986 if Is_Tagged_Type (E) then
10987 Check_Abstract_Overriding (E);
10988 Check_Conventions (E);
10989 end if;
10991 Check_Aliased_Component_Types (E);
10993 elsif Ekind (E) = E_Array_Type then
10994 Check_Aliased_Component_Types (E);
10996 end if;
10998 Next_Entity (E);
10999 end loop;
11000 end Check_Completion;
11002 ------------------------------------
11003 -- Check_CPP_Type_Has_No_Defaults --
11004 ------------------------------------
11006 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11007 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11008 Clist : Node_Id;
11009 Comp : Node_Id;
11011 begin
11012 -- Obtain the component list
11014 if Nkind (Tdef) = N_Record_Definition then
11015 Clist := Component_List (Tdef);
11016 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11017 Clist := Component_List (Record_Extension_Part (Tdef));
11018 end if;
11020 -- Check all components to ensure no default expressions
11022 if Present (Clist) then
11023 Comp := First (Component_Items (Clist));
11024 while Present (Comp) loop
11025 if Present (Expression (Comp)) then
11026 Error_Msg_N
11027 ("component of imported 'C'P'P type cannot have "
11028 & "default expression", Expression (Comp));
11029 end if;
11031 Next (Comp);
11032 end loop;
11033 end if;
11034 end Check_CPP_Type_Has_No_Defaults;
11036 ----------------------------
11037 -- Check_Delta_Expression --
11038 ----------------------------
11040 procedure Check_Delta_Expression (E : Node_Id) is
11041 begin
11042 if not (Is_Real_Type (Etype (E))) then
11043 Wrong_Type (E, Any_Real);
11045 elsif not Is_OK_Static_Expression (E) then
11046 Flag_Non_Static_Expr
11047 ("non-static expression used for delta value!", E);
11049 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11050 Error_Msg_N ("delta expression must be positive", E);
11052 else
11053 return;
11054 end if;
11056 -- If any of above errors occurred, then replace the incorrect
11057 -- expression by the real 0.1, which should prevent further errors.
11059 Rewrite (E,
11060 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11061 Analyze_And_Resolve (E, Standard_Float);
11062 end Check_Delta_Expression;
11064 -----------------------------
11065 -- Check_Digits_Expression --
11066 -----------------------------
11068 procedure Check_Digits_Expression (E : Node_Id) is
11069 begin
11070 if not (Is_Integer_Type (Etype (E))) then
11071 Wrong_Type (E, Any_Integer);
11073 elsif not Is_OK_Static_Expression (E) then
11074 Flag_Non_Static_Expr
11075 ("non-static expression used for digits value!", E);
11077 elsif Expr_Value (E) <= 0 then
11078 Error_Msg_N ("digits value must be greater than zero", E);
11080 else
11081 return;
11082 end if;
11084 -- If any of above errors occurred, then replace the incorrect
11085 -- expression by the integer 1, which should prevent further errors.
11087 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11088 Analyze_And_Resolve (E, Standard_Integer);
11090 end Check_Digits_Expression;
11092 --------------------------
11093 -- Check_Initialization --
11094 --------------------------
11096 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11097 begin
11098 -- Special processing for limited types
11100 if Is_Limited_Type (T)
11101 and then not In_Instance
11102 and then not In_Inlined_Body
11103 then
11104 if not OK_For_Limited_Init (T, Exp) then
11106 -- In GNAT mode, this is just a warning, to allow it to be evilly
11107 -- turned off. Otherwise it is a real error.
11109 if GNAT_Mode then
11110 Error_Msg_N
11111 ("??cannot initialize entities of limited type!", Exp);
11113 elsif Ada_Version < Ada_2005 then
11115 -- The side effect removal machinery may generate illegal Ada
11116 -- code to avoid the usage of access types and 'reference in
11117 -- SPARK mode. Since this is legal code with respect to theorem
11118 -- proving, do not emit the error.
11120 if GNATprove_Mode
11121 and then Nkind (Exp) = N_Function_Call
11122 and then Nkind (Parent (Exp)) = N_Object_Declaration
11123 and then not Comes_From_Source
11124 (Defining_Identifier (Parent (Exp)))
11125 then
11126 null;
11128 else
11129 Error_Msg_N
11130 ("cannot initialize entities of limited type", Exp);
11131 Explain_Limited_Type (T, Exp);
11132 end if;
11134 else
11135 -- Specialize error message according to kind of illegal
11136 -- initial expression.
11138 if Nkind (Exp) = N_Type_Conversion
11139 and then Nkind (Expression (Exp)) = N_Function_Call
11140 then
11141 Error_Msg_N
11142 ("illegal context for call"
11143 & " to function with limited result", Exp);
11145 else
11146 Error_Msg_N
11147 ("initialization of limited object requires aggregate "
11148 & "or function call", Exp);
11149 end if;
11150 end if;
11151 end if;
11152 end if;
11154 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11155 -- set unless we can be sure that no range check is required.
11157 if (GNATprove_Mode or not Expander_Active)
11158 and then Is_Scalar_Type (T)
11159 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11160 then
11161 Set_Do_Range_Check (Exp);
11162 end if;
11163 end Check_Initialization;
11165 ----------------------
11166 -- Check_Interfaces --
11167 ----------------------
11169 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11170 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11172 Iface : Node_Id;
11173 Iface_Def : Node_Id;
11174 Iface_Typ : Entity_Id;
11175 Parent_Node : Node_Id;
11177 Is_Task : Boolean := False;
11178 -- Set True if parent type or any progenitor is a task interface
11180 Is_Protected : Boolean := False;
11181 -- Set True if parent type or any progenitor is a protected interface
11183 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11184 -- Check that a progenitor is compatible with declaration. If an error
11185 -- message is output, it is posted on Error_Node.
11187 ------------------
11188 -- Check_Ifaces --
11189 ------------------
11191 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11192 Iface_Id : constant Entity_Id :=
11193 Defining_Identifier (Parent (Iface_Def));
11194 Type_Def : Node_Id;
11196 begin
11197 if Nkind (N) = N_Private_Extension_Declaration then
11198 Type_Def := N;
11199 else
11200 Type_Def := Type_Definition (N);
11201 end if;
11203 if Is_Task_Interface (Iface_Id) then
11204 Is_Task := True;
11206 elsif Is_Protected_Interface (Iface_Id) then
11207 Is_Protected := True;
11208 end if;
11210 if Is_Synchronized_Interface (Iface_Id) then
11212 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11213 -- extension derived from a synchronized interface must explicitly
11214 -- be declared synchronized, because the full view will be a
11215 -- synchronized type.
11217 if Nkind (N) = N_Private_Extension_Declaration then
11218 if not Synchronized_Present (N) then
11219 Error_Msg_NE
11220 ("private extension of& must be explicitly synchronized",
11221 N, Iface_Id);
11222 end if;
11224 -- However, by 3.9.4(16/2), a full type that is a record extension
11225 -- is never allowed to derive from a synchronized interface (note
11226 -- that interfaces must be excluded from this check, because those
11227 -- are represented by derived type definitions in some cases).
11229 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11230 and then not Interface_Present (Type_Definition (N))
11231 then
11232 Error_Msg_N ("record extension cannot derive from synchronized "
11233 & "interface", Error_Node);
11234 end if;
11235 end if;
11237 -- Check that the characteristics of the progenitor are compatible
11238 -- with the explicit qualifier in the declaration.
11239 -- The check only applies to qualifiers that come from source.
11240 -- Limited_Present also appears in the declaration of corresponding
11241 -- records, and the check does not apply to them.
11243 if Limited_Present (Type_Def)
11244 and then not
11245 Is_Concurrent_Record_Type (Defining_Identifier (N))
11246 then
11247 if Is_Limited_Interface (Parent_Type)
11248 and then not Is_Limited_Interface (Iface_Id)
11249 then
11250 Error_Msg_NE
11251 ("progenitor & must be limited interface",
11252 Error_Node, Iface_Id);
11254 elsif
11255 (Task_Present (Iface_Def)
11256 or else Protected_Present (Iface_Def)
11257 or else Synchronized_Present (Iface_Def))
11258 and then Nkind (N) /= N_Private_Extension_Declaration
11259 and then not Error_Posted (N)
11260 then
11261 Error_Msg_NE
11262 ("progenitor & must be limited interface",
11263 Error_Node, Iface_Id);
11264 end if;
11266 -- Protected interfaces can only inherit from limited, synchronized
11267 -- or protected interfaces.
11269 elsif Nkind (N) = N_Full_Type_Declaration
11270 and then Protected_Present (Type_Def)
11271 then
11272 if Limited_Present (Iface_Def)
11273 or else Synchronized_Present (Iface_Def)
11274 or else Protected_Present (Iface_Def)
11275 then
11276 null;
11278 elsif Task_Present (Iface_Def) then
11279 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11280 & "from task interface", Error_Node);
11282 else
11283 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11284 & "from non-limited interface", Error_Node);
11285 end if;
11287 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11288 -- limited and synchronized.
11290 elsif Synchronized_Present (Type_Def) then
11291 if Limited_Present (Iface_Def)
11292 or else Synchronized_Present (Iface_Def)
11293 then
11294 null;
11296 elsif Protected_Present (Iface_Def)
11297 and then Nkind (N) /= N_Private_Extension_Declaration
11298 then
11299 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11300 & "from protected interface", Error_Node);
11302 elsif Task_Present (Iface_Def)
11303 and then Nkind (N) /= N_Private_Extension_Declaration
11304 then
11305 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11306 & "from task interface", Error_Node);
11308 elsif not Is_Limited_Interface (Iface_Id) then
11309 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11310 & "from non-limited interface", Error_Node);
11311 end if;
11313 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11314 -- synchronized or task interfaces.
11316 elsif Nkind (N) = N_Full_Type_Declaration
11317 and then Task_Present (Type_Def)
11318 then
11319 if Limited_Present (Iface_Def)
11320 or else Synchronized_Present (Iface_Def)
11321 or else Task_Present (Iface_Def)
11322 then
11323 null;
11325 elsif Protected_Present (Iface_Def) then
11326 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11327 & "protected interface", Error_Node);
11329 else
11330 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11331 & "non-limited interface", Error_Node);
11332 end if;
11333 end if;
11334 end Check_Ifaces;
11336 -- Start of processing for Check_Interfaces
11338 begin
11339 if Is_Interface (Parent_Type) then
11340 if Is_Task_Interface (Parent_Type) then
11341 Is_Task := True;
11343 elsif Is_Protected_Interface (Parent_Type) then
11344 Is_Protected := True;
11345 end if;
11346 end if;
11348 if Nkind (N) = N_Private_Extension_Declaration then
11350 -- Check that progenitors are compatible with declaration
11352 Iface := First (Interface_List (Def));
11353 while Present (Iface) loop
11354 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11356 Parent_Node := Parent (Base_Type (Iface_Typ));
11357 Iface_Def := Type_Definition (Parent_Node);
11359 if not Is_Interface (Iface_Typ) then
11360 Diagnose_Interface (Iface, Iface_Typ);
11361 else
11362 Check_Ifaces (Iface_Def, Iface);
11363 end if;
11365 Next (Iface);
11366 end loop;
11368 if Is_Task and Is_Protected then
11369 Error_Msg_N
11370 ("type cannot derive from task and protected interface", N);
11371 end if;
11373 return;
11374 end if;
11376 -- Full type declaration of derived type.
11377 -- Check compatibility with parent if it is interface type
11379 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11380 and then Is_Interface (Parent_Type)
11381 then
11382 Parent_Node := Parent (Parent_Type);
11384 -- More detailed checks for interface varieties
11386 Check_Ifaces
11387 (Iface_Def => Type_Definition (Parent_Node),
11388 Error_Node => Subtype_Indication (Type_Definition (N)));
11389 end if;
11391 Iface := First (Interface_List (Def));
11392 while Present (Iface) loop
11393 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11395 Parent_Node := Parent (Base_Type (Iface_Typ));
11396 Iface_Def := Type_Definition (Parent_Node);
11398 if not Is_Interface (Iface_Typ) then
11399 Diagnose_Interface (Iface, Iface_Typ);
11401 else
11402 -- "The declaration of a specific descendant of an interface
11403 -- type freezes the interface type" RM 13.14
11405 Freeze_Before (N, Iface_Typ);
11406 Check_Ifaces (Iface_Def, Error_Node => Iface);
11407 end if;
11409 Next (Iface);
11410 end loop;
11412 if Is_Task and Is_Protected then
11413 Error_Msg_N
11414 ("type cannot derive from task and protected interface", N);
11415 end if;
11416 end Check_Interfaces;
11418 ------------------------------------
11419 -- Check_Or_Process_Discriminants --
11420 ------------------------------------
11422 -- If an incomplete or private type declaration was already given for the
11423 -- type, the discriminants may have already been processed if they were
11424 -- present on the incomplete declaration. In this case a full conformance
11425 -- check has been performed in Find_Type_Name, and we then recheck here
11426 -- some properties that can't be checked on the partial view alone.
11427 -- Otherwise we call Process_Discriminants.
11429 procedure Check_Or_Process_Discriminants
11430 (N : Node_Id;
11431 T : Entity_Id;
11432 Prev : Entity_Id := Empty)
11434 begin
11435 if Has_Discriminants (T) then
11437 -- Discriminants are already set on T if they were already present
11438 -- on the partial view. Make them visible to component declarations.
11440 declare
11441 D : Entity_Id;
11442 -- Discriminant on T (full view) referencing expr on partial view
11444 Prev_D : Entity_Id;
11445 -- Entity of corresponding discriminant on partial view
11447 New_D : Node_Id;
11448 -- Discriminant specification for full view, expression is
11449 -- the syntactic copy on full view (which has been checked for
11450 -- conformance with partial view), only used here to post error
11451 -- message.
11453 begin
11454 D := First_Discriminant (T);
11455 New_D := First (Discriminant_Specifications (N));
11456 while Present (D) loop
11457 Prev_D := Current_Entity (D);
11458 Set_Current_Entity (D);
11459 Set_Is_Immediately_Visible (D);
11460 Set_Homonym (D, Prev_D);
11462 -- Handle the case where there is an untagged partial view and
11463 -- the full view is tagged: must disallow discriminants with
11464 -- defaults, unless compiling for Ada 2012, which allows a
11465 -- limited tagged type to have defaulted discriminants (see
11466 -- AI05-0214). However, suppress error here if it was already
11467 -- reported on the default expression of the partial view.
11469 if Is_Tagged_Type (T)
11470 and then Present (Expression (Parent (D)))
11471 and then (not Is_Limited_Type (Current_Scope)
11472 or else Ada_Version < Ada_2012)
11473 and then not Error_Posted (Expression (Parent (D)))
11474 then
11475 if Ada_Version >= Ada_2012 then
11476 Error_Msg_N
11477 ("discriminants of nonlimited tagged type cannot have "
11478 & "defaults",
11479 Expression (New_D));
11480 else
11481 Error_Msg_N
11482 ("discriminants of tagged type cannot have defaults",
11483 Expression (New_D));
11484 end if;
11485 end if;
11487 -- Ada 2005 (AI-230): Access discriminant allowed in
11488 -- non-limited record types.
11490 if Ada_Version < Ada_2005 then
11492 -- This restriction gets applied to the full type here. It
11493 -- has already been applied earlier to the partial view.
11495 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11496 end if;
11498 Next_Discriminant (D);
11499 Next (New_D);
11500 end loop;
11501 end;
11503 elsif Present (Discriminant_Specifications (N)) then
11504 Process_Discriminants (N, Prev);
11505 end if;
11506 end Check_Or_Process_Discriminants;
11508 ----------------------
11509 -- Check_Real_Bound --
11510 ----------------------
11512 procedure Check_Real_Bound (Bound : Node_Id) is
11513 begin
11514 if not Is_Real_Type (Etype (Bound)) then
11515 Error_Msg_N
11516 ("bound in real type definition must be of real type", Bound);
11518 elsif not Is_OK_Static_Expression (Bound) then
11519 Flag_Non_Static_Expr
11520 ("non-static expression used for real type bound!", Bound);
11522 else
11523 return;
11524 end if;
11526 Rewrite
11527 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11528 Analyze (Bound);
11529 Resolve (Bound, Standard_Float);
11530 end Check_Real_Bound;
11532 ------------------------------
11533 -- Complete_Private_Subtype --
11534 ------------------------------
11536 procedure Complete_Private_Subtype
11537 (Priv : Entity_Id;
11538 Full : Entity_Id;
11539 Full_Base : Entity_Id;
11540 Related_Nod : Node_Id)
11542 Save_Next_Entity : Entity_Id;
11543 Save_Homonym : Entity_Id;
11545 begin
11546 -- Set semantic attributes for (implicit) private subtype completion.
11547 -- If the full type has no discriminants, then it is a copy of the
11548 -- full view of the base. Otherwise, it is a subtype of the base with
11549 -- a possible discriminant constraint. Save and restore the original
11550 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11551 -- not corrupt the entity chain.
11553 -- Note that the type of the full view is the same entity as the type
11554 -- of the partial view. In this fashion, the subtype has access to the
11555 -- correct view of the parent.
11557 Save_Next_Entity := Next_Entity (Full);
11558 Save_Homonym := Homonym (Priv);
11560 case Ekind (Full_Base) is
11561 when E_Record_Type |
11562 E_Record_Subtype |
11563 Class_Wide_Kind |
11564 Private_Kind |
11565 Task_Kind |
11566 Protected_Kind =>
11567 Copy_Node (Priv, Full);
11569 Set_Has_Discriminants
11570 (Full, Has_Discriminants (Full_Base));
11571 Set_Has_Unknown_Discriminants
11572 (Full, Has_Unknown_Discriminants (Full_Base));
11573 Set_First_Entity (Full, First_Entity (Full_Base));
11574 Set_Last_Entity (Full, Last_Entity (Full_Base));
11576 -- If the underlying base type is constrained, we know that the
11577 -- full view of the subtype is constrained as well (the converse
11578 -- is not necessarily true).
11580 if Is_Constrained (Full_Base) then
11581 Set_Is_Constrained (Full);
11582 end if;
11584 when others =>
11585 Copy_Node (Full_Base, Full);
11587 Set_Chars (Full, Chars (Priv));
11588 Conditional_Delay (Full, Priv);
11589 Set_Sloc (Full, Sloc (Priv));
11590 end case;
11592 Set_Next_Entity (Full, Save_Next_Entity);
11593 Set_Homonym (Full, Save_Homonym);
11594 Set_Associated_Node_For_Itype (Full, Related_Nod);
11596 -- Set common attributes for all subtypes: kind, convention, etc.
11598 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11599 Set_Convention (Full, Convention (Full_Base));
11601 -- The Etype of the full view is inconsistent. Gigi needs to see the
11602 -- structural full view, which is what the current scheme gives: the
11603 -- Etype of the full view is the etype of the full base. However, if the
11604 -- full base is a derived type, the full view then looks like a subtype
11605 -- of the parent, not a subtype of the full base. If instead we write:
11607 -- Set_Etype (Full, Full_Base);
11609 -- then we get inconsistencies in the front-end (confusion between
11610 -- views). Several outstanding bugs are related to this ???
11612 Set_Is_First_Subtype (Full, False);
11613 Set_Scope (Full, Scope (Priv));
11614 Set_Size_Info (Full, Full_Base);
11615 Set_RM_Size (Full, RM_Size (Full_Base));
11616 Set_Is_Itype (Full);
11618 -- A subtype of a private-type-without-discriminants, whose full-view
11619 -- has discriminants with default expressions, is not constrained.
11621 if not Has_Discriminants (Priv) then
11622 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11624 if Has_Discriminants (Full_Base) then
11625 Set_Discriminant_Constraint
11626 (Full, Discriminant_Constraint (Full_Base));
11628 -- The partial view may have been indefinite, the full view
11629 -- might not be.
11631 Set_Has_Unknown_Discriminants
11632 (Full, Has_Unknown_Discriminants (Full_Base));
11633 end if;
11634 end if;
11636 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11637 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11639 -- Freeze the private subtype entity if its parent is delayed, and not
11640 -- already frozen. We skip this processing if the type is an anonymous
11641 -- subtype of a record component, or is the corresponding record of a
11642 -- protected type, since these are processed when the enclosing type
11643 -- is frozen.
11645 if not Is_Type (Scope (Full)) then
11646 Set_Has_Delayed_Freeze (Full,
11647 Has_Delayed_Freeze (Full_Base)
11648 and then (not Is_Frozen (Full_Base)));
11649 end if;
11651 Set_Freeze_Node (Full, Empty);
11652 Set_Is_Frozen (Full, False);
11653 Set_Full_View (Priv, Full);
11655 if Has_Discriminants (Full) then
11656 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11657 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11659 if Has_Unknown_Discriminants (Full) then
11660 Set_Discriminant_Constraint (Full, No_Elist);
11661 end if;
11662 end if;
11664 if Ekind (Full_Base) = E_Record_Type
11665 and then Has_Discriminants (Full_Base)
11666 and then Has_Discriminants (Priv) -- might not, if errors
11667 and then not Has_Unknown_Discriminants (Priv)
11668 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11669 then
11670 Create_Constrained_Components
11671 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11673 -- If the full base is itself derived from private, build a congruent
11674 -- subtype of its underlying type, for use by the back end. For a
11675 -- constrained record component, the declaration cannot be placed on
11676 -- the component list, but it must nevertheless be built an analyzed, to
11677 -- supply enough information for Gigi to compute the size of component.
11679 elsif Ekind (Full_Base) in Private_Kind
11680 and then Is_Derived_Type (Full_Base)
11681 and then Has_Discriminants (Full_Base)
11682 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11683 then
11684 if not Is_Itype (Priv)
11685 and then
11686 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11687 then
11688 Build_Underlying_Full_View
11689 (Parent (Priv), Full, Etype (Full_Base));
11691 elsif Nkind (Related_Nod) = N_Component_Declaration then
11692 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11693 end if;
11695 elsif Is_Record_Type (Full_Base) then
11697 -- Show Full is simply a renaming of Full_Base
11699 Set_Cloned_Subtype (Full, Full_Base);
11700 end if;
11702 -- It is unsafe to share the bounds of a scalar type, because the Itype
11703 -- is elaborated on demand, and if a bound is non-static then different
11704 -- orders of elaboration in different units will lead to different
11705 -- external symbols.
11707 if Is_Scalar_Type (Full_Base) then
11708 Set_Scalar_Range (Full,
11709 Make_Range (Sloc (Related_Nod),
11710 Low_Bound =>
11711 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11712 High_Bound =>
11713 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11715 -- This completion inherits the bounds of the full parent, but if
11716 -- the parent is an unconstrained floating point type, so is the
11717 -- completion.
11719 if Is_Floating_Point_Type (Full_Base) then
11720 Set_Includes_Infinities
11721 (Scalar_Range (Full), Has_Infinities (Full_Base));
11722 end if;
11723 end if;
11725 -- ??? It seems that a lot of fields are missing that should be copied
11726 -- from Full_Base to Full. Here are some that are introduced in a
11727 -- non-disruptive way but a cleanup is necessary.
11729 if Is_Tagged_Type (Full_Base) then
11730 Set_Is_Tagged_Type (Full);
11731 Set_Direct_Primitive_Operations
11732 (Full, Direct_Primitive_Operations (Full_Base));
11733 Set_No_Tagged_Streams_Pragma
11734 (Full, No_Tagged_Streams_Pragma (Full_Base));
11736 -- Inherit class_wide type of full_base in case the partial view was
11737 -- not tagged. Otherwise it has already been created when the private
11738 -- subtype was analyzed.
11740 if No (Class_Wide_Type (Full)) then
11741 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11742 end if;
11744 -- If this is a subtype of a protected or task type, constrain its
11745 -- corresponding record, unless this is a subtype without constraints,
11746 -- i.e. a simple renaming as with an actual subtype in an instance.
11748 elsif Is_Concurrent_Type (Full_Base) then
11749 if Has_Discriminants (Full)
11750 and then Present (Corresponding_Record_Type (Full_Base))
11751 and then
11752 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11753 then
11754 Set_Corresponding_Record_Type (Full,
11755 Constrain_Corresponding_Record
11756 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11758 else
11759 Set_Corresponding_Record_Type (Full,
11760 Corresponding_Record_Type (Full_Base));
11761 end if;
11762 end if;
11764 -- Link rep item chain, and also setting of Has_Predicates from private
11765 -- subtype to full subtype, since we will need these on the full subtype
11766 -- to create the predicate function. Note that the full subtype may
11767 -- already have rep items, inherited from the full view of the base
11768 -- type, so we must be sure not to overwrite these entries.
11770 declare
11771 Append : Boolean;
11772 Item : Node_Id;
11773 Next_Item : Node_Id;
11775 begin
11776 Item := First_Rep_Item (Full);
11778 -- If no existing rep items on full type, we can just link directly
11779 -- to the list of items on the private type, if any exist.. Same if
11780 -- the rep items are only those inherited from the base
11782 if (No (Item)
11783 or else Nkind (Item) /= N_Aspect_Specification
11784 or else Entity (Item) = Full_Base)
11785 and then Present (First_Rep_Item (Priv))
11786 then
11787 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11789 -- Otherwise, search to the end of items currently linked to the full
11790 -- subtype and append the private items to the end. However, if Priv
11791 -- and Full already have the same list of rep items, then the append
11792 -- is not done, as that would create a circularity.
11794 elsif Item /= First_Rep_Item (Priv) then
11795 Append := True;
11796 loop
11797 Next_Item := Next_Rep_Item (Item);
11798 exit when No (Next_Item);
11799 Item := Next_Item;
11801 -- If the private view has aspect specifications, the full view
11802 -- inherits them. Since these aspects may already have been
11803 -- attached to the full view during derivation, do not append
11804 -- them if already present.
11806 if Item = First_Rep_Item (Priv) then
11807 Append := False;
11808 exit;
11809 end if;
11810 end loop;
11812 -- And link the private type items at the end of the chain
11814 if Append then
11815 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11816 end if;
11817 end if;
11818 end;
11820 -- Make sure Has_Predicates is set on full type if it is set on the
11821 -- private type. Note that it may already be set on the full type and
11822 -- if so, we don't want to unset it. Similarly, propagate information
11823 -- about delayed aspects, because the corresponding pragmas must be
11824 -- analyzed when one of the views is frozen. This last step is needed
11825 -- in particular when the full type is a scalar type for which an
11826 -- anonymous base type is constructed.
11828 if Has_Predicates (Priv) then
11829 Set_Has_Predicates (Full);
11830 end if;
11832 if Has_Delayed_Aspects (Priv) then
11833 Set_Has_Delayed_Aspects (Full);
11834 end if;
11835 end Complete_Private_Subtype;
11837 ----------------------------
11838 -- Constant_Redeclaration --
11839 ----------------------------
11841 procedure Constant_Redeclaration
11842 (Id : Entity_Id;
11843 N : Node_Id;
11844 T : out Entity_Id)
11846 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11847 Obj_Def : constant Node_Id := Object_Definition (N);
11848 New_T : Entity_Id;
11850 procedure Check_Possible_Deferred_Completion
11851 (Prev_Id : Entity_Id;
11852 Prev_Obj_Def : Node_Id;
11853 Curr_Obj_Def : Node_Id);
11854 -- Determine whether the two object definitions describe the partial
11855 -- and the full view of a constrained deferred constant. Generate
11856 -- a subtype for the full view and verify that it statically matches
11857 -- the subtype of the partial view.
11859 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11860 -- If deferred constant is an access type initialized with an allocator,
11861 -- check whether there is an illegal recursion in the definition,
11862 -- through a default value of some record subcomponent. This is normally
11863 -- detected when generating init procs, but requires this additional
11864 -- mechanism when expansion is disabled.
11866 ----------------------------------------
11867 -- Check_Possible_Deferred_Completion --
11868 ----------------------------------------
11870 procedure Check_Possible_Deferred_Completion
11871 (Prev_Id : Entity_Id;
11872 Prev_Obj_Def : Node_Id;
11873 Curr_Obj_Def : Node_Id)
11875 begin
11876 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11877 and then Present (Constraint (Prev_Obj_Def))
11878 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11879 and then Present (Constraint (Curr_Obj_Def))
11880 then
11881 declare
11882 Loc : constant Source_Ptr := Sloc (N);
11883 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11884 Decl : constant Node_Id :=
11885 Make_Subtype_Declaration (Loc,
11886 Defining_Identifier => Def_Id,
11887 Subtype_Indication =>
11888 Relocate_Node (Curr_Obj_Def));
11890 begin
11891 Insert_Before_And_Analyze (N, Decl);
11892 Set_Etype (Id, Def_Id);
11894 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11895 Error_Msg_Sloc := Sloc (Prev_Id);
11896 Error_Msg_N ("subtype does not statically match deferred "
11897 & "declaration #", N);
11898 end if;
11899 end;
11900 end if;
11901 end Check_Possible_Deferred_Completion;
11903 ---------------------------------
11904 -- Check_Recursive_Declaration --
11905 ---------------------------------
11907 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11908 Comp : Entity_Id;
11910 begin
11911 if Is_Record_Type (Typ) then
11912 Comp := First_Component (Typ);
11913 while Present (Comp) loop
11914 if Comes_From_Source (Comp) then
11915 if Present (Expression (Parent (Comp)))
11916 and then Is_Entity_Name (Expression (Parent (Comp)))
11917 and then Entity (Expression (Parent (Comp))) = Prev
11918 then
11919 Error_Msg_Sloc := Sloc (Parent (Comp));
11920 Error_Msg_NE
11921 ("illegal circularity with declaration for & #",
11922 N, Comp);
11923 return;
11925 elsif Is_Record_Type (Etype (Comp)) then
11926 Check_Recursive_Declaration (Etype (Comp));
11927 end if;
11928 end if;
11930 Next_Component (Comp);
11931 end loop;
11932 end if;
11933 end Check_Recursive_Declaration;
11935 -- Start of processing for Constant_Redeclaration
11937 begin
11938 if Nkind (Parent (Prev)) = N_Object_Declaration then
11939 if Nkind (Object_Definition
11940 (Parent (Prev))) = N_Subtype_Indication
11941 then
11942 -- Find type of new declaration. The constraints of the two
11943 -- views must match statically, but there is no point in
11944 -- creating an itype for the full view.
11946 if Nkind (Obj_Def) = N_Subtype_Indication then
11947 Find_Type (Subtype_Mark (Obj_Def));
11948 New_T := Entity (Subtype_Mark (Obj_Def));
11950 else
11951 Find_Type (Obj_Def);
11952 New_T := Entity (Obj_Def);
11953 end if;
11955 T := Etype (Prev);
11957 else
11958 -- The full view may impose a constraint, even if the partial
11959 -- view does not, so construct the subtype.
11961 New_T := Find_Type_Of_Object (Obj_Def, N);
11962 T := New_T;
11963 end if;
11965 else
11966 -- Current declaration is illegal, diagnosed below in Enter_Name
11968 T := Empty;
11969 New_T := Any_Type;
11970 end if;
11972 -- If previous full declaration or a renaming declaration exists, or if
11973 -- a homograph is present, let Enter_Name handle it, either with an
11974 -- error or with the removal of an overridden implicit subprogram.
11975 -- The previous one is a full declaration if it has an expression
11976 -- (which in the case of an aggregate is indicated by the Init flag).
11978 if Ekind (Prev) /= E_Constant
11979 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11980 or else Present (Expression (Parent (Prev)))
11981 or else Has_Init_Expression (Parent (Prev))
11982 or else Present (Full_View (Prev))
11983 then
11984 Enter_Name (Id);
11986 -- Verify that types of both declarations match, or else that both types
11987 -- are anonymous access types whose designated subtypes statically match
11988 -- (as allowed in Ada 2005 by AI-385).
11990 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11991 and then
11992 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11993 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11994 or else Is_Access_Constant (Etype (New_T)) /=
11995 Is_Access_Constant (Etype (Prev))
11996 or else Can_Never_Be_Null (Etype (New_T)) /=
11997 Can_Never_Be_Null (Etype (Prev))
11998 or else Null_Exclusion_Present (Parent (Prev)) /=
11999 Null_Exclusion_Present (Parent (Id))
12000 or else not Subtypes_Statically_Match
12001 (Designated_Type (Etype (Prev)),
12002 Designated_Type (Etype (New_T))))
12003 then
12004 Error_Msg_Sloc := Sloc (Prev);
12005 Error_Msg_N ("type does not match declaration#", N);
12006 Set_Full_View (Prev, Id);
12007 Set_Etype (Id, Any_Type);
12009 -- A deferred constant whose type is an anonymous array is always
12010 -- illegal (unless imported). A detailed error message might be
12011 -- helpful for Ada beginners.
12013 if Nkind (Object_Definition (Parent (Prev)))
12014 = N_Constrained_Array_Definition
12015 and then Nkind (Object_Definition (N))
12016 = N_Constrained_Array_Definition
12017 then
12018 Error_Msg_N ("\each anonymous array is a distinct type", N);
12019 Error_Msg_N ("a deferred constant must have a named type",
12020 Object_Definition (Parent (Prev)));
12021 end if;
12023 elsif
12024 Null_Exclusion_Present (Parent (Prev))
12025 and then not Null_Exclusion_Present (N)
12026 then
12027 Error_Msg_Sloc := Sloc (Prev);
12028 Error_Msg_N ("null-exclusion does not match declaration#", N);
12029 Set_Full_View (Prev, Id);
12030 Set_Etype (Id, Any_Type);
12032 -- If so, process the full constant declaration
12034 else
12035 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12036 -- the deferred declaration is constrained, then the subtype defined
12037 -- by the subtype_indication in the full declaration shall match it
12038 -- statically.
12040 Check_Possible_Deferred_Completion
12041 (Prev_Id => Prev,
12042 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12043 Curr_Obj_Def => Obj_Def);
12045 Set_Full_View (Prev, Id);
12046 Set_Is_Public (Id, Is_Public (Prev));
12047 Set_Is_Internal (Id);
12048 Append_Entity (Id, Current_Scope);
12050 -- Check ALIASED present if present before (RM 7.4(7))
12052 if Is_Aliased (Prev)
12053 and then not Aliased_Present (N)
12054 then
12055 Error_Msg_Sloc := Sloc (Prev);
12056 Error_Msg_N ("ALIASED required (see declaration #)", N);
12057 end if;
12059 -- Check that placement is in private part and that the incomplete
12060 -- declaration appeared in the visible part.
12062 if Ekind (Current_Scope) = E_Package
12063 and then not In_Private_Part (Current_Scope)
12064 then
12065 Error_Msg_Sloc := Sloc (Prev);
12066 Error_Msg_N
12067 ("full constant for declaration # must be in private part", N);
12069 elsif Ekind (Current_Scope) = E_Package
12070 and then
12071 List_Containing (Parent (Prev)) /=
12072 Visible_Declarations (Package_Specification (Current_Scope))
12073 then
12074 Error_Msg_N
12075 ("deferred constant must be declared in visible part",
12076 Parent (Prev));
12077 end if;
12079 if Is_Access_Type (T)
12080 and then Nkind (Expression (N)) = N_Allocator
12081 then
12082 Check_Recursive_Declaration (Designated_Type (T));
12083 end if;
12085 -- A deferred constant is a visible entity. If type has invariants,
12086 -- verify that the initial value satisfies them.
12088 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12089 Insert_After (N,
12090 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12091 end if;
12092 end if;
12093 end Constant_Redeclaration;
12095 ----------------------
12096 -- Constrain_Access --
12097 ----------------------
12099 procedure Constrain_Access
12100 (Def_Id : in out Entity_Id;
12101 S : Node_Id;
12102 Related_Nod : Node_Id)
12104 T : constant Entity_Id := Entity (Subtype_Mark (S));
12105 Desig_Type : constant Entity_Id := Designated_Type (T);
12106 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12107 Constraint_OK : Boolean := True;
12109 begin
12110 if Is_Array_Type (Desig_Type) then
12111 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12113 elsif (Is_Record_Type (Desig_Type)
12114 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12115 and then not Is_Constrained (Desig_Type)
12116 then
12117 -- ??? The following code is a temporary bypass to ignore a
12118 -- discriminant constraint on access type if it is constraining
12119 -- the current record. Avoid creating the implicit subtype of the
12120 -- record we are currently compiling since right now, we cannot
12121 -- handle these. For now, just return the access type itself.
12123 if Desig_Type = Current_Scope
12124 and then No (Def_Id)
12125 then
12126 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12127 Def_Id := Entity (Subtype_Mark (S));
12129 -- This call added to ensure that the constraint is analyzed
12130 -- (needed for a B test). Note that we still return early from
12131 -- this procedure to avoid recursive processing. ???
12133 Constrain_Discriminated_Type
12134 (Desig_Subtype, S, Related_Nod, For_Access => True);
12135 return;
12136 end if;
12138 -- Enforce rule that the constraint is illegal if there is an
12139 -- unconstrained view of the designated type. This means that the
12140 -- partial view (either a private type declaration or a derivation
12141 -- from a private type) has no discriminants. (Defect Report
12142 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12144 -- Rule updated for Ada 2005: The private type is said to have
12145 -- a constrained partial view, given that objects of the type
12146 -- can be declared. Furthermore, the rule applies to all access
12147 -- types, unlike the rule concerning default discriminants (see
12148 -- RM 3.7.1(7/3))
12150 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12151 and then Has_Private_Declaration (Desig_Type)
12152 and then In_Open_Scopes (Scope (Desig_Type))
12153 and then Has_Discriminants (Desig_Type)
12154 then
12155 declare
12156 Pack : constant Node_Id :=
12157 Unit_Declaration_Node (Scope (Desig_Type));
12158 Decls : List_Id;
12159 Decl : Node_Id;
12161 begin
12162 if Nkind (Pack) = N_Package_Declaration then
12163 Decls := Visible_Declarations (Specification (Pack));
12164 Decl := First (Decls);
12165 while Present (Decl) loop
12166 if (Nkind (Decl) = N_Private_Type_Declaration
12167 and then Chars (Defining_Identifier (Decl)) =
12168 Chars (Desig_Type))
12170 or else
12171 (Nkind (Decl) = N_Full_Type_Declaration
12172 and then
12173 Chars (Defining_Identifier (Decl)) =
12174 Chars (Desig_Type)
12175 and then Is_Derived_Type (Desig_Type)
12176 and then
12177 Has_Private_Declaration (Etype (Desig_Type)))
12178 then
12179 if No (Discriminant_Specifications (Decl)) then
12180 Error_Msg_N
12181 ("cannot constrain access type if designated "
12182 & "type has constrained partial view", S);
12183 end if;
12185 exit;
12186 end if;
12188 Next (Decl);
12189 end loop;
12190 end if;
12191 end;
12192 end if;
12194 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12195 For_Access => True);
12197 elsif Is_Concurrent_Type (Desig_Type)
12198 and then not Is_Constrained (Desig_Type)
12199 then
12200 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12202 else
12203 Error_Msg_N ("invalid constraint on access type", S);
12205 -- We simply ignore an invalid constraint
12207 Desig_Subtype := Desig_Type;
12208 Constraint_OK := False;
12209 end if;
12211 if No (Def_Id) then
12212 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12213 else
12214 Set_Ekind (Def_Id, E_Access_Subtype);
12215 end if;
12217 if Constraint_OK then
12218 Set_Etype (Def_Id, Base_Type (T));
12220 if Is_Private_Type (Desig_Type) then
12221 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12222 end if;
12223 else
12224 Set_Etype (Def_Id, Any_Type);
12225 end if;
12227 Set_Size_Info (Def_Id, T);
12228 Set_Is_Constrained (Def_Id, Constraint_OK);
12229 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12230 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12231 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12233 Conditional_Delay (Def_Id, T);
12235 -- AI-363 : Subtypes of general access types whose designated types have
12236 -- default discriminants are disallowed. In instances, the rule has to
12237 -- be checked against the actual, of which T is the subtype. In a
12238 -- generic body, the rule is checked assuming that the actual type has
12239 -- defaulted discriminants.
12241 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12242 if Ekind (Base_Type (T)) = E_General_Access_Type
12243 and then Has_Defaulted_Discriminants (Desig_Type)
12244 then
12245 if Ada_Version < Ada_2005 then
12246 Error_Msg_N
12247 ("access subtype of general access type would not " &
12248 "be allowed in Ada 2005?y?", S);
12249 else
12250 Error_Msg_N
12251 ("access subtype of general access type not allowed", S);
12252 end if;
12254 Error_Msg_N ("\discriminants have defaults", S);
12256 elsif Is_Access_Type (T)
12257 and then Is_Generic_Type (Desig_Type)
12258 and then Has_Discriminants (Desig_Type)
12259 and then In_Package_Body (Current_Scope)
12260 then
12261 if Ada_Version < Ada_2005 then
12262 Error_Msg_N
12263 ("access subtype would not be allowed in generic body "
12264 & "in Ada 2005?y?", S);
12265 else
12266 Error_Msg_N
12267 ("access subtype not allowed in generic body", S);
12268 end if;
12270 Error_Msg_N
12271 ("\designated type is a discriminated formal", S);
12272 end if;
12273 end if;
12274 end Constrain_Access;
12276 ---------------------
12277 -- Constrain_Array --
12278 ---------------------
12280 procedure Constrain_Array
12281 (Def_Id : in out Entity_Id;
12282 SI : Node_Id;
12283 Related_Nod : Node_Id;
12284 Related_Id : Entity_Id;
12285 Suffix : Character)
12287 C : constant Node_Id := Constraint (SI);
12288 Number_Of_Constraints : Nat := 0;
12289 Index : Node_Id;
12290 S, T : Entity_Id;
12291 Constraint_OK : Boolean := True;
12293 begin
12294 T := Entity (Subtype_Mark (SI));
12296 if Is_Access_Type (T) then
12297 T := Designated_Type (T);
12298 end if;
12300 -- If an index constraint follows a subtype mark in a subtype indication
12301 -- then the type or subtype denoted by the subtype mark must not already
12302 -- impose an index constraint. The subtype mark must denote either an
12303 -- unconstrained array type or an access type whose designated type
12304 -- is such an array type... (RM 3.6.1)
12306 if Is_Constrained (T) then
12307 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12308 Constraint_OK := False;
12310 else
12311 S := First (Constraints (C));
12312 while Present (S) loop
12313 Number_Of_Constraints := Number_Of_Constraints + 1;
12314 Next (S);
12315 end loop;
12317 -- In either case, the index constraint must provide a discrete
12318 -- range for each index of the array type and the type of each
12319 -- discrete range must be the same as that of the corresponding
12320 -- index. (RM 3.6.1)
12322 if Number_Of_Constraints /= Number_Dimensions (T) then
12323 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12324 Constraint_OK := False;
12326 else
12327 S := First (Constraints (C));
12328 Index := First_Index (T);
12329 Analyze (Index);
12331 -- Apply constraints to each index type
12333 for J in 1 .. Number_Of_Constraints loop
12334 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12335 Next (Index);
12336 Next (S);
12337 end loop;
12339 end if;
12340 end if;
12342 if No (Def_Id) then
12343 Def_Id :=
12344 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12345 Set_Parent (Def_Id, Related_Nod);
12347 else
12348 Set_Ekind (Def_Id, E_Array_Subtype);
12349 end if;
12351 Set_Size_Info (Def_Id, (T));
12352 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12353 Set_Etype (Def_Id, Base_Type (T));
12355 if Constraint_OK then
12356 Set_First_Index (Def_Id, First (Constraints (C)));
12357 else
12358 Set_First_Index (Def_Id, First_Index (T));
12359 end if;
12361 Set_Is_Constrained (Def_Id, True);
12362 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12363 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12365 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12366 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12368 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12369 -- We need to initialize the attribute because if Def_Id is previously
12370 -- analyzed through a limited_with clause, it will have the attributes
12371 -- of an incomplete type, one of which is an Elist that overlaps the
12372 -- Packed_Array_Impl_Type field.
12374 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12376 -- Build a freeze node if parent still needs one. Also make sure that
12377 -- the Depends_On_Private status is set because the subtype will need
12378 -- reprocessing at the time the base type does, and also we must set a
12379 -- conditional delay.
12381 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12382 Conditional_Delay (Def_Id, T);
12383 end Constrain_Array;
12385 ------------------------------
12386 -- Constrain_Component_Type --
12387 ------------------------------
12389 function Constrain_Component_Type
12390 (Comp : Entity_Id;
12391 Constrained_Typ : Entity_Id;
12392 Related_Node : Node_Id;
12393 Typ : Entity_Id;
12394 Constraints : Elist_Id) return Entity_Id
12396 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12397 Compon_Type : constant Entity_Id := Etype (Comp);
12399 function Build_Constrained_Array_Type
12400 (Old_Type : Entity_Id) return Entity_Id;
12401 -- If Old_Type is an array type, one of whose indexes is constrained
12402 -- by a discriminant, build an Itype whose constraint replaces the
12403 -- discriminant with its value in the constraint.
12405 function Build_Constrained_Discriminated_Type
12406 (Old_Type : Entity_Id) return Entity_Id;
12407 -- Ditto for record components
12409 function Build_Constrained_Access_Type
12410 (Old_Type : Entity_Id) return Entity_Id;
12411 -- Ditto for access types. Makes use of previous two functions, to
12412 -- constrain designated type.
12414 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12415 -- T is an array or discriminated type, C is a list of constraints
12416 -- that apply to T. This routine builds the constrained subtype.
12418 function Is_Discriminant (Expr : Node_Id) return Boolean;
12419 -- Returns True if Expr is a discriminant
12421 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12422 -- Find the value of discriminant Discrim in Constraint
12424 -----------------------------------
12425 -- Build_Constrained_Access_Type --
12426 -----------------------------------
12428 function Build_Constrained_Access_Type
12429 (Old_Type : Entity_Id) return Entity_Id
12431 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12432 Itype : Entity_Id;
12433 Desig_Subtype : Entity_Id;
12434 Scop : Entity_Id;
12436 begin
12437 -- if the original access type was not embedded in the enclosing
12438 -- type definition, there is no need to produce a new access
12439 -- subtype. In fact every access type with an explicit constraint
12440 -- generates an itype whose scope is the enclosing record.
12442 if not Is_Type (Scope (Old_Type)) then
12443 return Old_Type;
12445 elsif Is_Array_Type (Desig_Type) then
12446 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12448 elsif Has_Discriminants (Desig_Type) then
12450 -- This may be an access type to an enclosing record type for
12451 -- which we are constructing the constrained components. Return
12452 -- the enclosing record subtype. This is not always correct,
12453 -- but avoids infinite recursion. ???
12455 Desig_Subtype := Any_Type;
12457 for J in reverse 0 .. Scope_Stack.Last loop
12458 Scop := Scope_Stack.Table (J).Entity;
12460 if Is_Type (Scop)
12461 and then Base_Type (Scop) = Base_Type (Desig_Type)
12462 then
12463 Desig_Subtype := Scop;
12464 end if;
12466 exit when not Is_Type (Scop);
12467 end loop;
12469 if Desig_Subtype = Any_Type then
12470 Desig_Subtype :=
12471 Build_Constrained_Discriminated_Type (Desig_Type);
12472 end if;
12474 else
12475 return Old_Type;
12476 end if;
12478 if Desig_Subtype /= Desig_Type then
12480 -- The Related_Node better be here or else we won't be able
12481 -- to attach new itypes to a node in the tree.
12483 pragma Assert (Present (Related_Node));
12485 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12487 Set_Etype (Itype, Base_Type (Old_Type));
12488 Set_Size_Info (Itype, (Old_Type));
12489 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12490 Set_Depends_On_Private (Itype, Has_Private_Component
12491 (Old_Type));
12492 Set_Is_Access_Constant (Itype, Is_Access_Constant
12493 (Old_Type));
12495 -- The new itype needs freezing when it depends on a not frozen
12496 -- type and the enclosing subtype needs freezing.
12498 if Has_Delayed_Freeze (Constrained_Typ)
12499 and then not Is_Frozen (Constrained_Typ)
12500 then
12501 Conditional_Delay (Itype, Base_Type (Old_Type));
12502 end if;
12504 return Itype;
12506 else
12507 return Old_Type;
12508 end if;
12509 end Build_Constrained_Access_Type;
12511 ----------------------------------
12512 -- Build_Constrained_Array_Type --
12513 ----------------------------------
12515 function Build_Constrained_Array_Type
12516 (Old_Type : Entity_Id) return Entity_Id
12518 Lo_Expr : Node_Id;
12519 Hi_Expr : Node_Id;
12520 Old_Index : Node_Id;
12521 Range_Node : Node_Id;
12522 Constr_List : List_Id;
12524 Need_To_Create_Itype : Boolean := False;
12526 begin
12527 Old_Index := First_Index (Old_Type);
12528 while Present (Old_Index) loop
12529 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12531 if Is_Discriminant (Lo_Expr)
12532 or else
12533 Is_Discriminant (Hi_Expr)
12534 then
12535 Need_To_Create_Itype := True;
12536 end if;
12538 Next_Index (Old_Index);
12539 end loop;
12541 if Need_To_Create_Itype then
12542 Constr_List := New_List;
12544 Old_Index := First_Index (Old_Type);
12545 while Present (Old_Index) loop
12546 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12548 if Is_Discriminant (Lo_Expr) then
12549 Lo_Expr := Get_Discr_Value (Lo_Expr);
12550 end if;
12552 if Is_Discriminant (Hi_Expr) then
12553 Hi_Expr := Get_Discr_Value (Hi_Expr);
12554 end if;
12556 Range_Node :=
12557 Make_Range
12558 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12560 Append (Range_Node, To => Constr_List);
12562 Next_Index (Old_Index);
12563 end loop;
12565 return Build_Subtype (Old_Type, Constr_List);
12567 else
12568 return Old_Type;
12569 end if;
12570 end Build_Constrained_Array_Type;
12572 ------------------------------------------
12573 -- Build_Constrained_Discriminated_Type --
12574 ------------------------------------------
12576 function Build_Constrained_Discriminated_Type
12577 (Old_Type : Entity_Id) return Entity_Id
12579 Expr : Node_Id;
12580 Constr_List : List_Id;
12581 Old_Constraint : Elmt_Id;
12583 Need_To_Create_Itype : Boolean := False;
12585 begin
12586 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12587 while Present (Old_Constraint) loop
12588 Expr := Node (Old_Constraint);
12590 if Is_Discriminant (Expr) then
12591 Need_To_Create_Itype := True;
12592 end if;
12594 Next_Elmt (Old_Constraint);
12595 end loop;
12597 if Need_To_Create_Itype then
12598 Constr_List := New_List;
12600 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12601 while Present (Old_Constraint) loop
12602 Expr := Node (Old_Constraint);
12604 if Is_Discriminant (Expr) then
12605 Expr := Get_Discr_Value (Expr);
12606 end if;
12608 Append (New_Copy_Tree (Expr), To => Constr_List);
12610 Next_Elmt (Old_Constraint);
12611 end loop;
12613 return Build_Subtype (Old_Type, Constr_List);
12615 else
12616 return Old_Type;
12617 end if;
12618 end Build_Constrained_Discriminated_Type;
12620 -------------------
12621 -- Build_Subtype --
12622 -------------------
12624 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12625 Indic : Node_Id;
12626 Subtyp_Decl : Node_Id;
12627 Def_Id : Entity_Id;
12628 Btyp : Entity_Id := Base_Type (T);
12630 begin
12631 -- The Related_Node better be here or else we won't be able to
12632 -- attach new itypes to a node in the tree.
12634 pragma Assert (Present (Related_Node));
12636 -- If the view of the component's type is incomplete or private
12637 -- with unknown discriminants, then the constraint must be applied
12638 -- to the full type.
12640 if Has_Unknown_Discriminants (Btyp)
12641 and then Present (Underlying_Type (Btyp))
12642 then
12643 Btyp := Underlying_Type (Btyp);
12644 end if;
12646 Indic :=
12647 Make_Subtype_Indication (Loc,
12648 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12649 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12651 Def_Id := Create_Itype (Ekind (T), Related_Node);
12653 Subtyp_Decl :=
12654 Make_Subtype_Declaration (Loc,
12655 Defining_Identifier => Def_Id,
12656 Subtype_Indication => Indic);
12658 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12660 -- Itypes must be analyzed with checks off (see package Itypes)
12662 Analyze (Subtyp_Decl, Suppress => All_Checks);
12664 return Def_Id;
12665 end Build_Subtype;
12667 ---------------------
12668 -- Get_Discr_Value --
12669 ---------------------
12671 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12672 D : Entity_Id;
12673 E : Elmt_Id;
12675 begin
12676 -- The discriminant may be declared for the type, in which case we
12677 -- find it by iterating over the list of discriminants. If the
12678 -- discriminant is inherited from a parent type, it appears as the
12679 -- corresponding discriminant of the current type. This will be the
12680 -- case when constraining an inherited component whose constraint is
12681 -- given by a discriminant of the parent.
12683 D := First_Discriminant (Typ);
12684 E := First_Elmt (Constraints);
12686 while Present (D) loop
12687 if D = Entity (Discrim)
12688 or else D = CR_Discriminant (Entity (Discrim))
12689 or else Corresponding_Discriminant (D) = Entity (Discrim)
12690 then
12691 return Node (E);
12692 end if;
12694 Next_Discriminant (D);
12695 Next_Elmt (E);
12696 end loop;
12698 -- The Corresponding_Discriminant mechanism is incomplete, because
12699 -- the correspondence between new and old discriminants is not one
12700 -- to one: one new discriminant can constrain several old ones. In
12701 -- that case, scan sequentially the stored_constraint, the list of
12702 -- discriminants of the parents, and the constraints.
12704 -- Previous code checked for the present of the Stored_Constraint
12705 -- list for the derived type, but did not use it at all. Should it
12706 -- be present when the component is a discriminated task type?
12708 if Is_Derived_Type (Typ)
12709 and then Scope (Entity (Discrim)) = Etype (Typ)
12710 then
12711 D := First_Discriminant (Etype (Typ));
12712 E := First_Elmt (Constraints);
12713 while Present (D) loop
12714 if D = Entity (Discrim) then
12715 return Node (E);
12716 end if;
12718 Next_Discriminant (D);
12719 Next_Elmt (E);
12720 end loop;
12721 end if;
12723 -- Something is wrong if we did not find the value
12725 raise Program_Error;
12726 end Get_Discr_Value;
12728 ---------------------
12729 -- Is_Discriminant --
12730 ---------------------
12732 function Is_Discriminant (Expr : Node_Id) return Boolean is
12733 Discrim_Scope : Entity_Id;
12735 begin
12736 if Denotes_Discriminant (Expr) then
12737 Discrim_Scope := Scope (Entity (Expr));
12739 -- Either we have a reference to one of Typ's discriminants,
12741 pragma Assert (Discrim_Scope = Typ
12743 -- or to the discriminants of the parent type, in the case
12744 -- of a derivation of a tagged type with variants.
12746 or else Discrim_Scope = Etype (Typ)
12747 or else Full_View (Discrim_Scope) = Etype (Typ)
12749 -- or same as above for the case where the discriminants
12750 -- were declared in Typ's private view.
12752 or else (Is_Private_Type (Discrim_Scope)
12753 and then Chars (Discrim_Scope) = Chars (Typ))
12755 -- or else we are deriving from the full view and the
12756 -- discriminant is declared in the private entity.
12758 or else (Is_Private_Type (Typ)
12759 and then Chars (Discrim_Scope) = Chars (Typ))
12761 -- Or we are constrained the corresponding record of a
12762 -- synchronized type that completes a private declaration.
12764 or else (Is_Concurrent_Record_Type (Typ)
12765 and then
12766 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12768 -- or we have a class-wide type, in which case make sure the
12769 -- discriminant found belongs to the root type.
12771 or else (Is_Class_Wide_Type (Typ)
12772 and then Etype (Typ) = Discrim_Scope));
12774 return True;
12775 end if;
12777 -- In all other cases we have something wrong
12779 return False;
12780 end Is_Discriminant;
12782 -- Start of processing for Constrain_Component_Type
12784 begin
12785 if Nkind (Parent (Comp)) = N_Component_Declaration
12786 and then Comes_From_Source (Parent (Comp))
12787 and then Comes_From_Source
12788 (Subtype_Indication (Component_Definition (Parent (Comp))))
12789 and then
12790 Is_Entity_Name
12791 (Subtype_Indication (Component_Definition (Parent (Comp))))
12792 then
12793 return Compon_Type;
12795 elsif Is_Array_Type (Compon_Type) then
12796 return Build_Constrained_Array_Type (Compon_Type);
12798 elsif Has_Discriminants (Compon_Type) then
12799 return Build_Constrained_Discriminated_Type (Compon_Type);
12801 elsif Is_Access_Type (Compon_Type) then
12802 return Build_Constrained_Access_Type (Compon_Type);
12804 else
12805 return Compon_Type;
12806 end if;
12807 end Constrain_Component_Type;
12809 --------------------------
12810 -- Constrain_Concurrent --
12811 --------------------------
12813 -- For concurrent types, the associated record value type carries the same
12814 -- discriminants, so when we constrain a concurrent type, we must constrain
12815 -- the corresponding record type as well.
12817 procedure Constrain_Concurrent
12818 (Def_Id : in out Entity_Id;
12819 SI : Node_Id;
12820 Related_Nod : Node_Id;
12821 Related_Id : Entity_Id;
12822 Suffix : Character)
12824 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12825 -- case of a private subtype (needed when only doing semantic analysis).
12827 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12828 T_Val : Entity_Id;
12830 begin
12831 if Is_Access_Type (T_Ent) then
12832 T_Ent := Designated_Type (T_Ent);
12833 end if;
12835 T_Val := Corresponding_Record_Type (T_Ent);
12837 if Present (T_Val) then
12839 if No (Def_Id) then
12840 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12842 -- Elaborate itype now, as it may be used in a subsequent
12843 -- synchronized operation in another scope.
12845 if Nkind (Related_Nod) = N_Full_Type_Declaration then
12846 Build_Itype_Reference (Def_Id, Related_Nod);
12847 end if;
12848 end if;
12850 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12852 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12853 Set_Corresponding_Record_Type (Def_Id,
12854 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12856 else
12857 -- If there is no associated record, expansion is disabled and this
12858 -- is a generic context. Create a subtype in any case, so that
12859 -- semantic analysis can proceed.
12861 if No (Def_Id) then
12862 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12863 end if;
12865 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12866 end if;
12867 end Constrain_Concurrent;
12869 ------------------------------------
12870 -- Constrain_Corresponding_Record --
12871 ------------------------------------
12873 function Constrain_Corresponding_Record
12874 (Prot_Subt : Entity_Id;
12875 Corr_Rec : Entity_Id;
12876 Related_Nod : Node_Id) return Entity_Id
12878 T_Sub : constant Entity_Id :=
12879 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12881 begin
12882 Set_Etype (T_Sub, Corr_Rec);
12883 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12884 Set_Is_Constrained (T_Sub, True);
12885 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12886 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12888 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12889 Set_Discriminant_Constraint
12890 (T_Sub, Discriminant_Constraint (Prot_Subt));
12891 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12892 Create_Constrained_Components
12893 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12894 end if;
12896 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12898 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12899 Conditional_Delay (T_Sub, Corr_Rec);
12901 else
12902 -- This is a component subtype: it will be frozen in the context of
12903 -- the enclosing record's init_proc, so that discriminant references
12904 -- are resolved to discriminals. (Note: we used to skip freezing
12905 -- altogether in that case, which caused errors downstream for
12906 -- components of a bit packed array type).
12908 Set_Has_Delayed_Freeze (T_Sub);
12909 end if;
12911 return T_Sub;
12912 end Constrain_Corresponding_Record;
12914 -----------------------
12915 -- Constrain_Decimal --
12916 -----------------------
12918 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12919 T : constant Entity_Id := Entity (Subtype_Mark (S));
12920 C : constant Node_Id := Constraint (S);
12921 Loc : constant Source_Ptr := Sloc (C);
12922 Range_Expr : Node_Id;
12923 Digits_Expr : Node_Id;
12924 Digits_Val : Uint;
12925 Bound_Val : Ureal;
12927 begin
12928 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12930 if Nkind (C) = N_Range_Constraint then
12931 Range_Expr := Range_Expression (C);
12932 Digits_Val := Digits_Value (T);
12934 else
12935 pragma Assert (Nkind (C) = N_Digits_Constraint);
12937 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12939 Digits_Expr := Digits_Expression (C);
12940 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12942 Check_Digits_Expression (Digits_Expr);
12943 Digits_Val := Expr_Value (Digits_Expr);
12945 if Digits_Val > Digits_Value (T) then
12946 Error_Msg_N
12947 ("digits expression is incompatible with subtype", C);
12948 Digits_Val := Digits_Value (T);
12949 end if;
12951 if Present (Range_Constraint (C)) then
12952 Range_Expr := Range_Expression (Range_Constraint (C));
12953 else
12954 Range_Expr := Empty;
12955 end if;
12956 end if;
12958 Set_Etype (Def_Id, Base_Type (T));
12959 Set_Size_Info (Def_Id, (T));
12960 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12961 Set_Delta_Value (Def_Id, Delta_Value (T));
12962 Set_Scale_Value (Def_Id, Scale_Value (T));
12963 Set_Small_Value (Def_Id, Small_Value (T));
12964 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12965 Set_Digits_Value (Def_Id, Digits_Val);
12967 -- Manufacture range from given digits value if no range present
12969 if No (Range_Expr) then
12970 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12971 Range_Expr :=
12972 Make_Range (Loc,
12973 Low_Bound =>
12974 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12975 High_Bound =>
12976 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12977 end if;
12979 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12980 Set_Discrete_RM_Size (Def_Id);
12982 -- Unconditionally delay the freeze, since we cannot set size
12983 -- information in all cases correctly until the freeze point.
12985 Set_Has_Delayed_Freeze (Def_Id);
12986 end Constrain_Decimal;
12988 ----------------------------------
12989 -- Constrain_Discriminated_Type --
12990 ----------------------------------
12992 procedure Constrain_Discriminated_Type
12993 (Def_Id : Entity_Id;
12994 S : Node_Id;
12995 Related_Nod : Node_Id;
12996 For_Access : Boolean := False)
12998 E : constant Entity_Id := Entity (Subtype_Mark (S));
12999 T : Entity_Id;
13000 C : Node_Id;
13001 Elist : Elist_Id := New_Elmt_List;
13003 procedure Fixup_Bad_Constraint;
13004 -- This is called after finding a bad constraint, and after having
13005 -- posted an appropriate error message. The mission is to leave the
13006 -- entity T in as reasonable state as possible.
13008 --------------------------
13009 -- Fixup_Bad_Constraint --
13010 --------------------------
13012 procedure Fixup_Bad_Constraint is
13013 begin
13014 -- Set a reasonable Ekind for the entity. For an incomplete type,
13015 -- we can't do much, but for other types, we can set the proper
13016 -- corresponding subtype kind.
13018 if Ekind (T) = E_Incomplete_Type then
13019 Set_Ekind (Def_Id, Ekind (T));
13020 else
13021 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13022 end if;
13024 -- Set Etype to the known type, to reduce chances of cascaded errors
13026 Set_Etype (Def_Id, E);
13027 Set_Error_Posted (Def_Id);
13028 end Fixup_Bad_Constraint;
13030 -- Start of processing for Constrain_Discriminated_Type
13032 begin
13033 C := Constraint (S);
13035 -- A discriminant constraint is only allowed in a subtype indication,
13036 -- after a subtype mark. This subtype mark must denote either a type
13037 -- with discriminants, or an access type whose designated type is a
13038 -- type with discriminants. A discriminant constraint specifies the
13039 -- values of these discriminants (RM 3.7.2(5)).
13041 T := Base_Type (Entity (Subtype_Mark (S)));
13043 if Is_Access_Type (T) then
13044 T := Designated_Type (T);
13045 end if;
13047 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
13048 -- Avoid generating an error for access-to-incomplete subtypes.
13050 if Ada_Version >= Ada_2005
13051 and then Ekind (T) = E_Incomplete_Type
13052 and then Nkind (Parent (S)) = N_Subtype_Declaration
13053 and then not Is_Itype (Def_Id)
13054 then
13055 -- A little sanity check, emit an error message if the type
13056 -- has discriminants to begin with. Type T may be a regular
13057 -- incomplete type or imported via a limited with clause.
13059 if Has_Discriminants (T)
13060 or else (From_Limited_With (T)
13061 and then Present (Non_Limited_View (T))
13062 and then Nkind (Parent (Non_Limited_View (T))) =
13063 N_Full_Type_Declaration
13064 and then Present (Discriminant_Specifications
13065 (Parent (Non_Limited_View (T)))))
13066 then
13067 Error_Msg_N
13068 ("(Ada 2005) incomplete subtype may not be constrained", C);
13069 else
13070 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13071 end if;
13073 Fixup_Bad_Constraint;
13074 return;
13076 -- Check that the type has visible discriminants. The type may be
13077 -- a private type with unknown discriminants whose full view has
13078 -- discriminants which are invisible.
13080 elsif not Has_Discriminants (T)
13081 or else
13082 (Has_Unknown_Discriminants (T)
13083 and then Is_Private_Type (T))
13084 then
13085 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13086 Fixup_Bad_Constraint;
13087 return;
13089 elsif Is_Constrained (E)
13090 or else (Ekind (E) = E_Class_Wide_Subtype
13091 and then Present (Discriminant_Constraint (E)))
13092 then
13093 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13094 Fixup_Bad_Constraint;
13095 return;
13096 end if;
13098 -- T may be an unconstrained subtype (e.g. a generic actual).
13099 -- Constraint applies to the base type.
13101 T := Base_Type (T);
13103 Elist := Build_Discriminant_Constraints (T, S);
13105 -- If the list returned was empty we had an error in building the
13106 -- discriminant constraint. We have also already signalled an error
13107 -- in the incomplete type case
13109 if Is_Empty_Elmt_List (Elist) then
13110 Fixup_Bad_Constraint;
13111 return;
13112 end if;
13114 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
13115 end Constrain_Discriminated_Type;
13117 ---------------------------
13118 -- Constrain_Enumeration --
13119 ---------------------------
13121 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13122 T : constant Entity_Id := Entity (Subtype_Mark (S));
13123 C : constant Node_Id := Constraint (S);
13125 begin
13126 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13128 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13130 Set_Etype (Def_Id, Base_Type (T));
13131 Set_Size_Info (Def_Id, (T));
13132 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13133 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13135 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13137 Set_Discrete_RM_Size (Def_Id);
13138 end Constrain_Enumeration;
13140 ----------------------
13141 -- Constrain_Float --
13142 ----------------------
13144 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13145 T : constant Entity_Id := Entity (Subtype_Mark (S));
13146 C : Node_Id;
13147 D : Node_Id;
13148 Rais : Node_Id;
13150 begin
13151 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13153 Set_Etype (Def_Id, Base_Type (T));
13154 Set_Size_Info (Def_Id, (T));
13155 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13157 -- Process the constraint
13159 C := Constraint (S);
13161 -- Digits constraint present
13163 if Nkind (C) = N_Digits_Constraint then
13165 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13166 Check_Restriction (No_Obsolescent_Features, C);
13168 if Warn_On_Obsolescent_Feature then
13169 Error_Msg_N
13170 ("subtype digits constraint is an " &
13171 "obsolescent feature (RM J.3(8))?j?", C);
13172 end if;
13174 D := Digits_Expression (C);
13175 Analyze_And_Resolve (D, Any_Integer);
13176 Check_Digits_Expression (D);
13177 Set_Digits_Value (Def_Id, Expr_Value (D));
13179 -- Check that digits value is in range. Obviously we can do this
13180 -- at compile time, but it is strictly a runtime check, and of
13181 -- course there is an ACVC test that checks this.
13183 if Digits_Value (Def_Id) > Digits_Value (T) then
13184 Error_Msg_Uint_1 := Digits_Value (T);
13185 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13186 Rais :=
13187 Make_Raise_Constraint_Error (Sloc (D),
13188 Reason => CE_Range_Check_Failed);
13189 Insert_Action (Declaration_Node (Def_Id), Rais);
13190 end if;
13192 C := Range_Constraint (C);
13194 -- No digits constraint present
13196 else
13197 Set_Digits_Value (Def_Id, Digits_Value (T));
13198 end if;
13200 -- Range constraint present
13202 if Nkind (C) = N_Range_Constraint then
13203 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13205 -- No range constraint present
13207 else
13208 pragma Assert (No (C));
13209 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13210 end if;
13212 Set_Is_Constrained (Def_Id);
13213 end Constrain_Float;
13215 ---------------------
13216 -- Constrain_Index --
13217 ---------------------
13219 procedure Constrain_Index
13220 (Index : Node_Id;
13221 S : Node_Id;
13222 Related_Nod : Node_Id;
13223 Related_Id : Entity_Id;
13224 Suffix : Character;
13225 Suffix_Index : Nat)
13227 Def_Id : Entity_Id;
13228 R : Node_Id := Empty;
13229 T : constant Entity_Id := Etype (Index);
13231 begin
13232 Def_Id :=
13233 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13234 Set_Etype (Def_Id, Base_Type (T));
13236 if Nkind (S) = N_Range
13237 or else
13238 (Nkind (S) = N_Attribute_Reference
13239 and then Attribute_Name (S) = Name_Range)
13240 then
13241 -- A Range attribute will be transformed into N_Range by Resolve
13243 Analyze (S);
13244 Set_Etype (S, T);
13245 R := S;
13247 Process_Range_Expr_In_Decl (R, T);
13249 if not Error_Posted (S)
13250 and then
13251 (Nkind (S) /= N_Range
13252 or else not Covers (T, (Etype (Low_Bound (S))))
13253 or else not Covers (T, (Etype (High_Bound (S)))))
13254 then
13255 if Base_Type (T) /= Any_Type
13256 and then Etype (Low_Bound (S)) /= Any_Type
13257 and then Etype (High_Bound (S)) /= Any_Type
13258 then
13259 Error_Msg_N ("range expected", S);
13260 end if;
13261 end if;
13263 elsif Nkind (S) = N_Subtype_Indication then
13265 -- The parser has verified that this is a discrete indication
13267 Resolve_Discrete_Subtype_Indication (S, T);
13268 Bad_Predicated_Subtype_Use
13269 ("subtype& has predicate, not allowed in index constraint",
13270 S, Entity (Subtype_Mark (S)));
13272 R := Range_Expression (Constraint (S));
13274 -- Capture values of bounds and generate temporaries for them if
13275 -- needed, since checks may cause duplication of the expressions
13276 -- which must not be reevaluated.
13278 -- The forced evaluation removes side effects from expressions, which
13279 -- should occur also in GNATprove mode. Otherwise, we end up with
13280 -- unexpected insertions of actions at places where this is not
13281 -- supposed to occur, e.g. on default parameters of a call.
13283 if Expander_Active or GNATprove_Mode then
13284 Force_Evaluation
13285 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13286 Force_Evaluation
13287 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13288 end if;
13290 elsif Nkind (S) = N_Discriminant_Association then
13292 -- Syntactically valid in subtype indication
13294 Error_Msg_N ("invalid index constraint", S);
13295 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13296 return;
13298 -- Subtype_Mark case, no anonymous subtypes to construct
13300 else
13301 Analyze (S);
13303 if Is_Entity_Name (S) then
13304 if not Is_Type (Entity (S)) then
13305 Error_Msg_N ("expect subtype mark for index constraint", S);
13307 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13308 Wrong_Type (S, Base_Type (T));
13310 -- Check error of subtype with predicate in index constraint
13312 else
13313 Bad_Predicated_Subtype_Use
13314 ("subtype& has predicate, not allowed in index constraint",
13315 S, Entity (S));
13316 end if;
13318 return;
13320 else
13321 Error_Msg_N ("invalid index constraint", S);
13322 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13323 return;
13324 end if;
13325 end if;
13327 -- Complete construction of the Itype
13329 if Is_Modular_Integer_Type (T) then
13330 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13332 elsif Is_Integer_Type (T) then
13333 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13335 else
13336 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13337 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13338 Set_First_Literal (Def_Id, First_Literal (T));
13339 end if;
13341 Set_Size_Info (Def_Id, (T));
13342 Set_RM_Size (Def_Id, RM_Size (T));
13343 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13345 Set_Scalar_Range (Def_Id, R);
13347 Set_Etype (S, Def_Id);
13348 Set_Discrete_RM_Size (Def_Id);
13349 end Constrain_Index;
13351 -----------------------
13352 -- Constrain_Integer --
13353 -----------------------
13355 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13356 T : constant Entity_Id := Entity (Subtype_Mark (S));
13357 C : constant Node_Id := Constraint (S);
13359 begin
13360 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13362 if Is_Modular_Integer_Type (T) then
13363 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13364 else
13365 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13366 end if;
13368 Set_Etype (Def_Id, Base_Type (T));
13369 Set_Size_Info (Def_Id, (T));
13370 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13371 Set_Discrete_RM_Size (Def_Id);
13372 end Constrain_Integer;
13374 ------------------------------
13375 -- Constrain_Ordinary_Fixed --
13376 ------------------------------
13378 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13379 T : constant Entity_Id := Entity (Subtype_Mark (S));
13380 C : Node_Id;
13381 D : Node_Id;
13382 Rais : Node_Id;
13384 begin
13385 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13386 Set_Etype (Def_Id, Base_Type (T));
13387 Set_Size_Info (Def_Id, (T));
13388 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13389 Set_Small_Value (Def_Id, Small_Value (T));
13391 -- Process the constraint
13393 C := Constraint (S);
13395 -- Delta constraint present
13397 if Nkind (C) = N_Delta_Constraint then
13399 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13400 Check_Restriction (No_Obsolescent_Features, C);
13402 if Warn_On_Obsolescent_Feature then
13403 Error_Msg_S
13404 ("subtype delta constraint is an " &
13405 "obsolescent feature (RM J.3(7))?j?");
13406 end if;
13408 D := Delta_Expression (C);
13409 Analyze_And_Resolve (D, Any_Real);
13410 Check_Delta_Expression (D);
13411 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13413 -- Check that delta value is in range. Obviously we can do this
13414 -- at compile time, but it is strictly a runtime check, and of
13415 -- course there is an ACVC test that checks this.
13417 if Delta_Value (Def_Id) < Delta_Value (T) then
13418 Error_Msg_N ("??delta value is too small", D);
13419 Rais :=
13420 Make_Raise_Constraint_Error (Sloc (D),
13421 Reason => CE_Range_Check_Failed);
13422 Insert_Action (Declaration_Node (Def_Id), Rais);
13423 end if;
13425 C := Range_Constraint (C);
13427 -- No delta constraint present
13429 else
13430 Set_Delta_Value (Def_Id, Delta_Value (T));
13431 end if;
13433 -- Range constraint present
13435 if Nkind (C) = N_Range_Constraint then
13436 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13438 -- No range constraint present
13440 else
13441 pragma Assert (No (C));
13442 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13443 end if;
13445 Set_Discrete_RM_Size (Def_Id);
13447 -- Unconditionally delay the freeze, since we cannot set size
13448 -- information in all cases correctly until the freeze point.
13450 Set_Has_Delayed_Freeze (Def_Id);
13451 end Constrain_Ordinary_Fixed;
13453 -----------------------
13454 -- Contain_Interface --
13455 -----------------------
13457 function Contain_Interface
13458 (Iface : Entity_Id;
13459 Ifaces : Elist_Id) return Boolean
13461 Iface_Elmt : Elmt_Id;
13463 begin
13464 if Present (Ifaces) then
13465 Iface_Elmt := First_Elmt (Ifaces);
13466 while Present (Iface_Elmt) loop
13467 if Node (Iface_Elmt) = Iface then
13468 return True;
13469 end if;
13471 Next_Elmt (Iface_Elmt);
13472 end loop;
13473 end if;
13475 return False;
13476 end Contain_Interface;
13478 ---------------------------
13479 -- Convert_Scalar_Bounds --
13480 ---------------------------
13482 procedure Convert_Scalar_Bounds
13483 (N : Node_Id;
13484 Parent_Type : Entity_Id;
13485 Derived_Type : Entity_Id;
13486 Loc : Source_Ptr)
13488 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13490 Lo : Node_Id;
13491 Hi : Node_Id;
13492 Rng : Node_Id;
13494 begin
13495 -- Defend against previous errors
13497 if No (Scalar_Range (Derived_Type)) then
13498 Check_Error_Detected;
13499 return;
13500 end if;
13502 Lo := Build_Scalar_Bound
13503 (Type_Low_Bound (Derived_Type),
13504 Parent_Type, Implicit_Base);
13506 Hi := Build_Scalar_Bound
13507 (Type_High_Bound (Derived_Type),
13508 Parent_Type, Implicit_Base);
13510 Rng :=
13511 Make_Range (Loc,
13512 Low_Bound => Lo,
13513 High_Bound => Hi);
13515 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13517 Set_Parent (Rng, N);
13518 Set_Scalar_Range (Derived_Type, Rng);
13520 -- Analyze the bounds
13522 Analyze_And_Resolve (Lo, Implicit_Base);
13523 Analyze_And_Resolve (Hi, Implicit_Base);
13525 -- Analyze the range itself, except that we do not analyze it if
13526 -- the bounds are real literals, and we have a fixed-point type.
13527 -- The reason for this is that we delay setting the bounds in this
13528 -- case till we know the final Small and Size values (see circuit
13529 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13531 if Is_Fixed_Point_Type (Parent_Type)
13532 and then Nkind (Lo) = N_Real_Literal
13533 and then Nkind (Hi) = N_Real_Literal
13534 then
13535 return;
13537 -- Here we do the analysis of the range
13539 -- Note: we do this manually, since if we do a normal Analyze and
13540 -- Resolve call, there are problems with the conversions used for
13541 -- the derived type range.
13543 else
13544 Set_Etype (Rng, Implicit_Base);
13545 Set_Analyzed (Rng, True);
13546 end if;
13547 end Convert_Scalar_Bounds;
13549 -------------------
13550 -- Copy_And_Swap --
13551 -------------------
13553 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13554 begin
13555 -- Initialize new full declaration entity by copying the pertinent
13556 -- fields of the corresponding private declaration entity.
13558 -- We temporarily set Ekind to a value appropriate for a type to
13559 -- avoid assert failures in Einfo from checking for setting type
13560 -- attributes on something that is not a type. Ekind (Priv) is an
13561 -- appropriate choice, since it allowed the attributes to be set
13562 -- in the first place. This Ekind value will be modified later.
13564 Set_Ekind (Full, Ekind (Priv));
13566 -- Also set Etype temporarily to Any_Type, again, in the absence
13567 -- of errors, it will be properly reset, and if there are errors,
13568 -- then we want a value of Any_Type to remain.
13570 Set_Etype (Full, Any_Type);
13572 -- Now start copying attributes
13574 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13576 if Has_Discriminants (Full) then
13577 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13578 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13579 end if;
13581 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13582 Set_Homonym (Full, Homonym (Priv));
13583 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13584 Set_Is_Public (Full, Is_Public (Priv));
13585 Set_Is_Pure (Full, Is_Pure (Priv));
13586 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13587 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13588 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13589 Set_Has_Pragma_Unreferenced_Objects
13590 (Full, Has_Pragma_Unreferenced_Objects
13591 (Priv));
13593 Conditional_Delay (Full, Priv);
13595 if Is_Tagged_Type (Full) then
13596 Set_Direct_Primitive_Operations
13597 (Full, Direct_Primitive_Operations (Priv));
13598 Set_No_Tagged_Streams_Pragma
13599 (Full, No_Tagged_Streams_Pragma (Priv));
13601 if Is_Base_Type (Priv) then
13602 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13603 end if;
13604 end if;
13606 Set_Is_Volatile (Full, Is_Volatile (Priv));
13607 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13608 Set_Scope (Full, Scope (Priv));
13609 Set_Next_Entity (Full, Next_Entity (Priv));
13610 Set_First_Entity (Full, First_Entity (Priv));
13611 Set_Last_Entity (Full, Last_Entity (Priv));
13613 -- If access types have been recorded for later handling, keep them in
13614 -- the full view so that they get handled when the full view freeze
13615 -- node is expanded.
13617 if Present (Freeze_Node (Priv))
13618 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13619 then
13620 Ensure_Freeze_Node (Full);
13621 Set_Access_Types_To_Process
13622 (Freeze_Node (Full),
13623 Access_Types_To_Process (Freeze_Node (Priv)));
13624 end if;
13626 -- Swap the two entities. Now Private is the full type entity and Full
13627 -- is the private one. They will be swapped back at the end of the
13628 -- private part. This swapping ensures that the entity that is visible
13629 -- in the private part is the full declaration.
13631 Exchange_Entities (Priv, Full);
13632 Append_Entity (Full, Scope (Full));
13633 end Copy_And_Swap;
13635 -------------------------------------
13636 -- Copy_Array_Base_Type_Attributes --
13637 -------------------------------------
13639 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13640 begin
13641 Set_Component_Alignment (T1, Component_Alignment (T2));
13642 Set_Component_Type (T1, Component_Type (T2));
13643 Set_Component_Size (T1, Component_Size (T2));
13644 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13645 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13646 Set_Has_Protected (T1, Has_Protected (T2));
13647 Set_Has_Task (T1, Has_Task (T2));
13648 Set_Is_Packed (T1, Is_Packed (T2));
13649 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13650 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13651 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13652 end Copy_Array_Base_Type_Attributes;
13654 -----------------------------------
13655 -- Copy_Array_Subtype_Attributes --
13656 -----------------------------------
13658 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13659 begin
13660 Set_Size_Info (T1, T2);
13662 Set_First_Index (T1, First_Index (T2));
13663 Set_Is_Aliased (T1, Is_Aliased (T2));
13664 Set_Is_Volatile (T1, Is_Volatile (T2));
13665 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13666 Set_Is_Constrained (T1, Is_Constrained (T2));
13667 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13668 Inherit_Rep_Item_Chain (T1, T2);
13669 Set_Convention (T1, Convention (T2));
13670 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13671 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13672 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13673 end Copy_Array_Subtype_Attributes;
13675 -----------------------------------
13676 -- Create_Constrained_Components --
13677 -----------------------------------
13679 procedure Create_Constrained_Components
13680 (Subt : Entity_Id;
13681 Decl_Node : Node_Id;
13682 Typ : Entity_Id;
13683 Constraints : Elist_Id)
13685 Loc : constant Source_Ptr := Sloc (Subt);
13686 Comp_List : constant Elist_Id := New_Elmt_List;
13687 Parent_Type : constant Entity_Id := Etype (Typ);
13688 Assoc_List : constant List_Id := New_List;
13689 Discr_Val : Elmt_Id;
13690 Errors : Boolean;
13691 New_C : Entity_Id;
13692 Old_C : Entity_Id;
13693 Is_Static : Boolean := True;
13695 procedure Collect_Fixed_Components (Typ : Entity_Id);
13696 -- Collect parent type components that do not appear in a variant part
13698 procedure Create_All_Components;
13699 -- Iterate over Comp_List to create the components of the subtype
13701 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13702 -- Creates a new component from Old_Compon, copying all the fields from
13703 -- it, including its Etype, inserts the new component in the Subt entity
13704 -- chain and returns the new component.
13706 function Is_Variant_Record (T : Entity_Id) return Boolean;
13707 -- If true, and discriminants are static, collect only components from
13708 -- variants selected by discriminant values.
13710 ------------------------------
13711 -- Collect_Fixed_Components --
13712 ------------------------------
13714 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13715 begin
13716 -- Build association list for discriminants, and find components of the
13717 -- variant part selected by the values of the discriminants.
13719 Old_C := First_Discriminant (Typ);
13720 Discr_Val := First_Elmt (Constraints);
13721 while Present (Old_C) loop
13722 Append_To (Assoc_List,
13723 Make_Component_Association (Loc,
13724 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13725 Expression => New_Copy (Node (Discr_Val))));
13727 Next_Elmt (Discr_Val);
13728 Next_Discriminant (Old_C);
13729 end loop;
13731 -- The tag and the possible parent component are unconditionally in
13732 -- the subtype.
13734 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13735 Old_C := First_Component (Typ);
13736 while Present (Old_C) loop
13737 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13738 Append_Elmt (Old_C, Comp_List);
13739 end if;
13741 Next_Component (Old_C);
13742 end loop;
13743 end if;
13744 end Collect_Fixed_Components;
13746 ---------------------------
13747 -- Create_All_Components --
13748 ---------------------------
13750 procedure Create_All_Components is
13751 Comp : Elmt_Id;
13753 begin
13754 Comp := First_Elmt (Comp_List);
13755 while Present (Comp) loop
13756 Old_C := Node (Comp);
13757 New_C := Create_Component (Old_C);
13759 Set_Etype
13760 (New_C,
13761 Constrain_Component_Type
13762 (Old_C, Subt, Decl_Node, Typ, Constraints));
13763 Set_Is_Public (New_C, Is_Public (Subt));
13765 Next_Elmt (Comp);
13766 end loop;
13767 end Create_All_Components;
13769 ----------------------
13770 -- Create_Component --
13771 ----------------------
13773 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13774 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13776 begin
13777 if Ekind (Old_Compon) = E_Discriminant
13778 and then Is_Completely_Hidden (Old_Compon)
13779 then
13780 -- This is a shadow discriminant created for a discriminant of
13781 -- the parent type, which needs to be present in the subtype.
13782 -- Give the shadow discriminant an internal name that cannot
13783 -- conflict with that of visible components.
13785 Set_Chars (New_Compon, New_Internal_Name ('C'));
13786 end if;
13788 -- Set the parent so we have a proper link for freezing etc. This is
13789 -- not a real parent pointer, since of course our parent does not own
13790 -- up to us and reference us, we are an illegitimate child of the
13791 -- original parent.
13793 Set_Parent (New_Compon, Parent (Old_Compon));
13795 -- If the old component's Esize was already determined and is a
13796 -- static value, then the new component simply inherits it. Otherwise
13797 -- the old component's size may require run-time determination, but
13798 -- the new component's size still might be statically determinable
13799 -- (if, for example it has a static constraint). In that case we want
13800 -- Layout_Type to recompute the component's size, so we reset its
13801 -- size and positional fields.
13803 if Frontend_Layout_On_Target
13804 and then not Known_Static_Esize (Old_Compon)
13805 then
13806 Set_Esize (New_Compon, Uint_0);
13807 Init_Normalized_First_Bit (New_Compon);
13808 Init_Normalized_Position (New_Compon);
13809 Init_Normalized_Position_Max (New_Compon);
13810 end if;
13812 -- We do not want this node marked as Comes_From_Source, since
13813 -- otherwise it would get first class status and a separate cross-
13814 -- reference line would be generated. Illegitimate children do not
13815 -- rate such recognition.
13817 Set_Comes_From_Source (New_Compon, False);
13819 -- But it is a real entity, and a birth certificate must be properly
13820 -- registered by entering it into the entity list.
13822 Enter_Name (New_Compon);
13824 return New_Compon;
13825 end Create_Component;
13827 -----------------------
13828 -- Is_Variant_Record --
13829 -----------------------
13831 function Is_Variant_Record (T : Entity_Id) return Boolean is
13832 begin
13833 return Nkind (Parent (T)) = N_Full_Type_Declaration
13834 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13835 and then Present (Component_List (Type_Definition (Parent (T))))
13836 and then
13837 Present
13838 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13839 end Is_Variant_Record;
13841 -- Start of processing for Create_Constrained_Components
13843 begin
13844 pragma Assert (Subt /= Base_Type (Subt));
13845 pragma Assert (Typ = Base_Type (Typ));
13847 Set_First_Entity (Subt, Empty);
13848 Set_Last_Entity (Subt, Empty);
13850 -- Check whether constraint is fully static, in which case we can
13851 -- optimize the list of components.
13853 Discr_Val := First_Elmt (Constraints);
13854 while Present (Discr_Val) loop
13855 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13856 Is_Static := False;
13857 exit;
13858 end if;
13860 Next_Elmt (Discr_Val);
13861 end loop;
13863 Set_Has_Static_Discriminants (Subt, Is_Static);
13865 Push_Scope (Subt);
13867 -- Inherit the discriminants of the parent type
13869 Add_Discriminants : declare
13870 Num_Disc : Int;
13871 Num_Gird : Int;
13873 begin
13874 Num_Disc := 0;
13875 Old_C := First_Discriminant (Typ);
13877 while Present (Old_C) loop
13878 Num_Disc := Num_Disc + 1;
13879 New_C := Create_Component (Old_C);
13880 Set_Is_Public (New_C, Is_Public (Subt));
13881 Next_Discriminant (Old_C);
13882 end loop;
13884 -- For an untagged derived subtype, the number of discriminants may
13885 -- be smaller than the number of inherited discriminants, because
13886 -- several of them may be renamed by a single new discriminant or
13887 -- constrained. In this case, add the hidden discriminants back into
13888 -- the subtype, because they need to be present if the optimizer of
13889 -- the GCC 4.x back-end decides to break apart assignments between
13890 -- objects using the parent view into member-wise assignments.
13892 Num_Gird := 0;
13894 if Is_Derived_Type (Typ)
13895 and then not Is_Tagged_Type (Typ)
13896 then
13897 Old_C := First_Stored_Discriminant (Typ);
13899 while Present (Old_C) loop
13900 Num_Gird := Num_Gird + 1;
13901 Next_Stored_Discriminant (Old_C);
13902 end loop;
13903 end if;
13905 if Num_Gird > Num_Disc then
13907 -- Find out multiple uses of new discriminants, and add hidden
13908 -- components for the extra renamed discriminants. We recognize
13909 -- multiple uses through the Corresponding_Discriminant of a
13910 -- new discriminant: if it constrains several old discriminants,
13911 -- this field points to the last one in the parent type. The
13912 -- stored discriminants of the derived type have the same name
13913 -- as those of the parent.
13915 declare
13916 Constr : Elmt_Id;
13917 New_Discr : Entity_Id;
13918 Old_Discr : Entity_Id;
13920 begin
13921 Constr := First_Elmt (Stored_Constraint (Typ));
13922 Old_Discr := First_Stored_Discriminant (Typ);
13923 while Present (Constr) loop
13924 if Is_Entity_Name (Node (Constr))
13925 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13926 then
13927 New_Discr := Entity (Node (Constr));
13929 if Chars (Corresponding_Discriminant (New_Discr)) /=
13930 Chars (Old_Discr)
13931 then
13932 -- The new discriminant has been used to rename a
13933 -- subsequent old discriminant. Introduce a shadow
13934 -- component for the current old discriminant.
13936 New_C := Create_Component (Old_Discr);
13937 Set_Original_Record_Component (New_C, Old_Discr);
13938 end if;
13940 else
13941 -- The constraint has eliminated the old discriminant.
13942 -- Introduce a shadow component.
13944 New_C := Create_Component (Old_Discr);
13945 Set_Original_Record_Component (New_C, Old_Discr);
13946 end if;
13948 Next_Elmt (Constr);
13949 Next_Stored_Discriminant (Old_Discr);
13950 end loop;
13951 end;
13952 end if;
13953 end Add_Discriminants;
13955 if Is_Static
13956 and then Is_Variant_Record (Typ)
13957 then
13958 Collect_Fixed_Components (Typ);
13960 Gather_Components (
13961 Typ,
13962 Component_List (Type_Definition (Parent (Typ))),
13963 Governed_By => Assoc_List,
13964 Into => Comp_List,
13965 Report_Errors => Errors);
13966 pragma Assert (not Errors);
13968 Create_All_Components;
13970 -- If the subtype declaration is created for a tagged type derivation
13971 -- with constraints, we retrieve the record definition of the parent
13972 -- type to select the components of the proper variant.
13974 elsif Is_Static
13975 and then Is_Tagged_Type (Typ)
13976 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13977 and then
13978 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13979 and then Is_Variant_Record (Parent_Type)
13980 then
13981 Collect_Fixed_Components (Typ);
13983 Gather_Components
13984 (Typ,
13985 Component_List (Type_Definition (Parent (Parent_Type))),
13986 Governed_By => Assoc_List,
13987 Into => Comp_List,
13988 Report_Errors => Errors);
13990 -- Note: previously there was a check at this point that no errors
13991 -- were detected. As a consequence of AI05-220 there may be an error
13992 -- if an inherited discriminant that controls a variant has a non-
13993 -- static constraint.
13995 -- If the tagged derivation has a type extension, collect all the
13996 -- new components therein.
13998 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
13999 then
14000 Old_C := First_Component (Typ);
14001 while Present (Old_C) loop
14002 if Original_Record_Component (Old_C) = Old_C
14003 and then Chars (Old_C) /= Name_uTag
14004 and then Chars (Old_C) /= Name_uParent
14005 then
14006 Append_Elmt (Old_C, Comp_List);
14007 end if;
14009 Next_Component (Old_C);
14010 end loop;
14011 end if;
14013 Create_All_Components;
14015 else
14016 -- If discriminants are not static, or if this is a multi-level type
14017 -- extension, we have to include all components of the parent type.
14019 Old_C := First_Component (Typ);
14020 while Present (Old_C) loop
14021 New_C := Create_Component (Old_C);
14023 Set_Etype
14024 (New_C,
14025 Constrain_Component_Type
14026 (Old_C, Subt, Decl_Node, Typ, Constraints));
14027 Set_Is_Public (New_C, Is_Public (Subt));
14029 Next_Component (Old_C);
14030 end loop;
14031 end if;
14033 End_Scope;
14034 end Create_Constrained_Components;
14036 ------------------------------------------
14037 -- Decimal_Fixed_Point_Type_Declaration --
14038 ------------------------------------------
14040 procedure Decimal_Fixed_Point_Type_Declaration
14041 (T : Entity_Id;
14042 Def : Node_Id)
14044 Loc : constant Source_Ptr := Sloc (Def);
14045 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14046 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14047 Implicit_Base : Entity_Id;
14048 Digs_Val : Uint;
14049 Delta_Val : Ureal;
14050 Scale_Val : Uint;
14051 Bound_Val : Ureal;
14053 begin
14054 Check_SPARK_05_Restriction
14055 ("decimal fixed point type is not allowed", Def);
14056 Check_Restriction (No_Fixed_Point, Def);
14058 -- Create implicit base type
14060 Implicit_Base :=
14061 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14062 Set_Etype (Implicit_Base, Implicit_Base);
14064 -- Analyze and process delta expression
14066 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14068 Check_Delta_Expression (Delta_Expr);
14069 Delta_Val := Expr_Value_R (Delta_Expr);
14071 -- Check delta is power of 10, and determine scale value from it
14073 declare
14074 Val : Ureal;
14076 begin
14077 Scale_Val := Uint_0;
14078 Val := Delta_Val;
14080 if Val < Ureal_1 then
14081 while Val < Ureal_1 loop
14082 Val := Val * Ureal_10;
14083 Scale_Val := Scale_Val + 1;
14084 end loop;
14086 if Scale_Val > 18 then
14087 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14088 Scale_Val := UI_From_Int (+18);
14089 end if;
14091 else
14092 while Val > Ureal_1 loop
14093 Val := Val / Ureal_10;
14094 Scale_Val := Scale_Val - 1;
14095 end loop;
14097 if Scale_Val < -18 then
14098 Error_Msg_N ("scale is less than minimum value of -18", Def);
14099 Scale_Val := UI_From_Int (-18);
14100 end if;
14101 end if;
14103 if Val /= Ureal_1 then
14104 Error_Msg_N ("delta expression must be a power of 10", Def);
14105 Delta_Val := Ureal_10 ** (-Scale_Val);
14106 end if;
14107 end;
14109 -- Set delta, scale and small (small = delta for decimal type)
14111 Set_Delta_Value (Implicit_Base, Delta_Val);
14112 Set_Scale_Value (Implicit_Base, Scale_Val);
14113 Set_Small_Value (Implicit_Base, Delta_Val);
14115 -- Analyze and process digits expression
14117 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14118 Check_Digits_Expression (Digs_Expr);
14119 Digs_Val := Expr_Value (Digs_Expr);
14121 if Digs_Val > 18 then
14122 Digs_Val := UI_From_Int (+18);
14123 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14124 end if;
14126 Set_Digits_Value (Implicit_Base, Digs_Val);
14127 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14129 -- Set range of base type from digits value for now. This will be
14130 -- expanded to represent the true underlying base range by Freeze.
14132 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14134 -- Note: We leave size as zero for now, size will be set at freeze
14135 -- time. We have to do this for ordinary fixed-point, because the size
14136 -- depends on the specified small, and we might as well do the same for
14137 -- decimal fixed-point.
14139 pragma Assert (Esize (Implicit_Base) = Uint_0);
14141 -- If there are bounds given in the declaration use them as the
14142 -- bounds of the first named subtype.
14144 if Present (Real_Range_Specification (Def)) then
14145 declare
14146 RRS : constant Node_Id := Real_Range_Specification (Def);
14147 Low : constant Node_Id := Low_Bound (RRS);
14148 High : constant Node_Id := High_Bound (RRS);
14149 Low_Val : Ureal;
14150 High_Val : Ureal;
14152 begin
14153 Analyze_And_Resolve (Low, Any_Real);
14154 Analyze_And_Resolve (High, Any_Real);
14155 Check_Real_Bound (Low);
14156 Check_Real_Bound (High);
14157 Low_Val := Expr_Value_R (Low);
14158 High_Val := Expr_Value_R (High);
14160 if Low_Val < (-Bound_Val) then
14161 Error_Msg_N
14162 ("range low bound too small for digits value", Low);
14163 Low_Val := -Bound_Val;
14164 end if;
14166 if High_Val > Bound_Val then
14167 Error_Msg_N
14168 ("range high bound too large for digits value", High);
14169 High_Val := Bound_Val;
14170 end if;
14172 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14173 end;
14175 -- If no explicit range, use range that corresponds to given
14176 -- digits value. This will end up as the final range for the
14177 -- first subtype.
14179 else
14180 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14181 end if;
14183 -- Complete entity for first subtype. The inheritance of the rep item
14184 -- chain ensures that SPARK-related pragmas are not clobbered when the
14185 -- decimal fixed point type acts as a full view of a private type.
14187 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14188 Set_Etype (T, Implicit_Base);
14189 Set_Size_Info (T, Implicit_Base);
14190 Inherit_Rep_Item_Chain (T, Implicit_Base);
14191 Set_Digits_Value (T, Digs_Val);
14192 Set_Delta_Value (T, Delta_Val);
14193 Set_Small_Value (T, Delta_Val);
14194 Set_Scale_Value (T, Scale_Val);
14195 Set_Is_Constrained (T);
14196 end Decimal_Fixed_Point_Type_Declaration;
14198 -----------------------------------
14199 -- Derive_Progenitor_Subprograms --
14200 -----------------------------------
14202 procedure Derive_Progenitor_Subprograms
14203 (Parent_Type : Entity_Id;
14204 Tagged_Type : Entity_Id)
14206 E : Entity_Id;
14207 Elmt : Elmt_Id;
14208 Iface : Entity_Id;
14209 Iface_Elmt : Elmt_Id;
14210 Iface_Subp : Entity_Id;
14211 New_Subp : Entity_Id := Empty;
14212 Prim_Elmt : Elmt_Id;
14213 Subp : Entity_Id;
14214 Typ : Entity_Id;
14216 begin
14217 pragma Assert (Ada_Version >= Ada_2005
14218 and then Is_Record_Type (Tagged_Type)
14219 and then Is_Tagged_Type (Tagged_Type)
14220 and then Has_Interfaces (Tagged_Type));
14222 -- Step 1: Transfer to the full-view primitives associated with the
14223 -- partial-view that cover interface primitives. Conceptually this
14224 -- work should be done later by Process_Full_View; done here to
14225 -- simplify its implementation at later stages. It can be safely
14226 -- done here because interfaces must be visible in the partial and
14227 -- private view (RM 7.3(7.3/2)).
14229 -- Small optimization: This work is only required if the parent may
14230 -- have entities whose Alias attribute reference an interface primitive.
14231 -- Such a situation may occur if the parent is an abstract type and the
14232 -- primitive has not been yet overridden or if the parent is a generic
14233 -- formal type covering interfaces.
14235 -- If the tagged type is not abstract, it cannot have abstract
14236 -- primitives (the only entities in the list of primitives of
14237 -- non-abstract tagged types that can reference abstract primitives
14238 -- through its Alias attribute are the internal entities that have
14239 -- attribute Interface_Alias, and these entities are generated later
14240 -- by Add_Internal_Interface_Entities).
14242 if In_Private_Part (Current_Scope)
14243 and then (Is_Abstract_Type (Parent_Type)
14244 or else
14245 Is_Generic_Type (Parent_Type))
14246 then
14247 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14248 while Present (Elmt) loop
14249 Subp := Node (Elmt);
14251 -- At this stage it is not possible to have entities in the list
14252 -- of primitives that have attribute Interface_Alias.
14254 pragma Assert (No (Interface_Alias (Subp)));
14256 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14258 if Is_Interface (Typ) then
14259 E := Find_Primitive_Covering_Interface
14260 (Tagged_Type => Tagged_Type,
14261 Iface_Prim => Subp);
14263 if Present (E)
14264 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14265 then
14266 Replace_Elmt (Elmt, E);
14267 Remove_Homonym (Subp);
14268 end if;
14269 end if;
14271 Next_Elmt (Elmt);
14272 end loop;
14273 end if;
14275 -- Step 2: Add primitives of progenitors that are not implemented by
14276 -- parents of Tagged_Type.
14278 if Present (Interfaces (Base_Type (Tagged_Type))) then
14279 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14280 while Present (Iface_Elmt) loop
14281 Iface := Node (Iface_Elmt);
14283 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14284 while Present (Prim_Elmt) loop
14285 Iface_Subp := Node (Prim_Elmt);
14287 -- Exclude derivation of predefined primitives except those
14288 -- that come from source, or are inherited from one that comes
14289 -- from source. Required to catch declarations of equality
14290 -- operators of interfaces. For example:
14292 -- type Iface is interface;
14293 -- function "=" (Left, Right : Iface) return Boolean;
14295 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14296 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14297 then
14298 E := Find_Primitive_Covering_Interface
14299 (Tagged_Type => Tagged_Type,
14300 Iface_Prim => Iface_Subp);
14302 -- If not found we derive a new primitive leaving its alias
14303 -- attribute referencing the interface primitive.
14305 if No (E) then
14306 Derive_Subprogram
14307 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14309 -- Ada 2012 (AI05-0197): If the covering primitive's name
14310 -- differs from the name of the interface primitive then it
14311 -- is a private primitive inherited from a parent type. In
14312 -- such case, given that Tagged_Type covers the interface,
14313 -- the inherited private primitive becomes visible. For such
14314 -- purpose we add a new entity that renames the inherited
14315 -- private primitive.
14317 elsif Chars (E) /= Chars (Iface_Subp) then
14318 pragma Assert (Has_Suffix (E, 'P'));
14319 Derive_Subprogram
14320 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14321 Set_Alias (New_Subp, E);
14322 Set_Is_Abstract_Subprogram (New_Subp,
14323 Is_Abstract_Subprogram (E));
14325 -- Propagate to the full view interface entities associated
14326 -- with the partial view.
14328 elsif In_Private_Part (Current_Scope)
14329 and then Present (Alias (E))
14330 and then Alias (E) = Iface_Subp
14331 and then
14332 List_Containing (Parent (E)) /=
14333 Private_Declarations
14334 (Specification
14335 (Unit_Declaration_Node (Current_Scope)))
14336 then
14337 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14338 end if;
14339 end if;
14341 Next_Elmt (Prim_Elmt);
14342 end loop;
14344 Next_Elmt (Iface_Elmt);
14345 end loop;
14346 end if;
14347 end Derive_Progenitor_Subprograms;
14349 -----------------------
14350 -- Derive_Subprogram --
14351 -----------------------
14353 procedure Derive_Subprogram
14354 (New_Subp : in out Entity_Id;
14355 Parent_Subp : Entity_Id;
14356 Derived_Type : Entity_Id;
14357 Parent_Type : Entity_Id;
14358 Actual_Subp : Entity_Id := Empty)
14360 Formal : Entity_Id;
14361 -- Formal parameter of parent primitive operation
14363 Formal_Of_Actual : Entity_Id;
14364 -- Formal parameter of actual operation, when the derivation is to
14365 -- create a renaming for a primitive operation of an actual in an
14366 -- instantiation.
14368 New_Formal : Entity_Id;
14369 -- Formal of inherited operation
14371 Visible_Subp : Entity_Id := Parent_Subp;
14373 function Is_Private_Overriding return Boolean;
14374 -- If Subp is a private overriding of a visible operation, the inherited
14375 -- operation derives from the overridden op (even though its body is the
14376 -- overriding one) and the inherited operation is visible now. See
14377 -- sem_disp to see the full details of the handling of the overridden
14378 -- subprogram, which is removed from the list of primitive operations of
14379 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14380 -- and used to diagnose abstract operations that need overriding in the
14381 -- derived type.
14383 procedure Replace_Type (Id, New_Id : Entity_Id);
14384 -- When the type is an anonymous access type, create a new access type
14385 -- designating the derived type.
14387 procedure Set_Derived_Name;
14388 -- This procedure sets the appropriate Chars name for New_Subp. This
14389 -- is normally just a copy of the parent name. An exception arises for
14390 -- type support subprograms, where the name is changed to reflect the
14391 -- name of the derived type, e.g. if type foo is derived from type bar,
14392 -- then a procedure barDA is derived with a name fooDA.
14394 ---------------------------
14395 -- Is_Private_Overriding --
14396 ---------------------------
14398 function Is_Private_Overriding return Boolean is
14399 Prev : Entity_Id;
14401 begin
14402 -- If the parent is not a dispatching operation there is no
14403 -- need to investigate overridings
14405 if not Is_Dispatching_Operation (Parent_Subp) then
14406 return False;
14407 end if;
14409 -- The visible operation that is overridden is a homonym of the
14410 -- parent subprogram. We scan the homonym chain to find the one
14411 -- whose alias is the subprogram we are deriving.
14413 Prev := Current_Entity (Parent_Subp);
14414 while Present (Prev) loop
14415 if Ekind (Prev) = Ekind (Parent_Subp)
14416 and then Alias (Prev) = Parent_Subp
14417 and then Scope (Parent_Subp) = Scope (Prev)
14418 and then not Is_Hidden (Prev)
14419 then
14420 Visible_Subp := Prev;
14421 return True;
14422 end if;
14424 Prev := Homonym (Prev);
14425 end loop;
14427 return False;
14428 end Is_Private_Overriding;
14430 ------------------
14431 -- Replace_Type --
14432 ------------------
14434 procedure Replace_Type (Id, New_Id : Entity_Id) is
14435 Id_Type : constant Entity_Id := Etype (Id);
14436 Acc_Type : Entity_Id;
14437 Par : constant Node_Id := Parent (Derived_Type);
14439 begin
14440 -- When the type is an anonymous access type, create a new access
14441 -- type designating the derived type. This itype must be elaborated
14442 -- at the point of the derivation, not on subsequent calls that may
14443 -- be out of the proper scope for Gigi, so we insert a reference to
14444 -- it after the derivation.
14446 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14447 declare
14448 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14450 begin
14451 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14452 and then Present (Full_View (Desig_Typ))
14453 and then not Is_Private_Type (Parent_Type)
14454 then
14455 Desig_Typ := Full_View (Desig_Typ);
14456 end if;
14458 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14460 -- Ada 2005 (AI-251): Handle also derivations of abstract
14461 -- interface primitives.
14463 or else (Is_Interface (Desig_Typ)
14464 and then not Is_Class_Wide_Type (Desig_Typ))
14465 then
14466 Acc_Type := New_Copy (Id_Type);
14467 Set_Etype (Acc_Type, Acc_Type);
14468 Set_Scope (Acc_Type, New_Subp);
14470 -- Set size of anonymous access type. If we have an access
14471 -- to an unconstrained array, this is a fat pointer, so it
14472 -- is sizes at twice addtress size.
14474 if Is_Array_Type (Desig_Typ)
14475 and then not Is_Constrained (Desig_Typ)
14476 then
14477 Init_Size (Acc_Type, 2 * System_Address_Size);
14479 -- Other cases use a thin pointer
14481 else
14482 Init_Size (Acc_Type, System_Address_Size);
14483 end if;
14485 -- Set remaining characterstics of anonymous access type
14487 Init_Alignment (Acc_Type);
14488 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14490 Set_Etype (New_Id, Acc_Type);
14491 Set_Scope (New_Id, New_Subp);
14493 -- Create a reference to it
14495 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14497 else
14498 Set_Etype (New_Id, Id_Type);
14499 end if;
14500 end;
14502 -- In Ada2012, a formal may have an incomplete type but the type
14503 -- derivation that inherits the primitive follows the full view.
14505 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14506 or else
14507 (Ekind (Id_Type) = E_Record_Type_With_Private
14508 and then Present (Full_View (Id_Type))
14509 and then
14510 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14511 or else
14512 (Ada_Version >= Ada_2012
14513 and then Ekind (Id_Type) = E_Incomplete_Type
14514 and then Full_View (Id_Type) = Parent_Type)
14515 then
14516 -- Constraint checks on formals are generated during expansion,
14517 -- based on the signature of the original subprogram. The bounds
14518 -- of the derived type are not relevant, and thus we can use
14519 -- the base type for the formals. However, the return type may be
14520 -- used in a context that requires that the proper static bounds
14521 -- be used (a case statement, for example) and for those cases
14522 -- we must use the derived type (first subtype), not its base.
14524 -- If the derived_type_definition has no constraints, we know that
14525 -- the derived type has the same constraints as the first subtype
14526 -- of the parent, and we can also use it rather than its base,
14527 -- which can lead to more efficient code.
14529 if Etype (Id) = Parent_Type then
14530 if Is_Scalar_Type (Parent_Type)
14531 and then
14532 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14533 then
14534 Set_Etype (New_Id, Derived_Type);
14536 elsif Nkind (Par) = N_Full_Type_Declaration
14537 and then
14538 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14539 and then
14540 Is_Entity_Name
14541 (Subtype_Indication (Type_Definition (Par)))
14542 then
14543 Set_Etype (New_Id, Derived_Type);
14545 else
14546 Set_Etype (New_Id, Base_Type (Derived_Type));
14547 end if;
14549 else
14550 Set_Etype (New_Id, Base_Type (Derived_Type));
14551 end if;
14553 else
14554 Set_Etype (New_Id, Etype (Id));
14555 end if;
14556 end Replace_Type;
14558 ----------------------
14559 -- Set_Derived_Name --
14560 ----------------------
14562 procedure Set_Derived_Name is
14563 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14564 begin
14565 if Nm = TSS_Null then
14566 Set_Chars (New_Subp, Chars (Parent_Subp));
14567 else
14568 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14569 end if;
14570 end Set_Derived_Name;
14572 -- Start of processing for Derive_Subprogram
14574 begin
14575 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14576 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14578 -- Check whether the inherited subprogram is a private operation that
14579 -- should be inherited but not yet made visible. Such subprograms can
14580 -- become visible at a later point (e.g., the private part of a public
14581 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14582 -- following predicate is true, then this is not such a private
14583 -- operation and the subprogram simply inherits the name of the parent
14584 -- subprogram. Note the special check for the names of controlled
14585 -- operations, which are currently exempted from being inherited with
14586 -- a hidden name because they must be findable for generation of
14587 -- implicit run-time calls.
14589 if not Is_Hidden (Parent_Subp)
14590 or else Is_Internal (Parent_Subp)
14591 or else Is_Private_Overriding
14592 or else Is_Internal_Name (Chars (Parent_Subp))
14593 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14594 Name_Adjust,
14595 Name_Finalize)
14596 then
14597 Set_Derived_Name;
14599 -- An inherited dispatching equality will be overridden by an internally
14600 -- generated one, or by an explicit one, so preserve its name and thus
14601 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14602 -- private operation it may become invisible if the full view has
14603 -- progenitors, and the dispatch table will be malformed.
14604 -- We check that the type is limited to handle the anomalous declaration
14605 -- of Limited_Controlled, which is derived from a non-limited type, and
14606 -- which is handled specially elsewhere as well.
14608 elsif Chars (Parent_Subp) = Name_Op_Eq
14609 and then Is_Dispatching_Operation (Parent_Subp)
14610 and then Etype (Parent_Subp) = Standard_Boolean
14611 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14612 and then
14613 Etype (First_Formal (Parent_Subp)) =
14614 Etype (Next_Formal (First_Formal (Parent_Subp)))
14615 then
14616 Set_Derived_Name;
14618 -- If parent is hidden, this can be a regular derivation if the
14619 -- parent is immediately visible in a non-instantiating context,
14620 -- or if we are in the private part of an instance. This test
14621 -- should still be refined ???
14623 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14624 -- operation as a non-visible operation in cases where the parent
14625 -- subprogram might not be visible now, but was visible within the
14626 -- original generic, so it would be wrong to make the inherited
14627 -- subprogram non-visible now. (Not clear if this test is fully
14628 -- correct; are there any cases where we should declare the inherited
14629 -- operation as not visible to avoid it being overridden, e.g., when
14630 -- the parent type is a generic actual with private primitives ???)
14632 -- (they should be treated the same as other private inherited
14633 -- subprograms, but it's not clear how to do this cleanly). ???
14635 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14636 and then Is_Immediately_Visible (Parent_Subp)
14637 and then not In_Instance)
14638 or else In_Instance_Not_Visible
14639 then
14640 Set_Derived_Name;
14642 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14643 -- overrides an interface primitive because interface primitives
14644 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14646 elsif Ada_Version >= Ada_2005
14647 and then Is_Dispatching_Operation (Parent_Subp)
14648 and then Covers_Some_Interface (Parent_Subp)
14649 then
14650 Set_Derived_Name;
14652 -- Otherwise, the type is inheriting a private operation, so enter
14653 -- it with a special name so it can't be overridden.
14655 else
14656 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14657 end if;
14659 Set_Parent (New_Subp, Parent (Derived_Type));
14661 if Present (Actual_Subp) then
14662 Replace_Type (Actual_Subp, New_Subp);
14663 else
14664 Replace_Type (Parent_Subp, New_Subp);
14665 end if;
14667 Conditional_Delay (New_Subp, Parent_Subp);
14669 -- If we are creating a renaming for a primitive operation of an
14670 -- actual of a generic derived type, we must examine the signature
14671 -- of the actual primitive, not that of the generic formal, which for
14672 -- example may be an interface. However the name and initial value
14673 -- of the inherited operation are those of the formal primitive.
14675 Formal := First_Formal (Parent_Subp);
14677 if Present (Actual_Subp) then
14678 Formal_Of_Actual := First_Formal (Actual_Subp);
14679 else
14680 Formal_Of_Actual := Empty;
14681 end if;
14683 while Present (Formal) loop
14684 New_Formal := New_Copy (Formal);
14686 -- Normally we do not go copying parents, but in the case of
14687 -- formals, we need to link up to the declaration (which is the
14688 -- parameter specification), and it is fine to link up to the
14689 -- original formal's parameter specification in this case.
14691 Set_Parent (New_Formal, Parent (Formal));
14692 Append_Entity (New_Formal, New_Subp);
14694 if Present (Formal_Of_Actual) then
14695 Replace_Type (Formal_Of_Actual, New_Formal);
14696 Next_Formal (Formal_Of_Actual);
14697 else
14698 Replace_Type (Formal, New_Formal);
14699 end if;
14701 Next_Formal (Formal);
14702 end loop;
14704 -- If this derivation corresponds to a tagged generic actual, then
14705 -- primitive operations rename those of the actual. Otherwise the
14706 -- primitive operations rename those of the parent type, If the parent
14707 -- renames an intrinsic operator, so does the new subprogram. We except
14708 -- concatenation, which is always properly typed, and does not get
14709 -- expanded as other intrinsic operations.
14711 if No (Actual_Subp) then
14712 if Is_Intrinsic_Subprogram (Parent_Subp) then
14713 Set_Is_Intrinsic_Subprogram (New_Subp);
14715 if Present (Alias (Parent_Subp))
14716 and then Chars (Parent_Subp) /= Name_Op_Concat
14717 then
14718 Set_Alias (New_Subp, Alias (Parent_Subp));
14719 else
14720 Set_Alias (New_Subp, Parent_Subp);
14721 end if;
14723 else
14724 Set_Alias (New_Subp, Parent_Subp);
14725 end if;
14727 else
14728 Set_Alias (New_Subp, Actual_Subp);
14729 end if;
14731 -- Inherit the "ghostness" from the parent subprogram
14733 if Is_Ghost_Entity (Alias (New_Subp)) then
14734 Set_Is_Ghost_Entity (New_Subp);
14735 end if;
14737 -- Derived subprograms of a tagged type must inherit the convention
14738 -- of the parent subprogram (a requirement of AI-117). Derived
14739 -- subprograms of untagged types simply get convention Ada by default.
14741 -- If the derived type is a tagged generic formal type with unknown
14742 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14744 -- However, if the type is derived from a generic formal, the further
14745 -- inherited subprogram has the convention of the non-generic ancestor.
14746 -- Otherwise there would be no way to override the operation.
14747 -- (This is subject to forthcoming ARG discussions).
14749 if Is_Tagged_Type (Derived_Type) then
14750 if Is_Generic_Type (Derived_Type)
14751 and then Has_Unknown_Discriminants (Derived_Type)
14752 then
14753 Set_Convention (New_Subp, Convention_Intrinsic);
14755 else
14756 if Is_Generic_Type (Parent_Type)
14757 and then Has_Unknown_Discriminants (Parent_Type)
14758 then
14759 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14760 else
14761 Set_Convention (New_Subp, Convention (Parent_Subp));
14762 end if;
14763 end if;
14764 end if;
14766 -- Predefined controlled operations retain their name even if the parent
14767 -- is hidden (see above), but they are not primitive operations if the
14768 -- ancestor is not visible, for example if the parent is a private
14769 -- extension completed with a controlled extension. Note that a full
14770 -- type that is controlled can break privacy: the flag Is_Controlled is
14771 -- set on both views of the type.
14773 if Is_Controlled (Parent_Type)
14774 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14775 Name_Adjust,
14776 Name_Finalize)
14777 and then Is_Hidden (Parent_Subp)
14778 and then not Is_Visibly_Controlled (Parent_Type)
14779 then
14780 Set_Is_Hidden (New_Subp);
14781 end if;
14783 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14784 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14786 if Ekind (Parent_Subp) = E_Procedure then
14787 Set_Is_Valued_Procedure
14788 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14789 else
14790 Set_Has_Controlling_Result
14791 (New_Subp, Has_Controlling_Result (Parent_Subp));
14792 end if;
14794 -- No_Return must be inherited properly. If this is overridden in the
14795 -- case of a dispatching operation, then a check is made in Sem_Disp
14796 -- that the overriding operation is also No_Return (no such check is
14797 -- required for the case of non-dispatching operation.
14799 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14801 -- A derived function with a controlling result is abstract. If the
14802 -- Derived_Type is a nonabstract formal generic derived type, then
14803 -- inherited operations are not abstract: the required check is done at
14804 -- instantiation time. If the derivation is for a generic actual, the
14805 -- function is not abstract unless the actual is.
14807 if Is_Generic_Type (Derived_Type)
14808 and then not Is_Abstract_Type (Derived_Type)
14809 then
14810 null;
14812 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14813 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14815 -- A subprogram subject to pragma Extensions_Visible with value False
14816 -- requires overriding if the subprogram has at least one controlling
14817 -- OUT parameter (SPARK RM 6.1.7(6)).
14819 elsif Ada_Version >= Ada_2005
14820 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14821 or else (Is_Tagged_Type (Derived_Type)
14822 and then Etype (New_Subp) = Derived_Type
14823 and then not Is_Null_Extension (Derived_Type))
14824 or else (Is_Tagged_Type (Derived_Type)
14825 and then Ekind (Etype (New_Subp)) =
14826 E_Anonymous_Access_Type
14827 and then Designated_Type (Etype (New_Subp)) =
14828 Derived_Type
14829 and then not Is_Null_Extension (Derived_Type))
14830 or else (Comes_From_Source (Alias (New_Subp))
14831 and then Is_EVF_Procedure (Alias (New_Subp))))
14832 and then No (Actual_Subp)
14833 then
14834 if not Is_Tagged_Type (Derived_Type)
14835 or else Is_Abstract_Type (Derived_Type)
14836 or else Is_Abstract_Subprogram (Alias (New_Subp))
14837 then
14838 Set_Is_Abstract_Subprogram (New_Subp);
14839 else
14840 Set_Requires_Overriding (New_Subp);
14841 end if;
14843 elsif Ada_Version < Ada_2005
14844 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14845 or else (Is_Tagged_Type (Derived_Type)
14846 and then Etype (New_Subp) = Derived_Type
14847 and then No (Actual_Subp)))
14848 then
14849 Set_Is_Abstract_Subprogram (New_Subp);
14851 -- AI05-0097 : an inherited operation that dispatches on result is
14852 -- abstract if the derived type is abstract, even if the parent type
14853 -- is concrete and the derived type is a null extension.
14855 elsif Has_Controlling_Result (Alias (New_Subp))
14856 and then Is_Abstract_Type (Etype (New_Subp))
14857 then
14858 Set_Is_Abstract_Subprogram (New_Subp);
14860 -- Finally, if the parent type is abstract we must verify that all
14861 -- inherited operations are either non-abstract or overridden, or that
14862 -- the derived type itself is abstract (this check is performed at the
14863 -- end of a package declaration, in Check_Abstract_Overriding). A
14864 -- private overriding in the parent type will not be visible in the
14865 -- derivation if we are not in an inner package or in a child unit of
14866 -- the parent type, in which case the abstractness of the inherited
14867 -- operation is carried to the new subprogram.
14869 elsif Is_Abstract_Type (Parent_Type)
14870 and then not In_Open_Scopes (Scope (Parent_Type))
14871 and then Is_Private_Overriding
14872 and then Is_Abstract_Subprogram (Visible_Subp)
14873 then
14874 if No (Actual_Subp) then
14875 Set_Alias (New_Subp, Visible_Subp);
14876 Set_Is_Abstract_Subprogram (New_Subp, True);
14878 else
14879 -- If this is a derivation for an instance of a formal derived
14880 -- type, abstractness comes from the primitive operation of the
14881 -- actual, not from the operation inherited from the ancestor.
14883 Set_Is_Abstract_Subprogram
14884 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14885 end if;
14886 end if;
14888 New_Overloaded_Entity (New_Subp, Derived_Type);
14890 -- Check for case of a derived subprogram for the instantiation of a
14891 -- formal derived tagged type, if so mark the subprogram as dispatching
14892 -- and inherit the dispatching attributes of the actual subprogram. The
14893 -- derived subprogram is effectively renaming of the actual subprogram,
14894 -- so it needs to have the same attributes as the actual.
14896 if Present (Actual_Subp)
14897 and then Is_Dispatching_Operation (Actual_Subp)
14898 then
14899 Set_Is_Dispatching_Operation (New_Subp);
14901 if Present (DTC_Entity (Actual_Subp)) then
14902 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14903 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
14904 end if;
14905 end if;
14907 -- Indicate that a derived subprogram does not require a body and that
14908 -- it does not require processing of default expressions.
14910 Set_Has_Completion (New_Subp);
14911 Set_Default_Expressions_Processed (New_Subp);
14913 if Ekind (New_Subp) = E_Function then
14914 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14915 end if;
14916 end Derive_Subprogram;
14918 ------------------------
14919 -- Derive_Subprograms --
14920 ------------------------
14922 procedure Derive_Subprograms
14923 (Parent_Type : Entity_Id;
14924 Derived_Type : Entity_Id;
14925 Generic_Actual : Entity_Id := Empty)
14927 Op_List : constant Elist_Id :=
14928 Collect_Primitive_Operations (Parent_Type);
14930 function Check_Derived_Type return Boolean;
14931 -- Check that all the entities derived from Parent_Type are found in
14932 -- the list of primitives of Derived_Type exactly in the same order.
14934 procedure Derive_Interface_Subprogram
14935 (New_Subp : in out Entity_Id;
14936 Subp : Entity_Id;
14937 Actual_Subp : Entity_Id);
14938 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14939 -- (which is an interface primitive). If Generic_Actual is present then
14940 -- Actual_Subp is the actual subprogram corresponding with the generic
14941 -- subprogram Subp.
14943 function Check_Derived_Type return Boolean is
14944 E : Entity_Id;
14945 Elmt : Elmt_Id;
14946 List : Elist_Id;
14947 New_Subp : Entity_Id;
14948 Op_Elmt : Elmt_Id;
14949 Subp : Entity_Id;
14951 begin
14952 -- Traverse list of entities in the current scope searching for
14953 -- an incomplete type whose full-view is derived type
14955 E := First_Entity (Scope (Derived_Type));
14956 while Present (E) and then E /= Derived_Type loop
14957 if Ekind (E) = E_Incomplete_Type
14958 and then Present (Full_View (E))
14959 and then Full_View (E) = Derived_Type
14960 then
14961 -- Disable this test if Derived_Type completes an incomplete
14962 -- type because in such case more primitives can be added
14963 -- later to the list of primitives of Derived_Type by routine
14964 -- Process_Incomplete_Dependents
14966 return True;
14967 end if;
14969 E := Next_Entity (E);
14970 end loop;
14972 List := Collect_Primitive_Operations (Derived_Type);
14973 Elmt := First_Elmt (List);
14975 Op_Elmt := First_Elmt (Op_List);
14976 while Present (Op_Elmt) loop
14977 Subp := Node (Op_Elmt);
14978 New_Subp := Node (Elmt);
14980 -- At this early stage Derived_Type has no entities with attribute
14981 -- Interface_Alias. In addition, such primitives are always
14982 -- located at the end of the list of primitives of Parent_Type.
14983 -- Therefore, if found we can safely stop processing pending
14984 -- entities.
14986 exit when Present (Interface_Alias (Subp));
14988 -- Handle hidden entities
14990 if not Is_Predefined_Dispatching_Operation (Subp)
14991 and then Is_Hidden (Subp)
14992 then
14993 if Present (New_Subp)
14994 and then Primitive_Names_Match (Subp, New_Subp)
14995 then
14996 Next_Elmt (Elmt);
14997 end if;
14999 else
15000 if not Present (New_Subp)
15001 or else Ekind (Subp) /= Ekind (New_Subp)
15002 or else not Primitive_Names_Match (Subp, New_Subp)
15003 then
15004 return False;
15005 end if;
15007 Next_Elmt (Elmt);
15008 end if;
15010 Next_Elmt (Op_Elmt);
15011 end loop;
15013 return True;
15014 end Check_Derived_Type;
15016 ---------------------------------
15017 -- Derive_Interface_Subprogram --
15018 ---------------------------------
15020 procedure Derive_Interface_Subprogram
15021 (New_Subp : in out Entity_Id;
15022 Subp : Entity_Id;
15023 Actual_Subp : Entity_Id)
15025 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15026 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15028 begin
15029 pragma Assert (Is_Interface (Iface_Type));
15031 Derive_Subprogram
15032 (New_Subp => New_Subp,
15033 Parent_Subp => Iface_Subp,
15034 Derived_Type => Derived_Type,
15035 Parent_Type => Iface_Type,
15036 Actual_Subp => Actual_Subp);
15038 -- Given that this new interface entity corresponds with a primitive
15039 -- of the parent that was not overridden we must leave it associated
15040 -- with its parent primitive to ensure that it will share the same
15041 -- dispatch table slot when overridden. We must set the Alias to Subp
15042 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15043 -- (in case we inherited Subp from Iface_Type via a nonabstract
15044 -- generic formal type).
15046 if No (Actual_Subp) then
15047 Set_Alias (New_Subp, Subp);
15049 declare
15050 T : Entity_Id := Find_Dispatching_Type (Subp);
15051 begin
15052 while Etype (T) /= T loop
15053 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15054 Set_Is_Abstract_Subprogram (New_Subp, False);
15055 exit;
15056 end if;
15058 T := Etype (T);
15059 end loop;
15060 end;
15062 -- For instantiations this is not needed since the previous call to
15063 -- Derive_Subprogram leaves the entity well decorated.
15065 else
15066 pragma Assert (Alias (New_Subp) = Actual_Subp);
15067 null;
15068 end if;
15069 end Derive_Interface_Subprogram;
15071 -- Local variables
15073 Alias_Subp : Entity_Id;
15074 Act_List : Elist_Id;
15075 Act_Elmt : Elmt_Id;
15076 Act_Subp : Entity_Id := Empty;
15077 Elmt : Elmt_Id;
15078 Need_Search : Boolean := False;
15079 New_Subp : Entity_Id := Empty;
15080 Parent_Base : Entity_Id;
15081 Subp : Entity_Id;
15083 -- Start of processing for Derive_Subprograms
15085 begin
15086 if Ekind (Parent_Type) = E_Record_Type_With_Private
15087 and then Has_Discriminants (Parent_Type)
15088 and then Present (Full_View (Parent_Type))
15089 then
15090 Parent_Base := Full_View (Parent_Type);
15091 else
15092 Parent_Base := Parent_Type;
15093 end if;
15095 if Present (Generic_Actual) then
15096 Act_List := Collect_Primitive_Operations (Generic_Actual);
15097 Act_Elmt := First_Elmt (Act_List);
15098 else
15099 Act_List := No_Elist;
15100 Act_Elmt := No_Elmt;
15101 end if;
15103 -- Derive primitives inherited from the parent. Note that if the generic
15104 -- actual is present, this is not really a type derivation, it is a
15105 -- completion within an instance.
15107 -- Case 1: Derived_Type does not implement interfaces
15109 if not Is_Tagged_Type (Derived_Type)
15110 or else (not Has_Interfaces (Derived_Type)
15111 and then not (Present (Generic_Actual)
15112 and then Has_Interfaces (Generic_Actual)))
15113 then
15114 Elmt := First_Elmt (Op_List);
15115 while Present (Elmt) loop
15116 Subp := Node (Elmt);
15118 -- Literals are derived earlier in the process of building the
15119 -- derived type, and are skipped here.
15121 if Ekind (Subp) = E_Enumeration_Literal then
15122 null;
15124 -- The actual is a direct descendant and the common primitive
15125 -- operations appear in the same order.
15127 -- If the generic parent type is present, the derived type is an
15128 -- instance of a formal derived type, and within the instance its
15129 -- operations are those of the actual. We derive from the formal
15130 -- type but make the inherited operations aliases of the
15131 -- corresponding operations of the actual.
15133 else
15134 pragma Assert (No (Node (Act_Elmt))
15135 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15136 and then
15137 Type_Conformant
15138 (Subp, Node (Act_Elmt),
15139 Skip_Controlling_Formals => True)));
15141 Derive_Subprogram
15142 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15144 if Present (Act_Elmt) then
15145 Next_Elmt (Act_Elmt);
15146 end if;
15147 end if;
15149 Next_Elmt (Elmt);
15150 end loop;
15152 -- Case 2: Derived_Type implements interfaces
15154 else
15155 -- If the parent type has no predefined primitives we remove
15156 -- predefined primitives from the list of primitives of generic
15157 -- actual to simplify the complexity of this algorithm.
15159 if Present (Generic_Actual) then
15160 declare
15161 Has_Predefined_Primitives : Boolean := False;
15163 begin
15164 -- Check if the parent type has predefined primitives
15166 Elmt := First_Elmt (Op_List);
15167 while Present (Elmt) loop
15168 Subp := Node (Elmt);
15170 if Is_Predefined_Dispatching_Operation (Subp)
15171 and then not Comes_From_Source (Ultimate_Alias (Subp))
15172 then
15173 Has_Predefined_Primitives := True;
15174 exit;
15175 end if;
15177 Next_Elmt (Elmt);
15178 end loop;
15180 -- Remove predefined primitives of Generic_Actual. We must use
15181 -- an auxiliary list because in case of tagged types the value
15182 -- returned by Collect_Primitive_Operations is the value stored
15183 -- in its Primitive_Operations attribute (and we don't want to
15184 -- modify its current contents).
15186 if not Has_Predefined_Primitives then
15187 declare
15188 Aux_List : constant Elist_Id := New_Elmt_List;
15190 begin
15191 Elmt := First_Elmt (Act_List);
15192 while Present (Elmt) loop
15193 Subp := Node (Elmt);
15195 if not Is_Predefined_Dispatching_Operation (Subp)
15196 or else Comes_From_Source (Subp)
15197 then
15198 Append_Elmt (Subp, Aux_List);
15199 end if;
15201 Next_Elmt (Elmt);
15202 end loop;
15204 Act_List := Aux_List;
15205 end;
15206 end if;
15208 Act_Elmt := First_Elmt (Act_List);
15209 Act_Subp := Node (Act_Elmt);
15210 end;
15211 end if;
15213 -- Stage 1: If the generic actual is not present we derive the
15214 -- primitives inherited from the parent type. If the generic parent
15215 -- type is present, the derived type is an instance of a formal
15216 -- derived type, and within the instance its operations are those of
15217 -- the actual. We derive from the formal type but make the inherited
15218 -- operations aliases of the corresponding operations of the actual.
15220 Elmt := First_Elmt (Op_List);
15221 while Present (Elmt) loop
15222 Subp := Node (Elmt);
15223 Alias_Subp := Ultimate_Alias (Subp);
15225 -- Do not derive internal entities of the parent that link
15226 -- interface primitives with their covering primitive. These
15227 -- entities will be added to this type when frozen.
15229 if Present (Interface_Alias (Subp)) then
15230 goto Continue;
15231 end if;
15233 -- If the generic actual is present find the corresponding
15234 -- operation in the generic actual. If the parent type is a
15235 -- direct ancestor of the derived type then, even if it is an
15236 -- interface, the operations are inherited from the primary
15237 -- dispatch table and are in the proper order. If we detect here
15238 -- that primitives are not in the same order we traverse the list
15239 -- of primitive operations of the actual to find the one that
15240 -- implements the interface primitive.
15242 if Need_Search
15243 or else
15244 (Present (Generic_Actual)
15245 and then Present (Act_Subp)
15246 and then not
15247 (Primitive_Names_Match (Subp, Act_Subp)
15248 and then
15249 Type_Conformant (Subp, Act_Subp,
15250 Skip_Controlling_Formals => True)))
15251 then
15252 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15253 Use_Full_View => True));
15255 -- Remember that we need searching for all pending primitives
15257 Need_Search := True;
15259 -- Handle entities associated with interface primitives
15261 if Present (Alias_Subp)
15262 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15263 and then not Is_Predefined_Dispatching_Operation (Subp)
15264 then
15265 -- Search for the primitive in the homonym chain
15267 Act_Subp :=
15268 Find_Primitive_Covering_Interface
15269 (Tagged_Type => Generic_Actual,
15270 Iface_Prim => Alias_Subp);
15272 -- Previous search may not locate primitives covering
15273 -- interfaces defined in generics units or instantiations.
15274 -- (it fails if the covering primitive has formals whose
15275 -- type is also defined in generics or instantiations).
15276 -- In such case we search in the list of primitives of the
15277 -- generic actual for the internal entity that links the
15278 -- interface primitive and the covering primitive.
15280 if No (Act_Subp)
15281 and then Is_Generic_Type (Parent_Type)
15282 then
15283 -- This code has been designed to handle only generic
15284 -- formals that implement interfaces that are defined
15285 -- in a generic unit or instantiation. If this code is
15286 -- needed for other cases we must review it because
15287 -- (given that it relies on Original_Location to locate
15288 -- the primitive of Generic_Actual that covers the
15289 -- interface) it could leave linked through attribute
15290 -- Alias entities of unrelated instantiations).
15292 pragma Assert
15293 (Is_Generic_Unit
15294 (Scope (Find_Dispatching_Type (Alias_Subp)))
15295 or else
15296 Instantiation_Depth
15297 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15299 declare
15300 Iface_Prim_Loc : constant Source_Ptr :=
15301 Original_Location (Sloc (Alias_Subp));
15303 Elmt : Elmt_Id;
15304 Prim : Entity_Id;
15306 begin
15307 Elmt :=
15308 First_Elmt (Primitive_Operations (Generic_Actual));
15310 Search : while Present (Elmt) loop
15311 Prim := Node (Elmt);
15313 if Present (Interface_Alias (Prim))
15314 and then Original_Location
15315 (Sloc (Interface_Alias (Prim))) =
15316 Iface_Prim_Loc
15317 then
15318 Act_Subp := Alias (Prim);
15319 exit Search;
15320 end if;
15322 Next_Elmt (Elmt);
15323 end loop Search;
15324 end;
15325 end if;
15327 pragma Assert (Present (Act_Subp)
15328 or else Is_Abstract_Type (Generic_Actual)
15329 or else Serious_Errors_Detected > 0);
15331 -- Handle predefined primitives plus the rest of user-defined
15332 -- primitives
15334 else
15335 Act_Elmt := First_Elmt (Act_List);
15336 while Present (Act_Elmt) loop
15337 Act_Subp := Node (Act_Elmt);
15339 exit when Primitive_Names_Match (Subp, Act_Subp)
15340 and then Type_Conformant
15341 (Subp, Act_Subp,
15342 Skip_Controlling_Formals => True)
15343 and then No (Interface_Alias (Act_Subp));
15345 Next_Elmt (Act_Elmt);
15346 end loop;
15348 if No (Act_Elmt) then
15349 Act_Subp := Empty;
15350 end if;
15351 end if;
15352 end if;
15354 -- Case 1: If the parent is a limited interface then it has the
15355 -- predefined primitives of synchronized interfaces. However, the
15356 -- actual type may be a non-limited type and hence it does not
15357 -- have such primitives.
15359 if Present (Generic_Actual)
15360 and then not Present (Act_Subp)
15361 and then Is_Limited_Interface (Parent_Base)
15362 and then Is_Predefined_Interface_Primitive (Subp)
15363 then
15364 null;
15366 -- Case 2: Inherit entities associated with interfaces that were
15367 -- not covered by the parent type. We exclude here null interface
15368 -- primitives because they do not need special management.
15370 -- We also exclude interface operations that are renamings. If the
15371 -- subprogram is an explicit renaming of an interface primitive,
15372 -- it is a regular primitive operation, and the presence of its
15373 -- alias is not relevant: it has to be derived like any other
15374 -- primitive.
15376 elsif Present (Alias (Subp))
15377 and then Nkind (Unit_Declaration_Node (Subp)) /=
15378 N_Subprogram_Renaming_Declaration
15379 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15380 and then not
15381 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15382 and then Null_Present (Parent (Alias_Subp)))
15383 then
15384 -- If this is an abstract private type then we transfer the
15385 -- derivation of the interface primitive from the partial view
15386 -- to the full view. This is safe because all the interfaces
15387 -- must be visible in the partial view. Done to avoid adding
15388 -- a new interface derivation to the private part of the
15389 -- enclosing package; otherwise this new derivation would be
15390 -- decorated as hidden when the analysis of the enclosing
15391 -- package completes.
15393 if Is_Abstract_Type (Derived_Type)
15394 and then In_Private_Part (Current_Scope)
15395 and then Has_Private_Declaration (Derived_Type)
15396 then
15397 declare
15398 Partial_View : Entity_Id;
15399 Elmt : Elmt_Id;
15400 Ent : Entity_Id;
15402 begin
15403 Partial_View := First_Entity (Current_Scope);
15404 loop
15405 exit when No (Partial_View)
15406 or else (Has_Private_Declaration (Partial_View)
15407 and then
15408 Full_View (Partial_View) = Derived_Type);
15410 Next_Entity (Partial_View);
15411 end loop;
15413 -- If the partial view was not found then the source code
15414 -- has errors and the derivation is not needed.
15416 if Present (Partial_View) then
15417 Elmt :=
15418 First_Elmt (Primitive_Operations (Partial_View));
15419 while Present (Elmt) loop
15420 Ent := Node (Elmt);
15422 if Present (Alias (Ent))
15423 and then Ultimate_Alias (Ent) = Alias (Subp)
15424 then
15425 Append_Elmt
15426 (Ent, Primitive_Operations (Derived_Type));
15427 exit;
15428 end if;
15430 Next_Elmt (Elmt);
15431 end loop;
15433 -- If the interface primitive was not found in the
15434 -- partial view then this interface primitive was
15435 -- overridden. We add a derivation to activate in
15436 -- Derive_Progenitor_Subprograms the machinery to
15437 -- search for it.
15439 if No (Elmt) then
15440 Derive_Interface_Subprogram
15441 (New_Subp => New_Subp,
15442 Subp => Subp,
15443 Actual_Subp => Act_Subp);
15444 end if;
15445 end if;
15446 end;
15447 else
15448 Derive_Interface_Subprogram
15449 (New_Subp => New_Subp,
15450 Subp => Subp,
15451 Actual_Subp => Act_Subp);
15452 end if;
15454 -- Case 3: Common derivation
15456 else
15457 Derive_Subprogram
15458 (New_Subp => New_Subp,
15459 Parent_Subp => Subp,
15460 Derived_Type => Derived_Type,
15461 Parent_Type => Parent_Base,
15462 Actual_Subp => Act_Subp);
15463 end if;
15465 -- No need to update Act_Elm if we must search for the
15466 -- corresponding operation in the generic actual
15468 if not Need_Search
15469 and then Present (Act_Elmt)
15470 then
15471 Next_Elmt (Act_Elmt);
15472 Act_Subp := Node (Act_Elmt);
15473 end if;
15475 <<Continue>>
15476 Next_Elmt (Elmt);
15477 end loop;
15479 -- Inherit additional operations from progenitors. If the derived
15480 -- type is a generic actual, there are not new primitive operations
15481 -- for the type because it has those of the actual, and therefore
15482 -- nothing needs to be done. The renamings generated above are not
15483 -- primitive operations, and their purpose is simply to make the
15484 -- proper operations visible within an instantiation.
15486 if No (Generic_Actual) then
15487 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15488 end if;
15489 end if;
15491 -- Final check: Direct descendants must have their primitives in the
15492 -- same order. We exclude from this test untagged types and instances
15493 -- of formal derived types. We skip this test if we have already
15494 -- reported serious errors in the sources.
15496 pragma Assert (not Is_Tagged_Type (Derived_Type)
15497 or else Present (Generic_Actual)
15498 or else Serious_Errors_Detected > 0
15499 or else Check_Derived_Type);
15500 end Derive_Subprograms;
15502 --------------------------------
15503 -- Derived_Standard_Character --
15504 --------------------------------
15506 procedure Derived_Standard_Character
15507 (N : Node_Id;
15508 Parent_Type : Entity_Id;
15509 Derived_Type : Entity_Id)
15511 Loc : constant Source_Ptr := Sloc (N);
15512 Def : constant Node_Id := Type_Definition (N);
15513 Indic : constant Node_Id := Subtype_Indication (Def);
15514 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15515 Implicit_Base : constant Entity_Id :=
15516 Create_Itype
15517 (E_Enumeration_Type, N, Derived_Type, 'B');
15519 Lo : Node_Id;
15520 Hi : Node_Id;
15522 begin
15523 Discard_Node (Process_Subtype (Indic, N));
15525 Set_Etype (Implicit_Base, Parent_Base);
15526 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15527 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15529 Set_Is_Character_Type (Implicit_Base, True);
15530 Set_Has_Delayed_Freeze (Implicit_Base);
15532 -- The bounds of the implicit base are the bounds of the parent base.
15533 -- Note that their type is the parent base.
15535 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15536 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15538 Set_Scalar_Range (Implicit_Base,
15539 Make_Range (Loc,
15540 Low_Bound => Lo,
15541 High_Bound => Hi));
15543 Conditional_Delay (Derived_Type, Parent_Type);
15545 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15546 Set_Etype (Derived_Type, Implicit_Base);
15547 Set_Size_Info (Derived_Type, Parent_Type);
15549 if Unknown_RM_Size (Derived_Type) then
15550 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15551 end if;
15553 Set_Is_Character_Type (Derived_Type, True);
15555 if Nkind (Indic) /= N_Subtype_Indication then
15557 -- If no explicit constraint, the bounds are those
15558 -- of the parent type.
15560 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15561 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15562 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15563 end if;
15565 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15567 -- Because the implicit base is used in the conversion of the bounds, we
15568 -- have to freeze it now. This is similar to what is done for numeric
15569 -- types, and it equally suspicious, but otherwise a non-static bound
15570 -- will have a reference to an unfrozen type, which is rejected by Gigi
15571 -- (???). This requires specific care for definition of stream
15572 -- attributes. For details, see comments at the end of
15573 -- Build_Derived_Numeric_Type.
15575 Freeze_Before (N, Implicit_Base);
15576 end Derived_Standard_Character;
15578 ------------------------------
15579 -- Derived_Type_Declaration --
15580 ------------------------------
15582 procedure Derived_Type_Declaration
15583 (T : Entity_Id;
15584 N : Node_Id;
15585 Is_Completion : Boolean)
15587 Parent_Type : Entity_Id;
15589 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15590 -- Check whether the parent type is a generic formal, or derives
15591 -- directly or indirectly from one.
15593 ------------------------
15594 -- Comes_From_Generic --
15595 ------------------------
15597 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15598 begin
15599 if Is_Generic_Type (Typ) then
15600 return True;
15602 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15603 return True;
15605 elsif Is_Private_Type (Typ)
15606 and then Present (Full_View (Typ))
15607 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15608 then
15609 return True;
15611 elsif Is_Generic_Actual_Type (Typ) then
15612 return True;
15614 else
15615 return False;
15616 end if;
15617 end Comes_From_Generic;
15619 -- Local variables
15621 Def : constant Node_Id := Type_Definition (N);
15622 Iface_Def : Node_Id;
15623 Indic : constant Node_Id := Subtype_Indication (Def);
15624 Extension : constant Node_Id := Record_Extension_Part (Def);
15625 Parent_Node : Node_Id;
15626 Taggd : Boolean;
15628 -- Start of processing for Derived_Type_Declaration
15630 begin
15631 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15633 -- Ada 2005 (AI-251): In case of interface derivation check that the
15634 -- parent is also an interface.
15636 if Interface_Present (Def) then
15637 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15639 if not Is_Interface (Parent_Type) then
15640 Diagnose_Interface (Indic, Parent_Type);
15642 else
15643 Parent_Node := Parent (Base_Type (Parent_Type));
15644 Iface_Def := Type_Definition (Parent_Node);
15646 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15647 -- other limited interfaces.
15649 if Limited_Present (Def) then
15650 if Limited_Present (Iface_Def) then
15651 null;
15653 elsif Protected_Present (Iface_Def) then
15654 Error_Msg_NE
15655 ("descendant of & must be declared as a protected "
15656 & "interface", N, Parent_Type);
15658 elsif Synchronized_Present (Iface_Def) then
15659 Error_Msg_NE
15660 ("descendant of & must be declared as a synchronized "
15661 & "interface", N, Parent_Type);
15663 elsif Task_Present (Iface_Def) then
15664 Error_Msg_NE
15665 ("descendant of & must be declared as a task interface",
15666 N, Parent_Type);
15668 else
15669 Error_Msg_N
15670 ("(Ada 2005) limited interface cannot inherit from "
15671 & "non-limited interface", Indic);
15672 end if;
15674 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15675 -- from non-limited or limited interfaces.
15677 elsif not Protected_Present (Def)
15678 and then not Synchronized_Present (Def)
15679 and then not Task_Present (Def)
15680 then
15681 if Limited_Present (Iface_Def) then
15682 null;
15684 elsif Protected_Present (Iface_Def) then
15685 Error_Msg_NE
15686 ("descendant of & must be declared as a protected "
15687 & "interface", N, Parent_Type);
15689 elsif Synchronized_Present (Iface_Def) then
15690 Error_Msg_NE
15691 ("descendant of & must be declared as a synchronized "
15692 & "interface", N, Parent_Type);
15694 elsif Task_Present (Iface_Def) then
15695 Error_Msg_NE
15696 ("descendant of & must be declared as a task interface",
15697 N, Parent_Type);
15698 else
15699 null;
15700 end if;
15701 end if;
15702 end if;
15703 end if;
15705 if Is_Tagged_Type (Parent_Type)
15706 and then Is_Concurrent_Type (Parent_Type)
15707 and then not Is_Interface (Parent_Type)
15708 then
15709 Error_Msg_N
15710 ("parent type of a record extension cannot be a synchronized "
15711 & "tagged type (RM 3.9.1 (3/1))", N);
15712 Set_Etype (T, Any_Type);
15713 return;
15714 end if;
15716 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15717 -- interfaces
15719 if Is_Tagged_Type (Parent_Type)
15720 and then Is_Non_Empty_List (Interface_List (Def))
15721 then
15722 declare
15723 Intf : Node_Id;
15724 T : Entity_Id;
15726 begin
15727 Intf := First (Interface_List (Def));
15728 while Present (Intf) loop
15729 T := Find_Type_Of_Subtype_Indic (Intf);
15731 if not Is_Interface (T) then
15732 Diagnose_Interface (Intf, T);
15734 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15735 -- a limited type from having a nonlimited progenitor.
15737 elsif (Limited_Present (Def)
15738 or else (not Is_Interface (Parent_Type)
15739 and then Is_Limited_Type (Parent_Type)))
15740 and then not Is_Limited_Interface (T)
15741 then
15742 Error_Msg_NE
15743 ("progenitor interface& of limited type must be limited",
15744 N, T);
15745 end if;
15747 Next (Intf);
15748 end loop;
15749 end;
15750 end if;
15752 if Parent_Type = Any_Type
15753 or else Etype (Parent_Type) = Any_Type
15754 or else (Is_Class_Wide_Type (Parent_Type)
15755 and then Etype (Parent_Type) = T)
15756 then
15757 -- If Parent_Type is undefined or illegal, make new type into a
15758 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15759 -- errors. If this is a self-definition, emit error now.
15761 if T = Parent_Type or else T = Etype (Parent_Type) then
15762 Error_Msg_N ("type cannot be used in its own definition", Indic);
15763 end if;
15765 Set_Ekind (T, Ekind (Parent_Type));
15766 Set_Etype (T, Any_Type);
15767 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15769 if Is_Tagged_Type (T)
15770 and then Is_Record_Type (T)
15771 then
15772 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15773 end if;
15775 return;
15776 end if;
15778 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15779 -- an interface is special because the list of interfaces in the full
15780 -- view can be given in any order. For example:
15782 -- type A is interface;
15783 -- type B is interface and A;
15784 -- type D is new B with private;
15785 -- private
15786 -- type D is new A and B with null record; -- 1 --
15788 -- In this case we perform the following transformation of -1-:
15790 -- type D is new B and A with null record;
15792 -- If the parent of the full-view covers the parent of the partial-view
15793 -- we have two possible cases:
15795 -- 1) They have the same parent
15796 -- 2) The parent of the full-view implements some further interfaces
15798 -- In both cases we do not need to perform the transformation. In the
15799 -- first case the source program is correct and the transformation is
15800 -- not needed; in the second case the source program does not fulfill
15801 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15802 -- later.
15804 -- This transformation not only simplifies the rest of the analysis of
15805 -- this type declaration but also simplifies the correct generation of
15806 -- the object layout to the expander.
15808 if In_Private_Part (Current_Scope)
15809 and then Is_Interface (Parent_Type)
15810 then
15811 declare
15812 Iface : Node_Id;
15813 Partial_View : Entity_Id;
15814 Partial_View_Parent : Entity_Id;
15815 New_Iface : Node_Id;
15817 begin
15818 -- Look for the associated private type declaration
15820 Partial_View := First_Entity (Current_Scope);
15821 loop
15822 exit when No (Partial_View)
15823 or else (Has_Private_Declaration (Partial_View)
15824 and then Full_View (Partial_View) = T);
15826 Next_Entity (Partial_View);
15827 end loop;
15829 -- If the partial view was not found then the source code has
15830 -- errors and the transformation is not needed.
15832 if Present (Partial_View) then
15833 Partial_View_Parent := Etype (Partial_View);
15835 -- If the parent of the full-view covers the parent of the
15836 -- partial-view we have nothing else to do.
15838 if Interface_Present_In_Ancestor
15839 (Parent_Type, Partial_View_Parent)
15840 then
15841 null;
15843 -- Traverse the list of interfaces of the full-view to look
15844 -- for the parent of the partial-view and perform the tree
15845 -- transformation.
15847 else
15848 Iface := First (Interface_List (Def));
15849 while Present (Iface) loop
15850 if Etype (Iface) = Etype (Partial_View) then
15851 Rewrite (Subtype_Indication (Def),
15852 New_Copy (Subtype_Indication
15853 (Parent (Partial_View))));
15855 New_Iface :=
15856 Make_Identifier (Sloc (N), Chars (Parent_Type));
15857 Append (New_Iface, Interface_List (Def));
15859 -- Analyze the transformed code
15861 Derived_Type_Declaration (T, N, Is_Completion);
15862 return;
15863 end if;
15865 Next (Iface);
15866 end loop;
15867 end if;
15868 end if;
15869 end;
15870 end if;
15872 -- Only composite types other than array types are allowed to have
15873 -- discriminants.
15875 if Present (Discriminant_Specifications (N)) then
15876 if (Is_Elementary_Type (Parent_Type)
15877 or else
15878 Is_Array_Type (Parent_Type))
15879 and then not Error_Posted (N)
15880 then
15881 Error_Msg_N
15882 ("elementary or array type cannot have discriminants",
15883 Defining_Identifier (First (Discriminant_Specifications (N))));
15884 Set_Has_Discriminants (T, False);
15886 -- The type is allowed to have discriminants
15888 else
15889 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15890 end if;
15891 end if;
15893 -- In Ada 83, a derived type defined in a package specification cannot
15894 -- be used for further derivation until the end of its visible part.
15895 -- Note that derivation in the private part of the package is allowed.
15897 if Ada_Version = Ada_83
15898 and then Is_Derived_Type (Parent_Type)
15899 and then In_Visible_Part (Scope (Parent_Type))
15900 then
15901 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15902 Error_Msg_N
15903 ("(Ada 83): premature use of type for derivation", Indic);
15904 end if;
15905 end if;
15907 -- Check for early use of incomplete or private type
15909 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15910 Error_Msg_N ("premature derivation of incomplete type", Indic);
15911 return;
15913 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15914 and then not Comes_From_Generic (Parent_Type))
15915 or else Has_Private_Component (Parent_Type)
15916 then
15917 -- The ancestor type of a formal type can be incomplete, in which
15918 -- case only the operations of the partial view are available in the
15919 -- generic. Subsequent checks may be required when the full view is
15920 -- analyzed to verify that a derivation from a tagged type has an
15921 -- extension.
15923 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15924 null;
15926 elsif No (Underlying_Type (Parent_Type))
15927 or else Has_Private_Component (Parent_Type)
15928 then
15929 Error_Msg_N
15930 ("premature derivation of derived or private type", Indic);
15932 -- Flag the type itself as being in error, this prevents some
15933 -- nasty problems with subsequent uses of the malformed type.
15935 Set_Error_Posted (T);
15937 -- Check that within the immediate scope of an untagged partial
15938 -- view it's illegal to derive from the partial view if the
15939 -- full view is tagged. (7.3(7))
15941 -- We verify that the Parent_Type is a partial view by checking
15942 -- that it is not a Full_Type_Declaration (i.e. a private type or
15943 -- private extension declaration), to distinguish a partial view
15944 -- from a derivation from a private type which also appears as
15945 -- E_Private_Type. If the parent base type is not declared in an
15946 -- enclosing scope there is no need to check.
15948 elsif Present (Full_View (Parent_Type))
15949 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15950 and then not Is_Tagged_Type (Parent_Type)
15951 and then Is_Tagged_Type (Full_View (Parent_Type))
15952 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15953 then
15954 Error_Msg_N
15955 ("premature derivation from type with tagged full view",
15956 Indic);
15957 end if;
15958 end if;
15960 -- Check that form of derivation is appropriate
15962 Taggd := Is_Tagged_Type (Parent_Type);
15964 -- Set the parent type to the class-wide type's specific type in this
15965 -- case to prevent cascading errors
15967 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15968 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15969 Set_Etype (T, Etype (Parent_Type));
15970 return;
15971 end if;
15973 if Present (Extension) and then not Taggd then
15974 Error_Msg_N
15975 ("type derived from untagged type cannot have extension", Indic);
15977 elsif No (Extension) and then Taggd then
15979 -- If this declaration is within a private part (or body) of a
15980 -- generic instantiation then the derivation is allowed (the parent
15981 -- type can only appear tagged in this case if it's a generic actual
15982 -- type, since it would otherwise have been rejected in the analysis
15983 -- of the generic template).
15985 if not Is_Generic_Actual_Type (Parent_Type)
15986 or else In_Visible_Part (Scope (Parent_Type))
15987 then
15988 if Is_Class_Wide_Type (Parent_Type) then
15989 Error_Msg_N
15990 ("parent type must not be a class-wide type", Indic);
15992 -- Use specific type to prevent cascaded errors.
15994 Parent_Type := Etype (Parent_Type);
15996 else
15997 Error_Msg_N
15998 ("type derived from tagged type must have extension", Indic);
15999 end if;
16000 end if;
16001 end if;
16003 -- AI-443: Synchronized formal derived types require a private
16004 -- extension. There is no point in checking the ancestor type or
16005 -- the progenitors since the construct is wrong to begin with.
16007 if Ada_Version >= Ada_2005
16008 and then Is_Generic_Type (T)
16009 and then Present (Original_Node (N))
16010 then
16011 declare
16012 Decl : constant Node_Id := Original_Node (N);
16014 begin
16015 if Nkind (Decl) = N_Formal_Type_Declaration
16016 and then Nkind (Formal_Type_Definition (Decl)) =
16017 N_Formal_Derived_Type_Definition
16018 and then Synchronized_Present (Formal_Type_Definition (Decl))
16019 and then No (Extension)
16021 -- Avoid emitting a duplicate error message
16023 and then not Error_Posted (Indic)
16024 then
16025 Error_Msg_N
16026 ("synchronized derived type must have extension", N);
16027 end if;
16028 end;
16029 end if;
16031 if Null_Exclusion_Present (Def)
16032 and then not Is_Access_Type (Parent_Type)
16033 then
16034 Error_Msg_N ("null exclusion can only apply to an access type", N);
16035 end if;
16037 -- Avoid deriving parent primitives of underlying record views
16039 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16040 Derive_Subps => not Is_Underlying_Record_View (T));
16042 -- AI-419: The parent type of an explicitly limited derived type must
16043 -- be a limited type or a limited interface.
16045 if Limited_Present (Def) then
16046 Set_Is_Limited_Record (T);
16048 if Is_Interface (T) then
16049 Set_Is_Limited_Interface (T);
16050 end if;
16052 if not Is_Limited_Type (Parent_Type)
16053 and then
16054 (not Is_Interface (Parent_Type)
16055 or else not Is_Limited_Interface (Parent_Type))
16056 then
16057 -- AI05-0096: a derivation in the private part of an instance is
16058 -- legal if the generic formal is untagged limited, and the actual
16059 -- is non-limited.
16061 if Is_Generic_Actual_Type (Parent_Type)
16062 and then In_Private_Part (Current_Scope)
16063 and then
16064 not Is_Tagged_Type
16065 (Generic_Parent_Type (Parent (Parent_Type)))
16066 then
16067 null;
16069 else
16070 Error_Msg_NE
16071 ("parent type& of limited type must be limited",
16072 N, Parent_Type);
16073 end if;
16074 end if;
16075 end if;
16077 -- In SPARK, there are no derived type definitions other than type
16078 -- extensions of tagged record types.
16080 if No (Extension) then
16081 Check_SPARK_05_Restriction
16082 ("derived type is not allowed", Original_Node (N));
16083 end if;
16084 end Derived_Type_Declaration;
16086 ------------------------
16087 -- Diagnose_Interface --
16088 ------------------------
16090 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16091 begin
16092 if not Is_Interface (E) and then E /= Any_Type then
16093 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16094 end if;
16095 end Diagnose_Interface;
16097 ----------------------------------
16098 -- Enumeration_Type_Declaration --
16099 ----------------------------------
16101 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16102 Ev : Uint;
16103 L : Node_Id;
16104 R_Node : Node_Id;
16105 B_Node : Node_Id;
16107 begin
16108 -- Create identifier node representing lower bound
16110 B_Node := New_Node (N_Identifier, Sloc (Def));
16111 L := First (Literals (Def));
16112 Set_Chars (B_Node, Chars (L));
16113 Set_Entity (B_Node, L);
16114 Set_Etype (B_Node, T);
16115 Set_Is_Static_Expression (B_Node, True);
16117 R_Node := New_Node (N_Range, Sloc (Def));
16118 Set_Low_Bound (R_Node, B_Node);
16120 Set_Ekind (T, E_Enumeration_Type);
16121 Set_First_Literal (T, L);
16122 Set_Etype (T, T);
16123 Set_Is_Constrained (T);
16125 Ev := Uint_0;
16127 -- Loop through literals of enumeration type setting pos and rep values
16128 -- except that if the Ekind is already set, then it means the literal
16129 -- was already constructed (case of a derived type declaration and we
16130 -- should not disturb the Pos and Rep values.
16132 while Present (L) loop
16133 if Ekind (L) /= E_Enumeration_Literal then
16134 Set_Ekind (L, E_Enumeration_Literal);
16135 Set_Enumeration_Pos (L, Ev);
16136 Set_Enumeration_Rep (L, Ev);
16137 Set_Is_Known_Valid (L, True);
16138 end if;
16140 Set_Etype (L, T);
16141 New_Overloaded_Entity (L);
16142 Generate_Definition (L);
16143 Set_Convention (L, Convention_Intrinsic);
16145 -- Case of character literal
16147 if Nkind (L) = N_Defining_Character_Literal then
16148 Set_Is_Character_Type (T, True);
16150 -- Check violation of No_Wide_Characters
16152 if Restriction_Check_Required (No_Wide_Characters) then
16153 Get_Name_String (Chars (L));
16155 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16156 Check_Restriction (No_Wide_Characters, L);
16157 end if;
16158 end if;
16159 end if;
16161 Ev := Ev + 1;
16162 Next (L);
16163 end loop;
16165 -- Now create a node representing upper bound
16167 B_Node := New_Node (N_Identifier, Sloc (Def));
16168 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16169 Set_Entity (B_Node, Last (Literals (Def)));
16170 Set_Etype (B_Node, T);
16171 Set_Is_Static_Expression (B_Node, True);
16173 Set_High_Bound (R_Node, B_Node);
16175 -- Initialize various fields of the type. Some of this information
16176 -- may be overwritten later through rep.clauses.
16178 Set_Scalar_Range (T, R_Node);
16179 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16180 Set_Enum_Esize (T);
16181 Set_Enum_Pos_To_Rep (T, Empty);
16183 -- Set Discard_Names if configuration pragma set, or if there is
16184 -- a parameterless pragma in the current declarative region
16186 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16187 Set_Discard_Names (T);
16188 end if;
16190 -- Process end label if there is one
16192 if Present (Def) then
16193 Process_End_Label (Def, 'e', T);
16194 end if;
16195 end Enumeration_Type_Declaration;
16197 ---------------------------------
16198 -- Expand_To_Stored_Constraint --
16199 ---------------------------------
16201 function Expand_To_Stored_Constraint
16202 (Typ : Entity_Id;
16203 Constraint : Elist_Id) return Elist_Id
16205 Explicitly_Discriminated_Type : Entity_Id;
16206 Expansion : Elist_Id;
16207 Discriminant : Entity_Id;
16209 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16210 -- Find the nearest type that actually specifies discriminants
16212 ---------------------------------
16213 -- Type_With_Explicit_Discrims --
16214 ---------------------------------
16216 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16217 Typ : constant E := Base_Type (Id);
16219 begin
16220 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16221 if Present (Full_View (Typ)) then
16222 return Type_With_Explicit_Discrims (Full_View (Typ));
16223 end if;
16225 else
16226 if Has_Discriminants (Typ) then
16227 return Typ;
16228 end if;
16229 end if;
16231 if Etype (Typ) = Typ then
16232 return Empty;
16233 elsif Has_Discriminants (Typ) then
16234 return Typ;
16235 else
16236 return Type_With_Explicit_Discrims (Etype (Typ));
16237 end if;
16239 end Type_With_Explicit_Discrims;
16241 -- Start of processing for Expand_To_Stored_Constraint
16243 begin
16244 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16245 return No_Elist;
16246 end if;
16248 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16250 if No (Explicitly_Discriminated_Type) then
16251 return No_Elist;
16252 end if;
16254 Expansion := New_Elmt_List;
16256 Discriminant :=
16257 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16258 while Present (Discriminant) loop
16259 Append_Elmt
16260 (Get_Discriminant_Value
16261 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16262 To => Expansion);
16263 Next_Stored_Discriminant (Discriminant);
16264 end loop;
16266 return Expansion;
16267 end Expand_To_Stored_Constraint;
16269 ---------------------------
16270 -- Find_Hidden_Interface --
16271 ---------------------------
16273 function Find_Hidden_Interface
16274 (Src : Elist_Id;
16275 Dest : Elist_Id) return Entity_Id
16277 Iface : Entity_Id;
16278 Iface_Elmt : Elmt_Id;
16280 begin
16281 if Present (Src) and then Present (Dest) then
16282 Iface_Elmt := First_Elmt (Src);
16283 while Present (Iface_Elmt) loop
16284 Iface := Node (Iface_Elmt);
16286 if Is_Interface (Iface)
16287 and then not Contain_Interface (Iface, Dest)
16288 then
16289 return Iface;
16290 end if;
16292 Next_Elmt (Iface_Elmt);
16293 end loop;
16294 end if;
16296 return Empty;
16297 end Find_Hidden_Interface;
16299 --------------------
16300 -- Find_Type_Name --
16301 --------------------
16303 function Find_Type_Name (N : Node_Id) return Entity_Id is
16304 Id : constant Entity_Id := Defining_Identifier (N);
16305 Prev : Entity_Id;
16306 New_Id : Entity_Id;
16307 Prev_Par : Node_Id;
16309 procedure Check_Duplicate_Aspects;
16310 -- Check that aspects specified in a completion have not been specified
16311 -- already in the partial view. Type_Invariant and others can be
16312 -- specified on either view but never on both.
16314 procedure Tag_Mismatch;
16315 -- Diagnose a tagged partial view whose full view is untagged.
16316 -- We post the message on the full view, with a reference to
16317 -- the previous partial view. The partial view can be private
16318 -- or incomplete, and these are handled in a different manner,
16319 -- so we determine the position of the error message from the
16320 -- respective slocs of both.
16322 -----------------------------
16323 -- Check_Duplicate_Aspects --
16324 -----------------------------
16326 procedure Check_Duplicate_Aspects is
16327 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16328 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16329 F_Spec, P_Spec : Node_Id;
16331 begin
16332 if Present (Full_Aspects) then
16333 F_Spec := First (Full_Aspects);
16334 while Present (F_Spec) loop
16335 if Present (Prev_Aspects) then
16336 P_Spec := First (Prev_Aspects);
16337 while Present (P_Spec) loop
16338 if Chars (Identifier (P_Spec)) =
16339 Chars (Identifier (F_Spec))
16340 then
16341 Error_Msg_N
16342 ("aspect already specified in private declaration",
16343 F_Spec);
16344 Remove (F_Spec);
16345 return;
16346 end if;
16348 Next (P_Spec);
16349 end loop;
16350 end if;
16352 if Has_Discriminants (Prev)
16353 and then not Has_Unknown_Discriminants (Prev)
16354 and then Chars (Identifier (F_Spec)) =
16355 Name_Implicit_Dereference
16356 then
16357 Error_Msg_N ("cannot specify aspect " &
16358 "if partial view has known discriminants", F_Spec);
16359 end if;
16361 Next (F_Spec);
16362 end loop;
16363 end if;
16364 end Check_Duplicate_Aspects;
16366 ------------------
16367 -- Tag_Mismatch --
16368 ------------------
16370 procedure Tag_Mismatch is
16371 begin
16372 if Sloc (Prev) < Sloc (Id) then
16373 if Ada_Version >= Ada_2012
16374 and then Nkind (N) = N_Private_Type_Declaration
16375 then
16376 Error_Msg_NE
16377 ("declaration of private } must be a tagged type ", Id, Prev);
16378 else
16379 Error_Msg_NE
16380 ("full declaration of } must be a tagged type ", Id, Prev);
16381 end if;
16383 else
16384 if Ada_Version >= Ada_2012
16385 and then Nkind (N) = N_Private_Type_Declaration
16386 then
16387 Error_Msg_NE
16388 ("declaration of private } must be a tagged type ", Prev, Id);
16389 else
16390 Error_Msg_NE
16391 ("full declaration of } must be a tagged type ", Prev, Id);
16392 end if;
16393 end if;
16394 end Tag_Mismatch;
16396 -- Start of processing for Find_Type_Name
16398 begin
16399 -- Find incomplete declaration, if one was given
16401 Prev := Current_Entity_In_Scope (Id);
16403 -- New type declaration
16405 if No (Prev) then
16406 Enter_Name (Id);
16407 return Id;
16409 -- Previous declaration exists
16411 else
16412 Prev_Par := Parent (Prev);
16414 -- Error if not incomplete/private case except if previous
16415 -- declaration is implicit, etc. Enter_Name will emit error if
16416 -- appropriate.
16418 if not Is_Incomplete_Or_Private_Type (Prev) then
16419 Enter_Name (Id);
16420 New_Id := Id;
16422 -- Check invalid completion of private or incomplete type
16424 elsif not Nkind_In (N, N_Full_Type_Declaration,
16425 N_Task_Type_Declaration,
16426 N_Protected_Type_Declaration)
16427 and then
16428 (Ada_Version < Ada_2012
16429 or else not Is_Incomplete_Type (Prev)
16430 or else not Nkind_In (N, N_Private_Type_Declaration,
16431 N_Private_Extension_Declaration))
16432 then
16433 -- Completion must be a full type declarations (RM 7.3(4))
16435 Error_Msg_Sloc := Sloc (Prev);
16436 Error_Msg_NE ("invalid completion of }", Id, Prev);
16438 -- Set scope of Id to avoid cascaded errors. Entity is never
16439 -- examined again, except when saving globals in generics.
16441 Set_Scope (Id, Current_Scope);
16442 New_Id := Id;
16444 -- If this is a repeated incomplete declaration, no further
16445 -- checks are possible.
16447 if Nkind (N) = N_Incomplete_Type_Declaration then
16448 return Prev;
16449 end if;
16451 -- Case of full declaration of incomplete type
16453 elsif Ekind (Prev) = E_Incomplete_Type
16454 and then (Ada_Version < Ada_2012
16455 or else No (Full_View (Prev))
16456 or else not Is_Private_Type (Full_View (Prev)))
16457 then
16458 -- Indicate that the incomplete declaration has a matching full
16459 -- declaration. The defining occurrence of the incomplete
16460 -- declaration remains the visible one, and the procedure
16461 -- Get_Full_View dereferences it whenever the type is used.
16463 if Present (Full_View (Prev)) then
16464 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16465 end if;
16467 Set_Full_View (Prev, Id);
16468 Append_Entity (Id, Current_Scope);
16469 Set_Is_Public (Id, Is_Public (Prev));
16470 Set_Is_Internal (Id);
16471 New_Id := Prev;
16473 -- If the incomplete view is tagged, a class_wide type has been
16474 -- created already. Use it for the private type as well, in order
16475 -- to prevent multiple incompatible class-wide types that may be
16476 -- created for self-referential anonymous access components.
16478 if Is_Tagged_Type (Prev)
16479 and then Present (Class_Wide_Type (Prev))
16480 then
16481 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16482 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16484 -- The type of the classwide type is the current Id. Previously
16485 -- this was not done for private declarations because of order-
16486 -- of elaboration issues in the back-end, but gigi now handles
16487 -- this properly.
16489 Set_Etype (Class_Wide_Type (Id), Id);
16490 end if;
16492 -- Case of full declaration of private type
16494 else
16495 -- If the private type was a completion of an incomplete type then
16496 -- update Prev to reference the private type
16498 if Ada_Version >= Ada_2012
16499 and then Ekind (Prev) = E_Incomplete_Type
16500 and then Present (Full_View (Prev))
16501 and then Is_Private_Type (Full_View (Prev))
16502 then
16503 Prev := Full_View (Prev);
16504 Prev_Par := Parent (Prev);
16505 end if;
16507 if Nkind (N) = N_Full_Type_Declaration
16508 and then Nkind_In
16509 (Type_Definition (N), N_Record_Definition,
16510 N_Derived_Type_Definition)
16511 and then Interface_Present (Type_Definition (N))
16512 then
16513 Error_Msg_N
16514 ("completion of private type cannot be an interface", N);
16515 end if;
16517 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16518 if Etype (Prev) /= Prev then
16520 -- Prev is a private subtype or a derived type, and needs
16521 -- no completion.
16523 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16524 New_Id := Id;
16526 elsif Ekind (Prev) = E_Private_Type
16527 and then Nkind_In (N, N_Task_Type_Declaration,
16528 N_Protected_Type_Declaration)
16529 then
16530 Error_Msg_N
16531 ("completion of nonlimited type cannot be limited", N);
16533 elsif Ekind (Prev) = E_Record_Type_With_Private
16534 and then Nkind_In (N, N_Task_Type_Declaration,
16535 N_Protected_Type_Declaration)
16536 then
16537 if not Is_Limited_Record (Prev) then
16538 Error_Msg_N
16539 ("completion of nonlimited type cannot be limited", N);
16541 elsif No (Interface_List (N)) then
16542 Error_Msg_N
16543 ("completion of tagged private type must be tagged",
16545 end if;
16546 end if;
16548 -- Ada 2005 (AI-251): Private extension declaration of a task
16549 -- type or a protected type. This case arises when covering
16550 -- interface types.
16552 elsif Nkind_In (N, N_Task_Type_Declaration,
16553 N_Protected_Type_Declaration)
16554 then
16555 null;
16557 elsif Nkind (N) /= N_Full_Type_Declaration
16558 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16559 then
16560 Error_Msg_N
16561 ("full view of private extension must be an extension", N);
16563 elsif not (Abstract_Present (Parent (Prev)))
16564 and then Abstract_Present (Type_Definition (N))
16565 then
16566 Error_Msg_N
16567 ("full view of non-abstract extension cannot be abstract", N);
16568 end if;
16570 if not In_Private_Part (Current_Scope) then
16571 Error_Msg_N
16572 ("declaration of full view must appear in private part", N);
16573 end if;
16575 if Ada_Version >= Ada_2012 then
16576 Check_Duplicate_Aspects;
16577 end if;
16579 Copy_And_Swap (Prev, Id);
16580 Set_Has_Private_Declaration (Prev);
16581 Set_Has_Private_Declaration (Id);
16583 -- AI12-0133: Indicate whether we have a partial view with
16584 -- unknown discriminants, in which case initialization of objects
16585 -- of the type do not receive an invariant check.
16587 Set_Partial_View_Has_Unknown_Discr
16588 (Prev, Has_Unknown_Discriminants (Id));
16590 -- Preserve aspect and iterator flags that may have been set on
16591 -- the partial view.
16593 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16594 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16596 -- If no error, propagate freeze_node from private to full view.
16597 -- It may have been generated for an early operational item.
16599 if Present (Freeze_Node (Id))
16600 and then Serious_Errors_Detected = 0
16601 and then No (Full_View (Id))
16602 then
16603 Set_Freeze_Node (Prev, Freeze_Node (Id));
16604 Set_Freeze_Node (Id, Empty);
16605 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16606 end if;
16608 Set_Full_View (Id, Prev);
16609 New_Id := Prev;
16610 end if;
16612 -- Verify that full declaration conforms to partial one
16614 if Is_Incomplete_Or_Private_Type (Prev)
16615 and then Present (Discriminant_Specifications (Prev_Par))
16616 then
16617 if Present (Discriminant_Specifications (N)) then
16618 if Ekind (Prev) = E_Incomplete_Type then
16619 Check_Discriminant_Conformance (N, Prev, Prev);
16620 else
16621 Check_Discriminant_Conformance (N, Prev, Id);
16622 end if;
16624 else
16625 Error_Msg_N
16626 ("missing discriminants in full type declaration", N);
16628 -- To avoid cascaded errors on subsequent use, share the
16629 -- discriminants of the partial view.
16631 Set_Discriminant_Specifications (N,
16632 Discriminant_Specifications (Prev_Par));
16633 end if;
16634 end if;
16636 -- A prior untagged partial view can have an associated class-wide
16637 -- type due to use of the class attribute, and in this case the full
16638 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16639 -- of incomplete tagged declarations, but we check for it.
16641 if Is_Type (Prev)
16642 and then (Is_Tagged_Type (Prev)
16643 or else Present (Class_Wide_Type (Prev)))
16644 then
16645 -- Ada 2012 (AI05-0162): A private type may be the completion of
16646 -- an incomplete type.
16648 if Ada_Version >= Ada_2012
16649 and then Is_Incomplete_Type (Prev)
16650 and then Nkind_In (N, N_Private_Type_Declaration,
16651 N_Private_Extension_Declaration)
16652 then
16653 -- No need to check private extensions since they are tagged
16655 if Nkind (N) = N_Private_Type_Declaration
16656 and then not Tagged_Present (N)
16657 then
16658 Tag_Mismatch;
16659 end if;
16661 -- The full declaration is either a tagged type (including
16662 -- a synchronized type that implements interfaces) or a
16663 -- type extension, otherwise this is an error.
16665 elsif Nkind_In (N, N_Task_Type_Declaration,
16666 N_Protected_Type_Declaration)
16667 then
16668 if No (Interface_List (N)) and then not Error_Posted (N) then
16669 Tag_Mismatch;
16670 end if;
16672 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16674 -- Indicate that the previous declaration (tagged incomplete
16675 -- or private declaration) requires the same on the full one.
16677 if not Tagged_Present (Type_Definition (N)) then
16678 Tag_Mismatch;
16679 Set_Is_Tagged_Type (Id);
16680 end if;
16682 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16683 if No (Record_Extension_Part (Type_Definition (N))) then
16684 Error_Msg_NE
16685 ("full declaration of } must be a record extension",
16686 Prev, Id);
16688 -- Set some attributes to produce a usable full view
16690 Set_Is_Tagged_Type (Id);
16691 end if;
16693 else
16694 Tag_Mismatch;
16695 end if;
16696 end if;
16698 if Present (Prev)
16699 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16700 and then Present (Premature_Use (Parent (Prev)))
16701 then
16702 Error_Msg_Sloc := Sloc (N);
16703 Error_Msg_N
16704 ("\full declaration #", Premature_Use (Parent (Prev)));
16705 end if;
16707 return New_Id;
16708 end if;
16709 end Find_Type_Name;
16711 -------------------------
16712 -- Find_Type_Of_Object --
16713 -------------------------
16715 function Find_Type_Of_Object
16716 (Obj_Def : Node_Id;
16717 Related_Nod : Node_Id) return Entity_Id
16719 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16720 P : Node_Id := Parent (Obj_Def);
16721 T : Entity_Id;
16722 Nam : Name_Id;
16724 begin
16725 -- If the parent is a component_definition node we climb to the
16726 -- component_declaration node
16728 if Nkind (P) = N_Component_Definition then
16729 P := Parent (P);
16730 end if;
16732 -- Case of an anonymous array subtype
16734 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16735 N_Unconstrained_Array_Definition)
16736 then
16737 T := Empty;
16738 Array_Type_Declaration (T, Obj_Def);
16740 -- Create an explicit subtype whenever possible
16742 elsif Nkind (P) /= N_Component_Declaration
16743 and then Def_Kind = N_Subtype_Indication
16744 then
16745 -- Base name of subtype on object name, which will be unique in
16746 -- the current scope.
16748 -- If this is a duplicate declaration, return base type, to avoid
16749 -- generating duplicate anonymous types.
16751 if Error_Posted (P) then
16752 Analyze (Subtype_Mark (Obj_Def));
16753 return Entity (Subtype_Mark (Obj_Def));
16754 end if;
16756 Nam :=
16757 New_External_Name
16758 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16760 T := Make_Defining_Identifier (Sloc (P), Nam);
16762 Insert_Action (Obj_Def,
16763 Make_Subtype_Declaration (Sloc (P),
16764 Defining_Identifier => T,
16765 Subtype_Indication => Relocate_Node (Obj_Def)));
16767 -- This subtype may need freezing, and this will not be done
16768 -- automatically if the object declaration is not in declarative
16769 -- part. Since this is an object declaration, the type cannot always
16770 -- be frozen here. Deferred constants do not freeze their type
16771 -- (which often enough will be private).
16773 if Nkind (P) = N_Object_Declaration
16774 and then Constant_Present (P)
16775 and then No (Expression (P))
16776 then
16777 null;
16779 -- Here we freeze the base type of object type to catch premature use
16780 -- of discriminated private type without a full view.
16782 else
16783 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16784 end if;
16786 -- Ada 2005 AI-406: the object definition in an object declaration
16787 -- can be an access definition.
16789 elsif Def_Kind = N_Access_Definition then
16790 T := Access_Definition (Related_Nod, Obj_Def);
16792 Set_Is_Local_Anonymous_Access
16794 V => (Ada_Version < Ada_2012)
16795 or else (Nkind (P) /= N_Object_Declaration)
16796 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16798 -- Otherwise, the object definition is just a subtype_mark
16800 else
16801 T := Process_Subtype (Obj_Def, Related_Nod);
16803 -- If expansion is disabled an object definition that is an aggregate
16804 -- will not get expanded and may lead to scoping problems in the back
16805 -- end, if the object is referenced in an inner scope. In that case
16806 -- create an itype reference for the object definition now. This
16807 -- may be redundant in some cases, but harmless.
16809 if Is_Itype (T)
16810 and then Nkind (Related_Nod) = N_Object_Declaration
16811 and then ASIS_Mode
16812 then
16813 Build_Itype_Reference (T, Related_Nod);
16814 end if;
16815 end if;
16817 return T;
16818 end Find_Type_Of_Object;
16820 --------------------------------
16821 -- Find_Type_Of_Subtype_Indic --
16822 --------------------------------
16824 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16825 Typ : Entity_Id;
16827 begin
16828 -- Case of subtype mark with a constraint
16830 if Nkind (S) = N_Subtype_Indication then
16831 Find_Type (Subtype_Mark (S));
16832 Typ := Entity (Subtype_Mark (S));
16834 if not
16835 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16836 then
16837 Error_Msg_N
16838 ("incorrect constraint for this kind of type", Constraint (S));
16839 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16840 end if;
16842 -- Otherwise we have a subtype mark without a constraint
16844 elsif Error_Posted (S) then
16845 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16846 return Any_Type;
16848 else
16849 Find_Type (S);
16850 Typ := Entity (S);
16851 end if;
16853 -- Check No_Wide_Characters restriction
16855 Check_Wide_Character_Restriction (Typ, S);
16857 return Typ;
16858 end Find_Type_Of_Subtype_Indic;
16860 -------------------------------------
16861 -- Floating_Point_Type_Declaration --
16862 -------------------------------------
16864 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16865 Digs : constant Node_Id := Digits_Expression (Def);
16866 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16867 Digs_Val : Uint;
16868 Base_Typ : Entity_Id;
16869 Implicit_Base : Entity_Id;
16870 Bound : Node_Id;
16872 function Can_Derive_From (E : Entity_Id) return Boolean;
16873 -- Find if given digits value, and possibly a specified range, allows
16874 -- derivation from specified type
16876 function Find_Base_Type return Entity_Id;
16877 -- Find a predefined base type that Def can derive from, or generate
16878 -- an error and substitute Long_Long_Float if none exists.
16880 ---------------------
16881 -- Can_Derive_From --
16882 ---------------------
16884 function Can_Derive_From (E : Entity_Id) return Boolean is
16885 Spec : constant Entity_Id := Real_Range_Specification (Def);
16887 begin
16888 -- Check specified "digits" constraint
16890 if Digs_Val > Digits_Value (E) then
16891 return False;
16892 end if;
16894 -- Check for matching range, if specified
16896 if Present (Spec) then
16897 if Expr_Value_R (Type_Low_Bound (E)) >
16898 Expr_Value_R (Low_Bound (Spec))
16899 then
16900 return False;
16901 end if;
16903 if Expr_Value_R (Type_High_Bound (E)) <
16904 Expr_Value_R (High_Bound (Spec))
16905 then
16906 return False;
16907 end if;
16908 end if;
16910 return True;
16911 end Can_Derive_From;
16913 --------------------
16914 -- Find_Base_Type --
16915 --------------------
16917 function Find_Base_Type return Entity_Id is
16918 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16920 begin
16921 -- Iterate over the predefined types in order, returning the first
16922 -- one that Def can derive from.
16924 while Present (Choice) loop
16925 if Can_Derive_From (Node (Choice)) then
16926 return Node (Choice);
16927 end if;
16929 Next_Elmt (Choice);
16930 end loop;
16932 -- If we can't derive from any existing type, use Long_Long_Float
16933 -- and give appropriate message explaining the problem.
16935 if Digs_Val > Max_Digs_Val then
16936 -- It might be the case that there is a type with the requested
16937 -- range, just not the combination of digits and range.
16939 Error_Msg_N
16940 ("no predefined type has requested range and precision",
16941 Real_Range_Specification (Def));
16943 else
16944 Error_Msg_N
16945 ("range too large for any predefined type",
16946 Real_Range_Specification (Def));
16947 end if;
16949 return Standard_Long_Long_Float;
16950 end Find_Base_Type;
16952 -- Start of processing for Floating_Point_Type_Declaration
16954 begin
16955 Check_Restriction (No_Floating_Point, Def);
16957 -- Create an implicit base type
16959 Implicit_Base :=
16960 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16962 -- Analyze and verify digits value
16964 Analyze_And_Resolve (Digs, Any_Integer);
16965 Check_Digits_Expression (Digs);
16966 Digs_Val := Expr_Value (Digs);
16968 -- Process possible range spec and find correct type to derive from
16970 Process_Real_Range_Specification (Def);
16972 -- Check that requested number of digits is not too high.
16974 if Digs_Val > Max_Digs_Val then
16976 -- The check for Max_Base_Digits may be somewhat expensive, as it
16977 -- requires reading System, so only do it when necessary.
16979 declare
16980 Max_Base_Digits : constant Uint :=
16981 Expr_Value
16982 (Expression
16983 (Parent (RTE (RE_Max_Base_Digits))));
16985 begin
16986 if Digs_Val > Max_Base_Digits then
16987 Error_Msg_Uint_1 := Max_Base_Digits;
16988 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16990 elsif No (Real_Range_Specification (Def)) then
16991 Error_Msg_Uint_1 := Max_Digs_Val;
16992 Error_Msg_N ("types with more than ^ digits need range spec "
16993 & "(RM 3.5.7(6))", Digs);
16994 end if;
16995 end;
16996 end if;
16998 -- Find a suitable type to derive from or complain and use a substitute
17000 Base_Typ := Find_Base_Type;
17002 -- If there are bounds given in the declaration use them as the bounds
17003 -- of the type, otherwise use the bounds of the predefined base type
17004 -- that was chosen based on the Digits value.
17006 if Present (Real_Range_Specification (Def)) then
17007 Set_Scalar_Range (T, Real_Range_Specification (Def));
17008 Set_Is_Constrained (T);
17010 -- The bounds of this range must be converted to machine numbers
17011 -- in accordance with RM 4.9(38).
17013 Bound := Type_Low_Bound (T);
17015 if Nkind (Bound) = N_Real_Literal then
17016 Set_Realval
17017 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17018 Set_Is_Machine_Number (Bound);
17019 end if;
17021 Bound := Type_High_Bound (T);
17023 if Nkind (Bound) = N_Real_Literal then
17024 Set_Realval
17025 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17026 Set_Is_Machine_Number (Bound);
17027 end if;
17029 else
17030 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17031 end if;
17033 -- Complete definition of implicit base and declared first subtype. The
17034 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17035 -- are not clobbered when the floating point type acts as a full view of
17036 -- a private type.
17038 Set_Etype (Implicit_Base, Base_Typ);
17039 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17040 Set_Size_Info (Implicit_Base, Base_Typ);
17041 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17042 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17043 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17044 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17046 Set_Ekind (T, E_Floating_Point_Subtype);
17047 Set_Etype (T, Implicit_Base);
17048 Set_Size_Info (T, Implicit_Base);
17049 Set_RM_Size (T, RM_Size (Implicit_Base));
17050 Inherit_Rep_Item_Chain (T, Implicit_Base);
17051 Set_Digits_Value (T, Digs_Val);
17052 end Floating_Point_Type_Declaration;
17054 ----------------------------
17055 -- Get_Discriminant_Value --
17056 ----------------------------
17058 -- This is the situation:
17060 -- There is a non-derived type
17062 -- type T0 (Dx, Dy, Dz...)
17064 -- There are zero or more levels of derivation, with each derivation
17065 -- either purely inheriting the discriminants, or defining its own.
17067 -- type Ti is new Ti-1
17068 -- or
17069 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17070 -- or
17071 -- subtype Ti is ...
17073 -- The subtype issue is avoided by the use of Original_Record_Component,
17074 -- and the fact that derived subtypes also derive the constraints.
17076 -- This chain leads back from
17078 -- Typ_For_Constraint
17080 -- Typ_For_Constraint has discriminants, and the value for each
17081 -- discriminant is given by its corresponding Elmt of Constraints.
17083 -- Discriminant is some discriminant in this hierarchy
17085 -- We need to return its value
17087 -- We do this by recursively searching each level, and looking for
17088 -- Discriminant. Once we get to the bottom, we start backing up
17089 -- returning the value for it which may in turn be a discriminant
17090 -- further up, so on the backup we continue the substitution.
17092 function Get_Discriminant_Value
17093 (Discriminant : Entity_Id;
17094 Typ_For_Constraint : Entity_Id;
17095 Constraint : Elist_Id) return Node_Id
17097 function Root_Corresponding_Discriminant
17098 (Discr : Entity_Id) return Entity_Id;
17099 -- Given a discriminant, traverse the chain of inherited discriminants
17100 -- and return the topmost discriminant.
17102 function Search_Derivation_Levels
17103 (Ti : Entity_Id;
17104 Discrim_Values : Elist_Id;
17105 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17106 -- This is the routine that performs the recursive search of levels
17107 -- as described above.
17109 -------------------------------------
17110 -- Root_Corresponding_Discriminant --
17111 -------------------------------------
17113 function Root_Corresponding_Discriminant
17114 (Discr : Entity_Id) return Entity_Id
17116 D : Entity_Id;
17118 begin
17119 D := Discr;
17120 while Present (Corresponding_Discriminant (D)) loop
17121 D := Corresponding_Discriminant (D);
17122 end loop;
17124 return D;
17125 end Root_Corresponding_Discriminant;
17127 ------------------------------
17128 -- Search_Derivation_Levels --
17129 ------------------------------
17131 function Search_Derivation_Levels
17132 (Ti : Entity_Id;
17133 Discrim_Values : Elist_Id;
17134 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17136 Assoc : Elmt_Id;
17137 Disc : Entity_Id;
17138 Result : Node_Or_Entity_Id;
17139 Result_Entity : Node_Id;
17141 begin
17142 -- If inappropriate type, return Error, this happens only in
17143 -- cascaded error situations, and we want to avoid a blow up.
17145 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17146 return Error;
17147 end if;
17149 -- Look deeper if possible. Use Stored_Constraints only for
17150 -- untagged types. For tagged types use the given constraint.
17151 -- This asymmetry needs explanation???
17153 if not Stored_Discrim_Values
17154 and then Present (Stored_Constraint (Ti))
17155 and then not Is_Tagged_Type (Ti)
17156 then
17157 Result :=
17158 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17159 else
17160 declare
17161 Td : constant Entity_Id := Etype (Ti);
17163 begin
17164 if Td = Ti then
17165 Result := Discriminant;
17167 else
17168 if Present (Stored_Constraint (Ti)) then
17169 Result :=
17170 Search_Derivation_Levels
17171 (Td, Stored_Constraint (Ti), True);
17172 else
17173 Result :=
17174 Search_Derivation_Levels
17175 (Td, Discrim_Values, Stored_Discrim_Values);
17176 end if;
17177 end if;
17178 end;
17179 end if;
17181 -- Extra underlying places to search, if not found above. For
17182 -- concurrent types, the relevant discriminant appears in the
17183 -- corresponding record. For a type derived from a private type
17184 -- without discriminant, the full view inherits the discriminants
17185 -- of the full view of the parent.
17187 if Result = Discriminant then
17188 if Is_Concurrent_Type (Ti)
17189 and then Present (Corresponding_Record_Type (Ti))
17190 then
17191 Result :=
17192 Search_Derivation_Levels (
17193 Corresponding_Record_Type (Ti),
17194 Discrim_Values,
17195 Stored_Discrim_Values);
17197 elsif Is_Private_Type (Ti)
17198 and then not Has_Discriminants (Ti)
17199 and then Present (Full_View (Ti))
17200 and then Etype (Full_View (Ti)) /= Ti
17201 then
17202 Result :=
17203 Search_Derivation_Levels (
17204 Full_View (Ti),
17205 Discrim_Values,
17206 Stored_Discrim_Values);
17207 end if;
17208 end if;
17210 -- If Result is not a (reference to a) discriminant, return it,
17211 -- otherwise set Result_Entity to the discriminant.
17213 if Nkind (Result) = N_Defining_Identifier then
17214 pragma Assert (Result = Discriminant);
17215 Result_Entity := Result;
17217 else
17218 if not Denotes_Discriminant (Result) then
17219 return Result;
17220 end if;
17222 Result_Entity := Entity (Result);
17223 end if;
17225 -- See if this level of derivation actually has discriminants because
17226 -- tagged derivations can add them, hence the lower levels need not
17227 -- have any.
17229 if not Has_Discriminants (Ti) then
17230 return Result;
17231 end if;
17233 -- Scan Ti's discriminants for Result_Entity, and return its
17234 -- corresponding value, if any.
17236 Result_Entity := Original_Record_Component (Result_Entity);
17238 Assoc := First_Elmt (Discrim_Values);
17240 if Stored_Discrim_Values then
17241 Disc := First_Stored_Discriminant (Ti);
17242 else
17243 Disc := First_Discriminant (Ti);
17244 end if;
17246 while Present (Disc) loop
17247 pragma Assert (Present (Assoc));
17249 if Original_Record_Component (Disc) = Result_Entity then
17250 return Node (Assoc);
17251 end if;
17253 Next_Elmt (Assoc);
17255 if Stored_Discrim_Values then
17256 Next_Stored_Discriminant (Disc);
17257 else
17258 Next_Discriminant (Disc);
17259 end if;
17260 end loop;
17262 -- Could not find it
17264 return Result;
17265 end Search_Derivation_Levels;
17267 -- Local Variables
17269 Result : Node_Or_Entity_Id;
17271 -- Start of processing for Get_Discriminant_Value
17273 begin
17274 -- ??? This routine is a gigantic mess and will be deleted. For the
17275 -- time being just test for the trivial case before calling recurse.
17277 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17278 declare
17279 D : Entity_Id;
17280 E : Elmt_Id;
17282 begin
17283 D := First_Discriminant (Typ_For_Constraint);
17284 E := First_Elmt (Constraint);
17285 while Present (D) loop
17286 if Chars (D) = Chars (Discriminant) then
17287 return Node (E);
17288 end if;
17290 Next_Discriminant (D);
17291 Next_Elmt (E);
17292 end loop;
17293 end;
17294 end if;
17296 Result := Search_Derivation_Levels
17297 (Typ_For_Constraint, Constraint, False);
17299 -- ??? hack to disappear when this routine is gone
17301 if Nkind (Result) = N_Defining_Identifier then
17302 declare
17303 D : Entity_Id;
17304 E : Elmt_Id;
17306 begin
17307 D := First_Discriminant (Typ_For_Constraint);
17308 E := First_Elmt (Constraint);
17309 while Present (D) loop
17310 if Root_Corresponding_Discriminant (D) = Discriminant then
17311 return Node (E);
17312 end if;
17314 Next_Discriminant (D);
17315 Next_Elmt (E);
17316 end loop;
17317 end;
17318 end if;
17320 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17321 return Result;
17322 end Get_Discriminant_Value;
17324 --------------------------
17325 -- Has_Range_Constraint --
17326 --------------------------
17328 function Has_Range_Constraint (N : Node_Id) return Boolean is
17329 C : constant Node_Id := Constraint (N);
17331 begin
17332 if Nkind (C) = N_Range_Constraint then
17333 return True;
17335 elsif Nkind (C) = N_Digits_Constraint then
17336 return
17337 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17338 or else Present (Range_Constraint (C));
17340 elsif Nkind (C) = N_Delta_Constraint then
17341 return Present (Range_Constraint (C));
17343 else
17344 return False;
17345 end if;
17346 end Has_Range_Constraint;
17348 ------------------------
17349 -- Inherit_Components --
17350 ------------------------
17352 function Inherit_Components
17353 (N : Node_Id;
17354 Parent_Base : Entity_Id;
17355 Derived_Base : Entity_Id;
17356 Is_Tagged : Boolean;
17357 Inherit_Discr : Boolean;
17358 Discs : Elist_Id) return Elist_Id
17360 Assoc_List : constant Elist_Id := New_Elmt_List;
17362 procedure Inherit_Component
17363 (Old_C : Entity_Id;
17364 Plain_Discrim : Boolean := False;
17365 Stored_Discrim : Boolean := False);
17366 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17367 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17368 -- True, Old_C is a stored discriminant. If they are both false then
17369 -- Old_C is a regular component.
17371 -----------------------
17372 -- Inherit_Component --
17373 -----------------------
17375 procedure Inherit_Component
17376 (Old_C : Entity_Id;
17377 Plain_Discrim : Boolean := False;
17378 Stored_Discrim : Boolean := False)
17380 procedure Set_Anonymous_Type (Id : Entity_Id);
17381 -- Id denotes the entity of an access discriminant or anonymous
17382 -- access component. Set the type of Id to either the same type of
17383 -- Old_C or create a new one depending on whether the parent and
17384 -- the child types are in the same scope.
17386 ------------------------
17387 -- Set_Anonymous_Type --
17388 ------------------------
17390 procedure Set_Anonymous_Type (Id : Entity_Id) is
17391 Old_Typ : constant Entity_Id := Etype (Old_C);
17393 begin
17394 if Scope (Parent_Base) = Scope (Derived_Base) then
17395 Set_Etype (Id, Old_Typ);
17397 -- The parent and the derived type are in two different scopes.
17398 -- Reuse the type of the original discriminant / component by
17399 -- copying it in order to preserve all attributes.
17401 else
17402 declare
17403 Typ : constant Entity_Id := New_Copy (Old_Typ);
17405 begin
17406 Set_Etype (Id, Typ);
17408 -- Since we do not generate component declarations for
17409 -- inherited components, associate the itype with the
17410 -- derived type.
17412 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17413 Set_Scope (Typ, Derived_Base);
17414 end;
17415 end if;
17416 end Set_Anonymous_Type;
17418 -- Local variables and constants
17420 New_C : constant Entity_Id := New_Copy (Old_C);
17422 Corr_Discrim : Entity_Id;
17423 Discrim : Entity_Id;
17425 -- Start of processing for Inherit_Component
17427 begin
17428 pragma Assert (not Is_Tagged or not Stored_Discrim);
17430 Set_Parent (New_C, Parent (Old_C));
17432 -- Regular discriminants and components must be inserted in the scope
17433 -- of the Derived_Base. Do it here.
17435 if not Stored_Discrim then
17436 Enter_Name (New_C);
17437 end if;
17439 -- For tagged types the Original_Record_Component must point to
17440 -- whatever this field was pointing to in the parent type. This has
17441 -- already been achieved by the call to New_Copy above.
17443 if not Is_Tagged then
17444 Set_Original_Record_Component (New_C, New_C);
17445 end if;
17447 -- Set the proper type of an access discriminant
17449 if Ekind (New_C) = E_Discriminant
17450 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17451 then
17452 Set_Anonymous_Type (New_C);
17453 end if;
17455 -- If we have inherited a component then see if its Etype contains
17456 -- references to Parent_Base discriminants. In this case, replace
17457 -- these references with the constraints given in Discs. We do not
17458 -- do this for the partial view of private types because this is
17459 -- not needed (only the components of the full view will be used
17460 -- for code generation) and cause problem. We also avoid this
17461 -- transformation in some error situations.
17463 if Ekind (New_C) = E_Component then
17465 -- Set the proper type of an anonymous access component
17467 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17468 Set_Anonymous_Type (New_C);
17470 elsif (Is_Private_Type (Derived_Base)
17471 and then not Is_Generic_Type (Derived_Base))
17472 or else (Is_Empty_Elmt_List (Discs)
17473 and then not Expander_Active)
17474 then
17475 Set_Etype (New_C, Etype (Old_C));
17477 else
17478 -- The current component introduces a circularity of the
17479 -- following kind:
17481 -- limited with Pack_2;
17482 -- package Pack_1 is
17483 -- type T_1 is tagged record
17484 -- Comp : access Pack_2.T_2;
17485 -- ...
17486 -- end record;
17487 -- end Pack_1;
17489 -- with Pack_1;
17490 -- package Pack_2 is
17491 -- type T_2 is new Pack_1.T_1 with ...;
17492 -- end Pack_2;
17494 Set_Etype
17495 (New_C,
17496 Constrain_Component_Type
17497 (Old_C, Derived_Base, N, Parent_Base, Discs));
17498 end if;
17499 end if;
17501 -- In derived tagged types it is illegal to reference a non
17502 -- discriminant component in the parent type. To catch this, mark
17503 -- these components with an Ekind of E_Void. This will be reset in
17504 -- Record_Type_Definition after processing the record extension of
17505 -- the derived type.
17507 -- If the declaration is a private extension, there is no further
17508 -- record extension to process, and the components retain their
17509 -- current kind, because they are visible at this point.
17511 if Is_Tagged and then Ekind (New_C) = E_Component
17512 and then Nkind (N) /= N_Private_Extension_Declaration
17513 then
17514 Set_Ekind (New_C, E_Void);
17515 end if;
17517 if Plain_Discrim then
17518 Set_Corresponding_Discriminant (New_C, Old_C);
17519 Build_Discriminal (New_C);
17521 -- If we are explicitly inheriting a stored discriminant it will be
17522 -- completely hidden.
17524 elsif Stored_Discrim then
17525 Set_Corresponding_Discriminant (New_C, Empty);
17526 Set_Discriminal (New_C, Empty);
17527 Set_Is_Completely_Hidden (New_C);
17529 -- Set the Original_Record_Component of each discriminant in the
17530 -- derived base to point to the corresponding stored that we just
17531 -- created.
17533 Discrim := First_Discriminant (Derived_Base);
17534 while Present (Discrim) loop
17535 Corr_Discrim := Corresponding_Discriminant (Discrim);
17537 -- Corr_Discrim could be missing in an error situation
17539 if Present (Corr_Discrim)
17540 and then Original_Record_Component (Corr_Discrim) = Old_C
17541 then
17542 Set_Original_Record_Component (Discrim, New_C);
17543 end if;
17545 Next_Discriminant (Discrim);
17546 end loop;
17548 Append_Entity (New_C, Derived_Base);
17549 end if;
17551 if not Is_Tagged then
17552 Append_Elmt (Old_C, Assoc_List);
17553 Append_Elmt (New_C, Assoc_List);
17554 end if;
17555 end Inherit_Component;
17557 -- Variables local to Inherit_Component
17559 Loc : constant Source_Ptr := Sloc (N);
17561 Parent_Discrim : Entity_Id;
17562 Stored_Discrim : Entity_Id;
17563 D : Entity_Id;
17564 Component : Entity_Id;
17566 -- Start of processing for Inherit_Components
17568 begin
17569 if not Is_Tagged then
17570 Append_Elmt (Parent_Base, Assoc_List);
17571 Append_Elmt (Derived_Base, Assoc_List);
17572 end if;
17574 -- Inherit parent discriminants if needed
17576 if Inherit_Discr then
17577 Parent_Discrim := First_Discriminant (Parent_Base);
17578 while Present (Parent_Discrim) loop
17579 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17580 Next_Discriminant (Parent_Discrim);
17581 end loop;
17582 end if;
17584 -- Create explicit stored discrims for untagged types when necessary
17586 if not Has_Unknown_Discriminants (Derived_Base)
17587 and then Has_Discriminants (Parent_Base)
17588 and then not Is_Tagged
17589 and then
17590 (not Inherit_Discr
17591 or else First_Discriminant (Parent_Base) /=
17592 First_Stored_Discriminant (Parent_Base))
17593 then
17594 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17595 while Present (Stored_Discrim) loop
17596 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17597 Next_Stored_Discriminant (Stored_Discrim);
17598 end loop;
17599 end if;
17601 -- See if we can apply the second transformation for derived types, as
17602 -- explained in point 6. in the comments above Build_Derived_Record_Type
17603 -- This is achieved by appending Derived_Base discriminants into Discs,
17604 -- which has the side effect of returning a non empty Discs list to the
17605 -- caller of Inherit_Components, which is what we want. This must be
17606 -- done for private derived types if there are explicit stored
17607 -- discriminants, to ensure that we can retrieve the values of the
17608 -- constraints provided in the ancestors.
17610 if Inherit_Discr
17611 and then Is_Empty_Elmt_List (Discs)
17612 and then Present (First_Discriminant (Derived_Base))
17613 and then
17614 (not Is_Private_Type (Derived_Base)
17615 or else Is_Completely_Hidden
17616 (First_Stored_Discriminant (Derived_Base))
17617 or else Is_Generic_Type (Derived_Base))
17618 then
17619 D := First_Discriminant (Derived_Base);
17620 while Present (D) loop
17621 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17622 Next_Discriminant (D);
17623 end loop;
17624 end if;
17626 -- Finally, inherit non-discriminant components unless they are not
17627 -- visible because defined or inherited from the full view of the
17628 -- parent. Don't inherit the _parent field of the parent type.
17630 Component := First_Entity (Parent_Base);
17631 while Present (Component) loop
17633 -- Ada 2005 (AI-251): Do not inherit components associated with
17634 -- secondary tags of the parent.
17636 if Ekind (Component) = E_Component
17637 and then Present (Related_Type (Component))
17638 then
17639 null;
17641 elsif Ekind (Component) /= E_Component
17642 or else Chars (Component) = Name_uParent
17643 then
17644 null;
17646 -- If the derived type is within the parent type's declarative
17647 -- region, then the components can still be inherited even though
17648 -- they aren't visible at this point. This can occur for cases
17649 -- such as within public child units where the components must
17650 -- become visible upon entering the child unit's private part.
17652 elsif not Is_Visible_Component (Component)
17653 and then not In_Open_Scopes (Scope (Parent_Base))
17654 then
17655 null;
17657 elsif Ekind_In (Derived_Base, E_Private_Type,
17658 E_Limited_Private_Type)
17659 then
17660 null;
17662 else
17663 Inherit_Component (Component);
17664 end if;
17666 Next_Entity (Component);
17667 end loop;
17669 -- For tagged derived types, inherited discriminants cannot be used in
17670 -- component declarations of the record extension part. To achieve this
17671 -- we mark the inherited discriminants as not visible.
17673 if Is_Tagged and then Inherit_Discr then
17674 D := First_Discriminant (Derived_Base);
17675 while Present (D) loop
17676 Set_Is_Immediately_Visible (D, False);
17677 Next_Discriminant (D);
17678 end loop;
17679 end if;
17681 return Assoc_List;
17682 end Inherit_Components;
17684 -----------------------------
17685 -- Inherit_Predicate_Flags --
17686 -----------------------------
17688 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17689 begin
17690 Set_Has_Predicates (Subt, Has_Predicates (Par));
17691 Set_Has_Static_Predicate_Aspect
17692 (Subt, Has_Static_Predicate_Aspect (Par));
17693 Set_Has_Dynamic_Predicate_Aspect
17694 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17695 end Inherit_Predicate_Flags;
17697 ----------------------
17698 -- Is_EVF_Procedure --
17699 ----------------------
17701 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17702 Formal : Entity_Id;
17704 begin
17705 -- Examine the formals of an Extensions_Visible False procedure looking
17706 -- for a controlling OUT parameter.
17708 if Ekind (Subp) = E_Procedure
17709 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17710 then
17711 Formal := First_Formal (Subp);
17712 while Present (Formal) loop
17713 if Ekind (Formal) = E_Out_Parameter
17714 and then Is_Controlling_Formal (Formal)
17715 then
17716 return True;
17717 end if;
17719 Next_Formal (Formal);
17720 end loop;
17721 end if;
17723 return False;
17724 end Is_EVF_Procedure;
17726 -----------------------
17727 -- Is_Null_Extension --
17728 -----------------------
17730 function Is_Null_Extension (T : Entity_Id) return Boolean is
17731 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17732 Comp_List : Node_Id;
17733 Comp : Node_Id;
17735 begin
17736 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17737 or else not Is_Tagged_Type (T)
17738 or else Nkind (Type_Definition (Type_Decl)) /=
17739 N_Derived_Type_Definition
17740 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17741 then
17742 return False;
17743 end if;
17745 Comp_List :=
17746 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17748 if Present (Discriminant_Specifications (Type_Decl)) then
17749 return False;
17751 elsif Present (Comp_List)
17752 and then Is_Non_Empty_List (Component_Items (Comp_List))
17753 then
17754 Comp := First (Component_Items (Comp_List));
17756 -- Only user-defined components are relevant. The component list
17757 -- may also contain a parent component and internal components
17758 -- corresponding to secondary tags, but these do not determine
17759 -- whether this is a null extension.
17761 while Present (Comp) loop
17762 if Comes_From_Source (Comp) then
17763 return False;
17764 end if;
17766 Next (Comp);
17767 end loop;
17769 return True;
17771 else
17772 return True;
17773 end if;
17774 end Is_Null_Extension;
17776 ------------------------------
17777 -- Is_Valid_Constraint_Kind --
17778 ------------------------------
17780 function Is_Valid_Constraint_Kind
17781 (T_Kind : Type_Kind;
17782 Constraint_Kind : Node_Kind) return Boolean
17784 begin
17785 case T_Kind is
17786 when Enumeration_Kind |
17787 Integer_Kind =>
17788 return Constraint_Kind = N_Range_Constraint;
17790 when Decimal_Fixed_Point_Kind =>
17791 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17792 N_Range_Constraint);
17794 when Ordinary_Fixed_Point_Kind =>
17795 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17796 N_Range_Constraint);
17798 when Float_Kind =>
17799 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17800 N_Range_Constraint);
17802 when Access_Kind |
17803 Array_Kind |
17804 E_Record_Type |
17805 E_Record_Subtype |
17806 Class_Wide_Kind |
17807 E_Incomplete_Type |
17808 Private_Kind |
17809 Concurrent_Kind =>
17810 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17812 when others =>
17813 return True; -- Error will be detected later
17814 end case;
17815 end Is_Valid_Constraint_Kind;
17817 --------------------------
17818 -- Is_Visible_Component --
17819 --------------------------
17821 function Is_Visible_Component
17822 (C : Entity_Id;
17823 N : Node_Id := Empty) return Boolean
17825 Original_Comp : Entity_Id := Empty;
17826 Original_Type : Entity_Id;
17827 Type_Scope : Entity_Id;
17829 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17830 -- Check whether parent type of inherited component is declared locally,
17831 -- possibly within a nested package or instance. The current scope is
17832 -- the derived record itself.
17834 -------------------
17835 -- Is_Local_Type --
17836 -------------------
17838 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17839 Scop : Entity_Id;
17841 begin
17842 Scop := Scope (Typ);
17843 while Present (Scop)
17844 and then Scop /= Standard_Standard
17845 loop
17846 if Scop = Scope (Current_Scope) then
17847 return True;
17848 end if;
17850 Scop := Scope (Scop);
17851 end loop;
17853 return False;
17854 end Is_Local_Type;
17856 -- Start of processing for Is_Visible_Component
17858 begin
17859 if Ekind_In (C, E_Component, E_Discriminant) then
17860 Original_Comp := Original_Record_Component (C);
17861 end if;
17863 if No (Original_Comp) then
17865 -- Premature usage, or previous error
17867 return False;
17869 else
17870 Original_Type := Scope (Original_Comp);
17871 Type_Scope := Scope (Base_Type (Scope (C)));
17872 end if;
17874 -- This test only concerns tagged types
17876 if not Is_Tagged_Type (Original_Type) then
17877 return True;
17879 -- If it is _Parent or _Tag, there is no visibility issue
17881 elsif not Comes_From_Source (Original_Comp) then
17882 return True;
17884 -- Discriminants are visible unless the (private) type has unknown
17885 -- discriminants. If the discriminant reference is inserted for a
17886 -- discriminant check on a full view it is also visible.
17888 elsif Ekind (Original_Comp) = E_Discriminant
17889 and then
17890 (not Has_Unknown_Discriminants (Original_Type)
17891 or else (Present (N)
17892 and then Nkind (N) = N_Selected_Component
17893 and then Nkind (Prefix (N)) = N_Type_Conversion
17894 and then not Comes_From_Source (Prefix (N))))
17895 then
17896 return True;
17898 -- In the body of an instantiation, no need to check for the visibility
17899 -- of a component.
17901 elsif In_Instance_Body then
17902 return True;
17904 -- If the component has been declared in an ancestor which is currently
17905 -- a private type, then it is not visible. The same applies if the
17906 -- component's containing type is not in an open scope and the original
17907 -- component's enclosing type is a visible full view of a private type
17908 -- (which can occur in cases where an attempt is being made to reference
17909 -- a component in a sibling package that is inherited from a visible
17910 -- component of a type in an ancestor package; the component in the
17911 -- sibling package should not be visible even though the component it
17912 -- inherited from is visible). This does not apply however in the case
17913 -- where the scope of the type is a private child unit, or when the
17914 -- parent comes from a local package in which the ancestor is currently
17915 -- visible. The latter suppression of visibility is needed for cases
17916 -- that are tested in B730006.
17918 elsif Is_Private_Type (Original_Type)
17919 or else
17920 (not Is_Private_Descendant (Type_Scope)
17921 and then not In_Open_Scopes (Type_Scope)
17922 and then Has_Private_Declaration (Original_Type))
17923 then
17924 -- If the type derives from an entity in a formal package, there
17925 -- are no additional visible components.
17927 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17928 N_Formal_Package_Declaration
17929 then
17930 return False;
17932 -- if we are not in the private part of the current package, there
17933 -- are no additional visible components.
17935 elsif Ekind (Scope (Current_Scope)) = E_Package
17936 and then not In_Private_Part (Scope (Current_Scope))
17937 then
17938 return False;
17939 else
17940 return
17941 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17942 and then In_Open_Scopes (Scope (Original_Type))
17943 and then Is_Local_Type (Type_Scope);
17944 end if;
17946 -- There is another weird way in which a component may be invisible when
17947 -- the private and the full view are not derived from the same ancestor.
17948 -- Here is an example :
17950 -- type A1 is tagged record F1 : integer; end record;
17951 -- type A2 is new A1 with record F2 : integer; end record;
17952 -- type T is new A1 with private;
17953 -- private
17954 -- type T is new A2 with null record;
17956 -- In this case, the full view of T inherits F1 and F2 but the private
17957 -- view inherits only F1
17959 else
17960 declare
17961 Ancestor : Entity_Id := Scope (C);
17963 begin
17964 loop
17965 if Ancestor = Original_Type then
17966 return True;
17968 -- The ancestor may have a partial view of the original type,
17969 -- but if the full view is in scope, as in a child body, the
17970 -- component is visible.
17972 elsif In_Private_Part (Scope (Original_Type))
17973 and then Full_View (Ancestor) = Original_Type
17974 then
17975 return True;
17977 elsif Ancestor = Etype (Ancestor) then
17979 -- No further ancestors to examine
17981 return False;
17982 end if;
17984 Ancestor := Etype (Ancestor);
17985 end loop;
17986 end;
17987 end if;
17988 end Is_Visible_Component;
17990 --------------------------
17991 -- Make_Class_Wide_Type --
17992 --------------------------
17994 procedure Make_Class_Wide_Type (T : Entity_Id) is
17995 CW_Type : Entity_Id;
17996 CW_Name : Name_Id;
17997 Next_E : Entity_Id;
17999 begin
18000 if Present (Class_Wide_Type (T)) then
18002 -- The class-wide type is a partially decorated entity created for a
18003 -- unanalyzed tagged type referenced through a limited with clause.
18004 -- When the tagged type is analyzed, its class-wide type needs to be
18005 -- redecorated. Note that we reuse the entity created by Decorate_
18006 -- Tagged_Type in order to preserve all links.
18008 if Materialize_Entity (Class_Wide_Type (T)) then
18009 CW_Type := Class_Wide_Type (T);
18010 Set_Materialize_Entity (CW_Type, False);
18012 -- The class wide type can have been defined by the partial view, in
18013 -- which case everything is already done.
18015 else
18016 return;
18017 end if;
18019 -- Default case, we need to create a new class-wide type
18021 else
18022 CW_Type :=
18023 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18024 end if;
18026 -- Inherit root type characteristics
18028 CW_Name := Chars (CW_Type);
18029 Next_E := Next_Entity (CW_Type);
18030 Copy_Node (T, CW_Type);
18031 Set_Comes_From_Source (CW_Type, False);
18032 Set_Chars (CW_Type, CW_Name);
18033 Set_Parent (CW_Type, Parent (T));
18034 Set_Next_Entity (CW_Type, Next_E);
18036 -- Ensure we have a new freeze node for the class-wide type. The partial
18037 -- view may have freeze action of its own, requiring a proper freeze
18038 -- node, and the same freeze node cannot be shared between the two
18039 -- types.
18041 Set_Has_Delayed_Freeze (CW_Type);
18042 Set_Freeze_Node (CW_Type, Empty);
18044 -- Customize the class-wide type: It has no prim. op., it cannot be
18045 -- abstract and its Etype points back to the specific root type.
18047 Set_Ekind (CW_Type, E_Class_Wide_Type);
18048 Set_Is_Tagged_Type (CW_Type, True);
18049 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18050 Set_Is_Abstract_Type (CW_Type, False);
18051 Set_Is_Constrained (CW_Type, False);
18052 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18053 Set_Default_SSO (CW_Type);
18055 if Ekind (T) = E_Class_Wide_Subtype then
18056 Set_Etype (CW_Type, Etype (Base_Type (T)));
18057 else
18058 Set_Etype (CW_Type, T);
18059 end if;
18061 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18063 -- If this is the class_wide type of a constrained subtype, it does
18064 -- not have discriminants.
18066 Set_Has_Discriminants (CW_Type,
18067 Has_Discriminants (T) and then not Is_Constrained (T));
18069 Set_Has_Unknown_Discriminants (CW_Type, True);
18070 Set_Class_Wide_Type (T, CW_Type);
18071 Set_Equivalent_Type (CW_Type, Empty);
18073 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18075 Set_Class_Wide_Type (CW_Type, CW_Type);
18077 -- Inherit the "ghostness" from the root tagged type
18079 if Ghost_Mode > None or else Is_Ghost_Entity (T) then
18080 Set_Is_Ghost_Entity (CW_Type);
18081 end if;
18082 end Make_Class_Wide_Type;
18084 ----------------
18085 -- Make_Index --
18086 ----------------
18088 procedure Make_Index
18089 (N : Node_Id;
18090 Related_Nod : Node_Id;
18091 Related_Id : Entity_Id := Empty;
18092 Suffix_Index : Nat := 1;
18093 In_Iter_Schm : Boolean := False)
18095 R : Node_Id;
18096 T : Entity_Id;
18097 Def_Id : Entity_Id := Empty;
18098 Found : Boolean := False;
18100 begin
18101 -- For a discrete range used in a constrained array definition and
18102 -- defined by a range, an implicit conversion to the predefined type
18103 -- INTEGER is assumed if each bound is either a numeric literal, a named
18104 -- number, or an attribute, and the type of both bounds (prior to the
18105 -- implicit conversion) is the type universal_integer. Otherwise, both
18106 -- bounds must be of the same discrete type, other than universal
18107 -- integer; this type must be determinable independently of the
18108 -- context, but using the fact that the type must be discrete and that
18109 -- both bounds must have the same type.
18111 -- Character literals also have a universal type in the absence of
18112 -- of additional context, and are resolved to Standard_Character.
18114 if Nkind (N) = N_Range then
18116 -- The index is given by a range constraint. The bounds are known
18117 -- to be of a consistent type.
18119 if not Is_Overloaded (N) then
18120 T := Etype (N);
18122 -- For universal bounds, choose the specific predefined type
18124 if T = Universal_Integer then
18125 T := Standard_Integer;
18127 elsif T = Any_Character then
18128 Ambiguous_Character (Low_Bound (N));
18130 T := Standard_Character;
18131 end if;
18133 -- The node may be overloaded because some user-defined operators
18134 -- are available, but if a universal interpretation exists it is
18135 -- also the selected one.
18137 elsif Universal_Interpretation (N) = Universal_Integer then
18138 T := Standard_Integer;
18140 else
18141 T := Any_Type;
18143 declare
18144 Ind : Interp_Index;
18145 It : Interp;
18147 begin
18148 Get_First_Interp (N, Ind, It);
18149 while Present (It.Typ) loop
18150 if Is_Discrete_Type (It.Typ) then
18152 if Found
18153 and then not Covers (It.Typ, T)
18154 and then not Covers (T, It.Typ)
18155 then
18156 Error_Msg_N ("ambiguous bounds in discrete range", N);
18157 exit;
18158 else
18159 T := It.Typ;
18160 Found := True;
18161 end if;
18162 end if;
18164 Get_Next_Interp (Ind, It);
18165 end loop;
18167 if T = Any_Type then
18168 Error_Msg_N ("discrete type required for range", N);
18169 Set_Etype (N, Any_Type);
18170 return;
18172 elsif T = Universal_Integer then
18173 T := Standard_Integer;
18174 end if;
18175 end;
18176 end if;
18178 if not Is_Discrete_Type (T) then
18179 Error_Msg_N ("discrete type required for range", N);
18180 Set_Etype (N, Any_Type);
18181 return;
18182 end if;
18184 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18185 and then Attribute_Name (Low_Bound (N)) = Name_First
18186 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18187 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18188 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18189 then
18190 -- The type of the index will be the type of the prefix, as long
18191 -- as the upper bound is 'Last of the same type.
18193 Def_Id := Entity (Prefix (Low_Bound (N)));
18195 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18196 or else Attribute_Name (High_Bound (N)) /= Name_Last
18197 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18198 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18199 then
18200 Def_Id := Empty;
18201 end if;
18202 end if;
18204 R := N;
18205 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18207 elsif Nkind (N) = N_Subtype_Indication then
18209 -- The index is given by a subtype with a range constraint
18211 T := Base_Type (Entity (Subtype_Mark (N)));
18213 if not Is_Discrete_Type (T) then
18214 Error_Msg_N ("discrete type required for range", N);
18215 Set_Etype (N, Any_Type);
18216 return;
18217 end if;
18219 R := Range_Expression (Constraint (N));
18221 Resolve (R, T);
18222 Process_Range_Expr_In_Decl
18223 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18225 elsif Nkind (N) = N_Attribute_Reference then
18227 -- Catch beginner's error (use of attribute other than 'Range)
18229 if Attribute_Name (N) /= Name_Range then
18230 Error_Msg_N ("expect attribute ''Range", N);
18231 Set_Etype (N, Any_Type);
18232 return;
18233 end if;
18235 -- If the node denotes the range of a type mark, that is also the
18236 -- resulting type, and we do not need to create an Itype for it.
18238 if Is_Entity_Name (Prefix (N))
18239 and then Comes_From_Source (N)
18240 and then Is_Type (Entity (Prefix (N)))
18241 and then Is_Discrete_Type (Entity (Prefix (N)))
18242 then
18243 Def_Id := Entity (Prefix (N));
18244 end if;
18246 Analyze_And_Resolve (N);
18247 T := Etype (N);
18248 R := N;
18250 -- If none of the above, must be a subtype. We convert this to a
18251 -- range attribute reference because in the case of declared first
18252 -- named subtypes, the types in the range reference can be different
18253 -- from the type of the entity. A range attribute normalizes the
18254 -- reference and obtains the correct types for the bounds.
18256 -- This transformation is in the nature of an expansion, is only
18257 -- done if expansion is active. In particular, it is not done on
18258 -- formal generic types, because we need to retain the name of the
18259 -- original index for instantiation purposes.
18261 else
18262 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18263 Error_Msg_N ("invalid subtype mark in discrete range ", N);
18264 Set_Etype (N, Any_Integer);
18265 return;
18267 else
18268 -- The type mark may be that of an incomplete type. It is only
18269 -- now that we can get the full view, previous analysis does
18270 -- not look specifically for a type mark.
18272 Set_Entity (N, Get_Full_View (Entity (N)));
18273 Set_Etype (N, Entity (N));
18274 Def_Id := Entity (N);
18276 if not Is_Discrete_Type (Def_Id) then
18277 Error_Msg_N ("discrete type required for index", N);
18278 Set_Etype (N, Any_Type);
18279 return;
18280 end if;
18281 end if;
18283 if Expander_Active then
18284 Rewrite (N,
18285 Make_Attribute_Reference (Sloc (N),
18286 Attribute_Name => Name_Range,
18287 Prefix => Relocate_Node (N)));
18289 -- The original was a subtype mark that does not freeze. This
18290 -- means that the rewritten version must not freeze either.
18292 Set_Must_Not_Freeze (N);
18293 Set_Must_Not_Freeze (Prefix (N));
18294 Analyze_And_Resolve (N);
18295 T := Etype (N);
18296 R := N;
18298 -- If expander is inactive, type is legal, nothing else to construct
18300 else
18301 return;
18302 end if;
18303 end if;
18305 if not Is_Discrete_Type (T) then
18306 Error_Msg_N ("discrete type required for range", N);
18307 Set_Etype (N, Any_Type);
18308 return;
18310 elsif T = Any_Type then
18311 Set_Etype (N, Any_Type);
18312 return;
18313 end if;
18315 -- We will now create the appropriate Itype to describe the range, but
18316 -- first a check. If we originally had a subtype, then we just label
18317 -- the range with this subtype. Not only is there no need to construct
18318 -- a new subtype, but it is wrong to do so for two reasons:
18320 -- 1. A legality concern, if we have a subtype, it must not freeze,
18321 -- and the Itype would cause freezing incorrectly
18323 -- 2. An efficiency concern, if we created an Itype, it would not be
18324 -- recognized as the same type for the purposes of eliminating
18325 -- checks in some circumstances.
18327 -- We signal this case by setting the subtype entity in Def_Id
18329 if No (Def_Id) then
18330 Def_Id :=
18331 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18332 Set_Etype (Def_Id, Base_Type (T));
18334 if Is_Signed_Integer_Type (T) then
18335 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18337 elsif Is_Modular_Integer_Type (T) then
18338 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18340 else
18341 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18342 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18343 Set_First_Literal (Def_Id, First_Literal (T));
18344 end if;
18346 Set_Size_Info (Def_Id, (T));
18347 Set_RM_Size (Def_Id, RM_Size (T));
18348 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18350 Set_Scalar_Range (Def_Id, R);
18351 Conditional_Delay (Def_Id, T);
18353 if Nkind (N) = N_Subtype_Indication then
18354 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18355 end if;
18357 -- In the subtype indication case, if the immediate parent of the
18358 -- new subtype is non-static, then the subtype we create is non-
18359 -- static, even if its bounds are static.
18361 if Nkind (N) = N_Subtype_Indication
18362 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18363 then
18364 Set_Is_Non_Static_Subtype (Def_Id);
18365 end if;
18366 end if;
18368 -- Final step is to label the index with this constructed type
18370 Set_Etype (N, Def_Id);
18371 end Make_Index;
18373 ------------------------------
18374 -- Modular_Type_Declaration --
18375 ------------------------------
18377 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18378 Mod_Expr : constant Node_Id := Expression (Def);
18379 M_Val : Uint;
18381 procedure Set_Modular_Size (Bits : Int);
18382 -- Sets RM_Size to Bits, and Esize to normal word size above this
18384 ----------------------
18385 -- Set_Modular_Size --
18386 ----------------------
18388 procedure Set_Modular_Size (Bits : Int) is
18389 begin
18390 Set_RM_Size (T, UI_From_Int (Bits));
18392 if Bits <= 8 then
18393 Init_Esize (T, 8);
18395 elsif Bits <= 16 then
18396 Init_Esize (T, 16);
18398 elsif Bits <= 32 then
18399 Init_Esize (T, 32);
18401 else
18402 Init_Esize (T, System_Max_Binary_Modulus_Power);
18403 end if;
18405 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
18406 Set_Is_Known_Valid (T);
18407 end if;
18408 end Set_Modular_Size;
18410 -- Start of processing for Modular_Type_Declaration
18412 begin
18413 -- If the mod expression is (exactly) 2 * literal, where literal is
18414 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18416 if Warn_On_Suspicious_Modulus_Value
18417 and then Nkind (Mod_Expr) = N_Op_Multiply
18418 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18419 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18420 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18421 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18422 then
18423 Error_Msg_N
18424 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18425 end if;
18427 -- Proceed with analysis of mod expression
18429 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18430 Set_Etype (T, T);
18431 Set_Ekind (T, E_Modular_Integer_Type);
18432 Init_Alignment (T);
18433 Set_Is_Constrained (T);
18435 if not Is_OK_Static_Expression (Mod_Expr) then
18436 Flag_Non_Static_Expr
18437 ("non-static expression used for modular type bound!", Mod_Expr);
18438 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18439 else
18440 M_Val := Expr_Value (Mod_Expr);
18441 end if;
18443 if M_Val < 1 then
18444 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18445 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18446 end if;
18448 if M_Val > 2 ** Standard_Long_Integer_Size then
18449 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18450 end if;
18452 Set_Modulus (T, M_Val);
18454 -- Create bounds for the modular type based on the modulus given in
18455 -- the type declaration and then analyze and resolve those bounds.
18457 Set_Scalar_Range (T,
18458 Make_Range (Sloc (Mod_Expr),
18459 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18460 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18462 -- Properly analyze the literals for the range. We do this manually
18463 -- because we can't go calling Resolve, since we are resolving these
18464 -- bounds with the type, and this type is certainly not complete yet.
18466 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18467 Set_Etype (High_Bound (Scalar_Range (T)), T);
18468 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18469 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18471 -- Loop through powers of two to find number of bits required
18473 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18475 -- Binary case
18477 if M_Val = 2 ** Bits then
18478 Set_Modular_Size (Bits);
18479 return;
18481 -- Nonbinary case
18483 elsif M_Val < 2 ** Bits then
18484 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18485 Set_Non_Binary_Modulus (T);
18487 if Bits > System_Max_Nonbinary_Modulus_Power then
18488 Error_Msg_Uint_1 :=
18489 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18490 Error_Msg_F
18491 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18492 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18493 return;
18495 else
18496 -- In the nonbinary case, set size as per RM 13.3(55)
18498 Set_Modular_Size (Bits);
18499 return;
18500 end if;
18501 end if;
18503 end loop;
18505 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18506 -- so we just signal an error and set the maximum size.
18508 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18509 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18511 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18512 Init_Alignment (T);
18514 end Modular_Type_Declaration;
18516 --------------------------
18517 -- New_Concatenation_Op --
18518 --------------------------
18520 procedure New_Concatenation_Op (Typ : Entity_Id) is
18521 Loc : constant Source_Ptr := Sloc (Typ);
18522 Op : Entity_Id;
18524 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18525 -- Create abbreviated declaration for the formal of a predefined
18526 -- Operator 'Op' of type 'Typ'
18528 --------------------
18529 -- Make_Op_Formal --
18530 --------------------
18532 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18533 Formal : Entity_Id;
18534 begin
18535 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18536 Set_Etype (Formal, Typ);
18537 Set_Mechanism (Formal, Default_Mechanism);
18538 return Formal;
18539 end Make_Op_Formal;
18541 -- Start of processing for New_Concatenation_Op
18543 begin
18544 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18546 Set_Ekind (Op, E_Operator);
18547 Set_Scope (Op, Current_Scope);
18548 Set_Etype (Op, Typ);
18549 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18550 Set_Is_Immediately_Visible (Op);
18551 Set_Is_Intrinsic_Subprogram (Op);
18552 Set_Has_Completion (Op);
18553 Append_Entity (Op, Current_Scope);
18555 Set_Name_Entity_Id (Name_Op_Concat, Op);
18557 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18558 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18559 end New_Concatenation_Op;
18561 -------------------------
18562 -- OK_For_Limited_Init --
18563 -------------------------
18565 -- ???Check all calls of this, and compare the conditions under which it's
18566 -- called.
18568 function OK_For_Limited_Init
18569 (Typ : Entity_Id;
18570 Exp : Node_Id) return Boolean
18572 begin
18573 return Is_CPP_Constructor_Call (Exp)
18574 or else (Ada_Version >= Ada_2005
18575 and then not Debug_Flag_Dot_L
18576 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18577 end OK_For_Limited_Init;
18579 -------------------------------
18580 -- OK_For_Limited_Init_In_05 --
18581 -------------------------------
18583 function OK_For_Limited_Init_In_05
18584 (Typ : Entity_Id;
18585 Exp : Node_Id) return Boolean
18587 begin
18588 -- An object of a limited interface type can be initialized with any
18589 -- expression of a nonlimited descendant type.
18591 if Is_Class_Wide_Type (Typ)
18592 and then Is_Limited_Interface (Typ)
18593 and then not Is_Limited_Type (Etype (Exp))
18594 then
18595 return True;
18596 end if;
18598 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18599 -- case of limited aggregates (including extension aggregates), and
18600 -- function calls. The function call may have been given in prefixed
18601 -- notation, in which case the original node is an indexed component.
18602 -- If the function is parameterless, the original node was an explicit
18603 -- dereference. The function may also be parameterless, in which case
18604 -- the source node is just an identifier.
18606 -- A branch of a conditional expression may have been removed if the
18607 -- condition is statically known. This happens during expansion, and
18608 -- thus will not happen if previous errors were encountered. The check
18609 -- will have been performed on the chosen branch, which replaces the
18610 -- original conditional expression.
18612 if No (Exp) then
18613 return True;
18614 end if;
18616 case Nkind (Original_Node (Exp)) is
18617 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18618 return True;
18620 when N_Identifier =>
18621 return Present (Entity (Original_Node (Exp)))
18622 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18624 when N_Qualified_Expression =>
18625 return
18626 OK_For_Limited_Init_In_05
18627 (Typ, Expression (Original_Node (Exp)));
18629 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18630 -- with a function call, the expander has rewritten the call into an
18631 -- N_Type_Conversion node to force displacement of the pointer to
18632 -- reference the component containing the secondary dispatch table.
18633 -- Otherwise a type conversion is not a legal context.
18634 -- A return statement for a build-in-place function returning a
18635 -- synchronized type also introduces an unchecked conversion.
18637 when N_Type_Conversion |
18638 N_Unchecked_Type_Conversion =>
18639 return not Comes_From_Source (Exp)
18640 and then
18641 OK_For_Limited_Init_In_05
18642 (Typ, Expression (Original_Node (Exp)));
18644 when N_Indexed_Component |
18645 N_Selected_Component |
18646 N_Explicit_Dereference =>
18647 return Nkind (Exp) = N_Function_Call;
18649 -- A use of 'Input is a function call, hence allowed. Normally the
18650 -- attribute will be changed to a call, but the attribute by itself
18651 -- can occur with -gnatc.
18653 when N_Attribute_Reference =>
18654 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18656 -- For a case expression, all dependent expressions must be legal
18658 when N_Case_Expression =>
18659 declare
18660 Alt : Node_Id;
18662 begin
18663 Alt := First (Alternatives (Original_Node (Exp)));
18664 while Present (Alt) loop
18665 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18666 return False;
18667 end if;
18669 Next (Alt);
18670 end loop;
18672 return True;
18673 end;
18675 -- For an if expression, all dependent expressions must be legal
18677 when N_If_Expression =>
18678 declare
18679 Then_Expr : constant Node_Id :=
18680 Next (First (Expressions (Original_Node (Exp))));
18681 Else_Expr : constant Node_Id := Next (Then_Expr);
18682 begin
18683 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18684 and then
18685 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18686 end;
18688 when others =>
18689 return False;
18690 end case;
18691 end OK_For_Limited_Init_In_05;
18693 -------------------------------------------
18694 -- Ordinary_Fixed_Point_Type_Declaration --
18695 -------------------------------------------
18697 procedure Ordinary_Fixed_Point_Type_Declaration
18698 (T : Entity_Id;
18699 Def : Node_Id)
18701 Loc : constant Source_Ptr := Sloc (Def);
18702 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18703 RRS : constant Node_Id := Real_Range_Specification (Def);
18704 Implicit_Base : Entity_Id;
18705 Delta_Val : Ureal;
18706 Small_Val : Ureal;
18707 Low_Val : Ureal;
18708 High_Val : Ureal;
18710 begin
18711 Check_Restriction (No_Fixed_Point, Def);
18713 -- Create implicit base type
18715 Implicit_Base :=
18716 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18717 Set_Etype (Implicit_Base, Implicit_Base);
18719 -- Analyze and process delta expression
18721 Analyze_And_Resolve (Delta_Expr, Any_Real);
18723 Check_Delta_Expression (Delta_Expr);
18724 Delta_Val := Expr_Value_R (Delta_Expr);
18726 Set_Delta_Value (Implicit_Base, Delta_Val);
18728 -- Compute default small from given delta, which is the largest power
18729 -- of two that does not exceed the given delta value.
18731 declare
18732 Tmp : Ureal;
18733 Scale : Int;
18735 begin
18736 Tmp := Ureal_1;
18737 Scale := 0;
18739 if Delta_Val < Ureal_1 then
18740 while Delta_Val < Tmp loop
18741 Tmp := Tmp / Ureal_2;
18742 Scale := Scale + 1;
18743 end loop;
18745 else
18746 loop
18747 Tmp := Tmp * Ureal_2;
18748 exit when Tmp > Delta_Val;
18749 Scale := Scale - 1;
18750 end loop;
18751 end if;
18753 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18754 end;
18756 Set_Small_Value (Implicit_Base, Small_Val);
18758 -- If no range was given, set a dummy range
18760 if RRS <= Empty_Or_Error then
18761 Low_Val := -Small_Val;
18762 High_Val := Small_Val;
18764 -- Otherwise analyze and process given range
18766 else
18767 declare
18768 Low : constant Node_Id := Low_Bound (RRS);
18769 High : constant Node_Id := High_Bound (RRS);
18771 begin
18772 Analyze_And_Resolve (Low, Any_Real);
18773 Analyze_And_Resolve (High, Any_Real);
18774 Check_Real_Bound (Low);
18775 Check_Real_Bound (High);
18777 -- Obtain and set the range
18779 Low_Val := Expr_Value_R (Low);
18780 High_Val := Expr_Value_R (High);
18782 if Low_Val > High_Val then
18783 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18784 end if;
18785 end;
18786 end if;
18788 -- The range for both the implicit base and the declared first subtype
18789 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18790 -- set a temporary range in place. Note that the bounds of the base
18791 -- type will be widened to be symmetrical and to fill the available
18792 -- bits when the type is frozen.
18794 -- We could do this with all discrete types, and probably should, but
18795 -- we absolutely have to do it for fixed-point, since the end-points
18796 -- of the range and the size are determined by the small value, which
18797 -- could be reset before the freeze point.
18799 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18800 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18802 -- Complete definition of first subtype. The inheritance of the rep item
18803 -- chain ensures that SPARK-related pragmas are not clobbered when the
18804 -- ordinary fixed point type acts as a full view of a private type.
18806 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18807 Set_Etype (T, Implicit_Base);
18808 Init_Size_Align (T);
18809 Inherit_Rep_Item_Chain (T, Implicit_Base);
18810 Set_Small_Value (T, Small_Val);
18811 Set_Delta_Value (T, Delta_Val);
18812 Set_Is_Constrained (T);
18813 end Ordinary_Fixed_Point_Type_Declaration;
18815 ----------------------------------
18816 -- Preanalyze_Assert_Expression --
18817 ----------------------------------
18819 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18820 begin
18821 In_Assertion_Expr := In_Assertion_Expr + 1;
18822 Preanalyze_Spec_Expression (N, T);
18823 In_Assertion_Expr := In_Assertion_Expr - 1;
18824 end Preanalyze_Assert_Expression;
18826 -----------------------------------
18827 -- Preanalyze_Default_Expression --
18828 -----------------------------------
18830 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18831 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18832 begin
18833 In_Default_Expr := True;
18834 Preanalyze_Spec_Expression (N, T);
18835 In_Default_Expr := Save_In_Default_Expr;
18836 end Preanalyze_Default_Expression;
18838 --------------------------------
18839 -- Preanalyze_Spec_Expression --
18840 --------------------------------
18842 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18843 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18844 begin
18845 In_Spec_Expression := True;
18846 Preanalyze_And_Resolve (N, T);
18847 In_Spec_Expression := Save_In_Spec_Expression;
18848 end Preanalyze_Spec_Expression;
18850 ----------------------------------------
18851 -- Prepare_Private_Subtype_Completion --
18852 ----------------------------------------
18854 procedure Prepare_Private_Subtype_Completion
18855 (Id : Entity_Id;
18856 Related_Nod : Node_Id)
18858 Id_B : constant Entity_Id := Base_Type (Id);
18859 Full_B : Entity_Id := Full_View (Id_B);
18860 Full : Entity_Id;
18862 begin
18863 if Present (Full_B) then
18865 -- Get to the underlying full view if necessary
18867 if Is_Private_Type (Full_B)
18868 and then Present (Underlying_Full_View (Full_B))
18869 then
18870 Full_B := Underlying_Full_View (Full_B);
18871 end if;
18873 -- The Base_Type is already completed, we can complete the subtype
18874 -- now. We have to create a new entity with the same name, Thus we
18875 -- can't use Create_Itype.
18877 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18878 Set_Is_Itype (Full);
18879 Set_Associated_Node_For_Itype (Full, Related_Nod);
18880 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18881 end if;
18883 -- The parent subtype may be private, but the base might not, in some
18884 -- nested instances. In that case, the subtype does not need to be
18885 -- exchanged. It would still be nice to make private subtypes and their
18886 -- bases consistent at all times ???
18888 if Is_Private_Type (Id_B) then
18889 Append_Elmt (Id, Private_Dependents (Id_B));
18890 end if;
18891 end Prepare_Private_Subtype_Completion;
18893 ---------------------------
18894 -- Process_Discriminants --
18895 ---------------------------
18897 procedure Process_Discriminants
18898 (N : Node_Id;
18899 Prev : Entity_Id := Empty)
18901 Elist : constant Elist_Id := New_Elmt_List;
18902 Id : Node_Id;
18903 Discr : Node_Id;
18904 Discr_Number : Uint;
18905 Discr_Type : Entity_Id;
18906 Default_Present : Boolean := False;
18907 Default_Not_Present : Boolean := False;
18909 begin
18910 -- A composite type other than an array type can have discriminants.
18911 -- On entry, the current scope is the composite type.
18913 -- The discriminants are initially entered into the scope of the type
18914 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18915 -- use, as explained at the end of this procedure.
18917 Discr := First (Discriminant_Specifications (N));
18918 while Present (Discr) loop
18919 Enter_Name (Defining_Identifier (Discr));
18921 -- For navigation purposes we add a reference to the discriminant
18922 -- in the entity for the type. If the current declaration is a
18923 -- completion, place references on the partial view. Otherwise the
18924 -- type is the current scope.
18926 if Present (Prev) then
18928 -- The references go on the partial view, if present. If the
18929 -- partial view has discriminants, the references have been
18930 -- generated already.
18932 if not Has_Discriminants (Prev) then
18933 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18934 end if;
18935 else
18936 Generate_Reference
18937 (Current_Scope, Defining_Identifier (Discr), 'd');
18938 end if;
18940 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18941 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18943 -- Ada 2005 (AI-254)
18945 if Present (Access_To_Subprogram_Definition
18946 (Discriminant_Type (Discr)))
18947 and then Protected_Present (Access_To_Subprogram_Definition
18948 (Discriminant_Type (Discr)))
18949 then
18950 Discr_Type :=
18951 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18952 end if;
18954 else
18955 Find_Type (Discriminant_Type (Discr));
18956 Discr_Type := Etype (Discriminant_Type (Discr));
18958 if Error_Posted (Discriminant_Type (Discr)) then
18959 Discr_Type := Any_Type;
18960 end if;
18961 end if;
18963 -- Handling of discriminants that are access types
18965 if Is_Access_Type (Discr_Type) then
18967 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18968 -- limited record types
18970 if Ada_Version < Ada_2005 then
18971 Check_Access_Discriminant_Requires_Limited
18972 (Discr, Discriminant_Type (Discr));
18973 end if;
18975 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18976 Error_Msg_N
18977 ("(Ada 83) access discriminant not allowed", Discr);
18978 end if;
18980 -- If not access type, must be a discrete type
18982 elsif not Is_Discrete_Type (Discr_Type) then
18983 Error_Msg_N
18984 ("discriminants must have a discrete or access type",
18985 Discriminant_Type (Discr));
18986 end if;
18988 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18990 -- If a discriminant specification includes the assignment compound
18991 -- delimiter followed by an expression, the expression is the default
18992 -- expression of the discriminant; the default expression must be of
18993 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18994 -- a default expression, we do the special preanalysis, since this
18995 -- expression does not freeze (see section "Handling of Default and
18996 -- Per-Object Expressions" in spec of package Sem).
18998 if Present (Expression (Discr)) then
18999 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19001 -- Legaity checks
19003 if Nkind (N) = N_Formal_Type_Declaration then
19004 Error_Msg_N
19005 ("discriminant defaults not allowed for formal type",
19006 Expression (Discr));
19008 -- Flag an error for a tagged type with defaulted discriminants,
19009 -- excluding limited tagged types when compiling for Ada 2012
19010 -- (see AI05-0214).
19012 elsif Is_Tagged_Type (Current_Scope)
19013 and then (not Is_Limited_Type (Current_Scope)
19014 or else Ada_Version < Ada_2012)
19015 and then Comes_From_Source (N)
19016 then
19017 -- Note: see similar test in Check_Or_Process_Discriminants, to
19018 -- handle the (illegal) case of the completion of an untagged
19019 -- view with discriminants with defaults by a tagged full view.
19020 -- We skip the check if Discr does not come from source, to
19021 -- account for the case of an untagged derived type providing
19022 -- defaults for a renamed discriminant from a private untagged
19023 -- ancestor with a tagged full view (ACATS B460006).
19025 if Ada_Version >= Ada_2012 then
19026 Error_Msg_N
19027 ("discriminants of nonlimited tagged type cannot have"
19028 & " defaults",
19029 Expression (Discr));
19030 else
19031 Error_Msg_N
19032 ("discriminants of tagged type cannot have defaults",
19033 Expression (Discr));
19034 end if;
19036 else
19037 Default_Present := True;
19038 Append_Elmt (Expression (Discr), Elist);
19040 -- Tag the defining identifiers for the discriminants with
19041 -- their corresponding default expressions from the tree.
19043 Set_Discriminant_Default_Value
19044 (Defining_Identifier (Discr), Expression (Discr));
19045 end if;
19047 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19048 -- gets set unless we can be sure that no range check is required.
19050 if (GNATprove_Mode or not Expander_Active)
19051 and then not
19052 Is_In_Range
19053 (Expression (Discr), Discr_Type, Assume_Valid => True)
19054 then
19055 Set_Do_Range_Check (Expression (Discr));
19056 end if;
19058 -- No default discriminant value given
19060 else
19061 Default_Not_Present := True;
19062 end if;
19064 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19065 -- Discr_Type but with the null-exclusion attribute
19067 if Ada_Version >= Ada_2005 then
19069 -- Ada 2005 (AI-231): Static checks
19071 if Can_Never_Be_Null (Discr_Type) then
19072 Null_Exclusion_Static_Checks (Discr);
19074 elsif Is_Access_Type (Discr_Type)
19075 and then Null_Exclusion_Present (Discr)
19077 -- No need to check itypes because in their case this check
19078 -- was done at their point of creation
19080 and then not Is_Itype (Discr_Type)
19081 then
19082 if Can_Never_Be_Null (Discr_Type) then
19083 Error_Msg_NE
19084 ("`NOT NULL` not allowed (& already excludes null)",
19085 Discr,
19086 Discr_Type);
19087 end if;
19089 Set_Etype (Defining_Identifier (Discr),
19090 Create_Null_Excluding_Itype
19091 (T => Discr_Type,
19092 Related_Nod => Discr));
19094 -- Check for improper null exclusion if the type is otherwise
19095 -- legal for a discriminant.
19097 elsif Null_Exclusion_Present (Discr)
19098 and then Is_Discrete_Type (Discr_Type)
19099 then
19100 Error_Msg_N
19101 ("null exclusion can only apply to an access type", Discr);
19102 end if;
19104 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19105 -- can't have defaults. Synchronized types, or types that are
19106 -- explicitly limited are fine, but special tests apply to derived
19107 -- types in generics: in a generic body we have to assume the
19108 -- worst, and therefore defaults are not allowed if the parent is
19109 -- a generic formal private type (see ACATS B370001).
19111 if Is_Access_Type (Discr_Type) and then Default_Present then
19112 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19113 or else Is_Limited_Record (Current_Scope)
19114 or else Is_Concurrent_Type (Current_Scope)
19115 or else Is_Concurrent_Record_Type (Current_Scope)
19116 or else Ekind (Current_Scope) = E_Limited_Private_Type
19117 then
19118 if not Is_Derived_Type (Current_Scope)
19119 or else not Is_Generic_Type (Etype (Current_Scope))
19120 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19121 or else Limited_Present
19122 (Type_Definition (Parent (Current_Scope)))
19123 then
19124 null;
19126 else
19127 Error_Msg_N
19128 ("access discriminants of nonlimited types cannot "
19129 & "have defaults", Expression (Discr));
19130 end if;
19132 elsif Present (Expression (Discr)) then
19133 Error_Msg_N
19134 ("(Ada 2005) access discriminants of nonlimited types "
19135 & "cannot have defaults", Expression (Discr));
19136 end if;
19137 end if;
19138 end if;
19140 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19141 -- This check is relevant only when SPARK_Mode is on as it is not a
19142 -- standard Ada legality rule.
19144 if SPARK_Mode = On
19145 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19146 then
19147 Error_Msg_N ("discriminant cannot be volatile", Discr);
19148 end if;
19150 Next (Discr);
19151 end loop;
19153 -- An element list consisting of the default expressions of the
19154 -- discriminants is constructed in the above loop and used to set
19155 -- the Discriminant_Constraint attribute for the type. If an object
19156 -- is declared of this (record or task) type without any explicit
19157 -- discriminant constraint given, this element list will form the
19158 -- actual parameters for the corresponding initialization procedure
19159 -- for the type.
19161 Set_Discriminant_Constraint (Current_Scope, Elist);
19162 Set_Stored_Constraint (Current_Scope, No_Elist);
19164 -- Default expressions must be provided either for all or for none
19165 -- of the discriminants of a discriminant part. (RM 3.7.1)
19167 if Default_Present and then Default_Not_Present then
19168 Error_Msg_N
19169 ("incomplete specification of defaults for discriminants", N);
19170 end if;
19172 -- The use of the name of a discriminant is not allowed in default
19173 -- expressions of a discriminant part if the specification of the
19174 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19176 -- To detect this, the discriminant names are entered initially with an
19177 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19178 -- attempt to use a void entity (for example in an expression that is
19179 -- type-checked) produces the error message: premature usage. Now after
19180 -- completing the semantic analysis of the discriminant part, we can set
19181 -- the Ekind of all the discriminants appropriately.
19183 Discr := First (Discriminant_Specifications (N));
19184 Discr_Number := Uint_1;
19185 while Present (Discr) loop
19186 Id := Defining_Identifier (Discr);
19187 Set_Ekind (Id, E_Discriminant);
19188 Init_Component_Location (Id);
19189 Init_Esize (Id);
19190 Set_Discriminant_Number (Id, Discr_Number);
19192 -- Make sure this is always set, even in illegal programs
19194 Set_Corresponding_Discriminant (Id, Empty);
19196 -- Initialize the Original_Record_Component to the entity itself.
19197 -- Inherit_Components will propagate the right value to
19198 -- discriminants in derived record types.
19200 Set_Original_Record_Component (Id, Id);
19202 -- Create the discriminal for the discriminant
19204 Build_Discriminal (Id);
19206 Next (Discr);
19207 Discr_Number := Discr_Number + 1;
19208 end loop;
19210 Set_Has_Discriminants (Current_Scope);
19211 end Process_Discriminants;
19213 -----------------------
19214 -- Process_Full_View --
19215 -----------------------
19217 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19218 procedure Collect_Implemented_Interfaces
19219 (Typ : Entity_Id;
19220 Ifaces : Elist_Id);
19221 -- Ada 2005: Gather all the interfaces that Typ directly or
19222 -- inherently implements. Duplicate entries are not added to
19223 -- the list Ifaces.
19225 ------------------------------------
19226 -- Collect_Implemented_Interfaces --
19227 ------------------------------------
19229 procedure Collect_Implemented_Interfaces
19230 (Typ : Entity_Id;
19231 Ifaces : Elist_Id)
19233 Iface : Entity_Id;
19234 Iface_Elmt : Elmt_Id;
19236 begin
19237 -- Abstract interfaces are only associated with tagged record types
19239 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19240 return;
19241 end if;
19243 -- Recursively climb to the ancestors
19245 if Etype (Typ) /= Typ
19247 -- Protect the frontend against wrong cyclic declarations like:
19249 -- type B is new A with private;
19250 -- type C is new A with private;
19251 -- private
19252 -- type B is new C with null record;
19253 -- type C is new B with null record;
19255 and then Etype (Typ) /= Priv_T
19256 and then Etype (Typ) /= Full_T
19257 then
19258 -- Keep separate the management of private type declarations
19260 if Ekind (Typ) = E_Record_Type_With_Private then
19262 -- Handle the following illegal usage:
19263 -- type Private_Type is tagged private;
19264 -- private
19265 -- type Private_Type is new Type_Implementing_Iface;
19267 if Present (Full_View (Typ))
19268 and then Etype (Typ) /= Full_View (Typ)
19269 then
19270 if Is_Interface (Etype (Typ)) then
19271 Append_Unique_Elmt (Etype (Typ), Ifaces);
19272 end if;
19274 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19275 end if;
19277 -- Non-private types
19279 else
19280 if Is_Interface (Etype (Typ)) then
19281 Append_Unique_Elmt (Etype (Typ), Ifaces);
19282 end if;
19284 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19285 end if;
19286 end if;
19288 -- Handle entities in the list of abstract interfaces
19290 if Present (Interfaces (Typ)) then
19291 Iface_Elmt := First_Elmt (Interfaces (Typ));
19292 while Present (Iface_Elmt) loop
19293 Iface := Node (Iface_Elmt);
19295 pragma Assert (Is_Interface (Iface));
19297 if not Contain_Interface (Iface, Ifaces) then
19298 Append_Elmt (Iface, Ifaces);
19299 Collect_Implemented_Interfaces (Iface, Ifaces);
19300 end if;
19302 Next_Elmt (Iface_Elmt);
19303 end loop;
19304 end if;
19305 end Collect_Implemented_Interfaces;
19307 -- Local variables
19309 Full_Indic : Node_Id;
19310 Full_Parent : Entity_Id;
19311 Priv_Parent : Entity_Id;
19313 -- Start of processing for Process_Full_View
19315 begin
19316 -- First some sanity checks that must be done after semantic
19317 -- decoration of the full view and thus cannot be placed with other
19318 -- similar checks in Find_Type_Name
19320 if not Is_Limited_Type (Priv_T)
19321 and then (Is_Limited_Type (Full_T)
19322 or else Is_Limited_Composite (Full_T))
19323 then
19324 if In_Instance then
19325 null;
19326 else
19327 Error_Msg_N
19328 ("completion of nonlimited type cannot be limited", Full_T);
19329 Explain_Limited_Type (Full_T, Full_T);
19330 end if;
19332 elsif Is_Abstract_Type (Full_T)
19333 and then not Is_Abstract_Type (Priv_T)
19334 then
19335 Error_Msg_N
19336 ("completion of nonabstract type cannot be abstract", Full_T);
19338 elsif Is_Tagged_Type (Priv_T)
19339 and then Is_Limited_Type (Priv_T)
19340 and then not Is_Limited_Type (Full_T)
19341 then
19342 -- If pragma CPP_Class was applied to the private declaration
19343 -- propagate the limitedness to the full-view
19345 if Is_CPP_Class (Priv_T) then
19346 Set_Is_Limited_Record (Full_T);
19348 -- GNAT allow its own definition of Limited_Controlled to disobey
19349 -- this rule in order in ease the implementation. This test is safe
19350 -- because Root_Controlled is defined in a child of System that
19351 -- normal programs are not supposed to use.
19353 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19354 Set_Is_Limited_Composite (Full_T);
19355 else
19356 Error_Msg_N
19357 ("completion of limited tagged type must be limited", Full_T);
19358 end if;
19360 elsif Is_Generic_Type (Priv_T) then
19361 Error_Msg_N ("generic type cannot have a completion", Full_T);
19362 end if;
19364 -- Check that ancestor interfaces of private and full views are
19365 -- consistent. We omit this check for synchronized types because
19366 -- they are performed on the corresponding record type when frozen.
19368 if Ada_Version >= Ada_2005
19369 and then Is_Tagged_Type (Priv_T)
19370 and then Is_Tagged_Type (Full_T)
19371 and then not Is_Concurrent_Type (Full_T)
19372 then
19373 declare
19374 Iface : Entity_Id;
19375 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19376 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19378 begin
19379 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19380 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19382 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19383 -- an interface type if and only if the full type is descendant
19384 -- of the interface type (AARM 7.3 (7.3/2)).
19386 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19388 if Present (Iface) then
19389 Error_Msg_NE
19390 ("interface in partial view& not implemented by full type "
19391 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19392 end if;
19394 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19396 if Present (Iface) then
19397 Error_Msg_NE
19398 ("interface & not implemented by partial view "
19399 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19400 end if;
19401 end;
19402 end if;
19404 if Is_Tagged_Type (Priv_T)
19405 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19406 and then Is_Derived_Type (Full_T)
19407 then
19408 Priv_Parent := Etype (Priv_T);
19410 -- The full view of a private extension may have been transformed
19411 -- into an unconstrained derived type declaration and a subtype
19412 -- declaration (see build_derived_record_type for details).
19414 if Nkind (N) = N_Subtype_Declaration then
19415 Full_Indic := Subtype_Indication (N);
19416 Full_Parent := Etype (Base_Type (Full_T));
19417 else
19418 Full_Indic := Subtype_Indication (Type_Definition (N));
19419 Full_Parent := Etype (Full_T);
19420 end if;
19422 -- Check that the parent type of the full type is a descendant of
19423 -- the ancestor subtype given in the private extension. If either
19424 -- entity has an Etype equal to Any_Type then we had some previous
19425 -- error situation [7.3(8)].
19427 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19428 return;
19430 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19431 -- any order. Therefore we don't have to check that its parent must
19432 -- be a descendant of the parent of the private type declaration.
19434 elsif Is_Interface (Priv_Parent)
19435 and then Is_Interface (Full_Parent)
19436 then
19437 null;
19439 -- Ada 2005 (AI-251): If the parent of the private type declaration
19440 -- is an interface there is no need to check that it is an ancestor
19441 -- of the associated full type declaration. The required tests for
19442 -- this case are performed by Build_Derived_Record_Type.
19444 elsif not Is_Interface (Base_Type (Priv_Parent))
19445 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19446 then
19447 Error_Msg_N
19448 ("parent of full type must descend from parent"
19449 & " of private extension", Full_Indic);
19451 -- First check a formal restriction, and then proceed with checking
19452 -- Ada rules. Since the formal restriction is not a serious error, we
19453 -- don't prevent further error detection for this check, hence the
19454 -- ELSE.
19456 else
19457 -- In formal mode, when completing a private extension the type
19458 -- named in the private part must be exactly the same as that
19459 -- named in the visible part.
19461 if Priv_Parent /= Full_Parent then
19462 Error_Msg_Name_1 := Chars (Priv_Parent);
19463 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19464 end if;
19466 -- Check the rules of 7.3(10): if the private extension inherits
19467 -- known discriminants, then the full type must also inherit those
19468 -- discriminants from the same (ancestor) type, and the parent
19469 -- subtype of the full type must be constrained if and only if
19470 -- the ancestor subtype of the private extension is constrained.
19472 if No (Discriminant_Specifications (Parent (Priv_T)))
19473 and then not Has_Unknown_Discriminants (Priv_T)
19474 and then Has_Discriminants (Base_Type (Priv_Parent))
19475 then
19476 declare
19477 Priv_Indic : constant Node_Id :=
19478 Subtype_Indication (Parent (Priv_T));
19480 Priv_Constr : constant Boolean :=
19481 Is_Constrained (Priv_Parent)
19482 or else
19483 Nkind (Priv_Indic) = N_Subtype_Indication
19484 or else
19485 Is_Constrained (Entity (Priv_Indic));
19487 Full_Constr : constant Boolean :=
19488 Is_Constrained (Full_Parent)
19489 or else
19490 Nkind (Full_Indic) = N_Subtype_Indication
19491 or else
19492 Is_Constrained (Entity (Full_Indic));
19494 Priv_Discr : Entity_Id;
19495 Full_Discr : Entity_Id;
19497 begin
19498 Priv_Discr := First_Discriminant (Priv_Parent);
19499 Full_Discr := First_Discriminant (Full_Parent);
19500 while Present (Priv_Discr) and then Present (Full_Discr) loop
19501 if Original_Record_Component (Priv_Discr) =
19502 Original_Record_Component (Full_Discr)
19503 or else
19504 Corresponding_Discriminant (Priv_Discr) =
19505 Corresponding_Discriminant (Full_Discr)
19506 then
19507 null;
19508 else
19509 exit;
19510 end if;
19512 Next_Discriminant (Priv_Discr);
19513 Next_Discriminant (Full_Discr);
19514 end loop;
19516 if Present (Priv_Discr) or else Present (Full_Discr) then
19517 Error_Msg_N
19518 ("full view must inherit discriminants of the parent"
19519 & " type used in the private extension", Full_Indic);
19521 elsif Priv_Constr and then not Full_Constr then
19522 Error_Msg_N
19523 ("parent subtype of full type must be constrained",
19524 Full_Indic);
19526 elsif Full_Constr and then not Priv_Constr then
19527 Error_Msg_N
19528 ("parent subtype of full type must be unconstrained",
19529 Full_Indic);
19530 end if;
19531 end;
19533 -- Check the rules of 7.3(12): if a partial view has neither
19534 -- known or unknown discriminants, then the full type
19535 -- declaration shall define a definite subtype.
19537 elsif not Has_Unknown_Discriminants (Priv_T)
19538 and then not Has_Discriminants (Priv_T)
19539 and then not Is_Constrained (Full_T)
19540 then
19541 Error_Msg_N
19542 ("full view must define a constrained type if partial view"
19543 & " has no discriminants", Full_T);
19544 end if;
19546 -- ??????? Do we implement the following properly ?????
19547 -- If the ancestor subtype of a private extension has constrained
19548 -- discriminants, then the parent subtype of the full view shall
19549 -- impose a statically matching constraint on those discriminants
19550 -- [7.3(13)].
19551 end if;
19553 else
19554 -- For untagged types, verify that a type without discriminants is
19555 -- not completed with an unconstrained type. A separate error message
19556 -- is produced if the full type has defaulted discriminants.
19558 if Is_Definite_Subtype (Priv_T)
19559 and then not Is_Definite_Subtype (Full_T)
19560 then
19561 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19562 Error_Msg_NE
19563 ("full view of& not compatible with declaration#",
19564 Full_T, Priv_T);
19566 if not Is_Tagged_Type (Full_T) then
19567 Error_Msg_N
19568 ("\one is constrained, the other unconstrained", Full_T);
19569 end if;
19570 end if;
19571 end if;
19573 -- AI-419: verify that the use of "limited" is consistent
19575 declare
19576 Orig_Decl : constant Node_Id := Original_Node (N);
19578 begin
19579 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19580 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19581 and then Nkind
19582 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19583 then
19584 if not Limited_Present (Parent (Priv_T))
19585 and then not Synchronized_Present (Parent (Priv_T))
19586 and then Limited_Present (Type_Definition (Orig_Decl))
19587 then
19588 Error_Msg_N
19589 ("full view of non-limited extension cannot be limited", N);
19591 -- Conversely, if the partial view carries the limited keyword,
19592 -- the full view must as well, even if it may be redundant.
19594 elsif Limited_Present (Parent (Priv_T))
19595 and then not Limited_Present (Type_Definition (Orig_Decl))
19596 then
19597 Error_Msg_N
19598 ("full view of limited extension must be explicitly limited",
19600 end if;
19601 end if;
19602 end;
19604 -- Ada 2005 (AI-443): A synchronized private extension must be
19605 -- completed by a task or protected type.
19607 if Ada_Version >= Ada_2005
19608 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19609 and then Synchronized_Present (Parent (Priv_T))
19610 and then not Is_Concurrent_Type (Full_T)
19611 then
19612 Error_Msg_N ("full view of synchronized extension must " &
19613 "be synchronized type", N);
19614 end if;
19616 -- Ada 2005 AI-363: if the full view has discriminants with
19617 -- defaults, it is illegal to declare constrained access subtypes
19618 -- whose designated type is the current type. This allows objects
19619 -- of the type that are declared in the heap to be unconstrained.
19621 if not Has_Unknown_Discriminants (Priv_T)
19622 and then not Has_Discriminants (Priv_T)
19623 and then Has_Discriminants (Full_T)
19624 and then
19625 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19626 then
19627 Set_Has_Constrained_Partial_View (Full_T);
19628 Set_Has_Constrained_Partial_View (Priv_T);
19629 end if;
19631 -- Create a full declaration for all its subtypes recorded in
19632 -- Private_Dependents and swap them similarly to the base type. These
19633 -- are subtypes that have been define before the full declaration of
19634 -- the private type. We also swap the entry in Private_Dependents list
19635 -- so we can properly restore the private view on exit from the scope.
19637 declare
19638 Priv_Elmt : Elmt_Id;
19639 Priv_Scop : Entity_Id;
19640 Priv : Entity_Id;
19641 Full : Entity_Id;
19643 begin
19644 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19645 while Present (Priv_Elmt) loop
19646 Priv := Node (Priv_Elmt);
19647 Priv_Scop := Scope (Priv);
19649 if Ekind_In (Priv, E_Private_Subtype,
19650 E_Limited_Private_Subtype,
19651 E_Record_Subtype_With_Private)
19652 then
19653 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19654 Set_Is_Itype (Full);
19655 Set_Parent (Full, Parent (Priv));
19656 Set_Associated_Node_For_Itype (Full, N);
19658 -- Now we need to complete the private subtype, but since the
19659 -- base type has already been swapped, we must also swap the
19660 -- subtypes (and thus, reverse the arguments in the call to
19661 -- Complete_Private_Subtype). Also note that we may need to
19662 -- re-establish the scope of the private subtype.
19664 Copy_And_Swap (Priv, Full);
19666 if not In_Open_Scopes (Priv_Scop) then
19667 Push_Scope (Priv_Scop);
19669 else
19670 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19672 Priv_Scop := Empty;
19673 end if;
19675 Complete_Private_Subtype (Full, Priv, Full_T, N);
19677 if Present (Priv_Scop) then
19678 Pop_Scope;
19679 end if;
19681 Replace_Elmt (Priv_Elmt, Full);
19682 end if;
19684 Next_Elmt (Priv_Elmt);
19685 end loop;
19686 end;
19688 -- If the private view was tagged, copy the new primitive operations
19689 -- from the private view to the full view.
19691 if Is_Tagged_Type (Full_T) then
19692 declare
19693 Disp_Typ : Entity_Id;
19694 Full_List : Elist_Id;
19695 Prim : Entity_Id;
19696 Prim_Elmt : Elmt_Id;
19697 Priv_List : Elist_Id;
19699 function Contains
19700 (E : Entity_Id;
19701 L : Elist_Id) return Boolean;
19702 -- Determine whether list L contains element E
19704 --------------
19705 -- Contains --
19706 --------------
19708 function Contains
19709 (E : Entity_Id;
19710 L : Elist_Id) return Boolean
19712 List_Elmt : Elmt_Id;
19714 begin
19715 List_Elmt := First_Elmt (L);
19716 while Present (List_Elmt) loop
19717 if Node (List_Elmt) = E then
19718 return True;
19719 end if;
19721 Next_Elmt (List_Elmt);
19722 end loop;
19724 return False;
19725 end Contains;
19727 -- Start of processing
19729 begin
19730 if Is_Tagged_Type (Priv_T) then
19731 Priv_List := Primitive_Operations (Priv_T);
19732 Prim_Elmt := First_Elmt (Priv_List);
19734 -- In the case of a concurrent type completing a private tagged
19735 -- type, primitives may have been declared in between the two
19736 -- views. These subprograms need to be wrapped the same way
19737 -- entries and protected procedures are handled because they
19738 -- cannot be directly shared by the two views.
19740 if Is_Concurrent_Type (Full_T) then
19741 declare
19742 Conc_Typ : constant Entity_Id :=
19743 Corresponding_Record_Type (Full_T);
19744 Curr_Nod : Node_Id := Parent (Conc_Typ);
19745 Wrap_Spec : Node_Id;
19747 begin
19748 while Present (Prim_Elmt) loop
19749 Prim := Node (Prim_Elmt);
19751 if Comes_From_Source (Prim)
19752 and then not Is_Abstract_Subprogram (Prim)
19753 then
19754 Wrap_Spec :=
19755 Make_Subprogram_Declaration (Sloc (Prim),
19756 Specification =>
19757 Build_Wrapper_Spec
19758 (Subp_Id => Prim,
19759 Obj_Typ => Conc_Typ,
19760 Formals =>
19761 Parameter_Specifications (
19762 Parent (Prim))));
19764 Insert_After (Curr_Nod, Wrap_Spec);
19765 Curr_Nod := Wrap_Spec;
19767 Analyze (Wrap_Spec);
19768 end if;
19770 Next_Elmt (Prim_Elmt);
19771 end loop;
19773 return;
19774 end;
19776 -- For non-concurrent types, transfer explicit primitives, but
19777 -- omit those inherited from the parent of the private view
19778 -- since they will be re-inherited later on.
19780 else
19781 Full_List := Primitive_Operations (Full_T);
19783 while Present (Prim_Elmt) loop
19784 Prim := Node (Prim_Elmt);
19786 if Comes_From_Source (Prim)
19787 and then not Contains (Prim, Full_List)
19788 then
19789 Append_Elmt (Prim, Full_List);
19790 end if;
19792 Next_Elmt (Prim_Elmt);
19793 end loop;
19794 end if;
19796 -- Untagged private view
19798 else
19799 Full_List := Primitive_Operations (Full_T);
19801 -- In this case the partial view is untagged, so here we locate
19802 -- all of the earlier primitives that need to be treated as
19803 -- dispatching (those that appear between the two views). Note
19804 -- that these additional operations must all be new operations
19805 -- (any earlier operations that override inherited operations
19806 -- of the full view will already have been inserted in the
19807 -- primitives list, marked by Check_Operation_From_Private_View
19808 -- as dispatching. Note that implicit "/=" operators are
19809 -- excluded from being added to the primitives list since they
19810 -- shouldn't be treated as dispatching (tagged "/=" is handled
19811 -- specially).
19813 Prim := Next_Entity (Full_T);
19814 while Present (Prim) and then Prim /= Priv_T loop
19815 if Ekind_In (Prim, E_Procedure, E_Function) then
19816 Disp_Typ := Find_Dispatching_Type (Prim);
19818 if Disp_Typ = Full_T
19819 and then (Chars (Prim) /= Name_Op_Ne
19820 or else Comes_From_Source (Prim))
19821 then
19822 Check_Controlling_Formals (Full_T, Prim);
19824 if not Is_Dispatching_Operation (Prim) then
19825 Append_Elmt (Prim, Full_List);
19826 Set_Is_Dispatching_Operation (Prim, True);
19827 Set_DT_Position_Value (Prim, No_Uint);
19828 end if;
19830 elsif Is_Dispatching_Operation (Prim)
19831 and then Disp_Typ /= Full_T
19832 then
19834 -- Verify that it is not otherwise controlled by a
19835 -- formal or a return value of type T.
19837 Check_Controlling_Formals (Disp_Typ, Prim);
19838 end if;
19839 end if;
19841 Next_Entity (Prim);
19842 end loop;
19843 end if;
19845 -- For the tagged case, the two views can share the same primitive
19846 -- operations list and the same class-wide type. Update attributes
19847 -- of the class-wide type which depend on the full declaration.
19849 if Is_Tagged_Type (Priv_T) then
19850 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19851 Set_Class_Wide_Type
19852 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19854 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19855 Set_Has_Protected
19856 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19857 end if;
19858 end;
19859 end if;
19861 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19863 if Known_To_Have_Preelab_Init (Priv_T) then
19865 -- Case where there is a pragma Preelaborable_Initialization. We
19866 -- always allow this in predefined units, which is cheating a bit,
19867 -- but it means we don't have to struggle to meet the requirements in
19868 -- the RM for having Preelaborable Initialization. Otherwise we
19869 -- require that the type meets the RM rules. But we can't check that
19870 -- yet, because of the rule about overriding Initialize, so we simply
19871 -- set a flag that will be checked at freeze time.
19873 if not In_Predefined_Unit (Full_T) then
19874 Set_Must_Have_Preelab_Init (Full_T);
19875 end if;
19876 end if;
19878 -- If pragma CPP_Class was applied to the private type declaration,
19879 -- propagate it now to the full type declaration.
19881 if Is_CPP_Class (Priv_T) then
19882 Set_Is_CPP_Class (Full_T);
19883 Set_Convention (Full_T, Convention_CPP);
19885 -- Check that components of imported CPP types do not have default
19886 -- expressions.
19888 Check_CPP_Type_Has_No_Defaults (Full_T);
19889 end if;
19891 -- If the private view has user specified stream attributes, then so has
19892 -- the full view.
19894 -- Why the test, how could these flags be already set in Full_T ???
19896 if Has_Specified_Stream_Read (Priv_T) then
19897 Set_Has_Specified_Stream_Read (Full_T);
19898 end if;
19900 if Has_Specified_Stream_Write (Priv_T) then
19901 Set_Has_Specified_Stream_Write (Full_T);
19902 end if;
19904 if Has_Specified_Stream_Input (Priv_T) then
19905 Set_Has_Specified_Stream_Input (Full_T);
19906 end if;
19908 if Has_Specified_Stream_Output (Priv_T) then
19909 Set_Has_Specified_Stream_Output (Full_T);
19910 end if;
19912 -- Propagate the attributes related to pragma Default_Initial_Condition
19913 -- from the private to the full view. Note that both flags are mutually
19914 -- exclusive.
19916 if Has_Default_Init_Cond (Priv_T)
19917 or else Has_Inherited_Default_Init_Cond (Priv_T)
19918 then
19919 Propagate_Default_Init_Cond_Attributes
19920 (From_Typ => Priv_T,
19921 To_Typ => Full_T,
19922 Private_To_Full_View => True);
19924 -- In the case where the full view is derived from another private type,
19925 -- the attributes related to pragma Default_Initial_Condition must be
19926 -- propagated from the full to the private view to maintain consistency
19927 -- of views.
19929 -- package Pack is
19930 -- type Parent_Typ is private
19931 -- with Default_Initial_Condition ...;
19932 -- private
19933 -- type Parent_Typ is ...;
19934 -- end Pack;
19936 -- with Pack; use Pack;
19937 -- package Pack_2 is
19938 -- type Deriv_Typ is private; -- must inherit
19939 -- private
19940 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19941 -- end Pack_2;
19943 elsif Has_Default_Init_Cond (Full_T)
19944 or else Has_Inherited_Default_Init_Cond (Full_T)
19945 then
19946 Propagate_Default_Init_Cond_Attributes
19947 (From_Typ => Full_T,
19948 To_Typ => Priv_T,
19949 Private_To_Full_View => True);
19950 end if;
19952 if Is_Ghost_Entity (Priv_T) then
19954 -- The Ghost policy in effect at the point of declaration and at the
19955 -- point of completion must match (SPARK RM 6.9(14)).
19957 Check_Ghost_Completion (Priv_T, Full_T);
19959 -- In the case where the private view of a tagged type lacks a parent
19960 -- type and is subject to pragma Ghost, ensure that the parent type
19961 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19963 if Is_Derived_Type (Full_T) then
19964 Check_Ghost_Derivation (Full_T);
19965 end if;
19967 -- Propagate the attributes related to pragma Ghost from the private
19968 -- to the full view.
19970 Mark_Full_View_As_Ghost (Priv_T, Full_T);
19971 end if;
19973 -- Propagate invariants to full type
19975 if Has_Invariants (Priv_T) then
19976 Set_Has_Invariants (Full_T);
19977 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19978 end if;
19980 if Has_Inheritable_Invariants (Priv_T) then
19981 Set_Has_Inheritable_Invariants (Full_T);
19982 end if;
19984 -- Check hidden inheritance of class-wide type invariants
19986 if Ada_Version >= Ada_2012
19987 and then not Has_Inheritable_Invariants (Full_T)
19988 and then In_Private_Part (Current_Scope)
19989 and then Has_Interfaces (Full_T)
19990 then
19991 declare
19992 Ifaces : Elist_Id;
19993 AI : Elmt_Id;
19995 begin
19996 Collect_Interfaces (Full_T, Ifaces, Exclude_Parents => True);
19998 AI := First_Elmt (Ifaces);
19999 while Present (AI) loop
20000 if Has_Inheritable_Invariants (Node (AI)) then
20001 Error_Msg_N
20002 ("hidden inheritance of class-wide type invariants " &
20003 "not allowed", N);
20004 exit;
20005 end if;
20007 Next_Elmt (AI);
20008 end loop;
20009 end;
20010 end if;
20012 -- Propagate predicates to full type, and predicate function if already
20013 -- defined. It is not clear that this can actually happen? the partial
20014 -- view cannot be frozen yet, and the predicate function has not been
20015 -- built. Still it is a cheap check and seems safer to make it.
20017 if Has_Predicates (Priv_T) then
20018 if Present (Predicate_Function (Priv_T)) then
20019 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20020 end if;
20022 Set_Has_Predicates (Full_T);
20023 end if;
20024 end Process_Full_View;
20026 -----------------------------------
20027 -- Process_Incomplete_Dependents --
20028 -----------------------------------
20030 procedure Process_Incomplete_Dependents
20031 (N : Node_Id;
20032 Full_T : Entity_Id;
20033 Inc_T : Entity_Id)
20035 Inc_Elmt : Elmt_Id;
20036 Priv_Dep : Entity_Id;
20037 New_Subt : Entity_Id;
20039 Disc_Constraint : Elist_Id;
20041 begin
20042 if No (Private_Dependents (Inc_T)) then
20043 return;
20044 end if;
20046 -- Itypes that may be generated by the completion of an incomplete
20047 -- subtype are not used by the back-end and not attached to the tree.
20048 -- They are created only for constraint-checking purposes.
20050 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20051 while Present (Inc_Elmt) loop
20052 Priv_Dep := Node (Inc_Elmt);
20054 if Ekind (Priv_Dep) = E_Subprogram_Type then
20056 -- An Access_To_Subprogram type may have a return type or a
20057 -- parameter type that is incomplete. Replace with the full view.
20059 if Etype (Priv_Dep) = Inc_T then
20060 Set_Etype (Priv_Dep, Full_T);
20061 end if;
20063 declare
20064 Formal : Entity_Id;
20066 begin
20067 Formal := First_Formal (Priv_Dep);
20068 while Present (Formal) loop
20069 if Etype (Formal) = Inc_T then
20070 Set_Etype (Formal, Full_T);
20071 end if;
20073 Next_Formal (Formal);
20074 end loop;
20075 end;
20077 elsif Is_Overloadable (Priv_Dep) then
20079 -- If a subprogram in the incomplete dependents list is primitive
20080 -- for a tagged full type then mark it as a dispatching operation,
20081 -- check whether it overrides an inherited subprogram, and check
20082 -- restrictions on its controlling formals. Note that a protected
20083 -- operation is never dispatching: only its wrapper operation
20084 -- (which has convention Ada) is.
20086 if Is_Tagged_Type (Full_T)
20087 and then Is_Primitive (Priv_Dep)
20088 and then Convention (Priv_Dep) /= Convention_Protected
20089 then
20090 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20091 Set_Is_Dispatching_Operation (Priv_Dep);
20092 Check_Controlling_Formals (Full_T, Priv_Dep);
20093 end if;
20095 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20097 -- Can happen during processing of a body before the completion
20098 -- of a TA type. Ignore, because spec is also on dependent list.
20100 return;
20102 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20103 -- corresponding subtype of the full view.
20105 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
20106 Set_Subtype_Indication
20107 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20108 Set_Etype (Priv_Dep, Full_T);
20109 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20110 Set_Analyzed (Parent (Priv_Dep), False);
20112 -- Reanalyze the declaration, suppressing the call to
20113 -- Enter_Name to avoid duplicate names.
20115 Analyze_Subtype_Declaration
20116 (N => Parent (Priv_Dep),
20117 Skip => True);
20119 -- Dependent is a subtype
20121 else
20122 -- We build a new subtype indication using the full view of the
20123 -- incomplete parent. The discriminant constraints have been
20124 -- elaborated already at the point of the subtype declaration.
20126 New_Subt := Create_Itype (E_Void, N);
20128 if Has_Discriminants (Full_T) then
20129 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20130 else
20131 Disc_Constraint := No_Elist;
20132 end if;
20134 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20135 Set_Full_View (Priv_Dep, New_Subt);
20136 end if;
20138 Next_Elmt (Inc_Elmt);
20139 end loop;
20140 end Process_Incomplete_Dependents;
20142 --------------------------------
20143 -- Process_Range_Expr_In_Decl --
20144 --------------------------------
20146 procedure Process_Range_Expr_In_Decl
20147 (R : Node_Id;
20148 T : Entity_Id;
20149 Subtyp : Entity_Id := Empty;
20150 Check_List : List_Id := Empty_List;
20151 R_Check_Off : Boolean := False;
20152 In_Iter_Schm : Boolean := False)
20154 Lo, Hi : Node_Id;
20155 R_Checks : Check_Result;
20156 Insert_Node : Node_Id;
20157 Def_Id : Entity_Id;
20159 begin
20160 Analyze_And_Resolve (R, Base_Type (T));
20162 if Nkind (R) = N_Range then
20164 -- In SPARK, all ranges should be static, with the exception of the
20165 -- discrete type definition of a loop parameter specification.
20167 if not In_Iter_Schm
20168 and then not Is_OK_Static_Range (R)
20169 then
20170 Check_SPARK_05_Restriction ("range should be static", R);
20171 end if;
20173 Lo := Low_Bound (R);
20174 Hi := High_Bound (R);
20176 -- Validity checks on the range of a quantified expression are
20177 -- delayed until the construct is transformed into a loop.
20179 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20180 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20181 then
20182 null;
20184 -- We need to ensure validity of the bounds here, because if we
20185 -- go ahead and do the expansion, then the expanded code will get
20186 -- analyzed with range checks suppressed and we miss the check.
20188 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20189 -- the temporaries generated by routine Remove_Side_Effects by means
20190 -- of validity checks must use the same names. When a range appears
20191 -- in the parent of a generic, the range is processed with checks
20192 -- disabled as part of the generic context and with checks enabled
20193 -- for code generation purposes. This leads to link issues as the
20194 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20195 -- template sees the temporaries generated by Remove_Side_Effects.
20197 else
20198 Validity_Check_Range (R, Subtyp);
20199 end if;
20201 -- If there were errors in the declaration, try and patch up some
20202 -- common mistakes in the bounds. The cases handled are literals
20203 -- which are Integer where the expected type is Real and vice versa.
20204 -- These corrections allow the compilation process to proceed further
20205 -- along since some basic assumptions of the format of the bounds
20206 -- are guaranteed.
20208 if Etype (R) = Any_Type then
20209 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20210 Rewrite (Lo,
20211 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20213 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20214 Rewrite (Hi,
20215 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20217 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20218 Rewrite (Lo,
20219 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20221 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20222 Rewrite (Hi,
20223 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20224 end if;
20226 Set_Etype (Lo, T);
20227 Set_Etype (Hi, T);
20228 end if;
20230 -- If the bounds of the range have been mistakenly given as string
20231 -- literals (perhaps in place of character literals), then an error
20232 -- has already been reported, but we rewrite the string literal as a
20233 -- bound of the range's type to avoid blowups in later processing
20234 -- that looks at static values.
20236 if Nkind (Lo) = N_String_Literal then
20237 Rewrite (Lo,
20238 Make_Attribute_Reference (Sloc (Lo),
20239 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20240 Attribute_Name => Name_First));
20241 Analyze_And_Resolve (Lo);
20242 end if;
20244 if Nkind (Hi) = N_String_Literal then
20245 Rewrite (Hi,
20246 Make_Attribute_Reference (Sloc (Hi),
20247 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20248 Attribute_Name => Name_First));
20249 Analyze_And_Resolve (Hi);
20250 end if;
20252 -- If bounds aren't scalar at this point then exit, avoiding
20253 -- problems with further processing of the range in this procedure.
20255 if not Is_Scalar_Type (Etype (Lo)) then
20256 return;
20257 end if;
20259 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20260 -- then range of the base type. Here we check whether the bounds
20261 -- are in the range of the subtype itself. Note that if the bounds
20262 -- represent the null range the Constraint_Error exception should
20263 -- not be raised.
20265 -- ??? The following code should be cleaned up as follows
20267 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20268 -- is done in the call to Range_Check (R, T); below
20270 -- 2. The use of R_Check_Off should be investigated and possibly
20271 -- removed, this would clean up things a bit.
20273 if Is_Null_Range (Lo, Hi) then
20274 null;
20276 else
20277 -- Capture values of bounds and generate temporaries for them
20278 -- if needed, before applying checks, since checks may cause
20279 -- duplication of the expression without forcing evaluation.
20281 -- The forced evaluation removes side effects from expressions,
20282 -- which should occur also in GNATprove mode. Otherwise, we end up
20283 -- with unexpected insertions of actions at places where this is
20284 -- not supposed to occur, e.g. on default parameters of a call.
20286 if Expander_Active or GNATprove_Mode then
20288 -- Call Force_Evaluation to create declarations as needed to
20289 -- deal with side effects, and also create typ_FIRST/LAST
20290 -- entities for bounds if we have a subtype name.
20292 -- Note: we do this transformation even if expansion is not
20293 -- active if we are in GNATprove_Mode since the transformation
20294 -- is in general required to ensure that the resulting tree has
20295 -- proper Ada semantics.
20297 Force_Evaluation
20298 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
20299 Force_Evaluation
20300 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
20301 end if;
20303 -- We use a flag here instead of suppressing checks on the type
20304 -- because the type we check against isn't necessarily the place
20305 -- where we put the check.
20307 if not R_Check_Off then
20308 R_Checks := Get_Range_Checks (R, T);
20310 -- Look up tree to find an appropriate insertion point. We
20311 -- can't just use insert_actions because later processing
20312 -- depends on the insertion node. Prior to Ada 2012 the
20313 -- insertion point could only be a declaration or a loop, but
20314 -- quantified expressions can appear within any context in an
20315 -- expression, and the insertion point can be any statement,
20316 -- pragma, or declaration.
20318 Insert_Node := Parent (R);
20319 while Present (Insert_Node) loop
20320 exit when
20321 Nkind (Insert_Node) in N_Declaration
20322 and then
20323 not Nkind_In
20324 (Insert_Node, N_Component_Declaration,
20325 N_Loop_Parameter_Specification,
20326 N_Function_Specification,
20327 N_Procedure_Specification);
20329 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20330 or else Nkind (Insert_Node) in
20331 N_Statement_Other_Than_Procedure_Call
20332 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20333 N_Pragma);
20335 Insert_Node := Parent (Insert_Node);
20336 end loop;
20338 -- Why would Type_Decl not be present??? Without this test,
20339 -- short regression tests fail.
20341 if Present (Insert_Node) then
20343 -- Case of loop statement. Verify that the range is part
20344 -- of the subtype indication of the iteration scheme.
20346 if Nkind (Insert_Node) = N_Loop_Statement then
20347 declare
20348 Indic : Node_Id;
20350 begin
20351 Indic := Parent (R);
20352 while Present (Indic)
20353 and then Nkind (Indic) /= N_Subtype_Indication
20354 loop
20355 Indic := Parent (Indic);
20356 end loop;
20358 if Present (Indic) then
20359 Def_Id := Etype (Subtype_Mark (Indic));
20361 Insert_Range_Checks
20362 (R_Checks,
20363 Insert_Node,
20364 Def_Id,
20365 Sloc (Insert_Node),
20367 Do_Before => True);
20368 end if;
20369 end;
20371 -- Insertion before a declaration. If the declaration
20372 -- includes discriminants, the list of applicable checks
20373 -- is given by the caller.
20375 elsif Nkind (Insert_Node) in N_Declaration then
20376 Def_Id := Defining_Identifier (Insert_Node);
20378 if (Ekind (Def_Id) = E_Record_Type
20379 and then Depends_On_Discriminant (R))
20380 or else
20381 (Ekind (Def_Id) = E_Protected_Type
20382 and then Has_Discriminants (Def_Id))
20383 then
20384 Append_Range_Checks
20385 (R_Checks,
20386 Check_List, Def_Id, Sloc (Insert_Node), R);
20388 else
20389 Insert_Range_Checks
20390 (R_Checks,
20391 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20393 end if;
20395 -- Insertion before a statement. Range appears in the
20396 -- context of a quantified expression. Insertion will
20397 -- take place when expression is expanded.
20399 else
20400 null;
20401 end if;
20402 end if;
20403 end if;
20404 end if;
20406 -- Case of other than an explicit N_Range node
20408 -- The forced evaluation removes side effects from expressions, which
20409 -- should occur also in GNATprove mode. Otherwise, we end up with
20410 -- unexpected insertions of actions at places where this is not
20411 -- supposed to occur, e.g. on default parameters of a call.
20413 elsif Expander_Active or GNATprove_Mode then
20414 Get_Index_Bounds (R, Lo, Hi);
20415 Force_Evaluation (Lo);
20416 Force_Evaluation (Hi);
20417 end if;
20418 end Process_Range_Expr_In_Decl;
20420 --------------------------------------
20421 -- Process_Real_Range_Specification --
20422 --------------------------------------
20424 procedure Process_Real_Range_Specification (Def : Node_Id) is
20425 Spec : constant Node_Id := Real_Range_Specification (Def);
20426 Lo : Node_Id;
20427 Hi : Node_Id;
20428 Err : Boolean := False;
20430 procedure Analyze_Bound (N : Node_Id);
20431 -- Analyze and check one bound
20433 -------------------
20434 -- Analyze_Bound --
20435 -------------------
20437 procedure Analyze_Bound (N : Node_Id) is
20438 begin
20439 Analyze_And_Resolve (N, Any_Real);
20441 if not Is_OK_Static_Expression (N) then
20442 Flag_Non_Static_Expr
20443 ("bound in real type definition is not static!", N);
20444 Err := True;
20445 end if;
20446 end Analyze_Bound;
20448 -- Start of processing for Process_Real_Range_Specification
20450 begin
20451 if Present (Spec) then
20452 Lo := Low_Bound (Spec);
20453 Hi := High_Bound (Spec);
20454 Analyze_Bound (Lo);
20455 Analyze_Bound (Hi);
20457 -- If error, clear away junk range specification
20459 if Err then
20460 Set_Real_Range_Specification (Def, Empty);
20461 end if;
20462 end if;
20463 end Process_Real_Range_Specification;
20465 ---------------------
20466 -- Process_Subtype --
20467 ---------------------
20469 function Process_Subtype
20470 (S : Node_Id;
20471 Related_Nod : Node_Id;
20472 Related_Id : Entity_Id := Empty;
20473 Suffix : Character := ' ') return Entity_Id
20475 P : Node_Id;
20476 Def_Id : Entity_Id;
20477 Error_Node : Node_Id;
20478 Full_View_Id : Entity_Id;
20479 Subtype_Mark_Id : Entity_Id;
20481 May_Have_Null_Exclusion : Boolean;
20483 procedure Check_Incomplete (T : Entity_Id);
20484 -- Called to verify that an incomplete type is not used prematurely
20486 ----------------------
20487 -- Check_Incomplete --
20488 ----------------------
20490 procedure Check_Incomplete (T : Entity_Id) is
20491 begin
20492 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20494 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20495 and then
20496 not (Ada_Version >= Ada_2005
20497 and then
20498 (Nkind (Parent (T)) = N_Subtype_Declaration
20499 or else (Nkind (Parent (T)) = N_Subtype_Indication
20500 and then Nkind (Parent (Parent (T))) =
20501 N_Subtype_Declaration)))
20502 then
20503 Error_Msg_N ("invalid use of type before its full declaration", T);
20504 end if;
20505 end Check_Incomplete;
20507 -- Start of processing for Process_Subtype
20509 begin
20510 -- Case of no constraints present
20512 if Nkind (S) /= N_Subtype_Indication then
20513 Find_Type (S);
20514 Check_Incomplete (S);
20515 P := Parent (S);
20517 -- Ada 2005 (AI-231): Static check
20519 if Ada_Version >= Ada_2005
20520 and then Present (P)
20521 and then Null_Exclusion_Present (P)
20522 and then Nkind (P) /= N_Access_To_Object_Definition
20523 and then not Is_Access_Type (Entity (S))
20524 then
20525 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20526 end if;
20528 -- The following is ugly, can't we have a range or even a flag???
20530 May_Have_Null_Exclusion :=
20531 Nkind_In (P, N_Access_Definition,
20532 N_Access_Function_Definition,
20533 N_Access_Procedure_Definition,
20534 N_Access_To_Object_Definition,
20535 N_Allocator,
20536 N_Component_Definition)
20537 or else
20538 Nkind_In (P, N_Derived_Type_Definition,
20539 N_Discriminant_Specification,
20540 N_Formal_Object_Declaration,
20541 N_Object_Declaration,
20542 N_Object_Renaming_Declaration,
20543 N_Parameter_Specification,
20544 N_Subtype_Declaration);
20546 -- Create an Itype that is a duplicate of Entity (S) but with the
20547 -- null-exclusion attribute.
20549 if May_Have_Null_Exclusion
20550 and then Is_Access_Type (Entity (S))
20551 and then Null_Exclusion_Present (P)
20553 -- No need to check the case of an access to object definition.
20554 -- It is correct to define double not-null pointers.
20556 -- Example:
20557 -- type Not_Null_Int_Ptr is not null access Integer;
20558 -- type Acc is not null access Not_Null_Int_Ptr;
20560 and then Nkind (P) /= N_Access_To_Object_Definition
20561 then
20562 if Can_Never_Be_Null (Entity (S)) then
20563 case Nkind (Related_Nod) is
20564 when N_Full_Type_Declaration =>
20565 if Nkind (Type_Definition (Related_Nod))
20566 in N_Array_Type_Definition
20567 then
20568 Error_Node :=
20569 Subtype_Indication
20570 (Component_Definition
20571 (Type_Definition (Related_Nod)));
20572 else
20573 Error_Node :=
20574 Subtype_Indication (Type_Definition (Related_Nod));
20575 end if;
20577 when N_Subtype_Declaration =>
20578 Error_Node := Subtype_Indication (Related_Nod);
20580 when N_Object_Declaration =>
20581 Error_Node := Object_Definition (Related_Nod);
20583 when N_Component_Declaration =>
20584 Error_Node :=
20585 Subtype_Indication (Component_Definition (Related_Nod));
20587 when N_Allocator =>
20588 Error_Node := Expression (Related_Nod);
20590 when others =>
20591 pragma Assert (False);
20592 Error_Node := Related_Nod;
20593 end case;
20595 Error_Msg_NE
20596 ("`NOT NULL` not allowed (& already excludes null)",
20597 Error_Node,
20598 Entity (S));
20599 end if;
20601 Set_Etype (S,
20602 Create_Null_Excluding_Itype
20603 (T => Entity (S),
20604 Related_Nod => P));
20605 Set_Entity (S, Etype (S));
20606 end if;
20608 return Entity (S);
20610 -- Case of constraint present, so that we have an N_Subtype_Indication
20611 -- node (this node is created only if constraints are present).
20613 else
20614 Find_Type (Subtype_Mark (S));
20616 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20617 and then not
20618 (Nkind (Parent (S)) = N_Subtype_Declaration
20619 and then Is_Itype (Defining_Identifier (Parent (S))))
20620 then
20621 Check_Incomplete (Subtype_Mark (S));
20622 end if;
20624 P := Parent (S);
20625 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20627 -- Explicit subtype declaration case
20629 if Nkind (P) = N_Subtype_Declaration then
20630 Def_Id := Defining_Identifier (P);
20632 -- Explicit derived type definition case
20634 elsif Nkind (P) = N_Derived_Type_Definition then
20635 Def_Id := Defining_Identifier (Parent (P));
20637 -- Implicit case, the Def_Id must be created as an implicit type.
20638 -- The one exception arises in the case of concurrent types, array
20639 -- and access types, where other subsidiary implicit types may be
20640 -- created and must appear before the main implicit type. In these
20641 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20642 -- has not yet been called to create Def_Id.
20644 else
20645 if Is_Array_Type (Subtype_Mark_Id)
20646 or else Is_Concurrent_Type (Subtype_Mark_Id)
20647 or else Is_Access_Type (Subtype_Mark_Id)
20648 then
20649 Def_Id := Empty;
20651 -- For the other cases, we create a new unattached Itype,
20652 -- and set the indication to ensure it gets attached later.
20654 else
20655 Def_Id :=
20656 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20657 end if;
20658 end if;
20660 -- If the kind of constraint is invalid for this kind of type,
20661 -- then give an error, and then pretend no constraint was given.
20663 if not Is_Valid_Constraint_Kind
20664 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20665 then
20666 Error_Msg_N
20667 ("incorrect constraint for this kind of type", Constraint (S));
20669 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20671 -- Set Ekind of orphan itype, to prevent cascaded errors
20673 if Present (Def_Id) then
20674 Set_Ekind (Def_Id, Ekind (Any_Type));
20675 end if;
20677 -- Make recursive call, having got rid of the bogus constraint
20679 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20680 end if;
20682 -- Remaining processing depends on type. Select on Base_Type kind to
20683 -- ensure getting to the concrete type kind in the case of a private
20684 -- subtype (needed when only doing semantic analysis).
20686 case Ekind (Base_Type (Subtype_Mark_Id)) is
20687 when Access_Kind =>
20689 -- If this is a constraint on a class-wide type, discard it.
20690 -- There is currently no way to express a partial discriminant
20691 -- constraint on a type with unknown discriminants. This is
20692 -- a pathology that the ACATS wisely decides not to test.
20694 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20695 if Comes_From_Source (S) then
20696 Error_Msg_N
20697 ("constraint on class-wide type ignored??",
20698 Constraint (S));
20699 end if;
20701 if Nkind (P) = N_Subtype_Declaration then
20702 Set_Subtype_Indication (P,
20703 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20704 end if;
20706 return Subtype_Mark_Id;
20707 end if;
20709 Constrain_Access (Def_Id, S, Related_Nod);
20711 if Expander_Active
20712 and then Is_Itype (Designated_Type (Def_Id))
20713 and then Nkind (Related_Nod) = N_Subtype_Declaration
20714 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20715 then
20716 Build_Itype_Reference
20717 (Designated_Type (Def_Id), Related_Nod);
20718 end if;
20720 when Array_Kind =>
20721 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20723 when Decimal_Fixed_Point_Kind =>
20724 Constrain_Decimal (Def_Id, S);
20726 when Enumeration_Kind =>
20727 Constrain_Enumeration (Def_Id, S);
20728 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20730 when Ordinary_Fixed_Point_Kind =>
20731 Constrain_Ordinary_Fixed (Def_Id, S);
20733 when Float_Kind =>
20734 Constrain_Float (Def_Id, S);
20736 when Integer_Kind =>
20737 Constrain_Integer (Def_Id, S);
20738 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20740 when E_Record_Type |
20741 E_Record_Subtype |
20742 Class_Wide_Kind |
20743 E_Incomplete_Type =>
20744 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20746 if Ekind (Def_Id) = E_Incomplete_Type then
20747 Set_Private_Dependents (Def_Id, New_Elmt_List);
20748 end if;
20750 when Private_Kind =>
20751 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20752 Set_Private_Dependents (Def_Id, New_Elmt_List);
20754 -- In case of an invalid constraint prevent further processing
20755 -- since the type constructed is missing expected fields.
20757 if Etype (Def_Id) = Any_Type then
20758 return Def_Id;
20759 end if;
20761 -- If the full view is that of a task with discriminants,
20762 -- we must constrain both the concurrent type and its
20763 -- corresponding record type. Otherwise we will just propagate
20764 -- the constraint to the full view, if available.
20766 if Present (Full_View (Subtype_Mark_Id))
20767 and then Has_Discriminants (Subtype_Mark_Id)
20768 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20769 then
20770 Full_View_Id :=
20771 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20773 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20774 Constrain_Concurrent (Full_View_Id, S,
20775 Related_Nod, Related_Id, Suffix);
20776 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20777 Set_Full_View (Def_Id, Full_View_Id);
20779 -- Introduce an explicit reference to the private subtype,
20780 -- to prevent scope anomalies in gigi if first use appears
20781 -- in a nested context, e.g. a later function body.
20782 -- Should this be generated in other contexts than a full
20783 -- type declaration?
20785 if Is_Itype (Def_Id)
20786 and then
20787 Nkind (Parent (P)) = N_Full_Type_Declaration
20788 then
20789 Build_Itype_Reference (Def_Id, Parent (P));
20790 end if;
20792 else
20793 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20794 end if;
20796 when Concurrent_Kind =>
20797 Constrain_Concurrent (Def_Id, S,
20798 Related_Nod, Related_Id, Suffix);
20800 when others =>
20801 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20802 end case;
20804 -- Size and Convention are always inherited from the base type
20806 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20807 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20809 return Def_Id;
20810 end if;
20811 end Process_Subtype;
20813 --------------------------------------------
20814 -- Propagate_Default_Init_Cond_Attributes --
20815 --------------------------------------------
20817 procedure Propagate_Default_Init_Cond_Attributes
20818 (From_Typ : Entity_Id;
20819 To_Typ : Entity_Id;
20820 Parent_To_Derivation : Boolean := False;
20821 Private_To_Full_View : Boolean := False)
20823 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20824 -- Remove the default initial procedure (if any) from the rep chain of
20825 -- type Typ.
20827 ----------------------------------------
20828 -- Remove_Default_Init_Cond_Procedure --
20829 ----------------------------------------
20831 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20832 Found : Boolean := False;
20833 Prev : Entity_Id;
20834 Subp : Entity_Id;
20836 begin
20837 Prev := Typ;
20838 Subp := Subprograms_For_Type (Typ);
20839 while Present (Subp) loop
20840 if Is_Default_Init_Cond_Procedure (Subp) then
20841 Found := True;
20842 exit;
20843 end if;
20845 Prev := Subp;
20846 Subp := Subprograms_For_Type (Subp);
20847 end loop;
20849 if Found then
20850 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20851 Set_Subprograms_For_Type (Subp, Empty);
20852 end if;
20853 end Remove_Default_Init_Cond_Procedure;
20855 -- Local variables
20857 Inherit_Procedure : Boolean := False;
20859 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20861 begin
20862 if Has_Default_Init_Cond (From_Typ) then
20864 -- A derived type inherits the attributes from its parent type
20866 if Parent_To_Derivation then
20867 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20869 -- A full view shares the attributes with its private view
20871 else
20872 Set_Has_Default_Init_Cond (To_Typ);
20873 end if;
20875 Inherit_Procedure := True;
20877 -- Due to the order of expansion, a derived private type is processed
20878 -- by two routines which both attempt to set the attributes related
20879 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20880 -- Process_Full_View.
20882 -- package Pack is
20883 -- type Parent_Typ is private
20884 -- with Default_Initial_Condition ...;
20885 -- private
20886 -- type Parent_Typ is ...;
20887 -- end Pack;
20889 -- with Pack; use Pack;
20890 -- package Pack_2 is
20891 -- type Deriv_Typ is private
20892 -- with Default_Initial_Condition ...;
20893 -- private
20894 -- type Deriv_Typ is new Parent_Typ;
20895 -- end Pack_2;
20897 -- When Build_Derived_Type operates, it sets the attributes on the
20898 -- full view without taking into account that the private view may
20899 -- define its own default initial condition procedure. This becomes
20900 -- apparent in Process_Full_View which must undo some of the work by
20901 -- Build_Derived_Type and propagate the attributes from the private
20902 -- to the full view.
20904 if Private_To_Full_View then
20905 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20906 Remove_Default_Init_Cond_Procedure (To_Typ);
20907 end if;
20909 -- A type must inherit the default initial condition procedure from a
20910 -- parent type when the parent itself is inheriting the procedure or
20911 -- when it is defining one. This circuitry is also used when dealing
20912 -- with the private / full view of a type.
20914 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20915 or (Parent_To_Derivation
20916 and Present (Get_Pragma
20917 (From_Typ, Pragma_Default_Initial_Condition)))
20918 then
20919 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20920 Inherit_Procedure := True;
20921 end if;
20923 if Inherit_Procedure
20924 and then No (Default_Init_Cond_Procedure (To_Typ))
20925 then
20926 Set_Default_Init_Cond_Procedure
20927 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20928 end if;
20929 end Propagate_Default_Init_Cond_Attributes;
20931 -----------------------------
20932 -- Record_Type_Declaration --
20933 -----------------------------
20935 procedure Record_Type_Declaration
20936 (T : Entity_Id;
20937 N : Node_Id;
20938 Prev : Entity_Id)
20940 Def : constant Node_Id := Type_Definition (N);
20941 Is_Tagged : Boolean;
20942 Tag_Comp : Entity_Id;
20944 begin
20945 -- These flags must be initialized before calling Process_Discriminants
20946 -- because this routine makes use of them.
20948 Set_Ekind (T, E_Record_Type);
20949 Set_Etype (T, T);
20950 Init_Size_Align (T);
20951 Set_Interfaces (T, No_Elist);
20952 Set_Stored_Constraint (T, No_Elist);
20953 Set_Default_SSO (T);
20955 -- Normal case
20957 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20958 if Limited_Present (Def) then
20959 Check_SPARK_05_Restriction ("limited is not allowed", N);
20960 end if;
20962 if Abstract_Present (Def) then
20963 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20964 end if;
20966 -- The flag Is_Tagged_Type might have already been set by
20967 -- Find_Type_Name if it detected an error for declaration T. This
20968 -- arises in the case of private tagged types where the full view
20969 -- omits the word tagged.
20971 Is_Tagged :=
20972 Tagged_Present (Def)
20973 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20975 Set_Is_Limited_Record (T, Limited_Present (Def));
20977 if Is_Tagged then
20978 Set_Is_Tagged_Type (T, True);
20979 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20980 end if;
20982 -- Type is abstract if full declaration carries keyword, or if
20983 -- previous partial view did.
20985 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20986 or else Abstract_Present (Def));
20988 else
20989 Check_SPARK_05_Restriction ("interface is not allowed", N);
20991 Is_Tagged := True;
20992 Analyze_Interface_Declaration (T, Def);
20994 if Present (Discriminant_Specifications (N)) then
20995 Error_Msg_N
20996 ("interface types cannot have discriminants",
20997 Defining_Identifier
20998 (First (Discriminant_Specifications (N))));
20999 end if;
21000 end if;
21002 -- First pass: if there are self-referential access components,
21003 -- create the required anonymous access type declarations, and if
21004 -- need be an incomplete type declaration for T itself.
21006 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21008 if Ada_Version >= Ada_2005
21009 and then Present (Interface_List (Def))
21010 then
21011 Check_Interfaces (N, Def);
21013 declare
21014 Ifaces_List : Elist_Id;
21016 begin
21017 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21018 -- already in the parents.
21020 Collect_Interfaces
21021 (T => T,
21022 Ifaces_List => Ifaces_List,
21023 Exclude_Parents => True);
21025 Set_Interfaces (T, Ifaces_List);
21026 end;
21027 end if;
21029 -- Records constitute a scope for the component declarations within.
21030 -- The scope is created prior to the processing of these declarations.
21031 -- Discriminants are processed first, so that they are visible when
21032 -- processing the other components. The Ekind of the record type itself
21033 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21035 -- Enter record scope
21037 Push_Scope (T);
21039 -- If an incomplete or private type declaration was already given for
21040 -- the type, then this scope already exists, and the discriminants have
21041 -- been declared within. We must verify that the full declaration
21042 -- matches the incomplete one.
21044 Check_Or_Process_Discriminants (N, T, Prev);
21046 Set_Is_Constrained (T, not Has_Discriminants (T));
21047 Set_Has_Delayed_Freeze (T, True);
21049 -- For tagged types add a manually analyzed component corresponding
21050 -- to the component _tag, the corresponding piece of tree will be
21051 -- expanded as part of the freezing actions if it is not a CPP_Class.
21053 if Is_Tagged then
21055 -- Do not add the tag unless we are in expansion mode
21057 if Expander_Active then
21058 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21059 Enter_Name (Tag_Comp);
21061 Set_Ekind (Tag_Comp, E_Component);
21062 Set_Is_Tag (Tag_Comp);
21063 Set_Is_Aliased (Tag_Comp);
21064 Set_Etype (Tag_Comp, RTE (RE_Tag));
21065 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21066 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21067 Init_Component_Location (Tag_Comp);
21069 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21070 -- implemented interfaces.
21072 if Has_Interfaces (T) then
21073 Add_Interface_Tag_Components (N, T);
21074 end if;
21075 end if;
21077 Make_Class_Wide_Type (T);
21078 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21079 end if;
21081 -- We must suppress range checks when processing record components in
21082 -- the presence of discriminants, since we don't want spurious checks to
21083 -- be generated during their analysis, but Suppress_Range_Checks flags
21084 -- must be reset the after processing the record definition.
21086 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21087 -- couldn't we just use the normal range check suppression method here.
21088 -- That would seem cleaner ???
21090 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21091 Set_Kill_Range_Checks (T, True);
21092 Record_Type_Definition (Def, Prev);
21093 Set_Kill_Range_Checks (T, False);
21094 else
21095 Record_Type_Definition (Def, Prev);
21096 end if;
21098 -- Exit from record scope
21100 End_Scope;
21102 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21103 -- the implemented interfaces and associate them an aliased entity.
21105 if Is_Tagged
21106 and then not Is_Empty_List (Interface_List (Def))
21107 then
21108 Derive_Progenitor_Subprograms (T, T);
21109 end if;
21111 Check_Function_Writable_Actuals (N);
21112 end Record_Type_Declaration;
21114 ----------------------------
21115 -- Record_Type_Definition --
21116 ----------------------------
21118 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21119 Component : Entity_Id;
21120 Ctrl_Components : Boolean := False;
21121 Final_Storage_Only : Boolean;
21122 T : Entity_Id;
21124 begin
21125 if Ekind (Prev_T) = E_Incomplete_Type then
21126 T := Full_View (Prev_T);
21127 else
21128 T := Prev_T;
21129 end if;
21131 -- In SPARK, tagged types and type extensions may only be declared in
21132 -- the specification of library unit packages.
21134 if Present (Def) and then Is_Tagged_Type (T) then
21135 declare
21136 Typ : Node_Id;
21137 Ctxt : Node_Id;
21139 begin
21140 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21141 Typ := Parent (Def);
21142 else
21143 pragma Assert
21144 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21145 Typ := Parent (Parent (Def));
21146 end if;
21148 Ctxt := Parent (Typ);
21150 if Nkind (Ctxt) = N_Package_Body
21151 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21152 then
21153 Check_SPARK_05_Restriction
21154 ("type should be defined in package specification", Typ);
21156 elsif Nkind (Ctxt) /= N_Package_Specification
21157 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21158 then
21159 Check_SPARK_05_Restriction
21160 ("type should be defined in library unit package", Typ);
21161 end if;
21162 end;
21163 end if;
21165 Final_Storage_Only := not Is_Controlled_Active (T);
21167 -- Ada 2005: Check whether an explicit Limited is present in a derived
21168 -- type declaration.
21170 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21171 and then Limited_Present (Parent (Def))
21172 then
21173 Set_Is_Limited_Record (T);
21174 end if;
21176 -- If the component list of a record type is defined by the reserved
21177 -- word null and there is no discriminant part, then the record type has
21178 -- no components and all records of the type are null records (RM 3.7)
21179 -- This procedure is also called to process the extension part of a
21180 -- record extension, in which case the current scope may have inherited
21181 -- components.
21183 if No (Def)
21184 or else No (Component_List (Def))
21185 or else Null_Present (Component_List (Def))
21186 then
21187 if not Is_Tagged_Type (T) then
21188 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21189 end if;
21191 else
21192 Analyze_Declarations (Component_Items (Component_List (Def)));
21194 if Present (Variant_Part (Component_List (Def))) then
21195 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21196 Analyze (Variant_Part (Component_List (Def)));
21197 end if;
21198 end if;
21200 -- After completing the semantic analysis of the record definition,
21201 -- record components, both new and inherited, are accessible. Set their
21202 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21203 -- whose Ekind may be void.
21205 Component := First_Entity (Current_Scope);
21206 while Present (Component) loop
21207 if Ekind (Component) = E_Void
21208 and then not Is_Itype (Component)
21209 then
21210 Set_Ekind (Component, E_Component);
21211 Init_Component_Location (Component);
21212 end if;
21214 if Has_Task (Etype (Component)) then
21215 Set_Has_Task (T);
21216 end if;
21218 if Has_Protected (Etype (Component)) then
21219 Set_Has_Protected (T);
21220 end if;
21222 if Ekind (Component) /= E_Component then
21223 null;
21225 -- Do not set Has_Controlled_Component on a class-wide equivalent
21226 -- type. See Make_CW_Equivalent_Type.
21228 elsif not Is_Class_Wide_Equivalent_Type (T)
21229 and then (Has_Controlled_Component (Etype (Component))
21230 or else (Chars (Component) /= Name_uParent
21231 and then Is_Controlled_Active
21232 (Etype (Component))))
21233 then
21234 Set_Has_Controlled_Component (T, True);
21235 Final_Storage_Only :=
21236 Final_Storage_Only
21237 and then Finalize_Storage_Only (Etype (Component));
21238 Ctrl_Components := True;
21239 end if;
21241 Next_Entity (Component);
21242 end loop;
21244 -- A Type is Finalize_Storage_Only only if all its controlled components
21245 -- are also.
21247 if Ctrl_Components then
21248 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21249 end if;
21251 -- Place reference to end record on the proper entity, which may
21252 -- be a partial view.
21254 if Present (Def) then
21255 Process_End_Label (Def, 'e', Prev_T);
21256 end if;
21257 end Record_Type_Definition;
21259 ------------------------
21260 -- Replace_Components --
21261 ------------------------
21263 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21264 function Process (N : Node_Id) return Traverse_Result;
21266 -------------
21267 -- Process --
21268 -------------
21270 function Process (N : Node_Id) return Traverse_Result is
21271 Comp : Entity_Id;
21273 begin
21274 if Nkind (N) = N_Discriminant_Specification then
21275 Comp := First_Discriminant (Typ);
21276 while Present (Comp) loop
21277 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21278 Set_Defining_Identifier (N, Comp);
21279 exit;
21280 end if;
21282 Next_Discriminant (Comp);
21283 end loop;
21285 elsif Nkind (N) = N_Component_Declaration then
21286 Comp := First_Component (Typ);
21287 while Present (Comp) loop
21288 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21289 Set_Defining_Identifier (N, Comp);
21290 exit;
21291 end if;
21293 Next_Component (Comp);
21294 end loop;
21295 end if;
21297 return OK;
21298 end Process;
21300 procedure Replace is new Traverse_Proc (Process);
21302 -- Start of processing for Replace_Components
21304 begin
21305 Replace (Decl);
21306 end Replace_Components;
21308 -------------------------------
21309 -- Set_Completion_Referenced --
21310 -------------------------------
21312 procedure Set_Completion_Referenced (E : Entity_Id) is
21313 begin
21314 -- If in main unit, mark entity that is a completion as referenced,
21315 -- warnings go on the partial view when needed.
21317 if In_Extended_Main_Source_Unit (E) then
21318 Set_Referenced (E);
21319 end if;
21320 end Set_Completion_Referenced;
21322 ---------------------
21323 -- Set_Default_SSO --
21324 ---------------------
21326 procedure Set_Default_SSO (T : Entity_Id) is
21327 begin
21328 case Opt.Default_SSO is
21329 when ' ' =>
21330 null;
21331 when 'L' =>
21332 Set_SSO_Set_Low_By_Default (T, True);
21333 when 'H' =>
21334 Set_SSO_Set_High_By_Default (T, True);
21335 when others =>
21336 raise Program_Error;
21337 end case;
21338 end Set_Default_SSO;
21340 ---------------------
21341 -- Set_Fixed_Range --
21342 ---------------------
21344 -- The range for fixed-point types is complicated by the fact that we
21345 -- do not know the exact end points at the time of the declaration. This
21346 -- is true for three reasons:
21348 -- A size clause may affect the fudging of the end-points.
21349 -- A small clause may affect the values of the end-points.
21350 -- We try to include the end-points if it does not affect the size.
21352 -- This means that the actual end-points must be established at the
21353 -- point when the type is frozen. Meanwhile, we first narrow the range
21354 -- as permitted (so that it will fit if necessary in a small specified
21355 -- size), and then build a range subtree with these narrowed bounds.
21356 -- Set_Fixed_Range constructs the range from real literal values, and
21357 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21359 -- The parent of this range is set to point to the entity so that it is
21360 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21361 -- other scalar types, which are just pointers to the range in the
21362 -- original tree, this would otherwise be an orphan).
21364 -- The tree is left unanalyzed. When the type is frozen, the processing
21365 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21366 -- analyzed, and uses this as an indication that it should complete
21367 -- work on the range (it will know the final small and size values).
21369 procedure Set_Fixed_Range
21370 (E : Entity_Id;
21371 Loc : Source_Ptr;
21372 Lo : Ureal;
21373 Hi : Ureal)
21375 S : constant Node_Id :=
21376 Make_Range (Loc,
21377 Low_Bound => Make_Real_Literal (Loc, Lo),
21378 High_Bound => Make_Real_Literal (Loc, Hi));
21379 begin
21380 Set_Scalar_Range (E, S);
21381 Set_Parent (S, E);
21383 -- Before the freeze point, the bounds of a fixed point are universal
21384 -- and carry the corresponding type.
21386 Set_Etype (Low_Bound (S), Universal_Real);
21387 Set_Etype (High_Bound (S), Universal_Real);
21388 end Set_Fixed_Range;
21390 ----------------------------------
21391 -- Set_Scalar_Range_For_Subtype --
21392 ----------------------------------
21394 procedure Set_Scalar_Range_For_Subtype
21395 (Def_Id : Entity_Id;
21396 R : Node_Id;
21397 Subt : Entity_Id)
21399 Kind : constant Entity_Kind := Ekind (Def_Id);
21401 begin
21402 -- Defend against previous error
21404 if Nkind (R) = N_Error then
21405 return;
21406 end if;
21408 Set_Scalar_Range (Def_Id, R);
21410 -- We need to link the range into the tree before resolving it so
21411 -- that types that are referenced, including importantly the subtype
21412 -- itself, are properly frozen (Freeze_Expression requires that the
21413 -- expression be properly linked into the tree). Of course if it is
21414 -- already linked in, then we do not disturb the current link.
21416 if No (Parent (R)) then
21417 Set_Parent (R, Def_Id);
21418 end if;
21420 -- Reset the kind of the subtype during analysis of the range, to
21421 -- catch possible premature use in the bounds themselves.
21423 Set_Ekind (Def_Id, E_Void);
21424 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21425 Set_Ekind (Def_Id, Kind);
21426 end Set_Scalar_Range_For_Subtype;
21428 --------------------------------------------------------
21429 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21430 --------------------------------------------------------
21432 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21433 (E : Entity_Id)
21435 begin
21436 -- Make sure set if encountered during Expand_To_Stored_Constraint
21438 Set_Stored_Constraint (E, No_Elist);
21440 -- Give it the right value
21442 if Is_Constrained (E) and then Has_Discriminants (E) then
21443 Set_Stored_Constraint (E,
21444 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21445 end if;
21446 end Set_Stored_Constraint_From_Discriminant_Constraint;
21448 -------------------------------------
21449 -- Signed_Integer_Type_Declaration --
21450 -------------------------------------
21452 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21453 Implicit_Base : Entity_Id;
21454 Base_Typ : Entity_Id;
21455 Lo_Val : Uint;
21456 Hi_Val : Uint;
21457 Errs : Boolean := False;
21458 Lo : Node_Id;
21459 Hi : Node_Id;
21461 function Can_Derive_From (E : Entity_Id) return Boolean;
21462 -- Determine whether given bounds allow derivation from specified type
21464 procedure Check_Bound (Expr : Node_Id);
21465 -- Check bound to make sure it is integral and static. If not, post
21466 -- appropriate error message and set Errs flag
21468 ---------------------
21469 -- Can_Derive_From --
21470 ---------------------
21472 -- Note we check both bounds against both end values, to deal with
21473 -- strange types like ones with a range of 0 .. -12341234.
21475 function Can_Derive_From (E : Entity_Id) return Boolean is
21476 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21477 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21478 begin
21479 return Lo <= Lo_Val and then Lo_Val <= Hi
21480 and then
21481 Lo <= Hi_Val and then Hi_Val <= Hi;
21482 end Can_Derive_From;
21484 -----------------
21485 -- Check_Bound --
21486 -----------------
21488 procedure Check_Bound (Expr : Node_Id) is
21489 begin
21490 -- If a range constraint is used as an integer type definition, each
21491 -- bound of the range must be defined by a static expression of some
21492 -- integer type, but the two bounds need not have the same integer
21493 -- type (Negative bounds are allowed.) (RM 3.5.4)
21495 if not Is_Integer_Type (Etype (Expr)) then
21496 Error_Msg_N
21497 ("integer type definition bounds must be of integer type", Expr);
21498 Errs := True;
21500 elsif not Is_OK_Static_Expression (Expr) then
21501 Flag_Non_Static_Expr
21502 ("non-static expression used for integer type bound!", Expr);
21503 Errs := True;
21505 -- The bounds are folded into literals, and we set their type to be
21506 -- universal, to avoid typing difficulties: we cannot set the type
21507 -- of the literal to the new type, because this would be a forward
21508 -- reference for the back end, and if the original type is user-
21509 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21511 else
21512 if Is_Entity_Name (Expr) then
21513 Fold_Uint (Expr, Expr_Value (Expr), True);
21514 end if;
21516 Set_Etype (Expr, Universal_Integer);
21517 end if;
21518 end Check_Bound;
21520 -- Start of processing for Signed_Integer_Type_Declaration
21522 begin
21523 -- Create an anonymous base type
21525 Implicit_Base :=
21526 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21528 -- Analyze and check the bounds, they can be of any integer type
21530 Lo := Low_Bound (Def);
21531 Hi := High_Bound (Def);
21533 -- Arbitrarily use Integer as the type if either bound had an error
21535 if Hi = Error or else Lo = Error then
21536 Base_Typ := Any_Integer;
21537 Set_Error_Posted (T, True);
21539 -- Here both bounds are OK expressions
21541 else
21542 Analyze_And_Resolve (Lo, Any_Integer);
21543 Analyze_And_Resolve (Hi, Any_Integer);
21545 Check_Bound (Lo);
21546 Check_Bound (Hi);
21548 if Errs then
21549 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21550 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21551 end if;
21553 -- Find type to derive from
21555 Lo_Val := Expr_Value (Lo);
21556 Hi_Val := Expr_Value (Hi);
21558 if Can_Derive_From (Standard_Short_Short_Integer) then
21559 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21561 elsif Can_Derive_From (Standard_Short_Integer) then
21562 Base_Typ := Base_Type (Standard_Short_Integer);
21564 elsif Can_Derive_From (Standard_Integer) then
21565 Base_Typ := Base_Type (Standard_Integer);
21567 elsif Can_Derive_From (Standard_Long_Integer) then
21568 Base_Typ := Base_Type (Standard_Long_Integer);
21570 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21571 Check_Restriction (No_Long_Long_Integers, Def);
21572 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21574 else
21575 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21576 Error_Msg_N ("integer type definition bounds out of range", Def);
21577 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21578 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21579 end if;
21580 end if;
21582 -- Complete both implicit base and declared first subtype entities. The
21583 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21584 -- are not clobbered when the signed integer type acts as a full view of
21585 -- a private type.
21587 Set_Etype (Implicit_Base, Base_Typ);
21588 Set_Size_Info (Implicit_Base, Base_Typ);
21589 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21590 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21591 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21593 Set_Ekind (T, E_Signed_Integer_Subtype);
21594 Set_Etype (T, Implicit_Base);
21595 Set_Size_Info (T, Implicit_Base);
21596 Inherit_Rep_Item_Chain (T, Implicit_Base);
21597 Set_Scalar_Range (T, Def);
21598 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21599 Set_Is_Constrained (T);
21600 end Signed_Integer_Type_Declaration;
21602 end Sem_Ch3;