Fix memory leaks in tree-vect-data-refs.c
[official-gcc.git] / gcc / ada / sem_ch13.adb
blob688861e7e99dbae1119e6b2a89b7a3cc3159931a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Freeze; use Freeze;
37 with Ghost; use Ghost;
38 with Lib; use Lib;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Case; use Sem_Case;
50 with Sem_Ch3; use Sem_Ch3;
51 with Sem_Ch6; use Sem_Ch6;
52 with Sem_Ch8; use Sem_Ch8;
53 with Sem_Dim; use Sem_Dim;
54 with Sem_Disp; use Sem_Disp;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Prag; use Sem_Prag;
57 with Sem_Res; use Sem_Res;
58 with Sem_Type; use Sem_Type;
59 with Sem_Util; use Sem_Util;
60 with Sem_Warn; use Sem_Warn;
61 with Sinput; use Sinput;
62 with Snames; use Snames;
63 with Stand; use Stand;
64 with Sinfo; use Sinfo;
65 with Stringt; use Stringt;
66 with Targparm; use Targparm;
67 with Ttypes; use Ttypes;
68 with Tbuild; use Tbuild;
69 with Urealp; use Urealp;
70 with Warnsw; use Warnsw;
72 with GNAT.Heap_Sort_G;
74 package body Sem_Ch13 is
76 SSU : constant Pos := System_Storage_Unit;
77 -- Convenient short hand for commonly used constant
79 -----------------------
80 -- Local Subprograms --
81 -----------------------
83 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
84 -- This routine is called after setting one of the sizes of type entity
85 -- Typ to Size. The purpose is to deal with the situation of a derived
86 -- type whose inherited alignment is no longer appropriate for the new
87 -- size value. In this case, we reset the Alignment to unknown.
89 procedure Build_Discrete_Static_Predicate
90 (Typ : Entity_Id;
91 Expr : Node_Id;
92 Nam : Name_Id);
93 -- Given a predicated type Typ, where Typ is a discrete static subtype,
94 -- whose predicate expression is Expr, tests if Expr is a static predicate,
95 -- and if so, builds the predicate range list. Nam is the name of the one
96 -- argument to the predicate function. Occurrences of the type name in the
97 -- predicate expression have been replaced by identifier references to this
98 -- name, which is unique, so any identifier with Chars matching Nam must be
99 -- a reference to the type. If the predicate is non-static, this procedure
100 -- returns doing nothing. If the predicate is static, then the predicate
101 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
102 -- rewritten as a canonicalized membership operation.
104 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
105 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
106 -- then either there are pragma Predicate entries on the rep chain for the
107 -- type (note that Predicate aspects are converted to pragma Predicate), or
108 -- there are inherited aspects from a parent type, or ancestor subtypes.
109 -- This procedure builds the spec and body for the Predicate function that
110 -- tests these predicates. N is the freeze node for the type. The spec of
111 -- the function is inserted before the freeze node, and the body of the
112 -- function is inserted after the freeze node. If the predicate expression
113 -- has at least one Raise_Expression, then this procedure also builds the
114 -- M version of the predicate function for use in membership tests.
116 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
117 -- Called if both Storage_Pool and Storage_Size attribute definition
118 -- clauses (SP and SS) are present for entity Ent. Issue error message.
120 procedure Freeze_Entity_Checks (N : Node_Id);
121 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
122 -- to generate appropriate semantic checks that are delayed until this
123 -- point (they had to be delayed this long for cases of delayed aspects,
124 -- e.g. analysis of statically predicated subtypes in choices, for which
125 -- we have to be sure the subtypes in question are frozen before checking).
127 function Get_Alignment_Value (Expr : Node_Id) return Uint;
128 -- Given the expression for an alignment value, returns the corresponding
129 -- Uint value. If the value is inappropriate, then error messages are
130 -- posted as required, and a value of No_Uint is returned.
132 function Is_Operational_Item (N : Node_Id) return Boolean;
133 -- A specification for a stream attribute is allowed before the full type
134 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
135 -- that do not specify a representation characteristic are operational
136 -- attributes.
138 function Is_Predicate_Static
139 (Expr : Node_Id;
140 Nam : Name_Id) return Boolean;
141 -- Given predicate expression Expr, tests if Expr is predicate-static in
142 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
143 -- name in the predicate expression have been replaced by references to
144 -- an identifier whose Chars field is Nam. This name is unique, so any
145 -- identifier with Chars matching Nam must be a reference to the type.
146 -- Returns True if the expression is predicate-static and False otherwise,
147 -- but is not in the business of setting flags or issuing error messages.
149 -- Only scalar types can have static predicates, so False is always
150 -- returned for non-scalar types.
152 -- Note: the RM seems to suggest that string types can also have static
153 -- predicates. But that really makes lttle sense as very few useful
154 -- predicates can be constructed for strings. Remember that:
156 -- "ABC" < "DEF"
158 -- is not a static expression. So even though the clearly faulty RM wording
159 -- allows the following:
161 -- subtype S is String with Static_Predicate => S < "DEF"
163 -- We can't allow this, otherwise we have predicate-static applying to a
164 -- larger class than static expressions, which was never intended.
166 procedure New_Stream_Subprogram
167 (N : Node_Id;
168 Ent : Entity_Id;
169 Subp : Entity_Id;
170 Nam : TSS_Name_Type);
171 -- Create a subprogram renaming of a given stream attribute to the
172 -- designated subprogram and then in the tagged case, provide this as a
173 -- primitive operation, or in the untagged case make an appropriate TSS
174 -- entry. This is more properly an expansion activity than just semantics,
175 -- but the presence of user-defined stream functions for limited types
176 -- is a legality check, which is why this takes place here rather than in
177 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
178 -- function to be generated.
180 -- To avoid elaboration anomalies with freeze nodes, for untagged types
181 -- we generate both a subprogram declaration and a subprogram renaming
182 -- declaration, so that the attribute specification is handled as a
183 -- renaming_as_body. For tagged types, the specification is one of the
184 -- primitive specs.
186 procedure Resolve_Iterable_Operation
187 (N : Node_Id;
188 Cursor : Entity_Id;
189 Typ : Entity_Id;
190 Nam : Name_Id);
191 -- If the name of a primitive operation for an Iterable aspect is
192 -- overloaded, resolve according to required signature.
194 procedure Set_Biased
195 (E : Entity_Id;
196 N : Node_Id;
197 Msg : String;
198 Biased : Boolean := True);
199 -- If Biased is True, sets Has_Biased_Representation flag for E, and
200 -- outputs a warning message at node N if Warn_On_Biased_Representation is
201 -- is True. This warning inserts the string Msg to describe the construct
202 -- causing biasing.
204 ----------------------------------------------
205 -- Table for Validate_Unchecked_Conversions --
206 ----------------------------------------------
208 -- The following table collects unchecked conversions for validation.
209 -- Entries are made by Validate_Unchecked_Conversion and then the call
210 -- to Validate_Unchecked_Conversions does the actual error checking and
211 -- posting of warnings. The reason for this delayed processing is to take
212 -- advantage of back-annotations of size and alignment values performed by
213 -- the back end.
215 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
216 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
217 -- already have modified all Sloc values if the -gnatD option is set.
219 type UC_Entry is record
220 Eloc : Source_Ptr; -- node used for posting warnings
221 Source : Entity_Id; -- source type for unchecked conversion
222 Target : Entity_Id; -- target type for unchecked conversion
223 Act_Unit : Entity_Id; -- actual function instantiated
224 end record;
226 package Unchecked_Conversions is new Table.Table (
227 Table_Component_Type => UC_Entry,
228 Table_Index_Type => Int,
229 Table_Low_Bound => 1,
230 Table_Initial => 50,
231 Table_Increment => 200,
232 Table_Name => "Unchecked_Conversions");
234 ----------------------------------------
235 -- Table for Validate_Address_Clauses --
236 ----------------------------------------
238 -- If an address clause has the form
240 -- for X'Address use Expr
242 -- where Expr is of the form Y'Address or recursively is a reference to a
243 -- constant of either of these forms, and X and Y are entities of objects,
244 -- then if Y has a smaller alignment than X, that merits a warning about
245 -- possible bad alignment. The following table collects address clauses of
246 -- this kind. We put these in a table so that they can be checked after the
247 -- back end has completed annotation of the alignments of objects, since we
248 -- can catch more cases that way.
250 type Address_Clause_Check_Record is record
251 N : Node_Id;
252 -- The address clause
254 X : Entity_Id;
255 -- The entity of the object overlaying Y
257 Y : Entity_Id;
258 -- The entity of the object being overlaid
260 Off : Boolean;
261 -- Whether the address is offset within Y
262 end record;
264 package Address_Clause_Checks is new Table.Table (
265 Table_Component_Type => Address_Clause_Check_Record,
266 Table_Index_Type => Int,
267 Table_Low_Bound => 1,
268 Table_Initial => 20,
269 Table_Increment => 200,
270 Table_Name => "Address_Clause_Checks");
272 -----------------------------------------
273 -- Adjust_Record_For_Reverse_Bit_Order --
274 -----------------------------------------
276 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
277 Comp : Node_Id;
278 CC : Node_Id;
280 begin
281 -- Processing depends on version of Ada
283 -- For Ada 95, we just renumber bits within a storage unit. We do the
284 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
285 -- Ada 83, and are free to add this extension.
287 if Ada_Version < Ada_2005 then
288 Comp := First_Component_Or_Discriminant (R);
289 while Present (Comp) loop
290 CC := Component_Clause (Comp);
292 -- If component clause is present, then deal with the non-default
293 -- bit order case for Ada 95 mode.
295 -- We only do this processing for the base type, and in fact that
296 -- is important, since otherwise if there are record subtypes, we
297 -- could reverse the bits once for each subtype, which is wrong.
299 if Present (CC) and then Ekind (R) = E_Record_Type then
300 declare
301 CFB : constant Uint := Component_Bit_Offset (Comp);
302 CSZ : constant Uint := Esize (Comp);
303 CLC : constant Node_Id := Component_Clause (Comp);
304 Pos : constant Node_Id := Position (CLC);
305 FB : constant Node_Id := First_Bit (CLC);
307 Storage_Unit_Offset : constant Uint :=
308 CFB / System_Storage_Unit;
310 Start_Bit : constant Uint :=
311 CFB mod System_Storage_Unit;
313 begin
314 -- Cases where field goes over storage unit boundary
316 if Start_Bit + CSZ > System_Storage_Unit then
318 -- Allow multi-byte field but generate warning
320 if Start_Bit mod System_Storage_Unit = 0
321 and then CSZ mod System_Storage_Unit = 0
322 then
323 Error_Msg_N
324 ("info: multi-byte field specified with "
325 & "non-standard Bit_Order?V?", CLC);
327 if Bytes_Big_Endian then
328 Error_Msg_N
329 ("\bytes are not reversed "
330 & "(component is big-endian)?V?", CLC);
331 else
332 Error_Msg_N
333 ("\bytes are not reversed "
334 & "(component is little-endian)?V?", CLC);
335 end if;
337 -- Do not allow non-contiguous field
339 else
340 Error_Msg_N
341 ("attempt to specify non-contiguous field "
342 & "not permitted", CLC);
343 Error_Msg_N
344 ("\caused by non-standard Bit_Order "
345 & "specified", CLC);
346 Error_Msg_N
347 ("\consider possibility of using "
348 & "Ada 2005 mode here", CLC);
349 end if;
351 -- Case where field fits in one storage unit
353 else
354 -- Give warning if suspicious component clause
356 if Intval (FB) >= System_Storage_Unit
357 and then Warn_On_Reverse_Bit_Order
358 then
359 Error_Msg_N
360 ("info: Bit_Order clause does not affect " &
361 "byte ordering?V?", Pos);
362 Error_Msg_Uint_1 :=
363 Intval (Pos) + Intval (FB) /
364 System_Storage_Unit;
365 Error_Msg_N
366 ("info: position normalized to ^ before bit " &
367 "order interpreted?V?", Pos);
368 end if;
370 -- Here is where we fix up the Component_Bit_Offset value
371 -- to account for the reverse bit order. Some examples of
372 -- what needs to be done are:
374 -- First_Bit .. Last_Bit Component_Bit_Offset
375 -- old new old new
377 -- 0 .. 0 7 .. 7 0 7
378 -- 0 .. 1 6 .. 7 0 6
379 -- 0 .. 2 5 .. 7 0 5
380 -- 0 .. 7 0 .. 7 0 4
382 -- 1 .. 1 6 .. 6 1 6
383 -- 1 .. 4 3 .. 6 1 3
384 -- 4 .. 7 0 .. 3 4 0
386 -- The rule is that the first bit is is obtained by
387 -- subtracting the old ending bit from storage_unit - 1.
389 Set_Component_Bit_Offset
390 (Comp,
391 (Storage_Unit_Offset * System_Storage_Unit) +
392 (System_Storage_Unit - 1) -
393 (Start_Bit + CSZ - 1));
395 Set_Normalized_First_Bit
396 (Comp,
397 Component_Bit_Offset (Comp) mod
398 System_Storage_Unit);
399 end if;
400 end;
401 end if;
403 Next_Component_Or_Discriminant (Comp);
404 end loop;
406 -- For Ada 2005, we do machine scalar processing, as fully described In
407 -- AI-133. This involves gathering all components which start at the
408 -- same byte offset and processing them together. Same approach is still
409 -- valid in later versions including Ada 2012.
411 else
412 declare
413 Max_Machine_Scalar_Size : constant Uint :=
414 UI_From_Int
415 (Standard_Long_Long_Integer_Size);
416 -- We use this as the maximum machine scalar size
418 Num_CC : Natural;
419 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
421 begin
422 -- This first loop through components does two things. First it
423 -- deals with the case of components with component clauses whose
424 -- length is greater than the maximum machine scalar size (either
425 -- accepting them or rejecting as needed). Second, it counts the
426 -- number of components with component clauses whose length does
427 -- not exceed this maximum for later processing.
429 Num_CC := 0;
430 Comp := First_Component_Or_Discriminant (R);
431 while Present (Comp) loop
432 CC := Component_Clause (Comp);
434 if Present (CC) then
435 declare
436 Fbit : constant Uint := Static_Integer (First_Bit (CC));
437 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
439 begin
440 -- Case of component with last bit >= max machine scalar
442 if Lbit >= Max_Machine_Scalar_Size then
444 -- This is allowed only if first bit is zero, and
445 -- last bit + 1 is a multiple of storage unit size.
447 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
449 -- This is the case to give a warning if enabled
451 if Warn_On_Reverse_Bit_Order then
452 Error_Msg_N
453 ("info: multi-byte field specified with "
454 & " non-standard Bit_Order?V?", CC);
456 if Bytes_Big_Endian then
457 Error_Msg_N
458 ("\bytes are not reversed "
459 & "(component is big-endian)?V?", CC);
460 else
461 Error_Msg_N
462 ("\bytes are not reversed "
463 & "(component is little-endian)?V?", CC);
464 end if;
465 end if;
467 -- Give error message for RM 13.5.1(10) violation
469 else
470 Error_Msg_FE
471 ("machine scalar rules not followed for&",
472 First_Bit (CC), Comp);
474 Error_Msg_Uint_1 := Lbit + 1;
475 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
476 Error_Msg_F
477 ("\last bit + 1 (^) exceeds maximum machine "
478 & "scalar size (^)",
479 First_Bit (CC));
481 if (Lbit + 1) mod SSU /= 0 then
482 Error_Msg_Uint_1 := SSU;
483 Error_Msg_F
484 ("\and is not a multiple of Storage_Unit (^) "
485 & "(RM 13.5.1(10))",
486 First_Bit (CC));
488 else
489 Error_Msg_Uint_1 := Fbit;
490 Error_Msg_F
491 ("\and first bit (^) is non-zero "
492 & "(RM 13.4.1(10))",
493 First_Bit (CC));
494 end if;
495 end if;
497 -- OK case of machine scalar related component clause,
498 -- For now, just count them.
500 else
501 Num_CC := Num_CC + 1;
502 end if;
503 end;
504 end if;
506 Next_Component_Or_Discriminant (Comp);
507 end loop;
509 -- We need to sort the component clauses on the basis of the
510 -- Position values in the clause, so we can group clauses with
511 -- the same Position together to determine the relevant machine
512 -- scalar size.
514 Sort_CC : declare
515 Comps : array (0 .. Num_CC) of Entity_Id;
516 -- Array to collect component and discriminant entities. The
517 -- data starts at index 1, the 0'th entry is for the sort
518 -- routine.
520 function CP_Lt (Op1, Op2 : Natural) return Boolean;
521 -- Compare routine for Sort
523 procedure CP_Move (From : Natural; To : Natural);
524 -- Move routine for Sort
526 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
528 Start : Natural;
529 Stop : Natural;
530 -- Start and stop positions in the component list of the set of
531 -- components with the same starting position (that constitute
532 -- components in a single machine scalar).
534 MaxL : Uint;
535 -- Maximum last bit value of any component in this set
537 MSS : Uint;
538 -- Corresponding machine scalar size
540 -----------
541 -- CP_Lt --
542 -----------
544 function CP_Lt (Op1, Op2 : Natural) return Boolean is
545 begin
546 return Position (Component_Clause (Comps (Op1))) <
547 Position (Component_Clause (Comps (Op2)));
548 end CP_Lt;
550 -------------
551 -- CP_Move --
552 -------------
554 procedure CP_Move (From : Natural; To : Natural) is
555 begin
556 Comps (To) := Comps (From);
557 end CP_Move;
559 -- Start of processing for Sort_CC
561 begin
562 -- Collect the machine scalar relevant component clauses
564 Num_CC := 0;
565 Comp := First_Component_Or_Discriminant (R);
566 while Present (Comp) loop
567 declare
568 CC : constant Node_Id := Component_Clause (Comp);
570 begin
571 -- Collect only component clauses whose last bit is less
572 -- than machine scalar size. Any component clause whose
573 -- last bit exceeds this value does not take part in
574 -- machine scalar layout considerations. The test for
575 -- Error_Posted makes sure we exclude component clauses
576 -- for which we already posted an error.
578 if Present (CC)
579 and then not Error_Posted (Last_Bit (CC))
580 and then Static_Integer (Last_Bit (CC)) <
581 Max_Machine_Scalar_Size
582 then
583 Num_CC := Num_CC + 1;
584 Comps (Num_CC) := Comp;
585 end if;
586 end;
588 Next_Component_Or_Discriminant (Comp);
589 end loop;
591 -- Sort by ascending position number
593 Sorting.Sort (Num_CC);
595 -- We now have all the components whose size does not exceed
596 -- the max machine scalar value, sorted by starting position.
597 -- In this loop we gather groups of clauses starting at the
598 -- same position, to process them in accordance with AI-133.
600 Stop := 0;
601 while Stop < Num_CC loop
602 Start := Stop + 1;
603 Stop := Start;
604 MaxL :=
605 Static_Integer
606 (Last_Bit (Component_Clause (Comps (Start))));
607 while Stop < Num_CC loop
608 if Static_Integer
609 (Position (Component_Clause (Comps (Stop + 1)))) =
610 Static_Integer
611 (Position (Component_Clause (Comps (Stop))))
612 then
613 Stop := Stop + 1;
614 MaxL :=
615 UI_Max
616 (MaxL,
617 Static_Integer
618 (Last_Bit
619 (Component_Clause (Comps (Stop)))));
620 else
621 exit;
622 end if;
623 end loop;
625 -- Now we have a group of component clauses from Start to
626 -- Stop whose positions are identical, and MaxL is the
627 -- maximum last bit value of any of these components.
629 -- We need to determine the corresponding machine scalar
630 -- size. This loop assumes that machine scalar sizes are
631 -- even, and that each possible machine scalar has twice
632 -- as many bits as the next smaller one.
634 MSS := Max_Machine_Scalar_Size;
635 while MSS mod 2 = 0
636 and then (MSS / 2) >= SSU
637 and then (MSS / 2) > MaxL
638 loop
639 MSS := MSS / 2;
640 end loop;
642 -- Here is where we fix up the Component_Bit_Offset value
643 -- to account for the reverse bit order. Some examples of
644 -- what needs to be done for the case of a machine scalar
645 -- size of 8 are:
647 -- First_Bit .. Last_Bit Component_Bit_Offset
648 -- old new old new
650 -- 0 .. 0 7 .. 7 0 7
651 -- 0 .. 1 6 .. 7 0 6
652 -- 0 .. 2 5 .. 7 0 5
653 -- 0 .. 7 0 .. 7 0 4
655 -- 1 .. 1 6 .. 6 1 6
656 -- 1 .. 4 3 .. 6 1 3
657 -- 4 .. 7 0 .. 3 4 0
659 -- The rule is that the first bit is obtained by subtracting
660 -- the old ending bit from machine scalar size - 1.
662 for C in Start .. Stop loop
663 declare
664 Comp : constant Entity_Id := Comps (C);
665 CC : constant Node_Id := Component_Clause (Comp);
667 LB : constant Uint := Static_Integer (Last_Bit (CC));
668 NFB : constant Uint := MSS - Uint_1 - LB;
669 NLB : constant Uint := NFB + Esize (Comp) - 1;
670 Pos : constant Uint := Static_Integer (Position (CC));
672 begin
673 if Warn_On_Reverse_Bit_Order then
674 Error_Msg_Uint_1 := MSS;
675 Error_Msg_N
676 ("info: reverse bit order in machine " &
677 "scalar of length^?V?", First_Bit (CC));
678 Error_Msg_Uint_1 := NFB;
679 Error_Msg_Uint_2 := NLB;
681 if Bytes_Big_Endian then
682 Error_Msg_NE
683 ("\big-endian range for component "
684 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
685 else
686 Error_Msg_NE
687 ("\little-endian range for component"
688 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
689 end if;
690 end if;
692 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
693 Set_Normalized_First_Bit (Comp, NFB mod SSU);
694 end;
695 end loop;
696 end loop;
697 end Sort_CC;
698 end;
699 end if;
700 end Adjust_Record_For_Reverse_Bit_Order;
702 -------------------------------------
703 -- Alignment_Check_For_Size_Change --
704 -------------------------------------
706 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
707 begin
708 -- If the alignment is known, and not set by a rep clause, and is
709 -- inconsistent with the size being set, then reset it to unknown,
710 -- we assume in this case that the size overrides the inherited
711 -- alignment, and that the alignment must be recomputed.
713 if Known_Alignment (Typ)
714 and then not Has_Alignment_Clause (Typ)
715 and then Size mod (Alignment (Typ) * SSU) /= 0
716 then
717 Init_Alignment (Typ);
718 end if;
719 end Alignment_Check_For_Size_Change;
721 -------------------------------------
722 -- Analyze_Aspects_At_Freeze_Point --
723 -------------------------------------
725 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
726 ASN : Node_Id;
727 A_Id : Aspect_Id;
728 Ritem : Node_Id;
730 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
731 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
732 -- the aspect specification node ASN.
734 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
735 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
736 -- a derived type can inherit aspects from its parent which have been
737 -- specified at the time of the derivation using an aspect, as in:
739 -- type A is range 1 .. 10
740 -- with Size => Not_Defined_Yet;
741 -- ..
742 -- type B is new A;
743 -- ..
744 -- Not_Defined_Yet : constant := 64;
746 -- In this example, the Size of A is considered to be specified prior
747 -- to the derivation, and thus inherited, even though the value is not
748 -- known at the time of derivation. To deal with this, we use two entity
749 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
750 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
751 -- the derived type (B here). If this flag is set when the derived type
752 -- is frozen, then this procedure is called to ensure proper inheritance
753 -- of all delayed aspects from the parent type. The derived type is E,
754 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
755 -- aspect specification node in the Rep_Item chain for the parent type.
757 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
758 -- Given an aspect specification node ASN whose expression is an
759 -- optional Boolean, this routines creates the corresponding pragma
760 -- at the freezing point.
762 ----------------------------------
763 -- Analyze_Aspect_Default_Value --
764 ----------------------------------
766 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
767 Ent : constant Entity_Id := Entity (ASN);
768 Expr : constant Node_Id := Expression (ASN);
769 Id : constant Node_Id := Identifier (ASN);
771 begin
772 Error_Msg_Name_1 := Chars (Id);
774 if not Is_Type (Ent) then
775 Error_Msg_N ("aspect% can only apply to a type", Id);
776 return;
778 elsif not Is_First_Subtype (Ent) then
779 Error_Msg_N ("aspect% cannot apply to subtype", Id);
780 return;
782 elsif A_Id = Aspect_Default_Value
783 and then not Is_Scalar_Type (Ent)
784 then
785 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
786 return;
788 elsif A_Id = Aspect_Default_Component_Value then
789 if not Is_Array_Type (Ent) then
790 Error_Msg_N ("aspect% can only be applied to array type", Id);
791 return;
793 elsif not Is_Scalar_Type (Component_Type (Ent)) then
794 Error_Msg_N ("aspect% requires scalar components", Id);
795 return;
796 end if;
797 end if;
799 Set_Has_Default_Aspect (Base_Type (Ent));
801 if Is_Scalar_Type (Ent) then
802 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
803 else
804 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
805 end if;
806 end Analyze_Aspect_Default_Value;
808 ---------------------------------
809 -- Inherit_Delayed_Rep_Aspects --
810 ---------------------------------
812 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
813 P : constant Entity_Id := Entity (ASN);
814 -- Entithy for parent type
816 N : Node_Id;
817 -- Item from Rep_Item chain
819 A : Aspect_Id;
821 begin
822 -- Loop through delayed aspects for the parent type
824 N := ASN;
825 while Present (N) loop
826 if Nkind (N) = N_Aspect_Specification then
827 exit when Entity (N) /= P;
829 if Is_Delayed_Aspect (N) then
830 A := Get_Aspect_Id (Chars (Identifier (N)));
832 -- Process delayed rep aspect. For Boolean attributes it is
833 -- not possible to cancel an attribute once set (the attempt
834 -- to use an aspect with xxx => False is an error) for a
835 -- derived type. So for those cases, we do not have to check
836 -- if a clause has been given for the derived type, since it
837 -- is harmless to set it again if it is already set.
839 case A is
841 -- Alignment
843 when Aspect_Alignment =>
844 if not Has_Alignment_Clause (E) then
845 Set_Alignment (E, Alignment (P));
846 end if;
848 -- Atomic
850 when Aspect_Atomic =>
851 if Is_Atomic (P) then
852 Set_Is_Atomic (E);
853 end if;
855 -- Atomic_Components
857 when Aspect_Atomic_Components =>
858 if Has_Atomic_Components (P) then
859 Set_Has_Atomic_Components (Base_Type (E));
860 end if;
862 -- Bit_Order
864 when Aspect_Bit_Order =>
865 if Is_Record_Type (E)
866 and then No (Get_Attribute_Definition_Clause
867 (E, Attribute_Bit_Order))
868 and then Reverse_Bit_Order (P)
869 then
870 Set_Reverse_Bit_Order (Base_Type (E));
871 end if;
873 -- Component_Size
875 when Aspect_Component_Size =>
876 if Is_Array_Type (E)
877 and then not Has_Component_Size_Clause (E)
878 then
879 Set_Component_Size
880 (Base_Type (E), Component_Size (P));
881 end if;
883 -- Machine_Radix
885 when Aspect_Machine_Radix =>
886 if Is_Decimal_Fixed_Point_Type (E)
887 and then not Has_Machine_Radix_Clause (E)
888 then
889 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
890 end if;
892 -- Object_Size (also Size which also sets Object_Size)
894 when Aspect_Object_Size | Aspect_Size =>
895 if not Has_Size_Clause (E)
896 and then
897 No (Get_Attribute_Definition_Clause
898 (E, Attribute_Object_Size))
899 then
900 Set_Esize (E, Esize (P));
901 end if;
903 -- Pack
905 when Aspect_Pack =>
906 if not Is_Packed (E) then
907 Set_Is_Packed (Base_Type (E));
909 if Is_Bit_Packed_Array (P) then
910 Set_Is_Bit_Packed_Array (Base_Type (E));
911 Set_Packed_Array_Impl_Type
912 (E, Packed_Array_Impl_Type (P));
913 end if;
914 end if;
916 -- Scalar_Storage_Order
918 when Aspect_Scalar_Storage_Order =>
919 if (Is_Record_Type (E) or else Is_Array_Type (E))
920 and then No (Get_Attribute_Definition_Clause
921 (E, Attribute_Scalar_Storage_Order))
922 and then Reverse_Storage_Order (P)
923 then
924 Set_Reverse_Storage_Order (Base_Type (E));
926 -- Clear default SSO indications, since the aspect
927 -- overrides the default.
929 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
930 Set_SSO_Set_High_By_Default (Base_Type (E), False);
931 end if;
933 -- Small
935 when Aspect_Small =>
936 if Is_Fixed_Point_Type (E)
937 and then not Has_Small_Clause (E)
938 then
939 Set_Small_Value (E, Small_Value (P));
940 end if;
942 -- Storage_Size
944 when Aspect_Storage_Size =>
945 if (Is_Access_Type (E) or else Is_Task_Type (E))
946 and then not Has_Storage_Size_Clause (E)
947 then
948 Set_Storage_Size_Variable
949 (Base_Type (E), Storage_Size_Variable (P));
950 end if;
952 -- Value_Size
954 when Aspect_Value_Size =>
956 -- Value_Size is never inherited, it is either set by
957 -- default, or it is explicitly set for the derived
958 -- type. So nothing to do here.
960 null;
962 -- Volatile
964 when Aspect_Volatile =>
965 if Is_Volatile (P) then
966 Set_Is_Volatile (E);
967 end if;
969 -- Volatile_Full_Access
971 when Aspect_Volatile_Full_Access =>
972 if Is_Volatile_Full_Access (P) then
973 Set_Is_Volatile_Full_Access (E);
974 end if;
976 -- Volatile_Components
978 when Aspect_Volatile_Components =>
979 if Has_Volatile_Components (P) then
980 Set_Has_Volatile_Components (Base_Type (E));
981 end if;
983 -- That should be all the Rep Aspects
985 when others =>
986 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
987 null;
989 end case;
990 end if;
991 end if;
993 N := Next_Rep_Item (N);
994 end loop;
995 end Inherit_Delayed_Rep_Aspects;
997 -------------------------------------
998 -- Make_Pragma_From_Boolean_Aspect --
999 -------------------------------------
1001 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1002 Ident : constant Node_Id := Identifier (ASN);
1003 A_Name : constant Name_Id := Chars (Ident);
1004 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1005 Ent : constant Entity_Id := Entity (ASN);
1006 Expr : constant Node_Id := Expression (ASN);
1007 Loc : constant Source_Ptr := Sloc (ASN);
1009 Prag : Node_Id;
1011 procedure Check_False_Aspect_For_Derived_Type;
1012 -- This procedure checks for the case of a false aspect for a derived
1013 -- type, which improperly tries to cancel an aspect inherited from
1014 -- the parent.
1016 -----------------------------------------
1017 -- Check_False_Aspect_For_Derived_Type --
1018 -----------------------------------------
1020 procedure Check_False_Aspect_For_Derived_Type is
1021 Par : Node_Id;
1023 begin
1024 -- We are only checking derived types
1026 if not Is_Derived_Type (E) then
1027 return;
1028 end if;
1030 Par := Nearest_Ancestor (E);
1032 case A_Id is
1033 when Aspect_Atomic | Aspect_Shared =>
1034 if not Is_Atomic (Par) then
1035 return;
1036 end if;
1038 when Aspect_Atomic_Components =>
1039 if not Has_Atomic_Components (Par) then
1040 return;
1041 end if;
1043 when Aspect_Discard_Names =>
1044 if not Discard_Names (Par) then
1045 return;
1046 end if;
1048 when Aspect_Pack =>
1049 if not Is_Packed (Par) then
1050 return;
1051 end if;
1053 when Aspect_Unchecked_Union =>
1054 if not Is_Unchecked_Union (Par) then
1055 return;
1056 end if;
1058 when Aspect_Volatile =>
1059 if not Is_Volatile (Par) then
1060 return;
1061 end if;
1063 when Aspect_Volatile_Components =>
1064 if not Has_Volatile_Components (Par) then
1065 return;
1066 end if;
1068 when Aspect_Volatile_Full_Access =>
1069 if not Is_Volatile_Full_Access (Par) then
1070 return;
1071 end if;
1073 when others =>
1074 return;
1075 end case;
1077 -- Fall through means we are canceling an inherited aspect
1079 Error_Msg_Name_1 := A_Name;
1080 Error_Msg_NE
1081 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1082 end Check_False_Aspect_For_Derived_Type;
1084 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1086 begin
1087 -- Note that we know Expr is present, because for a missing Expr
1088 -- argument, we knew it was True and did not need to delay the
1089 -- evaluation to the freeze point.
1091 if Is_False (Static_Boolean (Expr)) then
1092 Check_False_Aspect_For_Derived_Type;
1094 else
1095 Prag :=
1096 Make_Pragma (Loc,
1097 Pragma_Argument_Associations => New_List (
1098 Make_Pragma_Argument_Association (Sloc (Ident),
1099 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))),
1101 Pragma_Identifier =>
1102 Make_Identifier (Sloc (Ident), Chars (Ident)));
1104 Set_From_Aspect_Specification (Prag, True);
1105 Set_Corresponding_Aspect (Prag, ASN);
1106 Set_Aspect_Rep_Item (ASN, Prag);
1107 Set_Is_Delayed_Aspect (Prag);
1108 Set_Parent (Prag, ASN);
1109 end if;
1110 end Make_Pragma_From_Boolean_Aspect;
1112 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1114 begin
1115 -- Must be visible in current scope
1117 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1118 return;
1119 end if;
1121 -- Look for aspect specification entries for this entity
1123 ASN := First_Rep_Item (E);
1124 while Present (ASN) loop
1125 if Nkind (ASN) = N_Aspect_Specification then
1126 exit when Entity (ASN) /= E;
1128 if Is_Delayed_Aspect (ASN) then
1129 A_Id := Get_Aspect_Id (ASN);
1131 case A_Id is
1133 -- For aspects whose expression is an optional Boolean, make
1134 -- the corresponding pragma at the freeze point.
1136 when Boolean_Aspects |
1137 Library_Unit_Aspects =>
1138 Make_Pragma_From_Boolean_Aspect (ASN);
1140 -- Special handling for aspects that don't correspond to
1141 -- pragmas/attributes.
1143 when Aspect_Default_Value |
1144 Aspect_Default_Component_Value =>
1146 -- Do not inherit aspect for anonymous base type of a
1147 -- scalar or array type, because they apply to the first
1148 -- subtype of the type, and will be processed when that
1149 -- first subtype is frozen.
1151 if Is_Derived_Type (E)
1152 and then not Comes_From_Source (E)
1153 and then E /= First_Subtype (E)
1154 then
1155 null;
1156 else
1157 Analyze_Aspect_Default_Value (ASN);
1158 end if;
1160 -- Ditto for iterator aspects, because the corresponding
1161 -- attributes may not have been analyzed yet.
1163 when Aspect_Constant_Indexing |
1164 Aspect_Variable_Indexing |
1165 Aspect_Default_Iterator |
1166 Aspect_Iterator_Element =>
1167 Analyze (Expression (ASN));
1169 if Etype (Expression (ASN)) = Any_Type then
1170 Error_Msg_NE
1171 ("\aspect must be fully defined before & is frozen",
1172 ASN, E);
1173 end if;
1175 when Aspect_Iterable =>
1176 Validate_Iterable_Aspect (E, ASN);
1178 when others =>
1179 null;
1180 end case;
1182 Ritem := Aspect_Rep_Item (ASN);
1184 if Present (Ritem) then
1185 Analyze (Ritem);
1186 end if;
1187 end if;
1188 end if;
1190 Next_Rep_Item (ASN);
1191 end loop;
1193 -- This is where we inherit delayed rep aspects from our parent. Note
1194 -- that if we fell out of the above loop with ASN non-empty, it means
1195 -- we hit an aspect for an entity other than E, and it must be the
1196 -- type from which we were derived.
1198 if May_Inherit_Delayed_Rep_Aspects (E) then
1199 Inherit_Delayed_Rep_Aspects (ASN);
1200 end if;
1201 end Analyze_Aspects_At_Freeze_Point;
1203 -----------------------------------
1204 -- Analyze_Aspect_Specifications --
1205 -----------------------------------
1207 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1208 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1209 -- Establish linkages between an aspect and its corresponding pragma
1211 procedure Insert_Pragma
1212 (Prag : Node_Id;
1213 Is_Instance : Boolean := False);
1214 -- Subsidiary to the analysis of aspects
1215 -- Abstract_State
1216 -- Attach_Handler
1217 -- Contract_Cases
1218 -- Depends
1219 -- Ghost
1220 -- Global
1221 -- Initial_Condition
1222 -- Initializes
1223 -- Post
1224 -- Pre
1225 -- Refined_Depends
1226 -- Refined_Global
1227 -- Refined_State
1228 -- SPARK_Mode
1229 -- Warnings
1230 -- Insert pragma Prag such that it mimics the placement of a source
1231 -- pragma of the same kind. Flag Is_Generic should be set when the
1232 -- context denotes a generic instance.
1234 --------------
1235 -- Decorate --
1236 --------------
1238 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1239 begin
1240 Set_Aspect_Rep_Item (Asp, Prag);
1241 Set_Corresponding_Aspect (Prag, Asp);
1242 Set_From_Aspect_Specification (Prag);
1243 Set_Parent (Prag, Asp);
1244 end Decorate;
1246 -------------------
1247 -- Insert_Pragma --
1248 -------------------
1250 procedure Insert_Pragma
1251 (Prag : Node_Id;
1252 Is_Instance : Boolean := False)
1254 Aux : Node_Id;
1255 Decl : Node_Id;
1256 Decls : List_Id;
1257 Def : Node_Id;
1258 Inserted : Boolean := False;
1260 begin
1261 -- When the aspect appears on an entry, package, protected unit,
1262 -- subprogram, or task unit body, insert the generated pragma at the
1263 -- top of the body declarations to emulate the behavior of a source
1264 -- pragma.
1266 -- package body Pack with Aspect is
1268 -- package body Pack is
1269 -- pragma Prag;
1271 if Nkind_In (N, N_Entry_Body,
1272 N_Package_Body,
1273 N_Protected_Body,
1274 N_Subprogram_Body,
1275 N_Task_Body)
1276 then
1277 Decls := Declarations (N);
1279 if No (Decls) then
1280 Decls := New_List;
1281 Set_Declarations (N, Decls);
1282 end if;
1284 Prepend_To (Decls, Prag);
1286 -- When the aspect is associated with a [generic] package declaration
1287 -- insert the generated pragma at the top of the visible declarations
1288 -- to emulate the behavior of a source pragma.
1290 -- package Pack with Aspect is
1292 -- package Pack is
1293 -- pragma Prag;
1295 elsif Nkind_In (N, N_Generic_Package_Declaration,
1296 N_Package_Declaration)
1297 then
1298 Decls := Visible_Declarations (Specification (N));
1300 if No (Decls) then
1301 Decls := New_List;
1302 Set_Visible_Declarations (Specification (N), Decls);
1303 end if;
1305 -- The visible declarations of a generic instance have the
1306 -- following structure:
1308 -- <renamings of generic formals>
1309 -- <renamings of internally-generated spec and body>
1310 -- <first source declaration>
1312 -- Insert the pragma before the first source declaration by
1313 -- skipping the instance "header" to ensure proper visibility of
1314 -- all formals.
1316 if Is_Instance then
1317 Decl := First (Decls);
1318 while Present (Decl) loop
1319 if Comes_From_Source (Decl) then
1320 Insert_Before (Decl, Prag);
1321 Inserted := True;
1322 exit;
1323 else
1324 Next (Decl);
1325 end if;
1326 end loop;
1328 -- The pragma is placed after the instance "header"
1330 if not Inserted then
1331 Append_To (Decls, Prag);
1332 end if;
1334 -- Otherwise this is not a generic instance
1336 else
1337 Prepend_To (Decls, Prag);
1338 end if;
1340 -- When the aspect is associated with a protected unit declaration,
1341 -- insert the generated pragma at the top of the visible declarations
1342 -- the emulate the behavior of a source pragma.
1344 -- protected [type] Prot with Aspect is
1346 -- protected [type] Prot is
1347 -- pragma Prag;
1349 elsif Nkind (N) = N_Protected_Type_Declaration then
1350 Def := Protected_Definition (N);
1352 if No (Def) then
1353 Def :=
1354 Make_Protected_Definition (Sloc (N),
1355 Visible_Declarations => New_List,
1356 End_Label => Empty);
1358 Set_Protected_Definition (N, Def);
1359 end if;
1361 Decls := Visible_Declarations (Def);
1363 if No (Decls) then
1364 Decls := New_List;
1365 Set_Visible_Declarations (Def, Decls);
1366 end if;
1368 Prepend_To (Decls, Prag);
1370 -- When the aspect is associated with a task unit declaration, insert
1371 -- insert the generated pragma at the top of the visible declarations
1372 -- the emulate the behavior of a source pragma.
1374 -- task [type] Prot with Aspect is
1376 -- task [type] Prot is
1377 -- pragma Prag;
1379 elsif Nkind (N) = N_Task_Type_Declaration then
1380 Def := Task_Definition (N);
1382 if No (Def) then
1383 Def :=
1384 Make_Task_Definition (Sloc (N),
1385 Visible_Declarations => New_List,
1386 End_Label => Empty);
1388 Set_Task_Definition (N, Def);
1389 end if;
1391 Decls := Visible_Declarations (Def);
1393 if No (Decls) then
1394 Decls := New_List;
1395 Set_Visible_Declarations (Def, Decls);
1396 end if;
1398 Prepend_To (Decls, Prag);
1400 -- When the context is a library unit, the pragma is added to the
1401 -- Pragmas_After list.
1403 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1404 Aux := Aux_Decls_Node (Parent (N));
1406 if No (Pragmas_After (Aux)) then
1407 Set_Pragmas_After (Aux, New_List);
1408 end if;
1410 Prepend (Prag, Pragmas_After (Aux));
1412 -- Default, the pragma is inserted after the context
1414 else
1415 Insert_After (N, Prag);
1416 end if;
1417 end Insert_Pragma;
1419 -- Local variables
1421 Aspect : Node_Id;
1422 Aitem : Node_Id;
1423 Ent : Node_Id;
1425 L : constant List_Id := Aspect_Specifications (N);
1427 Ins_Node : Node_Id := N;
1428 -- Insert pragmas/attribute definition clause after this node when no
1429 -- delayed analysis is required.
1431 -- Start of processing for Analyze_Aspect_Specifications
1433 -- The general processing involves building an attribute definition
1434 -- clause or a pragma node that corresponds to the aspect. Then in order
1435 -- to delay the evaluation of this aspect to the freeze point, we attach
1436 -- the corresponding pragma/attribute definition clause to the aspect
1437 -- specification node, which is then placed in the Rep Item chain. In
1438 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1439 -- and we evaluate the rep item at the freeze point. When the aspect
1440 -- doesn't have a corresponding pragma/attribute definition clause, then
1441 -- its analysis is simply delayed at the freeze point.
1443 -- Some special cases don't require delay analysis, thus the aspect is
1444 -- analyzed right now.
1446 -- Note that there is a special handling for Pre, Post, Test_Case,
1447 -- Contract_Cases aspects. In these cases, we do not have to worry
1448 -- about delay issues, since the pragmas themselves deal with delay
1449 -- of visibility for the expression analysis. Thus, we just insert
1450 -- the pragma after the node N.
1452 begin
1453 pragma Assert (Present (L));
1455 -- Loop through aspects
1457 Aspect := First (L);
1458 Aspect_Loop : while Present (Aspect) loop
1459 Analyze_One_Aspect : declare
1460 Expr : constant Node_Id := Expression (Aspect);
1461 Id : constant Node_Id := Identifier (Aspect);
1462 Loc : constant Source_Ptr := Sloc (Aspect);
1463 Nam : constant Name_Id := Chars (Id);
1464 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1465 Anod : Node_Id;
1467 Delay_Required : Boolean;
1468 -- Set False if delay is not required
1470 Eloc : Source_Ptr := No_Location;
1471 -- Source location of expression, modified when we split PPC's. It
1472 -- is set below when Expr is present.
1474 procedure Analyze_Aspect_External_Or_Link_Name;
1475 -- Perform analysis of the External_Name or Link_Name aspects
1477 procedure Analyze_Aspect_Implicit_Dereference;
1478 -- Perform analysis of the Implicit_Dereference aspects
1480 procedure Make_Aitem_Pragma
1481 (Pragma_Argument_Associations : List_Id;
1482 Pragma_Name : Name_Id);
1483 -- This is a wrapper for Make_Pragma used for converting aspects
1484 -- to pragmas. It takes care of Sloc (set from Loc) and building
1485 -- the pragma identifier from the given name. In addition the
1486 -- flags Class_Present and Split_PPC are set from the aspect
1487 -- node, as well as Is_Ignored. This routine also sets the
1488 -- From_Aspect_Specification in the resulting pragma node to
1489 -- True, and sets Corresponding_Aspect to point to the aspect.
1490 -- The resulting pragma is assigned to Aitem.
1492 ------------------------------------------
1493 -- Analyze_Aspect_External_Or_Link_Name --
1494 ------------------------------------------
1496 procedure Analyze_Aspect_External_Or_Link_Name is
1497 begin
1498 -- Verify that there is an Import/Export aspect defined for the
1499 -- entity. The processing of that aspect in turn checks that
1500 -- there is a Convention aspect declared. The pragma is
1501 -- constructed when processing the Convention aspect.
1503 declare
1504 A : Node_Id;
1506 begin
1507 A := First (L);
1508 while Present (A) loop
1509 exit when Nam_In (Chars (Identifier (A)), Name_Export,
1510 Name_Import);
1511 Next (A);
1512 end loop;
1514 if No (A) then
1515 Error_Msg_N
1516 ("missing Import/Export for Link/External name",
1517 Aspect);
1518 end if;
1519 end;
1520 end Analyze_Aspect_External_Or_Link_Name;
1522 -----------------------------------------
1523 -- Analyze_Aspect_Implicit_Dereference --
1524 -----------------------------------------
1526 procedure Analyze_Aspect_Implicit_Dereference is
1527 Disc : Entity_Id;
1528 Parent_Disc : Entity_Id;
1530 begin
1531 if not Is_Type (E) or else not Has_Discriminants (E) then
1532 Error_Msg_N
1533 ("aspect must apply to a type with discriminants", Expr);
1535 elsif not Is_Entity_Name (Expr) then
1536 Error_Msg_N
1537 ("aspect must name a discriminant of current type", Expr);
1539 else
1540 Disc := First_Discriminant (E);
1541 while Present (Disc) loop
1542 if Chars (Expr) = Chars (Disc)
1543 and then Ekind (Etype (Disc)) =
1544 E_Anonymous_Access_Type
1545 then
1546 Set_Has_Implicit_Dereference (E);
1547 Set_Has_Implicit_Dereference (Disc);
1548 exit;
1549 end if;
1551 Next_Discriminant (Disc);
1552 end loop;
1554 -- Error if no proper access discriminant
1556 if No (Disc) then
1557 Error_Msg_NE
1558 ("not an access discriminant of&", Expr, E);
1559 return;
1560 end if;
1561 end if;
1563 -- For a type extension, check whether parent has a
1564 -- reference discriminant, to verify that use is proper.
1566 if Is_Derived_Type (E)
1567 and then Has_Discriminants (Etype (E))
1568 then
1569 Parent_Disc := Get_Reference_Discriminant (Etype (E));
1571 if Present (Parent_Disc)
1572 and then Corresponding_Discriminant (Disc) /= Parent_Disc
1573 then
1574 Error_Msg_N ("reference discriminant does not match " &
1575 "discriminant of parent type", Expr);
1576 end if;
1577 end if;
1578 end Analyze_Aspect_Implicit_Dereference;
1580 -----------------------
1581 -- Make_Aitem_Pragma --
1582 -----------------------
1584 procedure Make_Aitem_Pragma
1585 (Pragma_Argument_Associations : List_Id;
1586 Pragma_Name : Name_Id)
1588 Args : List_Id := Pragma_Argument_Associations;
1590 begin
1591 -- We should never get here if aspect was disabled
1593 pragma Assert (not Is_Disabled (Aspect));
1595 -- Certain aspects allow for an optional name or expression. Do
1596 -- not generate a pragma with empty argument association list.
1598 if No (Args) or else No (Expression (First (Args))) then
1599 Args := No_List;
1600 end if;
1602 -- Build the pragma
1604 Aitem :=
1605 Make_Pragma (Loc,
1606 Pragma_Argument_Associations => Args,
1607 Pragma_Identifier =>
1608 Make_Identifier (Sloc (Id), Pragma_Name),
1609 Class_Present => Class_Present (Aspect),
1610 Split_PPC => Split_PPC (Aspect));
1612 -- Set additional semantic fields
1614 if Is_Ignored (Aspect) then
1615 Set_Is_Ignored (Aitem);
1616 elsif Is_Checked (Aspect) then
1617 Set_Is_Checked (Aitem);
1618 end if;
1620 Set_Corresponding_Aspect (Aitem, Aspect);
1621 Set_From_Aspect_Specification (Aitem);
1622 end Make_Aitem_Pragma;
1624 -- Start of processing for Analyze_One_Aspect
1626 begin
1627 -- Skip aspect if already analyzed, to avoid looping in some cases
1629 if Analyzed (Aspect) then
1630 goto Continue;
1631 end if;
1633 -- Skip looking at aspect if it is totally disabled. Just mark it
1634 -- as such for later reference in the tree. This also sets the
1635 -- Is_Ignored and Is_Checked flags appropriately.
1637 Check_Applicable_Policy (Aspect);
1639 if Is_Disabled (Aspect) then
1640 goto Continue;
1641 end if;
1643 -- Set the source location of expression, used in the case of
1644 -- a failed precondition/postcondition or invariant. Note that
1645 -- the source location of the expression is not usually the best
1646 -- choice here. For example, it gets located on the last AND
1647 -- keyword in a chain of boolean expressiond AND'ed together.
1648 -- It is best to put the message on the first character of the
1649 -- assertion, which is the effect of the First_Node call here.
1651 if Present (Expr) then
1652 Eloc := Sloc (First_Node (Expr));
1653 end if;
1655 -- Check restriction No_Implementation_Aspect_Specifications
1657 if Implementation_Defined_Aspect (A_Id) then
1658 Check_Restriction
1659 (No_Implementation_Aspect_Specifications, Aspect);
1660 end if;
1662 -- Check restriction No_Specification_Of_Aspect
1664 Check_Restriction_No_Specification_Of_Aspect (Aspect);
1666 -- Mark aspect analyzed (actual analysis is delayed till later)
1668 Set_Analyzed (Aspect);
1669 Set_Entity (Aspect, E);
1670 Ent := New_Occurrence_Of (E, Sloc (Id));
1672 -- Check for duplicate aspect. Note that the Comes_From_Source
1673 -- test allows duplicate Pre/Post's that we generate internally
1674 -- to escape being flagged here.
1676 if No_Duplicates_Allowed (A_Id) then
1677 Anod := First (L);
1678 while Anod /= Aspect loop
1679 if Comes_From_Source (Aspect)
1680 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
1681 then
1682 Error_Msg_Name_1 := Nam;
1683 Error_Msg_Sloc := Sloc (Anod);
1685 -- Case of same aspect specified twice
1687 if Class_Present (Anod) = Class_Present (Aspect) then
1688 if not Class_Present (Anod) then
1689 Error_Msg_NE
1690 ("aspect% for & previously given#",
1691 Id, E);
1692 else
1693 Error_Msg_NE
1694 ("aspect `%''Class` for & previously given#",
1695 Id, E);
1696 end if;
1697 end if;
1698 end if;
1700 Next (Anod);
1701 end loop;
1702 end if;
1704 -- Check some general restrictions on language defined aspects
1706 if not Implementation_Defined_Aspect (A_Id) then
1707 Error_Msg_Name_1 := Nam;
1709 -- Not allowed for renaming declarations
1711 if Nkind (N) in N_Renaming_Declaration then
1712 Error_Msg_N
1713 ("aspect % not allowed for renaming declaration",
1714 Aspect);
1715 end if;
1717 -- Not allowed for formal type declarations
1719 if Nkind (N) = N_Formal_Type_Declaration then
1720 Error_Msg_N
1721 ("aspect % not allowed for formal type declaration",
1722 Aspect);
1723 end if;
1724 end if;
1726 -- Copy expression for later processing by the procedures
1727 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
1729 Set_Entity (Id, New_Copy_Tree (Expr));
1731 -- Set Delay_Required as appropriate to aspect
1733 case Aspect_Delay (A_Id) is
1734 when Always_Delay =>
1735 Delay_Required := True;
1737 when Never_Delay =>
1738 Delay_Required := False;
1740 when Rep_Aspect =>
1742 -- If expression has the form of an integer literal, then
1743 -- do not delay, since we know the value cannot change.
1744 -- This optimization catches most rep clause cases.
1746 -- For Boolean aspects, don't delay if no expression
1748 if A_Id in Boolean_Aspects and then No (Expr) then
1749 Delay_Required := False;
1751 -- For non-Boolean aspects, don't delay if integer literal
1753 elsif A_Id not in Boolean_Aspects
1754 and then Present (Expr)
1755 and then Nkind (Expr) = N_Integer_Literal
1756 then
1757 Delay_Required := False;
1759 -- All other cases are delayed
1761 else
1762 Delay_Required := True;
1763 Set_Has_Delayed_Rep_Aspects (E);
1764 end if;
1765 end case;
1767 -- Processing based on specific aspect
1769 case A_Id is
1770 when Aspect_Unimplemented =>
1771 null; -- ??? temp for now
1773 -- No_Aspect should be impossible
1775 when No_Aspect =>
1776 raise Program_Error;
1778 -- Case 1: Aspects corresponding to attribute definition
1779 -- clauses.
1781 when Aspect_Address |
1782 Aspect_Alignment |
1783 Aspect_Bit_Order |
1784 Aspect_Component_Size |
1785 Aspect_Constant_Indexing |
1786 Aspect_Default_Iterator |
1787 Aspect_Dispatching_Domain |
1788 Aspect_External_Tag |
1789 Aspect_Input |
1790 Aspect_Iterable |
1791 Aspect_Iterator_Element |
1792 Aspect_Machine_Radix |
1793 Aspect_Object_Size |
1794 Aspect_Output |
1795 Aspect_Read |
1796 Aspect_Scalar_Storage_Order |
1797 Aspect_Size |
1798 Aspect_Small |
1799 Aspect_Simple_Storage_Pool |
1800 Aspect_Storage_Pool |
1801 Aspect_Stream_Size |
1802 Aspect_Value_Size |
1803 Aspect_Variable_Indexing |
1804 Aspect_Write =>
1806 -- Indexing aspects apply only to tagged type
1808 if (A_Id = Aspect_Constant_Indexing
1809 or else
1810 A_Id = Aspect_Variable_Indexing)
1811 and then not (Is_Type (E)
1812 and then Is_Tagged_Type (E))
1813 then
1814 Error_Msg_N
1815 ("indexing aspect can only apply to a tagged type",
1816 Aspect);
1817 goto Continue;
1818 end if;
1820 -- For the case of aspect Address, we don't consider that we
1821 -- know the entity is never set in the source, since it is
1822 -- is likely aliasing is occurring.
1824 -- Note: one might think that the analysis of the resulting
1825 -- attribute definition clause would take care of that, but
1826 -- that's not the case since it won't be from source.
1828 if A_Id = Aspect_Address then
1829 Set_Never_Set_In_Source (E, False);
1830 end if;
1832 -- Correctness of the profile of a stream operation is
1833 -- verified at the freeze point, but we must detect the
1834 -- illegal specification of this aspect for a subtype now,
1835 -- to prevent malformed rep_item chains.
1837 if A_Id = Aspect_Input or else
1838 A_Id = Aspect_Output or else
1839 A_Id = Aspect_Read or else
1840 A_Id = Aspect_Write
1841 then
1842 if not Is_First_Subtype (E) then
1843 Error_Msg_N
1844 ("local name must be a first subtype", Aspect);
1845 goto Continue;
1847 -- If stream aspect applies to the class-wide type,
1848 -- the generated attribute definition applies to the
1849 -- class-wide type as well.
1851 elsif Class_Present (Aspect) then
1852 Ent :=
1853 Make_Attribute_Reference (Loc,
1854 Prefix => Ent,
1855 Attribute_Name => Name_Class);
1856 end if;
1857 end if;
1859 -- Construct the attribute definition clause
1861 Aitem :=
1862 Make_Attribute_Definition_Clause (Loc,
1863 Name => Ent,
1864 Chars => Chars (Id),
1865 Expression => Relocate_Node (Expr));
1867 -- If the address is specified, then we treat the entity as
1868 -- referenced, to avoid spurious warnings. This is analogous
1869 -- to what is done with an attribute definition clause, but
1870 -- here we don't want to generate a reference because this
1871 -- is the point of definition of the entity.
1873 if A_Id = Aspect_Address then
1874 Set_Referenced (E);
1875 end if;
1877 -- Case 2: Aspects corresponding to pragmas
1879 -- Case 2a: Aspects corresponding to pragmas with two
1880 -- arguments, where the first argument is a local name
1881 -- referring to the entity, and the second argument is the
1882 -- aspect definition expression.
1884 -- Linker_Section/Suppress/Unsuppress
1886 when Aspect_Linker_Section |
1887 Aspect_Suppress |
1888 Aspect_Unsuppress =>
1890 Make_Aitem_Pragma
1891 (Pragma_Argument_Associations => New_List (
1892 Make_Pragma_Argument_Association (Loc,
1893 Expression => New_Occurrence_Of (E, Loc)),
1894 Make_Pragma_Argument_Association (Sloc (Expr),
1895 Expression => Relocate_Node (Expr))),
1896 Pragma_Name => Chars (Id));
1898 -- Synchronization
1900 -- Corresponds to pragma Implemented, construct the pragma
1902 when Aspect_Synchronization =>
1903 Make_Aitem_Pragma
1904 (Pragma_Argument_Associations => New_List (
1905 Make_Pragma_Argument_Association (Loc,
1906 Expression => New_Occurrence_Of (E, Loc)),
1907 Make_Pragma_Argument_Association (Sloc (Expr),
1908 Expression => Relocate_Node (Expr))),
1909 Pragma_Name => Name_Implemented);
1911 -- Attach_Handler
1913 when Aspect_Attach_Handler =>
1914 Make_Aitem_Pragma
1915 (Pragma_Argument_Associations => New_List (
1916 Make_Pragma_Argument_Association (Sloc (Ent),
1917 Expression => Ent),
1918 Make_Pragma_Argument_Association (Sloc (Expr),
1919 Expression => Relocate_Node (Expr))),
1920 Pragma_Name => Name_Attach_Handler);
1922 -- We need to insert this pragma into the tree to get proper
1923 -- processing and to look valid from a placement viewpoint.
1925 Insert_Pragma (Aitem);
1926 goto Continue;
1928 -- Dynamic_Predicate, Predicate, Static_Predicate
1930 when Aspect_Dynamic_Predicate |
1931 Aspect_Predicate |
1932 Aspect_Static_Predicate =>
1934 -- These aspects apply only to subtypes
1936 if not Is_Type (E) then
1937 Error_Msg_N
1938 ("predicate can only be specified for a subtype",
1939 Aspect);
1940 goto Continue;
1942 elsif Is_Incomplete_Type (E) then
1943 Error_Msg_N
1944 ("predicate cannot apply to incomplete view", Aspect);
1945 goto Continue;
1946 end if;
1948 -- Construct the pragma (always a pragma Predicate, with
1949 -- flags recording whether it is static/dynamic). We also
1950 -- set flags recording this in the type itself.
1952 Make_Aitem_Pragma
1953 (Pragma_Argument_Associations => New_List (
1954 Make_Pragma_Argument_Association (Sloc (Ent),
1955 Expression => Ent),
1956 Make_Pragma_Argument_Association (Sloc (Expr),
1957 Expression => Relocate_Node (Expr))),
1958 Pragma_Name => Name_Predicate);
1960 -- Mark type has predicates, and remember what kind of
1961 -- aspect lead to this predicate (we need this to access
1962 -- the right set of check policies later on).
1964 Set_Has_Predicates (E);
1966 if A_Id = Aspect_Dynamic_Predicate then
1967 Set_Has_Dynamic_Predicate_Aspect (E);
1968 elsif A_Id = Aspect_Static_Predicate then
1969 Set_Has_Static_Predicate_Aspect (E);
1970 end if;
1972 -- If the type is private, indicate that its completion
1973 -- has a freeze node, because that is the one that will
1974 -- be visible at freeze time.
1976 if Is_Private_Type (E) and then Present (Full_View (E)) then
1977 Set_Has_Predicates (Full_View (E));
1979 if A_Id = Aspect_Dynamic_Predicate then
1980 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
1981 elsif A_Id = Aspect_Static_Predicate then
1982 Set_Has_Static_Predicate_Aspect (Full_View (E));
1983 end if;
1985 Set_Has_Delayed_Aspects (Full_View (E));
1986 Ensure_Freeze_Node (Full_View (E));
1987 end if;
1989 -- Predicate_Failure
1991 when Aspect_Predicate_Failure =>
1993 -- This aspect applies only to subtypes
1995 if not Is_Type (E) then
1996 Error_Msg_N
1997 ("predicate can only be specified for a subtype",
1998 Aspect);
1999 goto Continue;
2001 elsif Is_Incomplete_Type (E) then
2002 Error_Msg_N
2003 ("predicate cannot apply to incomplete view", Aspect);
2004 goto Continue;
2005 end if;
2007 -- Construct the pragma
2009 Make_Aitem_Pragma
2010 (Pragma_Argument_Associations => New_List (
2011 Make_Pragma_Argument_Association (Sloc (Ent),
2012 Expression => Ent),
2013 Make_Pragma_Argument_Association (Sloc (Expr),
2014 Expression => Relocate_Node (Expr))),
2015 Pragma_Name => Name_Predicate_Failure);
2017 Set_Has_Predicates (E);
2019 -- If the type is private, indicate that its completion
2020 -- has a freeze node, because that is the one that will
2021 -- be visible at freeze time.
2023 if Is_Private_Type (E) and then Present (Full_View (E)) then
2024 Set_Has_Predicates (Full_View (E));
2025 Set_Has_Delayed_Aspects (Full_View (E));
2026 Ensure_Freeze_Node (Full_View (E));
2027 end if;
2029 -- Case 2b: Aspects corresponding to pragmas with two
2030 -- arguments, where the second argument is a local name
2031 -- referring to the entity, and the first argument is the
2032 -- aspect definition expression.
2034 -- Convention
2036 when Aspect_Convention =>
2038 -- The aspect may be part of the specification of an import
2039 -- or export pragma. Scan the aspect list to gather the
2040 -- other components, if any. The name of the generated
2041 -- pragma is one of Convention/Import/Export.
2043 declare
2044 Args : constant List_Id := New_List (
2045 Make_Pragma_Argument_Association (Sloc (Expr),
2046 Expression => Relocate_Node (Expr)),
2047 Make_Pragma_Argument_Association (Sloc (Ent),
2048 Expression => Ent));
2050 Imp_Exp_Seen : Boolean := False;
2051 -- Flag set when aspect Import or Export has been seen
2053 Imp_Seen : Boolean := False;
2054 -- Flag set when aspect Import has been seen
2056 Asp : Node_Id;
2057 Asp_Nam : Name_Id;
2058 Extern_Arg : Node_Id;
2059 Link_Arg : Node_Id;
2060 Prag_Nam : Name_Id;
2062 begin
2063 Extern_Arg := Empty;
2064 Link_Arg := Empty;
2065 Prag_Nam := Chars (Id);
2067 Asp := First (L);
2068 while Present (Asp) loop
2069 Asp_Nam := Chars (Identifier (Asp));
2071 -- Aspects Import and Export take precedence over
2072 -- aspect Convention. As a result the generated pragma
2073 -- must carry the proper interfacing aspect's name.
2075 if Nam_In (Asp_Nam, Name_Import, Name_Export) then
2076 if Imp_Exp_Seen then
2077 Error_Msg_N ("conflicting", Asp);
2078 else
2079 Imp_Exp_Seen := True;
2081 if Asp_Nam = Name_Import then
2082 Imp_Seen := True;
2083 end if;
2084 end if;
2086 Prag_Nam := Asp_Nam;
2088 -- Aspect External_Name adds an extra argument to the
2089 -- generated pragma.
2091 elsif Asp_Nam = Name_External_Name then
2092 Extern_Arg :=
2093 Make_Pragma_Argument_Association (Loc,
2094 Chars => Asp_Nam,
2095 Expression => Relocate_Node (Expression (Asp)));
2097 -- Aspect Link_Name adds an extra argument to the
2098 -- generated pragma.
2100 elsif Asp_Nam = Name_Link_Name then
2101 Link_Arg :=
2102 Make_Pragma_Argument_Association (Loc,
2103 Chars => Asp_Nam,
2104 Expression => Relocate_Node (Expression (Asp)));
2105 end if;
2107 Next (Asp);
2108 end loop;
2110 -- Assemble the full argument list
2112 if Present (Extern_Arg) then
2113 Append_To (Args, Extern_Arg);
2114 end if;
2116 if Present (Link_Arg) then
2117 Append_To (Args, Link_Arg);
2118 end if;
2120 Make_Aitem_Pragma
2121 (Pragma_Argument_Associations => Args,
2122 Pragma_Name => Prag_Nam);
2124 -- Store the generated pragma Import in the related
2125 -- subprogram.
2127 if Imp_Seen and then Is_Subprogram (E) then
2128 Set_Import_Pragma (E, Aitem);
2129 end if;
2130 end;
2132 -- CPU, Interrupt_Priority, Priority
2134 -- These three aspects can be specified for a subprogram spec
2135 -- or body, in which case we analyze the expression and export
2136 -- the value of the aspect.
2138 -- Previously, we generated an equivalent pragma for bodies
2139 -- (note that the specs cannot contain these pragmas). The
2140 -- pragma was inserted ahead of local declarations, rather than
2141 -- after the body. This leads to a certain duplication between
2142 -- the processing performed for the aspect and the pragma, but
2143 -- given the straightforward handling required it is simpler
2144 -- to duplicate than to translate the aspect in the spec into
2145 -- a pragma in the declarative part of the body.
2147 when Aspect_CPU |
2148 Aspect_Interrupt_Priority |
2149 Aspect_Priority =>
2151 if Nkind_In (N, N_Subprogram_Body,
2152 N_Subprogram_Declaration)
2153 then
2154 -- Analyze the aspect expression
2156 Analyze_And_Resolve (Expr, Standard_Integer);
2158 -- Interrupt_Priority aspect not allowed for main
2159 -- subprograms. RM D.1 does not forbid this explicitly,
2160 -- but RM J.15.11(6/3) does not permit pragma
2161 -- Interrupt_Priority for subprograms.
2163 if A_Id = Aspect_Interrupt_Priority then
2164 Error_Msg_N
2165 ("Interrupt_Priority aspect cannot apply to "
2166 & "subprogram", Expr);
2168 -- The expression must be static
2170 elsif not Is_OK_Static_Expression (Expr) then
2171 Flag_Non_Static_Expr
2172 ("aspect requires static expression!", Expr);
2174 -- Check whether this is the main subprogram. Issue a
2175 -- warning only if it is obviously not a main program
2176 -- (when it has parameters or when the subprogram is
2177 -- within a package).
2179 elsif Present (Parameter_Specifications
2180 (Specification (N)))
2181 or else not Is_Compilation_Unit (Defining_Entity (N))
2182 then
2183 -- See RM D.1(14/3) and D.16(12/3)
2185 Error_Msg_N
2186 ("aspect applied to subprogram other than the "
2187 & "main subprogram has no effect??", Expr);
2189 -- Otherwise check in range and export the value
2191 -- For the CPU aspect
2193 elsif A_Id = Aspect_CPU then
2194 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2196 -- Value is correct so we export the value to make
2197 -- it available at execution time.
2199 Set_Main_CPU
2200 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2202 else
2203 Error_Msg_N
2204 ("main subprogram CPU is out of range", Expr);
2205 end if;
2207 -- For the Priority aspect
2209 elsif A_Id = Aspect_Priority then
2210 if Is_In_Range (Expr, RTE (RE_Priority)) then
2212 -- Value is correct so we export the value to make
2213 -- it available at execution time.
2215 Set_Main_Priority
2216 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2218 -- Ignore pragma if Relaxed_RM_Semantics to support
2219 -- other targets/non GNAT compilers.
2221 elsif not Relaxed_RM_Semantics then
2222 Error_Msg_N
2223 ("main subprogram priority is out of range",
2224 Expr);
2225 end if;
2226 end if;
2228 -- Load an arbitrary entity from System.Tasking.Stages
2229 -- or System.Tasking.Restricted.Stages (depending on
2230 -- the supported profile) to make sure that one of these
2231 -- packages is implicitly with'ed, since we need to have
2232 -- the tasking run time active for the pragma Priority to
2233 -- have any effect. Previously we with'ed the package
2234 -- System.Tasking, but this package does not trigger the
2235 -- required initialization of the run-time library.
2237 declare
2238 Discard : Entity_Id;
2239 begin
2240 if Restricted_Profile then
2241 Discard := RTE (RE_Activate_Restricted_Tasks);
2242 else
2243 Discard := RTE (RE_Activate_Tasks);
2244 end if;
2245 end;
2247 -- Handling for these Aspects in subprograms is complete
2249 goto Continue;
2251 -- For tasks pass the aspect as an attribute
2253 else
2254 Aitem :=
2255 Make_Attribute_Definition_Clause (Loc,
2256 Name => Ent,
2257 Chars => Chars (Id),
2258 Expression => Relocate_Node (Expr));
2259 end if;
2261 -- Warnings
2263 when Aspect_Warnings =>
2264 Make_Aitem_Pragma
2265 (Pragma_Argument_Associations => New_List (
2266 Make_Pragma_Argument_Association (Sloc (Expr),
2267 Expression => Relocate_Node (Expr)),
2268 Make_Pragma_Argument_Association (Loc,
2269 Expression => New_Occurrence_Of (E, Loc))),
2270 Pragma_Name => Chars (Id));
2272 Decorate (Aspect, Aitem);
2273 Insert_Pragma (Aitem);
2274 goto Continue;
2276 -- Case 2c: Aspects corresponding to pragmas with three
2277 -- arguments.
2279 -- Invariant aspects have a first argument that references the
2280 -- entity, a second argument that is the expression and a third
2281 -- argument that is an appropriate message.
2283 -- Invariant, Type_Invariant
2285 when Aspect_Invariant |
2286 Aspect_Type_Invariant =>
2288 -- Analysis of the pragma will verify placement legality:
2289 -- an invariant must apply to a private type, or appear in
2290 -- the private part of a spec and apply to a completion.
2292 Make_Aitem_Pragma
2293 (Pragma_Argument_Associations => New_List (
2294 Make_Pragma_Argument_Association (Sloc (Ent),
2295 Expression => Ent),
2296 Make_Pragma_Argument_Association (Sloc (Expr),
2297 Expression => Relocate_Node (Expr))),
2298 Pragma_Name => Name_Invariant);
2300 -- Add message unless exception messages are suppressed
2302 if not Opt.Exception_Locations_Suppressed then
2303 Append_To (Pragma_Argument_Associations (Aitem),
2304 Make_Pragma_Argument_Association (Eloc,
2305 Chars => Name_Message,
2306 Expression =>
2307 Make_String_Literal (Eloc,
2308 Strval => "failed invariant from "
2309 & Build_Location_String (Eloc))));
2310 end if;
2312 -- For Invariant case, insert immediately after the entity
2313 -- declaration. We do not have to worry about delay issues
2314 -- since the pragma processing takes care of this.
2316 Delay_Required := False;
2318 -- Case 2d : Aspects that correspond to a pragma with one
2319 -- argument.
2321 -- Abstract_State
2323 -- Aspect Abstract_State introduces implicit declarations for
2324 -- all state abstraction entities it defines. To emulate this
2325 -- behavior, insert the pragma at the beginning of the visible
2326 -- declarations of the related package so that it is analyzed
2327 -- immediately.
2329 when Aspect_Abstract_State => Abstract_State : declare
2330 Context : Node_Id := N;
2332 begin
2333 -- When aspect Abstract_State appears on a generic package,
2334 -- it is propageted to the package instance. The context in
2335 -- this case is the instance spec.
2337 if Nkind (Context) = N_Package_Instantiation then
2338 Context := Instance_Spec (Context);
2339 end if;
2341 if Nkind_In (Context, N_Generic_Package_Declaration,
2342 N_Package_Declaration)
2343 then
2344 Make_Aitem_Pragma
2345 (Pragma_Argument_Associations => New_List (
2346 Make_Pragma_Argument_Association (Loc,
2347 Expression => Relocate_Node (Expr))),
2348 Pragma_Name => Name_Abstract_State);
2350 Decorate (Aspect, Aitem);
2351 Insert_Pragma
2352 (Prag => Aitem,
2353 Is_Instance =>
2354 Is_Generic_Instance (Defining_Entity (Context)));
2356 else
2357 Error_Msg_NE
2358 ("aspect & must apply to a package declaration",
2359 Aspect, Id);
2360 end if;
2362 goto Continue;
2363 end Abstract_State;
2365 -- Aspect Async_Readers is never delayed because it is
2366 -- equivalent to a source pragma which appears after the
2367 -- related object declaration.
2369 when Aspect_Async_Readers =>
2370 Make_Aitem_Pragma
2371 (Pragma_Argument_Associations => New_List (
2372 Make_Pragma_Argument_Association (Loc,
2373 Expression => Relocate_Node (Expr))),
2374 Pragma_Name => Name_Async_Readers);
2376 Decorate (Aspect, Aitem);
2377 Insert_Pragma (Aitem);
2378 goto Continue;
2380 -- Aspect Async_Writers is never delayed because it is
2381 -- equivalent to a source pragma which appears after the
2382 -- related object declaration.
2384 when Aspect_Async_Writers =>
2385 Make_Aitem_Pragma
2386 (Pragma_Argument_Associations => New_List (
2387 Make_Pragma_Argument_Association (Loc,
2388 Expression => Relocate_Node (Expr))),
2389 Pragma_Name => Name_Async_Writers);
2391 Decorate (Aspect, Aitem);
2392 Insert_Pragma (Aitem);
2393 goto Continue;
2395 -- Aspect Constant_After_Elaboration is never delayed because
2396 -- it is equivalent to a source pragma which appears after the
2397 -- related object declaration.
2399 when Aspect_Constant_After_Elaboration =>
2400 Make_Aitem_Pragma
2401 (Pragma_Argument_Associations => New_List (
2402 Make_Pragma_Argument_Association (Loc,
2403 Expression => Relocate_Node (Expr))),
2404 Pragma_Name =>
2405 Name_Constant_After_Elaboration);
2407 Decorate (Aspect, Aitem);
2408 Insert_Pragma (Aitem);
2409 goto Continue;
2411 -- Aspect Default_Internal_Condition is never delayed because
2412 -- it is equivalent to a source pragma which appears after the
2413 -- related private type. To deal with forward references, the
2414 -- generated pragma is stored in the rep chain of the related
2415 -- private type as types do not carry contracts. The pragma is
2416 -- wrapped inside of a procedure at the freeze point of the
2417 -- private type's full view.
2419 when Aspect_Default_Initial_Condition =>
2420 Make_Aitem_Pragma
2421 (Pragma_Argument_Associations => New_List (
2422 Make_Pragma_Argument_Association (Loc,
2423 Expression => Relocate_Node (Expr))),
2424 Pragma_Name =>
2425 Name_Default_Initial_Condition);
2427 Decorate (Aspect, Aitem);
2428 Insert_Pragma (Aitem);
2429 goto Continue;
2431 -- Default_Storage_Pool
2433 when Aspect_Default_Storage_Pool =>
2434 Make_Aitem_Pragma
2435 (Pragma_Argument_Associations => New_List (
2436 Make_Pragma_Argument_Association (Loc,
2437 Expression => Relocate_Node (Expr))),
2438 Pragma_Name =>
2439 Name_Default_Storage_Pool);
2441 Decorate (Aspect, Aitem);
2442 Insert_Pragma (Aitem);
2443 goto Continue;
2445 -- Depends
2447 -- Aspect Depends is never delayed because it is equivalent to
2448 -- a source pragma which appears after the related subprogram.
2449 -- To deal with forward references, the generated pragma is
2450 -- stored in the contract of the related subprogram and later
2451 -- analyzed at the end of the declarative region. See routine
2452 -- Analyze_Depends_In_Decl_Part for details.
2454 when Aspect_Depends =>
2455 Make_Aitem_Pragma
2456 (Pragma_Argument_Associations => New_List (
2457 Make_Pragma_Argument_Association (Loc,
2458 Expression => Relocate_Node (Expr))),
2459 Pragma_Name => Name_Depends);
2461 Decorate (Aspect, Aitem);
2462 Insert_Pragma (Aitem);
2463 goto Continue;
2465 -- Aspect Effecitve_Reads is never delayed because it is
2466 -- equivalent to a source pragma which appears after the
2467 -- related object declaration.
2469 when Aspect_Effective_Reads =>
2470 Make_Aitem_Pragma
2471 (Pragma_Argument_Associations => New_List (
2472 Make_Pragma_Argument_Association (Loc,
2473 Expression => Relocate_Node (Expr))),
2474 Pragma_Name => Name_Effective_Reads);
2476 Decorate (Aspect, Aitem);
2477 Insert_Pragma (Aitem);
2478 goto Continue;
2480 -- Aspect Effective_Writes is never delayed because it is
2481 -- equivalent to a source pragma which appears after the
2482 -- related object declaration.
2484 when Aspect_Effective_Writes =>
2485 Make_Aitem_Pragma
2486 (Pragma_Argument_Associations => New_List (
2487 Make_Pragma_Argument_Association (Loc,
2488 Expression => Relocate_Node (Expr))),
2489 Pragma_Name => Name_Effective_Writes);
2491 Decorate (Aspect, Aitem);
2492 Insert_Pragma (Aitem);
2493 goto Continue;
2495 -- Aspect Extensions_Visible is never delayed because it is
2496 -- equivalent to a source pragma which appears after the
2497 -- related subprogram.
2499 when Aspect_Extensions_Visible =>
2500 Make_Aitem_Pragma
2501 (Pragma_Argument_Associations => New_List (
2502 Make_Pragma_Argument_Association (Loc,
2503 Expression => Relocate_Node (Expr))),
2504 Pragma_Name => Name_Extensions_Visible);
2506 Decorate (Aspect, Aitem);
2507 Insert_Pragma (Aitem);
2508 goto Continue;
2510 -- Aspect Ghost is never delayed because it is equivalent to a
2511 -- source pragma which appears at the top of [generic] package
2512 -- declarations or after an object, a [generic] subprogram, or
2513 -- a type declaration.
2515 when Aspect_Ghost =>
2516 Make_Aitem_Pragma
2517 (Pragma_Argument_Associations => New_List (
2518 Make_Pragma_Argument_Association (Loc,
2519 Expression => Relocate_Node (Expr))),
2520 Pragma_Name => Name_Ghost);
2522 Decorate (Aspect, Aitem);
2523 Insert_Pragma (Aitem);
2524 goto Continue;
2526 -- Global
2528 -- Aspect Global is never delayed because it is equivalent to
2529 -- a source pragma which appears after the related subprogram.
2530 -- To deal with forward references, the generated pragma is
2531 -- stored in the contract of the related subprogram and later
2532 -- analyzed at the end of the declarative region. See routine
2533 -- Analyze_Global_In_Decl_Part for details.
2535 when Aspect_Global =>
2536 Make_Aitem_Pragma
2537 (Pragma_Argument_Associations => New_List (
2538 Make_Pragma_Argument_Association (Loc,
2539 Expression => Relocate_Node (Expr))),
2540 Pragma_Name => Name_Global);
2542 Decorate (Aspect, Aitem);
2543 Insert_Pragma (Aitem);
2544 goto Continue;
2546 -- Initial_Condition
2548 -- Aspect Initial_Condition is never delayed because it is
2549 -- equivalent to a source pragma which appears after the
2550 -- related package. To deal with forward references, the
2551 -- generated pragma is stored in the contract of the related
2552 -- package and later analyzed at the end of the declarative
2553 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2554 -- for details.
2556 when Aspect_Initial_Condition => Initial_Condition : declare
2557 Context : Node_Id := N;
2559 begin
2560 -- When aspect Initial_Condition appears on a generic
2561 -- package, it is propageted to the package instance. The
2562 -- context in this case is the instance spec.
2564 if Nkind (Context) = N_Package_Instantiation then
2565 Context := Instance_Spec (Context);
2566 end if;
2568 if Nkind_In (Context, N_Generic_Package_Declaration,
2569 N_Package_Declaration)
2570 then
2571 Make_Aitem_Pragma
2572 (Pragma_Argument_Associations => New_List (
2573 Make_Pragma_Argument_Association (Loc,
2574 Expression => Relocate_Node (Expr))),
2575 Pragma_Name =>
2576 Name_Initial_Condition);
2578 Decorate (Aspect, Aitem);
2579 Insert_Pragma
2580 (Prag => Aitem,
2581 Is_Instance =>
2582 Is_Generic_Instance (Defining_Entity (Context)));
2584 -- Otherwise the context is illegal
2586 else
2587 Error_Msg_NE
2588 ("aspect & must apply to a package declaration",
2589 Aspect, Id);
2590 end if;
2592 goto Continue;
2593 end Initial_Condition;
2595 -- Initializes
2597 -- Aspect Initializes is never delayed because it is equivalent
2598 -- to a source pragma appearing after the related package. To
2599 -- deal with forward references, the generated pragma is stored
2600 -- in the contract of the related package and later analyzed at
2601 -- the end of the declarative region. For details, see routine
2602 -- Analyze_Initializes_In_Decl_Part.
2604 when Aspect_Initializes => Initializes : declare
2605 Context : Node_Id := N;
2607 begin
2608 -- When aspect Initializes appears on a generic package,
2609 -- it is propageted to the package instance. The context
2610 -- in this case is the instance spec.
2612 if Nkind (Context) = N_Package_Instantiation then
2613 Context := Instance_Spec (Context);
2614 end if;
2616 if Nkind_In (Context, N_Generic_Package_Declaration,
2617 N_Package_Declaration)
2618 then
2619 Make_Aitem_Pragma
2620 (Pragma_Argument_Associations => New_List (
2621 Make_Pragma_Argument_Association (Loc,
2622 Expression => Relocate_Node (Expr))),
2623 Pragma_Name => Name_Initializes);
2625 Decorate (Aspect, Aitem);
2626 Insert_Pragma
2627 (Prag => Aitem,
2628 Is_Instance =>
2629 Is_Generic_Instance (Defining_Entity (Context)));
2631 -- Otherwise the context is illegal
2633 else
2634 Error_Msg_NE
2635 ("aspect & must apply to a package declaration",
2636 Aspect, Id);
2637 end if;
2639 goto Continue;
2640 end Initializes;
2642 -- Obsolescent
2644 when Aspect_Obsolescent => declare
2645 Args : List_Id;
2647 begin
2648 if No (Expr) then
2649 Args := No_List;
2650 else
2651 Args := New_List (
2652 Make_Pragma_Argument_Association (Sloc (Expr),
2653 Expression => Relocate_Node (Expr)));
2654 end if;
2656 Make_Aitem_Pragma
2657 (Pragma_Argument_Associations => Args,
2658 Pragma_Name => Chars (Id));
2659 end;
2661 -- Part_Of
2663 when Aspect_Part_Of =>
2664 if Nkind_In (N, N_Object_Declaration,
2665 N_Package_Instantiation)
2666 or else Is_Single_Concurrent_Type_Declaration (N)
2667 then
2668 Make_Aitem_Pragma
2669 (Pragma_Argument_Associations => New_List (
2670 Make_Pragma_Argument_Association (Loc,
2671 Expression => Relocate_Node (Expr))),
2672 Pragma_Name => Name_Part_Of);
2674 Decorate (Aspect, Aitem);
2675 Insert_Pragma (Aitem);
2677 else
2678 Error_Msg_NE
2679 ("aspect & must apply to package instantiation, "
2680 & "object, single protected type or single task type",
2681 Aspect, Id);
2682 end if;
2684 goto Continue;
2686 -- SPARK_Mode
2688 when Aspect_SPARK_Mode =>
2689 Make_Aitem_Pragma
2690 (Pragma_Argument_Associations => New_List (
2691 Make_Pragma_Argument_Association (Loc,
2692 Expression => Relocate_Node (Expr))),
2693 Pragma_Name => Name_SPARK_Mode);
2695 Decorate (Aspect, Aitem);
2696 Insert_Pragma (Aitem);
2697 goto Continue;
2699 -- Refined_Depends
2701 -- Aspect Refined_Depends is never delayed because it is
2702 -- equivalent to a source pragma which appears in the
2703 -- declarations of the related subprogram body. To deal with
2704 -- forward references, the generated pragma is stored in the
2705 -- contract of the related subprogram body and later analyzed
2706 -- at the end of the declarative region. For details, see
2707 -- routine Analyze_Refined_Depends_In_Decl_Part.
2709 when Aspect_Refined_Depends =>
2710 Make_Aitem_Pragma
2711 (Pragma_Argument_Associations => New_List (
2712 Make_Pragma_Argument_Association (Loc,
2713 Expression => Relocate_Node (Expr))),
2714 Pragma_Name => Name_Refined_Depends);
2716 Decorate (Aspect, Aitem);
2717 Insert_Pragma (Aitem);
2718 goto Continue;
2720 -- Refined_Global
2722 -- Aspect Refined_Global is never delayed because it is
2723 -- equivalent to a source pragma which appears in the
2724 -- declarations of the related subprogram body. To deal with
2725 -- forward references, the generated pragma is stored in the
2726 -- contract of the related subprogram body and later analyzed
2727 -- at the end of the declarative region. For details, see
2728 -- routine Analyze_Refined_Global_In_Decl_Part.
2730 when Aspect_Refined_Global =>
2731 Make_Aitem_Pragma
2732 (Pragma_Argument_Associations => New_List (
2733 Make_Pragma_Argument_Association (Loc,
2734 Expression => Relocate_Node (Expr))),
2735 Pragma_Name => Name_Refined_Global);
2737 Decorate (Aspect, Aitem);
2738 Insert_Pragma (Aitem);
2739 goto Continue;
2741 -- Refined_Post
2743 when Aspect_Refined_Post =>
2744 Make_Aitem_Pragma
2745 (Pragma_Argument_Associations => New_List (
2746 Make_Pragma_Argument_Association (Loc,
2747 Expression => Relocate_Node (Expr))),
2748 Pragma_Name => Name_Refined_Post);
2750 Decorate (Aspect, Aitem);
2751 Insert_Pragma (Aitem);
2752 goto Continue;
2754 -- Refined_State
2756 when Aspect_Refined_State =>
2758 -- The corresponding pragma for Refined_State is inserted in
2759 -- the declarations of the related package body. This action
2760 -- synchronizes both the source and from-aspect versions of
2761 -- the pragma.
2763 if Nkind (N) = N_Package_Body then
2764 Make_Aitem_Pragma
2765 (Pragma_Argument_Associations => New_List (
2766 Make_Pragma_Argument_Association (Loc,
2767 Expression => Relocate_Node (Expr))),
2768 Pragma_Name => Name_Refined_State);
2770 Decorate (Aspect, Aitem);
2771 Insert_Pragma (Aitem);
2773 -- Otherwise the context is illegal
2775 else
2776 Error_Msg_NE
2777 ("aspect & must apply to a package body", Aspect, Id);
2778 end if;
2780 goto Continue;
2782 -- Relative_Deadline
2784 when Aspect_Relative_Deadline =>
2785 Make_Aitem_Pragma
2786 (Pragma_Argument_Associations => New_List (
2787 Make_Pragma_Argument_Association (Loc,
2788 Expression => Relocate_Node (Expr))),
2789 Pragma_Name => Name_Relative_Deadline);
2791 -- If the aspect applies to a task, the corresponding pragma
2792 -- must appear within its declarations, not after.
2794 if Nkind (N) = N_Task_Type_Declaration then
2795 declare
2796 Def : Node_Id;
2797 V : List_Id;
2799 begin
2800 if No (Task_Definition (N)) then
2801 Set_Task_Definition (N,
2802 Make_Task_Definition (Loc,
2803 Visible_Declarations => New_List,
2804 End_Label => Empty));
2805 end if;
2807 Def := Task_Definition (N);
2808 V := Visible_Declarations (Def);
2809 if not Is_Empty_List (V) then
2810 Insert_Before (First (V), Aitem);
2812 else
2813 Set_Visible_Declarations (Def, New_List (Aitem));
2814 end if;
2816 goto Continue;
2817 end;
2818 end if;
2820 -- Aspect Volatile_Function is never delayed because it is
2821 -- equivalent to a source pragma which appears after the
2822 -- related subprogram.
2824 when Aspect_Volatile_Function =>
2825 Make_Aitem_Pragma
2826 (Pragma_Argument_Associations => New_List (
2827 Make_Pragma_Argument_Association (Loc,
2828 Expression => Relocate_Node (Expr))),
2829 Pragma_Name => Name_Volatile_Function);
2831 Decorate (Aspect, Aitem);
2832 Insert_Pragma (Aitem);
2833 goto Continue;
2835 -- Case 2e: Annotate aspect
2837 when Aspect_Annotate =>
2838 declare
2839 Args : List_Id;
2840 Pargs : List_Id;
2841 Arg : Node_Id;
2843 begin
2844 -- The argument can be a single identifier
2846 if Nkind (Expr) = N_Identifier then
2848 -- One level of parens is allowed
2850 if Paren_Count (Expr) > 1 then
2851 Error_Msg_F ("extra parentheses ignored", Expr);
2852 end if;
2854 Set_Paren_Count (Expr, 0);
2856 -- Add the single item to the list
2858 Args := New_List (Expr);
2860 -- Otherwise we must have an aggregate
2862 elsif Nkind (Expr) = N_Aggregate then
2864 -- Must be positional
2866 if Present (Component_Associations (Expr)) then
2867 Error_Msg_F
2868 ("purely positional aggregate required", Expr);
2869 goto Continue;
2870 end if;
2872 -- Must not be parenthesized
2874 if Paren_Count (Expr) /= 0 then
2875 Error_Msg_F ("extra parentheses ignored", Expr);
2876 end if;
2878 -- List of arguments is list of aggregate expressions
2880 Args := Expressions (Expr);
2882 -- Anything else is illegal
2884 else
2885 Error_Msg_F ("wrong form for Annotate aspect", Expr);
2886 goto Continue;
2887 end if;
2889 -- Prepare pragma arguments
2891 Pargs := New_List;
2892 Arg := First (Args);
2893 while Present (Arg) loop
2894 Append_To (Pargs,
2895 Make_Pragma_Argument_Association (Sloc (Arg),
2896 Expression => Relocate_Node (Arg)));
2897 Next (Arg);
2898 end loop;
2900 Append_To (Pargs,
2901 Make_Pragma_Argument_Association (Sloc (Ent),
2902 Chars => Name_Entity,
2903 Expression => Ent));
2905 Make_Aitem_Pragma
2906 (Pragma_Argument_Associations => Pargs,
2907 Pragma_Name => Name_Annotate);
2908 end;
2910 -- Case 3 : Aspects that don't correspond to pragma/attribute
2911 -- definition clause.
2913 -- Case 3a: The aspects listed below don't correspond to
2914 -- pragmas/attributes but do require delayed analysis.
2916 -- Default_Value can only apply to a scalar type
2918 when Aspect_Default_Value =>
2919 if not Is_Scalar_Type (E) then
2920 Error_Msg_N
2921 ("aspect Default_Value must apply to a scalar type", N);
2922 end if;
2924 Aitem := Empty;
2926 -- Default_Component_Value can only apply to an array type
2927 -- with scalar components.
2929 when Aspect_Default_Component_Value =>
2930 if not (Is_Array_Type (E)
2931 and then Is_Scalar_Type (Component_Type (E)))
2932 then
2933 Error_Msg_N ("aspect Default_Component_Value can only "
2934 & "apply to an array of scalar components", N);
2935 end if;
2937 Aitem := Empty;
2939 -- Case 3b: The aspects listed below don't correspond to
2940 -- pragmas/attributes and don't need delayed analysis.
2942 -- Implicit_Dereference
2944 -- For Implicit_Dereference, External_Name and Link_Name, only
2945 -- the legality checks are done during the analysis, thus no
2946 -- delay is required.
2948 when Aspect_Implicit_Dereference =>
2949 Analyze_Aspect_Implicit_Dereference;
2950 goto Continue;
2952 -- External_Name, Link_Name
2954 when Aspect_External_Name |
2955 Aspect_Link_Name =>
2956 Analyze_Aspect_External_Or_Link_Name;
2957 goto Continue;
2959 -- Dimension
2961 when Aspect_Dimension =>
2962 Analyze_Aspect_Dimension (N, Id, Expr);
2963 goto Continue;
2965 -- Dimension_System
2967 when Aspect_Dimension_System =>
2968 Analyze_Aspect_Dimension_System (N, Id, Expr);
2969 goto Continue;
2971 -- Case 4: Aspects requiring special handling
2973 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
2974 -- pragmas take care of the delay.
2976 -- Pre/Post
2978 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
2979 -- with a first argument that is the expression, and a second
2980 -- argument that is an informative message if the test fails.
2981 -- This is inserted right after the declaration, to get the
2982 -- required pragma placement. The processing for the pragmas
2983 -- takes care of the required delay.
2985 when Pre_Post_Aspects => Pre_Post : declare
2986 Pname : Name_Id;
2988 begin
2989 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
2990 Pname := Name_Precondition;
2991 else
2992 Pname := Name_Postcondition;
2993 end if;
2995 -- If the expressions is of the form A and then B, then
2996 -- we generate separate Pre/Post aspects for the separate
2997 -- clauses. Since we allow multiple pragmas, there is no
2998 -- problem in allowing multiple Pre/Post aspects internally.
2999 -- These should be treated in reverse order (B first and
3000 -- A second) since they are later inserted just after N in
3001 -- the order they are treated. This way, the pragma for A
3002 -- ends up preceding the pragma for B, which may have an
3003 -- importance for the error raised (either constraint error
3004 -- or precondition error).
3006 -- We do not do this for Pre'Class, since we have to put
3007 -- these conditions together in a complex OR expression.
3009 -- We do not do this in ASIS mode, as ASIS relies on the
3010 -- original node representing the complete expression, when
3011 -- retrieving it through the source aspect table.
3013 if not ASIS_Mode
3014 and then (Pname = Name_Postcondition
3015 or else not Class_Present (Aspect))
3016 then
3017 while Nkind (Expr) = N_And_Then loop
3018 Insert_After (Aspect,
3019 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
3020 Identifier => Identifier (Aspect),
3021 Expression => Relocate_Node (Left_Opnd (Expr)),
3022 Class_Present => Class_Present (Aspect),
3023 Split_PPC => True));
3024 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
3025 Eloc := Sloc (Expr);
3026 end loop;
3027 end if;
3029 -- Build the precondition/postcondition pragma
3031 -- Add note about why we do NOT need Copy_Tree here???
3033 Make_Aitem_Pragma
3034 (Pragma_Argument_Associations => New_List (
3035 Make_Pragma_Argument_Association (Eloc,
3036 Chars => Name_Check,
3037 Expression => Relocate_Node (Expr))),
3038 Pragma_Name => Pname);
3040 -- Add message unless exception messages are suppressed
3042 if not Opt.Exception_Locations_Suppressed then
3043 Append_To (Pragma_Argument_Associations (Aitem),
3044 Make_Pragma_Argument_Association (Eloc,
3045 Chars => Name_Message,
3046 Expression =>
3047 Make_String_Literal (Eloc,
3048 Strval => "failed "
3049 & Get_Name_String (Pname)
3050 & " from "
3051 & Build_Location_String (Eloc))));
3052 end if;
3054 Set_Is_Delayed_Aspect (Aspect);
3056 -- For Pre/Post cases, insert immediately after the entity
3057 -- declaration, since that is the required pragma placement.
3058 -- Note that for these aspects, we do not have to worry
3059 -- about delay issues, since the pragmas themselves deal
3060 -- with delay of visibility for the expression analysis.
3062 Insert_Pragma (Aitem);
3064 goto Continue;
3065 end Pre_Post;
3067 -- Test_Case
3069 when Aspect_Test_Case => Test_Case : declare
3070 Args : List_Id;
3071 Comp_Expr : Node_Id;
3072 Comp_Assn : Node_Id;
3073 New_Expr : Node_Id;
3075 begin
3076 Args := New_List;
3078 if Nkind (Parent (N)) = N_Compilation_Unit then
3079 Error_Msg_Name_1 := Nam;
3080 Error_Msg_N ("incorrect placement of aspect `%`", E);
3081 goto Continue;
3082 end if;
3084 if Nkind (Expr) /= N_Aggregate then
3085 Error_Msg_Name_1 := Nam;
3086 Error_Msg_NE
3087 ("wrong syntax for aspect `%` for &", Id, E);
3088 goto Continue;
3089 end if;
3091 -- Make pragma expressions refer to the original aspect
3092 -- expressions through the Original_Node link. This is used
3093 -- in semantic analysis for ASIS mode, so that the original
3094 -- expression also gets analyzed.
3096 Comp_Expr := First (Expressions (Expr));
3097 while Present (Comp_Expr) loop
3098 New_Expr := Relocate_Node (Comp_Expr);
3099 Append_To (Args,
3100 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3101 Expression => New_Expr));
3102 Next (Comp_Expr);
3103 end loop;
3105 Comp_Assn := First (Component_Associations (Expr));
3106 while Present (Comp_Assn) loop
3107 if List_Length (Choices (Comp_Assn)) /= 1
3108 or else
3109 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3110 then
3111 Error_Msg_Name_1 := Nam;
3112 Error_Msg_NE
3113 ("wrong syntax for aspect `%` for &", Id, E);
3114 goto Continue;
3115 end if;
3117 Append_To (Args,
3118 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
3119 Chars => Chars (First (Choices (Comp_Assn))),
3120 Expression =>
3121 Relocate_Node (Expression (Comp_Assn))));
3122 Next (Comp_Assn);
3123 end loop;
3125 -- Build the test-case pragma
3127 Make_Aitem_Pragma
3128 (Pragma_Argument_Associations => Args,
3129 Pragma_Name => Nam);
3130 end Test_Case;
3132 -- Contract_Cases
3134 when Aspect_Contract_Cases =>
3135 Make_Aitem_Pragma
3136 (Pragma_Argument_Associations => New_List (
3137 Make_Pragma_Argument_Association (Loc,
3138 Expression => Relocate_Node (Expr))),
3139 Pragma_Name => Nam);
3141 Decorate (Aspect, Aitem);
3142 Insert_Pragma (Aitem);
3143 goto Continue;
3145 -- Case 5: Special handling for aspects with an optional
3146 -- boolean argument.
3148 -- In the delayed case, the corresponding pragma cannot be
3149 -- generated yet because the evaluation of the boolean needs
3150 -- to be delayed till the freeze point.
3152 when Boolean_Aspects |
3153 Library_Unit_Aspects =>
3155 Set_Is_Boolean_Aspect (Aspect);
3157 -- Lock_Free aspect only apply to protected objects
3159 if A_Id = Aspect_Lock_Free then
3160 if Ekind (E) /= E_Protected_Type then
3161 Error_Msg_Name_1 := Nam;
3162 Error_Msg_N
3163 ("aspect % only applies to a protected object",
3164 Aspect);
3166 else
3167 -- Set the Uses_Lock_Free flag to True if there is no
3168 -- expression or if the expression is True. The
3169 -- evaluation of this aspect should be delayed to the
3170 -- freeze point (why???)
3172 if No (Expr)
3173 or else Is_True (Static_Boolean (Expr))
3174 then
3175 Set_Uses_Lock_Free (E);
3176 end if;
3178 Record_Rep_Item (E, Aspect);
3179 end if;
3181 goto Continue;
3183 elsif A_Id = Aspect_Import or else A_Id = Aspect_Export then
3185 -- For the case of aspects Import and Export, we don't
3186 -- consider that we know the entity is never set in the
3187 -- source, since it is is likely modified outside the
3188 -- program.
3190 -- Note: one might think that the analysis of the
3191 -- resulting pragma would take care of that, but
3192 -- that's not the case since it won't be from source.
3194 if Ekind (E) = E_Variable then
3195 Set_Never_Set_In_Source (E, False);
3196 end if;
3198 -- In older versions of Ada the corresponding pragmas
3199 -- specified a Convention. In Ada 2012 the convention is
3200 -- specified as a separate aspect, and it is optional,
3201 -- given that it defaults to Convention_Ada. The code
3202 -- that verifed that there was a matching convention
3203 -- is now obsolete.
3205 -- Resolve the expression of an Import or Export here,
3206 -- and require it to be of type Boolean and static. This
3207 -- is not quite right, because in general this should be
3208 -- delayed, but that seems tricky for these, because
3209 -- normally Boolean aspects are replaced with pragmas at
3210 -- the freeze point (in Make_Pragma_From_Boolean_Aspect),
3211 -- but in the case of these aspects we can't generate
3212 -- a simple pragma with just the entity name. ???
3214 if not Present (Expr)
3215 or else Is_True (Static_Boolean (Expr))
3216 then
3217 if A_Id = Aspect_Import then
3218 Set_Is_Imported (E);
3219 Set_Has_Completion (E);
3221 -- An imported entity cannot have an explicit
3222 -- initialization.
3224 if Nkind (N) = N_Object_Declaration
3225 and then Present (Expression (N))
3226 then
3227 Error_Msg_N
3228 ("imported entities cannot be initialized "
3229 & "(RM B.1(24))", Expression (N));
3230 end if;
3232 elsif A_Id = Aspect_Export then
3233 Set_Is_Exported (E);
3234 end if;
3235 end if;
3237 goto Continue;
3239 -- Disable_Controlled
3241 elsif A_Id = Aspect_Disable_Controlled then
3242 if Ekind (E) /= E_Record_Type
3243 or else not Is_Controlled (E)
3244 then
3245 Error_Msg_N
3246 ("aspect % requires controlled record type", Aspect);
3247 goto Continue;
3248 end if;
3250 -- If we're in a generic template, we don't want to try
3251 -- to disable controlled types, because typical usage is
3252 -- "Disable_Controlled => not <some_check>'Enabled", and
3253 -- the value of Enabled is not known until we see a
3254 -- particular instance. In such a context, we just need
3255 -- to preanalyze the expression for legality.
3257 if Expander_Active then
3258 Analyze_And_Resolve (Expr, Standard_Boolean);
3260 if not Present (Expr)
3261 or else Is_True (Static_Boolean (Expr))
3262 then
3263 Set_Disable_Controlled (E);
3264 end if;
3266 elsif Serious_Errors_Detected = 0 then
3267 Preanalyze_And_Resolve (Expr, Standard_Boolean);
3268 end if;
3270 goto Continue;
3271 end if;
3273 -- Library unit aspects require special handling in the case
3274 -- of a package declaration, the pragma needs to be inserted
3275 -- in the list of declarations for the associated package.
3276 -- There is no issue of visibility delay for these aspects.
3278 if A_Id in Library_Unit_Aspects
3279 and then
3280 Nkind_In (N, N_Package_Declaration,
3281 N_Generic_Package_Declaration)
3282 and then Nkind (Parent (N)) /= N_Compilation_Unit
3284 -- Aspect is legal on a local instantiation of a library-
3285 -- level generic unit.
3287 and then not Is_Generic_Instance (Defining_Entity (N))
3288 then
3289 Error_Msg_N
3290 ("incorrect context for library unit aspect&", Id);
3291 goto Continue;
3292 end if;
3294 -- Cases where we do not delay, includes all cases where the
3295 -- expression is missing other than the above cases.
3297 if not Delay_Required or else No (Expr) then
3298 Make_Aitem_Pragma
3299 (Pragma_Argument_Associations => New_List (
3300 Make_Pragma_Argument_Association (Sloc (Ent),
3301 Expression => Ent)),
3302 Pragma_Name => Chars (Id));
3303 Delay_Required := False;
3305 -- In general cases, the corresponding pragma/attribute
3306 -- definition clause will be inserted later at the freezing
3307 -- point, and we do not need to build it now.
3309 else
3310 Aitem := Empty;
3311 end if;
3313 -- Storage_Size
3315 -- This is special because for access types we need to generate
3316 -- an attribute definition clause. This also works for single
3317 -- task declarations, but it does not work for task type
3318 -- declarations, because we have the case where the expression
3319 -- references a discriminant of the task type. That can't use
3320 -- an attribute definition clause because we would not have
3321 -- visibility on the discriminant. For that case we must
3322 -- generate a pragma in the task definition.
3324 when Aspect_Storage_Size =>
3326 -- Task type case
3328 if Ekind (E) = E_Task_Type then
3329 declare
3330 Decl : constant Node_Id := Declaration_Node (E);
3332 begin
3333 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3335 -- If no task definition, create one
3337 if No (Task_Definition (Decl)) then
3338 Set_Task_Definition (Decl,
3339 Make_Task_Definition (Loc,
3340 Visible_Declarations => Empty_List,
3341 End_Label => Empty));
3342 end if;
3344 -- Create a pragma and put it at the start of the task
3345 -- definition for the task type declaration.
3347 Make_Aitem_Pragma
3348 (Pragma_Argument_Associations => New_List (
3349 Make_Pragma_Argument_Association (Loc,
3350 Expression => Relocate_Node (Expr))),
3351 Pragma_Name => Name_Storage_Size);
3353 Prepend
3354 (Aitem,
3355 Visible_Declarations (Task_Definition (Decl)));
3356 goto Continue;
3357 end;
3359 -- All other cases, generate attribute definition
3361 else
3362 Aitem :=
3363 Make_Attribute_Definition_Clause (Loc,
3364 Name => Ent,
3365 Chars => Chars (Id),
3366 Expression => Relocate_Node (Expr));
3367 end if;
3368 end case;
3370 -- Attach the corresponding pragma/attribute definition clause to
3371 -- the aspect specification node.
3373 if Present (Aitem) then
3374 Set_From_Aspect_Specification (Aitem);
3375 end if;
3377 -- In the context of a compilation unit, we directly put the
3378 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3379 -- node (no delay is required here) except for aspects on a
3380 -- subprogram body (see below) and a generic package, for which we
3381 -- need to introduce the pragma before building the generic copy
3382 -- (see sem_ch12), and for package instantiations, where the
3383 -- library unit pragmas are better handled early.
3385 if Nkind (Parent (N)) = N_Compilation_Unit
3386 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3387 then
3388 declare
3389 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
3391 begin
3392 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
3394 -- For a Boolean aspect, create the corresponding pragma if
3395 -- no expression or if the value is True.
3397 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
3398 if Is_True (Static_Boolean (Expr)) then
3399 Make_Aitem_Pragma
3400 (Pragma_Argument_Associations => New_List (
3401 Make_Pragma_Argument_Association (Sloc (Ent),
3402 Expression => Ent)),
3403 Pragma_Name => Chars (Id));
3405 Set_From_Aspect_Specification (Aitem, True);
3406 Set_Corresponding_Aspect (Aitem, Aspect);
3408 else
3409 goto Continue;
3410 end if;
3411 end if;
3413 -- If the aspect is on a subprogram body (relevant aspect
3414 -- is Inline), add the pragma in front of the declarations.
3416 if Nkind (N) = N_Subprogram_Body then
3417 if No (Declarations (N)) then
3418 Set_Declarations (N, New_List);
3419 end if;
3421 Prepend (Aitem, Declarations (N));
3423 elsif Nkind (N) = N_Generic_Package_Declaration then
3424 if No (Visible_Declarations (Specification (N))) then
3425 Set_Visible_Declarations (Specification (N), New_List);
3426 end if;
3428 Prepend (Aitem,
3429 Visible_Declarations (Specification (N)));
3431 elsif Nkind (N) = N_Package_Instantiation then
3432 declare
3433 Spec : constant Node_Id :=
3434 Specification (Instance_Spec (N));
3435 begin
3436 if No (Visible_Declarations (Spec)) then
3437 Set_Visible_Declarations (Spec, New_List);
3438 end if;
3440 Prepend (Aitem, Visible_Declarations (Spec));
3441 end;
3443 else
3444 if No (Pragmas_After (Aux)) then
3445 Set_Pragmas_After (Aux, New_List);
3446 end if;
3448 Append (Aitem, Pragmas_After (Aux));
3449 end if;
3451 goto Continue;
3452 end;
3453 end if;
3455 -- The evaluation of the aspect is delayed to the freezing point.
3456 -- The pragma or attribute clause if there is one is then attached
3457 -- to the aspect specification which is put in the rep item list.
3459 if Delay_Required then
3460 if Present (Aitem) then
3461 Set_Is_Delayed_Aspect (Aitem);
3462 Set_Aspect_Rep_Item (Aspect, Aitem);
3463 Set_Parent (Aitem, Aspect);
3464 end if;
3466 Set_Is_Delayed_Aspect (Aspect);
3468 -- In the case of Default_Value, link the aspect to base type
3469 -- as well, even though it appears on a first subtype. This is
3470 -- mandated by the semantics of the aspect. Do not establish
3471 -- the link when processing the base type itself as this leads
3472 -- to a rep item circularity. Verify that we are dealing with
3473 -- a scalar type to prevent cascaded errors.
3475 if A_Id = Aspect_Default_Value
3476 and then Is_Scalar_Type (E)
3477 and then Base_Type (E) /= E
3478 then
3479 Set_Has_Delayed_Aspects (Base_Type (E));
3480 Record_Rep_Item (Base_Type (E), Aspect);
3481 end if;
3483 Set_Has_Delayed_Aspects (E);
3484 Record_Rep_Item (E, Aspect);
3486 -- When delay is not required and the context is a package or a
3487 -- subprogram body, insert the pragma in the body declarations.
3489 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
3490 if No (Declarations (N)) then
3491 Set_Declarations (N, New_List);
3492 end if;
3494 -- The pragma is added before source declarations
3496 Prepend_To (Declarations (N), Aitem);
3498 -- When delay is not required and the context is not a compilation
3499 -- unit, we simply insert the pragma/attribute definition clause
3500 -- in sequence.
3502 else
3503 Insert_After (Ins_Node, Aitem);
3504 Ins_Node := Aitem;
3505 end if;
3506 end Analyze_One_Aspect;
3508 <<Continue>>
3509 Next (Aspect);
3510 end loop Aspect_Loop;
3512 if Has_Delayed_Aspects (E) then
3513 Ensure_Freeze_Node (E);
3514 end if;
3515 end Analyze_Aspect_Specifications;
3517 ---------------------------------------------------
3518 -- Analyze_Aspect_Specifications_On_Body_Or_Stub --
3519 ---------------------------------------------------
3521 procedure Analyze_Aspect_Specifications_On_Body_Or_Stub (N : Node_Id) is
3522 Body_Id : constant Entity_Id := Defining_Entity (N);
3524 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
3525 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3526 -- error message depending on the aspects involved. Spec_Id denotes the
3527 -- entity of the corresponding spec.
3529 --------------------------------
3530 -- Diagnose_Misplaced_Aspects --
3531 --------------------------------
3533 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3534 procedure Misplaced_Aspect_Error
3535 (Asp : Node_Id;
3536 Ref_Nam : Name_Id);
3537 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3538 -- the name of the refined version of the aspect.
3540 ----------------------------
3541 -- Misplaced_Aspect_Error --
3542 ----------------------------
3544 procedure Misplaced_Aspect_Error
3545 (Asp : Node_Id;
3546 Ref_Nam : Name_Id)
3548 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3549 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3551 begin
3552 -- The corresponding spec already contains the aspect in question
3553 -- and the one appearing on the body must be the refined form:
3555 -- procedure P with Global ...;
3556 -- procedure P with Global ... is ... end P;
3557 -- ^
3558 -- Refined_Global
3560 if Has_Aspect (Spec_Id, Asp_Id) then
3561 Error_Msg_Name_1 := Asp_Nam;
3563 -- Subunits cannot carry aspects that apply to a subprogram
3564 -- declaration.
3566 if Nkind (Parent (N)) = N_Subunit then
3567 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3569 -- Otherwise suggest the refined form
3571 else
3572 Error_Msg_Name_2 := Ref_Nam;
3573 Error_Msg_N ("aspect % should be %", Asp);
3574 end if;
3576 -- Otherwise the aspect must appear on the spec, not on the body
3578 -- procedure P;
3579 -- procedure P with Global ... is ... end P;
3581 else
3582 Error_Msg_N
3583 ("aspect specification must appear on initial declaration",
3584 Asp);
3585 end if;
3586 end Misplaced_Aspect_Error;
3588 -- Local variables
3590 Asp : Node_Id;
3591 Asp_Nam : Name_Id;
3593 -- Start of processing for Diagnose_Misplaced_Aspects
3595 begin
3596 -- Iterate over the aspect specifications and emit specific errors
3597 -- where applicable.
3599 Asp := First (Aspect_Specifications (N));
3600 while Present (Asp) loop
3601 Asp_Nam := Chars (Identifier (Asp));
3603 -- Do not emit errors on aspects that can appear on a subprogram
3604 -- body. This scenario occurs when the aspect specification list
3605 -- contains both misplaced and properly placed aspects.
3607 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3608 null;
3610 -- Special diagnostics for SPARK aspects
3612 elsif Asp_Nam = Name_Depends then
3613 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3615 elsif Asp_Nam = Name_Global then
3616 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3618 elsif Asp_Nam = Name_Post then
3619 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3621 -- Otherwise a language-defined aspect is misplaced
3623 else
3624 Error_Msg_N
3625 ("aspect specification must appear on initial declaration",
3626 Asp);
3627 end if;
3629 Next (Asp);
3630 end loop;
3631 end Diagnose_Misplaced_Aspects;
3633 -- Local variables
3635 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
3637 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
3639 begin
3640 -- Language-defined aspects cannot be associated with a subprogram body
3641 -- [stub] if the subprogram has a spec. Certain implementation defined
3642 -- aspects are allowed to break this rule (for all applicable cases, see
3643 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3645 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
3646 Diagnose_Misplaced_Aspects (Spec_Id);
3647 else
3648 Analyze_Aspect_Specifications (N, Body_Id);
3649 end if;
3650 end Analyze_Aspect_Specifications_On_Body_Or_Stub;
3652 -----------------------
3653 -- Analyze_At_Clause --
3654 -----------------------
3656 -- An at clause is replaced by the corresponding Address attribute
3657 -- definition clause that is the preferred approach in Ada 95.
3659 procedure Analyze_At_Clause (N : Node_Id) is
3660 CS : constant Boolean := Comes_From_Source (N);
3662 begin
3663 -- This is an obsolescent feature
3665 Check_Restriction (No_Obsolescent_Features, N);
3667 if Warn_On_Obsolescent_Feature then
3668 Error_Msg_N
3669 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
3670 Error_Msg_N
3671 ("\?j?use address attribute definition clause instead", N);
3672 end if;
3674 -- Rewrite as address clause
3676 Rewrite (N,
3677 Make_Attribute_Definition_Clause (Sloc (N),
3678 Name => Identifier (N),
3679 Chars => Name_Address,
3680 Expression => Expression (N)));
3682 -- We preserve Comes_From_Source, since logically the clause still comes
3683 -- from the source program even though it is changed in form.
3685 Set_Comes_From_Source (N, CS);
3687 -- Analyze rewritten clause
3689 Analyze_Attribute_Definition_Clause (N);
3690 end Analyze_At_Clause;
3692 -----------------------------------------
3693 -- Analyze_Attribute_Definition_Clause --
3694 -----------------------------------------
3696 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
3697 Loc : constant Source_Ptr := Sloc (N);
3698 Nam : constant Node_Id := Name (N);
3699 Attr : constant Name_Id := Chars (N);
3700 Expr : constant Node_Id := Expression (N);
3701 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
3703 Ent : Entity_Id;
3704 -- The entity of Nam after it is analyzed. In the case of an incomplete
3705 -- type, this is the underlying type.
3707 U_Ent : Entity_Id;
3708 -- The underlying entity to which the attribute applies. Generally this
3709 -- is the Underlying_Type of Ent, except in the case where the clause
3710 -- applies to full view of incomplete type or private type in which case
3711 -- U_Ent is just a copy of Ent.
3713 FOnly : Boolean := False;
3714 -- Reset to True for subtype specific attribute (Alignment, Size)
3715 -- and for stream attributes, i.e. those cases where in the call to
3716 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3717 -- are checked. Note that the case of stream attributes is not clear
3718 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3719 -- Storage_Size for derived task types, but that is also clearly
3720 -- unintentional.
3722 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
3723 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3724 -- definition clauses.
3726 function Duplicate_Clause return Boolean;
3727 -- This routine checks if the aspect for U_Ent being given by attribute
3728 -- definition clause N is for an aspect that has already been specified,
3729 -- and if so gives an error message. If there is a duplicate, True is
3730 -- returned, otherwise if there is no error, False is returned.
3732 procedure Check_Indexing_Functions;
3733 -- Check that the function in Constant_Indexing or Variable_Indexing
3734 -- attribute has the proper type structure. If the name is overloaded,
3735 -- check that some interpretation is legal.
3737 procedure Check_Iterator_Functions;
3738 -- Check that there is a single function in Default_Iterator attribute
3739 -- has the proper type structure.
3741 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
3742 -- Common legality check for the previous two
3744 -----------------------------------
3745 -- Analyze_Stream_TSS_Definition --
3746 -----------------------------------
3748 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
3749 Subp : Entity_Id := Empty;
3750 I : Interp_Index;
3751 It : Interp;
3752 Pnam : Entity_Id;
3754 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
3755 -- True for Read attribute, false for other attributes
3757 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
3758 -- Return true if the entity is a subprogram with an appropriate
3759 -- profile for the attribute being defined.
3761 ----------------------
3762 -- Has_Good_Profile --
3763 ----------------------
3765 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
3766 F : Entity_Id;
3767 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
3768 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
3769 (False => E_Procedure, True => E_Function);
3770 Typ : Entity_Id;
3772 begin
3773 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
3774 return False;
3775 end if;
3777 F := First_Formal (Subp);
3779 if No (F)
3780 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
3781 or else Designated_Type (Etype (F)) /=
3782 Class_Wide_Type (RTE (RE_Root_Stream_Type))
3783 then
3784 return False;
3785 end if;
3787 if not Is_Function then
3788 Next_Formal (F);
3790 declare
3791 Expected_Mode : constant array (Boolean) of Entity_Kind :=
3792 (False => E_In_Parameter,
3793 True => E_Out_Parameter);
3794 begin
3795 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
3796 return False;
3797 end if;
3798 end;
3800 Typ := Etype (F);
3802 -- If the attribute specification comes from an aspect
3803 -- specification for a class-wide stream, the parameter must be
3804 -- a class-wide type of the entity to which the aspect applies.
3806 if From_Aspect_Specification (N)
3807 and then Class_Present (Parent (N))
3808 and then Is_Class_Wide_Type (Typ)
3809 then
3810 Typ := Etype (Typ);
3811 end if;
3813 else
3814 Typ := Etype (Subp);
3815 end if;
3817 -- Verify that the prefix of the attribute and the local name for
3818 -- the type of the formal match, or one is the class-wide of the
3819 -- other, in the case of a class-wide stream operation.
3821 if Base_Type (Typ) = Base_Type (Ent)
3822 or else (Is_Class_Wide_Type (Typ)
3823 and then Typ = Class_Wide_Type (Base_Type (Ent)))
3824 or else (Is_Class_Wide_Type (Ent)
3825 and then Ent = Class_Wide_Type (Base_Type (Typ)))
3826 then
3827 null;
3828 else
3829 return False;
3830 end if;
3832 if Present ((Next_Formal (F)))
3833 then
3834 return False;
3836 elsif not Is_Scalar_Type (Typ)
3837 and then not Is_First_Subtype (Typ)
3838 and then not Is_Class_Wide_Type (Typ)
3839 then
3840 return False;
3842 else
3843 return True;
3844 end if;
3845 end Has_Good_Profile;
3847 -- Start of processing for Analyze_Stream_TSS_Definition
3849 begin
3850 FOnly := True;
3852 if not Is_Type (U_Ent) then
3853 Error_Msg_N ("local name must be a subtype", Nam);
3854 return;
3856 elsif not Is_First_Subtype (U_Ent) then
3857 Error_Msg_N ("local name must be a first subtype", Nam);
3858 return;
3859 end if;
3861 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
3863 -- If Pnam is present, it can be either inherited from an ancestor
3864 -- type (in which case it is legal to redefine it for this type), or
3865 -- be a previous definition of the attribute for the same type (in
3866 -- which case it is illegal).
3868 -- In the first case, it will have been analyzed already, and we
3869 -- can check that its profile does not match the expected profile
3870 -- for a stream attribute of U_Ent. In the second case, either Pnam
3871 -- has been analyzed (and has the expected profile), or it has not
3872 -- been analyzed yet (case of a type that has not been frozen yet
3873 -- and for which the stream attribute has been set using Set_TSS).
3875 if Present (Pnam)
3876 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
3877 then
3878 Error_Msg_Sloc := Sloc (Pnam);
3879 Error_Msg_Name_1 := Attr;
3880 Error_Msg_N ("% attribute already defined #", Nam);
3881 return;
3882 end if;
3884 Analyze (Expr);
3886 if Is_Entity_Name (Expr) then
3887 if not Is_Overloaded (Expr) then
3888 if Has_Good_Profile (Entity (Expr)) then
3889 Subp := Entity (Expr);
3890 end if;
3892 else
3893 Get_First_Interp (Expr, I, It);
3894 while Present (It.Nam) loop
3895 if Has_Good_Profile (It.Nam) then
3896 Subp := It.Nam;
3897 exit;
3898 end if;
3900 Get_Next_Interp (I, It);
3901 end loop;
3902 end if;
3903 end if;
3905 if Present (Subp) then
3906 if Is_Abstract_Subprogram (Subp) then
3907 Error_Msg_N ("stream subprogram must not be abstract", Expr);
3908 return;
3910 -- A stream subprogram for an interface type must be a null
3911 -- procedure (RM 13.13.2 (38/3)).
3913 elsif Is_Interface (U_Ent)
3914 and then not Is_Class_Wide_Type (U_Ent)
3915 and then not Inside_A_Generic
3916 and then
3917 (Ekind (Subp) = E_Function
3918 or else
3919 not Null_Present
3920 (Specification
3921 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
3922 then
3923 Error_Msg_N
3924 ("stream subprogram for interface type "
3925 & "must be null procedure", Expr);
3926 end if;
3928 Set_Entity (Expr, Subp);
3929 Set_Etype (Expr, Etype (Subp));
3931 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
3933 else
3934 Error_Msg_Name_1 := Attr;
3935 Error_Msg_N ("incorrect expression for% attribute", Expr);
3936 end if;
3937 end Analyze_Stream_TSS_Definition;
3939 ------------------------------
3940 -- Check_Indexing_Functions --
3941 ------------------------------
3943 procedure Check_Indexing_Functions is
3944 Indexing_Found : Boolean := False;
3946 procedure Check_Inherited_Indexing;
3947 -- For a derived type, check that no indexing aspect is specified
3948 -- for the type if it is also inherited
3950 procedure Check_One_Function (Subp : Entity_Id);
3951 -- Check one possible interpretation. Sets Indexing_Found True if a
3952 -- legal indexing function is found.
3954 procedure Illegal_Indexing (Msg : String);
3955 -- Diagnose illegal indexing function if not overloaded. In the
3956 -- overloaded case indicate that no legal interpretation exists.
3958 ------------------------------
3959 -- Check_Inherited_Indexing --
3960 ------------------------------
3962 procedure Check_Inherited_Indexing is
3963 Inherited : Node_Id;
3965 begin
3966 if Attr = Name_Constant_Indexing then
3967 Inherited :=
3968 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
3969 else pragma Assert (Attr = Name_Variable_Indexing);
3970 Inherited :=
3971 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
3972 end if;
3974 if Present (Inherited) then
3975 if Debug_Flag_Dot_XX then
3976 null;
3978 -- OK if current attribute_definition_clause is expansion of
3979 -- inherited aspect.
3981 elsif Aspect_Rep_Item (Inherited) = N then
3982 null;
3984 -- Indicate the operation that must be overridden, rather than
3985 -- redefining the indexing aspect.
3987 else
3988 Illegal_Indexing
3989 ("indexing function already inherited from parent type");
3990 Error_Msg_NE
3991 ("!override & instead",
3992 N, Entity (Expression (Inherited)));
3993 end if;
3994 end if;
3995 end Check_Inherited_Indexing;
3997 ------------------------
3998 -- Check_One_Function --
3999 ------------------------
4001 procedure Check_One_Function (Subp : Entity_Id) is
4002 Default_Element : Node_Id;
4003 Ret_Type : constant Entity_Id := Etype (Subp);
4005 begin
4006 if not Is_Overloadable (Subp) then
4007 Illegal_Indexing ("illegal indexing function for type&");
4008 return;
4010 elsif Scope (Subp) /= Scope (Ent) then
4011 if Nkind (Expr) = N_Expanded_Name then
4013 -- Indexing function can't be declared elsewhere
4015 Illegal_Indexing
4016 ("indexing function must be declared in scope of type&");
4017 end if;
4019 return;
4021 elsif No (First_Formal (Subp)) then
4022 Illegal_Indexing
4023 ("Indexing requires a function that applies to type&");
4024 return;
4026 elsif No (Next_Formal (First_Formal (Subp))) then
4027 Illegal_Indexing
4028 ("indexing function must have at least two parameters");
4029 return;
4031 elsif Is_Derived_Type (Ent) then
4032 Check_Inherited_Indexing;
4033 end if;
4035 if not Check_Primitive_Function (Subp) then
4036 Illegal_Indexing
4037 ("Indexing aspect requires a function that applies to type&");
4038 return;
4039 end if;
4041 -- If partial declaration exists, verify that it is not tagged.
4043 if Ekind (Current_Scope) = E_Package
4044 and then Has_Private_Declaration (Ent)
4045 and then From_Aspect_Specification (N)
4046 and then
4047 List_Containing (Parent (Ent)) =
4048 Private_Declarations
4049 (Specification (Unit_Declaration_Node (Current_Scope)))
4050 and then Nkind (N) = N_Attribute_Definition_Clause
4051 then
4052 declare
4053 Decl : Node_Id;
4055 begin
4056 Decl :=
4057 First (Visible_Declarations
4058 (Specification
4059 (Unit_Declaration_Node (Current_Scope))));
4061 while Present (Decl) loop
4062 if Nkind (Decl) = N_Private_Type_Declaration
4063 and then Ent = Full_View (Defining_Identifier (Decl))
4064 and then Tagged_Present (Decl)
4065 and then No (Aspect_Specifications (Decl))
4066 then
4067 Illegal_Indexing
4068 ("Indexing aspect cannot be specified on full view "
4069 & "if partial view is tagged");
4070 return;
4071 end if;
4073 Next (Decl);
4074 end loop;
4075 end;
4076 end if;
4078 -- An indexing function must return either the default element of
4079 -- the container, or a reference type. For variable indexing it
4080 -- must be the latter.
4082 Default_Element :=
4083 Find_Value_Of_Aspect
4084 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
4086 if Present (Default_Element) then
4087 Analyze (Default_Element);
4089 if Is_Entity_Name (Default_Element)
4090 and then not Covers (Entity (Default_Element), Ret_Type)
4091 and then False
4092 then
4093 Illegal_Indexing
4094 ("wrong return type for indexing function");
4095 return;
4096 end if;
4097 end if;
4099 -- For variable_indexing the return type must be a reference type
4101 if Attr = Name_Variable_Indexing then
4102 if not Has_Implicit_Dereference (Ret_Type) then
4103 Illegal_Indexing
4104 ("variable indexing must return a reference type");
4105 return;
4107 elsif Is_Access_Constant
4108 (Etype (First_Discriminant (Ret_Type)))
4109 then
4110 Illegal_Indexing
4111 ("variable indexing must return an access to variable");
4112 return;
4113 end if;
4115 else
4116 if Has_Implicit_Dereference (Ret_Type)
4117 and then not
4118 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4119 then
4120 Illegal_Indexing
4121 ("constant indexing must return an access to constant");
4122 return;
4124 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4125 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4126 then
4127 Illegal_Indexing
4128 ("constant indexing must apply to an access to constant");
4129 return;
4130 end if;
4131 end if;
4133 -- All checks succeeded.
4135 Indexing_Found := True;
4136 end Check_One_Function;
4138 -----------------------
4139 -- Illegal_Indexing --
4140 -----------------------
4142 procedure Illegal_Indexing (Msg : String) is
4143 begin
4144 Error_Msg_NE (Msg, N, Ent);
4145 end Illegal_Indexing;
4147 -- Start of processing for Check_Indexing_Functions
4149 begin
4150 if In_Instance then
4151 Check_Inherited_Indexing;
4152 end if;
4154 Analyze (Expr);
4156 if not Is_Overloaded (Expr) then
4157 Check_One_Function (Entity (Expr));
4159 else
4160 declare
4161 I : Interp_Index;
4162 It : Interp;
4164 begin
4165 Indexing_Found := False;
4166 Get_First_Interp (Expr, I, It);
4167 while Present (It.Nam) loop
4169 -- Note that analysis will have added the interpretation
4170 -- that corresponds to the dereference. We only check the
4171 -- subprogram itself.
4173 if Is_Overloadable (It.Nam) then
4174 Check_One_Function (It.Nam);
4175 end if;
4177 Get_Next_Interp (I, It);
4178 end loop;
4179 end;
4180 end if;
4182 if not Indexing_Found and then not Error_Posted (N) then
4183 Error_Msg_NE
4184 ("aspect Indexing requires a local function that "
4185 & "applies to type&", Expr, Ent);
4186 end if;
4187 end Check_Indexing_Functions;
4189 ------------------------------
4190 -- Check_Iterator_Functions --
4191 ------------------------------
4193 procedure Check_Iterator_Functions is
4194 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
4195 -- Check one possible interpretation for validity
4197 ----------------------------
4198 -- Valid_Default_Iterator --
4199 ----------------------------
4201 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
4202 Formal : Entity_Id;
4204 begin
4205 if not Check_Primitive_Function (Subp) then
4206 return False;
4207 else
4208 Formal := First_Formal (Subp);
4209 end if;
4211 -- False if any subsequent formal has no default expression
4213 Formal := Next_Formal (Formal);
4214 while Present (Formal) loop
4215 if No (Expression (Parent (Formal))) then
4216 return False;
4217 end if;
4219 Next_Formal (Formal);
4220 end loop;
4222 -- True if all subsequent formals have default expressions
4224 return True;
4225 end Valid_Default_Iterator;
4227 -- Start of processing for Check_Iterator_Functions
4229 begin
4230 Analyze (Expr);
4232 if not Is_Entity_Name (Expr) then
4233 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4234 end if;
4236 if not Is_Overloaded (Expr) then
4237 if not Check_Primitive_Function (Entity (Expr)) then
4238 Error_Msg_NE
4239 ("aspect Indexing requires a function that applies to type&",
4240 Entity (Expr), Ent);
4241 end if;
4243 -- Flag the default_iterator as well as the denoted function.
4245 if not Valid_Default_Iterator (Entity (Expr)) then
4246 Error_Msg_N ("improper function for default iterator!", Expr);
4247 end if;
4249 else
4250 declare
4251 Default : Entity_Id := Empty;
4252 I : Interp_Index;
4253 It : Interp;
4255 begin
4256 Get_First_Interp (Expr, I, It);
4257 while Present (It.Nam) loop
4258 if not Check_Primitive_Function (It.Nam)
4259 or else not Valid_Default_Iterator (It.Nam)
4260 then
4261 Remove_Interp (I);
4263 elsif Present (Default) then
4265 -- An explicit one should override an implicit one
4267 if Comes_From_Source (Default) =
4268 Comes_From_Source (It.Nam)
4269 then
4270 Error_Msg_N ("default iterator must be unique", Expr);
4271 Error_Msg_Sloc := Sloc (Default);
4272 Error_Msg_N ("\\possible interpretation#", Expr);
4273 Error_Msg_Sloc := Sloc (It.Nam);
4274 Error_Msg_N ("\\possible interpretation#", Expr);
4276 elsif Comes_From_Source (It.Nam) then
4277 Default := It.Nam;
4278 end if;
4279 else
4280 Default := It.Nam;
4281 end if;
4283 Get_Next_Interp (I, It);
4284 end loop;
4286 if Present (Default) then
4287 Set_Entity (Expr, Default);
4288 Set_Is_Overloaded (Expr, False);
4289 end if;
4290 end;
4291 end if;
4292 end Check_Iterator_Functions;
4294 -------------------------------
4295 -- Check_Primitive_Function --
4296 -------------------------------
4298 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4299 Ctrl : Entity_Id;
4301 begin
4302 if Ekind (Subp) /= E_Function then
4303 return False;
4304 end if;
4306 if No (First_Formal (Subp)) then
4307 return False;
4308 else
4309 Ctrl := Etype (First_Formal (Subp));
4310 end if;
4312 -- To be a primitive operation subprogram has to be in same scope.
4314 if Scope (Ctrl) /= Scope (Subp) then
4315 return False;
4316 end if;
4318 -- Type of formal may be the class-wide type, an access to such,
4319 -- or an incomplete view.
4321 if Ctrl = Ent
4322 or else Ctrl = Class_Wide_Type (Ent)
4323 or else
4324 (Ekind (Ctrl) = E_Anonymous_Access_Type
4325 and then (Designated_Type (Ctrl) = Ent
4326 or else
4327 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
4328 or else
4329 (Ekind (Ctrl) = E_Incomplete_Type
4330 and then Full_View (Ctrl) = Ent)
4331 then
4332 null;
4333 else
4334 return False;
4335 end if;
4337 return True;
4338 end Check_Primitive_Function;
4340 ----------------------
4341 -- Duplicate_Clause --
4342 ----------------------
4344 function Duplicate_Clause return Boolean is
4345 A : Node_Id;
4347 begin
4348 -- Nothing to do if this attribute definition clause comes from
4349 -- an aspect specification, since we could not be duplicating an
4350 -- explicit clause, and we dealt with the case of duplicated aspects
4351 -- in Analyze_Aspect_Specifications.
4353 if From_Aspect_Specification (N) then
4354 return False;
4355 end if;
4357 -- Otherwise current clause may duplicate previous clause, or a
4358 -- previously given pragma or aspect specification for the same
4359 -- aspect.
4361 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
4363 if Present (A) then
4364 Error_Msg_Name_1 := Chars (N);
4365 Error_Msg_Sloc := Sloc (A);
4367 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
4368 return True;
4369 end if;
4371 return False;
4372 end Duplicate_Clause;
4374 -- Start of processing for Analyze_Attribute_Definition_Clause
4376 begin
4377 -- The following code is a defense against recursion. Not clear that
4378 -- this can happen legitimately, but perhaps some error situations can
4379 -- cause it, and we did see this recursion during testing.
4381 if Analyzed (N) then
4382 return;
4383 else
4384 Set_Analyzed (N, True);
4385 end if;
4387 -- Ignore some selected attributes in CodePeer mode since they are not
4388 -- relevant in this context.
4390 if CodePeer_Mode then
4391 case Id is
4393 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4394 -- internal representation of types by implicitly packing them.
4396 when Attribute_Component_Size =>
4397 Rewrite (N, Make_Null_Statement (Sloc (N)));
4398 return;
4400 when others =>
4401 null;
4402 end case;
4403 end if;
4405 -- Process Ignore_Rep_Clauses option
4407 if Ignore_Rep_Clauses then
4408 case Id is
4410 -- The following should be ignored. They do not affect legality
4411 -- and may be target dependent. The basic idea of -gnatI is to
4412 -- ignore any rep clauses that may be target dependent but do not
4413 -- affect legality (except possibly to be rejected because they
4414 -- are incompatible with the compilation target).
4416 when Attribute_Alignment |
4417 Attribute_Bit_Order |
4418 Attribute_Component_Size |
4419 Attribute_Machine_Radix |
4420 Attribute_Object_Size |
4421 Attribute_Size |
4422 Attribute_Small |
4423 Attribute_Stream_Size |
4424 Attribute_Value_Size =>
4425 Kill_Rep_Clause (N);
4426 return;
4428 -- The following should not be ignored, because in the first place
4429 -- they are reasonably portable, and should not cause problems
4430 -- in compiling code from another target, and also they do affect
4431 -- legality, e.g. failing to provide a stream attribute for a type
4432 -- may make a program illegal.
4434 when Attribute_External_Tag |
4435 Attribute_Input |
4436 Attribute_Output |
4437 Attribute_Read |
4438 Attribute_Simple_Storage_Pool |
4439 Attribute_Storage_Pool |
4440 Attribute_Storage_Size |
4441 Attribute_Write =>
4442 null;
4444 -- We do not do anything here with address clauses, they will be
4445 -- removed by Freeze later on, but for now, it works better to
4446 -- keep then in the tree.
4448 when Attribute_Address =>
4449 null;
4451 -- Other cases are errors ("attribute& cannot be set with
4452 -- definition clause"), which will be caught below.
4454 when others =>
4455 null;
4456 end case;
4457 end if;
4459 Analyze (Nam);
4460 Ent := Entity (Nam);
4462 if Rep_Item_Too_Early (Ent, N) then
4463 return;
4464 end if;
4466 -- Rep clause applies to full view of incomplete type or private type if
4467 -- we have one (if not, this is a premature use of the type). However,
4468 -- certain semantic checks need to be done on the specified entity (i.e.
4469 -- the private view), so we save it in Ent.
4471 if Is_Private_Type (Ent)
4472 and then Is_Derived_Type (Ent)
4473 and then not Is_Tagged_Type (Ent)
4474 and then No (Full_View (Ent))
4475 then
4476 -- If this is a private type whose completion is a derivation from
4477 -- another private type, there is no full view, and the attribute
4478 -- belongs to the type itself, not its underlying parent.
4480 U_Ent := Ent;
4482 elsif Ekind (Ent) = E_Incomplete_Type then
4484 -- The attribute applies to the full view, set the entity of the
4485 -- attribute definition accordingly.
4487 Ent := Underlying_Type (Ent);
4488 U_Ent := Ent;
4489 Set_Entity (Nam, Ent);
4491 else
4492 U_Ent := Underlying_Type (Ent);
4493 end if;
4495 -- Avoid cascaded error
4497 if Etype (Nam) = Any_Type then
4498 return;
4500 -- Must be declared in current scope or in case of an aspect
4501 -- specification, must be visible in current scope.
4503 elsif Scope (Ent) /= Current_Scope
4504 and then
4505 not (From_Aspect_Specification (N)
4506 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
4507 then
4508 Error_Msg_N ("entity must be declared in this scope", Nam);
4509 return;
4511 -- Must not be a source renaming (we do have some cases where the
4512 -- expander generates a renaming, and those cases are OK, in such
4513 -- cases any attribute applies to the renamed object as well).
4515 elsif Is_Object (Ent)
4516 and then Present (Renamed_Object (Ent))
4517 then
4518 -- Case of renamed object from source, this is an error
4520 if Comes_From_Source (Renamed_Object (Ent)) then
4521 Get_Name_String (Chars (N));
4522 Error_Msg_Strlen := Name_Len;
4523 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4524 Error_Msg_N
4525 ("~ clause not allowed for a renaming declaration "
4526 & "(RM 13.1(6))", Nam);
4527 return;
4529 -- For the case of a compiler generated renaming, the attribute
4530 -- definition clause applies to the renamed object created by the
4531 -- expander. The easiest general way to handle this is to create a
4532 -- copy of the attribute definition clause for this object.
4534 elsif Is_Entity_Name (Renamed_Object (Ent)) then
4535 Insert_Action (N,
4536 Make_Attribute_Definition_Clause (Loc,
4537 Name =>
4538 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4539 Chars => Chars (N),
4540 Expression => Duplicate_Subexpr (Expression (N))));
4542 -- If the renamed object is not an entity, it must be a dereference
4543 -- of an unconstrained function call, and we must introduce a new
4544 -- declaration to capture the expression. This is needed in the case
4545 -- of 'Alignment, where the original declaration must be rewritten.
4547 else
4548 pragma Assert
4549 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4550 null;
4551 end if;
4553 -- If no underlying entity, use entity itself, applies to some
4554 -- previously detected error cases ???
4556 elsif No (U_Ent) then
4557 U_Ent := Ent;
4559 -- Cannot specify for a subtype (exception Object/Value_Size)
4561 elsif Is_Type (U_Ent)
4562 and then not Is_First_Subtype (U_Ent)
4563 and then Id /= Attribute_Object_Size
4564 and then Id /= Attribute_Value_Size
4565 and then not From_At_Mod (N)
4566 then
4567 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4568 return;
4569 end if;
4571 Set_Entity (N, U_Ent);
4572 Check_Restriction_No_Use_Of_Attribute (N);
4574 -- Switch on particular attribute
4576 case Id is
4578 -------------
4579 -- Address --
4580 -------------
4582 -- Address attribute definition clause
4584 when Attribute_Address => Address : begin
4586 -- A little error check, catch for X'Address use X'Address;
4588 if Nkind (Nam) = N_Identifier
4589 and then Nkind (Expr) = N_Attribute_Reference
4590 and then Attribute_Name (Expr) = Name_Address
4591 and then Nkind (Prefix (Expr)) = N_Identifier
4592 and then Chars (Nam) = Chars (Prefix (Expr))
4593 then
4594 Error_Msg_NE
4595 ("address for & is self-referencing", Prefix (Expr), Ent);
4596 return;
4597 end if;
4599 -- Not that special case, carry on with analysis of expression
4601 Analyze_And_Resolve (Expr, RTE (RE_Address));
4603 -- Even when ignoring rep clauses we need to indicate that the
4604 -- entity has an address clause and thus it is legal to declare
4605 -- it imported. Freeze will get rid of the address clause later.
4607 if Ignore_Rep_Clauses then
4608 if Ekind_In (U_Ent, E_Variable, E_Constant) then
4609 Record_Rep_Item (U_Ent, N);
4610 end if;
4612 return;
4613 end if;
4615 if Duplicate_Clause then
4616 null;
4618 -- Case of address clause for subprogram
4620 elsif Is_Subprogram (U_Ent) then
4621 if Has_Homonym (U_Ent) then
4622 Error_Msg_N
4623 ("address clause cannot be given " &
4624 "for overloaded subprogram",
4625 Nam);
4626 return;
4627 end if;
4629 -- For subprograms, all address clauses are permitted, and we
4630 -- mark the subprogram as having a deferred freeze so that Gigi
4631 -- will not elaborate it too soon.
4633 -- Above needs more comments, what is too soon about???
4635 Set_Has_Delayed_Freeze (U_Ent);
4637 -- Case of address clause for entry
4639 elsif Ekind (U_Ent) = E_Entry then
4640 if Nkind (Parent (N)) = N_Task_Body then
4641 Error_Msg_N
4642 ("entry address must be specified in task spec", Nam);
4643 return;
4644 end if;
4646 -- For entries, we require a constant address
4648 Check_Constant_Address_Clause (Expr, U_Ent);
4650 -- Special checks for task types
4652 if Is_Task_Type (Scope (U_Ent))
4653 and then Comes_From_Source (Scope (U_Ent))
4654 then
4655 Error_Msg_N
4656 ("??entry address declared for entry in task type", N);
4657 Error_Msg_N
4658 ("\??only one task can be declared of this type", N);
4659 end if;
4661 -- Entry address clauses are obsolescent
4663 Check_Restriction (No_Obsolescent_Features, N);
4665 if Warn_On_Obsolescent_Feature then
4666 Error_Msg_N
4667 ("?j?attaching interrupt to task entry is an " &
4668 "obsolescent feature (RM J.7.1)", N);
4669 Error_Msg_N
4670 ("\?j?use interrupt procedure instead", N);
4671 end if;
4673 -- Case of an address clause for a controlled object which we
4674 -- consider to be erroneous.
4676 elsif Is_Controlled (Etype (U_Ent))
4677 or else Has_Controlled_Component (Etype (U_Ent))
4678 then
4679 Error_Msg_NE
4680 ("??controlled object& must not be overlaid", Nam, U_Ent);
4681 Error_Msg_N
4682 ("\??Program_Error will be raised at run time", Nam);
4683 Insert_Action (Declaration_Node (U_Ent),
4684 Make_Raise_Program_Error (Loc,
4685 Reason => PE_Overlaid_Controlled_Object));
4686 return;
4688 -- Case of address clause for a (non-controlled) object
4690 elsif Ekind_In (U_Ent, E_Variable, E_Constant) then
4691 declare
4692 Expr : constant Node_Id := Expression (N);
4693 O_Ent : Entity_Id;
4694 Off : Boolean;
4696 begin
4697 -- Exported variables cannot have an address clause, because
4698 -- this cancels the effect of the pragma Export.
4700 if Is_Exported (U_Ent) then
4701 Error_Msg_N
4702 ("cannot export object with address clause", Nam);
4703 return;
4704 end if;
4706 Find_Overlaid_Entity (N, O_Ent, Off);
4708 if Present (O_Ent) then
4710 -- If the object overlays a constant object, mark it so
4712 if Is_Constant_Object (O_Ent) then
4713 Set_Overlays_Constant (U_Ent);
4714 end if;
4716 else
4717 -- If this is not an overlay, mark a variable as being
4718 -- volatile to prevent unwanted optimizations. It's a
4719 -- conservative interpretation of RM 13.3(19) for the
4720 -- cases where the compiler cannot detect potential
4721 -- aliasing issues easily and it also covers the case
4722 -- of an absolute address where the volatile aspect is
4723 -- kind of implicit.
4725 if Ekind (U_Ent) = E_Variable then
4726 Set_Treat_As_Volatile (U_Ent);
4727 end if;
4728 end if;
4730 -- Overlaying controlled objects is erroneous. Emit warning
4731 -- but continue analysis because program is itself legal,
4732 -- and back end must see address clause.
4734 if Present (O_Ent)
4735 and then (Has_Controlled_Component (Etype (O_Ent))
4736 or else Is_Controlled (Etype (O_Ent)))
4737 and then not Inside_A_Generic
4738 then
4739 Error_Msg_N
4740 ("??cannot use overlays with controlled objects", Expr);
4741 Error_Msg_N
4742 ("\??Program_Error will be raised at run time", Expr);
4743 Insert_Action (Declaration_Node (U_Ent),
4744 Make_Raise_Program_Error (Loc,
4745 Reason => PE_Overlaid_Controlled_Object));
4747 -- Issue an unconditional warning for a constant overlaying
4748 -- a variable. For the reverse case, we will issue it only
4749 -- if the variable is modified.
4751 elsif Ekind (U_Ent) = E_Constant
4752 and then Present (O_Ent)
4753 and then not Overlays_Constant (U_Ent)
4754 and then Address_Clause_Overlay_Warnings
4755 then
4756 Error_Msg_N ("??constant overlays a variable", Expr);
4758 -- Imported variables can have an address clause, but then
4759 -- the import is pretty meaningless except to suppress
4760 -- initializations, so we do not need such variables to
4761 -- be statically allocated (and in fact it causes trouble
4762 -- if the address clause is a local value).
4764 elsif Is_Imported (U_Ent) then
4765 Set_Is_Statically_Allocated (U_Ent, False);
4766 end if;
4768 -- We mark a possible modification of a variable with an
4769 -- address clause, since it is likely aliasing is occurring.
4771 Note_Possible_Modification (Nam, Sure => False);
4773 -- Legality checks on the address clause for initialized
4774 -- objects is deferred until the freeze point, because
4775 -- a subsequent pragma might indicate that the object
4776 -- is imported and thus not initialized. Also, the address
4777 -- clause might involve entities that have yet to be
4778 -- elaborated.
4780 Set_Has_Delayed_Freeze (U_Ent);
4782 -- If an initialization call has been generated for this
4783 -- object, it needs to be deferred to after the freeze node
4784 -- we have just now added, otherwise GIGI will see a
4785 -- reference to the variable (as actual to the IP call)
4786 -- before its definition.
4788 declare
4789 Init_Call : constant Node_Id :=
4790 Remove_Init_Call (U_Ent, N);
4792 begin
4793 if Present (Init_Call) then
4794 Append_Freeze_Action (U_Ent, Init_Call);
4796 -- Reset Initialization_Statements pointer so that
4797 -- if there is a pragma Import further down, it can
4798 -- clear any default initialization.
4800 Set_Initialization_Statements (U_Ent, Init_Call);
4801 end if;
4802 end;
4804 -- Entity has delayed freeze, so we will generate an
4805 -- alignment check at the freeze point unless suppressed.
4807 if not Range_Checks_Suppressed (U_Ent)
4808 and then not Alignment_Checks_Suppressed (U_Ent)
4809 then
4810 Set_Check_Address_Alignment (N);
4811 end if;
4813 -- Kill the size check code, since we are not allocating
4814 -- the variable, it is somewhere else.
4816 Kill_Size_Check_Code (U_Ent);
4818 -- If the address clause is of the form:
4820 -- for Y'Address use X'Address
4822 -- or
4824 -- Const : constant Address := X'Address;
4825 -- ...
4826 -- for Y'Address use Const;
4828 -- then we make an entry in the table for checking the size
4829 -- and alignment of the overlaying variable. We defer this
4830 -- check till after code generation to take full advantage
4831 -- of the annotation done by the back end.
4833 -- If the entity has a generic type, the check will be
4834 -- performed in the instance if the actual type justifies
4835 -- it, and we do not insert the clause in the table to
4836 -- prevent spurious warnings.
4838 -- Note: we used to test Comes_From_Source and only give
4839 -- this warning for source entities, but we have removed
4840 -- this test. It really seems bogus to generate overlays
4841 -- that would trigger this warning in generated code.
4842 -- Furthermore, by removing the test, we handle the
4843 -- aspect case properly.
4845 if Present (O_Ent)
4846 and then Is_Object (O_Ent)
4847 and then not Is_Generic_Type (Etype (U_Ent))
4848 and then Address_Clause_Overlay_Warnings
4849 then
4850 Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
4851 end if;
4852 end;
4854 -- Not a valid entity for an address clause
4856 else
4857 Error_Msg_N ("address cannot be given for &", Nam);
4858 end if;
4859 end Address;
4861 ---------------
4862 -- Alignment --
4863 ---------------
4865 -- Alignment attribute definition clause
4867 when Attribute_Alignment => Alignment : declare
4868 Align : constant Uint := Get_Alignment_Value (Expr);
4869 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
4871 begin
4872 FOnly := True;
4874 if not Is_Type (U_Ent)
4875 and then Ekind (U_Ent) /= E_Variable
4876 and then Ekind (U_Ent) /= E_Constant
4877 then
4878 Error_Msg_N ("alignment cannot be given for &", Nam);
4880 elsif Duplicate_Clause then
4881 null;
4883 elsif Align /= No_Uint then
4884 Set_Has_Alignment_Clause (U_Ent);
4886 -- Tagged type case, check for attempt to set alignment to a
4887 -- value greater than Max_Align, and reset if so.
4889 if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
4890 Error_Msg_N
4891 ("alignment for & set to Maximum_Aligment??", Nam);
4892 Set_Alignment (U_Ent, Max_Align);
4894 -- All other cases
4896 else
4897 Set_Alignment (U_Ent, Align);
4898 end if;
4900 -- For an array type, U_Ent is the first subtype. In that case,
4901 -- also set the alignment of the anonymous base type so that
4902 -- other subtypes (such as the itypes for aggregates of the
4903 -- type) also receive the expected alignment.
4905 if Is_Array_Type (U_Ent) then
4906 Set_Alignment (Base_Type (U_Ent), Align);
4907 end if;
4908 end if;
4909 end Alignment;
4911 ---------------
4912 -- Bit_Order --
4913 ---------------
4915 -- Bit_Order attribute definition clause
4917 when Attribute_Bit_Order => Bit_Order : declare
4918 begin
4919 if not Is_Record_Type (U_Ent) then
4920 Error_Msg_N
4921 ("Bit_Order can only be defined for record type", Nam);
4923 elsif Duplicate_Clause then
4924 null;
4926 else
4927 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
4929 if Etype (Expr) = Any_Type then
4930 return;
4932 elsif not Is_OK_Static_Expression (Expr) then
4933 Flag_Non_Static_Expr
4934 ("Bit_Order requires static expression!", Expr);
4936 else
4937 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
4938 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
4939 end if;
4940 end if;
4941 end if;
4942 end Bit_Order;
4944 --------------------
4945 -- Component_Size --
4946 --------------------
4948 -- Component_Size attribute definition clause
4950 when Attribute_Component_Size => Component_Size_Case : declare
4951 Csize : constant Uint := Static_Integer (Expr);
4952 Ctyp : Entity_Id;
4953 Btype : Entity_Id;
4954 Biased : Boolean;
4955 New_Ctyp : Entity_Id;
4956 Decl : Node_Id;
4958 begin
4959 if not Is_Array_Type (U_Ent) then
4960 Error_Msg_N ("component size requires array type", Nam);
4961 return;
4962 end if;
4964 Btype := Base_Type (U_Ent);
4965 Ctyp := Component_Type (Btype);
4967 if Duplicate_Clause then
4968 null;
4970 elsif Rep_Item_Too_Early (Btype, N) then
4971 null;
4973 elsif Csize /= No_Uint then
4974 Check_Size (Expr, Ctyp, Csize, Biased);
4976 -- For the biased case, build a declaration for a subtype that
4977 -- will be used to represent the biased subtype that reflects
4978 -- the biased representation of components. We need the subtype
4979 -- to get proper conversions on referencing elements of the
4980 -- array.
4982 if Biased then
4983 New_Ctyp :=
4984 Make_Defining_Identifier (Loc,
4985 Chars =>
4986 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
4988 Decl :=
4989 Make_Subtype_Declaration (Loc,
4990 Defining_Identifier => New_Ctyp,
4991 Subtype_Indication =>
4992 New_Occurrence_Of (Component_Type (Btype), Loc));
4994 Set_Parent (Decl, N);
4995 Analyze (Decl, Suppress => All_Checks);
4997 Set_Has_Delayed_Freeze (New_Ctyp, False);
4998 Set_Esize (New_Ctyp, Csize);
4999 Set_RM_Size (New_Ctyp, Csize);
5000 Init_Alignment (New_Ctyp);
5001 Set_Is_Itype (New_Ctyp, True);
5002 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
5004 Set_Component_Type (Btype, New_Ctyp);
5005 Set_Biased (New_Ctyp, N, "component size clause");
5006 end if;
5008 Set_Component_Size (Btype, Csize);
5010 -- Deal with warning on overridden size
5012 if Warn_On_Overridden_Size
5013 and then Has_Size_Clause (Ctyp)
5014 and then RM_Size (Ctyp) /= Csize
5015 then
5016 Error_Msg_NE
5017 ("component size overrides size clause for&?S?", N, Ctyp);
5018 end if;
5020 Set_Has_Component_Size_Clause (Btype, True);
5021 Set_Has_Non_Standard_Rep (Btype, True);
5022 end if;
5023 end Component_Size_Case;
5025 -----------------------
5026 -- Constant_Indexing --
5027 -----------------------
5029 when Attribute_Constant_Indexing =>
5030 Check_Indexing_Functions;
5032 ---------
5033 -- CPU --
5034 ---------
5036 when Attribute_CPU => CPU :
5037 begin
5038 -- CPU attribute definition clause not allowed except from aspect
5039 -- specification.
5041 if From_Aspect_Specification (N) then
5042 if not Is_Task_Type (U_Ent) then
5043 Error_Msg_N ("CPU can only be defined for task", Nam);
5045 elsif Duplicate_Clause then
5046 null;
5048 else
5049 -- The expression must be analyzed in the special manner
5050 -- described in "Handling of Default and Per-Object
5051 -- Expressions" in sem.ads.
5053 -- The visibility to the discriminants must be restored
5055 Push_Scope_And_Install_Discriminants (U_Ent);
5056 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
5057 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5059 if not Is_OK_Static_Expression (Expr) then
5060 Check_Restriction (Static_Priorities, Expr);
5061 end if;
5062 end if;
5064 else
5065 Error_Msg_N
5066 ("attribute& cannot be set with definition clause", N);
5067 end if;
5068 end CPU;
5070 ----------------------
5071 -- Default_Iterator --
5072 ----------------------
5074 when Attribute_Default_Iterator => Default_Iterator : declare
5075 Func : Entity_Id;
5076 Typ : Entity_Id;
5078 begin
5079 -- If target type is untagged, further checks are irrelevant
5081 if not Is_Tagged_Type (U_Ent) then
5082 Error_Msg_N
5083 ("aspect Default_Iterator applies to tagged type", Nam);
5084 return;
5085 end if;
5087 Check_Iterator_Functions;
5089 Analyze (Expr);
5091 if not Is_Entity_Name (Expr)
5092 or else Ekind (Entity (Expr)) /= E_Function
5093 then
5094 Error_Msg_N ("aspect Iterator must be a function", Expr);
5095 return;
5096 else
5097 Func := Entity (Expr);
5098 end if;
5100 -- The type of the first parameter must be T, T'class, or a
5101 -- corresponding access type (5.5.1 (8/3). If function is
5102 -- parameterless label type accordingly.
5104 if No (First_Formal (Func)) then
5105 Typ := Any_Type;
5106 else
5107 Typ := Etype (First_Formal (Func));
5108 end if;
5110 if Typ = U_Ent
5111 or else Typ = Class_Wide_Type (U_Ent)
5112 or else (Is_Access_Type (Typ)
5113 and then Designated_Type (Typ) = U_Ent)
5114 or else (Is_Access_Type (Typ)
5115 and then Designated_Type (Typ) =
5116 Class_Wide_Type (U_Ent))
5117 then
5118 null;
5120 else
5121 Error_Msg_NE
5122 ("Default Iterator must be a primitive of&", Func, U_Ent);
5123 end if;
5124 end Default_Iterator;
5126 ------------------------
5127 -- Dispatching_Domain --
5128 ------------------------
5130 when Attribute_Dispatching_Domain => Dispatching_Domain :
5131 begin
5132 -- Dispatching_Domain attribute definition clause not allowed
5133 -- except from aspect specification.
5135 if From_Aspect_Specification (N) then
5136 if not Is_Task_Type (U_Ent) then
5137 Error_Msg_N
5138 ("Dispatching_Domain can only be defined for task", Nam);
5140 elsif Duplicate_Clause then
5141 null;
5143 else
5144 -- The expression must be analyzed in the special manner
5145 -- described in "Handling of Default and Per-Object
5146 -- Expressions" in sem.ads.
5148 -- The visibility to the discriminants must be restored
5150 Push_Scope_And_Install_Discriminants (U_Ent);
5152 Preanalyze_Spec_Expression
5153 (Expr, RTE (RE_Dispatching_Domain));
5155 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5156 end if;
5158 else
5159 Error_Msg_N
5160 ("attribute& cannot be set with definition clause", N);
5161 end if;
5162 end Dispatching_Domain;
5164 ------------------
5165 -- External_Tag --
5166 ------------------
5168 when Attribute_External_Tag => External_Tag :
5169 begin
5170 if not Is_Tagged_Type (U_Ent) then
5171 Error_Msg_N ("should be a tagged type", Nam);
5172 end if;
5174 if Duplicate_Clause then
5175 null;
5177 else
5178 Analyze_And_Resolve (Expr, Standard_String);
5180 if not Is_OK_Static_Expression (Expr) then
5181 Flag_Non_Static_Expr
5182 ("static string required for tag name!", Nam);
5183 end if;
5185 if not Is_Library_Level_Entity (U_Ent) then
5186 Error_Msg_NE
5187 ("??non-unique external tag supplied for &", N, U_Ent);
5188 Error_Msg_N
5189 ("\??same external tag applies to all "
5190 & "subprogram calls", N);
5191 Error_Msg_N
5192 ("\??corresponding internal tag cannot be obtained", N);
5193 end if;
5194 end if;
5195 end External_Tag;
5197 --------------------------
5198 -- Implicit_Dereference --
5199 --------------------------
5201 when Attribute_Implicit_Dereference =>
5203 -- Legality checks already performed at the point of the type
5204 -- declaration, aspect is not delayed.
5206 null;
5208 -----------
5209 -- Input --
5210 -----------
5212 when Attribute_Input =>
5213 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5214 Set_Has_Specified_Stream_Input (Ent);
5216 ------------------------
5217 -- Interrupt_Priority --
5218 ------------------------
5220 when Attribute_Interrupt_Priority => Interrupt_Priority :
5221 begin
5222 -- Interrupt_Priority attribute definition clause not allowed
5223 -- except from aspect specification.
5225 if From_Aspect_Specification (N) then
5226 if not Is_Concurrent_Type (U_Ent) then
5227 Error_Msg_N
5228 ("Interrupt_Priority can only be defined for task "
5229 & "and protected object", Nam);
5231 elsif Duplicate_Clause then
5232 null;
5234 else
5235 -- The expression must be analyzed in the special manner
5236 -- described in "Handling of Default and Per-Object
5237 -- Expressions" in sem.ads.
5239 -- The visibility to the discriminants must be restored
5241 Push_Scope_And_Install_Discriminants (U_Ent);
5243 Preanalyze_Spec_Expression
5244 (Expr, RTE (RE_Interrupt_Priority));
5246 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5248 -- Check the No_Task_At_Interrupt_Priority restriction
5250 if Is_Task_Type (U_Ent) then
5251 Check_Restriction (No_Task_At_Interrupt_Priority, N);
5252 end if;
5253 end if;
5255 else
5256 Error_Msg_N
5257 ("attribute& cannot be set with definition clause", N);
5258 end if;
5259 end Interrupt_Priority;
5261 --------------
5262 -- Iterable --
5263 --------------
5265 when Attribute_Iterable =>
5266 Analyze (Expr);
5268 if Nkind (Expr) /= N_Aggregate then
5269 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5270 end if;
5272 declare
5273 Assoc : Node_Id;
5275 begin
5276 Assoc := First (Component_Associations (Expr));
5277 while Present (Assoc) loop
5278 if not Is_Entity_Name (Expression (Assoc)) then
5279 Error_Msg_N ("value must be a function", Assoc);
5280 end if;
5282 Next (Assoc);
5283 end loop;
5284 end;
5286 ----------------------
5287 -- Iterator_Element --
5288 ----------------------
5290 when Attribute_Iterator_Element =>
5291 Analyze (Expr);
5293 if not Is_Entity_Name (Expr)
5294 or else not Is_Type (Entity (Expr))
5295 then
5296 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5297 end if;
5299 -------------------
5300 -- Machine_Radix --
5301 -------------------
5303 -- Machine radix attribute definition clause
5305 when Attribute_Machine_Radix => Machine_Radix : declare
5306 Radix : constant Uint := Static_Integer (Expr);
5308 begin
5309 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5310 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5312 elsif Duplicate_Clause then
5313 null;
5315 elsif Radix /= No_Uint then
5316 Set_Has_Machine_Radix_Clause (U_Ent);
5317 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5319 if Radix = 2 then
5320 null;
5321 elsif Radix = 10 then
5322 Set_Machine_Radix_10 (U_Ent);
5323 else
5324 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5325 end if;
5326 end if;
5327 end Machine_Radix;
5329 -----------------
5330 -- Object_Size --
5331 -----------------
5333 -- Object_Size attribute definition clause
5335 when Attribute_Object_Size => Object_Size : declare
5336 Size : constant Uint := Static_Integer (Expr);
5338 Biased : Boolean;
5339 pragma Warnings (Off, Biased);
5341 begin
5342 if not Is_Type (U_Ent) then
5343 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5345 elsif Duplicate_Clause then
5346 null;
5348 else
5349 Check_Size (Expr, U_Ent, Size, Biased);
5351 if Is_Scalar_Type (U_Ent) then
5352 if Size /= 8 and then Size /= 16 and then Size /= 32
5353 and then UI_Mod (Size, 64) /= 0
5354 then
5355 Error_Msg_N
5356 ("Object_Size must be 8, 16, 32, or multiple of 64",
5357 Expr);
5358 end if;
5360 elsif Size mod 8 /= 0 then
5361 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
5362 end if;
5364 Set_Esize (U_Ent, Size);
5365 Set_Has_Object_Size_Clause (U_Ent);
5366 Alignment_Check_For_Size_Change (U_Ent, Size);
5367 end if;
5368 end Object_Size;
5370 ------------
5371 -- Output --
5372 ------------
5374 when Attribute_Output =>
5375 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5376 Set_Has_Specified_Stream_Output (Ent);
5378 --------------
5379 -- Priority --
5380 --------------
5382 when Attribute_Priority => Priority :
5383 begin
5384 -- Priority attribute definition clause not allowed except from
5385 -- aspect specification.
5387 if From_Aspect_Specification (N) then
5388 if not (Is_Concurrent_Type (U_Ent)
5389 or else Ekind (U_Ent) = E_Procedure)
5390 then
5391 Error_Msg_N
5392 ("Priority can only be defined for task and protected "
5393 & "object", Nam);
5395 elsif Duplicate_Clause then
5396 null;
5398 else
5399 -- The expression must be analyzed in the special manner
5400 -- described in "Handling of Default and Per-Object
5401 -- Expressions" in sem.ads.
5403 -- The visibility to the discriminants must be restored
5405 Push_Scope_And_Install_Discriminants (U_Ent);
5406 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5407 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5409 if not Is_OK_Static_Expression (Expr) then
5410 Check_Restriction (Static_Priorities, Expr);
5411 end if;
5412 end if;
5414 else
5415 Error_Msg_N
5416 ("attribute& cannot be set with definition clause", N);
5417 end if;
5418 end Priority;
5420 ----------
5421 -- Read --
5422 ----------
5424 when Attribute_Read =>
5425 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5426 Set_Has_Specified_Stream_Read (Ent);
5428 --------------------------
5429 -- Scalar_Storage_Order --
5430 --------------------------
5432 -- Scalar_Storage_Order attribute definition clause
5434 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order : declare
5435 begin
5436 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
5437 Error_Msg_N
5438 ("Scalar_Storage_Order can only be defined for "
5439 & "record or array type", Nam);
5441 elsif Duplicate_Clause then
5442 null;
5444 else
5445 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5447 if Etype (Expr) = Any_Type then
5448 return;
5450 elsif not Is_OK_Static_Expression (Expr) then
5451 Flag_Non_Static_Expr
5452 ("Scalar_Storage_Order requires static expression!", Expr);
5454 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5456 -- Here for the case of a non-default (i.e. non-confirming)
5457 -- Scalar_Storage_Order attribute definition.
5459 if Support_Nondefault_SSO_On_Target then
5460 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
5461 else
5462 Error_Msg_N
5463 ("non-default Scalar_Storage_Order "
5464 & "not supported on target", Expr);
5465 end if;
5466 end if;
5468 -- Clear SSO default indications since explicit setting of the
5469 -- order overrides the defaults.
5471 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5472 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
5473 end if;
5474 end Scalar_Storage_Order;
5476 ----------
5477 -- Size --
5478 ----------
5480 -- Size attribute definition clause
5482 when Attribute_Size => Size : declare
5483 Size : constant Uint := Static_Integer (Expr);
5484 Etyp : Entity_Id;
5485 Biased : Boolean;
5487 begin
5488 FOnly := True;
5490 if Duplicate_Clause then
5491 null;
5493 elsif not Is_Type (U_Ent)
5494 and then Ekind (U_Ent) /= E_Variable
5495 and then Ekind (U_Ent) /= E_Constant
5496 then
5497 Error_Msg_N ("size cannot be given for &", Nam);
5499 elsif Is_Array_Type (U_Ent)
5500 and then not Is_Constrained (U_Ent)
5501 then
5502 Error_Msg_N
5503 ("size cannot be given for unconstrained array", Nam);
5505 elsif Size /= No_Uint then
5506 if Is_Type (U_Ent) then
5507 Etyp := U_Ent;
5508 else
5509 Etyp := Etype (U_Ent);
5510 end if;
5512 -- Check size, note that Gigi is in charge of checking that the
5513 -- size of an array or record type is OK. Also we do not check
5514 -- the size in the ordinary fixed-point case, since it is too
5515 -- early to do so (there may be subsequent small clause that
5516 -- affects the size). We can check the size if a small clause
5517 -- has already been given.
5519 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5520 or else Has_Small_Clause (U_Ent)
5521 then
5522 Check_Size (Expr, Etyp, Size, Biased);
5523 Set_Biased (U_Ent, N, "size clause", Biased);
5524 end if;
5526 -- For types set RM_Size and Esize if possible
5528 if Is_Type (U_Ent) then
5529 Set_RM_Size (U_Ent, Size);
5531 -- For elementary types, increase Object_Size to power of 2,
5532 -- but not less than a storage unit in any case (normally
5533 -- this means it will be byte addressable).
5535 -- For all other types, nothing else to do, we leave Esize
5536 -- (object size) unset, the back end will set it from the
5537 -- size and alignment in an appropriate manner.
5539 -- In both cases, we check whether the alignment must be
5540 -- reset in the wake of the size change.
5542 if Is_Elementary_Type (U_Ent) then
5543 if Size <= System_Storage_Unit then
5544 Init_Esize (U_Ent, System_Storage_Unit);
5545 elsif Size <= 16 then
5546 Init_Esize (U_Ent, 16);
5547 elsif Size <= 32 then
5548 Init_Esize (U_Ent, 32);
5549 else
5550 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5551 end if;
5553 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5554 else
5555 Alignment_Check_For_Size_Change (U_Ent, Size);
5556 end if;
5558 -- For objects, set Esize only
5560 else
5561 if Is_Elementary_Type (Etyp) then
5562 if Size /= System_Storage_Unit
5563 and then
5564 Size /= System_Storage_Unit * 2
5565 and then
5566 Size /= System_Storage_Unit * 4
5567 and then
5568 Size /= System_Storage_Unit * 8
5569 then
5570 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5571 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5572 Error_Msg_N
5573 ("size for primitive object must be a power of 2"
5574 & " in the range ^-^", N);
5575 end if;
5576 end if;
5578 Set_Esize (U_Ent, Size);
5579 end if;
5581 Set_Has_Size_Clause (U_Ent);
5582 end if;
5583 end Size;
5585 -----------
5586 -- Small --
5587 -----------
5589 -- Small attribute definition clause
5591 when Attribute_Small => Small : declare
5592 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5593 Small : Ureal;
5595 begin
5596 Analyze_And_Resolve (Expr, Any_Real);
5598 if Etype (Expr) = Any_Type then
5599 return;
5601 elsif not Is_OK_Static_Expression (Expr) then
5602 Flag_Non_Static_Expr
5603 ("small requires static expression!", Expr);
5604 return;
5606 else
5607 Small := Expr_Value_R (Expr);
5609 if Small <= Ureal_0 then
5610 Error_Msg_N ("small value must be greater than zero", Expr);
5611 return;
5612 end if;
5614 end if;
5616 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
5617 Error_Msg_N
5618 ("small requires an ordinary fixed point type", Nam);
5620 elsif Has_Small_Clause (U_Ent) then
5621 Error_Msg_N ("small already given for &", Nam);
5623 elsif Small > Delta_Value (U_Ent) then
5624 Error_Msg_N
5625 ("small value must not be greater than delta value", Nam);
5627 else
5628 Set_Small_Value (U_Ent, Small);
5629 Set_Small_Value (Implicit_Base, Small);
5630 Set_Has_Small_Clause (U_Ent);
5631 Set_Has_Small_Clause (Implicit_Base);
5632 Set_Has_Non_Standard_Rep (Implicit_Base);
5633 end if;
5634 end Small;
5636 ------------------
5637 -- Storage_Pool --
5638 ------------------
5640 -- Storage_Pool attribute definition clause
5642 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool => declare
5643 Pool : Entity_Id;
5644 T : Entity_Id;
5646 begin
5647 if Ekind (U_Ent) = E_Access_Subprogram_Type then
5648 Error_Msg_N
5649 ("storage pool cannot be given for access-to-subprogram type",
5650 Nam);
5651 return;
5653 elsif not
5654 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
5655 then
5656 Error_Msg_N
5657 ("storage pool can only be given for access types", Nam);
5658 return;
5660 elsif Is_Derived_Type (U_Ent) then
5661 Error_Msg_N
5662 ("storage pool cannot be given for a derived access type",
5663 Nam);
5665 elsif Duplicate_Clause then
5666 return;
5668 elsif Present (Associated_Storage_Pool (U_Ent)) then
5669 Error_Msg_N ("storage pool already given for &", Nam);
5670 return;
5671 end if;
5673 -- Check for Storage_Size previously given
5675 declare
5676 SS : constant Node_Id :=
5677 Get_Attribute_Definition_Clause
5678 (U_Ent, Attribute_Storage_Size);
5679 begin
5680 if Present (SS) then
5681 Check_Pool_Size_Clash (U_Ent, N, SS);
5682 end if;
5683 end;
5685 -- Storage_Pool case
5687 if Id = Attribute_Storage_Pool then
5688 Analyze_And_Resolve
5689 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5691 -- In the Simple_Storage_Pool case, we allow a variable of any
5692 -- simple storage pool type, so we Resolve without imposing an
5693 -- expected type.
5695 else
5696 Analyze_And_Resolve (Expr);
5698 if not Present (Get_Rep_Pragma
5699 (Etype (Expr), Name_Simple_Storage_Pool_Type))
5700 then
5701 Error_Msg_N
5702 ("expression must be of a simple storage pool type", Expr);
5703 end if;
5704 end if;
5706 if not Denotes_Variable (Expr) then
5707 Error_Msg_N ("storage pool must be a variable", Expr);
5708 return;
5709 end if;
5711 if Nkind (Expr) = N_Type_Conversion then
5712 T := Etype (Expression (Expr));
5713 else
5714 T := Etype (Expr);
5715 end if;
5717 -- The Stack_Bounded_Pool is used internally for implementing
5718 -- access types with a Storage_Size. Since it only work properly
5719 -- when used on one specific type, we need to check that it is not
5720 -- hijacked improperly:
5722 -- type T is access Integer;
5723 -- for T'Storage_Size use n;
5724 -- type Q is access Float;
5725 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
5727 if RTE_Available (RE_Stack_Bounded_Pool)
5728 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
5729 then
5730 Error_Msg_N ("non-shareable internal Pool", Expr);
5731 return;
5732 end if;
5734 -- If the argument is a name that is not an entity name, then
5735 -- we construct a renaming operation to define an entity of
5736 -- type storage pool.
5738 if not Is_Entity_Name (Expr)
5739 and then Is_Object_Reference (Expr)
5740 then
5741 Pool := Make_Temporary (Loc, 'P', Expr);
5743 declare
5744 Rnode : constant Node_Id :=
5745 Make_Object_Renaming_Declaration (Loc,
5746 Defining_Identifier => Pool,
5747 Subtype_Mark =>
5748 New_Occurrence_Of (Etype (Expr), Loc),
5749 Name => Expr);
5751 begin
5752 -- If the attribute definition clause comes from an aspect
5753 -- clause, then insert the renaming before the associated
5754 -- entity's declaration, since the attribute clause has
5755 -- not yet been appended to the declaration list.
5757 if From_Aspect_Specification (N) then
5758 Insert_Before (Parent (Entity (N)), Rnode);
5759 else
5760 Insert_Before (N, Rnode);
5761 end if;
5763 Analyze (Rnode);
5764 Set_Associated_Storage_Pool (U_Ent, Pool);
5765 end;
5767 elsif Is_Entity_Name (Expr) then
5768 Pool := Entity (Expr);
5770 -- If pool is a renamed object, get original one. This can
5771 -- happen with an explicit renaming, and within instances.
5773 while Present (Renamed_Object (Pool))
5774 and then Is_Entity_Name (Renamed_Object (Pool))
5775 loop
5776 Pool := Entity (Renamed_Object (Pool));
5777 end loop;
5779 if Present (Renamed_Object (Pool))
5780 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
5781 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
5782 then
5783 Pool := Entity (Expression (Renamed_Object (Pool)));
5784 end if;
5786 Set_Associated_Storage_Pool (U_Ent, Pool);
5788 elsif Nkind (Expr) = N_Type_Conversion
5789 and then Is_Entity_Name (Expression (Expr))
5790 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
5791 then
5792 Pool := Entity (Expression (Expr));
5793 Set_Associated_Storage_Pool (U_Ent, Pool);
5795 else
5796 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
5797 return;
5798 end if;
5799 end;
5801 ------------------
5802 -- Storage_Size --
5803 ------------------
5805 -- Storage_Size attribute definition clause
5807 when Attribute_Storage_Size => Storage_Size : declare
5808 Btype : constant Entity_Id := Base_Type (U_Ent);
5810 begin
5811 if Is_Task_Type (U_Ent) then
5813 -- Check obsolescent (but never obsolescent if from aspect)
5815 if not From_Aspect_Specification (N) then
5816 Check_Restriction (No_Obsolescent_Features, N);
5818 if Warn_On_Obsolescent_Feature then
5819 Error_Msg_N
5820 ("?j?storage size clause for task is an " &
5821 "obsolescent feature (RM J.9)", N);
5822 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
5823 end if;
5824 end if;
5826 FOnly := True;
5827 end if;
5829 if not Is_Access_Type (U_Ent)
5830 and then Ekind (U_Ent) /= E_Task_Type
5831 then
5832 Error_Msg_N ("storage size cannot be given for &", Nam);
5834 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
5835 Error_Msg_N
5836 ("storage size cannot be given for a derived access type",
5837 Nam);
5839 elsif Duplicate_Clause then
5840 null;
5842 else
5843 Analyze_And_Resolve (Expr, Any_Integer);
5845 if Is_Access_Type (U_Ent) then
5847 -- Check for Storage_Pool previously given
5849 declare
5850 SP : constant Node_Id :=
5851 Get_Attribute_Definition_Clause
5852 (U_Ent, Attribute_Storage_Pool);
5854 begin
5855 if Present (SP) then
5856 Check_Pool_Size_Clash (U_Ent, SP, N);
5857 end if;
5858 end;
5860 -- Special case of for x'Storage_Size use 0
5862 if Is_OK_Static_Expression (Expr)
5863 and then Expr_Value (Expr) = 0
5864 then
5865 Set_No_Pool_Assigned (Btype);
5866 end if;
5867 end if;
5869 Set_Has_Storage_Size_Clause (Btype);
5870 end if;
5871 end Storage_Size;
5873 -----------------
5874 -- Stream_Size --
5875 -----------------
5877 when Attribute_Stream_Size => Stream_Size : declare
5878 Size : constant Uint := Static_Integer (Expr);
5880 begin
5881 if Ada_Version <= Ada_95 then
5882 Check_Restriction (No_Implementation_Attributes, N);
5883 end if;
5885 if Duplicate_Clause then
5886 null;
5888 elsif Is_Elementary_Type (U_Ent) then
5889 if Size /= System_Storage_Unit
5890 and then
5891 Size /= System_Storage_Unit * 2
5892 and then
5893 Size /= System_Storage_Unit * 4
5894 and then
5895 Size /= System_Storage_Unit * 8
5896 then
5897 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5898 Error_Msg_N
5899 ("stream size for elementary type must be a"
5900 & " power of 2 and at least ^", N);
5902 elsif RM_Size (U_Ent) > Size then
5903 Error_Msg_Uint_1 := RM_Size (U_Ent);
5904 Error_Msg_N
5905 ("stream size for elementary type must be a"
5906 & " power of 2 and at least ^", N);
5907 end if;
5909 Set_Has_Stream_Size_Clause (U_Ent);
5911 else
5912 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
5913 end if;
5914 end Stream_Size;
5916 ----------------
5917 -- Value_Size --
5918 ----------------
5920 -- Value_Size attribute definition clause
5922 when Attribute_Value_Size => Value_Size : declare
5923 Size : constant Uint := Static_Integer (Expr);
5924 Biased : Boolean;
5926 begin
5927 if not Is_Type (U_Ent) then
5928 Error_Msg_N ("Value_Size cannot be given for &", Nam);
5930 elsif Duplicate_Clause then
5931 null;
5933 elsif Is_Array_Type (U_Ent)
5934 and then not Is_Constrained (U_Ent)
5935 then
5936 Error_Msg_N
5937 ("Value_Size cannot be given for unconstrained array", Nam);
5939 else
5940 if Is_Elementary_Type (U_Ent) then
5941 Check_Size (Expr, U_Ent, Size, Biased);
5942 Set_Biased (U_Ent, N, "value size clause", Biased);
5943 end if;
5945 Set_RM_Size (U_Ent, Size);
5946 end if;
5947 end Value_Size;
5949 -----------------------
5950 -- Variable_Indexing --
5951 -----------------------
5953 when Attribute_Variable_Indexing =>
5954 Check_Indexing_Functions;
5956 -----------
5957 -- Write --
5958 -----------
5960 when Attribute_Write =>
5961 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
5962 Set_Has_Specified_Stream_Write (Ent);
5964 -- All other attributes cannot be set
5966 when others =>
5967 Error_Msg_N
5968 ("attribute& cannot be set with definition clause", N);
5969 end case;
5971 -- The test for the type being frozen must be performed after any
5972 -- expression the clause has been analyzed since the expression itself
5973 -- might cause freezing that makes the clause illegal.
5975 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
5976 return;
5977 end if;
5978 end Analyze_Attribute_Definition_Clause;
5980 ----------------------------
5981 -- Analyze_Code_Statement --
5982 ----------------------------
5984 procedure Analyze_Code_Statement (N : Node_Id) is
5985 HSS : constant Node_Id := Parent (N);
5986 SBody : constant Node_Id := Parent (HSS);
5987 Subp : constant Entity_Id := Current_Scope;
5988 Stmt : Node_Id;
5989 Decl : Node_Id;
5990 StmtO : Node_Id;
5991 DeclO : Node_Id;
5993 begin
5994 -- Accept foreign code statements for CodePeer. The analysis is skipped
5995 -- to avoid rejecting unrecognized constructs.
5997 if CodePeer_Mode then
5998 Set_Analyzed (N);
5999 return;
6000 end if;
6002 -- Analyze and check we get right type, note that this implements the
6003 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6004 -- the only way that Asm_Insn could possibly be visible.
6006 Analyze_And_Resolve (Expression (N));
6008 if Etype (Expression (N)) = Any_Type then
6009 return;
6010 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
6011 Error_Msg_N ("incorrect type for code statement", N);
6012 return;
6013 end if;
6015 Check_Code_Statement (N);
6017 -- Make sure we appear in the handled statement sequence of a subprogram
6018 -- (RM 13.8(3)).
6020 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
6021 or else Nkind (SBody) /= N_Subprogram_Body
6022 then
6023 Error_Msg_N
6024 ("code statement can only appear in body of subprogram", N);
6025 return;
6026 end if;
6028 -- Do remaining checks (RM 13.8(3)) if not already done
6030 if not Is_Machine_Code_Subprogram (Subp) then
6031 Set_Is_Machine_Code_Subprogram (Subp);
6033 -- No exception handlers allowed
6035 if Present (Exception_Handlers (HSS)) then
6036 Error_Msg_N
6037 ("exception handlers not permitted in machine code subprogram",
6038 First (Exception_Handlers (HSS)));
6039 end if;
6041 -- No declarations other than use clauses and pragmas (we allow
6042 -- certain internally generated declarations as well).
6044 Decl := First (Declarations (SBody));
6045 while Present (Decl) loop
6046 DeclO := Original_Node (Decl);
6047 if Comes_From_Source (DeclO)
6048 and not Nkind_In (DeclO, N_Pragma,
6049 N_Use_Package_Clause,
6050 N_Use_Type_Clause,
6051 N_Implicit_Label_Declaration)
6052 then
6053 Error_Msg_N
6054 ("this declaration not allowed in machine code subprogram",
6055 DeclO);
6056 end if;
6058 Next (Decl);
6059 end loop;
6061 -- No statements other than code statements, pragmas, and labels.
6062 -- Again we allow certain internally generated statements.
6064 -- In Ada 2012, qualified expressions are names, and the code
6065 -- statement is initially parsed as a procedure call.
6067 Stmt := First (Statements (HSS));
6068 while Present (Stmt) loop
6069 StmtO := Original_Node (Stmt);
6071 -- A procedure call transformed into a code statement is OK
6073 if Ada_Version >= Ada_2012
6074 and then Nkind (StmtO) = N_Procedure_Call_Statement
6075 and then Nkind (Name (StmtO)) = N_Qualified_Expression
6076 then
6077 null;
6079 elsif Comes_From_Source (StmtO)
6080 and then not Nkind_In (StmtO, N_Pragma,
6081 N_Label,
6082 N_Code_Statement)
6083 then
6084 Error_Msg_N
6085 ("this statement is not allowed in machine code subprogram",
6086 StmtO);
6087 end if;
6089 Next (Stmt);
6090 end loop;
6091 end if;
6092 end Analyze_Code_Statement;
6094 -----------------------------------------------
6095 -- Analyze_Enumeration_Representation_Clause --
6096 -----------------------------------------------
6098 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
6099 Ident : constant Node_Id := Identifier (N);
6100 Aggr : constant Node_Id := Array_Aggregate (N);
6101 Enumtype : Entity_Id;
6102 Elit : Entity_Id;
6103 Expr : Node_Id;
6104 Assoc : Node_Id;
6105 Choice : Node_Id;
6106 Val : Uint;
6108 Err : Boolean := False;
6109 -- Set True to avoid cascade errors and crashes on incorrect source code
6111 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6112 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6113 -- Allowed range of universal integer (= allowed range of enum lit vals)
6115 Min : Uint;
6116 Max : Uint;
6117 -- Minimum and maximum values of entries
6119 Max_Node : Node_Id;
6120 -- Pointer to node for literal providing max value
6122 begin
6123 if Ignore_Rep_Clauses then
6124 Kill_Rep_Clause (N);
6125 return;
6126 end if;
6128 -- Ignore enumeration rep clauses by default in CodePeer mode,
6129 -- unless -gnatd.I is specified, as a work around for potential false
6130 -- positive messages.
6132 if CodePeer_Mode and not Debug_Flag_Dot_II then
6133 return;
6134 end if;
6136 -- First some basic error checks
6138 Find_Type (Ident);
6139 Enumtype := Entity (Ident);
6141 if Enumtype = Any_Type
6142 or else Rep_Item_Too_Early (Enumtype, N)
6143 then
6144 return;
6145 else
6146 Enumtype := Underlying_Type (Enumtype);
6147 end if;
6149 if not Is_Enumeration_Type (Enumtype) then
6150 Error_Msg_NE
6151 ("enumeration type required, found}",
6152 Ident, First_Subtype (Enumtype));
6153 return;
6154 end if;
6156 -- Ignore rep clause on generic actual type. This will already have
6157 -- been flagged on the template as an error, and this is the safest
6158 -- way to ensure we don't get a junk cascaded message in the instance.
6160 if Is_Generic_Actual_Type (Enumtype) then
6161 return;
6163 -- Type must be in current scope
6165 elsif Scope (Enumtype) /= Current_Scope then
6166 Error_Msg_N ("type must be declared in this scope", Ident);
6167 return;
6169 -- Type must be a first subtype
6171 elsif not Is_First_Subtype (Enumtype) then
6172 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6173 return;
6175 -- Ignore duplicate rep clause
6177 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6178 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6179 return;
6181 -- Don't allow rep clause for standard [wide_[wide_]]character
6183 elsif Is_Standard_Character_Type (Enumtype) then
6184 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
6185 return;
6187 -- Check that the expression is a proper aggregate (no parentheses)
6189 elsif Paren_Count (Aggr) /= 0 then
6190 Error_Msg
6191 ("extra parentheses surrounding aggregate not allowed",
6192 First_Sloc (Aggr));
6193 return;
6195 -- All tests passed, so set rep clause in place
6197 else
6198 Set_Has_Enumeration_Rep_Clause (Enumtype);
6199 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6200 end if;
6202 -- Now we process the aggregate. Note that we don't use the normal
6203 -- aggregate code for this purpose, because we don't want any of the
6204 -- normal expansion activities, and a number of special semantic
6205 -- rules apply (including the component type being any integer type)
6207 Elit := First_Literal (Enumtype);
6209 -- First the positional entries if any
6211 if Present (Expressions (Aggr)) then
6212 Expr := First (Expressions (Aggr));
6213 while Present (Expr) loop
6214 if No (Elit) then
6215 Error_Msg_N ("too many entries in aggregate", Expr);
6216 return;
6217 end if;
6219 Val := Static_Integer (Expr);
6221 -- Err signals that we found some incorrect entries processing
6222 -- the list. The final checks for completeness and ordering are
6223 -- skipped in this case.
6225 if Val = No_Uint then
6226 Err := True;
6228 elsif Val < Lo or else Hi < Val then
6229 Error_Msg_N ("value outside permitted range", Expr);
6230 Err := True;
6231 end if;
6233 Set_Enumeration_Rep (Elit, Val);
6234 Set_Enumeration_Rep_Expr (Elit, Expr);
6235 Next (Expr);
6236 Next (Elit);
6237 end loop;
6238 end if;
6240 -- Now process the named entries if present
6242 if Present (Component_Associations (Aggr)) then
6243 Assoc := First (Component_Associations (Aggr));
6244 while Present (Assoc) loop
6245 Choice := First (Choices (Assoc));
6247 if Present (Next (Choice)) then
6248 Error_Msg_N
6249 ("multiple choice not allowed here", Next (Choice));
6250 Err := True;
6251 end if;
6253 if Nkind (Choice) = N_Others_Choice then
6254 Error_Msg_N ("others choice not allowed here", Choice);
6255 Err := True;
6257 elsif Nkind (Choice) = N_Range then
6259 -- ??? should allow zero/one element range here
6261 Error_Msg_N ("range not allowed here", Choice);
6262 Err := True;
6264 else
6265 Analyze_And_Resolve (Choice, Enumtype);
6267 if Error_Posted (Choice) then
6268 Err := True;
6269 end if;
6271 if not Err then
6272 if Is_Entity_Name (Choice)
6273 and then Is_Type (Entity (Choice))
6274 then
6275 Error_Msg_N ("subtype name not allowed here", Choice);
6276 Err := True;
6278 -- ??? should allow static subtype with zero/one entry
6280 elsif Etype (Choice) = Base_Type (Enumtype) then
6281 if not Is_OK_Static_Expression (Choice) then
6282 Flag_Non_Static_Expr
6283 ("non-static expression used for choice!", Choice);
6284 Err := True;
6286 else
6287 Elit := Expr_Value_E (Choice);
6289 if Present (Enumeration_Rep_Expr (Elit)) then
6290 Error_Msg_Sloc :=
6291 Sloc (Enumeration_Rep_Expr (Elit));
6292 Error_Msg_NE
6293 ("representation for& previously given#",
6294 Choice, Elit);
6295 Err := True;
6296 end if;
6298 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
6300 Expr := Expression (Assoc);
6301 Val := Static_Integer (Expr);
6303 if Val = No_Uint then
6304 Err := True;
6306 elsif Val < Lo or else Hi < Val then
6307 Error_Msg_N ("value outside permitted range", Expr);
6308 Err := True;
6309 end if;
6311 Set_Enumeration_Rep (Elit, Val);
6312 end if;
6313 end if;
6314 end if;
6315 end if;
6317 Next (Assoc);
6318 end loop;
6319 end if;
6321 -- Aggregate is fully processed. Now we check that a full set of
6322 -- representations was given, and that they are in range and in order.
6323 -- These checks are only done if no other errors occurred.
6325 if not Err then
6326 Min := No_Uint;
6327 Max := No_Uint;
6329 Elit := First_Literal (Enumtype);
6330 while Present (Elit) loop
6331 if No (Enumeration_Rep_Expr (Elit)) then
6332 Error_Msg_NE ("missing representation for&!", N, Elit);
6334 else
6335 Val := Enumeration_Rep (Elit);
6337 if Min = No_Uint then
6338 Min := Val;
6339 end if;
6341 if Val /= No_Uint then
6342 if Max /= No_Uint and then Val <= Max then
6343 Error_Msg_NE
6344 ("enumeration value for& not ordered!",
6345 Enumeration_Rep_Expr (Elit), Elit);
6346 end if;
6348 Max_Node := Enumeration_Rep_Expr (Elit);
6349 Max := Val;
6350 end if;
6352 -- If there is at least one literal whose representation is not
6353 -- equal to the Pos value, then note that this enumeration type
6354 -- has a non-standard representation.
6356 if Val /= Enumeration_Pos (Elit) then
6357 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6358 end if;
6359 end if;
6361 Next (Elit);
6362 end loop;
6364 -- Now set proper size information
6366 declare
6367 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6369 begin
6370 if Has_Size_Clause (Enumtype) then
6372 -- All OK, if size is OK now
6374 if RM_Size (Enumtype) >= Minsize then
6375 null;
6377 else
6378 -- Try if we can get by with biasing
6380 Minsize :=
6381 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6383 -- Error message if even biasing does not work
6385 if RM_Size (Enumtype) < Minsize then
6386 Error_Msg_Uint_1 := RM_Size (Enumtype);
6387 Error_Msg_Uint_2 := Max;
6388 Error_Msg_N
6389 ("previously given size (^) is too small "
6390 & "for this value (^)", Max_Node);
6392 -- If biasing worked, indicate that we now have biased rep
6394 else
6395 Set_Biased
6396 (Enumtype, Size_Clause (Enumtype), "size clause");
6397 end if;
6398 end if;
6400 else
6401 Set_RM_Size (Enumtype, Minsize);
6402 Set_Enum_Esize (Enumtype);
6403 end if;
6405 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6406 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6407 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6408 end;
6409 end if;
6411 -- We repeat the too late test in case it froze itself
6413 if Rep_Item_Too_Late (Enumtype, N) then
6414 null;
6415 end if;
6416 end Analyze_Enumeration_Representation_Clause;
6418 ----------------------------
6419 -- Analyze_Free_Statement --
6420 ----------------------------
6422 procedure Analyze_Free_Statement (N : Node_Id) is
6423 begin
6424 Analyze (Expression (N));
6425 end Analyze_Free_Statement;
6427 ---------------------------
6428 -- Analyze_Freeze_Entity --
6429 ---------------------------
6431 procedure Analyze_Freeze_Entity (N : Node_Id) is
6432 begin
6433 Freeze_Entity_Checks (N);
6434 end Analyze_Freeze_Entity;
6436 -----------------------------------
6437 -- Analyze_Freeze_Generic_Entity --
6438 -----------------------------------
6440 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6441 begin
6442 Freeze_Entity_Checks (N);
6443 end Analyze_Freeze_Generic_Entity;
6445 ------------------------------------------
6446 -- Analyze_Record_Representation_Clause --
6447 ------------------------------------------
6449 -- Note: we check as much as we can here, but we can't do any checks
6450 -- based on the position values (e.g. overlap checks) until freeze time
6451 -- because especially in Ada 2005 (machine scalar mode), the processing
6452 -- for non-standard bit order can substantially change the positions.
6453 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6454 -- for the remainder of this processing.
6456 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6457 Ident : constant Node_Id := Identifier (N);
6458 Biased : Boolean;
6459 CC : Node_Id;
6460 Comp : Entity_Id;
6461 Fbit : Uint;
6462 Hbit : Uint := Uint_0;
6463 Lbit : Uint;
6464 Ocomp : Entity_Id;
6465 Posit : Uint;
6466 Rectype : Entity_Id;
6467 Recdef : Node_Id;
6469 function Is_Inherited (Comp : Entity_Id) return Boolean;
6470 -- True if Comp is an inherited component in a record extension
6472 ------------------
6473 -- Is_Inherited --
6474 ------------------
6476 function Is_Inherited (Comp : Entity_Id) return Boolean is
6477 Comp_Base : Entity_Id;
6479 begin
6480 if Ekind (Rectype) = E_Record_Subtype then
6481 Comp_Base := Original_Record_Component (Comp);
6482 else
6483 Comp_Base := Comp;
6484 end if;
6486 return Comp_Base /= Original_Record_Component (Comp_Base);
6487 end Is_Inherited;
6489 -- Local variables
6491 Is_Record_Extension : Boolean;
6492 -- True if Rectype is a record extension
6494 CR_Pragma : Node_Id := Empty;
6495 -- Points to N_Pragma node if Complete_Representation pragma present
6497 -- Start of processing for Analyze_Record_Representation_Clause
6499 begin
6500 if Ignore_Rep_Clauses then
6501 Kill_Rep_Clause (N);
6502 return;
6503 end if;
6505 Find_Type (Ident);
6506 Rectype := Entity (Ident);
6508 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6509 return;
6510 else
6511 Rectype := Underlying_Type (Rectype);
6512 end if;
6514 -- First some basic error checks
6516 if not Is_Record_Type (Rectype) then
6517 Error_Msg_NE
6518 ("record type required, found}", Ident, First_Subtype (Rectype));
6519 return;
6521 elsif Scope (Rectype) /= Current_Scope then
6522 Error_Msg_N ("type must be declared in this scope", N);
6523 return;
6525 elsif not Is_First_Subtype (Rectype) then
6526 Error_Msg_N ("cannot give record rep clause for subtype", N);
6527 return;
6529 elsif Has_Record_Rep_Clause (Rectype) then
6530 Error_Msg_N ("duplicate record rep clause ignored", N);
6531 return;
6533 elsif Rep_Item_Too_Late (Rectype, N) then
6534 return;
6535 end if;
6537 -- We know we have a first subtype, now possibly go to the anonymous
6538 -- base type to determine whether Rectype is a record extension.
6540 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6541 Is_Record_Extension :=
6542 Nkind (Recdef) = N_Derived_Type_Definition
6543 and then Present (Record_Extension_Part (Recdef));
6545 if Present (Mod_Clause (N)) then
6546 declare
6547 Loc : constant Source_Ptr := Sloc (N);
6548 M : constant Node_Id := Mod_Clause (N);
6549 P : constant List_Id := Pragmas_Before (M);
6550 AtM_Nod : Node_Id;
6552 Mod_Val : Uint;
6553 pragma Warnings (Off, Mod_Val);
6555 begin
6556 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
6558 if Warn_On_Obsolescent_Feature then
6559 Error_Msg_N
6560 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6561 Error_Msg_N
6562 ("\?j?use alignment attribute definition clause instead", N);
6563 end if;
6565 if Present (P) then
6566 Analyze_List (P);
6567 end if;
6569 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6570 -- the Mod clause into an alignment clause anyway, so that the
6571 -- back end can compute and back-annotate properly the size and
6572 -- alignment of types that may include this record.
6574 -- This seems dubious, this destroys the source tree in a manner
6575 -- not detectable by ASIS ???
6577 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6578 AtM_Nod :=
6579 Make_Attribute_Definition_Clause (Loc,
6580 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
6581 Chars => Name_Alignment,
6582 Expression => Relocate_Node (Expression (M)));
6584 Set_From_At_Mod (AtM_Nod);
6585 Insert_After (N, AtM_Nod);
6586 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6587 Set_Mod_Clause (N, Empty);
6589 else
6590 -- Get the alignment value to perform error checking
6592 Mod_Val := Get_Alignment_Value (Expression (M));
6593 end if;
6594 end;
6595 end if;
6597 -- For untagged types, clear any existing component clauses for the
6598 -- type. If the type is derived, this is what allows us to override
6599 -- a rep clause for the parent. For type extensions, the representation
6600 -- of the inherited components is inherited, so we want to keep previous
6601 -- component clauses for completeness.
6603 if not Is_Tagged_Type (Rectype) then
6604 Comp := First_Component_Or_Discriminant (Rectype);
6605 while Present (Comp) loop
6606 Set_Component_Clause (Comp, Empty);
6607 Next_Component_Or_Discriminant (Comp);
6608 end loop;
6609 end if;
6611 -- All done if no component clauses
6613 CC := First (Component_Clauses (N));
6615 if No (CC) then
6616 return;
6617 end if;
6619 -- A representation like this applies to the base type
6621 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
6622 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
6623 Set_Has_Specified_Layout (Base_Type (Rectype));
6625 -- Process the component clauses
6627 while Present (CC) loop
6629 -- Pragma
6631 if Nkind (CC) = N_Pragma then
6632 Analyze (CC);
6634 -- The only pragma of interest is Complete_Representation
6636 if Pragma_Name (CC) = Name_Complete_Representation then
6637 CR_Pragma := CC;
6638 end if;
6640 -- Processing for real component clause
6642 else
6643 Posit := Static_Integer (Position (CC));
6644 Fbit := Static_Integer (First_Bit (CC));
6645 Lbit := Static_Integer (Last_Bit (CC));
6647 if Posit /= No_Uint
6648 and then Fbit /= No_Uint
6649 and then Lbit /= No_Uint
6650 then
6651 if Posit < 0 then
6652 Error_Msg_N
6653 ("position cannot be negative", Position (CC));
6655 elsif Fbit < 0 then
6656 Error_Msg_N
6657 ("first bit cannot be negative", First_Bit (CC));
6659 -- The Last_Bit specified in a component clause must not be
6660 -- less than the First_Bit minus one (RM-13.5.1(10)).
6662 elsif Lbit < Fbit - 1 then
6663 Error_Msg_N
6664 ("last bit cannot be less than first bit minus one",
6665 Last_Bit (CC));
6667 -- Values look OK, so find the corresponding record component
6668 -- Even though the syntax allows an attribute reference for
6669 -- implementation-defined components, GNAT does not allow the
6670 -- tag to get an explicit position.
6672 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
6673 if Attribute_Name (Component_Name (CC)) = Name_Tag then
6674 Error_Msg_N ("position of tag cannot be specified", CC);
6675 else
6676 Error_Msg_N ("illegal component name", CC);
6677 end if;
6679 else
6680 Comp := First_Entity (Rectype);
6681 while Present (Comp) loop
6682 exit when Chars (Comp) = Chars (Component_Name (CC));
6683 Next_Entity (Comp);
6684 end loop;
6686 if No (Comp) then
6688 -- Maybe component of base type that is absent from
6689 -- statically constrained first subtype.
6691 Comp := First_Entity (Base_Type (Rectype));
6692 while Present (Comp) loop
6693 exit when Chars (Comp) = Chars (Component_Name (CC));
6694 Next_Entity (Comp);
6695 end loop;
6696 end if;
6698 if No (Comp) then
6699 Error_Msg_N
6700 ("component clause is for non-existent field", CC);
6702 -- Ada 2012 (AI05-0026): Any name that denotes a
6703 -- discriminant of an object of an unchecked union type
6704 -- shall not occur within a record_representation_clause.
6706 -- The general restriction of using record rep clauses on
6707 -- Unchecked_Union types has now been lifted. Since it is
6708 -- possible to introduce a record rep clause which mentions
6709 -- the discriminant of an Unchecked_Union in non-Ada 2012
6710 -- code, this check is applied to all versions of the
6711 -- language.
6713 elsif Ekind (Comp) = E_Discriminant
6714 and then Is_Unchecked_Union (Rectype)
6715 then
6716 Error_Msg_N
6717 ("cannot reference discriminant of unchecked union",
6718 Component_Name (CC));
6720 elsif Is_Record_Extension and then Is_Inherited (Comp) then
6721 Error_Msg_NE
6722 ("component clause not allowed for inherited "
6723 & "component&", CC, Comp);
6725 elsif Present (Component_Clause (Comp)) then
6727 -- Diagnose duplicate rep clause, or check consistency
6728 -- if this is an inherited component. In a double fault,
6729 -- there may be a duplicate inconsistent clause for an
6730 -- inherited component.
6732 if Scope (Original_Record_Component (Comp)) = Rectype
6733 or else Parent (Component_Clause (Comp)) = N
6734 then
6735 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
6736 Error_Msg_N ("component clause previously given#", CC);
6738 else
6739 declare
6740 Rep1 : constant Node_Id := Component_Clause (Comp);
6741 begin
6742 if Intval (Position (Rep1)) /=
6743 Intval (Position (CC))
6744 or else Intval (First_Bit (Rep1)) /=
6745 Intval (First_Bit (CC))
6746 or else Intval (Last_Bit (Rep1)) /=
6747 Intval (Last_Bit (CC))
6748 then
6749 Error_Msg_N
6750 ("component clause inconsistent "
6751 & "with representation of ancestor", CC);
6753 elsif Warn_On_Redundant_Constructs then
6754 Error_Msg_N
6755 ("?r?redundant confirming component clause "
6756 & "for component!", CC);
6757 end if;
6758 end;
6759 end if;
6761 -- Normal case where this is the first component clause we
6762 -- have seen for this entity, so set it up properly.
6764 else
6765 -- Make reference for field in record rep clause and set
6766 -- appropriate entity field in the field identifier.
6768 Generate_Reference
6769 (Comp, Component_Name (CC), Set_Ref => False);
6770 Set_Entity (Component_Name (CC), Comp);
6772 -- Update Fbit and Lbit to the actual bit number
6774 Fbit := Fbit + UI_From_Int (SSU) * Posit;
6775 Lbit := Lbit + UI_From_Int (SSU) * Posit;
6777 if Has_Size_Clause (Rectype)
6778 and then RM_Size (Rectype) <= Lbit
6779 then
6780 Error_Msg_N
6781 ("bit number out of range of specified size",
6782 Last_Bit (CC));
6783 else
6784 Set_Component_Clause (Comp, CC);
6785 Set_Component_Bit_Offset (Comp, Fbit);
6786 Set_Esize (Comp, 1 + (Lbit - Fbit));
6787 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
6788 Set_Normalized_Position (Comp, Fbit / SSU);
6790 if Warn_On_Overridden_Size
6791 and then Has_Size_Clause (Etype (Comp))
6792 and then RM_Size (Etype (Comp)) /= Esize (Comp)
6793 then
6794 Error_Msg_NE
6795 ("?S?component size overrides size clause for&",
6796 Component_Name (CC), Etype (Comp));
6797 end if;
6799 -- This information is also set in the corresponding
6800 -- component of the base type, found by accessing the
6801 -- Original_Record_Component link if it is present.
6803 Ocomp := Original_Record_Component (Comp);
6805 if Hbit < Lbit then
6806 Hbit := Lbit;
6807 end if;
6809 Check_Size
6810 (Component_Name (CC),
6811 Etype (Comp),
6812 Esize (Comp),
6813 Biased);
6815 Set_Biased
6816 (Comp, First_Node (CC), "component clause", Biased);
6818 if Present (Ocomp) then
6819 Set_Component_Clause (Ocomp, CC);
6820 Set_Component_Bit_Offset (Ocomp, Fbit);
6821 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
6822 Set_Normalized_Position (Ocomp, Fbit / SSU);
6823 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
6825 Set_Normalized_Position_Max
6826 (Ocomp, Normalized_Position (Ocomp));
6828 -- Note: we don't use Set_Biased here, because we
6829 -- already gave a warning above if needed, and we
6830 -- would get a duplicate for the same name here.
6832 Set_Has_Biased_Representation
6833 (Ocomp, Has_Biased_Representation (Comp));
6834 end if;
6836 if Esize (Comp) < 0 then
6837 Error_Msg_N ("component size is negative", CC);
6838 end if;
6839 end if;
6840 end if;
6841 end if;
6842 end if;
6843 end if;
6845 Next (CC);
6846 end loop;
6848 -- Check missing components if Complete_Representation pragma appeared
6850 if Present (CR_Pragma) then
6851 Comp := First_Component_Or_Discriminant (Rectype);
6852 while Present (Comp) loop
6853 if No (Component_Clause (Comp)) then
6854 Error_Msg_NE
6855 ("missing component clause for &", CR_Pragma, Comp);
6856 end if;
6858 Next_Component_Or_Discriminant (Comp);
6859 end loop;
6861 -- Give missing components warning if required
6863 elsif Warn_On_Unrepped_Components then
6864 declare
6865 Num_Repped_Components : Nat := 0;
6866 Num_Unrepped_Components : Nat := 0;
6868 begin
6869 -- First count number of repped and unrepped components
6871 Comp := First_Component_Or_Discriminant (Rectype);
6872 while Present (Comp) loop
6873 if Present (Component_Clause (Comp)) then
6874 Num_Repped_Components := Num_Repped_Components + 1;
6875 else
6876 Num_Unrepped_Components := Num_Unrepped_Components + 1;
6877 end if;
6879 Next_Component_Or_Discriminant (Comp);
6880 end loop;
6882 -- We are only interested in the case where there is at least one
6883 -- unrepped component, and at least half the components have rep
6884 -- clauses. We figure that if less than half have them, then the
6885 -- partial rep clause is really intentional. If the component
6886 -- type has no underlying type set at this point (as for a generic
6887 -- formal type), we don't know enough to give a warning on the
6888 -- component.
6890 if Num_Unrepped_Components > 0
6891 and then Num_Unrepped_Components < Num_Repped_Components
6892 then
6893 Comp := First_Component_Or_Discriminant (Rectype);
6894 while Present (Comp) loop
6895 if No (Component_Clause (Comp))
6896 and then Comes_From_Source (Comp)
6897 and then Present (Underlying_Type (Etype (Comp)))
6898 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
6899 or else Size_Known_At_Compile_Time
6900 (Underlying_Type (Etype (Comp))))
6901 and then not Has_Warnings_Off (Rectype)
6903 -- Ignore discriminant in unchecked union, since it is
6904 -- not there, and cannot have a component clause.
6906 and then (not Is_Unchecked_Union (Rectype)
6907 or else Ekind (Comp) /= E_Discriminant)
6908 then
6909 Error_Msg_Sloc := Sloc (Comp);
6910 Error_Msg_NE
6911 ("?C?no component clause given for & declared #",
6912 N, Comp);
6913 end if;
6915 Next_Component_Or_Discriminant (Comp);
6916 end loop;
6917 end if;
6918 end;
6919 end if;
6920 end Analyze_Record_Representation_Clause;
6922 -------------------------------------
6923 -- Build_Discrete_Static_Predicate --
6924 -------------------------------------
6926 procedure Build_Discrete_Static_Predicate
6927 (Typ : Entity_Id;
6928 Expr : Node_Id;
6929 Nam : Name_Id)
6931 Loc : constant Source_Ptr := Sloc (Expr);
6933 Non_Static : exception;
6934 -- Raised if something non-static is found
6936 Btyp : constant Entity_Id := Base_Type (Typ);
6938 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
6939 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
6940 -- Low bound and high bound value of base type of Typ
6942 TLo : Uint;
6943 THi : Uint;
6944 -- Bounds for constructing the static predicate. We use the bound of the
6945 -- subtype if it is static, otherwise the corresponding base type bound.
6946 -- Note: a non-static subtype can have a static predicate.
6948 type REnt is record
6949 Lo, Hi : Uint;
6950 end record;
6951 -- One entry in a Rlist value, a single REnt (range entry) value denotes
6952 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
6953 -- value.
6955 type RList is array (Nat range <>) of REnt;
6956 -- A list of ranges. The ranges are sorted in increasing order, and are
6957 -- disjoint (there is a gap of at least one value between each range in
6958 -- the table). A value is in the set of ranges in Rlist if it lies
6959 -- within one of these ranges.
6961 False_Range : constant RList :=
6962 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
6963 -- An empty set of ranges represents a range list that can never be
6964 -- satisfied, since there are no ranges in which the value could lie,
6965 -- so it does not lie in any of them. False_Range is a canonical value
6966 -- for this empty set, but general processing should test for an Rlist
6967 -- with length zero (see Is_False predicate), since other null ranges
6968 -- may appear which must be treated as False.
6970 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
6971 -- Range representing True, value must be in the base range
6973 function "and" (Left : RList; Right : RList) return RList;
6974 -- And's together two range lists, returning a range list. This is a set
6975 -- intersection operation.
6977 function "or" (Left : RList; Right : RList) return RList;
6978 -- Or's together two range lists, returning a range list. This is a set
6979 -- union operation.
6981 function "not" (Right : RList) return RList;
6982 -- Returns complement of a given range list, i.e. a range list
6983 -- representing all the values in TLo .. THi that are not in the input
6984 -- operand Right.
6986 function Build_Val (V : Uint) return Node_Id;
6987 -- Return an analyzed N_Identifier node referencing this value, suitable
6988 -- for use as an entry in the Static_Discrte_Predicate list. This node
6989 -- is typed with the base type.
6991 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
6992 -- Return an analyzed N_Range node referencing this range, suitable for
6993 -- use as an entry in the Static_Discrete_Predicate list. This node is
6994 -- typed with the base type.
6996 function Get_RList (Exp : Node_Id) return RList;
6997 -- This is a recursive routine that converts the given expression into a
6998 -- list of ranges, suitable for use in building the static predicate.
7000 function Is_False (R : RList) return Boolean;
7001 pragma Inline (Is_False);
7002 -- Returns True if the given range list is empty, and thus represents a
7003 -- False list of ranges that can never be satisfied.
7005 function Is_True (R : RList) return Boolean;
7006 -- Returns True if R trivially represents the True predicate by having a
7007 -- single range from BLo to BHi.
7009 function Is_Type_Ref (N : Node_Id) return Boolean;
7010 pragma Inline (Is_Type_Ref);
7011 -- Returns if True if N is a reference to the type for the predicate in
7012 -- the expression (i.e. if it is an identifier whose Chars field matches
7013 -- the Nam given in the call). N must not be parenthesized, if the type
7014 -- name appears in parens, this routine will return False.
7016 function Lo_Val (N : Node_Id) return Uint;
7017 -- Given an entry from a Static_Discrete_Predicate list that is either
7018 -- a static expression or static range, gets either the expression value
7019 -- or the low bound of the range.
7021 function Hi_Val (N : Node_Id) return Uint;
7022 -- Given an entry from a Static_Discrete_Predicate list that is either
7023 -- a static expression or static range, gets either the expression value
7024 -- or the high bound of the range.
7026 function Membership_Entry (N : Node_Id) return RList;
7027 -- Given a single membership entry (range, value, or subtype), returns
7028 -- the corresponding range list. Raises Static_Error if not static.
7030 function Membership_Entries (N : Node_Id) return RList;
7031 -- Given an element on an alternatives list of a membership operation,
7032 -- returns the range list corresponding to this entry and all following
7033 -- entries (i.e. returns the "or" of this list of values).
7035 function Stat_Pred (Typ : Entity_Id) return RList;
7036 -- Given a type, if it has a static predicate, then return the predicate
7037 -- as a range list, otherwise raise Non_Static.
7039 -----------
7040 -- "and" --
7041 -----------
7043 function "and" (Left : RList; Right : RList) return RList is
7044 FEnt : REnt;
7045 -- First range of result
7047 SLeft : Nat := Left'First;
7048 -- Start of rest of left entries
7050 SRight : Nat := Right'First;
7051 -- Start of rest of right entries
7053 begin
7054 -- If either range is True, return the other
7056 if Is_True (Left) then
7057 return Right;
7058 elsif Is_True (Right) then
7059 return Left;
7060 end if;
7062 -- If either range is False, return False
7064 if Is_False (Left) or else Is_False (Right) then
7065 return False_Range;
7066 end if;
7068 -- Loop to remove entries at start that are disjoint, and thus just
7069 -- get discarded from the result entirely.
7071 loop
7072 -- If no operands left in either operand, result is false
7074 if SLeft > Left'Last or else SRight > Right'Last then
7075 return False_Range;
7077 -- Discard first left operand entry if disjoint with right
7079 elsif Left (SLeft).Hi < Right (SRight).Lo then
7080 SLeft := SLeft + 1;
7082 -- Discard first right operand entry if disjoint with left
7084 elsif Right (SRight).Hi < Left (SLeft).Lo then
7085 SRight := SRight + 1;
7087 -- Otherwise we have an overlapping entry
7089 else
7090 exit;
7091 end if;
7092 end loop;
7094 -- Now we have two non-null operands, and first entries overlap. The
7095 -- first entry in the result will be the overlapping part of these
7096 -- two entries.
7098 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7099 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7101 -- Now we can remove the entry that ended at a lower value, since its
7102 -- contribution is entirely contained in Fent.
7104 if Left (SLeft).Hi <= Right (SRight).Hi then
7105 SLeft := SLeft + 1;
7106 else
7107 SRight := SRight + 1;
7108 end if;
7110 -- Compute result by concatenating this first entry with the "and" of
7111 -- the remaining parts of the left and right operands. Note that if
7112 -- either of these is empty, "and" will yield empty, so that we will
7113 -- end up with just Fent, which is what we want in that case.
7115 return
7116 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7117 end "and";
7119 -----------
7120 -- "not" --
7121 -----------
7123 function "not" (Right : RList) return RList is
7124 begin
7125 -- Return True if False range
7127 if Is_False (Right) then
7128 return True_Range;
7129 end if;
7131 -- Return False if True range
7133 if Is_True (Right) then
7134 return False_Range;
7135 end if;
7137 -- Here if not trivial case
7139 declare
7140 Result : RList (1 .. Right'Length + 1);
7141 -- May need one more entry for gap at beginning and end
7143 Count : Nat := 0;
7144 -- Number of entries stored in Result
7146 begin
7147 -- Gap at start
7149 if Right (Right'First).Lo > TLo then
7150 Count := Count + 1;
7151 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7152 end if;
7154 -- Gaps between ranges
7156 for J in Right'First .. Right'Last - 1 loop
7157 Count := Count + 1;
7158 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7159 end loop;
7161 -- Gap at end
7163 if Right (Right'Last).Hi < THi then
7164 Count := Count + 1;
7165 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7166 end if;
7168 return Result (1 .. Count);
7169 end;
7170 end "not";
7172 ----------
7173 -- "or" --
7174 ----------
7176 function "or" (Left : RList; Right : RList) return RList is
7177 FEnt : REnt;
7178 -- First range of result
7180 SLeft : Nat := Left'First;
7181 -- Start of rest of left entries
7183 SRight : Nat := Right'First;
7184 -- Start of rest of right entries
7186 begin
7187 -- If either range is True, return True
7189 if Is_True (Left) or else Is_True (Right) then
7190 return True_Range;
7191 end if;
7193 -- If either range is False (empty), return the other
7195 if Is_False (Left) then
7196 return Right;
7197 elsif Is_False (Right) then
7198 return Left;
7199 end if;
7201 -- Initialize result first entry from left or right operand depending
7202 -- on which starts with the lower range.
7204 if Left (SLeft).Lo < Right (SRight).Lo then
7205 FEnt := Left (SLeft);
7206 SLeft := SLeft + 1;
7207 else
7208 FEnt := Right (SRight);
7209 SRight := SRight + 1;
7210 end if;
7212 -- This loop eats ranges from left and right operands that are
7213 -- contiguous with the first range we are gathering.
7215 loop
7216 -- Eat first entry in left operand if contiguous or overlapped by
7217 -- gathered first operand of result.
7219 if SLeft <= Left'Last
7220 and then Left (SLeft).Lo <= FEnt.Hi + 1
7221 then
7222 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7223 SLeft := SLeft + 1;
7225 -- Eat first entry in right operand if contiguous or overlapped by
7226 -- gathered right operand of result.
7228 elsif SRight <= Right'Last
7229 and then Right (SRight).Lo <= FEnt.Hi + 1
7230 then
7231 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7232 SRight := SRight + 1;
7234 -- All done if no more entries to eat
7236 else
7237 exit;
7238 end if;
7239 end loop;
7241 -- Obtain result as the first entry we just computed, concatenated
7242 -- to the "or" of the remaining results (if one operand is empty,
7243 -- this will just concatenate with the other
7245 return
7246 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7247 end "or";
7249 -----------------
7250 -- Build_Range --
7251 -----------------
7253 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7254 Result : Node_Id;
7255 begin
7256 Result :=
7257 Make_Range (Loc,
7258 Low_Bound => Build_Val (Lo),
7259 High_Bound => Build_Val (Hi));
7260 Set_Etype (Result, Btyp);
7261 Set_Analyzed (Result);
7262 return Result;
7263 end Build_Range;
7265 ---------------
7266 -- Build_Val --
7267 ---------------
7269 function Build_Val (V : Uint) return Node_Id is
7270 Result : Node_Id;
7272 begin
7273 if Is_Enumeration_Type (Typ) then
7274 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7275 else
7276 Result := Make_Integer_Literal (Loc, V);
7277 end if;
7279 Set_Etype (Result, Btyp);
7280 Set_Is_Static_Expression (Result);
7281 Set_Analyzed (Result);
7282 return Result;
7283 end Build_Val;
7285 ---------------
7286 -- Get_RList --
7287 ---------------
7289 function Get_RList (Exp : Node_Id) return RList is
7290 Op : Node_Kind;
7291 Val : Uint;
7293 begin
7294 -- Static expression can only be true or false
7296 if Is_OK_Static_Expression (Exp) then
7297 if Expr_Value (Exp) = 0 then
7298 return False_Range;
7299 else
7300 return True_Range;
7301 end if;
7302 end if;
7304 -- Otherwise test node type
7306 Op := Nkind (Exp);
7308 case Op is
7310 -- And
7312 when N_Op_And | N_And_Then =>
7313 return Get_RList (Left_Opnd (Exp))
7315 Get_RList (Right_Opnd (Exp));
7317 -- Or
7319 when N_Op_Or | N_Or_Else =>
7320 return Get_RList (Left_Opnd (Exp))
7322 Get_RList (Right_Opnd (Exp));
7324 -- Not
7326 when N_Op_Not =>
7327 return not Get_RList (Right_Opnd (Exp));
7329 -- Comparisons of type with static value
7331 when N_Op_Compare =>
7333 -- Type is left operand
7335 if Is_Type_Ref (Left_Opnd (Exp))
7336 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7337 then
7338 Val := Expr_Value (Right_Opnd (Exp));
7340 -- Typ is right operand
7342 elsif Is_Type_Ref (Right_Opnd (Exp))
7343 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7344 then
7345 Val := Expr_Value (Left_Opnd (Exp));
7347 -- Invert sense of comparison
7349 case Op is
7350 when N_Op_Gt => Op := N_Op_Lt;
7351 when N_Op_Lt => Op := N_Op_Gt;
7352 when N_Op_Ge => Op := N_Op_Le;
7353 when N_Op_Le => Op := N_Op_Ge;
7354 when others => null;
7355 end case;
7357 -- Other cases are non-static
7359 else
7360 raise Non_Static;
7361 end if;
7363 -- Construct range according to comparison operation
7365 case Op is
7366 when N_Op_Eq =>
7367 return RList'(1 => REnt'(Val, Val));
7369 when N_Op_Ge =>
7370 return RList'(1 => REnt'(Val, BHi));
7372 when N_Op_Gt =>
7373 return RList'(1 => REnt'(Val + 1, BHi));
7375 when N_Op_Le =>
7376 return RList'(1 => REnt'(BLo, Val));
7378 when N_Op_Lt =>
7379 return RList'(1 => REnt'(BLo, Val - 1));
7381 when N_Op_Ne =>
7382 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
7384 when others =>
7385 raise Program_Error;
7386 end case;
7388 -- Membership (IN)
7390 when N_In =>
7391 if not Is_Type_Ref (Left_Opnd (Exp)) then
7392 raise Non_Static;
7393 end if;
7395 if Present (Right_Opnd (Exp)) then
7396 return Membership_Entry (Right_Opnd (Exp));
7397 else
7398 return Membership_Entries (First (Alternatives (Exp)));
7399 end if;
7401 -- Negative membership (NOT IN)
7403 when N_Not_In =>
7404 if not Is_Type_Ref (Left_Opnd (Exp)) then
7405 raise Non_Static;
7406 end if;
7408 if Present (Right_Opnd (Exp)) then
7409 return not Membership_Entry (Right_Opnd (Exp));
7410 else
7411 return not Membership_Entries (First (Alternatives (Exp)));
7412 end if;
7414 -- Function call, may be call to static predicate
7416 when N_Function_Call =>
7417 if Is_Entity_Name (Name (Exp)) then
7418 declare
7419 Ent : constant Entity_Id := Entity (Name (Exp));
7420 begin
7421 if Is_Predicate_Function (Ent)
7422 or else
7423 Is_Predicate_Function_M (Ent)
7424 then
7425 return Stat_Pred (Etype (First_Formal (Ent)));
7426 end if;
7427 end;
7428 end if;
7430 -- Other function call cases are non-static
7432 raise Non_Static;
7434 -- Qualified expression, dig out the expression
7436 when N_Qualified_Expression =>
7437 return Get_RList (Expression (Exp));
7439 when N_Case_Expression =>
7440 declare
7441 Alt : Node_Id;
7442 Choices : List_Id;
7443 Dep : Node_Id;
7445 begin
7446 if not Is_Entity_Name (Expression (Expr))
7447 or else Etype (Expression (Expr)) /= Typ
7448 then
7449 Error_Msg_N
7450 ("expression must denaote subtype", Expression (Expr));
7451 return False_Range;
7452 end if;
7454 -- Collect discrete choices in all True alternatives
7456 Choices := New_List;
7457 Alt := First (Alternatives (Exp));
7458 while Present (Alt) loop
7459 Dep := Expression (Alt);
7461 if not Is_OK_Static_Expression (Dep) then
7462 raise Non_Static;
7464 elsif Is_True (Expr_Value (Dep)) then
7465 Append_List_To (Choices,
7466 New_Copy_List (Discrete_Choices (Alt)));
7467 end if;
7469 Next (Alt);
7470 end loop;
7472 return Membership_Entries (First (Choices));
7473 end;
7475 -- Expression with actions: if no actions, dig out expression
7477 when N_Expression_With_Actions =>
7478 if Is_Empty_List (Actions (Exp)) then
7479 return Get_RList (Expression (Exp));
7480 else
7481 raise Non_Static;
7482 end if;
7484 -- Xor operator
7486 when N_Op_Xor =>
7487 return (Get_RList (Left_Opnd (Exp))
7488 and not Get_RList (Right_Opnd (Exp)))
7489 or (Get_RList (Right_Opnd (Exp))
7490 and not Get_RList (Left_Opnd (Exp)));
7492 -- Any other node type is non-static
7494 when others =>
7495 raise Non_Static;
7496 end case;
7497 end Get_RList;
7499 ------------
7500 -- Hi_Val --
7501 ------------
7503 function Hi_Val (N : Node_Id) return Uint is
7504 begin
7505 if Is_OK_Static_Expression (N) then
7506 return Expr_Value (N);
7507 else
7508 pragma Assert (Nkind (N) = N_Range);
7509 return Expr_Value (High_Bound (N));
7510 end if;
7511 end Hi_Val;
7513 --------------
7514 -- Is_False --
7515 --------------
7517 function Is_False (R : RList) return Boolean is
7518 begin
7519 return R'Length = 0;
7520 end Is_False;
7522 -------------
7523 -- Is_True --
7524 -------------
7526 function Is_True (R : RList) return Boolean is
7527 begin
7528 return R'Length = 1
7529 and then R (R'First).Lo = BLo
7530 and then R (R'First).Hi = BHi;
7531 end Is_True;
7533 -----------------
7534 -- Is_Type_Ref --
7535 -----------------
7537 function Is_Type_Ref (N : Node_Id) return Boolean is
7538 begin
7539 return Nkind (N) = N_Identifier
7540 and then Chars (N) = Nam
7541 and then Paren_Count (N) = 0;
7542 end Is_Type_Ref;
7544 ------------
7545 -- Lo_Val --
7546 ------------
7548 function Lo_Val (N : Node_Id) return Uint is
7549 begin
7550 if Is_OK_Static_Expression (N) then
7551 return Expr_Value (N);
7552 else
7553 pragma Assert (Nkind (N) = N_Range);
7554 return Expr_Value (Low_Bound (N));
7555 end if;
7556 end Lo_Val;
7558 ------------------------
7559 -- Membership_Entries --
7560 ------------------------
7562 function Membership_Entries (N : Node_Id) return RList is
7563 begin
7564 if No (Next (N)) then
7565 return Membership_Entry (N);
7566 else
7567 return Membership_Entry (N) or Membership_Entries (Next (N));
7568 end if;
7569 end Membership_Entries;
7571 ----------------------
7572 -- Membership_Entry --
7573 ----------------------
7575 function Membership_Entry (N : Node_Id) return RList is
7576 Val : Uint;
7577 SLo : Uint;
7578 SHi : Uint;
7580 begin
7581 -- Range case
7583 if Nkind (N) = N_Range then
7584 if not Is_OK_Static_Expression (Low_Bound (N))
7585 or else
7586 not Is_OK_Static_Expression (High_Bound (N))
7587 then
7588 raise Non_Static;
7589 else
7590 SLo := Expr_Value (Low_Bound (N));
7591 SHi := Expr_Value (High_Bound (N));
7592 return RList'(1 => REnt'(SLo, SHi));
7593 end if;
7595 -- Static expression case
7597 elsif Is_OK_Static_Expression (N) then
7598 Val := Expr_Value (N);
7599 return RList'(1 => REnt'(Val, Val));
7601 -- Identifier (other than static expression) case
7603 else pragma Assert (Nkind (N) = N_Identifier);
7605 -- Type case
7607 if Is_Type (Entity (N)) then
7609 -- If type has predicates, process them
7611 if Has_Predicates (Entity (N)) then
7612 return Stat_Pred (Entity (N));
7614 -- For static subtype without predicates, get range
7616 elsif Is_OK_Static_Subtype (Entity (N)) then
7617 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7618 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7619 return RList'(1 => REnt'(SLo, SHi));
7621 -- Any other type makes us non-static
7623 else
7624 raise Non_Static;
7625 end if;
7627 -- Any other kind of identifier in predicate (e.g. a non-static
7628 -- expression value) means this is not a static predicate.
7630 else
7631 raise Non_Static;
7632 end if;
7633 end if;
7634 end Membership_Entry;
7636 ---------------
7637 -- Stat_Pred --
7638 ---------------
7640 function Stat_Pred (Typ : Entity_Id) return RList is
7641 begin
7642 -- Not static if type does not have static predicates
7644 if not Has_Static_Predicate (Typ) then
7645 raise Non_Static;
7646 end if;
7648 -- Otherwise we convert the predicate list to a range list
7650 declare
7651 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7652 Result : RList (1 .. List_Length (Spred));
7653 P : Node_Id;
7655 begin
7656 P := First (Static_Discrete_Predicate (Typ));
7657 for J in Result'Range loop
7658 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
7659 Next (P);
7660 end loop;
7662 return Result;
7663 end;
7664 end Stat_Pred;
7666 -- Start of processing for Build_Discrete_Static_Predicate
7668 begin
7669 -- Establish bounds for the predicate
7671 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
7672 TLo := Expr_Value (Type_Low_Bound (Typ));
7673 else
7674 TLo := BLo;
7675 end if;
7677 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
7678 THi := Expr_Value (Type_High_Bound (Typ));
7679 else
7680 THi := BHi;
7681 end if;
7683 -- Analyze the expression to see if it is a static predicate
7685 declare
7686 Ranges : constant RList := Get_RList (Expr);
7687 -- Range list from expression if it is static
7689 Plist : List_Id;
7691 begin
7692 -- Convert range list into a form for the static predicate. In the
7693 -- Ranges array, we just have raw ranges, these must be converted
7694 -- to properly typed and analyzed static expressions or range nodes.
7696 -- Note: here we limit ranges to the ranges of the subtype, so that
7697 -- a predicate is always false for values outside the subtype. That
7698 -- seems fine, such values are invalid anyway, and considering them
7699 -- to fail the predicate seems allowed and friendly, and furthermore
7700 -- simplifies processing for case statements and loops.
7702 Plist := New_List;
7704 for J in Ranges'Range loop
7705 declare
7706 Lo : Uint := Ranges (J).Lo;
7707 Hi : Uint := Ranges (J).Hi;
7709 begin
7710 -- Ignore completely out of range entry
7712 if Hi < TLo or else Lo > THi then
7713 null;
7715 -- Otherwise process entry
7717 else
7718 -- Adjust out of range value to subtype range
7720 if Lo < TLo then
7721 Lo := TLo;
7722 end if;
7724 if Hi > THi then
7725 Hi := THi;
7726 end if;
7728 -- Convert range into required form
7730 Append_To (Plist, Build_Range (Lo, Hi));
7731 end if;
7732 end;
7733 end loop;
7735 -- Processing was successful and all entries were static, so now we
7736 -- can store the result as the predicate list.
7738 Set_Static_Discrete_Predicate (Typ, Plist);
7740 -- The processing for static predicates put the expression into
7741 -- canonical form as a series of ranges. It also eliminated
7742 -- duplicates and collapsed and combined ranges. We might as well
7743 -- replace the alternatives list of the right operand of the
7744 -- membership test with the static predicate list, which will
7745 -- usually be more efficient.
7747 declare
7748 New_Alts : constant List_Id := New_List;
7749 Old_Node : Node_Id;
7750 New_Node : Node_Id;
7752 begin
7753 Old_Node := First (Plist);
7754 while Present (Old_Node) loop
7755 New_Node := New_Copy (Old_Node);
7757 if Nkind (New_Node) = N_Range then
7758 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
7759 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
7760 end if;
7762 Append_To (New_Alts, New_Node);
7763 Next (Old_Node);
7764 end loop;
7766 -- If empty list, replace by False
7768 if Is_Empty_List (New_Alts) then
7769 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
7771 -- Else replace by set membership test
7773 else
7774 Rewrite (Expr,
7775 Make_In (Loc,
7776 Left_Opnd => Make_Identifier (Loc, Nam),
7777 Right_Opnd => Empty,
7778 Alternatives => New_Alts));
7780 -- Resolve new expression in function context
7782 Install_Formals (Predicate_Function (Typ));
7783 Push_Scope (Predicate_Function (Typ));
7784 Analyze_And_Resolve (Expr, Standard_Boolean);
7785 Pop_Scope;
7786 end if;
7787 end;
7788 end;
7790 -- If non-static, return doing nothing
7792 exception
7793 when Non_Static =>
7794 return;
7795 end Build_Discrete_Static_Predicate;
7797 -------------------------------------------
7798 -- Build_Invariant_Procedure_Declaration --
7799 -------------------------------------------
7801 function Build_Invariant_Procedure_Declaration
7802 (Typ : Entity_Id) return Node_Id
7804 Loc : constant Source_Ptr := Sloc (Typ);
7805 Decl : Node_Id;
7806 Obj_Id : Entity_Id;
7807 SId : Entity_Id;
7809 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
7811 begin
7812 -- Check for duplicate definitions
7814 if Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)) then
7815 return Empty;
7816 end if;
7818 -- The related type may be subject to pragma Ghost. Set the mode now to
7819 -- ensure that the invariant procedure is properly marked as Ghost.
7821 Set_Ghost_Mode_From_Entity (Typ);
7823 SId :=
7824 Make_Defining_Identifier (Loc,
7825 Chars => New_External_Name (Chars (Typ), "Invariant"));
7826 Set_Has_Invariants (Typ);
7827 Set_Ekind (SId, E_Procedure);
7828 Set_Etype (SId, Standard_Void_Type);
7829 Set_Is_Invariant_Procedure (SId);
7830 Set_Invariant_Procedure (Typ, SId);
7832 -- Mark the invariant procedure explicitly as Ghost because it does not
7833 -- come from source.
7835 if Ghost_Mode > None then
7836 Set_Is_Ghost_Entity (SId);
7837 end if;
7839 Obj_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('I'));
7840 Set_Etype (Obj_Id, Typ);
7842 Decl :=
7843 Make_Subprogram_Declaration (Loc,
7844 Make_Procedure_Specification (Loc,
7845 Defining_Unit_Name => SId,
7846 Parameter_Specifications => New_List (
7847 Make_Parameter_Specification (Loc,
7848 Defining_Identifier => Obj_Id,
7849 Parameter_Type => New_Occurrence_Of (Typ, Loc)))));
7851 Ghost_Mode := Save_Ghost_Mode;
7853 return Decl;
7854 end Build_Invariant_Procedure_Declaration;
7856 -------------------------------
7857 -- Build_Invariant_Procedure --
7858 -------------------------------
7860 -- The procedure that is constructed here has the form
7862 -- procedure typInvariant (Ixxx : typ) is
7863 -- begin
7864 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7865 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7866 -- ...
7867 -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
7868 -- ...
7869 -- end typInvariant;
7871 procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
7872 procedure Add_Invariants
7873 (T : Entity_Id;
7874 Obj_Id : Entity_Id;
7875 Stmts : in out List_Id;
7876 Inherit : Boolean);
7877 -- Appends statements to Stmts for any invariants in the rep item chain
7878 -- of the given type. If Inherit is False, then we only process entries
7879 -- on the chain for the type Typ. If Inherit is True, then we ignore any
7880 -- Invariant aspects, but we process all Invariant'Class aspects, adding
7881 -- "inherited" to the exception message and generating an informational
7882 -- message about the inheritance of an invariant.
7884 --------------------
7885 -- Add_Invariants --
7886 --------------------
7888 procedure Add_Invariants
7889 (T : Entity_Id;
7890 Obj_Id : Entity_Id;
7891 Stmts : in out List_Id;
7892 Inherit : Boolean)
7894 procedure Add_Invariant (Prag : Node_Id);
7895 -- Create a runtime check to verify the exression of invariant pragma
7896 -- Prag. All generated code is added to list Stmts.
7898 -------------------
7899 -- Add_Invariant --
7900 -------------------
7902 procedure Add_Invariant (Prag : Node_Id) is
7903 procedure Replace_Type_Reference (N : Node_Id);
7904 -- Replace a single occurrence N of the subtype name with a
7905 -- reference to the formal of the predicate function. N can be an
7906 -- identifier referencing the subtype, or a selected component,
7907 -- representing an appropriately qualified occurrence of the
7908 -- subtype name.
7910 procedure Replace_Type_References is
7911 new Replace_Type_References_Generic (Replace_Type_Reference);
7912 -- Traverse an expression replacing all occurrences of the subtype
7913 -- name with appropriate references to the formal of the predicate
7914 -- function. Note that we must ensure that the type and entity
7915 -- information is properly set in the replacement node, since we
7916 -- will do a Preanalyze call of this expression without proper
7917 -- visibility of the procedure argument.
7919 ----------------------------
7920 -- Replace_Type_Reference --
7921 ----------------------------
7923 -- Note: See comments in Add_Predicates.Replace_Type_Reference
7924 -- regarding handling of Sloc and Comes_From_Source.
7926 procedure Replace_Type_Reference (N : Node_Id) is
7927 Nloc : constant Source_Ptr := Sloc (N);
7929 begin
7930 -- Add semantic information to node to be rewritten, for ASIS
7931 -- navigation needs.
7933 if Nkind (N) = N_Identifier then
7934 Set_Entity (N, T);
7935 Set_Etype (N, T);
7937 elsif Nkind (N) = N_Selected_Component then
7938 Analyze (Prefix (N));
7939 Set_Entity (Selector_Name (N), T);
7940 Set_Etype (Selector_Name (N), T);
7941 end if;
7943 -- Invariant'Class, replace with T'Class (obj)
7945 if Class_Present (Prag) then
7947 -- In ASIS mode, an inherited item is already analyzed,
7948 -- and the replacement has been done, so do not repeat
7949 -- the transformation to prevent a malformed tree.
7951 if ASIS_Mode
7952 and then Nkind (Parent (N)) = N_Attribute_Reference
7953 and then Attribute_Name (Parent (N)) = Name_Class
7954 then
7955 null;
7957 else
7958 Rewrite (N,
7959 Make_Type_Conversion (Nloc,
7960 Subtype_Mark =>
7961 Make_Attribute_Reference (Nloc,
7962 Prefix => New_Occurrence_Of (T, Nloc),
7963 Attribute_Name => Name_Class),
7964 Expression =>
7965 Make_Identifier (Nloc, Chars (Obj_Id))));
7967 Set_Entity (Expression (N), Obj_Id);
7968 Set_Etype (Expression (N), Typ);
7969 end if;
7971 -- Invariant, replace with obj
7973 else
7974 Rewrite (N, Make_Identifier (Nloc, Chars (Obj_Id)));
7975 Set_Entity (N, Obj_Id);
7976 Set_Etype (N, Typ);
7977 end if;
7979 Set_Comes_From_Source (N, True);
7980 end Replace_Type_Reference;
7982 -- Local variables
7984 Asp : constant Node_Id := Corresponding_Aspect (Prag);
7985 Nam : constant Name_Id := Original_Aspect_Pragma_Name (Prag);
7986 Ploc : constant Source_Ptr := Sloc (Prag);
7987 Arg1 : Node_Id;
7988 Arg2 : Node_Id;
7989 Arg3 : Node_Id;
7990 Assoc : List_Id;
7991 Expr : Node_Id;
7992 Str : String_Id;
7994 -- Start of processing for Add_Invariant
7996 begin
7997 -- Extract the arguments of the invariant pragma
7999 Arg1 := First (Pragma_Argument_Associations (Prag));
8000 Arg2 := Next (Arg1);
8001 Arg3 := Next (Arg2);
8003 Arg1 := Get_Pragma_Arg (Arg1);
8004 Arg2 := Get_Pragma_Arg (Arg2);
8006 -- The caller requests processing of all Invariant'Class pragmas,
8007 -- but the current pragma does not fall in this category. Return
8008 -- as there is nothing left to do.
8010 if Inherit then
8011 if not Class_Present (Prag) then
8012 return;
8013 end if;
8015 -- Otherwise the pragma must apply to the current type
8017 elsif Entity (Arg1) /= T then
8018 return;
8019 end if;
8021 Expr := New_Copy_Tree (Arg2);
8023 -- Replace all occurrences of the type's name with references to
8024 -- the formal parameter of the invariant procedure.
8026 Replace_Type_References (Expr, T);
8028 -- If the invariant pragma comes from an aspect, replace the saved
8029 -- expression because we need the subtype references replaced for
8030 -- the calls to Preanalyze_Spec_Expression in Check_Aspect_At_xxx
8031 -- routines.
8033 if Present (Asp) then
8034 Set_Entity (Identifier (Asp), New_Copy_Tree (Expr));
8035 end if;
8037 -- Preanalyze the invariant expression to capture the visibility
8038 -- of the proper package part. In general the expression is not
8039 -- fully analyzed until the body of the invariant procedure is
8040 -- analyzed at the end of the private part, but that yields the
8041 -- wrong visibility.
8043 -- Historical note: we used to set N as the parent, but a package
8044 -- specification as the parent of an expression is bizarre.
8046 Set_Parent (Expr, Parent (Arg2));
8047 Preanalyze_Assert_Expression (Expr, Any_Boolean);
8049 -- A class-wide invariant may be inherited in a separate unit,
8050 -- where the corresponding expression cannot be resolved by
8051 -- visibility, because it refers to a local function. Propagate
8052 -- semantic information to the original representation item, to
8053 -- be used when an invariant procedure for a derived type is
8054 -- constructed.
8056 -- ??? Unclear how to handle class-wide invariants that are not
8057 -- function calls.
8059 if not Inherit
8060 and then Class_Present (Prag)
8061 and then Nkind (Expr) = N_Function_Call
8062 and then Nkind (Arg2) = N_Indexed_Component
8063 then
8064 Rewrite (Arg2,
8065 Make_Function_Call (Ploc,
8066 Name =>
8067 New_Occurrence_Of (Entity (Name (Expr)), Ploc),
8068 Parameter_Associations =>
8069 New_Copy_List (Expressions (Arg2))));
8070 end if;
8072 -- In ASIS mode, even if assertions are not enabled, we must
8073 -- analyze the original expression in the aspect specification
8074 -- because it is part of the original tree.
8076 if ASIS_Mode and then Present (Asp) then
8077 declare
8078 Orig_Expr : constant Node_Id := Expression (Asp);
8079 begin
8080 Replace_Type_References (Orig_Expr, T);
8081 Preanalyze_Assert_Expression (Orig_Expr, Any_Boolean);
8082 end;
8083 end if;
8085 -- An ignored invariant must not generate a runtime check. Add a
8086 -- null statement to ensure that the invariant procedure does get
8087 -- a completing body.
8089 if No (Stmts) then
8090 Stmts := Empty_List;
8091 end if;
8093 if Is_Ignored (Prag) then
8094 Append_To (Stmts, Make_Null_Statement (Ploc));
8096 -- Otherwise the invariant is checked. Build a Check pragma to
8097 -- verify the expression at runtime.
8099 else
8100 Assoc := New_List (
8101 Make_Pragma_Argument_Association (Ploc,
8102 Expression => Make_Identifier (Ploc, Nam)),
8103 Make_Pragma_Argument_Association (Ploc,
8104 Expression => Expr));
8106 -- Handle the String argument (if any)
8108 if Present (Arg3) then
8109 Str := Strval (Get_Pragma_Arg (Arg3));
8111 -- When inheriting an invariant, modify the message from
8112 -- "failed invariant" to "failed inherited invariant".
8114 if Inherit then
8115 String_To_Name_Buffer (Str);
8117 if Name_Buffer (1 .. 16) = "failed invariant" then
8118 Insert_Str_In_Name_Buffer ("inherited ", 8);
8119 Str := String_From_Name_Buffer;
8120 end if;
8121 end if;
8123 Append_To (Assoc,
8124 Make_Pragma_Argument_Association (Ploc,
8125 Expression => Make_String_Literal (Ploc, Str)));
8126 end if;
8128 -- Generate:
8129 -- pragma Check (Nam, Expr, Str);
8131 Append_To (Stmts,
8132 Make_Pragma (Ploc,
8133 Pragma_Identifier =>
8134 Make_Identifier (Ploc, Name_Check),
8135 Pragma_Argument_Associations => Assoc));
8136 end if;
8138 -- Output an info message when inheriting an invariant and the
8139 -- listing option is enabled.
8141 if Inherit and Opt.List_Inherited_Aspects then
8142 Error_Msg_Sloc := Sloc (Prag);
8143 Error_Msg_N
8144 ("info: & inherits `Invariant''Class` aspect from #?L?", Typ);
8145 end if;
8146 end Add_Invariant;
8148 -- Local variables
8150 Ritem : Node_Id;
8152 -- Start of processing for Add_Invariants
8154 begin
8155 Ritem := First_Rep_Item (T);
8156 while Present (Ritem) loop
8157 if Nkind (Ritem) = N_Pragma
8158 and then Pragma_Name (Ritem) = Name_Invariant
8159 then
8160 Add_Invariant (Ritem);
8161 end if;
8163 Next_Rep_Item (Ritem);
8164 end loop;
8165 end Add_Invariants;
8167 -- Local variables
8169 Loc : constant Source_Ptr := Sloc (Typ);
8170 Priv_Decls : constant List_Id := Private_Declarations (N);
8171 Vis_Decls : constant List_Id := Visible_Declarations (N);
8173 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
8175 PBody : Node_Id;
8176 PDecl : Node_Id;
8177 SId : Entity_Id;
8178 Spec : Node_Id;
8179 Stmts : List_Id;
8181 Obj_Id : Node_Id;
8182 -- The entity of the formal for the procedure
8184 -- Start of processing for Build_Invariant_Procedure
8186 begin
8187 -- The related type may be subject to pragma Ghost. Set the mode now to
8188 -- ensure that the invariant procedure is properly marked as Ghost.
8190 Set_Ghost_Mode_From_Entity (Typ);
8192 Stmts := No_List;
8193 PDecl := Empty;
8194 PBody := Empty;
8195 SId := Empty;
8197 -- If the aspect specification exists for some view of the type, the
8198 -- declaration for the procedure has been created.
8200 if Has_Invariants (Typ) then
8201 SId := Invariant_Procedure (Typ);
8202 end if;
8204 -- If the body is already present, nothing to do. This will occur when
8205 -- the type is already frozen, which is the case when the invariant
8206 -- appears in a private part, and the freezing takes place before the
8207 -- final pass over full declarations.
8209 -- See Exp_Ch3.Insert_Component_Invariant_Checks for details.
8211 if Present (SId) then
8212 PDecl := Unit_Declaration_Node (SId);
8214 if Present (PDecl)
8215 and then Nkind (PDecl) = N_Subprogram_Declaration
8216 and then Present (Corresponding_Body (PDecl))
8217 then
8218 Ghost_Mode := Save_Ghost_Mode;
8219 return;
8220 end if;
8222 else
8223 PDecl := Build_Invariant_Procedure_Declaration (Typ);
8224 end if;
8226 -- Recover formal of procedure, for use in the calls to invariant
8227 -- functions (including inherited ones).
8229 Obj_Id :=
8230 Defining_Identifier
8231 (First (Parameter_Specifications (Specification (PDecl))));
8233 -- Add invariants for the current type
8235 Add_Invariants
8236 (T => Typ,
8237 Obj_Id => Obj_Id,
8238 Stmts => Stmts,
8239 Inherit => False);
8241 -- Add invariants for parent types
8243 declare
8244 Current_Typ : Entity_Id;
8245 Parent_Typ : Entity_Id;
8247 begin
8248 Current_Typ := Typ;
8249 loop
8250 Parent_Typ := Etype (Current_Typ);
8252 if Is_Private_Type (Parent_Typ)
8253 and then Present (Full_View (Base_Type (Parent_Typ)))
8254 then
8255 Parent_Typ := Full_View (Base_Type (Parent_Typ));
8256 end if;
8258 exit when Parent_Typ = Current_Typ;
8260 Current_Typ := Parent_Typ;
8261 Add_Invariants
8262 (T => Current_Typ,
8263 Obj_Id => Obj_Id,
8264 Stmts => Stmts,
8265 Inherit => True);
8266 end loop;
8267 end;
8269 -- Add invariants of progenitors
8271 if Is_Tagged_Type (Typ) and then not Is_Interface (Typ) then
8272 declare
8273 Ifaces_List : Elist_Id;
8274 AI : Elmt_Id;
8275 Iface : Entity_Id;
8277 begin
8278 Collect_Interfaces (Typ, Ifaces_List);
8280 AI := First_Elmt (Ifaces_List);
8281 while Present (AI) loop
8282 Iface := Node (AI);
8284 if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
8285 Add_Invariants
8286 (T => Iface,
8287 Obj_Id => Obj_Id,
8288 Stmts => Stmts,
8289 Inherit => True);
8290 end if;
8292 Next_Elmt (AI);
8293 end loop;
8294 end;
8295 end if;
8297 -- Build the procedure if we generated at least one Check pragma
8299 if Stmts /= No_List then
8300 Spec := Copy_Separate_Tree (Specification (PDecl));
8302 PBody :=
8303 Make_Subprogram_Body (Loc,
8304 Specification => Spec,
8305 Declarations => Empty_List,
8306 Handled_Statement_Sequence =>
8307 Make_Handled_Sequence_Of_Statements (Loc,
8308 Statements => Stmts));
8310 -- Insert procedure declaration and spec at the appropriate points.
8311 -- If declaration is already analyzed, it was processed by the
8312 -- generated pragma.
8314 if Present (Priv_Decls) then
8316 -- The spec goes at the end of visible declarations, but they have
8317 -- already been analyzed, so we need to explicitly do the analyze.
8319 if not Analyzed (PDecl) then
8320 Append_To (Vis_Decls, PDecl);
8321 Analyze (PDecl);
8322 end if;
8324 -- The body goes at the end of the private declarations, which we
8325 -- have not analyzed yet, so we do not need to perform an explicit
8326 -- analyze call. We skip this if there are no private declarations
8327 -- (this is an error that will be caught elsewhere);
8329 Append_To (Priv_Decls, PBody);
8331 -- If the invariant appears on the full view of a type, the
8332 -- analysis of the private part is complete, and we must
8333 -- analyze the new body explicitly.
8335 if In_Private_Part (Current_Scope) then
8336 Analyze (PBody);
8337 end if;
8339 -- If there are no private declarations this may be an error that
8340 -- will be diagnosed elsewhere. However, if this is a non-private
8341 -- type that inherits invariants, it needs no completion and there
8342 -- may be no private part. In this case insert invariant procedure
8343 -- at end of current declarative list, and analyze at once, given
8344 -- that the type is about to be frozen.
8346 elsif not Is_Private_Type (Typ) then
8347 Append_To (Vis_Decls, PDecl);
8348 Append_To (Vis_Decls, PBody);
8349 Analyze (PDecl);
8350 Analyze (PBody);
8351 end if;
8352 end if;
8354 Ghost_Mode := Save_Ghost_Mode;
8355 end Build_Invariant_Procedure;
8357 -------------------------------
8358 -- Build_Predicate_Functions --
8359 -------------------------------
8361 -- The procedures that are constructed here have the form:
8363 -- function typPredicate (Ixxx : typ) return Boolean is
8364 -- begin
8365 -- return
8366 -- typ1Predicate (typ1 (Ixxx))
8367 -- and then typ2Predicate (typ2 (Ixxx))
8368 -- and then ...;
8369 -- exp1 and then exp2 and then ...
8370 -- end typPredicate;
8372 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8373 -- this is the point at which these expressions get analyzed, providing the
8374 -- required delay, and typ1, typ2, are entities from which predicates are
8375 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8376 -- use this function even if checks are off, e.g. for membership tests.
8378 -- Note that the inherited predicates are evaluated first, as required by
8379 -- AI12-0071-1.
8381 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8382 -- the form of this return expression.
8384 -- If the expression has at least one Raise_Expression, then we also build
8385 -- the typPredicateM version of the function, in which any occurrence of a
8386 -- Raise_Expression is converted to "return False".
8388 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8389 Loc : constant Source_Ptr := Sloc (Typ);
8391 Expr : Node_Id;
8392 -- This is the expression for the result of the function. It is
8393 -- is build by connecting the component predicates with AND THEN.
8395 Expr_M : Node_Id;
8396 -- This is the corresponding return expression for the Predicate_M
8397 -- function. It differs in that raise expressions are marked for
8398 -- special expansion (see Process_REs).
8400 Object_Name : constant Name_Id := New_Internal_Name ('I');
8401 -- Name for argument of Predicate procedure. Note that we use the same
8402 -- name for both predicate functions. That way the reference within the
8403 -- predicate expression is the same in both functions.
8405 Object_Entity : constant Entity_Id :=
8406 Make_Defining_Identifier (Loc, Chars => Object_Name);
8407 -- Entity for argument of Predicate procedure
8409 Object_Entity_M : constant Entity_Id :=
8410 Make_Defining_Identifier (Loc, Chars => Object_Name);
8411 -- Entity for argument of Predicate_M procedure
8413 Raise_Expression_Present : Boolean := False;
8414 -- Set True if Expr has at least one Raise_Expression
8416 procedure Add_Condition (Cond : Node_Id);
8417 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8418 -- Expr is empty).
8420 procedure Add_Predicates;
8421 -- Appends expressions for any Predicate pragmas in the rep item chain
8422 -- Typ to Expr. Note that we look only at items for this exact entity.
8423 -- Inheritance of predicates for the parent type is done by calling the
8424 -- Predicate_Function of the parent type, using Add_Call above.
8426 procedure Add_Call (T : Entity_Id);
8427 -- Includes a call to the predicate function for type T in Expr if T
8428 -- has predicates and Predicate_Function (T) is non-empty.
8430 function Process_RE (N : Node_Id) return Traverse_Result;
8431 -- Used in Process REs, tests if node N is a raise expression, and if
8432 -- so, marks it to be converted to return False.
8434 procedure Process_REs is new Traverse_Proc (Process_RE);
8435 -- Marks any raise expressions in Expr_M to return False
8437 function Test_RE (N : Node_Id) return Traverse_Result;
8438 -- Used in Test_REs, tests one node for being a raise expression, and if
8439 -- so sets Raise_Expression_Present True.
8441 procedure Test_REs is new Traverse_Proc (Test_RE);
8442 -- Tests to see if Expr contains any raise expressions
8444 --------------
8445 -- Add_Call --
8446 --------------
8448 procedure Add_Call (T : Entity_Id) is
8449 Exp : Node_Id;
8451 begin
8452 if Present (T) and then Present (Predicate_Function (T)) then
8453 Set_Has_Predicates (Typ);
8455 -- Build the call to the predicate function of T
8457 Exp :=
8458 Make_Predicate_Call
8459 (T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
8461 -- "and"-in the call to evolving expression
8463 Add_Condition (Exp);
8465 -- Output info message on inheritance if required. Note we do not
8466 -- give this information for generic actual types, since it is
8467 -- unwelcome noise in that case in instantiations. We also
8468 -- generally suppress the message in instantiations, and also
8469 -- if it involves internal names.
8471 if Opt.List_Inherited_Aspects
8472 and then not Is_Generic_Actual_Type (Typ)
8473 and then Instantiation_Depth (Sloc (Typ)) = 0
8474 and then not Is_Internal_Name (Chars (T))
8475 and then not Is_Internal_Name (Chars (Typ))
8476 then
8477 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8478 Error_Msg_Node_2 := T;
8479 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8480 end if;
8481 end if;
8482 end Add_Call;
8484 -------------------
8485 -- Add_Condition --
8486 -------------------
8488 procedure Add_Condition (Cond : Node_Id) is
8489 begin
8490 -- This is the first predicate expression
8492 if No (Expr) then
8493 Expr := Cond;
8495 -- Otherwise concatenate to the existing predicate expressions by
8496 -- using "and then".
8498 else
8499 Expr :=
8500 Make_And_Then (Loc,
8501 Left_Opnd => Relocate_Node (Expr),
8502 Right_Opnd => Cond);
8503 end if;
8504 end Add_Condition;
8506 --------------------
8507 -- Add_Predicates --
8508 --------------------
8510 procedure Add_Predicates is
8511 procedure Add_Predicate (Prag : Node_Id);
8512 -- Concatenate the expression of predicate pragma Prag to Expr by
8513 -- using a short circuit "and then" operator.
8515 -------------------
8516 -- Add_Predicate --
8517 -------------------
8519 procedure Add_Predicate (Prag : Node_Id) is
8520 procedure Replace_Type_Reference (N : Node_Id);
8521 -- Replace a single occurrence N of the subtype name with a
8522 -- reference to the formal of the predicate function. N can be an
8523 -- identifier referencing the subtype, or a selected component,
8524 -- representing an appropriately qualified occurrence of the
8525 -- subtype name.
8527 procedure Replace_Type_References is
8528 new Replace_Type_References_Generic (Replace_Type_Reference);
8529 -- Traverse an expression changing every occurrence of an
8530 -- identifier whose name matches the name of the subtype with a
8531 -- reference to the formal parameter of the predicate function.
8533 ----------------------------
8534 -- Replace_Type_Reference --
8535 ----------------------------
8537 procedure Replace_Type_Reference (N : Node_Id) is
8538 begin
8539 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8540 -- Use the Sloc of the usage name, not the defining name
8542 Set_Etype (N, Typ);
8543 Set_Entity (N, Object_Entity);
8545 -- We want to treat the node as if it comes from source, so
8546 -- that ASIS will not ignore it.
8548 Set_Comes_From_Source (N, True);
8549 end Replace_Type_Reference;
8551 -- Local variables
8553 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8554 Arg1 : Node_Id;
8555 Arg2 : Node_Id;
8557 -- Start of processing for Add_Predicate
8559 begin
8560 -- Extract the arguments of the pragma. The expression itself
8561 -- is copied for use in the predicate function, to preserve the
8562 -- original version for ASIS use.
8564 Arg1 := First (Pragma_Argument_Associations (Prag));
8565 Arg2 := Next (Arg1);
8567 Arg1 := Get_Pragma_Arg (Arg1);
8568 Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
8570 -- When the predicate pragma applies to the current type or its
8571 -- full view, replace all occurrences of the subtype name with
8572 -- references to the formal parameter of the predicate function.
8574 if Entity (Arg1) = Typ
8575 or else Full_View (Entity (Arg1)) = Typ
8576 then
8577 Replace_Type_References (Arg2, Typ);
8579 -- If the predicate pragma comes from an aspect, replace the
8580 -- saved expression because we need the subtype references
8581 -- replaced for the calls to Preanalyze_Spec_Expression in
8582 -- Check_Aspect_At_xxx routines.
8584 if Present (Asp) then
8585 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
8586 end if;
8588 -- "and"-in the Arg2 condition to evolving expression
8590 Add_Condition (Relocate_Node (Arg2));
8591 end if;
8592 end Add_Predicate;
8594 -- Local variables
8596 Ritem : Node_Id;
8598 -- Start of processing for Add_Predicates
8600 begin
8601 Ritem := First_Rep_Item (Typ);
8602 while Present (Ritem) loop
8603 if Nkind (Ritem) = N_Pragma
8604 and then Pragma_Name (Ritem) = Name_Predicate
8605 then
8606 Add_Predicate (Ritem);
8607 end if;
8609 Next_Rep_Item (Ritem);
8610 end loop;
8611 end Add_Predicates;
8613 ----------------
8614 -- Process_RE --
8615 ----------------
8617 function Process_RE (N : Node_Id) return Traverse_Result is
8618 begin
8619 if Nkind (N) = N_Raise_Expression then
8620 Set_Convert_To_Return_False (N);
8621 return Skip;
8622 else
8623 return OK;
8624 end if;
8625 end Process_RE;
8627 -------------
8628 -- Test_RE --
8629 -------------
8631 function Test_RE (N : Node_Id) return Traverse_Result is
8632 begin
8633 if Nkind (N) = N_Raise_Expression then
8634 Raise_Expression_Present := True;
8635 return Abandon;
8636 else
8637 return OK;
8638 end if;
8639 end Test_RE;
8641 -- Local variables
8643 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
8645 -- Start of processing for Build_Predicate_Functions
8647 begin
8648 -- Return if already built or if type does not have predicates
8650 if not Has_Predicates (Typ)
8651 or else Present (Predicate_Function (Typ))
8652 then
8653 return;
8654 end if;
8656 -- The related type may be subject to pragma Ghost. Set the mode now to
8657 -- ensure that the predicate functions are properly marked as Ghost.
8659 Set_Ghost_Mode_From_Entity (Typ);
8661 -- Prepare to construct predicate expression
8663 Expr := Empty;
8665 -- Add predicates for ancestor if present. These must come before the
8666 -- ones for the current type, as required by AI12-0071-1.
8668 declare
8669 Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
8670 begin
8671 if Present (Atyp) then
8672 Add_Call (Atyp);
8673 end if;
8674 end;
8676 -- Add Predicates for the current type
8678 Add_Predicates;
8680 -- Case where predicates are present
8682 if Present (Expr) then
8684 -- Test for raise expression present
8686 Test_REs (Expr);
8688 -- If raise expression is present, capture a copy of Expr for use
8689 -- in building the predicateM function version later on. For this
8690 -- copy we replace references to Object_Entity by Object_Entity_M.
8692 if Raise_Expression_Present then
8693 declare
8694 Map : constant Elist_Id := New_Elmt_List;
8695 New_V : Entity_Id := Empty;
8697 -- The unanalyzed expression will be copied and appear in
8698 -- both functions. Normally expressions do not declare new
8699 -- entities, but quantified expressions do, so we need to
8700 -- create new entities for their bound variables, to prevent
8701 -- multiple definitions in gigi.
8703 function Reset_Loop_Variable (N : Node_Id)
8704 return Traverse_Result;
8706 procedure Collect_Loop_Variables is
8707 new Traverse_Proc (Reset_Loop_Variable);
8709 ------------------------
8710 -- Reset_Loop_Variable --
8711 ------------------------
8713 function Reset_Loop_Variable (N : Node_Id)
8714 return Traverse_Result
8716 begin
8717 if Nkind (N) = N_Iterator_Specification then
8718 New_V := Make_Defining_Identifier
8719 (Sloc (N), Chars (Defining_Identifier (N)));
8721 Set_Defining_Identifier (N, New_V);
8722 end if;
8724 return OK;
8725 end Reset_Loop_Variable;
8727 begin
8728 Append_Elmt (Object_Entity, Map);
8729 Append_Elmt (Object_Entity_M, Map);
8730 Expr_M := New_Copy_Tree (Expr, Map => Map);
8731 Collect_Loop_Variables (Expr_M);
8732 end;
8733 end if;
8735 -- Build the main predicate function
8737 declare
8738 SId : constant Entity_Id :=
8739 Make_Defining_Identifier (Loc,
8740 Chars => New_External_Name (Chars (Typ), "Predicate"));
8741 -- The entity for the function spec
8743 SIdB : constant Entity_Id :=
8744 Make_Defining_Identifier (Loc,
8745 Chars => New_External_Name (Chars (Typ), "Predicate"));
8746 -- The entity for the function body
8748 Spec : Node_Id;
8749 FDecl : Node_Id;
8750 FBody : Node_Id;
8752 begin
8753 -- Build function declaration
8755 Set_Ekind (SId, E_Function);
8756 Set_Is_Internal (SId);
8757 Set_Is_Predicate_Function (SId);
8758 Set_Predicate_Function (Typ, SId);
8760 -- The predicate function is shared between views of a type
8762 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8763 Set_Predicate_Function (Full_View (Typ), SId);
8764 end if;
8766 -- Mark the predicate function explicitly as Ghost because it does
8767 -- not come from source.
8769 if Ghost_Mode > None then
8770 Set_Is_Ghost_Entity (SId);
8771 end if;
8773 Spec :=
8774 Make_Function_Specification (Loc,
8775 Defining_Unit_Name => SId,
8776 Parameter_Specifications => New_List (
8777 Make_Parameter_Specification (Loc,
8778 Defining_Identifier => Object_Entity,
8779 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8780 Result_Definition =>
8781 New_Occurrence_Of (Standard_Boolean, Loc));
8783 FDecl :=
8784 Make_Subprogram_Declaration (Loc,
8785 Specification => Spec);
8787 -- Build function body
8789 Spec :=
8790 Make_Function_Specification (Loc,
8791 Defining_Unit_Name => SIdB,
8792 Parameter_Specifications => New_List (
8793 Make_Parameter_Specification (Loc,
8794 Defining_Identifier =>
8795 Make_Defining_Identifier (Loc, Object_Name),
8796 Parameter_Type =>
8797 New_Occurrence_Of (Typ, Loc))),
8798 Result_Definition =>
8799 New_Occurrence_Of (Standard_Boolean, Loc));
8801 FBody :=
8802 Make_Subprogram_Body (Loc,
8803 Specification => Spec,
8804 Declarations => Empty_List,
8805 Handled_Statement_Sequence =>
8806 Make_Handled_Sequence_Of_Statements (Loc,
8807 Statements => New_List (
8808 Make_Simple_Return_Statement (Loc,
8809 Expression => Expr))));
8811 -- Insert declaration before freeze node and body after
8813 Insert_Before_And_Analyze (N, FDecl);
8814 Insert_After_And_Analyze (N, FBody);
8816 -- Static predicate functions are always side-effect free, and
8817 -- in most cases dynamic predicate functions are as well. Mark
8818 -- them as such whenever possible, so redundant predicate checks
8819 -- can be optimized. If there is a variable reference within the
8820 -- expression, the function is not pure.
8822 if Expander_Active then
8823 Set_Is_Pure (SId,
8824 Side_Effect_Free (Expr, Variable_Ref => True));
8825 Set_Is_Inlined (SId);
8826 end if;
8827 end;
8829 -- Test for raise expressions present and if so build M version
8831 if Raise_Expression_Present then
8832 declare
8833 SId : constant Entity_Id :=
8834 Make_Defining_Identifier (Loc,
8835 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8836 -- The entity for the function spec
8838 SIdB : constant Entity_Id :=
8839 Make_Defining_Identifier (Loc,
8840 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8841 -- The entity for the function body
8843 Spec : Node_Id;
8844 FDecl : Node_Id;
8845 FBody : Node_Id;
8846 BTemp : Entity_Id;
8848 begin
8849 -- Mark any raise expressions for special expansion
8851 Process_REs (Expr_M);
8853 -- Build function declaration
8855 Set_Ekind (SId, E_Function);
8856 Set_Is_Predicate_Function_M (SId);
8857 Set_Predicate_Function_M (Typ, SId);
8859 -- The predicate function is shared between views of a type
8861 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8862 Set_Predicate_Function_M (Full_View (Typ), SId);
8863 end if;
8865 -- Mark the predicate function explicitly as Ghost because it
8866 -- does not come from source.
8868 if Ghost_Mode > None then
8869 Set_Is_Ghost_Entity (SId);
8870 end if;
8872 Spec :=
8873 Make_Function_Specification (Loc,
8874 Defining_Unit_Name => SId,
8875 Parameter_Specifications => New_List (
8876 Make_Parameter_Specification (Loc,
8877 Defining_Identifier => Object_Entity_M,
8878 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8879 Result_Definition =>
8880 New_Occurrence_Of (Standard_Boolean, Loc));
8882 FDecl :=
8883 Make_Subprogram_Declaration (Loc,
8884 Specification => Spec);
8886 -- Build function body
8888 Spec :=
8889 Make_Function_Specification (Loc,
8890 Defining_Unit_Name => SIdB,
8891 Parameter_Specifications => New_List (
8892 Make_Parameter_Specification (Loc,
8893 Defining_Identifier =>
8894 Make_Defining_Identifier (Loc, Object_Name),
8895 Parameter_Type =>
8896 New_Occurrence_Of (Typ, Loc))),
8897 Result_Definition =>
8898 New_Occurrence_Of (Standard_Boolean, Loc));
8900 -- Build the body, we declare the boolean expression before
8901 -- doing the return, because we are not really confident of
8902 -- what happens if a return appears within a return.
8904 BTemp :=
8905 Make_Defining_Identifier (Loc,
8906 Chars => New_Internal_Name ('B'));
8908 FBody :=
8909 Make_Subprogram_Body (Loc,
8910 Specification => Spec,
8912 Declarations => New_List (
8913 Make_Object_Declaration (Loc,
8914 Defining_Identifier => BTemp,
8915 Constant_Present => True,
8916 Object_Definition =>
8917 New_Occurrence_Of (Standard_Boolean, Loc),
8918 Expression => Expr_M)),
8920 Handled_Statement_Sequence =>
8921 Make_Handled_Sequence_Of_Statements (Loc,
8922 Statements => New_List (
8923 Make_Simple_Return_Statement (Loc,
8924 Expression => New_Occurrence_Of (BTemp, Loc)))));
8926 -- Insert declaration before freeze node and body after
8928 Insert_Before_And_Analyze (N, FDecl);
8929 Insert_After_And_Analyze (N, FBody);
8930 end;
8931 end if;
8933 -- See if we have a static predicate. Note that the answer may be
8934 -- yes even if we have an explicit Dynamic_Predicate present.
8936 declare
8937 PS : Boolean;
8938 EN : Node_Id;
8940 begin
8941 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8942 PS := False;
8943 else
8944 PS := Is_Predicate_Static (Expr, Object_Name);
8945 end if;
8947 -- Case where we have a predicate-static aspect
8949 if PS then
8951 -- We don't set Has_Static_Predicate_Aspect, since we can have
8952 -- any of the three cases (Predicate, Dynamic_Predicate, or
8953 -- Static_Predicate) generating a predicate with an expression
8954 -- that is predicate-static. We just indicate that we have a
8955 -- predicate that can be treated as static.
8957 Set_Has_Static_Predicate (Typ);
8959 -- For discrete subtype, build the static predicate list
8961 if Is_Discrete_Type (Typ) then
8962 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
8964 -- If we don't get a static predicate list, it means that we
8965 -- have a case where this is not possible, most typically in
8966 -- the case where we inherit a dynamic predicate. We do not
8967 -- consider this an error, we just leave the predicate as
8968 -- dynamic. But if we do succeed in building the list, then
8969 -- we mark the predicate as static.
8971 if No (Static_Discrete_Predicate (Typ)) then
8972 Set_Has_Static_Predicate (Typ, False);
8973 end if;
8975 -- For real or string subtype, save predicate expression
8977 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
8978 Set_Static_Real_Or_String_Predicate (Typ, Expr);
8979 end if;
8981 -- Case of dynamic predicate (expression is not predicate-static)
8983 else
8984 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
8985 -- is only set if we have an explicit Dynamic_Predicate aspect
8986 -- given. Here we may simply have a Predicate aspect where the
8987 -- expression happens not to be predicate-static.
8989 -- Emit an error when the predicate is categorized as static
8990 -- but its expression is not predicate-static.
8992 -- First a little fiddling to get a nice location for the
8993 -- message. If the expression is of the form (A and then B),
8994 -- where A is an inherited predicate, then use the right
8995 -- operand for the Sloc. This avoids getting confused by a call
8996 -- to an inherited predicate with a less convenient source
8997 -- location.
8999 EN := Expr;
9000 while Nkind (EN) = N_And_Then
9001 and then Nkind (Left_Opnd (EN)) = N_Function_Call
9002 and then Is_Predicate_Function
9003 (Entity (Name (Left_Opnd (EN))))
9004 loop
9005 EN := Right_Opnd (EN);
9006 end loop;
9008 -- Now post appropriate message
9010 if Has_Static_Predicate_Aspect (Typ) then
9011 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
9012 Error_Msg_F
9013 ("expression is not predicate-static (RM 3.2.4(16-22))",
9014 EN);
9015 else
9016 Error_Msg_F
9017 ("static predicate requires scalar or string type", EN);
9018 end if;
9019 end if;
9020 end if;
9021 end;
9022 end if;
9024 Ghost_Mode := Save_Ghost_Mode;
9025 end Build_Predicate_Functions;
9027 -----------------------------------------
9028 -- Check_Aspect_At_End_Of_Declarations --
9029 -----------------------------------------
9031 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
9032 Ent : constant Entity_Id := Entity (ASN);
9033 Ident : constant Node_Id := Identifier (ASN);
9034 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9036 End_Decl_Expr : constant Node_Id := Entity (Ident);
9037 -- Expression to be analyzed at end of declarations
9039 Freeze_Expr : constant Node_Id := Expression (ASN);
9040 -- Expression from call to Check_Aspect_At_Freeze_Point
9042 T : constant Entity_Id := Etype (Freeze_Expr);
9043 -- Type required for preanalyze call
9045 Err : Boolean;
9046 -- Set False if error
9048 -- On entry to this procedure, Entity (Ident) contains a copy of the
9049 -- original expression from the aspect, saved for this purpose, and
9050 -- but Expression (Ident) is a preanalyzed copy of the expression,
9051 -- preanalyzed just after the freeze point.
9053 procedure Check_Overloaded_Name;
9054 -- For aspects whose expression is simply a name, this routine checks if
9055 -- the name is overloaded or not. If so, it verifies there is an
9056 -- interpretation that matches the entity obtained at the freeze point,
9057 -- otherwise the compiler complains.
9059 ---------------------------
9060 -- Check_Overloaded_Name --
9061 ---------------------------
9063 procedure Check_Overloaded_Name is
9064 begin
9065 if not Is_Overloaded (End_Decl_Expr) then
9066 Err := not Is_Entity_Name (End_Decl_Expr)
9067 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
9069 else
9070 Err := True;
9072 declare
9073 Index : Interp_Index;
9074 It : Interp;
9076 begin
9077 Get_First_Interp (End_Decl_Expr, Index, It);
9078 while Present (It.Typ) loop
9079 if It.Nam = Entity (Freeze_Expr) then
9080 Err := False;
9081 exit;
9082 end if;
9084 Get_Next_Interp (Index, It);
9085 end loop;
9086 end;
9087 end if;
9088 end Check_Overloaded_Name;
9090 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9092 begin
9093 -- In an instance we do not perform the consistency check between freeze
9094 -- point and end of declarations, because it was done already in the
9095 -- analysis of the generic. Furthermore, the delayed analysis of an
9096 -- aspect of the instance may produce spurious errors when the generic
9097 -- is a child unit that references entities in the parent (which might
9098 -- not be in scope at the freeze point of the instance).
9100 if In_Instance then
9101 return;
9103 -- Case of aspects Dimension, Dimension_System and Synchronization
9105 elsif A_Id = Aspect_Synchronization then
9106 return;
9108 -- Case of stream attributes, just have to compare entities. However,
9109 -- the expression is just a name (possibly overloaded), and there may
9110 -- be stream operations declared for unrelated types, so we just need
9111 -- to verify that one of these interpretations is the one available at
9112 -- at the freeze point.
9114 elsif A_Id = Aspect_Input or else
9115 A_Id = Aspect_Output or else
9116 A_Id = Aspect_Read or else
9117 A_Id = Aspect_Write
9118 then
9119 Analyze (End_Decl_Expr);
9120 Check_Overloaded_Name;
9122 elsif A_Id = Aspect_Variable_Indexing or else
9123 A_Id = Aspect_Constant_Indexing or else
9124 A_Id = Aspect_Default_Iterator or else
9125 A_Id = Aspect_Iterator_Element
9126 then
9127 -- Make type unfrozen before analysis, to prevent spurious errors
9128 -- about late attributes.
9130 Set_Is_Frozen (Ent, False);
9131 Analyze (End_Decl_Expr);
9132 Set_Is_Frozen (Ent, True);
9134 -- If the end of declarations comes before any other freeze
9135 -- point, the Freeze_Expr is not analyzed: no check needed.
9137 if Analyzed (Freeze_Expr) and then not In_Instance then
9138 Check_Overloaded_Name;
9139 else
9140 Err := False;
9141 end if;
9143 -- All other cases
9145 else
9146 -- Indicate that the expression comes from an aspect specification,
9147 -- which is used in subsequent analysis even if expansion is off.
9149 Set_Parent (End_Decl_Expr, ASN);
9151 -- In a generic context the aspect expressions have not been
9152 -- preanalyzed, so do it now. There are no conformance checks
9153 -- to perform in this case.
9155 if No (T) then
9156 Check_Aspect_At_Freeze_Point (ASN);
9157 return;
9159 -- The default values attributes may be defined in the private part,
9160 -- and the analysis of the expression may take place when only the
9161 -- partial view is visible. The expression must be scalar, so use
9162 -- the full view to resolve.
9164 elsif (A_Id = Aspect_Default_Value
9165 or else
9166 A_Id = Aspect_Default_Component_Value)
9167 and then Is_Private_Type (T)
9168 then
9169 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
9171 else
9172 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9173 end if;
9175 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
9176 end if;
9178 -- Output error message if error. Force error on aspect specification
9179 -- even if there is an error on the expression itself.
9181 if Err then
9182 Error_Msg_NE
9183 ("!visibility of aspect for& changes after freeze point",
9184 ASN, Ent);
9185 Error_Msg_NE
9186 ("info: & is frozen here, aspects evaluated at this point??",
9187 Freeze_Node (Ent), Ent);
9188 end if;
9189 end Check_Aspect_At_End_Of_Declarations;
9191 ----------------------------------
9192 -- Check_Aspect_At_Freeze_Point --
9193 ----------------------------------
9195 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9196 Ident : constant Node_Id := Identifier (ASN);
9197 -- Identifier (use Entity field to save expression)
9199 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9201 T : Entity_Id := Empty;
9202 -- Type required for preanalyze call
9204 begin
9205 -- On entry to this procedure, Entity (Ident) contains a copy of the
9206 -- original expression from the aspect, saved for this purpose.
9208 -- On exit from this procedure Entity (Ident) is unchanged, still
9209 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9210 -- of the expression, preanalyzed just after the freeze point.
9212 -- Make a copy of the expression to be preanalyzed
9214 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
9216 -- Find type for preanalyze call
9218 case A_Id is
9220 -- No_Aspect should be impossible
9222 when No_Aspect =>
9223 raise Program_Error;
9225 -- Aspects taking an optional boolean argument
9227 when Boolean_Aspects |
9228 Library_Unit_Aspects =>
9230 T := Standard_Boolean;
9232 -- Aspects corresponding to attribute definition clauses
9234 when Aspect_Address =>
9235 T := RTE (RE_Address);
9237 when Aspect_Attach_Handler =>
9238 T := RTE (RE_Interrupt_ID);
9240 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order =>
9241 T := RTE (RE_Bit_Order);
9243 when Aspect_Convention =>
9244 return;
9246 when Aspect_CPU =>
9247 T := RTE (RE_CPU_Range);
9249 -- Default_Component_Value is resolved with the component type
9251 when Aspect_Default_Component_Value =>
9252 T := Component_Type (Entity (ASN));
9254 when Aspect_Default_Storage_Pool =>
9255 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9257 -- Default_Value is resolved with the type entity in question
9259 when Aspect_Default_Value =>
9260 T := Entity (ASN);
9262 when Aspect_Dispatching_Domain =>
9263 T := RTE (RE_Dispatching_Domain);
9265 when Aspect_External_Tag =>
9266 T := Standard_String;
9268 when Aspect_External_Name =>
9269 T := Standard_String;
9271 when Aspect_Link_Name =>
9272 T := Standard_String;
9274 when Aspect_Priority | Aspect_Interrupt_Priority =>
9275 T := Standard_Integer;
9277 when Aspect_Relative_Deadline =>
9278 T := RTE (RE_Time_Span);
9280 when Aspect_Small =>
9281 T := Universal_Real;
9283 -- For a simple storage pool, we have to retrieve the type of the
9284 -- pool object associated with the aspect's corresponding attribute
9285 -- definition clause.
9287 when Aspect_Simple_Storage_Pool =>
9288 T := Etype (Expression (Aspect_Rep_Item (ASN)));
9290 when Aspect_Storage_Pool =>
9291 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9293 when Aspect_Alignment |
9294 Aspect_Component_Size |
9295 Aspect_Machine_Radix |
9296 Aspect_Object_Size |
9297 Aspect_Size |
9298 Aspect_Storage_Size |
9299 Aspect_Stream_Size |
9300 Aspect_Value_Size =>
9301 T := Any_Integer;
9303 when Aspect_Linker_Section =>
9304 T := Standard_String;
9306 when Aspect_Synchronization =>
9307 return;
9309 -- Special case, the expression of these aspects is just an entity
9310 -- that does not need any resolution, so just analyze.
9312 when Aspect_Input |
9313 Aspect_Output |
9314 Aspect_Read |
9315 Aspect_Suppress |
9316 Aspect_Unsuppress |
9317 Aspect_Warnings |
9318 Aspect_Write =>
9319 Analyze (Expression (ASN));
9320 return;
9322 -- Same for Iterator aspects, where the expression is a function
9323 -- name. Legality rules are checked separately.
9325 when Aspect_Constant_Indexing |
9326 Aspect_Default_Iterator |
9327 Aspect_Iterator_Element |
9328 Aspect_Variable_Indexing =>
9329 Analyze (Expression (ASN));
9330 return;
9332 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9334 when Aspect_Iterable =>
9335 T := Entity (ASN);
9337 declare
9338 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
9339 Assoc : Node_Id;
9340 Expr : Node_Id;
9342 begin
9343 if Cursor = Any_Type then
9344 return;
9345 end if;
9347 Assoc := First (Component_Associations (Expression (ASN)));
9348 while Present (Assoc) loop
9349 Expr := Expression (Assoc);
9350 Analyze (Expr);
9352 if not Error_Posted (Expr) then
9353 Resolve_Iterable_Operation
9354 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9355 end if;
9357 Next (Assoc);
9358 end loop;
9359 end;
9361 return;
9363 -- Invariant/Predicate take boolean expressions
9365 when Aspect_Dynamic_Predicate |
9366 Aspect_Invariant |
9367 Aspect_Predicate |
9368 Aspect_Static_Predicate |
9369 Aspect_Type_Invariant =>
9370 T := Standard_Boolean;
9372 when Aspect_Predicate_Failure =>
9373 T := Standard_String;
9375 -- Here is the list of aspects that don't require delay analysis
9377 when Aspect_Abstract_State |
9378 Aspect_Annotate |
9379 Aspect_Async_Readers |
9380 Aspect_Async_Writers |
9381 Aspect_Constant_After_Elaboration |
9382 Aspect_Contract_Cases |
9383 Aspect_Default_Initial_Condition |
9384 Aspect_Depends |
9385 Aspect_Dimension |
9386 Aspect_Dimension_System |
9387 Aspect_Effective_Reads |
9388 Aspect_Effective_Writes |
9389 Aspect_Extensions_Visible |
9390 Aspect_Ghost |
9391 Aspect_Global |
9392 Aspect_Implicit_Dereference |
9393 Aspect_Initial_Condition |
9394 Aspect_Initializes |
9395 Aspect_Obsolescent |
9396 Aspect_Part_Of |
9397 Aspect_Post |
9398 Aspect_Postcondition |
9399 Aspect_Pre |
9400 Aspect_Precondition |
9401 Aspect_Refined_Depends |
9402 Aspect_Refined_Global |
9403 Aspect_Refined_Post |
9404 Aspect_Refined_State |
9405 Aspect_SPARK_Mode |
9406 Aspect_Test_Case |
9407 Aspect_Unimplemented |
9408 Aspect_Volatile_Function =>
9409 raise Program_Error;
9411 end case;
9413 -- Do the preanalyze call
9415 Preanalyze_Spec_Expression (Expression (ASN), T);
9416 end Check_Aspect_At_Freeze_Point;
9418 -----------------------------------
9419 -- Check_Constant_Address_Clause --
9420 -----------------------------------
9422 procedure Check_Constant_Address_Clause
9423 (Expr : Node_Id;
9424 U_Ent : Entity_Id)
9426 procedure Check_At_Constant_Address (Nod : Node_Id);
9427 -- Checks that the given node N represents a name whose 'Address is
9428 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9429 -- address value is the same at the point of declaration of U_Ent and at
9430 -- the time of elaboration of the address clause.
9432 procedure Check_Expr_Constants (Nod : Node_Id);
9433 -- Checks that Nod meets the requirements for a constant address clause
9434 -- in the sense of the enclosing procedure.
9436 procedure Check_List_Constants (Lst : List_Id);
9437 -- Check that all elements of list Lst meet the requirements for a
9438 -- constant address clause in the sense of the enclosing procedure.
9440 -------------------------------
9441 -- Check_At_Constant_Address --
9442 -------------------------------
9444 procedure Check_At_Constant_Address (Nod : Node_Id) is
9445 begin
9446 if Is_Entity_Name (Nod) then
9447 if Present (Address_Clause (Entity ((Nod)))) then
9448 Error_Msg_NE
9449 ("invalid address clause for initialized object &!",
9450 Nod, U_Ent);
9451 Error_Msg_NE
9452 ("address for& cannot" &
9453 " depend on another address clause! (RM 13.1(22))!",
9454 Nod, U_Ent);
9456 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9457 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9458 then
9459 Error_Msg_NE
9460 ("invalid address clause for initialized object &!",
9461 Nod, U_Ent);
9462 Error_Msg_Node_2 := U_Ent;
9463 Error_Msg_NE
9464 ("\& must be defined before & (RM 13.1(22))!",
9465 Nod, Entity (Nod));
9466 end if;
9468 elsif Nkind (Nod) = N_Selected_Component then
9469 declare
9470 T : constant Entity_Id := Etype (Prefix (Nod));
9472 begin
9473 if (Is_Record_Type (T)
9474 and then Has_Discriminants (T))
9475 or else
9476 (Is_Access_Type (T)
9477 and then Is_Record_Type (Designated_Type (T))
9478 and then Has_Discriminants (Designated_Type (T)))
9479 then
9480 Error_Msg_NE
9481 ("invalid address clause for initialized object &!",
9482 Nod, U_Ent);
9483 Error_Msg_N
9484 ("\address cannot depend on component" &
9485 " of discriminated record (RM 13.1(22))!",
9486 Nod);
9487 else
9488 Check_At_Constant_Address (Prefix (Nod));
9489 end if;
9490 end;
9492 elsif Nkind (Nod) = N_Indexed_Component then
9493 Check_At_Constant_Address (Prefix (Nod));
9494 Check_List_Constants (Expressions (Nod));
9496 else
9497 Check_Expr_Constants (Nod);
9498 end if;
9499 end Check_At_Constant_Address;
9501 --------------------------
9502 -- Check_Expr_Constants --
9503 --------------------------
9505 procedure Check_Expr_Constants (Nod : Node_Id) is
9506 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9507 Ent : Entity_Id := Empty;
9509 begin
9510 if Nkind (Nod) in N_Has_Etype
9511 and then Etype (Nod) = Any_Type
9512 then
9513 return;
9514 end if;
9516 case Nkind (Nod) is
9517 when N_Empty | N_Error =>
9518 return;
9520 when N_Identifier | N_Expanded_Name =>
9521 Ent := Entity (Nod);
9523 -- We need to look at the original node if it is different
9524 -- from the node, since we may have rewritten things and
9525 -- substituted an identifier representing the rewrite.
9527 if Original_Node (Nod) /= Nod then
9528 Check_Expr_Constants (Original_Node (Nod));
9530 -- If the node is an object declaration without initial
9531 -- value, some code has been expanded, and the expression
9532 -- is not constant, even if the constituents might be
9533 -- acceptable, as in A'Address + offset.
9535 if Ekind (Ent) = E_Variable
9536 and then
9537 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9538 and then
9539 No (Expression (Declaration_Node (Ent)))
9540 then
9541 Error_Msg_NE
9542 ("invalid address clause for initialized object &!",
9543 Nod, U_Ent);
9545 -- If entity is constant, it may be the result of expanding
9546 -- a check. We must verify that its declaration appears
9547 -- before the object in question, else we also reject the
9548 -- address clause.
9550 elsif Ekind (Ent) = E_Constant
9551 and then In_Same_Source_Unit (Ent, U_Ent)
9552 and then Sloc (Ent) > Loc_U_Ent
9553 then
9554 Error_Msg_NE
9555 ("invalid address clause for initialized object &!",
9556 Nod, U_Ent);
9557 end if;
9559 return;
9560 end if;
9562 -- Otherwise look at the identifier and see if it is OK
9564 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9565 or else Is_Type (Ent)
9566 then
9567 return;
9569 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9571 -- This is the case where we must have Ent defined before
9572 -- U_Ent. Clearly if they are in different units this
9573 -- requirement is met since the unit containing Ent is
9574 -- already processed.
9576 if not In_Same_Source_Unit (Ent, U_Ent) then
9577 return;
9579 -- Otherwise location of Ent must be before the location
9580 -- of U_Ent, that's what prior defined means.
9582 elsif Sloc (Ent) < Loc_U_Ent then
9583 return;
9585 else
9586 Error_Msg_NE
9587 ("invalid address clause for initialized object &!",
9588 Nod, U_Ent);
9589 Error_Msg_Node_2 := U_Ent;
9590 Error_Msg_NE
9591 ("\& must be defined before & (RM 13.1(22))!",
9592 Nod, Ent);
9593 end if;
9595 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9596 Check_Expr_Constants (Original_Node (Nod));
9598 else
9599 Error_Msg_NE
9600 ("invalid address clause for initialized object &!",
9601 Nod, U_Ent);
9603 if Comes_From_Source (Ent) then
9604 Error_Msg_NE
9605 ("\reference to variable& not allowed"
9606 & " (RM 13.1(22))!", Nod, Ent);
9607 else
9608 Error_Msg_N
9609 ("non-static expression not allowed"
9610 & " (RM 13.1(22))!", Nod);
9611 end if;
9612 end if;
9614 when N_Integer_Literal =>
9616 -- If this is a rewritten unchecked conversion, in a system
9617 -- where Address is an integer type, always use the base type
9618 -- for a literal value. This is user-friendly and prevents
9619 -- order-of-elaboration issues with instances of unchecked
9620 -- conversion.
9622 if Nkind (Original_Node (Nod)) = N_Function_Call then
9623 Set_Etype (Nod, Base_Type (Etype (Nod)));
9624 end if;
9626 when N_Real_Literal |
9627 N_String_Literal |
9628 N_Character_Literal =>
9629 return;
9631 when N_Range =>
9632 Check_Expr_Constants (Low_Bound (Nod));
9633 Check_Expr_Constants (High_Bound (Nod));
9635 when N_Explicit_Dereference =>
9636 Check_Expr_Constants (Prefix (Nod));
9638 when N_Indexed_Component =>
9639 Check_Expr_Constants (Prefix (Nod));
9640 Check_List_Constants (Expressions (Nod));
9642 when N_Slice =>
9643 Check_Expr_Constants (Prefix (Nod));
9644 Check_Expr_Constants (Discrete_Range (Nod));
9646 when N_Selected_Component =>
9647 Check_Expr_Constants (Prefix (Nod));
9649 when N_Attribute_Reference =>
9650 if Nam_In (Attribute_Name (Nod), Name_Address,
9651 Name_Access,
9652 Name_Unchecked_Access,
9653 Name_Unrestricted_Access)
9654 then
9655 Check_At_Constant_Address (Prefix (Nod));
9657 else
9658 Check_Expr_Constants (Prefix (Nod));
9659 Check_List_Constants (Expressions (Nod));
9660 end if;
9662 when N_Aggregate =>
9663 Check_List_Constants (Component_Associations (Nod));
9664 Check_List_Constants (Expressions (Nod));
9666 when N_Component_Association =>
9667 Check_Expr_Constants (Expression (Nod));
9669 when N_Extension_Aggregate =>
9670 Check_Expr_Constants (Ancestor_Part (Nod));
9671 Check_List_Constants (Component_Associations (Nod));
9672 Check_List_Constants (Expressions (Nod));
9674 when N_Null =>
9675 return;
9677 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
9678 Check_Expr_Constants (Left_Opnd (Nod));
9679 Check_Expr_Constants (Right_Opnd (Nod));
9681 when N_Unary_Op =>
9682 Check_Expr_Constants (Right_Opnd (Nod));
9684 when N_Type_Conversion |
9685 N_Qualified_Expression |
9686 N_Allocator |
9687 N_Unchecked_Type_Conversion =>
9688 Check_Expr_Constants (Expression (Nod));
9690 when N_Function_Call =>
9691 if not Is_Pure (Entity (Name (Nod))) then
9692 Error_Msg_NE
9693 ("invalid address clause for initialized object &!",
9694 Nod, U_Ent);
9696 Error_Msg_NE
9697 ("\function & is not pure (RM 13.1(22))!",
9698 Nod, Entity (Name (Nod)));
9700 else
9701 Check_List_Constants (Parameter_Associations (Nod));
9702 end if;
9704 when N_Parameter_Association =>
9705 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
9707 when others =>
9708 Error_Msg_NE
9709 ("invalid address clause for initialized object &!",
9710 Nod, U_Ent);
9711 Error_Msg_NE
9712 ("\must be constant defined before& (RM 13.1(22))!",
9713 Nod, U_Ent);
9714 end case;
9715 end Check_Expr_Constants;
9717 --------------------------
9718 -- Check_List_Constants --
9719 --------------------------
9721 procedure Check_List_Constants (Lst : List_Id) is
9722 Nod1 : Node_Id;
9724 begin
9725 if Present (Lst) then
9726 Nod1 := First (Lst);
9727 while Present (Nod1) loop
9728 Check_Expr_Constants (Nod1);
9729 Next (Nod1);
9730 end loop;
9731 end if;
9732 end Check_List_Constants;
9734 -- Start of processing for Check_Constant_Address_Clause
9736 begin
9737 -- If rep_clauses are to be ignored, no need for legality checks. In
9738 -- particular, no need to pester user about rep clauses that violate the
9739 -- rule on constant addresses, given that these clauses will be removed
9740 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9741 -- we want to relax these checks.
9743 if not Ignore_Rep_Clauses and not CodePeer_Mode then
9744 Check_Expr_Constants (Expr);
9745 end if;
9746 end Check_Constant_Address_Clause;
9748 ---------------------------
9749 -- Check_Pool_Size_Clash --
9750 ---------------------------
9752 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9753 Post : Node_Id;
9755 begin
9756 -- We need to find out which one came first. Note that in the case of
9757 -- aspects mixed with pragmas there are cases where the processing order
9758 -- is reversed, which is why we do the check here.
9760 if Sloc (SP) < Sloc (SS) then
9761 Error_Msg_Sloc := Sloc (SP);
9762 Post := SS;
9763 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9765 else
9766 Error_Msg_Sloc := Sloc (SS);
9767 Post := SP;
9768 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9769 end if;
9771 Error_Msg_N
9772 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9773 end Check_Pool_Size_Clash;
9775 ----------------------------------------
9776 -- Check_Record_Representation_Clause --
9777 ----------------------------------------
9779 procedure Check_Record_Representation_Clause (N : Node_Id) is
9780 Loc : constant Source_Ptr := Sloc (N);
9781 Ident : constant Node_Id := Identifier (N);
9782 Rectype : Entity_Id;
9783 Fent : Entity_Id;
9784 CC : Node_Id;
9785 Fbit : Uint;
9786 Lbit : Uint;
9787 Hbit : Uint := Uint_0;
9788 Comp : Entity_Id;
9789 Pcomp : Entity_Id;
9791 Max_Bit_So_Far : Uint;
9792 -- Records the maximum bit position so far. If all field positions
9793 -- are monotonically increasing, then we can skip the circuit for
9794 -- checking for overlap, since no overlap is possible.
9796 Tagged_Parent : Entity_Id := Empty;
9797 -- This is set in the case of a derived tagged type for which we have
9798 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9799 -- positioned by record representation clauses). In this case we must
9800 -- check for overlap between components of this tagged type, and the
9801 -- components of its parent. Tagged_Parent will point to this parent
9802 -- type. For all other cases Tagged_Parent is left set to Empty.
9804 Parent_Last_Bit : Uint;
9805 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9806 -- last bit position for any field in the parent type. We only need to
9807 -- check overlap for fields starting below this point.
9809 Overlap_Check_Required : Boolean;
9810 -- Used to keep track of whether or not an overlap check is required
9812 Overlap_Detected : Boolean := False;
9813 -- Set True if an overlap is detected
9815 Ccount : Natural := 0;
9816 -- Number of component clauses in record rep clause
9818 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9819 -- Given two entities for record components or discriminants, checks
9820 -- if they have overlapping component clauses and issues errors if so.
9822 procedure Find_Component;
9823 -- Finds component entity corresponding to current component clause (in
9824 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9825 -- start/stop bits for the field. If there is no matching component or
9826 -- if the matching component does not have a component clause, then
9827 -- that's an error and Comp is set to Empty, but no error message is
9828 -- issued, since the message was already given. Comp is also set to
9829 -- Empty if the current "component clause" is in fact a pragma.
9831 -----------------------------
9832 -- Check_Component_Overlap --
9833 -----------------------------
9835 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9836 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9837 CC2 : constant Node_Id := Component_Clause (C2_Ent);
9839 begin
9840 if Present (CC1) and then Present (CC2) then
9842 -- Exclude odd case where we have two tag components in the same
9843 -- record, both at location zero. This seems a bit strange, but
9844 -- it seems to happen in some circumstances, perhaps on an error.
9846 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9847 return;
9848 end if;
9850 -- Here we check if the two fields overlap
9852 declare
9853 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9854 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9855 E1 : constant Uint := S1 + Esize (C1_Ent);
9856 E2 : constant Uint := S2 + Esize (C2_Ent);
9858 begin
9859 if E2 <= S1 or else E1 <= S2 then
9860 null;
9861 else
9862 Error_Msg_Node_2 := Component_Name (CC2);
9863 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
9864 Error_Msg_Node_1 := Component_Name (CC1);
9865 Error_Msg_N
9866 ("component& overlaps & #", Component_Name (CC1));
9867 Overlap_Detected := True;
9868 end if;
9869 end;
9870 end if;
9871 end Check_Component_Overlap;
9873 --------------------
9874 -- Find_Component --
9875 --------------------
9877 procedure Find_Component is
9879 procedure Search_Component (R : Entity_Id);
9880 -- Search components of R for a match. If found, Comp is set
9882 ----------------------
9883 -- Search_Component --
9884 ----------------------
9886 procedure Search_Component (R : Entity_Id) is
9887 begin
9888 Comp := First_Component_Or_Discriminant (R);
9889 while Present (Comp) loop
9891 -- Ignore error of attribute name for component name (we
9892 -- already gave an error message for this, so no need to
9893 -- complain here)
9895 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
9896 null;
9897 else
9898 exit when Chars (Comp) = Chars (Component_Name (CC));
9899 end if;
9901 Next_Component_Or_Discriminant (Comp);
9902 end loop;
9903 end Search_Component;
9905 -- Start of processing for Find_Component
9907 begin
9908 -- Return with Comp set to Empty if we have a pragma
9910 if Nkind (CC) = N_Pragma then
9911 Comp := Empty;
9912 return;
9913 end if;
9915 -- Search current record for matching component
9917 Search_Component (Rectype);
9919 -- If not found, maybe component of base type discriminant that is
9920 -- absent from statically constrained first subtype.
9922 if No (Comp) then
9923 Search_Component (Base_Type (Rectype));
9924 end if;
9926 -- If no component, or the component does not reference the component
9927 -- clause in question, then there was some previous error for which
9928 -- we already gave a message, so just return with Comp Empty.
9930 if No (Comp) or else Component_Clause (Comp) /= CC then
9931 Check_Error_Detected;
9932 Comp := Empty;
9934 -- Normal case where we have a component clause
9936 else
9937 Fbit := Component_Bit_Offset (Comp);
9938 Lbit := Fbit + Esize (Comp) - 1;
9939 end if;
9940 end Find_Component;
9942 -- Start of processing for Check_Record_Representation_Clause
9944 begin
9945 Find_Type (Ident);
9946 Rectype := Entity (Ident);
9948 if Rectype = Any_Type then
9949 return;
9950 else
9951 Rectype := Underlying_Type (Rectype);
9952 end if;
9954 -- See if we have a fully repped derived tagged type
9956 declare
9957 PS : constant Entity_Id := Parent_Subtype (Rectype);
9959 begin
9960 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
9961 Tagged_Parent := PS;
9963 -- Find maximum bit of any component of the parent type
9965 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
9966 Pcomp := First_Entity (Tagged_Parent);
9967 while Present (Pcomp) loop
9968 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
9969 if Component_Bit_Offset (Pcomp) /= No_Uint
9970 and then Known_Static_Esize (Pcomp)
9971 then
9972 Parent_Last_Bit :=
9973 UI_Max
9974 (Parent_Last_Bit,
9975 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
9976 end if;
9977 else
9979 -- Skip anonymous types generated for constrained array
9980 -- or record components.
9982 null;
9983 end if;
9985 Next_Entity (Pcomp);
9986 end loop;
9987 end if;
9988 end;
9990 -- All done if no component clauses
9992 CC := First (Component_Clauses (N));
9994 if No (CC) then
9995 return;
9996 end if;
9998 -- If a tag is present, then create a component clause that places it
9999 -- at the start of the record (otherwise gigi may place it after other
10000 -- fields that have rep clauses).
10002 Fent := First_Entity (Rectype);
10004 if Nkind (Fent) = N_Defining_Identifier
10005 and then Chars (Fent) = Name_uTag
10006 then
10007 Set_Component_Bit_Offset (Fent, Uint_0);
10008 Set_Normalized_Position (Fent, Uint_0);
10009 Set_Normalized_First_Bit (Fent, Uint_0);
10010 Set_Normalized_Position_Max (Fent, Uint_0);
10011 Init_Esize (Fent, System_Address_Size);
10013 Set_Component_Clause (Fent,
10014 Make_Component_Clause (Loc,
10015 Component_Name => Make_Identifier (Loc, Name_uTag),
10017 Position => Make_Integer_Literal (Loc, Uint_0),
10018 First_Bit => Make_Integer_Literal (Loc, Uint_0),
10019 Last_Bit =>
10020 Make_Integer_Literal (Loc,
10021 UI_From_Int (System_Address_Size))));
10023 Ccount := Ccount + 1;
10024 end if;
10026 Max_Bit_So_Far := Uint_Minus_1;
10027 Overlap_Check_Required := False;
10029 -- Process the component clauses
10031 while Present (CC) loop
10032 Find_Component;
10034 if Present (Comp) then
10035 Ccount := Ccount + 1;
10037 -- We need a full overlap check if record positions non-monotonic
10039 if Fbit <= Max_Bit_So_Far then
10040 Overlap_Check_Required := True;
10041 end if;
10043 Max_Bit_So_Far := Lbit;
10045 -- Check bit position out of range of specified size
10047 if Has_Size_Clause (Rectype)
10048 and then RM_Size (Rectype) <= Lbit
10049 then
10050 Error_Msg_N
10051 ("bit number out of range of specified size",
10052 Last_Bit (CC));
10054 -- Check for overlap with tag component
10056 else
10057 if Is_Tagged_Type (Rectype)
10058 and then Fbit < System_Address_Size
10059 then
10060 Error_Msg_NE
10061 ("component overlaps tag field of&",
10062 Component_Name (CC), Rectype);
10063 Overlap_Detected := True;
10064 end if;
10066 if Hbit < Lbit then
10067 Hbit := Lbit;
10068 end if;
10069 end if;
10071 -- Check parent overlap if component might overlap parent field
10073 if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
10074 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
10075 while Present (Pcomp) loop
10076 if not Is_Tag (Pcomp)
10077 and then Chars (Pcomp) /= Name_uParent
10078 then
10079 Check_Component_Overlap (Comp, Pcomp);
10080 end if;
10082 Next_Component_Or_Discriminant (Pcomp);
10083 end loop;
10084 end if;
10085 end if;
10087 Next (CC);
10088 end loop;
10090 -- Now that we have processed all the component clauses, check for
10091 -- overlap. We have to leave this till last, since the components can
10092 -- appear in any arbitrary order in the representation clause.
10094 -- We do not need this check if all specified ranges were monotonic,
10095 -- as recorded by Overlap_Check_Required being False at this stage.
10097 -- This first section checks if there are any overlapping entries at
10098 -- all. It does this by sorting all entries and then seeing if there are
10099 -- any overlaps. If there are none, then that is decisive, but if there
10100 -- are overlaps, they may still be OK (they may result from fields in
10101 -- different variants).
10103 if Overlap_Check_Required then
10104 Overlap_Check1 : declare
10106 OC_Fbit : array (0 .. Ccount) of Uint;
10107 -- First-bit values for component clauses, the value is the offset
10108 -- of the first bit of the field from start of record. The zero
10109 -- entry is for use in sorting.
10111 OC_Lbit : array (0 .. Ccount) of Uint;
10112 -- Last-bit values for component clauses, the value is the offset
10113 -- of the last bit of the field from start of record. The zero
10114 -- entry is for use in sorting.
10116 OC_Count : Natural := 0;
10117 -- Count of entries in OC_Fbit and OC_Lbit
10119 function OC_Lt (Op1, Op2 : Natural) return Boolean;
10120 -- Compare routine for Sort
10122 procedure OC_Move (From : Natural; To : Natural);
10123 -- Move routine for Sort
10125 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
10127 -----------
10128 -- OC_Lt --
10129 -----------
10131 function OC_Lt (Op1, Op2 : Natural) return Boolean is
10132 begin
10133 return OC_Fbit (Op1) < OC_Fbit (Op2);
10134 end OC_Lt;
10136 -------------
10137 -- OC_Move --
10138 -------------
10140 procedure OC_Move (From : Natural; To : Natural) is
10141 begin
10142 OC_Fbit (To) := OC_Fbit (From);
10143 OC_Lbit (To) := OC_Lbit (From);
10144 end OC_Move;
10146 -- Start of processing for Overlap_Check
10148 begin
10149 CC := First (Component_Clauses (N));
10150 while Present (CC) loop
10152 -- Exclude component clause already marked in error
10154 if not Error_Posted (CC) then
10155 Find_Component;
10157 if Present (Comp) then
10158 OC_Count := OC_Count + 1;
10159 OC_Fbit (OC_Count) := Fbit;
10160 OC_Lbit (OC_Count) := Lbit;
10161 end if;
10162 end if;
10164 Next (CC);
10165 end loop;
10167 Sorting.Sort (OC_Count);
10169 Overlap_Check_Required := False;
10170 for J in 1 .. OC_Count - 1 loop
10171 if OC_Lbit (J) >= OC_Fbit (J + 1) then
10172 Overlap_Check_Required := True;
10173 exit;
10174 end if;
10175 end loop;
10176 end Overlap_Check1;
10177 end if;
10179 -- If Overlap_Check_Required is still True, then we have to do the full
10180 -- scale overlap check, since we have at least two fields that do
10181 -- overlap, and we need to know if that is OK since they are in
10182 -- different variant, or whether we have a definite problem.
10184 if Overlap_Check_Required then
10185 Overlap_Check2 : declare
10186 C1_Ent, C2_Ent : Entity_Id;
10187 -- Entities of components being checked for overlap
10189 Clist : Node_Id;
10190 -- Component_List node whose Component_Items are being checked
10192 Citem : Node_Id;
10193 -- Component declaration for component being checked
10195 begin
10196 C1_Ent := First_Entity (Base_Type (Rectype));
10198 -- Loop through all components in record. For each component check
10199 -- for overlap with any of the preceding elements on the component
10200 -- list containing the component and also, if the component is in
10201 -- a variant, check against components outside the case structure.
10202 -- This latter test is repeated recursively up the variant tree.
10204 Main_Component_Loop : while Present (C1_Ent) loop
10205 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10206 goto Continue_Main_Component_Loop;
10207 end if;
10209 -- Skip overlap check if entity has no declaration node. This
10210 -- happens with discriminants in constrained derived types.
10211 -- Possibly we are missing some checks as a result, but that
10212 -- does not seem terribly serious.
10214 if No (Declaration_Node (C1_Ent)) then
10215 goto Continue_Main_Component_Loop;
10216 end if;
10218 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
10220 -- Loop through component lists that need checking. Check the
10221 -- current component list and all lists in variants above us.
10223 Component_List_Loop : loop
10225 -- If derived type definition, go to full declaration
10226 -- If at outer level, check discriminants if there are any.
10228 if Nkind (Clist) = N_Derived_Type_Definition then
10229 Clist := Parent (Clist);
10230 end if;
10232 -- Outer level of record definition, check discriminants
10234 if Nkind_In (Clist, N_Full_Type_Declaration,
10235 N_Private_Type_Declaration)
10236 then
10237 if Has_Discriminants (Defining_Identifier (Clist)) then
10238 C2_Ent :=
10239 First_Discriminant (Defining_Identifier (Clist));
10240 while Present (C2_Ent) loop
10241 exit when C1_Ent = C2_Ent;
10242 Check_Component_Overlap (C1_Ent, C2_Ent);
10243 Next_Discriminant (C2_Ent);
10244 end loop;
10245 end if;
10247 -- Record extension case
10249 elsif Nkind (Clist) = N_Derived_Type_Definition then
10250 Clist := Empty;
10252 -- Otherwise check one component list
10254 else
10255 Citem := First (Component_Items (Clist));
10256 while Present (Citem) loop
10257 if Nkind (Citem) = N_Component_Declaration then
10258 C2_Ent := Defining_Identifier (Citem);
10259 exit when C1_Ent = C2_Ent;
10260 Check_Component_Overlap (C1_Ent, C2_Ent);
10261 end if;
10263 Next (Citem);
10264 end loop;
10265 end if;
10267 -- Check for variants above us (the parent of the Clist can
10268 -- be a variant, in which case its parent is a variant part,
10269 -- and the parent of the variant part is a component list
10270 -- whose components must all be checked against the current
10271 -- component for overlap).
10273 if Nkind (Parent (Clist)) = N_Variant then
10274 Clist := Parent (Parent (Parent (Clist)));
10276 -- Check for possible discriminant part in record, this
10277 -- is treated essentially as another level in the
10278 -- recursion. For this case the parent of the component
10279 -- list is the record definition, and its parent is the
10280 -- full type declaration containing the discriminant
10281 -- specifications.
10283 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10284 Clist := Parent (Parent ((Clist)));
10286 -- If neither of these two cases, we are at the top of
10287 -- the tree.
10289 else
10290 exit Component_List_Loop;
10291 end if;
10292 end loop Component_List_Loop;
10294 <<Continue_Main_Component_Loop>>
10295 Next_Entity (C1_Ent);
10297 end loop Main_Component_Loop;
10298 end Overlap_Check2;
10299 end if;
10301 -- The following circuit deals with warning on record holes (gaps). We
10302 -- skip this check if overlap was detected, since it makes sense for the
10303 -- programmer to fix this illegality before worrying about warnings.
10305 if not Overlap_Detected and Warn_On_Record_Holes then
10306 Record_Hole_Check : declare
10307 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10308 -- Full declaration of record type
10310 procedure Check_Component_List
10311 (CL : Node_Id;
10312 Sbit : Uint;
10313 DS : List_Id);
10314 -- Check component list CL for holes. The starting bit should be
10315 -- Sbit. which is zero for the main record component list and set
10316 -- appropriately for recursive calls for variants. DS is set to
10317 -- a list of discriminant specifications to be included in the
10318 -- consideration of components. It is No_List if none to consider.
10320 --------------------------
10321 -- Check_Component_List --
10322 --------------------------
10324 procedure Check_Component_List
10325 (CL : Node_Id;
10326 Sbit : Uint;
10327 DS : List_Id)
10329 Compl : Integer;
10331 begin
10332 Compl := Integer (List_Length (Component_Items (CL)));
10334 if DS /= No_List then
10335 Compl := Compl + Integer (List_Length (DS));
10336 end if;
10338 declare
10339 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10340 -- Gather components (zero entry is for sort routine)
10342 Ncomps : Natural := 0;
10343 -- Number of entries stored in Comps (starting at Comps (1))
10345 Citem : Node_Id;
10346 -- One component item or discriminant specification
10348 Nbit : Uint;
10349 -- Starting bit for next component
10351 CEnt : Entity_Id;
10352 -- Component entity
10354 Variant : Node_Id;
10355 -- One variant
10357 function Lt (Op1, Op2 : Natural) return Boolean;
10358 -- Compare routine for Sort
10360 procedure Move (From : Natural; To : Natural);
10361 -- Move routine for Sort
10363 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
10365 --------
10366 -- Lt --
10367 --------
10369 function Lt (Op1, Op2 : Natural) return Boolean is
10370 begin
10371 return Component_Bit_Offset (Comps (Op1))
10373 Component_Bit_Offset (Comps (Op2));
10374 end Lt;
10376 ----------
10377 -- Move --
10378 ----------
10380 procedure Move (From : Natural; To : Natural) is
10381 begin
10382 Comps (To) := Comps (From);
10383 end Move;
10385 begin
10386 -- Gather discriminants into Comp
10388 if DS /= No_List then
10389 Citem := First (DS);
10390 while Present (Citem) loop
10391 if Nkind (Citem) = N_Discriminant_Specification then
10392 declare
10393 Ent : constant Entity_Id :=
10394 Defining_Identifier (Citem);
10395 begin
10396 if Ekind (Ent) = E_Discriminant then
10397 Ncomps := Ncomps + 1;
10398 Comps (Ncomps) := Ent;
10399 end if;
10400 end;
10401 end if;
10403 Next (Citem);
10404 end loop;
10405 end if;
10407 -- Gather component entities into Comp
10409 Citem := First (Component_Items (CL));
10410 while Present (Citem) loop
10411 if Nkind (Citem) = N_Component_Declaration then
10412 Ncomps := Ncomps + 1;
10413 Comps (Ncomps) := Defining_Identifier (Citem);
10414 end if;
10416 Next (Citem);
10417 end loop;
10419 -- Now sort the component entities based on the first bit.
10420 -- Note we already know there are no overlapping components.
10422 Sorting.Sort (Ncomps);
10424 -- Loop through entries checking for holes
10426 Nbit := Sbit;
10427 for J in 1 .. Ncomps loop
10428 CEnt := Comps (J);
10429 Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
10431 if Error_Msg_Uint_1 > 0 then
10432 Error_Msg_NE
10433 ("?H?^-bit gap before component&",
10434 Component_Name (Component_Clause (CEnt)), CEnt);
10435 end if;
10437 Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
10438 end loop;
10440 -- Process variant parts recursively if present
10442 if Present (Variant_Part (CL)) then
10443 Variant := First (Variants (Variant_Part (CL)));
10444 while Present (Variant) loop
10445 Check_Component_List
10446 (Component_List (Variant), Nbit, No_List);
10447 Next (Variant);
10448 end loop;
10449 end if;
10450 end;
10451 end Check_Component_List;
10453 -- Start of processing for Record_Hole_Check
10455 begin
10456 declare
10457 Sbit : Uint;
10459 begin
10460 if Is_Tagged_Type (Rectype) then
10461 Sbit := UI_From_Int (System_Address_Size);
10462 else
10463 Sbit := Uint_0;
10464 end if;
10466 if Nkind (Decl) = N_Full_Type_Declaration
10467 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10468 then
10469 Check_Component_List
10470 (Component_List (Type_Definition (Decl)),
10471 Sbit,
10472 Discriminant_Specifications (Decl));
10473 end if;
10474 end;
10475 end Record_Hole_Check;
10476 end if;
10478 -- For records that have component clauses for all components, and whose
10479 -- size is less than or equal to 32, we need to know the size in the
10480 -- front end to activate possible packed array processing where the
10481 -- component type is a record.
10483 -- At this stage Hbit + 1 represents the first unused bit from all the
10484 -- component clauses processed, so if the component clauses are
10485 -- complete, then this is the length of the record.
10487 -- For records longer than System.Storage_Unit, and for those where not
10488 -- all components have component clauses, the back end determines the
10489 -- length (it may for example be appropriate to round up the size
10490 -- to some convenient boundary, based on alignment considerations, etc).
10492 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
10494 -- Nothing to do if at least one component has no component clause
10496 Comp := First_Component_Or_Discriminant (Rectype);
10497 while Present (Comp) loop
10498 exit when No (Component_Clause (Comp));
10499 Next_Component_Or_Discriminant (Comp);
10500 end loop;
10502 -- If we fall out of loop, all components have component clauses
10503 -- and so we can set the size to the maximum value.
10505 if No (Comp) then
10506 Set_RM_Size (Rectype, Hbit + 1);
10507 end if;
10508 end if;
10509 end Check_Record_Representation_Clause;
10511 ----------------
10512 -- Check_Size --
10513 ----------------
10515 procedure Check_Size
10516 (N : Node_Id;
10517 T : Entity_Id;
10518 Siz : Uint;
10519 Biased : out Boolean)
10521 UT : constant Entity_Id := Underlying_Type (T);
10522 M : Uint;
10524 begin
10525 Biased := False;
10527 -- Reject patently improper size values.
10529 if Is_Elementary_Type (T)
10530 and then Siz > UI_From_Int (Int'Last)
10531 then
10532 Error_Msg_N ("Size value too large for elementary type", N);
10534 if Nkind (Original_Node (N)) = N_Op_Expon then
10535 Error_Msg_N
10536 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10537 end if;
10538 end if;
10540 -- Dismiss generic types
10542 if Is_Generic_Type (T)
10543 or else
10544 Is_Generic_Type (UT)
10545 or else
10546 Is_Generic_Type (Root_Type (UT))
10547 then
10548 return;
10550 -- Guard against previous errors
10552 elsif No (UT) or else UT = Any_Type then
10553 Check_Error_Detected;
10554 return;
10556 -- Check case of bit packed array
10558 elsif Is_Array_Type (UT)
10559 and then Known_Static_Component_Size (UT)
10560 and then Is_Bit_Packed_Array (UT)
10561 then
10562 declare
10563 Asiz : Uint;
10564 Indx : Node_Id;
10565 Ityp : Entity_Id;
10567 begin
10568 Asiz := Component_Size (UT);
10569 Indx := First_Index (UT);
10570 loop
10571 Ityp := Etype (Indx);
10573 -- If non-static bound, then we are not in the business of
10574 -- trying to check the length, and indeed an error will be
10575 -- issued elsewhere, since sizes of non-static array types
10576 -- cannot be set implicitly or explicitly.
10578 if not Is_OK_Static_Subtype (Ityp) then
10579 return;
10580 end if;
10582 -- Otherwise accumulate next dimension
10584 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10585 Expr_Value (Type_Low_Bound (Ityp)) +
10586 Uint_1);
10588 Next_Index (Indx);
10589 exit when No (Indx);
10590 end loop;
10592 if Asiz <= Siz then
10593 return;
10595 else
10596 Error_Msg_Uint_1 := Asiz;
10597 Error_Msg_NE
10598 ("size for& too small, minimum allowed is ^", N, T);
10599 Set_Esize (T, Asiz);
10600 Set_RM_Size (T, Asiz);
10601 end if;
10602 end;
10604 -- All other composite types are ignored
10606 elsif Is_Composite_Type (UT) then
10607 return;
10609 -- For fixed-point types, don't check minimum if type is not frozen,
10610 -- since we don't know all the characteristics of the type that can
10611 -- affect the size (e.g. a specified small) till freeze time.
10613 elsif Is_Fixed_Point_Type (UT)
10614 and then not Is_Frozen (UT)
10615 then
10616 null;
10618 -- Cases for which a minimum check is required
10620 else
10621 -- Ignore if specified size is correct for the type
10623 if Known_Esize (UT) and then Siz = Esize (UT) then
10624 return;
10625 end if;
10627 -- Otherwise get minimum size
10629 M := UI_From_Int (Minimum_Size (UT));
10631 if Siz < M then
10633 -- Size is less than minimum size, but one possibility remains
10634 -- that we can manage with the new size if we bias the type.
10636 M := UI_From_Int (Minimum_Size (UT, Biased => True));
10638 if Siz < M then
10639 Error_Msg_Uint_1 := M;
10640 Error_Msg_NE
10641 ("size for& too small, minimum allowed is ^", N, T);
10642 Set_Esize (T, M);
10643 Set_RM_Size (T, M);
10644 else
10645 Biased := True;
10646 end if;
10647 end if;
10648 end if;
10649 end Check_Size;
10651 --------------------------
10652 -- Freeze_Entity_Checks --
10653 --------------------------
10655 procedure Freeze_Entity_Checks (N : Node_Id) is
10656 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10657 -- Inspect the primitive operations of type Typ and hide all pairs of
10658 -- implicitly declared non-overridden non-fully conformant homographs
10659 -- (Ada RM 8.3 12.3/2).
10661 -------------------------------------
10662 -- Hide_Non_Overridden_Subprograms --
10663 -------------------------------------
10665 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10666 procedure Hide_Matching_Homographs
10667 (Subp_Id : Entity_Id;
10668 Start_Elmt : Elmt_Id);
10669 -- Inspect a list of primitive operations starting with Start_Elmt
10670 -- and find matching implicitly declared non-overridden non-fully
10671 -- conformant homographs of Subp_Id. If found, all matches along
10672 -- with Subp_Id are hidden from all visibility.
10674 function Is_Non_Overridden_Or_Null_Procedure
10675 (Subp_Id : Entity_Id) return Boolean;
10676 -- Determine whether subprogram Subp_Id is implicitly declared non-
10677 -- overridden subprogram or an implicitly declared null procedure.
10679 ------------------------------
10680 -- Hide_Matching_Homographs --
10681 ------------------------------
10683 procedure Hide_Matching_Homographs
10684 (Subp_Id : Entity_Id;
10685 Start_Elmt : Elmt_Id)
10687 Prim : Entity_Id;
10688 Prim_Elmt : Elmt_Id;
10690 begin
10691 Prim_Elmt := Start_Elmt;
10692 while Present (Prim_Elmt) loop
10693 Prim := Node (Prim_Elmt);
10695 -- The current primitive is implicitly declared non-overridden
10696 -- non-fully conformant homograph of Subp_Id. Both subprograms
10697 -- must be hidden from visibility.
10699 if Chars (Prim) = Chars (Subp_Id)
10700 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
10701 and then not Fully_Conformant (Prim, Subp_Id)
10702 then
10703 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10704 Set_Is_Immediately_Visible (Prim, False);
10705 Set_Is_Potentially_Use_Visible (Prim, False);
10707 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10708 Set_Is_Immediately_Visible (Subp_Id, False);
10709 Set_Is_Potentially_Use_Visible (Subp_Id, False);
10710 end if;
10712 Next_Elmt (Prim_Elmt);
10713 end loop;
10714 end Hide_Matching_Homographs;
10716 -----------------------------------------
10717 -- Is_Non_Overridden_Or_Null_Procedure --
10718 -----------------------------------------
10720 function Is_Non_Overridden_Or_Null_Procedure
10721 (Subp_Id : Entity_Id) return Boolean
10723 Alias_Id : Entity_Id;
10725 begin
10726 -- The subprogram is inherited (implicitly declared), it does not
10727 -- override and does not cover a primitive of an interface.
10729 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10730 and then Present (Alias (Subp_Id))
10731 and then No (Interface_Alias (Subp_Id))
10732 and then No (Overridden_Operation (Subp_Id))
10733 then
10734 Alias_Id := Alias (Subp_Id);
10736 if Requires_Overriding (Alias_Id) then
10737 return True;
10739 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10740 and then Null_Present (Parent (Alias_Id))
10741 then
10742 return True;
10743 end if;
10744 end if;
10746 return False;
10747 end Is_Non_Overridden_Or_Null_Procedure;
10749 -- Local variables
10751 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10752 Prim : Entity_Id;
10753 Prim_Elmt : Elmt_Id;
10755 -- Start of processing for Hide_Non_Overridden_Subprograms
10757 begin
10758 -- Inspect the list of primitives looking for non-overridden
10759 -- subprograms.
10761 if Present (Prim_Ops) then
10762 Prim_Elmt := First_Elmt (Prim_Ops);
10763 while Present (Prim_Elmt) loop
10764 Prim := Node (Prim_Elmt);
10765 Next_Elmt (Prim_Elmt);
10767 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10768 Hide_Matching_Homographs
10769 (Subp_Id => Prim,
10770 Start_Elmt => Prim_Elmt);
10771 end if;
10772 end loop;
10773 end if;
10774 end Hide_Non_Overridden_Subprograms;
10776 ---------------------
10777 -- Local variables --
10778 ---------------------
10780 E : constant Entity_Id := Entity (N);
10782 Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10783 -- True in non-generic case. Some of the processing here is skipped
10784 -- for the generic case since it is not needed. Basically in the
10785 -- generic case, we only need to do stuff that might generate error
10786 -- messages or warnings.
10788 -- Start of processing for Freeze_Entity_Checks
10790 begin
10791 -- Remember that we are processing a freezing entity. Required to
10792 -- ensure correct decoration of internal entities associated with
10793 -- interfaces (see New_Overloaded_Entity).
10795 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
10797 -- For tagged types covering interfaces add internal entities that link
10798 -- the primitives of the interfaces with the primitives that cover them.
10799 -- Note: These entities were originally generated only when generating
10800 -- code because their main purpose was to provide support to initialize
10801 -- the secondary dispatch tables. They are now generated also when
10802 -- compiling with no code generation to provide ASIS the relationship
10803 -- between interface primitives and tagged type primitives. They are
10804 -- also used to locate primitives covering interfaces when processing
10805 -- generics (see Derive_Subprograms).
10807 -- This is not needed in the generic case
10809 if Ada_Version >= Ada_2005
10810 and then Non_Generic_Case
10811 and then Ekind (E) = E_Record_Type
10812 and then Is_Tagged_Type (E)
10813 and then not Is_Interface (E)
10814 and then Has_Interfaces (E)
10815 then
10816 -- This would be a good common place to call the routine that checks
10817 -- overriding of interface primitives (and thus factorize calls to
10818 -- Check_Abstract_Overriding located at different contexts in the
10819 -- compiler). However, this is not possible because it causes
10820 -- spurious errors in case of late overriding.
10822 Add_Internal_Interface_Entities (E);
10823 end if;
10825 -- After all forms of overriding have been resolved, a tagged type may
10826 -- be left with a set of implicitly declared and possibly erroneous
10827 -- abstract subprograms, null procedures and subprograms that require
10828 -- overriding. If this set contains fully conformat homographs, then one
10829 -- is chosen arbitrarily (already done during resolution), otherwise all
10830 -- remaining non-fully conformant homographs are hidden from visibility
10831 -- (Ada RM 8.3 12.3/2).
10833 if Is_Tagged_Type (E) then
10834 Hide_Non_Overridden_Subprograms (E);
10835 end if;
10837 -- Check CPP types
10839 if Ekind (E) = E_Record_Type
10840 and then Is_CPP_Class (E)
10841 and then Is_Tagged_Type (E)
10842 and then Tagged_Type_Expansion
10843 then
10844 if CPP_Num_Prims (E) = 0 then
10846 -- If the CPP type has user defined components then it must import
10847 -- primitives from C++. This is required because if the C++ class
10848 -- has no primitives then the C++ compiler does not added the _tag
10849 -- component to the type.
10851 if First_Entity (E) /= Last_Entity (E) then
10852 Error_Msg_N
10853 ("'C'P'P type must import at least one primitive from C++??",
10855 end if;
10856 end if;
10858 -- Check that all its primitives are abstract or imported from C++.
10859 -- Check also availability of the C++ constructor.
10861 declare
10862 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
10863 Elmt : Elmt_Id;
10864 Error_Reported : Boolean := False;
10865 Prim : Node_Id;
10867 begin
10868 Elmt := First_Elmt (Primitive_Operations (E));
10869 while Present (Elmt) loop
10870 Prim := Node (Elmt);
10872 if Comes_From_Source (Prim) then
10873 if Is_Abstract_Subprogram (Prim) then
10874 null;
10876 elsif not Is_Imported (Prim)
10877 or else Convention (Prim) /= Convention_CPP
10878 then
10879 Error_Msg_N
10880 ("primitives of 'C'P'P types must be imported from C++ "
10881 & "or abstract??", Prim);
10883 elsif not Has_Constructors
10884 and then not Error_Reported
10885 then
10886 Error_Msg_Name_1 := Chars (E);
10887 Error_Msg_N
10888 ("??'C'P'P constructor required for type %", Prim);
10889 Error_Reported := True;
10890 end if;
10891 end if;
10893 Next_Elmt (Elmt);
10894 end loop;
10895 end;
10896 end if;
10898 -- Check Ada derivation of CPP type
10900 if Expander_Active -- why? losing errors in -gnatc mode???
10901 and then Present (Etype (E)) -- defend against errors
10902 and then Tagged_Type_Expansion
10903 and then Ekind (E) = E_Record_Type
10904 and then Etype (E) /= E
10905 and then Is_CPP_Class (Etype (E))
10906 and then CPP_Num_Prims (Etype (E)) > 0
10907 and then not Is_CPP_Class (E)
10908 and then not Has_CPP_Constructors (Etype (E))
10909 then
10910 -- If the parent has C++ primitives but it has no constructor then
10911 -- check that all the primitives are overridden in this derivation;
10912 -- otherwise the constructor of the parent is needed to build the
10913 -- dispatch table.
10915 declare
10916 Elmt : Elmt_Id;
10917 Prim : Node_Id;
10919 begin
10920 Elmt := First_Elmt (Primitive_Operations (E));
10921 while Present (Elmt) loop
10922 Prim := Node (Elmt);
10924 if not Is_Abstract_Subprogram (Prim)
10925 and then No (Interface_Alias (Prim))
10926 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
10927 then
10928 Error_Msg_Name_1 := Chars (Etype (E));
10929 Error_Msg_N
10930 ("'C'P'P constructor required for parent type %", E);
10931 exit;
10932 end if;
10934 Next_Elmt (Elmt);
10935 end loop;
10936 end;
10937 end if;
10939 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
10941 -- If we have a type with predicates, build predicate function. This
10942 -- is not needed in the generic case, and is not needed within TSS
10943 -- subprograms and other predefined primitives.
10945 if Non_Generic_Case
10946 and then Is_Type (E)
10947 and then Has_Predicates (E)
10948 and then not Within_Internal_Subprogram
10949 then
10950 Build_Predicate_Functions (E, N);
10951 end if;
10953 -- If type has delayed aspects, this is where we do the preanalysis at
10954 -- the freeze point, as part of the consistent visibility check. Note
10955 -- that this must be done after calling Build_Predicate_Functions or
10956 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10957 -- the subtype name in the saved expression so that they will not cause
10958 -- trouble in the preanalysis.
10960 -- This is also not needed in the generic case
10962 if Non_Generic_Case
10963 and then Has_Delayed_Aspects (E)
10964 and then Scope (E) = Current_Scope
10965 then
10966 -- Retrieve the visibility to the discriminants in order to properly
10967 -- analyze the aspects.
10969 Push_Scope_And_Install_Discriminants (E);
10971 declare
10972 Ritem : Node_Id;
10974 begin
10975 -- Look for aspect specification entries for this entity
10977 Ritem := First_Rep_Item (E);
10978 while Present (Ritem) loop
10979 if Nkind (Ritem) = N_Aspect_Specification
10980 and then Entity (Ritem) = E
10981 and then Is_Delayed_Aspect (Ritem)
10982 then
10983 Check_Aspect_At_Freeze_Point (Ritem);
10984 end if;
10986 Next_Rep_Item (Ritem);
10987 end loop;
10988 end;
10990 Uninstall_Discriminants_And_Pop_Scope (E);
10991 end if;
10993 -- For a record type, deal with variant parts. This has to be delayed
10994 -- to this point, because of the issue of statically predicated
10995 -- subtypes, which we have to ensure are frozen before checking
10996 -- choices, since we need to have the static choice list set.
10998 if Is_Record_Type (E) then
10999 Check_Variant_Part : declare
11000 D : constant Node_Id := Declaration_Node (E);
11001 T : Node_Id;
11002 C : Node_Id;
11003 VP : Node_Id;
11005 Others_Present : Boolean;
11006 pragma Warnings (Off, Others_Present);
11007 -- Indicates others present, not used in this case
11009 procedure Non_Static_Choice_Error (Choice : Node_Id);
11010 -- Error routine invoked by the generic instantiation below when
11011 -- the variant part has a non static choice.
11013 procedure Process_Declarations (Variant : Node_Id);
11014 -- Processes declarations associated with a variant. We analyzed
11015 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11016 -- but we still need the recursive call to Check_Choices for any
11017 -- nested variant to get its choices properly processed. This is
11018 -- also where we expand out the choices if expansion is active.
11020 package Variant_Choices_Processing is new
11021 Generic_Check_Choices
11022 (Process_Empty_Choice => No_OP,
11023 Process_Non_Static_Choice => Non_Static_Choice_Error,
11024 Process_Associated_Node => Process_Declarations);
11025 use Variant_Choices_Processing;
11027 -----------------------------
11028 -- Non_Static_Choice_Error --
11029 -----------------------------
11031 procedure Non_Static_Choice_Error (Choice : Node_Id) is
11032 begin
11033 Flag_Non_Static_Expr
11034 ("choice given in variant part is not static!", Choice);
11035 end Non_Static_Choice_Error;
11037 --------------------------
11038 -- Process_Declarations --
11039 --------------------------
11041 procedure Process_Declarations (Variant : Node_Id) is
11042 CL : constant Node_Id := Component_List (Variant);
11043 VP : Node_Id;
11045 begin
11046 -- Check for static predicate present in this variant
11048 if Has_SP_Choice (Variant) then
11050 -- Here we expand. You might expect to find this call in
11051 -- Expand_N_Variant_Part, but that is called when we first
11052 -- see the variant part, and we cannot do this expansion
11053 -- earlier than the freeze point, since for statically
11054 -- predicated subtypes, the predicate is not known till
11055 -- the freeze point.
11057 -- Furthermore, we do this expansion even if the expander
11058 -- is not active, because other semantic processing, e.g.
11059 -- for aggregates, requires the expanded list of choices.
11061 -- If the expander is not active, then we can't just clobber
11062 -- the list since it would invalidate the ASIS -gnatct tree.
11063 -- So we have to rewrite the variant part with a Rewrite
11064 -- call that replaces it with a copy and clobber the copy.
11066 if not Expander_Active then
11067 declare
11068 NewV : constant Node_Id := New_Copy (Variant);
11069 begin
11070 Set_Discrete_Choices
11071 (NewV, New_Copy_List (Discrete_Choices (Variant)));
11072 Rewrite (Variant, NewV);
11073 end;
11074 end if;
11076 Expand_Static_Predicates_In_Choices (Variant);
11077 end if;
11079 -- We don't need to worry about the declarations in the variant
11080 -- (since they were analyzed by Analyze_Choices when we first
11081 -- encountered the variant), but we do need to take care of
11082 -- expansion of any nested variants.
11084 if not Null_Present (CL) then
11085 VP := Variant_Part (CL);
11087 if Present (VP) then
11088 Check_Choices
11089 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11090 end if;
11091 end if;
11092 end Process_Declarations;
11094 -- Start of processing for Check_Variant_Part
11096 begin
11097 -- Find component list
11099 C := Empty;
11101 if Nkind (D) = N_Full_Type_Declaration then
11102 T := Type_Definition (D);
11104 if Nkind (T) = N_Record_Definition then
11105 C := Component_List (T);
11107 elsif Nkind (T) = N_Derived_Type_Definition
11108 and then Present (Record_Extension_Part (T))
11109 then
11110 C := Component_List (Record_Extension_Part (T));
11111 end if;
11112 end if;
11114 -- Case of variant part present
11116 if Present (C) and then Present (Variant_Part (C)) then
11117 VP := Variant_Part (C);
11119 -- Check choices
11121 Check_Choices
11122 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11124 -- If the last variant does not contain the Others choice,
11125 -- replace it with an N_Others_Choice node since Gigi always
11126 -- wants an Others. Note that we do not bother to call Analyze
11127 -- on the modified variant part, since its only effect would be
11128 -- to compute the Others_Discrete_Choices node laboriously, and
11129 -- of course we already know the list of choices corresponding
11130 -- to the others choice (it's the list we're replacing).
11132 -- We only want to do this if the expander is active, since
11133 -- we do not want to clobber the ASIS tree.
11135 if Expander_Active then
11136 declare
11137 Last_Var : constant Node_Id :=
11138 Last_Non_Pragma (Variants (VP));
11140 Others_Node : Node_Id;
11142 begin
11143 if Nkind (First (Discrete_Choices (Last_Var))) /=
11144 N_Others_Choice
11145 then
11146 Others_Node := Make_Others_Choice (Sloc (Last_Var));
11147 Set_Others_Discrete_Choices
11148 (Others_Node, Discrete_Choices (Last_Var));
11149 Set_Discrete_Choices
11150 (Last_Var, New_List (Others_Node));
11151 end if;
11152 end;
11153 end if;
11154 end if;
11155 end Check_Variant_Part;
11156 end if;
11157 end Freeze_Entity_Checks;
11159 -------------------------
11160 -- Get_Alignment_Value --
11161 -------------------------
11163 function Get_Alignment_Value (Expr : Node_Id) return Uint is
11164 Align : constant Uint := Static_Integer (Expr);
11166 begin
11167 if Align = No_Uint then
11168 return No_Uint;
11170 elsif Align <= 0 then
11171 Error_Msg_N ("alignment value must be positive", Expr);
11172 return No_Uint;
11174 else
11175 for J in Int range 0 .. 64 loop
11176 declare
11177 M : constant Uint := Uint_2 ** J;
11179 begin
11180 exit when M = Align;
11182 if M > Align then
11183 Error_Msg_N
11184 ("alignment value must be power of 2", Expr);
11185 return No_Uint;
11186 end if;
11187 end;
11188 end loop;
11190 return Align;
11191 end if;
11192 end Get_Alignment_Value;
11194 -------------------------------------
11195 -- Inherit_Aspects_At_Freeze_Point --
11196 -------------------------------------
11198 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
11199 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11200 (Rep_Item : Node_Id) return Boolean;
11201 -- This routine checks if Rep_Item is either a pragma or an aspect
11202 -- specification node whose correponding pragma (if any) is present in
11203 -- the Rep Item chain of the entity it has been specified to.
11205 --------------------------------------------------
11206 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11207 --------------------------------------------------
11209 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11210 (Rep_Item : Node_Id) return Boolean
11212 begin
11213 return
11214 Nkind (Rep_Item) = N_Pragma
11215 or else Present_In_Rep_Item
11216 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
11217 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11219 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11221 begin
11222 -- A representation item is either subtype-specific (Size and Alignment
11223 -- clauses) or type-related (all others). Subtype-specific aspects may
11224 -- differ for different subtypes of the same type (RM 13.1.8).
11226 -- A derived type inherits each type-related representation aspect of
11227 -- its parent type that was directly specified before the declaration of
11228 -- the derived type (RM 13.1.15).
11230 -- A derived subtype inherits each subtype-specific representation
11231 -- aspect of its parent subtype that was directly specified before the
11232 -- declaration of the derived type (RM 13.1.15).
11234 -- The general processing involves inheriting a representation aspect
11235 -- from a parent type whenever the first rep item (aspect specification,
11236 -- attribute definition clause, pragma) corresponding to the given
11237 -- representation aspect in the rep item chain of Typ, if any, isn't
11238 -- directly specified to Typ but to one of its parents.
11240 -- ??? Note that, for now, just a limited number of representation
11241 -- aspects have been inherited here so far. Many of them are
11242 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11243 -- a non- exhaustive list of aspects that likely also need to
11244 -- be moved to this routine: Alignment, Component_Alignment,
11245 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11246 -- Preelaborable_Initialization, RM_Size and Small.
11248 -- In addition, Convention must be propagated from base type to subtype,
11249 -- because the subtype may have been declared on an incomplete view.
11251 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11252 return;
11253 end if;
11255 -- Ada_05/Ada_2005
11257 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11258 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11259 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11260 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11261 then
11262 Set_Is_Ada_2005_Only (Typ);
11263 end if;
11265 -- Ada_12/Ada_2012
11267 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11268 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11269 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11270 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11271 then
11272 Set_Is_Ada_2012_Only (Typ);
11273 end if;
11275 -- Atomic/Shared
11277 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11278 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11279 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11280 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11281 then
11282 Set_Is_Atomic (Typ);
11283 Set_Is_Volatile (Typ);
11284 Set_Treat_As_Volatile (Typ);
11285 end if;
11287 -- Convention
11289 if Is_Record_Type (Typ)
11290 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11291 then
11292 Set_Convention (Typ, Convention (Base_Type (Typ)));
11293 end if;
11295 -- Default_Component_Value
11297 -- Verify that there is no rep_item declared for the type, and there
11298 -- is one coming from an ancestor.
11300 if Is_Array_Type (Typ)
11301 and then Is_Base_Type (Typ)
11302 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
11303 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11304 then
11305 Set_Default_Aspect_Component_Value (Typ,
11306 Default_Aspect_Component_Value
11307 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11308 end if;
11310 -- Default_Value
11312 if Is_Scalar_Type (Typ)
11313 and then Is_Base_Type (Typ)
11314 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
11315 and then Has_Rep_Item (Typ, Name_Default_Value)
11316 then
11317 Set_Has_Default_Aspect (Typ);
11318 Set_Default_Aspect_Value (Typ,
11319 Default_Aspect_Value
11320 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11321 end if;
11323 -- Discard_Names
11325 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11326 and then Has_Rep_Item (Typ, Name_Discard_Names)
11327 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11328 (Get_Rep_Item (Typ, Name_Discard_Names))
11329 then
11330 Set_Discard_Names (Typ);
11331 end if;
11333 -- Invariants
11335 if not Has_Rep_Item (Typ, Name_Invariant, False)
11336 and then Has_Rep_Item (Typ, Name_Invariant)
11337 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11338 (Get_Rep_Item (Typ, Name_Invariant))
11339 then
11340 Set_Has_Invariants (Typ);
11342 if Class_Present (Get_Rep_Item (Typ, Name_Invariant)) then
11343 Set_Has_Inheritable_Invariants (Typ);
11344 end if;
11346 -- If we have a subtype with invariants, whose base type does not have
11347 -- invariants, copy these invariants to the base type. This happens for
11348 -- the case of implicit base types created for scalar and array types.
11350 elsif Has_Invariants (Typ)
11351 and then not Has_Invariants (Base_Type (Typ))
11352 then
11353 Set_Has_Invariants (Base_Type (Typ));
11354 Set_Invariant_Procedure (Base_Type (Typ), Invariant_Procedure (Typ));
11355 end if;
11357 -- Volatile
11359 if not Has_Rep_Item (Typ, Name_Volatile, False)
11360 and then Has_Rep_Item (Typ, Name_Volatile)
11361 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11362 (Get_Rep_Item (Typ, Name_Volatile))
11363 then
11364 Set_Is_Volatile (Typ);
11365 Set_Treat_As_Volatile (Typ);
11366 end if;
11368 -- Volatile_Full_Access
11370 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
11371 and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
11372 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11373 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
11374 then
11375 Set_Is_Volatile_Full_Access (Typ);
11376 Set_Is_Volatile (Typ);
11377 Set_Treat_As_Volatile (Typ);
11378 end if;
11380 -- Inheritance for derived types only
11382 if Is_Derived_Type (Typ) then
11383 declare
11384 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11385 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11387 begin
11388 -- Atomic_Components
11390 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11391 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11392 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11393 (Get_Rep_Item (Typ, Name_Atomic_Components))
11394 then
11395 Set_Has_Atomic_Components (Imp_Bas_Typ);
11396 end if;
11398 -- Volatile_Components
11400 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11401 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11402 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11403 (Get_Rep_Item (Typ, Name_Volatile_Components))
11404 then
11405 Set_Has_Volatile_Components (Imp_Bas_Typ);
11406 end if;
11408 -- Finalize_Storage_Only
11410 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11411 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11412 then
11413 Set_Finalize_Storage_Only (Bas_Typ);
11414 end if;
11416 -- Universal_Aliasing
11418 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11419 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11420 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11421 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11422 then
11423 Set_Universal_Aliasing (Imp_Bas_Typ);
11424 end if;
11426 -- Bit_Order
11428 if Is_Record_Type (Typ) then
11429 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11430 and then Has_Rep_Item (Typ, Name_Bit_Order)
11431 then
11432 Set_Reverse_Bit_Order (Bas_Typ,
11433 Reverse_Bit_Order (Entity (Name
11434 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11435 end if;
11436 end if;
11438 -- Scalar_Storage_Order
11440 -- Note: the aspect is specified on a first subtype, but recorded
11441 -- in a flag of the base type!
11443 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
11444 and then Typ = Bas_Typ
11445 then
11446 -- For a type extension, always inherit from parent; otherwise
11447 -- inherit if no default applies. Note: we do not check for
11448 -- an explicit rep item on the parent type when inheriting,
11449 -- because the parent SSO may itself have been set by default.
11451 if not Has_Rep_Item (First_Subtype (Typ),
11452 Name_Scalar_Storage_Order, False)
11453 and then (Is_Tagged_Type (Bas_Typ)
11454 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11455 or else
11456 SSO_Set_High_By_Default (Bas_Typ)))
11457 then
11458 Set_Reverse_Storage_Order (Bas_Typ,
11459 Reverse_Storage_Order
11460 (Implementation_Base_Type (Etype (Bas_Typ))));
11462 -- Clear default SSO indications, since the inherited aspect
11463 -- which was set explicitly overrides the default.
11465 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11466 Set_SSO_Set_High_By_Default (Bas_Typ, False);
11467 end if;
11468 end if;
11469 end;
11470 end if;
11471 end Inherit_Aspects_At_Freeze_Point;
11473 ----------------
11474 -- Initialize --
11475 ----------------
11477 procedure Initialize is
11478 begin
11479 Address_Clause_Checks.Init;
11480 Unchecked_Conversions.Init;
11482 if AAMP_On_Target then
11483 Independence_Checks.Init;
11484 end if;
11485 end Initialize;
11487 ---------------------------
11488 -- Install_Discriminants --
11489 ---------------------------
11491 procedure Install_Discriminants (E : Entity_Id) is
11492 Disc : Entity_Id;
11493 Prev : Entity_Id;
11494 begin
11495 Disc := First_Discriminant (E);
11496 while Present (Disc) loop
11497 Prev := Current_Entity (Disc);
11498 Set_Current_Entity (Disc);
11499 Set_Is_Immediately_Visible (Disc);
11500 Set_Homonym (Disc, Prev);
11501 Next_Discriminant (Disc);
11502 end loop;
11503 end Install_Discriminants;
11505 -------------------------
11506 -- Is_Operational_Item --
11507 -------------------------
11509 function Is_Operational_Item (N : Node_Id) return Boolean is
11510 begin
11511 if Nkind (N) /= N_Attribute_Definition_Clause then
11512 return False;
11514 else
11515 declare
11516 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
11517 begin
11519 -- List of operational items is given in AARM 13.1(8.mm/1).
11520 -- It is clearly incomplete, as it does not include iterator
11521 -- aspects, among others.
11523 return Id = Attribute_Constant_Indexing
11524 or else Id = Attribute_Default_Iterator
11525 or else Id = Attribute_Implicit_Dereference
11526 or else Id = Attribute_Input
11527 or else Id = Attribute_Iterator_Element
11528 or else Id = Attribute_Iterable
11529 or else Id = Attribute_Output
11530 or else Id = Attribute_Read
11531 or else Id = Attribute_Variable_Indexing
11532 or else Id = Attribute_Write
11533 or else Id = Attribute_External_Tag;
11534 end;
11535 end if;
11536 end Is_Operational_Item;
11538 -------------------------
11539 -- Is_Predicate_Static --
11540 -------------------------
11542 -- Note: the basic legality of the expression has already been checked, so
11543 -- we don't need to worry about cases or ranges on strings for example.
11545 function Is_Predicate_Static
11546 (Expr : Node_Id;
11547 Nam : Name_Id) return Boolean
11549 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
11550 -- Given a list of case expression alternatives, returns True if all
11551 -- the alternatives are static (have all static choices, and a static
11552 -- expression).
11554 function All_Static_Choices (L : List_Id) return Boolean;
11555 -- Returns true if all elements of the list are OK static choices
11556 -- as defined below for Is_Static_Choice. Used for case expression
11557 -- alternatives and for the right operand of a membership test. An
11558 -- others_choice is static if the corresponding expression is static.
11559 -- The staticness of the bounds is checked separately.
11561 function Is_Static_Choice (N : Node_Id) return Boolean;
11562 -- Returns True if N represents a static choice (static subtype, or
11563 -- static subtype indication, or static expression, or static range).
11565 -- Note that this is a bit more inclusive than we actually need
11566 -- (in particular membership tests do not allow the use of subtype
11567 -- indications). But that doesn't matter, we have already checked
11568 -- that the construct is legal to get this far.
11570 function Is_Type_Ref (N : Node_Id) return Boolean;
11571 pragma Inline (Is_Type_Ref);
11572 -- Returns True if N is a reference to the type for the predicate in the
11573 -- expression (i.e. if it is an identifier whose Chars field matches the
11574 -- Nam given in the call). N must not be parenthesized, if the type name
11575 -- appears in parens, this routine will return False.
11577 ----------------------------------
11578 -- All_Static_Case_Alternatives --
11579 ----------------------------------
11581 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11582 N : Node_Id;
11584 begin
11585 N := First (L);
11586 while Present (N) loop
11587 if not (All_Static_Choices (Discrete_Choices (N))
11588 and then Is_OK_Static_Expression (Expression (N)))
11589 then
11590 return False;
11591 end if;
11593 Next (N);
11594 end loop;
11596 return True;
11597 end All_Static_Case_Alternatives;
11599 ------------------------
11600 -- All_Static_Choices --
11601 ------------------------
11603 function All_Static_Choices (L : List_Id) return Boolean is
11604 N : Node_Id;
11606 begin
11607 N := First (L);
11608 while Present (N) loop
11609 if not Is_Static_Choice (N) then
11610 return False;
11611 end if;
11613 Next (N);
11614 end loop;
11616 return True;
11617 end All_Static_Choices;
11619 ----------------------
11620 -- Is_Static_Choice --
11621 ----------------------
11623 function Is_Static_Choice (N : Node_Id) return Boolean is
11624 begin
11625 return Nkind (N) = N_Others_Choice
11626 or else Is_OK_Static_Expression (N)
11627 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11628 and then Is_OK_Static_Subtype (Entity (N)))
11629 or else (Nkind (N) = N_Subtype_Indication
11630 and then Is_OK_Static_Subtype (Entity (N)))
11631 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11632 end Is_Static_Choice;
11634 -----------------
11635 -- Is_Type_Ref --
11636 -----------------
11638 function Is_Type_Ref (N : Node_Id) return Boolean is
11639 begin
11640 return Nkind (N) = N_Identifier
11641 and then Chars (N) = Nam
11642 and then Paren_Count (N) = 0;
11643 end Is_Type_Ref;
11645 -- Start of processing for Is_Predicate_Static
11647 begin
11648 -- Predicate_Static means one of the following holds. Numbers are the
11649 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11651 -- 16: A static expression
11653 if Is_OK_Static_Expression (Expr) then
11654 return True;
11656 -- 17: A membership test whose simple_expression is the current
11657 -- instance, and whose membership_choice_list meets the requirements
11658 -- for a static membership test.
11660 elsif Nkind (Expr) in N_Membership_Test
11661 and then ((Present (Right_Opnd (Expr))
11662 and then Is_Static_Choice (Right_Opnd (Expr)))
11663 or else
11664 (Present (Alternatives (Expr))
11665 and then All_Static_Choices (Alternatives (Expr))))
11666 then
11667 return True;
11669 -- 18. A case_expression whose selecting_expression is the current
11670 -- instance, and whose dependent expressions are static expressions.
11672 elsif Nkind (Expr) = N_Case_Expression
11673 and then Is_Type_Ref (Expression (Expr))
11674 and then All_Static_Case_Alternatives (Alternatives (Expr))
11675 then
11676 return True;
11678 -- 19. A call to a predefined equality or ordering operator, where one
11679 -- operand is the current instance, and the other is a static
11680 -- expression.
11682 -- Note: the RM is clearly wrong here in not excluding string types.
11683 -- Without this exclusion, we would allow expressions like X > "ABC"
11684 -- to be considered as predicate-static, which is clearly not intended,
11685 -- since the idea is for predicate-static to be a subset of normal
11686 -- static expressions (and "DEF" > "ABC" is not a static expression).
11688 -- However, we do allow internally generated (not from source) equality
11689 -- and inequality operations to be valid on strings (this helps deal
11690 -- with cases where we transform A in "ABC" to A = "ABC).
11692 elsif Nkind (Expr) in N_Op_Compare
11693 and then ((not Is_String_Type (Etype (Left_Opnd (Expr))))
11694 or else (Nkind_In (Expr, N_Op_Eq, N_Op_Ne)
11695 and then not Comes_From_Source (Expr)))
11696 and then ((Is_Type_Ref (Left_Opnd (Expr))
11697 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11698 or else
11699 (Is_Type_Ref (Right_Opnd (Expr))
11700 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11701 then
11702 return True;
11704 -- 20. A call to a predefined boolean logical operator, where each
11705 -- operand is predicate-static.
11707 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11708 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11709 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11710 or else
11711 (Nkind (Expr) = N_Op_Not
11712 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11713 then
11714 return True;
11716 -- 21. A short-circuit control form where both operands are
11717 -- predicate-static.
11719 elsif Nkind (Expr) in N_Short_Circuit
11720 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11721 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11722 then
11723 return True;
11725 -- 22. A parenthesized predicate-static expression. This does not
11726 -- require any special test, since we just ignore paren levels in
11727 -- all the cases above.
11729 -- One more test that is an implementation artifact caused by the fact
11730 -- that we are analyzing not the original expression, but the generated
11731 -- expression in the body of the predicate function. This can include
11732 -- references to inherited predicates, so that the expression we are
11733 -- processing looks like:
11735 -- xxPredicate (typ (Inns)) and then expression
11737 -- Where the call is to a Predicate function for an inherited predicate.
11738 -- We simply ignore such a call, which could be to either a dynamic or
11739 -- a static predicate. Note that if the parent predicate is dynamic then
11740 -- eventually this type will be marked as dynamic, but you are allowed
11741 -- to specify a static predicate for a subtype which is inheriting a
11742 -- dynamic predicate, so the static predicate validation here ignores
11743 -- the inherited predicate even if it is dynamic.
11745 elsif Nkind (Expr) = N_Function_Call
11746 and then Is_Predicate_Function (Entity (Name (Expr)))
11747 then
11748 return True;
11750 -- That's an exhaustive list of tests, all other cases are not
11751 -- predicate-static, so we return False.
11753 else
11754 return False;
11755 end if;
11756 end Is_Predicate_Static;
11758 ---------------------
11759 -- Kill_Rep_Clause --
11760 ---------------------
11762 procedure Kill_Rep_Clause (N : Node_Id) is
11763 begin
11764 pragma Assert (Ignore_Rep_Clauses);
11766 -- Note: we use Replace rather than Rewrite, because we don't want
11767 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11768 -- rep clause that is being replaced.
11770 Replace (N, Make_Null_Statement (Sloc (N)));
11772 -- The null statement must be marked as not coming from source. This is
11773 -- so that ASIS ignores it, and also the back end does not expect bogus
11774 -- "from source" null statements in weird places (e.g. in declarative
11775 -- regions where such null statements are not allowed).
11777 Set_Comes_From_Source (N, False);
11778 end Kill_Rep_Clause;
11780 ------------------
11781 -- Minimum_Size --
11782 ------------------
11784 function Minimum_Size
11785 (T : Entity_Id;
11786 Biased : Boolean := False) return Nat
11788 Lo : Uint := No_Uint;
11789 Hi : Uint := No_Uint;
11790 LoR : Ureal := No_Ureal;
11791 HiR : Ureal := No_Ureal;
11792 LoSet : Boolean := False;
11793 HiSet : Boolean := False;
11794 B : Uint;
11795 S : Nat;
11796 Ancest : Entity_Id;
11797 R_Typ : constant Entity_Id := Root_Type (T);
11799 begin
11800 -- If bad type, return 0
11802 if T = Any_Type then
11803 return 0;
11805 -- For generic types, just return zero. There cannot be any legitimate
11806 -- need to know such a size, but this routine may be called with a
11807 -- generic type as part of normal processing.
11809 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
11810 return 0;
11812 -- Access types (cannot have size smaller than System.Address)
11814 elsif Is_Access_Type (T) then
11815 return System_Address_Size;
11817 -- Floating-point types
11819 elsif Is_Floating_Point_Type (T) then
11820 return UI_To_Int (Esize (R_Typ));
11822 -- Discrete types
11824 elsif Is_Discrete_Type (T) then
11826 -- The following loop is looking for the nearest compile time known
11827 -- bounds following the ancestor subtype chain. The idea is to find
11828 -- the most restrictive known bounds information.
11830 Ancest := T;
11831 loop
11832 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11833 return 0;
11834 end if;
11836 if not LoSet then
11837 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
11838 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
11839 LoSet := True;
11840 exit when HiSet;
11841 end if;
11842 end if;
11844 if not HiSet then
11845 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
11846 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
11847 HiSet := True;
11848 exit when LoSet;
11849 end if;
11850 end if;
11852 Ancest := Ancestor_Subtype (Ancest);
11854 if No (Ancest) then
11855 Ancest := Base_Type (T);
11857 if Is_Generic_Type (Ancest) then
11858 return 0;
11859 end if;
11860 end if;
11861 end loop;
11863 -- Fixed-point types. We can't simply use Expr_Value to get the
11864 -- Corresponding_Integer_Value values of the bounds, since these do not
11865 -- get set till the type is frozen, and this routine can be called
11866 -- before the type is frozen. Similarly the test for bounds being static
11867 -- needs to include the case where we have unanalyzed real literals for
11868 -- the same reason.
11870 elsif Is_Fixed_Point_Type (T) then
11872 -- The following loop is looking for the nearest compile time known
11873 -- bounds following the ancestor subtype chain. The idea is to find
11874 -- the most restrictive known bounds information.
11876 Ancest := T;
11877 loop
11878 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11879 return 0;
11880 end if;
11882 -- Note: In the following two tests for LoSet and HiSet, it may
11883 -- seem redundant to test for N_Real_Literal here since normally
11884 -- one would assume that the test for the value being known at
11885 -- compile time includes this case. However, there is a glitch.
11886 -- If the real literal comes from folding a non-static expression,
11887 -- then we don't consider any non- static expression to be known
11888 -- at compile time if we are in configurable run time mode (needed
11889 -- in some cases to give a clearer definition of what is and what
11890 -- is not accepted). So the test is indeed needed. Without it, we
11891 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
11893 if not LoSet then
11894 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
11895 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
11896 then
11897 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
11898 LoSet := True;
11899 exit when HiSet;
11900 end if;
11901 end if;
11903 if not HiSet then
11904 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
11905 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
11906 then
11907 HiR := Expr_Value_R (Type_High_Bound (Ancest));
11908 HiSet := True;
11909 exit when LoSet;
11910 end if;
11911 end if;
11913 Ancest := Ancestor_Subtype (Ancest);
11915 if No (Ancest) then
11916 Ancest := Base_Type (T);
11918 if Is_Generic_Type (Ancest) then
11919 return 0;
11920 end if;
11921 end if;
11922 end loop;
11924 Lo := UR_To_Uint (LoR / Small_Value (T));
11925 Hi := UR_To_Uint (HiR / Small_Value (T));
11927 -- No other types allowed
11929 else
11930 raise Program_Error;
11931 end if;
11933 -- Fall through with Hi and Lo set. Deal with biased case
11935 if (Biased
11936 and then not Is_Fixed_Point_Type (T)
11937 and then not (Is_Enumeration_Type (T)
11938 and then Has_Non_Standard_Rep (T)))
11939 or else Has_Biased_Representation (T)
11940 then
11941 Hi := Hi - Lo;
11942 Lo := Uint_0;
11943 end if;
11945 -- Null range case, size is always zero. We only do this in the discrete
11946 -- type case, since that's the odd case that came up. Probably we should
11947 -- also do this in the fixed-point case, but doing so causes peculiar
11948 -- gigi failures, and it is not worth worrying about this incredibly
11949 -- marginal case (explicit null-range fixed-point type declarations)???
11951 if Lo > Hi and then Is_Discrete_Type (T) then
11952 S := 0;
11954 -- Signed case. Note that we consider types like range 1 .. -1 to be
11955 -- signed for the purpose of computing the size, since the bounds have
11956 -- to be accommodated in the base type.
11958 elsif Lo < 0 or else Hi < 0 then
11959 S := 1;
11960 B := Uint_1;
11962 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
11963 -- Note that we accommodate the case where the bounds cross. This
11964 -- can happen either because of the way the bounds are declared
11965 -- or because of the algorithm in Freeze_Fixed_Point_Type.
11967 while Lo < -B
11968 or else Hi < -B
11969 or else Lo >= B
11970 or else Hi >= B
11971 loop
11972 B := Uint_2 ** S;
11973 S := S + 1;
11974 end loop;
11976 -- Unsigned case
11978 else
11979 -- If both bounds are positive, make sure that both are represen-
11980 -- table in the case where the bounds are crossed. This can happen
11981 -- either because of the way the bounds are declared, or because of
11982 -- the algorithm in Freeze_Fixed_Point_Type.
11984 if Lo > Hi then
11985 Hi := Lo;
11986 end if;
11988 -- S = size, (can accommodate 0 .. (2**size - 1))
11990 S := 0;
11991 while Hi >= Uint_2 ** S loop
11992 S := S + 1;
11993 end loop;
11994 end if;
11996 return S;
11997 end Minimum_Size;
11999 ---------------------------
12000 -- New_Stream_Subprogram --
12001 ---------------------------
12003 procedure New_Stream_Subprogram
12004 (N : Node_Id;
12005 Ent : Entity_Id;
12006 Subp : Entity_Id;
12007 Nam : TSS_Name_Type)
12009 Loc : constant Source_Ptr := Sloc (N);
12010 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
12011 Subp_Id : Entity_Id;
12012 Subp_Decl : Node_Id;
12013 F : Entity_Id;
12014 Etyp : Entity_Id;
12016 Defer_Declaration : constant Boolean :=
12017 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
12018 -- For a tagged type, there is a declaration for each stream attribute
12019 -- at the freeze point, and we must generate only a completion of this
12020 -- declaration. We do the same for private types, because the full view
12021 -- might be tagged. Otherwise we generate a declaration at the point of
12022 -- the attribute definition clause.
12024 function Build_Spec return Node_Id;
12025 -- Used for declaration and renaming declaration, so that this is
12026 -- treated as a renaming_as_body.
12028 ----------------
12029 -- Build_Spec --
12030 ----------------
12032 function Build_Spec return Node_Id is
12033 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
12034 Formals : List_Id;
12035 Spec : Node_Id;
12036 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
12038 begin
12039 Subp_Id := Make_Defining_Identifier (Loc, Sname);
12041 -- S : access Root_Stream_Type'Class
12043 Formals := New_List (
12044 Make_Parameter_Specification (Loc,
12045 Defining_Identifier =>
12046 Make_Defining_Identifier (Loc, Name_S),
12047 Parameter_Type =>
12048 Make_Access_Definition (Loc,
12049 Subtype_Mark =>
12050 New_Occurrence_Of (
12051 Designated_Type (Etype (F)), Loc))));
12053 if Nam = TSS_Stream_Input then
12054 Spec :=
12055 Make_Function_Specification (Loc,
12056 Defining_Unit_Name => Subp_Id,
12057 Parameter_Specifications => Formals,
12058 Result_Definition => T_Ref);
12059 else
12060 -- V : [out] T
12062 Append_To (Formals,
12063 Make_Parameter_Specification (Loc,
12064 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
12065 Out_Present => Out_P,
12066 Parameter_Type => T_Ref));
12068 Spec :=
12069 Make_Procedure_Specification (Loc,
12070 Defining_Unit_Name => Subp_Id,
12071 Parameter_Specifications => Formals);
12072 end if;
12074 return Spec;
12075 end Build_Spec;
12077 -- Start of processing for New_Stream_Subprogram
12079 begin
12080 F := First_Formal (Subp);
12082 if Ekind (Subp) = E_Procedure then
12083 Etyp := Etype (Next_Formal (F));
12084 else
12085 Etyp := Etype (Subp);
12086 end if;
12088 -- Prepare subprogram declaration and insert it as an action on the
12089 -- clause node. The visibility for this entity is used to test for
12090 -- visibility of the attribute definition clause (in the sense of
12091 -- 8.3(23) as amended by AI-195).
12093 if not Defer_Declaration then
12094 Subp_Decl :=
12095 Make_Subprogram_Declaration (Loc,
12096 Specification => Build_Spec);
12098 -- For a tagged type, there is always a visible declaration for each
12099 -- stream TSS (it is a predefined primitive operation), and the
12100 -- completion of this declaration occurs at the freeze point, which is
12101 -- not always visible at places where the attribute definition clause is
12102 -- visible. So, we create a dummy entity here for the purpose of
12103 -- tracking the visibility of the attribute definition clause itself.
12105 else
12106 Subp_Id :=
12107 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
12108 Subp_Decl :=
12109 Make_Object_Declaration (Loc,
12110 Defining_Identifier => Subp_Id,
12111 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
12112 end if;
12114 Insert_Action (N, Subp_Decl);
12115 Set_Entity (N, Subp_Id);
12117 Subp_Decl :=
12118 Make_Subprogram_Renaming_Declaration (Loc,
12119 Specification => Build_Spec,
12120 Name => New_Occurrence_Of (Subp, Loc));
12122 if Defer_Declaration then
12123 Set_TSS (Base_Type (Ent), Subp_Id);
12124 else
12125 Insert_Action (N, Subp_Decl);
12126 Copy_TSS (Subp_Id, Base_Type (Ent));
12127 end if;
12128 end New_Stream_Subprogram;
12130 ------------------------------------------
12131 -- Push_Scope_And_Install_Discriminants --
12132 ------------------------------------------
12134 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
12135 begin
12136 if Has_Discriminants (E) then
12137 Push_Scope (E);
12139 -- Make discriminants visible for type declarations and protected
12140 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12142 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12143 Install_Discriminants (E);
12144 end if;
12145 end if;
12146 end Push_Scope_And_Install_Discriminants;
12148 ------------------------
12149 -- Rep_Item_Too_Early --
12150 ------------------------
12152 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
12153 begin
12154 -- Cannot apply non-operational rep items to generic types
12156 if Is_Operational_Item (N) then
12157 return False;
12159 elsif Is_Type (T)
12160 and then Is_Generic_Type (Root_Type (T))
12161 and then (Nkind (N) /= N_Pragma
12162 or else Get_Pragma_Id (N) /= Pragma_Convention)
12163 then
12164 Error_Msg_N ("representation item not allowed for generic type", N);
12165 return True;
12166 end if;
12168 -- Otherwise check for incomplete type
12170 if Is_Incomplete_Or_Private_Type (T)
12171 and then No (Underlying_Type (T))
12172 and then
12173 (Nkind (N) /= N_Pragma
12174 or else Get_Pragma_Id (N) /= Pragma_Import)
12175 then
12176 Error_Msg_N
12177 ("representation item must be after full type declaration", N);
12178 return True;
12180 -- If the type has incomplete components, a representation clause is
12181 -- illegal but stream attributes and Convention pragmas are correct.
12183 elsif Has_Private_Component (T) then
12184 if Nkind (N) = N_Pragma then
12185 return False;
12187 else
12188 Error_Msg_N
12189 ("representation item must appear after type is fully defined",
12191 return True;
12192 end if;
12193 else
12194 return False;
12195 end if;
12196 end Rep_Item_Too_Early;
12198 -----------------------
12199 -- Rep_Item_Too_Late --
12200 -----------------------
12202 function Rep_Item_Too_Late
12203 (T : Entity_Id;
12204 N : Node_Id;
12205 FOnly : Boolean := False) return Boolean
12207 S : Entity_Id;
12208 Parent_Type : Entity_Id;
12210 procedure No_Type_Rep_Item;
12211 -- Output message indicating that no type-related aspects can be
12212 -- specified due to some property of the parent type.
12214 procedure Too_Late;
12215 -- Output message for an aspect being specified too late
12217 -- Note that neither of the above errors is considered a serious one,
12218 -- since the effect is simply that we ignore the representation clause
12219 -- in these cases.
12220 -- Is this really true? In any case if we make this change we must
12221 -- document the requirement in the spec of Rep_Item_Too_Late that
12222 -- if True is returned, then the rep item must be completely ignored???
12224 ----------------------
12225 -- No_Type_Rep_Item --
12226 ----------------------
12228 procedure No_Type_Rep_Item is
12229 begin
12230 Error_Msg_N ("|type-related representation item not permitted!", N);
12231 end No_Type_Rep_Item;
12233 --------------
12234 -- Too_Late --
12235 --------------
12237 procedure Too_Late is
12238 begin
12239 -- Other compilers seem more relaxed about rep items appearing too
12240 -- late. Since analysis tools typically don't care about rep items
12241 -- anyway, no reason to be too strict about this.
12243 if not Relaxed_RM_Semantics then
12244 Error_Msg_N ("|representation item appears too late!", N);
12245 end if;
12246 end Too_Late;
12248 -- Start of processing for Rep_Item_Too_Late
12250 begin
12251 -- First make sure entity is not frozen (RM 13.1(9))
12253 if Is_Frozen (T)
12255 -- Exclude imported types, which may be frozen if they appear in a
12256 -- representation clause for a local type.
12258 and then not From_Limited_With (T)
12260 -- Exclude generated entities (not coming from source). The common
12261 -- case is when we generate a renaming which prematurely freezes the
12262 -- renamed internal entity, but we still want to be able to set copies
12263 -- of attribute values such as Size/Alignment.
12265 and then Comes_From_Source (T)
12266 then
12267 Too_Late;
12268 S := First_Subtype (T);
12270 if Present (Freeze_Node (S)) then
12271 if not Relaxed_RM_Semantics then
12272 Error_Msg_NE
12273 ("??no more representation items for }", Freeze_Node (S), S);
12274 end if;
12275 end if;
12277 return True;
12279 -- Check for case of untagged derived type whose parent either has
12280 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12281 -- this case we do not output a Too_Late message, since there is no
12282 -- earlier point where the rep item could be placed to make it legal.
12284 elsif Is_Type (T)
12285 and then not FOnly
12286 and then Is_Derived_Type (T)
12287 and then not Is_Tagged_Type (T)
12288 then
12289 Parent_Type := Etype (Base_Type (T));
12291 if Has_Primitive_Operations (Parent_Type) then
12292 No_Type_Rep_Item;
12294 if not Relaxed_RM_Semantics then
12295 Error_Msg_NE
12296 ("\parent type & has primitive operations!", N, Parent_Type);
12297 end if;
12299 return True;
12301 elsif Is_By_Reference_Type (Parent_Type) then
12302 No_Type_Rep_Item;
12304 if not Relaxed_RM_Semantics then
12305 Error_Msg_NE
12306 ("\parent type & is a by reference type!", N, Parent_Type);
12307 end if;
12309 return True;
12310 end if;
12311 end if;
12313 -- No error, but one more warning to consider. The RM (surprisingly)
12314 -- allows this pattern:
12316 -- type S is ...
12317 -- primitive operations for S
12318 -- type R is new S;
12319 -- rep clause for S
12321 -- Meaning that calls on the primitive operations of S for values of
12322 -- type R may require possibly expensive implicit conversion operations.
12323 -- This is not an error, but is worth a warning.
12325 if not Relaxed_RM_Semantics and then Is_Type (T) then
12326 declare
12327 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12329 begin
12330 if Present (DTL)
12331 and then Has_Primitive_Operations (Base_Type (T))
12333 -- For now, do not generate this warning for the case of aspect
12334 -- specification using Ada 2012 syntax, since we get wrong
12335 -- messages we do not understand. The whole business of derived
12336 -- types and rep items seems a bit confused when aspects are
12337 -- used, since the aspects are not evaluated till freeze time.
12339 and then not From_Aspect_Specification (N)
12340 then
12341 Error_Msg_Sloc := Sloc (DTL);
12342 Error_Msg_N
12343 ("representation item for& appears after derived type "
12344 & "declaration#??", N);
12345 Error_Msg_NE
12346 ("\may result in implicit conversions for primitive "
12347 & "operations of&??", N, T);
12348 Error_Msg_NE
12349 ("\to change representations when called with arguments "
12350 & "of type&??", N, DTL);
12351 end if;
12352 end;
12353 end if;
12355 -- No error, link item into head of chain of rep items for the entity,
12356 -- but avoid chaining if we have an overloadable entity, and the pragma
12357 -- is one that can apply to multiple overloaded entities.
12359 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
12360 declare
12361 Pname : constant Name_Id := Pragma_Name (N);
12362 begin
12363 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12364 Name_External, Name_Interface)
12365 then
12366 return False;
12367 end if;
12368 end;
12369 end if;
12371 Record_Rep_Item (T, N);
12372 return False;
12373 end Rep_Item_Too_Late;
12375 -------------------------------------
12376 -- Replace_Type_References_Generic --
12377 -------------------------------------
12379 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12380 TName : constant Name_Id := Chars (T);
12382 function Replace_Node (N : Node_Id) return Traverse_Result;
12383 -- Processes a single node in the traversal procedure below, checking
12384 -- if node N should be replaced, and if so, doing the replacement.
12386 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
12387 -- This instantiation provides the body of Replace_Type_References
12389 ------------------
12390 -- Replace_Node --
12391 ------------------
12393 function Replace_Node (N : Node_Id) return Traverse_Result is
12394 S : Entity_Id;
12395 P : Node_Id;
12397 begin
12398 -- Case of identifier
12400 if Nkind (N) = N_Identifier then
12402 -- If not the type name, check whether it is a reference to
12403 -- some other type, which must be frozen before the predicate
12404 -- function is analyzed, i.e. before the freeze node of the
12405 -- type to which the predicate applies.
12407 if Chars (N) /= TName then
12408 if Present (Current_Entity (N))
12409 and then Is_Type (Current_Entity (N))
12410 then
12411 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12412 end if;
12414 return Skip;
12416 -- Otherwise do the replacement and we are done with this node
12418 else
12419 Replace_Type_Reference (N);
12420 return Skip;
12421 end if;
12423 -- Case of selected component (which is what a qualification
12424 -- looks like in the unanalyzed tree, which is what we have.
12426 elsif Nkind (N) = N_Selected_Component then
12428 -- If selector name is not our type, keeping going (we might
12429 -- still have an occurrence of the type in the prefix).
12431 if Nkind (Selector_Name (N)) /= N_Identifier
12432 or else Chars (Selector_Name (N)) /= TName
12433 then
12434 return OK;
12436 -- Selector name is our type, check qualification
12438 else
12439 -- Loop through scopes and prefixes, doing comparison
12441 S := Current_Scope;
12442 P := Prefix (N);
12443 loop
12444 -- Continue if no more scopes or scope with no name
12446 if No (S) or else Nkind (S) not in N_Has_Chars then
12447 return OK;
12448 end if;
12450 -- Do replace if prefix is an identifier matching the
12451 -- scope that we are currently looking at.
12453 if Nkind (P) = N_Identifier
12454 and then Chars (P) = Chars (S)
12455 then
12456 Replace_Type_Reference (N);
12457 return Skip;
12458 end if;
12460 -- Go check scope above us if prefix is itself of the
12461 -- form of a selected component, whose selector matches
12462 -- the scope we are currently looking at.
12464 if Nkind (P) = N_Selected_Component
12465 and then Nkind (Selector_Name (P)) = N_Identifier
12466 and then Chars (Selector_Name (P)) = Chars (S)
12467 then
12468 S := Scope (S);
12469 P := Prefix (P);
12471 -- For anything else, we don't have a match, so keep on
12472 -- going, there are still some weird cases where we may
12473 -- still have a replacement within the prefix.
12475 else
12476 return OK;
12477 end if;
12478 end loop;
12479 end if;
12481 -- Continue for any other node kind
12483 else
12484 return OK;
12485 end if;
12486 end Replace_Node;
12488 begin
12489 Replace_Type_Refs (N);
12490 end Replace_Type_References_Generic;
12492 --------------------------------
12493 -- Resolve_Aspect_Expressions --
12494 --------------------------------
12496 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
12497 ASN : Node_Id;
12498 A_Id : Aspect_Id;
12499 Expr : Node_Id;
12501 begin
12502 ASN := First_Rep_Item (E);
12503 while Present (ASN) loop
12504 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
12505 A_Id := Get_Aspect_Id (ASN);
12506 Expr := Expression (ASN);
12508 case A_Id is
12509 -- For now we only deal with aspects that do not generate
12510 -- subprograms, or that may mention current instances of
12511 -- types. These will require special handling (???TBD).
12513 when Aspect_Predicate |
12514 Aspect_Predicate_Failure |
12515 Aspect_Invariant |
12516 Aspect_Static_Predicate |
12517 Aspect_Dynamic_Predicate =>
12518 null;
12520 when Pre_Post_Aspects =>
12521 null;
12523 when Aspect_Iterable =>
12524 if Nkind (Expr) = N_Aggregate then
12525 declare
12526 Assoc : Node_Id;
12528 begin
12529 Assoc := First (Component_Associations (Expr));
12530 while Present (Assoc) loop
12531 Find_Direct_Name (Expression (Assoc));
12532 Next (Assoc);
12533 end loop;
12534 end;
12535 end if;
12537 when others =>
12538 if Present (Expr) then
12539 case Aspect_Argument (A_Id) is
12540 when Expression | Optional_Expression =>
12541 Analyze_And_Resolve (Expression (ASN));
12543 when Name | Optional_Name =>
12544 if Nkind (Expr) = N_Identifier then
12545 Find_Direct_Name (Expr);
12547 elsif Nkind (Expr) = N_Selected_Component then
12548 Find_Selected_Component (Expr);
12550 else
12551 null;
12552 end if;
12553 end case;
12554 end if;
12555 end case;
12556 end if;
12558 ASN := Next_Rep_Item (ASN);
12559 end loop;
12560 end Resolve_Aspect_Expressions;
12562 -------------------------
12563 -- Same_Representation --
12564 -------------------------
12566 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
12567 T1 : constant Entity_Id := Underlying_Type (Typ1);
12568 T2 : constant Entity_Id := Underlying_Type (Typ2);
12570 begin
12571 -- A quick check, if base types are the same, then we definitely have
12572 -- the same representation, because the subtype specific representation
12573 -- attributes (Size and Alignment) do not affect representation from
12574 -- the point of view of this test.
12576 if Base_Type (T1) = Base_Type (T2) then
12577 return True;
12579 elsif Is_Private_Type (Base_Type (T2))
12580 and then Base_Type (T1) = Full_View (Base_Type (T2))
12581 then
12582 return True;
12583 end if;
12585 -- Tagged types never have differing representations
12587 if Is_Tagged_Type (T1) then
12588 return True;
12589 end if;
12591 -- Representations are definitely different if conventions differ
12593 if Convention (T1) /= Convention (T2) then
12594 return False;
12595 end if;
12597 -- Representations are different if component alignments or scalar
12598 -- storage orders differ.
12600 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
12601 and then
12602 (Is_Record_Type (T2) or else Is_Array_Type (T2))
12603 and then
12604 (Component_Alignment (T1) /= Component_Alignment (T2)
12605 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
12606 then
12607 return False;
12608 end if;
12610 -- For arrays, the only real issue is component size. If we know the
12611 -- component size for both arrays, and it is the same, then that's
12612 -- good enough to know we don't have a change of representation.
12614 if Is_Array_Type (T1) then
12615 if Known_Component_Size (T1)
12616 and then Known_Component_Size (T2)
12617 and then Component_Size (T1) = Component_Size (T2)
12618 then
12619 return True;
12620 end if;
12621 end if;
12623 -- Types definitely have same representation if neither has non-standard
12624 -- representation since default representations are always consistent.
12625 -- If only one has non-standard representation, and the other does not,
12626 -- then we consider that they do not have the same representation. They
12627 -- might, but there is no way of telling early enough.
12629 if Has_Non_Standard_Rep (T1) then
12630 if not Has_Non_Standard_Rep (T2) then
12631 return False;
12632 end if;
12633 else
12634 return not Has_Non_Standard_Rep (T2);
12635 end if;
12637 -- Here the two types both have non-standard representation, and we need
12638 -- to determine if they have the same non-standard representation.
12640 -- For arrays, we simply need to test if the component sizes are the
12641 -- same. Pragma Pack is reflected in modified component sizes, so this
12642 -- check also deals with pragma Pack.
12644 if Is_Array_Type (T1) then
12645 return Component_Size (T1) = Component_Size (T2);
12647 -- Tagged types always have the same representation, because it is not
12648 -- possible to specify different representations for common fields.
12650 elsif Is_Tagged_Type (T1) then
12651 return True;
12653 -- Case of record types
12655 elsif Is_Record_Type (T1) then
12657 -- Packed status must conform
12659 if Is_Packed (T1) /= Is_Packed (T2) then
12660 return False;
12662 -- Otherwise we must check components. Typ2 maybe a constrained
12663 -- subtype with fewer components, so we compare the components
12664 -- of the base types.
12666 else
12667 Record_Case : declare
12668 CD1, CD2 : Entity_Id;
12670 function Same_Rep return Boolean;
12671 -- CD1 and CD2 are either components or discriminants. This
12672 -- function tests whether they have the same representation.
12674 --------------
12675 -- Same_Rep --
12676 --------------
12678 function Same_Rep return Boolean is
12679 begin
12680 if No (Component_Clause (CD1)) then
12681 return No (Component_Clause (CD2));
12682 else
12683 -- Note: at this point, component clauses have been
12684 -- normalized to the default bit order, so that the
12685 -- comparison of Component_Bit_Offsets is meaningful.
12687 return
12688 Present (Component_Clause (CD2))
12689 and then
12690 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
12691 and then
12692 Esize (CD1) = Esize (CD2);
12693 end if;
12694 end Same_Rep;
12696 -- Start of processing for Record_Case
12698 begin
12699 if Has_Discriminants (T1) then
12701 -- The number of discriminants may be different if the
12702 -- derived type has fewer (constrained by values). The
12703 -- invisible discriminants retain the representation of
12704 -- the original, so the discrepancy does not per se
12705 -- indicate a different representation.
12707 CD1 := First_Discriminant (T1);
12708 CD2 := First_Discriminant (T2);
12709 while Present (CD1) and then Present (CD2) loop
12710 if not Same_Rep then
12711 return False;
12712 else
12713 Next_Discriminant (CD1);
12714 Next_Discriminant (CD2);
12715 end if;
12716 end loop;
12717 end if;
12719 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
12720 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
12721 while Present (CD1) loop
12722 if not Same_Rep then
12723 return False;
12724 else
12725 Next_Component (CD1);
12726 Next_Component (CD2);
12727 end if;
12728 end loop;
12730 return True;
12731 end Record_Case;
12732 end if;
12734 -- For enumeration types, we must check each literal to see if the
12735 -- representation is the same. Note that we do not permit enumeration
12736 -- representation clauses for Character and Wide_Character, so these
12737 -- cases were already dealt with.
12739 elsif Is_Enumeration_Type (T1) then
12740 Enumeration_Case : declare
12741 L1, L2 : Entity_Id;
12743 begin
12744 L1 := First_Literal (T1);
12745 L2 := First_Literal (T2);
12746 while Present (L1) loop
12747 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
12748 return False;
12749 else
12750 Next_Literal (L1);
12751 Next_Literal (L2);
12752 end if;
12753 end loop;
12755 return True;
12756 end Enumeration_Case;
12758 -- Any other types have the same representation for these purposes
12760 else
12761 return True;
12762 end if;
12763 end Same_Representation;
12765 --------------------------------
12766 -- Resolve_Iterable_Operation --
12767 --------------------------------
12769 procedure Resolve_Iterable_Operation
12770 (N : Node_Id;
12771 Cursor : Entity_Id;
12772 Typ : Entity_Id;
12773 Nam : Name_Id)
12775 Ent : Entity_Id;
12776 F1 : Entity_Id;
12777 F2 : Entity_Id;
12779 begin
12780 if not Is_Overloaded (N) then
12781 if not Is_Entity_Name (N)
12782 or else Ekind (Entity (N)) /= E_Function
12783 or else Scope (Entity (N)) /= Scope (Typ)
12784 or else No (First_Formal (Entity (N)))
12785 or else Etype (First_Formal (Entity (N))) /= Typ
12786 then
12787 Error_Msg_N ("iterable primitive must be local function name "
12788 & "whose first formal is an iterable type", N);
12789 return;
12790 end if;
12792 Ent := Entity (N);
12793 F1 := First_Formal (Ent);
12794 if Nam = Name_First then
12796 -- First (Container) => Cursor
12798 if Etype (Ent) /= Cursor then
12799 Error_Msg_N ("primitive for First must yield a curosr", N);
12800 end if;
12802 elsif Nam = Name_Next then
12804 -- Next (Container, Cursor) => Cursor
12806 F2 := Next_Formal (F1);
12808 if Etype (F2) /= Cursor
12809 or else Etype (Ent) /= Cursor
12810 or else Present (Next_Formal (F2))
12811 then
12812 Error_Msg_N ("no match for Next iterable primitive", N);
12813 end if;
12815 elsif Nam = Name_Has_Element then
12817 -- Has_Element (Container, Cursor) => Boolean
12819 F2 := Next_Formal (F1);
12820 if Etype (F2) /= Cursor
12821 or else Etype (Ent) /= Standard_Boolean
12822 or else Present (Next_Formal (F2))
12823 then
12824 Error_Msg_N ("no match for Has_Element iterable primitive", N);
12825 end if;
12827 elsif Nam = Name_Element then
12828 F2 := Next_Formal (F1);
12830 if No (F2)
12831 or else Etype (F2) /= Cursor
12832 or else Present (Next_Formal (F2))
12833 then
12834 Error_Msg_N ("no match for Element iterable primitive", N);
12835 end if;
12836 null;
12838 else
12839 raise Program_Error;
12840 end if;
12842 else
12843 -- Overloaded case: find subprogram with proper signature.
12844 -- Caller will report error if no match is found.
12846 declare
12847 I : Interp_Index;
12848 It : Interp;
12850 begin
12851 Get_First_Interp (N, I, It);
12852 while Present (It.Typ) loop
12853 if Ekind (It.Nam) = E_Function
12854 and then Scope (It.Nam) = Scope (Typ)
12855 and then Etype (First_Formal (It.Nam)) = Typ
12856 then
12857 F1 := First_Formal (It.Nam);
12859 if Nam = Name_First then
12860 if Etype (It.Nam) = Cursor
12861 and then No (Next_Formal (F1))
12862 then
12863 Set_Entity (N, It.Nam);
12864 exit;
12865 end if;
12867 elsif Nam = Name_Next then
12868 F2 := Next_Formal (F1);
12870 if Present (F2)
12871 and then No (Next_Formal (F2))
12872 and then Etype (F2) = Cursor
12873 and then Etype (It.Nam) = Cursor
12874 then
12875 Set_Entity (N, It.Nam);
12876 exit;
12877 end if;
12879 elsif Nam = Name_Has_Element then
12880 F2 := Next_Formal (F1);
12882 if Present (F2)
12883 and then No (Next_Formal (F2))
12884 and then Etype (F2) = Cursor
12885 and then Etype (It.Nam) = Standard_Boolean
12886 then
12887 Set_Entity (N, It.Nam);
12888 F2 := Next_Formal (F1);
12889 exit;
12890 end if;
12892 elsif Nam = Name_Element then
12893 F2 := Next_Formal (F1);
12895 if Present (F2)
12896 and then No (Next_Formal (F2))
12897 and then Etype (F2) = Cursor
12898 then
12899 Set_Entity (N, It.Nam);
12900 exit;
12901 end if;
12902 end if;
12903 end if;
12905 Get_Next_Interp (I, It);
12906 end loop;
12907 end;
12908 end if;
12909 end Resolve_Iterable_Operation;
12911 ----------------
12912 -- Set_Biased --
12913 ----------------
12915 procedure Set_Biased
12916 (E : Entity_Id;
12917 N : Node_Id;
12918 Msg : String;
12919 Biased : Boolean := True)
12921 begin
12922 if Biased then
12923 Set_Has_Biased_Representation (E);
12925 if Warn_On_Biased_Representation then
12926 Error_Msg_NE
12927 ("?B?" & Msg & " forces biased representation for&", N, E);
12928 end if;
12929 end if;
12930 end Set_Biased;
12932 --------------------
12933 -- Set_Enum_Esize --
12934 --------------------
12936 procedure Set_Enum_Esize (T : Entity_Id) is
12937 Lo : Uint;
12938 Hi : Uint;
12939 Sz : Nat;
12941 begin
12942 Init_Alignment (T);
12944 -- Find the minimum standard size (8,16,32,64) that fits
12946 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
12947 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
12949 if Lo < 0 then
12950 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
12951 Sz := Standard_Character_Size; -- May be > 8 on some targets
12953 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
12954 Sz := 16;
12956 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
12957 Sz := 32;
12959 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
12960 Sz := 64;
12961 end if;
12963 else
12964 if Hi < Uint_2**08 then
12965 Sz := Standard_Character_Size; -- May be > 8 on some targets
12967 elsif Hi < Uint_2**16 then
12968 Sz := 16;
12970 elsif Hi < Uint_2**32 then
12971 Sz := 32;
12973 else pragma Assert (Hi < Uint_2**63);
12974 Sz := 64;
12975 end if;
12976 end if;
12978 -- That minimum is the proper size unless we have a foreign convention
12979 -- and the size required is 32 or less, in which case we bump the size
12980 -- up to 32. This is required for C and C++ and seems reasonable for
12981 -- all other foreign conventions.
12983 if Has_Foreign_Convention (T)
12984 and then Esize (T) < Standard_Integer_Size
12986 -- Don't do this if Short_Enums on target
12988 and then not Target_Short_Enums
12989 then
12990 Init_Esize (T, Standard_Integer_Size);
12991 else
12992 Init_Esize (T, Sz);
12993 end if;
12994 end Set_Enum_Esize;
12996 -----------------------------
12997 -- Uninstall_Discriminants --
12998 -----------------------------
13000 procedure Uninstall_Discriminants (E : Entity_Id) is
13001 Disc : Entity_Id;
13002 Prev : Entity_Id;
13003 Outer : Entity_Id;
13005 begin
13006 -- Discriminants have been made visible for type declarations and
13007 -- protected type declarations, not for subtype declarations.
13009 if Nkind (Parent (E)) /= N_Subtype_Declaration then
13010 Disc := First_Discriminant (E);
13011 while Present (Disc) loop
13012 if Disc /= Current_Entity (Disc) then
13013 Prev := Current_Entity (Disc);
13014 while Present (Prev)
13015 and then Present (Homonym (Prev))
13016 and then Homonym (Prev) /= Disc
13017 loop
13018 Prev := Homonym (Prev);
13019 end loop;
13020 else
13021 Prev := Empty;
13022 end if;
13024 Set_Is_Immediately_Visible (Disc, False);
13026 Outer := Homonym (Disc);
13027 while Present (Outer) and then Scope (Outer) = E loop
13028 Outer := Homonym (Outer);
13029 end loop;
13031 -- Reset homonym link of other entities, but do not modify link
13032 -- between entities in current scope, so that the back end can
13033 -- have a proper count of local overloadings.
13035 if No (Prev) then
13036 Set_Name_Entity_Id (Chars (Disc), Outer);
13038 elsif Scope (Prev) /= Scope (Disc) then
13039 Set_Homonym (Prev, Outer);
13040 end if;
13042 Next_Discriminant (Disc);
13043 end loop;
13044 end if;
13045 end Uninstall_Discriminants;
13047 -------------------------------------------
13048 -- Uninstall_Discriminants_And_Pop_Scope --
13049 -------------------------------------------
13051 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
13052 begin
13053 if Has_Discriminants (E) then
13054 Uninstall_Discriminants (E);
13055 Pop_Scope;
13056 end if;
13057 end Uninstall_Discriminants_And_Pop_Scope;
13059 ------------------------------
13060 -- Validate_Address_Clauses --
13061 ------------------------------
13063 procedure Validate_Address_Clauses is
13064 begin
13065 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
13066 declare
13067 ACCR : Address_Clause_Check_Record
13068 renames Address_Clause_Checks.Table (J);
13070 Expr : Node_Id;
13072 X_Alignment : Uint;
13073 Y_Alignment : Uint;
13075 X_Size : Uint;
13076 Y_Size : Uint;
13078 begin
13079 -- Skip processing of this entry if warning already posted
13081 if not Address_Warning_Posted (ACCR.N) then
13082 Expr := Original_Node (Expression (ACCR.N));
13084 -- Get alignments
13086 X_Alignment := Alignment (ACCR.X);
13087 Y_Alignment := Alignment (ACCR.Y);
13089 -- Similarly obtain sizes
13091 X_Size := Esize (ACCR.X);
13092 Y_Size := Esize (ACCR.Y);
13094 -- Check for large object overlaying smaller one
13096 if Y_Size > Uint_0
13097 and then X_Size > Uint_0
13098 and then X_Size > Y_Size
13099 then
13100 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
13101 Error_Msg_N
13102 ("\??program execution may be erroneous", ACCR.N);
13104 Error_Msg_Uint_1 := X_Size;
13105 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
13107 Error_Msg_Uint_1 := Y_Size;
13108 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
13110 -- Check for inadequate alignment, both of the base object
13111 -- and of the offset, if any. We only do this check if the
13112 -- run-time Alignment_Check is active. No point in warning
13113 -- if this check has been suppressed (or is suppressed by
13114 -- default in the non-strict alignment machine case).
13116 -- Note: we do not check the alignment if we gave a size
13117 -- warning, since it would likely be redundant.
13119 elsif not Alignment_Checks_Suppressed (ACCR.Y)
13120 and then Y_Alignment /= Uint_0
13121 and then
13122 (Y_Alignment < X_Alignment
13123 or else
13124 (ACCR.Off
13125 and then Nkind (Expr) = N_Attribute_Reference
13126 and then Attribute_Name (Expr) = Name_Address
13127 and then Has_Compatible_Alignment
13128 (ACCR.X, Prefix (Expr), True) /=
13129 Known_Compatible))
13130 then
13131 Error_Msg_NE
13132 ("??specified address for& may be inconsistent with "
13133 & "alignment", ACCR.N, ACCR.X);
13134 Error_Msg_N
13135 ("\??program execution may be erroneous (RM 13.3(27))",
13136 ACCR.N);
13138 Error_Msg_Uint_1 := X_Alignment;
13139 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13141 Error_Msg_Uint_1 := Y_Alignment;
13142 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
13144 if Y_Alignment >= X_Alignment then
13145 Error_Msg_N
13146 ("\??but offset is not multiple of alignment", ACCR.N);
13147 end if;
13148 end if;
13149 end if;
13150 end;
13151 end loop;
13152 end Validate_Address_Clauses;
13154 ---------------------------
13155 -- Validate_Independence --
13156 ---------------------------
13158 procedure Validate_Independence is
13159 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13160 N : Node_Id;
13161 E : Entity_Id;
13162 IC : Boolean;
13163 Comp : Entity_Id;
13164 Addr : Node_Id;
13165 P : Node_Id;
13167 procedure Check_Array_Type (Atyp : Entity_Id);
13168 -- Checks if the array type Atyp has independent components, and
13169 -- if not, outputs an appropriate set of error messages.
13171 procedure No_Independence;
13172 -- Output message that independence cannot be guaranteed
13174 function OK_Component (C : Entity_Id) return Boolean;
13175 -- Checks one component to see if it is independently accessible, and
13176 -- if so yields True, otherwise yields False if independent access
13177 -- cannot be guaranteed. This is a conservative routine, it only
13178 -- returns True if it knows for sure, it returns False if it knows
13179 -- there is a problem, or it cannot be sure there is no problem.
13181 procedure Reason_Bad_Component (C : Entity_Id);
13182 -- Outputs continuation message if a reason can be determined for
13183 -- the component C being bad.
13185 ----------------------
13186 -- Check_Array_Type --
13187 ----------------------
13189 procedure Check_Array_Type (Atyp : Entity_Id) is
13190 Ctyp : constant Entity_Id := Component_Type (Atyp);
13192 begin
13193 -- OK if no alignment clause, no pack, and no component size
13195 if not Has_Component_Size_Clause (Atyp)
13196 and then not Has_Alignment_Clause (Atyp)
13197 and then not Is_Packed (Atyp)
13198 then
13199 return;
13200 end if;
13202 -- Case of component size is greater than or equal to 64 and the
13203 -- alignment of the array is at least as large as the alignment
13204 -- of the component. We are definitely OK in this situation.
13206 if Known_Component_Size (Atyp)
13207 and then Component_Size (Atyp) >= 64
13208 and then Known_Alignment (Atyp)
13209 and then Known_Alignment (Ctyp)
13210 and then Alignment (Atyp) >= Alignment (Ctyp)
13211 then
13212 return;
13213 end if;
13215 -- Check actual component size
13217 if not Known_Component_Size (Atyp)
13218 or else not (Addressable (Component_Size (Atyp))
13219 and then Component_Size (Atyp) < 64)
13220 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13221 then
13222 No_Independence;
13224 -- Bad component size, check reason
13226 if Has_Component_Size_Clause (Atyp) then
13227 P := Get_Attribute_Definition_Clause
13228 (Atyp, Attribute_Component_Size);
13230 if Present (P) then
13231 Error_Msg_Sloc := Sloc (P);
13232 Error_Msg_N ("\because of Component_Size clause#", N);
13233 return;
13234 end if;
13235 end if;
13237 if Is_Packed (Atyp) then
13238 P := Get_Rep_Pragma (Atyp, Name_Pack);
13240 if Present (P) then
13241 Error_Msg_Sloc := Sloc (P);
13242 Error_Msg_N ("\because of pragma Pack#", N);
13243 return;
13244 end if;
13245 end if;
13247 -- No reason found, just return
13249 return;
13250 end if;
13252 -- Array type is OK independence-wise
13254 return;
13255 end Check_Array_Type;
13257 ---------------------
13258 -- No_Independence --
13259 ---------------------
13261 procedure No_Independence is
13262 begin
13263 if Pragma_Name (N) = Name_Independent then
13264 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
13265 else
13266 Error_Msg_NE
13267 ("independent components cannot be guaranteed for&", N, E);
13268 end if;
13269 end No_Independence;
13271 ------------------
13272 -- OK_Component --
13273 ------------------
13275 function OK_Component (C : Entity_Id) return Boolean is
13276 Rec : constant Entity_Id := Scope (C);
13277 Ctyp : constant Entity_Id := Etype (C);
13279 begin
13280 -- OK if no component clause, no Pack, and no alignment clause
13282 if No (Component_Clause (C))
13283 and then not Is_Packed (Rec)
13284 and then not Has_Alignment_Clause (Rec)
13285 then
13286 return True;
13287 end if;
13289 -- Here we look at the actual component layout. A component is
13290 -- addressable if its size is a multiple of the Esize of the
13291 -- component type, and its starting position in the record has
13292 -- appropriate alignment, and the record itself has appropriate
13293 -- alignment to guarantee the component alignment.
13295 -- Make sure sizes are static, always assume the worst for any
13296 -- cases where we cannot check static values.
13298 if not (Known_Static_Esize (C)
13299 and then
13300 Known_Static_Esize (Ctyp))
13301 then
13302 return False;
13303 end if;
13305 -- Size of component must be addressable or greater than 64 bits
13306 -- and a multiple of bytes.
13308 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13309 return False;
13310 end if;
13312 -- Check size is proper multiple
13314 if Esize (C) mod Esize (Ctyp) /= 0 then
13315 return False;
13316 end if;
13318 -- Check alignment of component is OK
13320 if not Known_Component_Bit_Offset (C)
13321 or else Component_Bit_Offset (C) < Uint_0
13322 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13323 then
13324 return False;
13325 end if;
13327 -- Check alignment of record type is OK
13329 if not Known_Alignment (Rec)
13330 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13331 then
13332 return False;
13333 end if;
13335 -- All tests passed, component is addressable
13337 return True;
13338 end OK_Component;
13340 --------------------------
13341 -- Reason_Bad_Component --
13342 --------------------------
13344 procedure Reason_Bad_Component (C : Entity_Id) is
13345 Rec : constant Entity_Id := Scope (C);
13346 Ctyp : constant Entity_Id := Etype (C);
13348 begin
13349 -- If component clause present assume that's the problem
13351 if Present (Component_Clause (C)) then
13352 Error_Msg_Sloc := Sloc (Component_Clause (C));
13353 Error_Msg_N ("\because of Component_Clause#", N);
13354 return;
13355 end if;
13357 -- If pragma Pack clause present, assume that's the problem
13359 if Is_Packed (Rec) then
13360 P := Get_Rep_Pragma (Rec, Name_Pack);
13362 if Present (P) then
13363 Error_Msg_Sloc := Sloc (P);
13364 Error_Msg_N ("\because of pragma Pack#", N);
13365 return;
13366 end if;
13367 end if;
13369 -- See if record has bad alignment clause
13371 if Has_Alignment_Clause (Rec)
13372 and then Known_Alignment (Rec)
13373 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13374 then
13375 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13377 if Present (P) then
13378 Error_Msg_Sloc := Sloc (P);
13379 Error_Msg_N ("\because of Alignment clause#", N);
13380 end if;
13381 end if;
13383 -- Couldn't find a reason, so return without a message
13385 return;
13386 end Reason_Bad_Component;
13388 -- Start of processing for Validate_Independence
13390 begin
13391 for J in Independence_Checks.First .. Independence_Checks.Last loop
13392 N := Independence_Checks.Table (J).N;
13393 E := Independence_Checks.Table (J).E;
13394 IC := Pragma_Name (N) = Name_Independent_Components;
13396 -- Deal with component case
13398 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
13399 if not OK_Component (E) then
13400 No_Independence;
13401 Reason_Bad_Component (E);
13402 goto Continue;
13403 end if;
13404 end if;
13406 -- Deal with record with Independent_Components
13408 if IC and then Is_Record_Type (E) then
13409 Comp := First_Component_Or_Discriminant (E);
13410 while Present (Comp) loop
13411 if not OK_Component (Comp) then
13412 No_Independence;
13413 Reason_Bad_Component (Comp);
13414 goto Continue;
13415 end if;
13417 Next_Component_Or_Discriminant (Comp);
13418 end loop;
13419 end if;
13421 -- Deal with address clause case
13423 if Is_Object (E) then
13424 Addr := Address_Clause (E);
13426 if Present (Addr) then
13427 No_Independence;
13428 Error_Msg_Sloc := Sloc (Addr);
13429 Error_Msg_N ("\because of Address clause#", N);
13430 goto Continue;
13431 end if;
13432 end if;
13434 -- Deal with independent components for array type
13436 if IC and then Is_Array_Type (E) then
13437 Check_Array_Type (E);
13438 end if;
13440 -- Deal with independent components for array object
13442 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
13443 Check_Array_Type (Etype (E));
13444 end if;
13446 <<Continue>> null;
13447 end loop;
13448 end Validate_Independence;
13450 ------------------------------
13451 -- Validate_Iterable_Aspect --
13452 ------------------------------
13454 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
13455 Assoc : Node_Id;
13456 Expr : Node_Id;
13458 Prim : Node_Id;
13459 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
13461 First_Id : Entity_Id;
13462 Next_Id : Entity_Id;
13463 Has_Element_Id : Entity_Id;
13464 Element_Id : Entity_Id;
13466 begin
13467 -- If previous error aspect is unusable
13469 if Cursor = Any_Type then
13470 return;
13471 end if;
13473 First_Id := Empty;
13474 Next_Id := Empty;
13475 Has_Element_Id := Empty;
13476 Element_Id := Empty;
13478 -- Each expression must resolve to a function with the proper signature
13480 Assoc := First (Component_Associations (Expression (ASN)));
13481 while Present (Assoc) loop
13482 Expr := Expression (Assoc);
13483 Analyze (Expr);
13485 Prim := First (Choices (Assoc));
13487 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
13488 Error_Msg_N ("illegal name in association", Prim);
13490 elsif Chars (Prim) = Name_First then
13491 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
13492 First_Id := Entity (Expr);
13494 elsif Chars (Prim) = Name_Next then
13495 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
13496 Next_Id := Entity (Expr);
13498 elsif Chars (Prim) = Name_Has_Element then
13499 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
13500 Has_Element_Id := Entity (Expr);
13502 elsif Chars (Prim) = Name_Element then
13503 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
13504 Element_Id := Entity (Expr);
13506 else
13507 Error_Msg_N ("invalid name for iterable function", Prim);
13508 end if;
13510 Next (Assoc);
13511 end loop;
13513 if No (First_Id) then
13514 Error_Msg_N ("match for First primitive not found", ASN);
13516 elsif No (Next_Id) then
13517 Error_Msg_N ("match for Next primitive not found", ASN);
13519 elsif No (Has_Element_Id) then
13520 Error_Msg_N ("match for Has_Element primitive not found", ASN);
13522 elsif No (Element_Id) then
13523 null; -- Optional.
13524 end if;
13525 end Validate_Iterable_Aspect;
13527 -----------------------------------
13528 -- Validate_Unchecked_Conversion --
13529 -----------------------------------
13531 procedure Validate_Unchecked_Conversion
13532 (N : Node_Id;
13533 Act_Unit : Entity_Id)
13535 Source : Entity_Id;
13536 Target : Entity_Id;
13537 Vnode : Node_Id;
13539 begin
13540 -- Obtain source and target types. Note that we call Ancestor_Subtype
13541 -- here because the processing for generic instantiation always makes
13542 -- subtypes, and we want the original frozen actual types.
13544 -- If we are dealing with private types, then do the check on their
13545 -- fully declared counterparts if the full declarations have been
13546 -- encountered (they don't have to be visible, but they must exist).
13548 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
13550 if Is_Private_Type (Source)
13551 and then Present (Underlying_Type (Source))
13552 then
13553 Source := Underlying_Type (Source);
13554 end if;
13556 Target := Ancestor_Subtype (Etype (Act_Unit));
13558 -- If either type is generic, the instantiation happens within a generic
13559 -- unit, and there is nothing to check. The proper check will happen
13560 -- when the enclosing generic is instantiated.
13562 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
13563 return;
13564 end if;
13566 if Is_Private_Type (Target)
13567 and then Present (Underlying_Type (Target))
13568 then
13569 Target := Underlying_Type (Target);
13570 end if;
13572 -- Source may be unconstrained array, but not target, except in relaxed
13573 -- semantics mode.
13575 if Is_Array_Type (Target)
13576 and then not Is_Constrained (Target)
13577 and then not Relaxed_RM_Semantics
13578 then
13579 Error_Msg_N
13580 ("unchecked conversion to unconstrained array not allowed", N);
13581 return;
13582 end if;
13584 -- Warn if conversion between two different convention pointers
13586 if Is_Access_Type (Target)
13587 and then Is_Access_Type (Source)
13588 and then Convention (Target) /= Convention (Source)
13589 and then Warn_On_Unchecked_Conversion
13590 then
13591 -- Give warnings for subprogram pointers only on most targets
13593 if Is_Access_Subprogram_Type (Target)
13594 or else Is_Access_Subprogram_Type (Source)
13595 then
13596 Error_Msg_N
13597 ("?z?conversion between pointers with different conventions!",
13599 end if;
13600 end if;
13602 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
13603 -- warning when compiling GNAT-related sources.
13605 if Warn_On_Unchecked_Conversion
13606 and then not In_Predefined_Unit (N)
13607 and then RTU_Loaded (Ada_Calendar)
13608 and then (Chars (Source) = Name_Time
13609 or else
13610 Chars (Target) = Name_Time)
13611 then
13612 -- If Ada.Calendar is loaded and the name of one of the operands is
13613 -- Time, there is a good chance that this is Ada.Calendar.Time.
13615 declare
13616 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
13617 begin
13618 pragma Assert (Present (Calendar_Time));
13620 if Source = Calendar_Time or else Target = Calendar_Time then
13621 Error_Msg_N
13622 ("?z?representation of 'Time values may change between "
13623 & "'G'N'A'T versions", N);
13624 end if;
13625 end;
13626 end if;
13628 -- Make entry in unchecked conversion table for later processing by
13629 -- Validate_Unchecked_Conversions, which will check sizes and alignments
13630 -- (using values set by the back end where possible). This is only done
13631 -- if the appropriate warning is active.
13633 if Warn_On_Unchecked_Conversion then
13634 Unchecked_Conversions.Append
13635 (New_Val => UC_Entry'(Eloc => Sloc (N),
13636 Source => Source,
13637 Target => Target,
13638 Act_Unit => Act_Unit));
13640 -- If both sizes are known statically now, then back end annotation
13641 -- is not required to do a proper check but if either size is not
13642 -- known statically, then we need the annotation.
13644 if Known_Static_RM_Size (Source)
13645 and then
13646 Known_Static_RM_Size (Target)
13647 then
13648 null;
13649 else
13650 Back_Annotate_Rep_Info := True;
13651 end if;
13652 end if;
13654 -- If unchecked conversion to access type, and access type is declared
13655 -- in the same unit as the unchecked conversion, then set the flag
13656 -- No_Strict_Aliasing (no strict aliasing is implicit here)
13658 if Is_Access_Type (Target) and then
13659 In_Same_Source_Unit (Target, N)
13660 then
13661 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
13662 end if;
13664 -- Generate N_Validate_Unchecked_Conversion node for back end in case
13665 -- the back end needs to perform special validation checks.
13667 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
13668 -- have full expansion and the back end is called ???
13670 Vnode :=
13671 Make_Validate_Unchecked_Conversion (Sloc (N));
13672 Set_Source_Type (Vnode, Source);
13673 Set_Target_Type (Vnode, Target);
13675 -- If the unchecked conversion node is in a list, just insert before it.
13676 -- If not we have some strange case, not worth bothering about.
13678 if Is_List_Member (N) then
13679 Insert_After (N, Vnode);
13680 end if;
13681 end Validate_Unchecked_Conversion;
13683 ------------------------------------
13684 -- Validate_Unchecked_Conversions --
13685 ------------------------------------
13687 procedure Validate_Unchecked_Conversions is
13688 begin
13689 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
13690 declare
13691 T : UC_Entry renames Unchecked_Conversions.Table (N);
13693 Eloc : constant Source_Ptr := T.Eloc;
13694 Source : constant Entity_Id := T.Source;
13695 Target : constant Entity_Id := T.Target;
13696 Act_Unit : constant Entity_Id := T.Act_Unit;
13698 Source_Siz : Uint;
13699 Target_Siz : Uint;
13701 begin
13702 -- Skip if function marked as warnings off
13704 if Warnings_Off (Act_Unit) then
13705 goto Continue;
13706 end if;
13708 -- This validation check, which warns if we have unequal sizes for
13709 -- unchecked conversion, and thus potentially implementation
13710 -- dependent semantics, is one of the few occasions on which we
13711 -- use the official RM size instead of Esize. See description in
13712 -- Einfo "Handling of Type'Size Values" for details.
13714 if Serious_Errors_Detected = 0
13715 and then Known_Static_RM_Size (Source)
13716 and then Known_Static_RM_Size (Target)
13718 -- Don't do the check if warnings off for either type, note the
13719 -- deliberate use of OR here instead of OR ELSE to get the flag
13720 -- Warnings_Off_Used set for both types if appropriate.
13722 and then not (Has_Warnings_Off (Source)
13724 Has_Warnings_Off (Target))
13725 then
13726 Source_Siz := RM_Size (Source);
13727 Target_Siz := RM_Size (Target);
13729 if Source_Siz /= Target_Siz then
13730 Error_Msg
13731 ("?z?types for unchecked conversion have different sizes!",
13732 Eloc);
13734 if All_Errors_Mode then
13735 Error_Msg_Name_1 := Chars (Source);
13736 Error_Msg_Uint_1 := Source_Siz;
13737 Error_Msg_Name_2 := Chars (Target);
13738 Error_Msg_Uint_2 := Target_Siz;
13739 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
13741 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
13743 if Is_Discrete_Type (Source)
13744 and then
13745 Is_Discrete_Type (Target)
13746 then
13747 if Source_Siz > Target_Siz then
13748 Error_Msg
13749 ("\?z?^ high order bits of source will "
13750 & "be ignored!", Eloc);
13752 elsif Is_Unsigned_Type (Source) then
13753 Error_Msg
13754 ("\?z?source will be extended with ^ high order "
13755 & "zero bits!", Eloc);
13757 else
13758 Error_Msg
13759 ("\?z?source will be extended with ^ high order "
13760 & "sign bits!", Eloc);
13761 end if;
13763 elsif Source_Siz < Target_Siz then
13764 if Is_Discrete_Type (Target) then
13765 if Bytes_Big_Endian then
13766 Error_Msg
13767 ("\?z?target value will include ^ undefined "
13768 & "low order bits!", Eloc);
13769 else
13770 Error_Msg
13771 ("\?z?target value will include ^ undefined "
13772 & "high order bits!", Eloc);
13773 end if;
13775 else
13776 Error_Msg
13777 ("\?z?^ trailing bits of target value will be "
13778 & "undefined!", Eloc);
13779 end if;
13781 else pragma Assert (Source_Siz > Target_Siz);
13782 if Is_Discrete_Type (Source) then
13783 if Bytes_Big_Endian then
13784 Error_Msg
13785 ("\?z?^ low order bits of source will be "
13786 & "ignored!", Eloc);
13787 else
13788 Error_Msg
13789 ("\?z?^ high order bits of source will be "
13790 & "ignored!", Eloc);
13791 end if;
13793 else
13794 Error_Msg
13795 ("\?z?^ trailing bits of source will be "
13796 & "ignored!", Eloc);
13797 end if;
13798 end if;
13799 end if;
13800 end if;
13801 end if;
13803 -- If both types are access types, we need to check the alignment.
13804 -- If the alignment of both is specified, we can do it here.
13806 if Serious_Errors_Detected = 0
13807 and then Is_Access_Type (Source)
13808 and then Is_Access_Type (Target)
13809 and then Target_Strict_Alignment
13810 and then Present (Designated_Type (Source))
13811 and then Present (Designated_Type (Target))
13812 then
13813 declare
13814 D_Source : constant Entity_Id := Designated_Type (Source);
13815 D_Target : constant Entity_Id := Designated_Type (Target);
13817 begin
13818 if Known_Alignment (D_Source)
13819 and then
13820 Known_Alignment (D_Target)
13821 then
13822 declare
13823 Source_Align : constant Uint := Alignment (D_Source);
13824 Target_Align : constant Uint := Alignment (D_Target);
13826 begin
13827 if Source_Align < Target_Align
13828 and then not Is_Tagged_Type (D_Source)
13830 -- Suppress warning if warnings suppressed on either
13831 -- type or either designated type. Note the use of
13832 -- OR here instead of OR ELSE. That is intentional,
13833 -- we would like to set flag Warnings_Off_Used in
13834 -- all types for which warnings are suppressed.
13836 and then not (Has_Warnings_Off (D_Source)
13838 Has_Warnings_Off (D_Target)
13840 Has_Warnings_Off (Source)
13842 Has_Warnings_Off (Target))
13843 then
13844 Error_Msg_Uint_1 := Target_Align;
13845 Error_Msg_Uint_2 := Source_Align;
13846 Error_Msg_Node_1 := D_Target;
13847 Error_Msg_Node_2 := D_Source;
13848 Error_Msg
13849 ("?z?alignment of & (^) is stricter than "
13850 & "alignment of & (^)!", Eloc);
13851 Error_Msg
13852 ("\?z?resulting access value may have invalid "
13853 & "alignment!", Eloc);
13854 end if;
13855 end;
13856 end if;
13857 end;
13858 end if;
13859 end;
13861 <<Continue>>
13862 null;
13863 end loop;
13864 end Validate_Unchecked_Conversions;
13866 end Sem_Ch13;