1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Tss
; use Exp_Tss
;
34 with Exp_Util
; use Exp_Util
;
35 with Freeze
; use Freeze
;
36 with Itypes
; use Itypes
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Namet
; use Namet
;
40 with Namet
.Sp
; use Namet
.Sp
;
41 with Nmake
; use Nmake
;
42 with Nlists
; use Nlists
;
44 with Restrict
; use Restrict
;
45 with Rident
; use Rident
;
47 with Sem_Aux
; use Sem_Aux
;
48 with Sem_Cat
; use Sem_Cat
;
49 with Sem_Ch3
; use Sem_Ch3
;
50 with Sem_Ch8
; use Sem_Ch8
;
51 with Sem_Ch13
; use Sem_Ch13
;
52 with Sem_Dim
; use Sem_Dim
;
53 with Sem_Eval
; use Sem_Eval
;
54 with Sem_Res
; use Sem_Res
;
55 with Sem_Util
; use Sem_Util
;
56 with Sem_Type
; use Sem_Type
;
57 with Sem_Warn
; use Sem_Warn
;
58 with Sinfo
; use Sinfo
;
59 with Snames
; use Snames
;
60 with Stringt
; use Stringt
;
61 with Stand
; use Stand
;
62 with Style
; use Style
;
63 with Targparm
; use Targparm
;
64 with Tbuild
; use Tbuild
;
65 with Uintp
; use Uintp
;
67 package body Sem_Aggr
is
69 type Case_Bounds
is record
71 -- Low bound of choice. Once we sort the Case_Table, then entries
72 -- will be in order of ascending Choice_Lo values.
75 -- High Bound of choice. The sort does not pay any attention to the
76 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
79 -- If there are duplicates or missing entries, then in the sorted
80 -- table, this records the highest value among Choice_Hi values
81 -- seen so far, including this entry.
84 -- The node of the choice
87 type Case_Table_Type
is array (Nat
range <>) of Case_Bounds
;
88 -- Table type used by Check_Case_Choices procedure. Entry zero is not
89 -- used (reserved for the sort). Real entries start at one.
91 -----------------------
92 -- Local Subprograms --
93 -----------------------
95 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
);
96 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
97 -- simple insertion sort is used since the choices in a case statement will
98 -- usually be in near sorted order.
100 procedure Check_Can_Never_Be_Null
(Typ
: Entity_Id
; Expr
: Node_Id
);
101 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
102 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
103 -- the array case (the component type of the array will be used) or an
104 -- E_Component/E_Discriminant entity in the record case, in which case the
105 -- type of the component will be used for the test. If Typ is any other
106 -- kind of entity, the call is ignored. Expr is the component node in the
107 -- aggregate which is known to have a null value. A warning message will be
108 -- issued if the component is null excluding.
110 -- It would be better to pass the proper type for Typ ???
112 procedure Check_Expr_OK_In_Limited_Aggregate
(Expr
: Node_Id
);
113 -- Check that Expr is either not limited or else is one of the cases of
114 -- expressions allowed for a limited component association (namely, an
115 -- aggregate, function call, or <> notation). Report error for violations.
116 -- Expression is also OK in an instance or inlining context, because we
117 -- have already pre-analyzed and it is known to be type correct.
119 procedure Check_Qualified_Aggregate
(Level
: Nat
; Expr
: Node_Id
);
120 -- Given aggregate Expr, check that sub-aggregates of Expr that are nested
121 -- at Level are qualified. If Level = 0, this applies to Expr directly.
122 -- Only issue errors in formal verification mode.
124 function Is_Top_Level_Aggregate
(Expr
: Node_Id
) return Boolean;
125 -- Return True of Expr is an aggregate not contained directly in another
128 ------------------------------------------------------
129 -- Subprograms used for RECORD AGGREGATE Processing --
130 ------------------------------------------------------
132 procedure Resolve_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
);
133 -- This procedure performs all the semantic checks required for record
134 -- aggregates. Note that for aggregates analysis and resolution go
135 -- hand in hand. Aggregate analysis has been delayed up to here and
136 -- it is done while resolving the aggregate.
138 -- N is the N_Aggregate node.
139 -- Typ is the record type for the aggregate resolution
141 -- While performing the semantic checks, this procedure builds a new
142 -- Component_Association_List where each record field appears alone in a
143 -- Component_Choice_List along with its corresponding expression. The
144 -- record fields in the Component_Association_List appear in the same order
145 -- in which they appear in the record type Typ.
147 -- Once this new Component_Association_List is built and all the semantic
148 -- checks performed, the original aggregate subtree is replaced with the
149 -- new named record aggregate just built. Note that subtree substitution is
150 -- performed with Rewrite so as to be able to retrieve the original
153 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
154 -- yields the aggregate format expected by Gigi. Typically, this kind of
155 -- tree manipulations are done in the expander. However, because the
156 -- semantic checks that need to be performed on record aggregates really go
157 -- hand in hand with the record aggregate normalization, the aggregate
158 -- subtree transformation is performed during resolution rather than
159 -- expansion. Had we decided otherwise we would have had to duplicate most
160 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
161 -- however, that all the expansion concerning aggregates for tagged records
162 -- is done in Expand_Record_Aggregate.
164 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
166 -- 1. Make sure that the record type against which the record aggregate
167 -- has to be resolved is not abstract. Furthermore if the type is a
168 -- null aggregate make sure the input aggregate N is also null.
170 -- 2. Verify that the structure of the aggregate is that of a record
171 -- aggregate. Specifically, look for component associations and ensure
172 -- that each choice list only has identifiers or the N_Others_Choice
173 -- node. Also make sure that if present, the N_Others_Choice occurs
174 -- last and by itself.
176 -- 3. If Typ contains discriminants, the values for each discriminant is
177 -- looked for. If the record type Typ has variants, we check that the
178 -- expressions corresponding to each discriminant ruling the (possibly
179 -- nested) variant parts of Typ, are static. This allows us to determine
180 -- the variant parts to which the rest of the aggregate must conform.
181 -- The names of discriminants with their values are saved in a new
182 -- association list, New_Assoc_List which is later augmented with the
183 -- names and values of the remaining components in the record type.
185 -- During this phase we also make sure that every discriminant is
186 -- assigned exactly one value. Note that when several values for a given
187 -- discriminant are found, semantic processing continues looking for
188 -- further errors. In this case it's the first discriminant value found
189 -- which we will be recorded.
191 -- IMPORTANT NOTE: For derived tagged types this procedure expects
192 -- First_Discriminant and Next_Discriminant to give the correct list
193 -- of discriminants, in the correct order.
195 -- 4. After all the discriminant values have been gathered, we can set the
196 -- Etype of the record aggregate. If Typ contains no discriminants this
197 -- is straightforward: the Etype of N is just Typ, otherwise a new
198 -- implicit constrained subtype of Typ is built to be the Etype of N.
200 -- 5. Gather the remaining record components according to the discriminant
201 -- values. This involves recursively traversing the record type
202 -- structure to see what variants are selected by the given discriminant
203 -- values. This processing is a little more convoluted if Typ is a
204 -- derived tagged types since we need to retrieve the record structure
205 -- of all the ancestors of Typ.
207 -- 6. After gathering the record components we look for their values in the
208 -- record aggregate and emit appropriate error messages should we not
209 -- find such values or should they be duplicated.
211 -- 7. We then make sure no illegal component names appear in the record
212 -- aggregate and make sure that the type of the record components
213 -- appearing in a same choice list is the same. Finally we ensure that
214 -- the others choice, if present, is used to provide the value of at
215 -- least a record component.
217 -- 8. The original aggregate node is replaced with the new named aggregate
218 -- built in steps 3 through 6, as explained earlier.
220 -- Given the complexity of record aggregate resolution, the primary goal of
221 -- this routine is clarity and simplicity rather than execution and storage
222 -- efficiency. If there are only positional components in the aggregate the
223 -- running time is linear. If there are associations the running time is
224 -- still linear as long as the order of the associations is not too far off
225 -- the order of the components in the record type. If this is not the case
226 -- the running time is at worst quadratic in the size of the association
229 procedure Check_Misspelled_Component
230 (Elements
: Elist_Id
;
231 Component
: Node_Id
);
232 -- Give possible misspelling diagnostic if Component is likely to be a
233 -- misspelling of one of the components of the Assoc_List. This is called
234 -- by Resolve_Aggr_Expr after producing an invalid component error message.
236 procedure Check_Static_Discriminated_Subtype
(T
: Entity_Id
; V
: Node_Id
);
237 -- An optimization: determine whether a discriminated subtype has a static
238 -- constraint, and contains array components whose length is also static,
239 -- either because they are constrained by the discriminant, or because the
240 -- original component bounds are static.
242 -----------------------------------------------------
243 -- Subprograms used for ARRAY AGGREGATE Processing --
244 -----------------------------------------------------
246 function Resolve_Array_Aggregate
249 Index_Constr
: Node_Id
;
250 Component_Typ
: Entity_Id
;
251 Others_Allowed
: Boolean) return Boolean;
252 -- This procedure performs the semantic checks for an array aggregate.
253 -- True is returned if the aggregate resolution succeeds.
255 -- The procedure works by recursively checking each nested aggregate.
256 -- Specifically, after checking a sub-aggregate nested at the i-th level
257 -- we recursively check all the subaggregates at the i+1-st level (if any).
258 -- Note that for aggregates analysis and resolution go hand in hand.
259 -- Aggregate analysis has been delayed up to here and it is done while
260 -- resolving the aggregate.
262 -- N is the current N_Aggregate node to be checked.
264 -- Index is the index node corresponding to the array sub-aggregate that
265 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
266 -- corresponding index type (or subtype).
268 -- Index_Constr is the node giving the applicable index constraint if
269 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
270 -- contexts [...] that can be used to determine the bounds of the array
271 -- value specified by the aggregate". If Others_Allowed below is False
272 -- there is no applicable index constraint and this node is set to Index.
274 -- Component_Typ is the array component type.
276 -- Others_Allowed indicates whether an others choice is allowed
277 -- in the context where the top-level aggregate appeared.
279 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
281 -- 1. Make sure that the others choice, if present, is by itself and
282 -- appears last in the sub-aggregate. Check that we do not have
283 -- positional and named components in the array sub-aggregate (unless
284 -- the named association is an others choice). Finally if an others
285 -- choice is present, make sure it is allowed in the aggregate context.
287 -- 2. If the array sub-aggregate contains discrete_choices:
289 -- (A) Verify their validity. Specifically verify that:
291 -- (a) If a null range is present it must be the only possible
292 -- choice in the array aggregate.
294 -- (b) Ditto for a non static range.
296 -- (c) Ditto for a non static expression.
298 -- In addition this step analyzes and resolves each discrete_choice,
299 -- making sure that its type is the type of the corresponding Index.
300 -- If we are not at the lowest array aggregate level (in the case of
301 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
302 -- recursively on each component expression. Otherwise, resolve the
303 -- bottom level component expressions against the expected component
304 -- type ONLY IF the component corresponds to a single discrete choice
305 -- which is not an others choice (to see why read the DELAYED
306 -- COMPONENT RESOLUTION below).
308 -- (B) Determine the bounds of the sub-aggregate and lowest and
309 -- highest choice values.
311 -- 3. For positional aggregates:
313 -- (A) Loop over the component expressions either recursively invoking
314 -- Resolve_Array_Aggregate on each of these for multi-dimensional
315 -- array aggregates or resolving the bottom level component
316 -- expressions against the expected component type.
318 -- (B) Determine the bounds of the positional sub-aggregates.
320 -- 4. Try to determine statically whether the evaluation of the array
321 -- sub-aggregate raises Constraint_Error. If yes emit proper
322 -- warnings. The precise checks are the following:
324 -- (A) Check that the index range defined by aggregate bounds is
325 -- compatible with corresponding index subtype.
326 -- We also check against the base type. In fact it could be that
327 -- Low/High bounds of the base type are static whereas those of
328 -- the index subtype are not. Thus if we can statically catch
329 -- a problem with respect to the base type we are guaranteed
330 -- that the same problem will arise with the index subtype
332 -- (B) If we are dealing with a named aggregate containing an others
333 -- choice and at least one discrete choice then make sure the range
334 -- specified by the discrete choices does not overflow the
335 -- aggregate bounds. We also check against the index type and base
336 -- type bounds for the same reasons given in (A).
338 -- (C) If we are dealing with a positional aggregate with an others
339 -- choice make sure the number of positional elements specified
340 -- does not overflow the aggregate bounds. We also check against
341 -- the index type and base type bounds as mentioned in (A).
343 -- Finally construct an N_Range node giving the sub-aggregate bounds.
344 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
345 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
346 -- to build the appropriate aggregate subtype. Aggregate_Bounds
347 -- information is needed during expansion.
349 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
350 -- expressions in an array aggregate may call Duplicate_Subexpr or some
351 -- other routine that inserts code just outside the outermost aggregate.
352 -- If the array aggregate contains discrete choices or an others choice,
353 -- this may be wrong. Consider for instance the following example.
355 -- type Rec is record
359 -- type Acc_Rec is access Rec;
360 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
362 -- Then the transformation of "new Rec" that occurs during resolution
363 -- entails the following code modifications
365 -- P7b : constant Acc_Rec := new Rec;
367 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
369 -- This code transformation is clearly wrong, since we need to call
370 -- "new Rec" for each of the 3 array elements. To avoid this problem we
371 -- delay resolution of the components of non positional array aggregates
372 -- to the expansion phase. As an optimization, if the discrete choice
373 -- specifies a single value we do not delay resolution.
375 function Array_Aggr_Subtype
(N
: Node_Id
; Typ
: Node_Id
) return Entity_Id
;
376 -- This routine returns the type or subtype of an array aggregate.
378 -- N is the array aggregate node whose type we return.
380 -- Typ is the context type in which N occurs.
382 -- This routine creates an implicit array subtype whose bounds are
383 -- those defined by the aggregate. When this routine is invoked
384 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
385 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
386 -- sub-aggregate bounds. When building the aggregate itype, this function
387 -- traverses the array aggregate N collecting such Aggregate_Bounds and
388 -- constructs the proper array aggregate itype.
390 -- Note that in the case of multidimensional aggregates each inner
391 -- sub-aggregate corresponding to a given array dimension, may provide a
392 -- different bounds. If it is possible to determine statically that
393 -- some sub-aggregates corresponding to the same index do not have the
394 -- same bounds, then a warning is emitted. If such check is not possible
395 -- statically (because some sub-aggregate bounds are dynamic expressions)
396 -- then this job is left to the expander. In all cases the particular
397 -- bounds that this function will chose for a given dimension is the first
398 -- N_Range node for a sub-aggregate corresponding to that dimension.
400 -- Note that the Raises_Constraint_Error flag of an array aggregate
401 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
402 -- is set in Resolve_Array_Aggregate but the aggregate is not
403 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
404 -- first construct the proper itype for the aggregate (Gigi needs
405 -- this). After constructing the proper itype we will eventually replace
406 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
407 -- Of course in cases such as:
409 -- type Arr is array (integer range <>) of Integer;
410 -- A : Arr := (positive range -1 .. 2 => 0);
412 -- The bounds of the aggregate itype are cooked up to look reasonable
413 -- (in this particular case the bounds will be 1 .. 2).
415 procedure Make_String_Into_Aggregate
(N
: Node_Id
);
416 -- A string literal can appear in a context in which a one dimensional
417 -- array of characters is expected. This procedure simply rewrites the
418 -- string as an aggregate, prior to resolution.
420 ------------------------
421 -- Array_Aggr_Subtype --
422 ------------------------
424 function Array_Aggr_Subtype
426 Typ
: Entity_Id
) return Entity_Id
428 Aggr_Dimension
: constant Pos
:= Number_Dimensions
(Typ
);
429 -- Number of aggregate index dimensions
431 Aggr_Range
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
432 -- Constrained N_Range of each index dimension in our aggregate itype
434 Aggr_Low
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
435 Aggr_High
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
436 -- Low and High bounds for each index dimension in our aggregate itype
438 Is_Fully_Positional
: Boolean := True;
440 procedure Collect_Aggr_Bounds
(N
: Node_Id
; Dim
: Pos
);
441 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
442 -- to (sub-)aggregate N. This procedure collects and removes the side
443 -- effects of the constrained N_Range nodes corresponding to each index
444 -- dimension of our aggregate itype. These N_Range nodes are collected
445 -- in Aggr_Range above.
447 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
448 -- bounds of each index dimension. If, when collecting, two bounds
449 -- corresponding to the same dimension are static and found to differ,
450 -- then emit a warning, and mark N as raising Constraint_Error.
452 -------------------------
453 -- Collect_Aggr_Bounds --
454 -------------------------
456 procedure Collect_Aggr_Bounds
(N
: Node_Id
; Dim
: Pos
) is
457 This_Range
: constant Node_Id
:= Aggregate_Bounds
(N
);
458 -- The aggregate range node of this specific sub-aggregate
460 This_Low
: constant Node_Id
:= Low_Bound
(Aggregate_Bounds
(N
));
461 This_High
: constant Node_Id
:= High_Bound
(Aggregate_Bounds
(N
));
462 -- The aggregate bounds of this specific sub-aggregate
468 Remove_Side_Effects
(This_Low
, Variable_Ref
=> True);
469 Remove_Side_Effects
(This_High
, Variable_Ref
=> True);
471 -- Collect the first N_Range for a given dimension that you find.
472 -- For a given dimension they must be all equal anyway.
474 if No
(Aggr_Range
(Dim
)) then
475 Aggr_Low
(Dim
) := This_Low
;
476 Aggr_High
(Dim
) := This_High
;
477 Aggr_Range
(Dim
) := This_Range
;
480 if Compile_Time_Known_Value
(This_Low
) then
481 if not Compile_Time_Known_Value
(Aggr_Low
(Dim
)) then
482 Aggr_Low
(Dim
) := This_Low
;
484 elsif Expr_Value
(This_Low
) /= Expr_Value
(Aggr_Low
(Dim
)) then
485 Set_Raises_Constraint_Error
(N
);
486 Error_Msg_Warn
:= SPARK_Mode
/= On
;
487 Error_Msg_N
("sub-aggregate low bound mismatch<<", N
);
488 Error_Msg_N
("\Constraint_Error [<<", N
);
492 if Compile_Time_Known_Value
(This_High
) then
493 if not Compile_Time_Known_Value
(Aggr_High
(Dim
)) then
494 Aggr_High
(Dim
) := This_High
;
497 Expr_Value
(This_High
) /= Expr_Value
(Aggr_High
(Dim
))
499 Set_Raises_Constraint_Error
(N
);
500 Error_Msg_Warn
:= SPARK_Mode
/= On
;
501 Error_Msg_N
("sub-aggregate high bound mismatch<<", N
);
502 Error_Msg_N
("\Constraint_Error [<<", N
);
507 if Dim
< Aggr_Dimension
then
509 -- Process positional components
511 if Present
(Expressions
(N
)) then
512 Expr
:= First
(Expressions
(N
));
513 while Present
(Expr
) loop
514 Collect_Aggr_Bounds
(Expr
, Dim
+ 1);
519 -- Process component associations
521 if Present
(Component_Associations
(N
)) then
522 Is_Fully_Positional
:= False;
524 Assoc
:= First
(Component_Associations
(N
));
525 while Present
(Assoc
) loop
526 Expr
:= Expression
(Assoc
);
527 Collect_Aggr_Bounds
(Expr
, Dim
+ 1);
532 end Collect_Aggr_Bounds
;
534 -- Array_Aggr_Subtype variables
537 -- The final itype of the overall aggregate
539 Index_Constraints
: constant List_Id
:= New_List
;
540 -- The list of index constraints of the aggregate itype
542 -- Start of processing for Array_Aggr_Subtype
545 -- Make sure that the list of index constraints is properly attached to
546 -- the tree, and then collect the aggregate bounds.
548 Set_Parent
(Index_Constraints
, N
);
549 Collect_Aggr_Bounds
(N
, 1);
551 -- Build the list of constrained indexes of our aggregate itype
553 for J
in 1 .. Aggr_Dimension
loop
554 Create_Index
: declare
555 Index_Base
: constant Entity_Id
:=
556 Base_Type
(Etype
(Aggr_Range
(J
)));
557 Index_Typ
: Entity_Id
;
560 -- Construct the Index subtype, and associate it with the range
561 -- construct that generates it.
564 Create_Itype
(Subtype_Kind
(Ekind
(Index_Base
)), Aggr_Range
(J
));
566 Set_Etype
(Index_Typ
, Index_Base
);
568 if Is_Character_Type
(Index_Base
) then
569 Set_Is_Character_Type
(Index_Typ
);
572 Set_Size_Info
(Index_Typ
, (Index_Base
));
573 Set_RM_Size
(Index_Typ
, RM_Size
(Index_Base
));
574 Set_First_Rep_Item
(Index_Typ
, First_Rep_Item
(Index_Base
));
575 Set_Scalar_Range
(Index_Typ
, Aggr_Range
(J
));
577 if Is_Discrete_Or_Fixed_Point_Type
(Index_Typ
) then
578 Set_RM_Size
(Index_Typ
, UI_From_Int
(Minimum_Size
(Index_Typ
)));
581 Set_Etype
(Aggr_Range
(J
), Index_Typ
);
583 Append
(Aggr_Range
(J
), To
=> Index_Constraints
);
587 -- Now build the Itype
589 Itype
:= Create_Itype
(E_Array_Subtype
, N
);
591 Set_First_Rep_Item
(Itype
, First_Rep_Item
(Typ
));
592 Set_Convention
(Itype
, Convention
(Typ
));
593 Set_Depends_On_Private
(Itype
, Has_Private_Component
(Typ
));
594 Set_Etype
(Itype
, Base_Type
(Typ
));
595 Set_Has_Alignment_Clause
(Itype
, Has_Alignment_Clause
(Typ
));
596 Set_Is_Aliased
(Itype
, Is_Aliased
(Typ
));
597 Set_Depends_On_Private
(Itype
, Depends_On_Private
(Typ
));
599 Copy_Suppress_Status
(Index_Check
, Typ
, Itype
);
600 Copy_Suppress_Status
(Length_Check
, Typ
, Itype
);
602 Set_First_Index
(Itype
, First
(Index_Constraints
));
603 Set_Is_Constrained
(Itype
, True);
604 Set_Is_Internal
(Itype
, True);
606 -- A simple optimization: purely positional aggregates of static
607 -- components should be passed to gigi unexpanded whenever possible, and
608 -- regardless of the staticness of the bounds themselves. Subsequent
609 -- checks in exp_aggr verify that type is not packed, etc.
611 Set_Size_Known_At_Compile_Time
614 and then Comes_From_Source
(N
)
615 and then Size_Known_At_Compile_Time
(Component_Type
(Typ
)));
617 -- We always need a freeze node for a packed array subtype, so that we
618 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
619 -- expansion is disabled, the packed array subtype is not built, and we
620 -- must not generate a freeze node for the type, or else it will appear
621 -- incomplete to gigi.
624 and then not In_Spec_Expression
625 and then Expander_Active
627 Freeze_Itype
(Itype
, N
);
631 end Array_Aggr_Subtype
;
633 --------------------------------
634 -- Check_Misspelled_Component --
635 --------------------------------
637 procedure Check_Misspelled_Component
638 (Elements
: Elist_Id
;
641 Max_Suggestions
: constant := 2;
643 Nr_Of_Suggestions
: Natural := 0;
644 Suggestion_1
: Entity_Id
:= Empty
;
645 Suggestion_2
: Entity_Id
:= Empty
;
646 Component_Elmt
: Elmt_Id
;
649 -- All the components of List are matched against Component and a count
650 -- is maintained of possible misspellings. When at the end of the the
651 -- analysis there are one or two (not more) possible misspellings,
652 -- these misspellings will be suggested as possible correction.
654 Component_Elmt
:= First_Elmt
(Elements
);
655 while Nr_Of_Suggestions
<= Max_Suggestions
656 and then Present
(Component_Elmt
)
658 if Is_Bad_Spelling_Of
659 (Chars
(Node
(Component_Elmt
)),
662 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
664 case Nr_Of_Suggestions
is
665 when 1 => Suggestion_1
:= Node
(Component_Elmt
);
666 when 2 => Suggestion_2
:= Node
(Component_Elmt
);
671 Next_Elmt
(Component_Elmt
);
674 -- Report at most two suggestions
676 if Nr_Of_Suggestions
= 1 then
677 Error_Msg_NE
-- CODEFIX
678 ("\possible misspelling of&", Component
, Suggestion_1
);
680 elsif Nr_Of_Suggestions
= 2 then
681 Error_Msg_Node_2
:= Suggestion_2
;
682 Error_Msg_NE
-- CODEFIX
683 ("\possible misspelling of& or&", Component
, Suggestion_1
);
685 end Check_Misspelled_Component
;
687 ----------------------------------------
688 -- Check_Expr_OK_In_Limited_Aggregate --
689 ----------------------------------------
691 procedure Check_Expr_OK_In_Limited_Aggregate
(Expr
: Node_Id
) is
693 if Is_Limited_Type
(Etype
(Expr
))
694 and then Comes_From_Source
(Expr
)
696 if In_Instance_Body
or else In_Inlined_Body
then
699 elsif not OK_For_Limited_Init
(Etype
(Expr
), Expr
) then
701 ("initialization not allowed for limited types", Expr
);
702 Explain_Limited_Type
(Etype
(Expr
), Expr
);
705 end Check_Expr_OK_In_Limited_Aggregate
;
707 -------------------------------
708 -- Check_Qualified_Aggregate --
709 -------------------------------
711 procedure Check_Qualified_Aggregate
(Level
: Nat
; Expr
: Node_Id
) is
717 if Nkind
(Parent
(Expr
)) /= N_Qualified_Expression
then
718 Check_SPARK_05_Restriction
("aggregate should be qualified", Expr
);
722 Comp_Expr
:= First
(Expressions
(Expr
));
723 while Present
(Comp_Expr
) loop
724 if Nkind
(Comp_Expr
) = N_Aggregate
then
725 Check_Qualified_Aggregate
(Level
- 1, Comp_Expr
);
728 Comp_Expr
:= Next
(Comp_Expr
);
731 Comp_Assn
:= First
(Component_Associations
(Expr
));
732 while Present
(Comp_Assn
) loop
733 Comp_Expr
:= Expression
(Comp_Assn
);
735 if Nkind
(Comp_Expr
) = N_Aggregate
then
736 Check_Qualified_Aggregate
(Level
- 1, Comp_Expr
);
739 Comp_Assn
:= Next
(Comp_Assn
);
742 end Check_Qualified_Aggregate
;
744 ----------------------------------------
745 -- Check_Static_Discriminated_Subtype --
746 ----------------------------------------
748 procedure Check_Static_Discriminated_Subtype
(T
: Entity_Id
; V
: Node_Id
) is
749 Disc
: constant Entity_Id
:= First_Discriminant
(T
);
754 if Has_Record_Rep_Clause
(T
) then
757 elsif Present
(Next_Discriminant
(Disc
)) then
760 elsif Nkind
(V
) /= N_Integer_Literal
then
764 Comp
:= First_Component
(T
);
765 while Present
(Comp
) loop
766 if Is_Scalar_Type
(Etype
(Comp
)) then
769 elsif Is_Private_Type
(Etype
(Comp
))
770 and then Present
(Full_View
(Etype
(Comp
)))
771 and then Is_Scalar_Type
(Full_View
(Etype
(Comp
)))
775 elsif Is_Array_Type
(Etype
(Comp
)) then
776 if Is_Bit_Packed_Array
(Etype
(Comp
)) then
780 Ind
:= First_Index
(Etype
(Comp
));
781 while Present
(Ind
) loop
782 if Nkind
(Ind
) /= N_Range
783 or else Nkind
(Low_Bound
(Ind
)) /= N_Integer_Literal
784 or else Nkind
(High_Bound
(Ind
)) /= N_Integer_Literal
796 Next_Component
(Comp
);
799 -- On exit, all components have statically known sizes
801 Set_Size_Known_At_Compile_Time
(T
);
802 end Check_Static_Discriminated_Subtype
;
804 -------------------------
805 -- Is_Others_Aggregate --
806 -------------------------
808 function Is_Others_Aggregate
(Aggr
: Node_Id
) return Boolean is
810 return No
(Expressions
(Aggr
))
812 Nkind
(First
(Choices
(First
(Component_Associations
(Aggr
))))) =
814 end Is_Others_Aggregate
;
816 ----------------------------
817 -- Is_Top_Level_Aggregate --
818 ----------------------------
820 function Is_Top_Level_Aggregate
(Expr
: Node_Id
) return Boolean is
822 return Nkind
(Parent
(Expr
)) /= N_Aggregate
823 and then (Nkind
(Parent
(Expr
)) /= N_Component_Association
824 or else Nkind
(Parent
(Parent
(Expr
))) /= N_Aggregate
);
825 end Is_Top_Level_Aggregate
;
827 --------------------------------
828 -- Make_String_Into_Aggregate --
829 --------------------------------
831 procedure Make_String_Into_Aggregate
(N
: Node_Id
) is
832 Exprs
: constant List_Id
:= New_List
;
833 Loc
: constant Source_Ptr
:= Sloc
(N
);
834 Str
: constant String_Id
:= Strval
(N
);
835 Strlen
: constant Nat
:= String_Length
(Str
);
843 for J
in 1 .. Strlen
loop
844 C
:= Get_String_Char
(Str
, J
);
845 Set_Character_Literal_Name
(C
);
848 Make_Character_Literal
(P
,
850 Char_Literal_Value
=> UI_From_CC
(C
));
851 Set_Etype
(C_Node
, Any_Character
);
852 Append_To
(Exprs
, C_Node
);
855 -- Something special for wide strings???
858 New_N
:= Make_Aggregate
(Loc
, Expressions
=> Exprs
);
859 Set_Analyzed
(New_N
);
860 Set_Etype
(New_N
, Any_Composite
);
863 end Make_String_Into_Aggregate
;
865 -----------------------
866 -- Resolve_Aggregate --
867 -----------------------
869 procedure Resolve_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
870 Loc
: constant Source_Ptr
:= Sloc
(N
);
871 Pkind
: constant Node_Kind
:= Nkind
(Parent
(N
));
873 Aggr_Subtyp
: Entity_Id
;
874 -- The actual aggregate subtype. This is not necessarily the same as Typ
875 -- which is the subtype of the context in which the aggregate was found.
878 -- Ignore junk empty aggregate resulting from parser error
880 if No
(Expressions
(N
))
881 and then No
(Component_Associations
(N
))
882 and then not Null_Record_Present
(N
)
887 -- If the aggregate has box-initialized components, its type must be
888 -- frozen so that initialization procedures can properly be called
889 -- in the resolution that follows. The replacement of boxes with
890 -- initialization calls is properly an expansion activity but it must
891 -- be done during resolution.
894 and then Present
(Component_Associations
(N
))
900 Comp
:= First
(Component_Associations
(N
));
901 while Present
(Comp
) loop
902 if Box_Present
(Comp
) then
903 Insert_Actions
(N
, Freeze_Entity
(Typ
, N
));
912 -- An unqualified aggregate is restricted in SPARK to:
914 -- An aggregate item inside an aggregate for a multi-dimensional array
916 -- An expression being assigned to an unconstrained array, but only if
917 -- the aggregate specifies a value for OTHERS only.
919 if Nkind
(Parent
(N
)) = N_Qualified_Expression
then
920 if Is_Array_Type
(Typ
) then
921 Check_Qualified_Aggregate
(Number_Dimensions
(Typ
), N
);
923 Check_Qualified_Aggregate
(1, N
);
926 if Is_Array_Type
(Typ
)
927 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
928 and then not Is_Constrained
(Etype
(Name
(Parent
(N
))))
930 if not Is_Others_Aggregate
(N
) then
931 Check_SPARK_05_Restriction
932 ("array aggregate should have only OTHERS", N
);
935 elsif Is_Top_Level_Aggregate
(N
) then
936 Check_SPARK_05_Restriction
("aggregate should be qualified", N
);
938 -- The legality of this unqualified aggregate is checked by calling
939 -- Check_Qualified_Aggregate from one of its enclosing aggregate,
940 -- unless one of these already causes an error to be issued.
947 -- Check for aggregates not allowed in configurable run-time mode.
948 -- We allow all cases of aggregates that do not come from source, since
949 -- these are all assumed to be small (e.g. bounds of a string literal).
950 -- We also allow aggregates of types we know to be small.
952 if not Support_Aggregates_On_Target
953 and then Comes_From_Source
(N
)
954 and then (not Known_Static_Esize
(Typ
) or else Esize
(Typ
) > 64)
956 Error_Msg_CRT
("aggregate", N
);
959 -- Ada 2005 (AI-287): Limited aggregates allowed
961 -- In an instance, ignore aggregate subcomponents tnat may be limited,
962 -- because they originate in view conflicts. If the original aggregate
963 -- is legal and the actuals are legal, the aggregate itself is legal.
965 if Is_Limited_Type
(Typ
)
966 and then Ada_Version
< Ada_2005
967 and then not In_Instance
969 Error_Msg_N
("aggregate type cannot be limited", N
);
970 Explain_Limited_Type
(Typ
, N
);
972 elsif Is_Class_Wide_Type
(Typ
) then
973 Error_Msg_N
("type of aggregate cannot be class-wide", N
);
975 elsif Typ
= Any_String
976 or else Typ
= Any_Composite
978 Error_Msg_N
("no unique type for aggregate", N
);
979 Set_Etype
(N
, Any_Composite
);
981 elsif Is_Array_Type
(Typ
) and then Null_Record_Present
(N
) then
982 Error_Msg_N
("null record forbidden in array aggregate", N
);
984 elsif Is_Record_Type
(Typ
) then
985 Resolve_Record_Aggregate
(N
, Typ
);
987 elsif Is_Array_Type
(Typ
) then
989 -- First a special test, for the case of a positional aggregate
990 -- of characters which can be replaced by a string literal.
992 -- Do not perform this transformation if this was a string literal to
993 -- start with, whose components needed constraint checks, or if the
994 -- component type is non-static, because it will require those checks
995 -- and be transformed back into an aggregate.
997 if Number_Dimensions
(Typ
) = 1
998 and then Is_Standard_Character_Type
(Component_Type
(Typ
))
999 and then No
(Component_Associations
(N
))
1000 and then not Is_Limited_Composite
(Typ
)
1001 and then not Is_Private_Composite
(Typ
)
1002 and then not Is_Bit_Packed_Array
(Typ
)
1003 and then Nkind
(Original_Node
(Parent
(N
))) /= N_String_Literal
1004 and then Is_OK_Static_Subtype
(Component_Type
(Typ
))
1010 Expr
:= First
(Expressions
(N
));
1011 while Present
(Expr
) loop
1012 exit when Nkind
(Expr
) /= N_Character_Literal
;
1019 Expr
:= First
(Expressions
(N
));
1020 while Present
(Expr
) loop
1021 Store_String_Char
(UI_To_CC
(Char_Literal_Value
(Expr
)));
1025 Rewrite
(N
, Make_String_Literal
(Loc
, End_String
));
1027 Analyze_And_Resolve
(N
, Typ
);
1033 -- Here if we have a real aggregate to deal with
1035 Array_Aggregate
: declare
1036 Aggr_Resolved
: Boolean;
1038 Aggr_Typ
: constant Entity_Id
:= Etype
(Typ
);
1039 -- This is the unconstrained array type, which is the type against
1040 -- which the aggregate is to be resolved. Typ itself is the array
1041 -- type of the context which may not be the same subtype as the
1042 -- subtype for the final aggregate.
1045 -- In the following we determine whether an OTHERS choice is
1046 -- allowed inside the array aggregate. The test checks the context
1047 -- in which the array aggregate occurs. If the context does not
1048 -- permit it, or the aggregate type is unconstrained, an OTHERS
1049 -- choice is not allowed (except that it is always allowed on the
1050 -- right-hand side of an assignment statement; in this case the
1051 -- constrainedness of the type doesn't matter).
1053 -- If expansion is disabled (generic context, or semantics-only
1054 -- mode) actual subtypes cannot be constructed, and the type of an
1055 -- object may be its unconstrained nominal type. However, if the
1056 -- context is an assignment, we assume that OTHERS is allowed,
1057 -- because the target of the assignment will have a constrained
1058 -- subtype when fully compiled.
1060 -- Note that there is no node for Explicit_Actual_Parameter.
1061 -- To test for this context we therefore have to test for node
1062 -- N_Parameter_Association which itself appears only if there is a
1063 -- formal parameter. Consequently we also need to test for
1064 -- N_Procedure_Call_Statement or N_Function_Call.
1066 -- The context may be an N_Reference node, created by expansion.
1067 -- Legality of the others clause was established in the source,
1068 -- so the context is legal.
1070 Set_Etype
(N
, Aggr_Typ
); -- May be overridden later on
1072 if Pkind
= N_Assignment_Statement
1073 or else (Is_Constrained
(Typ
)
1075 (Pkind
= N_Parameter_Association
or else
1076 Pkind
= N_Function_Call
or else
1077 Pkind
= N_Procedure_Call_Statement
or else
1078 Pkind
= N_Generic_Association
or else
1079 Pkind
= N_Formal_Object_Declaration
or else
1080 Pkind
= N_Simple_Return_Statement
or else
1081 Pkind
= N_Object_Declaration
or else
1082 Pkind
= N_Component_Declaration
or else
1083 Pkind
= N_Parameter_Specification
or else
1084 Pkind
= N_Qualified_Expression
or else
1085 Pkind
= N_Reference
or else
1086 Pkind
= N_Aggregate
or else
1087 Pkind
= N_Extension_Aggregate
or else
1088 Pkind
= N_Component_Association
))
1091 Resolve_Array_Aggregate
1093 Index
=> First_Index
(Aggr_Typ
),
1094 Index_Constr
=> First_Index
(Typ
),
1095 Component_Typ
=> Component_Type
(Typ
),
1096 Others_Allowed
=> True);
1098 elsif not Expander_Active
1099 and then Pkind
= N_Assignment_Statement
1102 Resolve_Array_Aggregate
1104 Index
=> First_Index
(Aggr_Typ
),
1105 Index_Constr
=> First_Index
(Typ
),
1106 Component_Typ
=> Component_Type
(Typ
),
1107 Others_Allowed
=> True);
1111 Resolve_Array_Aggregate
1113 Index
=> First_Index
(Aggr_Typ
),
1114 Index_Constr
=> First_Index
(Aggr_Typ
),
1115 Component_Typ
=> Component_Type
(Typ
),
1116 Others_Allowed
=> False);
1119 if not Aggr_Resolved
then
1121 -- A parenthesized expression may have been intended as an
1122 -- aggregate, leading to a type error when analyzing the
1123 -- component. This can also happen for a nested component
1124 -- (see Analyze_Aggr_Expr).
1126 if Paren_Count
(N
) > 0 then
1128 ("positional aggregate cannot have one component", N
);
1131 Aggr_Subtyp
:= Any_Composite
;
1134 Aggr_Subtyp
:= Array_Aggr_Subtype
(N
, Typ
);
1137 Set_Etype
(N
, Aggr_Subtyp
);
1138 end Array_Aggregate
;
1140 elsif Is_Private_Type
(Typ
)
1141 and then Present
(Full_View
(Typ
))
1142 and then (In_Inlined_Body
or In_Instance_Body
)
1143 and then Is_Composite_Type
(Full_View
(Typ
))
1145 Resolve
(N
, Full_View
(Typ
));
1148 Error_Msg_N
("illegal context for aggregate", N
);
1151 -- If we can determine statically that the evaluation of the aggregate
1152 -- raises Constraint_Error, then replace the aggregate with an
1153 -- N_Raise_Constraint_Error node, but set the Etype to the right
1154 -- aggregate subtype. Gigi needs this.
1156 if Raises_Constraint_Error
(N
) then
1157 Aggr_Subtyp
:= Etype
(N
);
1159 Make_Raise_Constraint_Error
(Loc
, Reason
=> CE_Range_Check_Failed
));
1160 Set_Raises_Constraint_Error
(N
);
1161 Set_Etype
(N
, Aggr_Subtyp
);
1165 Check_Function_Writable_Actuals
(N
);
1166 end Resolve_Aggregate
;
1168 -----------------------------
1169 -- Resolve_Array_Aggregate --
1170 -----------------------------
1172 function Resolve_Array_Aggregate
1175 Index_Constr
: Node_Id
;
1176 Component_Typ
: Entity_Id
;
1177 Others_Allowed
: Boolean) return Boolean
1179 Loc
: constant Source_Ptr
:= Sloc
(N
);
1181 Failure
: constant Boolean := False;
1182 Success
: constant Boolean := True;
1184 Index_Typ
: constant Entity_Id
:= Etype
(Index
);
1185 Index_Typ_Low
: constant Node_Id
:= Type_Low_Bound
(Index_Typ
);
1186 Index_Typ_High
: constant Node_Id
:= Type_High_Bound
(Index_Typ
);
1187 -- The type of the index corresponding to the array sub-aggregate along
1188 -- with its low and upper bounds.
1190 Index_Base
: constant Entity_Id
:= Base_Type
(Index_Typ
);
1191 Index_Base_Low
: constant Node_Id
:= Type_Low_Bound
(Index_Base
);
1192 Index_Base_High
: constant Node_Id
:= Type_High_Bound
(Index_Base
);
1193 -- Ditto for the base type
1195 function Add
(Val
: Uint
; To
: Node_Id
) return Node_Id
;
1196 -- Creates a new expression node where Val is added to expression To.
1197 -- Tries to constant fold whenever possible. To must be an already
1198 -- analyzed expression.
1200 procedure Check_Bound
(BH
: Node_Id
; AH
: in out Node_Id
);
1201 -- Checks that AH (the upper bound of an array aggregate) is less than
1202 -- or equal to BH (the upper bound of the index base type). If the check
1203 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1204 -- set, and AH is replaced with a duplicate of BH.
1206 procedure Check_Bounds
(L
, H
: Node_Id
; AL
, AH
: Node_Id
);
1207 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1208 -- warning if not and sets the Raises_Constraint_Error flag in N.
1210 procedure Check_Length
(L
, H
: Node_Id
; Len
: Uint
);
1211 -- Checks that range L .. H contains at least Len elements. Emits a
1212 -- warning if not and sets the Raises_Constraint_Error flag in N.
1214 function Dynamic_Or_Null_Range
(L
, H
: Node_Id
) return Boolean;
1215 -- Returns True if range L .. H is dynamic or null
1217 procedure Get
(Value
: out Uint
; From
: Node_Id
; OK
: out Boolean);
1218 -- Given expression node From, this routine sets OK to False if it
1219 -- cannot statically evaluate From. Otherwise it stores this static
1220 -- value into Value.
1222 function Resolve_Aggr_Expr
1224 Single_Elmt
: Boolean) return Boolean;
1225 -- Resolves aggregate expression Expr. Returns False if resolution
1226 -- fails. If Single_Elmt is set to False, the expression Expr may be
1227 -- used to initialize several array aggregate elements (this can happen
1228 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1229 -- In this event we do not resolve Expr unless expansion is disabled.
1230 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1232 -- NOTE: In the case of "... => <>", we pass the in the
1233 -- N_Component_Association node as Expr, since there is no Expression in
1234 -- that case, and we need a Sloc for the error message.
1240 function Add
(Val
: Uint
; To
: Node_Id
) return Node_Id
is
1246 if Raises_Constraint_Error
(To
) then
1250 -- First test if we can do constant folding
1252 if Compile_Time_Known_Value
(To
)
1253 or else Nkind
(To
) = N_Integer_Literal
1255 Expr_Pos
:= Make_Integer_Literal
(Loc
, Expr_Value
(To
) + Val
);
1256 Set_Is_Static_Expression
(Expr_Pos
);
1257 Set_Etype
(Expr_Pos
, Etype
(To
));
1258 Set_Analyzed
(Expr_Pos
, Analyzed
(To
));
1260 if not Is_Enumeration_Type
(Index_Typ
) then
1263 -- If we are dealing with enumeration return
1264 -- Index_Typ'Val (Expr_Pos)
1268 Make_Attribute_Reference
1270 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1271 Attribute_Name
=> Name_Val
,
1272 Expressions
=> New_List
(Expr_Pos
));
1278 -- If we are here no constant folding possible
1280 if not Is_Enumeration_Type
(Index_Base
) then
1283 Left_Opnd
=> Duplicate_Subexpr
(To
),
1284 Right_Opnd
=> Make_Integer_Literal
(Loc
, Val
));
1286 -- If we are dealing with enumeration return
1287 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1291 Make_Attribute_Reference
1293 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1294 Attribute_Name
=> Name_Pos
,
1295 Expressions
=> New_List
(Duplicate_Subexpr
(To
)));
1299 Left_Opnd
=> To_Pos
,
1300 Right_Opnd
=> Make_Integer_Literal
(Loc
, Val
));
1303 Make_Attribute_Reference
1305 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1306 Attribute_Name
=> Name_Val
,
1307 Expressions
=> New_List
(Expr_Pos
));
1309 -- If the index type has a non standard representation, the
1310 -- attributes 'Val and 'Pos expand into function calls and the
1311 -- resulting expression is considered non-safe for reevaluation
1312 -- by the backend. Relocate it into a constant temporary in order
1313 -- to make it safe for reevaluation.
1315 if Has_Non_Standard_Rep
(Etype
(N
)) then
1320 Def_Id
:= Make_Temporary
(Loc
, 'R', Expr
);
1321 Set_Etype
(Def_Id
, Index_Typ
);
1323 Make_Object_Declaration
(Loc
,
1324 Defining_Identifier
=> Def_Id
,
1325 Object_Definition
=>
1326 New_Occurrence_Of
(Index_Typ
, Loc
),
1327 Constant_Present
=> True,
1328 Expression
=> Relocate_Node
(Expr
)));
1330 Expr
:= New_Occurrence_Of
(Def_Id
, Loc
);
1342 procedure Check_Bound
(BH
: Node_Id
; AH
: in out Node_Id
) is
1350 Get
(Value
=> Val_BH
, From
=> BH
, OK
=> OK_BH
);
1351 Get
(Value
=> Val_AH
, From
=> AH
, OK
=> OK_AH
);
1353 if OK_BH
and then OK_AH
and then Val_BH
< Val_AH
then
1354 Set_Raises_Constraint_Error
(N
);
1355 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1356 Error_Msg_N
("upper bound out of range<<", AH
);
1357 Error_Msg_N
("\Constraint_Error [<<", AH
);
1359 -- You need to set AH to BH or else in the case of enumerations
1360 -- indexes we will not be able to resolve the aggregate bounds.
1362 AH
:= Duplicate_Subexpr
(BH
);
1370 procedure Check_Bounds
(L
, H
: Node_Id
; AL
, AH
: Node_Id
) is
1381 pragma Warnings
(Off
, OK_AL
);
1382 pragma Warnings
(Off
, OK_AH
);
1385 if Raises_Constraint_Error
(N
)
1386 or else Dynamic_Or_Null_Range
(AL
, AH
)
1391 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1392 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1394 Get
(Value
=> Val_AL
, From
=> AL
, OK
=> OK_AL
);
1395 Get
(Value
=> Val_AH
, From
=> AH
, OK
=> OK_AH
);
1397 if OK_L
and then Val_L
> Val_AL
then
1398 Set_Raises_Constraint_Error
(N
);
1399 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1400 Error_Msg_N
("lower bound of aggregate out of range<<", N
);
1401 Error_Msg_N
("\Constraint_Error [<<", N
);
1404 if OK_H
and then Val_H
< Val_AH
then
1405 Set_Raises_Constraint_Error
(N
);
1406 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1407 Error_Msg_N
("upper bound of aggregate out of range<<", N
);
1408 Error_Msg_N
("\Constraint_Error [<<", N
);
1416 procedure Check_Length
(L
, H
: Node_Id
; Len
: Uint
) is
1426 if Raises_Constraint_Error
(N
) then
1430 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1431 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1433 if not OK_L
or else not OK_H
then
1437 -- If null range length is zero
1439 if Val_L
> Val_H
then
1440 Range_Len
:= Uint_0
;
1442 Range_Len
:= Val_H
- Val_L
+ 1;
1445 if Range_Len
< Len
then
1446 Set_Raises_Constraint_Error
(N
);
1447 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1448 Error_Msg_N
("too many elements<<", N
);
1449 Error_Msg_N
("\Constraint_Error [<<", N
);
1453 ---------------------------
1454 -- Dynamic_Or_Null_Range --
1455 ---------------------------
1457 function Dynamic_Or_Null_Range
(L
, H
: Node_Id
) return Boolean is
1465 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1466 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1468 return not OK_L
or else not OK_H
1469 or else not Is_OK_Static_Expression
(L
)
1470 or else not Is_OK_Static_Expression
(H
)
1471 or else Val_L
> Val_H
;
1472 end Dynamic_Or_Null_Range
;
1478 procedure Get
(Value
: out Uint
; From
: Node_Id
; OK
: out Boolean) is
1482 if Compile_Time_Known_Value
(From
) then
1483 Value
:= Expr_Value
(From
);
1485 -- If expression From is something like Some_Type'Val (10) then
1488 elsif Nkind
(From
) = N_Attribute_Reference
1489 and then Attribute_Name
(From
) = Name_Val
1490 and then Compile_Time_Known_Value
(First
(Expressions
(From
)))
1492 Value
:= Expr_Value
(First
(Expressions
(From
)));
1499 -----------------------
1500 -- Resolve_Aggr_Expr --
1501 -----------------------
1503 function Resolve_Aggr_Expr
1505 Single_Elmt
: Boolean) return Boolean
1507 Nxt_Ind
: constant Node_Id
:= Next_Index
(Index
);
1508 Nxt_Ind_Constr
: constant Node_Id
:= Next_Index
(Index_Constr
);
1509 -- Index is the current index corresponding to the expression
1511 Resolution_OK
: Boolean := True;
1512 -- Set to False if resolution of the expression failed
1515 -- Defend against previous errors
1517 if Nkind
(Expr
) = N_Error
1518 or else Error_Posted
(Expr
)
1523 -- If the array type against which we are resolving the aggregate
1524 -- has several dimensions, the expressions nested inside the
1525 -- aggregate must be further aggregates (or strings).
1527 if Present
(Nxt_Ind
) then
1528 if Nkind
(Expr
) /= N_Aggregate
then
1530 -- A string literal can appear where a one-dimensional array
1531 -- of characters is expected. If the literal looks like an
1532 -- operator, it is still an operator symbol, which will be
1533 -- transformed into a string when analyzed.
1535 if Is_Character_Type
(Component_Typ
)
1536 and then No
(Next_Index
(Nxt_Ind
))
1537 and then Nkind_In
(Expr
, N_String_Literal
, N_Operator_Symbol
)
1539 -- A string literal used in a multidimensional array
1540 -- aggregate in place of the final one-dimensional
1541 -- aggregate must not be enclosed in parentheses.
1543 if Paren_Count
(Expr
) /= 0 then
1544 Error_Msg_N
("no parenthesis allowed here", Expr
);
1547 Make_String_Into_Aggregate
(Expr
);
1550 Error_Msg_N
("nested array aggregate expected", Expr
);
1552 -- If the expression is parenthesized, this may be
1553 -- a missing component association for a 1-aggregate.
1555 if Paren_Count
(Expr
) > 0 then
1557 ("\if single-component aggregate is intended, "
1558 & "write e.g. (1 ='> ...)", Expr
);
1565 -- If it's "... => <>", nothing to resolve
1567 if Nkind
(Expr
) = N_Component_Association
then
1568 pragma Assert
(Box_Present
(Expr
));
1572 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1573 -- Required to check the null-exclusion attribute (if present).
1574 -- This value may be overridden later on.
1576 Set_Etype
(Expr
, Etype
(N
));
1578 Resolution_OK
:= Resolve_Array_Aggregate
1579 (Expr
, Nxt_Ind
, Nxt_Ind_Constr
, Component_Typ
, Others_Allowed
);
1582 -- If it's "... => <>", nothing to resolve
1584 if Nkind
(Expr
) = N_Component_Association
then
1585 pragma Assert
(Box_Present
(Expr
));
1589 -- Do not resolve the expressions of discrete or others choices
1590 -- unless the expression covers a single component, or the
1591 -- expander is inactive.
1593 -- In SPARK mode, expressions that can perform side-effects will
1594 -- be recognized by the gnat2why back-end, and the whole
1595 -- subprogram will be ignored. So semantic analysis can be
1596 -- performed safely.
1599 or else not Expander_Active
1600 or else In_Spec_Expression
1602 Analyze_And_Resolve
(Expr
, Component_Typ
);
1603 Check_Expr_OK_In_Limited_Aggregate
(Expr
);
1604 Check_Non_Static_Context
(Expr
);
1605 Aggregate_Constraint_Checks
(Expr
, Component_Typ
);
1606 Check_Unset_Reference
(Expr
);
1610 -- If an aggregate component has a type with predicates, an explicit
1611 -- predicate check must be applied, as for an assignment statement,
1612 -- because the aggegate might not be expanded into individual
1613 -- component assignments.
1615 if Present
(Predicate_Function
(Component_Typ
)) then
1616 Apply_Predicate_Check
(Expr
, Component_Typ
);
1619 if Raises_Constraint_Error
(Expr
)
1620 and then Nkind
(Parent
(Expr
)) /= N_Component_Association
1622 Set_Raises_Constraint_Error
(N
);
1625 -- If the expression has been marked as requiring a range check,
1626 -- then generate it here. It's a bit odd to be generating such
1627 -- checks in the analyzer, but harmless since Generate_Range_Check
1628 -- does nothing (other than making sure Do_Range_Check is set) if
1629 -- the expander is not active.
1631 if Do_Range_Check
(Expr
) then
1632 Generate_Range_Check
(Expr
, Component_Typ
, CE_Range_Check_Failed
);
1635 return Resolution_OK
;
1636 end Resolve_Aggr_Expr
;
1638 -- Variables local to Resolve_Array_Aggregate
1645 Delete_Choice
: Boolean;
1646 -- Used when replacing a subtype choice with predicate by a list
1648 Aggr_Low
: Node_Id
:= Empty
;
1649 Aggr_High
: Node_Id
:= Empty
;
1650 -- The actual low and high bounds of this sub-aggregate
1652 Choices_Low
: Node_Id
:= Empty
;
1653 Choices_High
: Node_Id
:= Empty
;
1654 -- The lowest and highest discrete choices values for a named aggregate
1656 Nb_Elements
: Uint
:= Uint_0
;
1657 -- The number of elements in a positional aggregate
1659 Others_Present
: Boolean := False;
1661 Nb_Choices
: Nat
:= 0;
1662 -- Contains the overall number of named choices in this sub-aggregate
1664 Nb_Discrete_Choices
: Nat
:= 0;
1665 -- The overall number of discrete choices (not counting others choice)
1667 Case_Table_Size
: Nat
;
1668 -- Contains the size of the case table needed to sort aggregate choices
1670 -- Start of processing for Resolve_Array_Aggregate
1673 -- Ignore junk empty aggregate resulting from parser error
1675 if No
(Expressions
(N
))
1676 and then No
(Component_Associations
(N
))
1677 and then not Null_Record_Present
(N
)
1682 -- STEP 1: make sure the aggregate is correctly formatted
1684 if Present
(Component_Associations
(N
)) then
1685 Assoc
:= First
(Component_Associations
(N
));
1686 while Present
(Assoc
) loop
1687 Choice
:= First
(Choices
(Assoc
));
1688 Delete_Choice
:= False;
1689 while Present
(Choice
) loop
1690 if Nkind
(Choice
) = N_Others_Choice
then
1691 Others_Present
:= True;
1693 if Choice
/= First
(Choices
(Assoc
))
1694 or else Present
(Next
(Choice
))
1697 ("OTHERS must appear alone in a choice list", Choice
);
1701 if Present
(Next
(Assoc
)) then
1703 ("OTHERS must appear last in an aggregate", Choice
);
1707 if Ada_Version
= Ada_83
1708 and then Assoc
/= First
(Component_Associations
(N
))
1709 and then Nkind_In
(Parent
(N
), N_Assignment_Statement
,
1710 N_Object_Declaration
)
1713 ("(Ada 83) illegal context for OTHERS choice", N
);
1716 elsif Is_Entity_Name
(Choice
) then
1720 E
: constant Entity_Id
:= Entity
(Choice
);
1726 if Is_Type
(E
) and then Has_Predicates
(E
) then
1727 Freeze_Before
(N
, E
);
1729 if Has_Dynamic_Predicate_Aspect
(E
) then
1731 ("subtype& has dynamic predicate, not allowed "
1732 & "in aggregate choice", Choice
, E
);
1734 elsif not Is_OK_Static_Subtype
(E
) then
1736 ("non-static subtype& has predicate, not allowed "
1737 & "in aggregate choice", Choice
, E
);
1740 -- If the subtype has a static predicate, replace the
1741 -- original choice with the list of individual values
1742 -- covered by the predicate.
1744 if Present
(Static_Discrete_Predicate
(E
)) then
1745 Delete_Choice
:= True;
1748 P
:= First
(Static_Discrete_Predicate
(E
));
1749 while Present
(P
) loop
1751 Set_Sloc
(C
, Sloc
(Choice
));
1752 Append_To
(New_Cs
, C
);
1756 Insert_List_After
(Choice
, New_Cs
);
1762 Nb_Choices
:= Nb_Choices
+ 1;
1765 C
: constant Node_Id
:= Choice
;
1770 if Delete_Choice
then
1772 Nb_Choices
:= Nb_Choices
- 1;
1773 Delete_Choice
:= False;
1782 -- At this point we know that the others choice, if present, is by
1783 -- itself and appears last in the aggregate. Check if we have mixed
1784 -- positional and discrete associations (other than the others choice).
1786 if Present
(Expressions
(N
))
1787 and then (Nb_Choices
> 1
1788 or else (Nb_Choices
= 1 and then not Others_Present
))
1791 ("named association cannot follow positional association",
1792 First
(Choices
(First
(Component_Associations
(N
)))));
1796 -- Test for the validity of an others choice if present
1798 if Others_Present
and then not Others_Allowed
then
1800 ("OTHERS choice not allowed here",
1801 First
(Choices
(First
(Component_Associations
(N
)))));
1805 -- Protect against cascaded errors
1807 if Etype
(Index_Typ
) = Any_Type
then
1811 -- STEP 2: Process named components
1813 if No
(Expressions
(N
)) then
1814 if Others_Present
then
1815 Case_Table_Size
:= Nb_Choices
- 1;
1817 Case_Table_Size
:= Nb_Choices
;
1823 -- Denote the lowest and highest values in an aggregate choice
1825 S_Low
: Node_Id
:= Empty
;
1826 S_High
: Node_Id
:= Empty
;
1827 -- if a choice in an aggregate is a subtype indication these
1828 -- denote the lowest and highest values of the subtype
1830 Table
: Case_Table_Type
(0 .. Case_Table_Size
);
1831 -- Used to sort all the different choice values. Entry zero is
1832 -- reserved for sorting purposes.
1834 Single_Choice
: Boolean;
1835 -- Set to true every time there is a single discrete choice in a
1836 -- discrete association
1838 Prev_Nb_Discrete_Choices
: Nat
;
1839 -- Used to keep track of the number of discrete choices in the
1840 -- current association.
1842 Errors_Posted_On_Choices
: Boolean := False;
1843 -- Keeps track of whether any choices have semantic errors
1845 function Empty_Range
(A
: Node_Id
) return Boolean;
1846 -- If an association covers an empty range, some warnings on the
1847 -- expression of the association can be disabled.
1853 function Empty_Range
(A
: Node_Id
) return Boolean is
1854 R
: constant Node_Id
:= First
(Choices
(A
));
1856 return No
(Next
(R
))
1857 and then Nkind
(R
) = N_Range
1858 and then Compile_Time_Compare
1859 (Low_Bound
(R
), High_Bound
(R
), False) = GT
;
1862 -- Start of processing for Step_2
1865 -- STEP 2 (A): Check discrete choices validity
1867 Assoc
:= First
(Component_Associations
(N
));
1868 while Present
(Assoc
) loop
1869 Prev_Nb_Discrete_Choices
:= Nb_Discrete_Choices
;
1870 Choice
:= First
(Choices
(Assoc
));
1874 if Nkind
(Choice
) = N_Others_Choice
then
1875 Single_Choice
:= False;
1878 -- Test for subtype mark without constraint
1880 elsif Is_Entity_Name
(Choice
) and then
1881 Is_Type
(Entity
(Choice
))
1883 if Base_Type
(Entity
(Choice
)) /= Index_Base
then
1885 ("invalid subtype mark in aggregate choice",
1890 -- Case of subtype indication
1892 elsif Nkind
(Choice
) = N_Subtype_Indication
then
1893 Resolve_Discrete_Subtype_Indication
(Choice
, Index_Base
);
1895 if Has_Dynamic_Predicate_Aspect
1896 (Entity
(Subtype_Mark
(Choice
)))
1899 ("subtype& has dynamic predicate, "
1900 & "not allowed in aggregate choice",
1901 Choice
, Entity
(Subtype_Mark
(Choice
)));
1904 -- Does the subtype indication evaluation raise CE?
1906 Get_Index_Bounds
(Subtype_Mark
(Choice
), S_Low
, S_High
);
1907 Get_Index_Bounds
(Choice
, Low
, High
);
1908 Check_Bounds
(S_Low
, S_High
, Low
, High
);
1910 -- Case of range or expression
1913 Resolve
(Choice
, Index_Base
);
1914 Check_Unset_Reference
(Choice
);
1915 Check_Non_Static_Context
(Choice
);
1917 -- If semantic errors were posted on the choice, then
1918 -- record that for possible early return from later
1919 -- processing (see handling of enumeration choices).
1921 if Error_Posted
(Choice
) then
1922 Errors_Posted_On_Choices
:= True;
1925 -- Do not range check a choice. This check is redundant
1926 -- since this test is already done when we check that the
1927 -- bounds of the array aggregate are within range.
1929 Set_Do_Range_Check
(Choice
, False);
1931 -- In SPARK, the choice must be static
1933 if not (Is_OK_Static_Expression
(Choice
)
1934 or else (Nkind
(Choice
) = N_Range
1935 and then Is_OK_Static_Range
(Choice
)))
1937 Check_SPARK_05_Restriction
1938 ("choice should be static", Choice
);
1942 -- If we could not resolve the discrete choice stop here
1944 if Etype
(Choice
) = Any_Type
then
1947 -- If the discrete choice raises CE get its original bounds
1949 elsif Nkind
(Choice
) = N_Raise_Constraint_Error
then
1950 Set_Raises_Constraint_Error
(N
);
1951 Get_Index_Bounds
(Original_Node
(Choice
), Low
, High
);
1953 -- Otherwise get its bounds as usual
1956 Get_Index_Bounds
(Choice
, Low
, High
);
1959 if (Dynamic_Or_Null_Range
(Low
, High
)
1960 or else (Nkind
(Choice
) = N_Subtype_Indication
1962 Dynamic_Or_Null_Range
(S_Low
, S_High
)))
1963 and then Nb_Choices
/= 1
1966 ("dynamic or empty choice in aggregate "
1967 & "must be the only choice", Choice
);
1971 if not (All_Composite_Constraints_Static
(Low
)
1972 and then All_Composite_Constraints_Static
(High
)
1973 and then All_Composite_Constraints_Static
(S_Low
)
1974 and then All_Composite_Constraints_Static
(S_High
))
1976 Check_Restriction
(No_Dynamic_Sized_Objects
, Choice
);
1979 Nb_Discrete_Choices
:= Nb_Discrete_Choices
+ 1;
1980 Table
(Nb_Discrete_Choices
).Lo
:= Low
;
1981 Table
(Nb_Discrete_Choices
).Hi
:= High
;
1982 Table
(Nb_Discrete_Choices
).Choice
:= Choice
;
1988 -- Check if we have a single discrete choice and whether
1989 -- this discrete choice specifies a single value.
1992 (Nb_Discrete_Choices
= Prev_Nb_Discrete_Choices
+ 1)
1993 and then (Low
= High
);
1999 -- Ada 2005 (AI-231)
2001 if Ada_Version
>= Ada_2005
2002 and then Known_Null
(Expression
(Assoc
))
2003 and then not Empty_Range
(Assoc
)
2005 Check_Can_Never_Be_Null
(Etype
(N
), Expression
(Assoc
));
2008 -- Ada 2005 (AI-287): In case of default initialized component
2009 -- we delay the resolution to the expansion phase.
2011 if Box_Present
(Assoc
) then
2013 -- Ada 2005 (AI-287): In case of default initialization of a
2014 -- component the expander will generate calls to the
2015 -- corresponding initialization subprogram. We need to call
2016 -- Resolve_Aggr_Expr to check the rules about
2019 if not Resolve_Aggr_Expr
2020 (Assoc
, Single_Elmt
=> Single_Choice
)
2025 elsif not Resolve_Aggr_Expr
2026 (Expression
(Assoc
), Single_Elmt
=> Single_Choice
)
2030 -- Check incorrect use of dynamically tagged expression
2032 -- We differentiate here two cases because the expression may
2033 -- not be decorated. For example, the analysis and resolution
2034 -- of the expression associated with the others choice will be
2035 -- done later with the full aggregate. In such case we
2036 -- duplicate the expression tree to analyze the copy and
2037 -- perform the required check.
2039 elsif not Present
(Etype
(Expression
(Assoc
))) then
2041 Save_Analysis
: constant Boolean := Full_Analysis
;
2042 Expr
: constant Node_Id
:=
2043 New_Copy_Tree
(Expression
(Assoc
));
2046 Expander_Mode_Save_And_Set
(False);
2047 Full_Analysis
:= False;
2049 -- Analyze the expression, making sure it is properly
2050 -- attached to the tree before we do the analysis.
2052 Set_Parent
(Expr
, Parent
(Expression
(Assoc
)));
2055 -- If the expression is a literal, propagate this info
2056 -- to the expression in the association, to enable some
2057 -- optimizations downstream.
2059 if Is_Entity_Name
(Expr
)
2060 and then Present
(Entity
(Expr
))
2061 and then Ekind
(Entity
(Expr
)) = E_Enumeration_Literal
2064 (Expression
(Assoc
), Component_Typ
);
2067 Full_Analysis
:= Save_Analysis
;
2068 Expander_Mode_Restore
;
2070 if Is_Tagged_Type
(Etype
(Expr
)) then
2071 Check_Dynamically_Tagged_Expression
2073 Typ
=> Component_Type
(Etype
(N
)),
2078 elsif Is_Tagged_Type
(Etype
(Expression
(Assoc
))) then
2079 Check_Dynamically_Tagged_Expression
2080 (Expr
=> Expression
(Assoc
),
2081 Typ
=> Component_Type
(Etype
(N
)),
2088 -- If aggregate contains more than one choice then these must be
2089 -- static. Check for duplicate and missing values.
2091 -- Note: there is duplicated code here wrt Check_Choice_Set in
2092 -- the body of Sem_Case, and it is possible we could just reuse
2093 -- that procedure. To be checked ???
2095 if Nb_Discrete_Choices
> 1 then
2096 Check_Choices
: declare
2098 -- Location of choice for messages
2102 -- High end of one range and Low end of the next. Should be
2103 -- contiguous if there is no hole in the list of values.
2107 -- End points of duplicated range
2109 Missing_Or_Duplicates
: Boolean := False;
2110 -- Set True if missing or duplicate choices found
2112 procedure Output_Bad_Choices
(Lo
, Hi
: Uint
; C
: Node_Id
);
2113 -- Output continuation message with a representation of the
2114 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2115 -- choice node where the message is to be posted.
2117 ------------------------
2118 -- Output_Bad_Choices --
2119 ------------------------
2121 procedure Output_Bad_Choices
(Lo
, Hi
: Uint
; C
: Node_Id
) is
2123 -- Enumeration type case
2125 if Is_Enumeration_Type
(Index_Typ
) then
2127 Chars
(Get_Enum_Lit_From_Pos
(Index_Typ
, Lo
, Loc
));
2129 Chars
(Get_Enum_Lit_From_Pos
(Index_Typ
, Hi
, Loc
));
2132 Error_Msg_N
("\\ %!", C
);
2134 Error_Msg_N
("\\ % .. %!", C
);
2137 -- Integer types case
2140 Error_Msg_Uint_1
:= Lo
;
2141 Error_Msg_Uint_2
:= Hi
;
2144 Error_Msg_N
("\\ ^!", C
);
2146 Error_Msg_N
("\\ ^ .. ^!", C
);
2149 end Output_Bad_Choices
;
2151 -- Start of processing for Check_Choices
2154 Sort_Case_Table
(Table
);
2156 -- First we do a quick linear loop to find out if we have
2157 -- any duplicates or missing entries (usually we have a
2158 -- legal aggregate, so this will get us out quickly).
2160 for J
in 1 .. Nb_Discrete_Choices
- 1 loop
2161 Hi_Val
:= Expr_Value
(Table
(J
).Hi
);
2162 Lo_Val
:= Expr_Value
(Table
(J
+ 1).Lo
);
2165 or else (Lo_Val
> Hi_Val
+ 1
2166 and then not Others_Present
)
2168 Missing_Or_Duplicates
:= True;
2173 -- If we have missing or duplicate entries, first fill in
2174 -- the Highest entries to make life easier in the following
2175 -- loops to detect bad entries.
2177 if Missing_Or_Duplicates
then
2178 Table
(1).Highest
:= Expr_Value
(Table
(1).Hi
);
2180 for J
in 2 .. Nb_Discrete_Choices
loop
2181 Table
(J
).Highest
:=
2183 (Table
(J
- 1).Highest
, Expr_Value
(Table
(J
).Hi
));
2186 -- Loop through table entries to find duplicate indexes
2188 for J
in 2 .. Nb_Discrete_Choices
loop
2189 Lo_Val
:= Expr_Value
(Table
(J
).Lo
);
2190 Hi_Val
:= Expr_Value
(Table
(J
).Hi
);
2192 -- Case where we have duplicates (the lower bound of
2193 -- this choice is less than or equal to the highest
2194 -- high bound found so far).
2196 if Lo_Val
<= Table
(J
- 1).Highest
then
2198 -- We move backwards looking for duplicates. We can
2199 -- abandon this loop as soon as we reach a choice
2200 -- highest value that is less than Lo_Val.
2202 for K
in reverse 1 .. J
- 1 loop
2203 exit when Table
(K
).Highest
< Lo_Val
;
2205 -- Here we may have duplicates between entries
2206 -- for K and J. Get range of duplicates.
2209 UI_Max
(Lo_Val
, Expr_Value
(Table
(K
).Lo
));
2211 UI_Min
(Hi_Val
, Expr_Value
(Table
(K
).Hi
));
2213 -- Nothing to do if duplicate range is null
2215 if Lo_Dup
> Hi_Dup
then
2218 -- Otherwise place proper message
2221 -- We place message on later choice, with a
2222 -- line reference to the earlier choice.
2224 if Sloc
(Table
(J
).Choice
) <
2225 Sloc
(Table
(K
).Choice
)
2227 Choice
:= Table
(K
).Choice
;
2228 Error_Msg_Sloc
:= Sloc
(Table
(J
).Choice
);
2230 Choice
:= Table
(J
).Choice
;
2231 Error_Msg_Sloc
:= Sloc
(Table
(K
).Choice
);
2234 if Lo_Dup
= Hi_Dup
then
2236 ("index value in array aggregate "
2237 & "duplicates the one given#!", Choice
);
2240 ("index values in array aggregate "
2241 & "duplicate those given#!", Choice
);
2244 Output_Bad_Choices
(Lo_Dup
, Hi_Dup
, Choice
);
2250 -- Loop through entries in table to find missing indexes.
2251 -- Not needed if others, since missing impossible.
2253 if not Others_Present
then
2254 for J
in 2 .. Nb_Discrete_Choices
loop
2255 Lo_Val
:= Expr_Value
(Table
(J
).Lo
);
2256 Hi_Val
:= Table
(J
- 1).Highest
;
2258 if Lo_Val
> Hi_Val
+ 1 then
2261 Error_Node
: Node_Id
;
2264 -- If the choice is the bound of a range in
2265 -- a subtype indication, it is not in the
2266 -- source lists for the aggregate itself, so
2267 -- post the error on the aggregate. Otherwise
2268 -- post it on choice itself.
2270 Choice
:= Table
(J
).Choice
;
2272 if Is_List_Member
(Choice
) then
2273 Error_Node
:= Choice
;
2278 if Hi_Val
+ 1 = Lo_Val
- 1 then
2280 ("missing index value "
2281 & "in array aggregate!", Error_Node
);
2284 ("missing index values "
2285 & "in array aggregate!", Error_Node
);
2289 (Hi_Val
+ 1, Lo_Val
- 1, Error_Node
);
2295 -- If either missing or duplicate values, return failure
2297 Set_Etype
(N
, Any_Composite
);
2303 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2305 if Nb_Discrete_Choices
> 0 then
2306 Choices_Low
:= Table
(1).Lo
;
2307 Choices_High
:= Table
(Nb_Discrete_Choices
).Hi
;
2310 -- If Others is present, then bounds of aggregate come from the
2311 -- index constraint (not the choices in the aggregate itself).
2313 if Others_Present
then
2314 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2316 -- Abandon processing if either bound is already signalled as
2317 -- an error (prevents junk cascaded messages and blow ups).
2319 if Nkind
(Aggr_Low
) = N_Error
2321 Nkind
(Aggr_High
) = N_Error
2326 -- No others clause present
2329 -- Special processing if others allowed and not present. This
2330 -- means that the bounds of the aggregate come from the index
2331 -- constraint (and the length must match).
2333 if Others_Allowed
then
2334 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2336 -- Abandon processing if either bound is already signalled
2337 -- as an error (stop junk cascaded messages and blow ups).
2339 if Nkind
(Aggr_Low
) = N_Error
2341 Nkind
(Aggr_High
) = N_Error
2346 -- If others allowed, and no others present, then the array
2347 -- should cover all index values. If it does not, we will
2348 -- get a length check warning, but there is two cases where
2349 -- an additional warning is useful:
2351 -- If we have no positional components, and the length is
2352 -- wrong (which we can tell by others being allowed with
2353 -- missing components), and the index type is an enumeration
2354 -- type, then issue appropriate warnings about these missing
2355 -- components. They are only warnings, since the aggregate
2356 -- is fine, it's just the wrong length. We skip this check
2357 -- for standard character types (since there are no literals
2358 -- and it is too much trouble to concoct them), and also if
2359 -- any of the bounds have values that are not known at
2362 -- Another case warranting a warning is when the length
2363 -- is right, but as above we have an index type that is
2364 -- an enumeration, and the bounds do not match. This is a
2365 -- case where dubious sliding is allowed and we generate a
2366 -- warning that the bounds do not match.
2368 if No
(Expressions
(N
))
2369 and then Nkind
(Index
) = N_Range
2370 and then Is_Enumeration_Type
(Etype
(Index
))
2371 and then not Is_Standard_Character_Type
(Etype
(Index
))
2372 and then Compile_Time_Known_Value
(Aggr_Low
)
2373 and then Compile_Time_Known_Value
(Aggr_High
)
2374 and then Compile_Time_Known_Value
(Choices_Low
)
2375 and then Compile_Time_Known_Value
(Choices_High
)
2377 -- If any of the expressions or range bounds in choices
2378 -- have semantic errors, then do not attempt further
2379 -- resolution, to prevent cascaded errors.
2381 if Errors_Posted_On_Choices
then
2386 ALo
: constant Node_Id
:= Expr_Value_E
(Aggr_Low
);
2387 AHi
: constant Node_Id
:= Expr_Value_E
(Aggr_High
);
2388 CLo
: constant Node_Id
:= Expr_Value_E
(Choices_Low
);
2389 CHi
: constant Node_Id
:= Expr_Value_E
(Choices_High
);
2394 -- Warning case 1, missing values at start/end. Only
2395 -- do the check if the number of entries is too small.
2397 if (Enumeration_Pos
(CHi
) - Enumeration_Pos
(CLo
))
2399 (Enumeration_Pos
(AHi
) - Enumeration_Pos
(ALo
))
2402 ("missing index value(s) in array aggregate??",
2405 -- Output missing value(s) at start
2407 if Chars
(ALo
) /= Chars
(CLo
) then
2410 if Chars
(ALo
) = Chars
(Ent
) then
2411 Error_Msg_Name_1
:= Chars
(ALo
);
2412 Error_Msg_N
("\ %??", N
);
2414 Error_Msg_Name_1
:= Chars
(ALo
);
2415 Error_Msg_Name_2
:= Chars
(Ent
);
2416 Error_Msg_N
("\ % .. %??", N
);
2420 -- Output missing value(s) at end
2422 if Chars
(AHi
) /= Chars
(CHi
) then
2425 if Chars
(AHi
) = Chars
(Ent
) then
2426 Error_Msg_Name_1
:= Chars
(Ent
);
2427 Error_Msg_N
("\ %??", N
);
2429 Error_Msg_Name_1
:= Chars
(Ent
);
2430 Error_Msg_Name_2
:= Chars
(AHi
);
2431 Error_Msg_N
("\ % .. %??", N
);
2435 -- Warning case 2, dubious sliding. The First_Subtype
2436 -- test distinguishes between a constrained type where
2437 -- sliding is not allowed (so we will get a warning
2438 -- later that Constraint_Error will be raised), and
2439 -- the unconstrained case where sliding is permitted.
2441 elsif (Enumeration_Pos
(CHi
) - Enumeration_Pos
(CLo
))
2443 (Enumeration_Pos
(AHi
) - Enumeration_Pos
(ALo
))
2444 and then Chars
(ALo
) /= Chars
(CLo
)
2446 not Is_Constrained
(First_Subtype
(Etype
(N
)))
2449 ("bounds of aggregate do not match target??", N
);
2455 -- If no others, aggregate bounds come from aggregate
2457 Aggr_Low
:= Choices_Low
;
2458 Aggr_High
:= Choices_High
;
2462 -- STEP 3: Process positional components
2465 -- STEP 3 (A): Process positional elements
2467 Expr
:= First
(Expressions
(N
));
2468 Nb_Elements
:= Uint_0
;
2469 while Present
(Expr
) loop
2470 Nb_Elements
:= Nb_Elements
+ 1;
2472 -- Ada 2005 (AI-231)
2474 if Ada_Version
>= Ada_2005
and then Known_Null
(Expr
) then
2475 Check_Can_Never_Be_Null
(Etype
(N
), Expr
);
2478 if not Resolve_Aggr_Expr
(Expr
, Single_Elmt
=> True) then
2482 -- Check incorrect use of dynamically tagged expression
2484 if Is_Tagged_Type
(Etype
(Expr
)) then
2485 Check_Dynamically_Tagged_Expression
2487 Typ
=> Component_Type
(Etype
(N
)),
2494 if Others_Present
then
2495 Assoc
:= Last
(Component_Associations
(N
));
2497 -- Ada 2005 (AI-231)
2499 if Ada_Version
>= Ada_2005
and then Known_Null
(Assoc
) then
2500 Check_Can_Never_Be_Null
(Etype
(N
), Expression
(Assoc
));
2503 -- Ada 2005 (AI-287): In case of default initialized component,
2504 -- we delay the resolution to the expansion phase.
2506 if Box_Present
(Assoc
) then
2508 -- Ada 2005 (AI-287): In case of default initialization of a
2509 -- component the expander will generate calls to the
2510 -- corresponding initialization subprogram. We need to call
2511 -- Resolve_Aggr_Expr to check the rules about
2514 if not Resolve_Aggr_Expr
(Assoc
, Single_Elmt
=> False) then
2518 elsif not Resolve_Aggr_Expr
(Expression
(Assoc
),
2519 Single_Elmt
=> False)
2523 -- Check incorrect use of dynamically tagged expression. The
2524 -- expression of the others choice has not been resolved yet.
2525 -- In order to diagnose the semantic error we create a duplicate
2526 -- tree to analyze it and perform the check.
2530 Save_Analysis
: constant Boolean := Full_Analysis
;
2531 Expr
: constant Node_Id
:=
2532 New_Copy_Tree
(Expression
(Assoc
));
2535 Expander_Mode_Save_And_Set
(False);
2536 Full_Analysis
:= False;
2538 Full_Analysis
:= Save_Analysis
;
2539 Expander_Mode_Restore
;
2541 if Is_Tagged_Type
(Etype
(Expr
)) then
2542 Check_Dynamically_Tagged_Expression
2544 Typ
=> Component_Type
(Etype
(N
)),
2551 -- STEP 3 (B): Compute the aggregate bounds
2553 if Others_Present
then
2554 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2557 if Others_Allowed
then
2558 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Discard
);
2560 Aggr_Low
:= Index_Typ_Low
;
2563 Aggr_High
:= Add
(Nb_Elements
- 1, To
=> Aggr_Low
);
2564 Check_Bound
(Index_Base_High
, Aggr_High
);
2568 -- STEP 4: Perform static aggregate checks and save the bounds
2572 Check_Bounds
(Index_Typ_Low
, Index_Typ_High
, Aggr_Low
, Aggr_High
);
2573 Check_Bounds
(Index_Base_Low
, Index_Base_High
, Aggr_Low
, Aggr_High
);
2577 if Others_Present
and then Nb_Discrete_Choices
> 0 then
2578 Check_Bounds
(Aggr_Low
, Aggr_High
, Choices_Low
, Choices_High
);
2579 Check_Bounds
(Index_Typ_Low
, Index_Typ_High
,
2580 Choices_Low
, Choices_High
);
2581 Check_Bounds
(Index_Base_Low
, Index_Base_High
,
2582 Choices_Low
, Choices_High
);
2586 elsif Others_Present
and then Nb_Elements
> 0 then
2587 Check_Length
(Aggr_Low
, Aggr_High
, Nb_Elements
);
2588 Check_Length
(Index_Typ_Low
, Index_Typ_High
, Nb_Elements
);
2589 Check_Length
(Index_Base_Low
, Index_Base_High
, Nb_Elements
);
2592 if Raises_Constraint_Error
(Aggr_Low
)
2593 or else Raises_Constraint_Error
(Aggr_High
)
2595 Set_Raises_Constraint_Error
(N
);
2598 Aggr_Low
:= Duplicate_Subexpr
(Aggr_Low
);
2600 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2601 -- since the addition node returned by Add is not yet analyzed. Attach
2602 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2603 -- analyzed when it is a literal bound whose type must be properly set.
2605 if Others_Present
or else Nb_Discrete_Choices
> 0 then
2606 Aggr_High
:= Duplicate_Subexpr
(Aggr_High
);
2608 if Etype
(Aggr_High
) = Universal_Integer
then
2609 Set_Analyzed
(Aggr_High
, False);
2613 -- If the aggregate already has bounds attached to it, it means this is
2614 -- a positional aggregate created as an optimization by
2615 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2618 if Present
(Aggregate_Bounds
(N
)) and then not Others_Allowed
then
2619 Aggr_Low
:= Low_Bound
(Aggregate_Bounds
(N
));
2620 Aggr_High
:= High_Bound
(Aggregate_Bounds
(N
));
2623 Set_Aggregate_Bounds
2624 (N
, Make_Range
(Loc
, Low_Bound
=> Aggr_Low
, High_Bound
=> Aggr_High
));
2626 -- The bounds may contain expressions that must be inserted upwards.
2627 -- Attach them fully to the tree. After analysis, remove side effects
2628 -- from upper bound, if still needed.
2630 Set_Parent
(Aggregate_Bounds
(N
), N
);
2631 Analyze_And_Resolve
(Aggregate_Bounds
(N
), Index_Typ
);
2632 Check_Unset_Reference
(Aggregate_Bounds
(N
));
2634 if not Others_Present
and then Nb_Discrete_Choices
= 0 then
2636 (Aggregate_Bounds
(N
),
2637 Duplicate_Subexpr
(High_Bound
(Aggregate_Bounds
(N
))));
2640 -- Check the dimensions of each component in the array aggregate
2642 Analyze_Dimension_Array_Aggregate
(N
, Component_Typ
);
2645 end Resolve_Array_Aggregate
;
2647 ---------------------------------
2648 -- Resolve_Extension_Aggregate --
2649 ---------------------------------
2651 -- There are two cases to consider:
2653 -- a) If the ancestor part is a type mark, the components needed are the
2654 -- difference between the components of the expected type and the
2655 -- components of the given type mark.
2657 -- b) If the ancestor part is an expression, it must be unambiguous, and
2658 -- once we have its type we can also compute the needed components as in
2659 -- the previous case. In both cases, if the ancestor type is not the
2660 -- immediate ancestor, we have to build this ancestor recursively.
2662 -- In both cases, discriminants of the ancestor type do not play a role in
2663 -- the resolution of the needed components, because inherited discriminants
2664 -- cannot be used in a type extension. As a result we can compute
2665 -- independently the list of components of the ancestor type and of the
2668 procedure Resolve_Extension_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
2669 A
: constant Node_Id
:= Ancestor_Part
(N
);
2674 function Valid_Limited_Ancestor
(Anc
: Node_Id
) return Boolean;
2675 -- If the type is limited, verify that the ancestor part is a legal
2676 -- expression (aggregate or function call, including 'Input)) that does
2677 -- not require a copy, as specified in 7.5(2).
2679 function Valid_Ancestor_Type
return Boolean;
2680 -- Verify that the type of the ancestor part is a non-private ancestor
2681 -- of the expected type, which must be a type extension.
2683 ----------------------------
2684 -- Valid_Limited_Ancestor --
2685 ----------------------------
2687 function Valid_Limited_Ancestor
(Anc
: Node_Id
) return Boolean is
2689 if Is_Entity_Name
(Anc
) and then Is_Type
(Entity
(Anc
)) then
2692 -- The ancestor must be a call or an aggregate, but a call may
2693 -- have been expanded into a temporary, so check original node.
2695 elsif Nkind_In
(Anc
, N_Aggregate
,
2696 N_Extension_Aggregate
,
2701 elsif Nkind
(Original_Node
(Anc
)) = N_Function_Call
then
2704 elsif Nkind
(Anc
) = N_Attribute_Reference
2705 and then Attribute_Name
(Anc
) = Name_Input
2709 elsif Nkind
(Anc
) = N_Qualified_Expression
then
2710 return Valid_Limited_Ancestor
(Expression
(Anc
));
2715 end Valid_Limited_Ancestor
;
2717 -------------------------
2718 -- Valid_Ancestor_Type --
2719 -------------------------
2721 function Valid_Ancestor_Type
return Boolean is
2722 Imm_Type
: Entity_Id
;
2725 Imm_Type
:= Base_Type
(Typ
);
2726 while Is_Derived_Type
(Imm_Type
) loop
2727 if Etype
(Imm_Type
) = Base_Type
(A_Type
) then
2730 -- The base type of the parent type may appear as a private
2731 -- extension if it is declared as such in a parent unit of the
2732 -- current one. For consistency of the subsequent analysis use
2733 -- the partial view for the ancestor part.
2735 elsif Is_Private_Type
(Etype
(Imm_Type
))
2736 and then Present
(Full_View
(Etype
(Imm_Type
)))
2737 and then Base_Type
(A_Type
) = Full_View
(Etype
(Imm_Type
))
2739 A_Type
:= Etype
(Imm_Type
);
2742 -- The parent type may be a private extension. The aggregate is
2743 -- legal if the type of the aggregate is an extension of it that
2744 -- is not a private extension.
2746 elsif Is_Private_Type
(A_Type
)
2747 and then not Is_Private_Type
(Imm_Type
)
2748 and then Present
(Full_View
(A_Type
))
2749 and then Base_Type
(Full_View
(A_Type
)) = Etype
(Imm_Type
)
2754 Imm_Type
:= Etype
(Base_Type
(Imm_Type
));
2758 -- If previous loop did not find a proper ancestor, report error
2760 Error_Msg_NE
("expect ancestor type of &", A
, Typ
);
2762 end Valid_Ancestor_Type
;
2764 -- Start of processing for Resolve_Extension_Aggregate
2767 -- Analyze the ancestor part and account for the case where it is a
2768 -- parameterless function call.
2771 Check_Parameterless_Call
(A
);
2773 -- In SPARK, the ancestor part cannot be a type mark
2775 if Is_Entity_Name
(A
) and then Is_Type
(Entity
(A
)) then
2776 Check_SPARK_05_Restriction
("ancestor part cannot be a type mark", A
);
2778 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
2779 -- must not have unknown discriminants.
2781 if Has_Unknown_Discriminants
(Root_Type
(Typ
)) then
2783 ("aggregate not available for type& whose ancestor "
2784 & "has unknown discriminants", N
, Typ
);
2788 if not Is_Tagged_Type
(Typ
) then
2789 Error_Msg_N
("type of extension aggregate must be tagged", N
);
2792 elsif Is_Limited_Type
(Typ
) then
2794 -- Ada 2005 (AI-287): Limited aggregates are allowed
2796 if Ada_Version
< Ada_2005
then
2797 Error_Msg_N
("aggregate type cannot be limited", N
);
2798 Explain_Limited_Type
(Typ
, N
);
2801 elsif Valid_Limited_Ancestor
(A
) then
2806 ("limited ancestor part must be aggregate or function call", A
);
2809 elsif Is_Class_Wide_Type
(Typ
) then
2810 Error_Msg_N
("aggregate cannot be of a class-wide type", N
);
2814 if Is_Entity_Name
(A
) and then Is_Type
(Entity
(A
)) then
2815 A_Type
:= Get_Full_View
(Entity
(A
));
2817 if Valid_Ancestor_Type
then
2818 Set_Entity
(A
, A_Type
);
2819 Set_Etype
(A
, A_Type
);
2821 Validate_Ancestor_Part
(N
);
2822 Resolve_Record_Aggregate
(N
, Typ
);
2825 elsif Nkind
(A
) /= N_Aggregate
then
2826 if Is_Overloaded
(A
) then
2829 Get_First_Interp
(A
, I
, It
);
2830 while Present
(It
.Typ
) loop
2832 -- Only consider limited interpretations in the Ada 2005 case
2834 if Is_Tagged_Type
(It
.Typ
)
2835 and then (Ada_Version
>= Ada_2005
2836 or else not Is_Limited_Type
(It
.Typ
))
2838 if A_Type
/= Any_Type
then
2839 Error_Msg_N
("cannot resolve expression", A
);
2846 Get_Next_Interp
(I
, It
);
2849 if A_Type
= Any_Type
then
2850 if Ada_Version
>= Ada_2005
then
2852 ("ancestor part must be of a tagged type", A
);
2855 ("ancestor part must be of a nonlimited tagged type", A
);
2862 A_Type
:= Etype
(A
);
2865 if Valid_Ancestor_Type
then
2866 Resolve
(A
, A_Type
);
2867 Check_Unset_Reference
(A
);
2868 Check_Non_Static_Context
(A
);
2870 -- The aggregate is illegal if the ancestor expression is a call
2871 -- to a function with a limited unconstrained result, unless the
2872 -- type of the aggregate is a null extension. This restriction
2873 -- was added in AI05-67 to simplify implementation.
2875 if Nkind
(A
) = N_Function_Call
2876 and then Is_Limited_Type
(A_Type
)
2877 and then not Is_Null_Extension
(Typ
)
2878 and then not Is_Constrained
(A_Type
)
2881 ("type of limited ancestor part must be constrained", A
);
2883 -- Reject the use of CPP constructors that leave objects partially
2884 -- initialized. For example:
2886 -- type CPP_Root is tagged limited record ...
2887 -- pragma Import (CPP, CPP_Root);
2889 -- type CPP_DT is new CPP_Root and Iface ...
2890 -- pragma Import (CPP, CPP_DT);
2892 -- type Ada_DT is new CPP_DT with ...
2894 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
2896 -- Using the constructor of CPP_Root the slots of the dispatch
2897 -- table of CPP_DT cannot be set, and the secondary tag of
2898 -- CPP_DT is unknown.
2900 elsif Nkind
(A
) = N_Function_Call
2901 and then Is_CPP_Constructor_Call
(A
)
2902 and then Enclosing_CPP_Parent
(Typ
) /= A_Type
2905 ("??must use 'C'P'P constructor for type &", A
,
2906 Enclosing_CPP_Parent
(Typ
));
2908 -- The following call is not needed if the previous warning
2909 -- is promoted to an error.
2911 Resolve_Record_Aggregate
(N
, Typ
);
2913 elsif Is_Class_Wide_Type
(Etype
(A
))
2914 and then Nkind
(Original_Node
(A
)) = N_Function_Call
2916 -- If the ancestor part is a dispatching call, it appears
2917 -- statically to be a legal ancestor, but it yields any member
2918 -- of the class, and it is not possible to determine whether
2919 -- it is an ancestor of the extension aggregate (much less
2920 -- which ancestor). It is not possible to determine the
2921 -- components of the extension part.
2923 -- This check implements AI-306, which in fact was motivated by
2924 -- an AdaCore query to the ARG after this test was added.
2926 Error_Msg_N
("ancestor part must be statically tagged", A
);
2928 Resolve_Record_Aggregate
(N
, Typ
);
2933 Error_Msg_N
("no unique type for this aggregate", A
);
2936 Check_Function_Writable_Actuals
(N
);
2937 end Resolve_Extension_Aggregate
;
2939 ------------------------------
2940 -- Resolve_Record_Aggregate --
2941 ------------------------------
2943 procedure Resolve_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
2945 -- N_Component_Association node belonging to the input aggregate N
2948 Positional_Expr
: Node_Id
;
2949 Component
: Entity_Id
;
2950 Component_Elmt
: Elmt_Id
;
2952 Components
: constant Elist_Id
:= New_Elmt_List
;
2953 -- Components is the list of the record components whose value must be
2954 -- provided in the aggregate. This list does include discriminants.
2956 New_Assoc_List
: constant List_Id
:= New_List
;
2957 New_Assoc
: Node_Id
;
2958 -- New_Assoc_List is the newly built list of N_Component_Association
2959 -- nodes. New_Assoc is one such N_Component_Association node in it.
2960 -- Note that while Assoc and New_Assoc contain the same kind of nodes,
2961 -- they are used to iterate over two different N_Component_Association
2964 Others_Etype
: Entity_Id
:= Empty
;
2965 -- This variable is used to save the Etype of the last record component
2966 -- that takes its value from the others choice. Its purpose is:
2968 -- (a) make sure the others choice is useful
2970 -- (b) make sure the type of all the components whose value is
2971 -- subsumed by the others choice are the same.
2973 -- This variable is updated as a side effect of function Get_Value.
2975 Is_Box_Present
: Boolean := False;
2976 Others_Box
: Boolean := False;
2977 -- Ada 2005 (AI-287): Variables used in case of default initialization
2978 -- to provide a functionality similar to Others_Etype. Box_Present
2979 -- indicates that the component takes its default initialization;
2980 -- Others_Box indicates that at least one component takes its default
2981 -- initialization. Similar to Others_Etype, they are also updated as a
2982 -- side effect of function Get_Value.
2984 procedure Add_Association
2985 (Component
: Entity_Id
;
2987 Assoc_List
: List_Id
;
2988 Is_Box_Present
: Boolean := False);
2989 -- Builds a new N_Component_Association node which associates Component
2990 -- to expression Expr and adds it to the association list being built,
2991 -- either New_Assoc_List, or the association being built for an inner
2994 function Discr_Present
(Discr
: Entity_Id
) return Boolean;
2995 -- If aggregate N is a regular aggregate this routine will return True.
2996 -- Otherwise, if N is an extension aggregate, Discr is a discriminant
2997 -- whose value may already have been specified by N's ancestor part.
2998 -- This routine checks whether this is indeed the case and if so returns
2999 -- False, signaling that no value for Discr should appear in N's
3000 -- aggregate part. Also, in this case, the routine appends to
3001 -- New_Assoc_List the discriminant value specified in the ancestor part.
3003 -- If the aggregate is in a context with expansion delayed, it will be
3004 -- reanalyzed. The inherited discriminant values must not be reinserted
3005 -- in the component list to prevent spurious errors, but they must be
3006 -- present on first analysis to build the proper subtype indications.
3007 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
3012 Consider_Others_Choice
: Boolean := False)
3014 -- Given a record component stored in parameter Compon, this function
3015 -- returns its value as it appears in the list From, which is a list
3016 -- of N_Component_Association nodes.
3018 -- If no component association has a choice for the searched component,
3019 -- the value provided by the others choice is returned, if there is one,
3020 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3021 -- returned. If there is more than one component association giving a
3022 -- value for the searched record component, an error message is emitted
3023 -- and the first found value is returned.
3025 -- If Consider_Others_Choice is set and the returned expression comes
3026 -- from the others choice, then Others_Etype is set as a side effect.
3027 -- An error message is emitted if the components taking their value from
3028 -- the others choice do not have same type.
3030 function New_Copy_Tree_And_Copy_Dimensions
3032 Map
: Elist_Id
:= No_Elist
;
3033 New_Sloc
: Source_Ptr
:= No_Location
;
3034 New_Scope
: Entity_Id
:= Empty
) return Node_Id
;
3035 -- Same as New_Copy_Tree (defined in Sem_Util), except that this routine
3036 -- also copies the dimensions of Source to the returned node.
3038 procedure Resolve_Aggr_Expr
(Expr
: Node_Id
; Component
: Node_Id
);
3039 -- Analyzes and resolves expression Expr against the Etype of the
3040 -- Component. This routine also applies all appropriate checks to Expr.
3041 -- It finally saves a Expr in the newly created association list that
3042 -- will be attached to the final record aggregate. Note that if the
3043 -- Parent pointer of Expr is not set then Expr was produced with a
3044 -- New_Copy_Tree or some such.
3046 ---------------------
3047 -- Add_Association --
3048 ---------------------
3050 procedure Add_Association
3051 (Component
: Entity_Id
;
3053 Assoc_List
: List_Id
;
3054 Is_Box_Present
: Boolean := False)
3057 Choice_List
: constant List_Id
:= New_List
;
3058 New_Assoc
: Node_Id
;
3061 -- If this is a box association the expression is missing, so
3062 -- use the Sloc of the aggregate itself for the new association.
3064 if Present
(Expr
) then
3070 Append
(New_Occurrence_Of
(Component
, Loc
), Choice_List
);
3072 Make_Component_Association
(Loc
,
3073 Choices
=> Choice_List
,
3075 Box_Present
=> Is_Box_Present
);
3076 Append
(New_Assoc
, Assoc_List
);
3077 end Add_Association
;
3083 function Discr_Present
(Discr
: Entity_Id
) return Boolean is
3084 Regular_Aggr
: constant Boolean := Nkind
(N
) /= N_Extension_Aggregate
;
3089 Comp_Assoc
: Node_Id
;
3090 Discr_Expr
: Node_Id
;
3092 Ancestor_Typ
: Entity_Id
;
3093 Orig_Discr
: Entity_Id
;
3095 D_Val
: Elmt_Id
:= No_Elmt
; -- stop junk warning
3097 Ancestor_Is_Subtyp
: Boolean;
3100 if Regular_Aggr
then
3104 -- Check whether inherited discriminant values have already been
3105 -- inserted in the aggregate. This will be the case if we are
3106 -- re-analyzing an aggregate whose expansion was delayed.
3108 if Present
(Component_Associations
(N
)) then
3109 Comp_Assoc
:= First
(Component_Associations
(N
));
3110 while Present
(Comp_Assoc
) loop
3111 if Inherited_Discriminant
(Comp_Assoc
) then
3119 Ancestor
:= Ancestor_Part
(N
);
3120 Ancestor_Typ
:= Etype
(Ancestor
);
3121 Loc
:= Sloc
(Ancestor
);
3123 -- For a private type with unknown discriminants, use the underlying
3124 -- record view if it is available.
3126 if Has_Unknown_Discriminants
(Ancestor_Typ
)
3127 and then Present
(Full_View
(Ancestor_Typ
))
3128 and then Present
(Underlying_Record_View
(Full_View
(Ancestor_Typ
)))
3130 Ancestor_Typ
:= Underlying_Record_View
(Full_View
(Ancestor_Typ
));
3133 Ancestor_Is_Subtyp
:=
3134 Is_Entity_Name
(Ancestor
) and then Is_Type
(Entity
(Ancestor
));
3136 -- If the ancestor part has no discriminants clearly N's aggregate
3137 -- part must provide a value for Discr.
3139 if not Has_Discriminants
(Ancestor_Typ
) then
3142 -- If the ancestor part is an unconstrained subtype mark then the
3143 -- Discr must be present in N's aggregate part.
3145 elsif Ancestor_Is_Subtyp
3146 and then not Is_Constrained
(Entity
(Ancestor
))
3151 -- Now look to see if Discr was specified in the ancestor part
3153 if Ancestor_Is_Subtyp
then
3154 D_Val
:= First_Elmt
(Discriminant_Constraint
(Entity
(Ancestor
)));
3157 Orig_Discr
:= Original_Record_Component
(Discr
);
3159 D
:= First_Discriminant
(Ancestor_Typ
);
3160 while Present
(D
) loop
3162 -- If Ancestor has already specified Disc value then insert its
3163 -- value in the final aggregate.
3165 if Original_Record_Component
(D
) = Orig_Discr
then
3166 if Ancestor_Is_Subtyp
then
3167 Discr_Expr
:= New_Copy_Tree
(Node
(D_Val
));
3170 Make_Selected_Component
(Loc
,
3171 Prefix
=> Duplicate_Subexpr
(Ancestor
),
3172 Selector_Name
=> New_Occurrence_Of
(Discr
, Loc
));
3175 Resolve_Aggr_Expr
(Discr_Expr
, Discr
);
3176 Set_Inherited_Discriminant
(Last
(New_Assoc_List
));
3180 Next_Discriminant
(D
);
3182 if Ancestor_Is_Subtyp
then
3197 Consider_Others_Choice
: Boolean := False)
3200 Typ
: constant Entity_Id
:= Etype
(Compon
);
3202 Expr
: Node_Id
:= Empty
;
3203 Selector_Name
: Node_Id
;
3206 Is_Box_Present
:= False;
3212 Assoc
:= First
(From
);
3213 while Present
(Assoc
) loop
3214 Selector_Name
:= First
(Choices
(Assoc
));
3215 while Present
(Selector_Name
) loop
3216 if Nkind
(Selector_Name
) = N_Others_Choice
then
3217 if Consider_Others_Choice
and then No
(Expr
) then
3219 -- We need to duplicate the expression for each
3220 -- successive component covered by the others choice.
3221 -- This is redundant if the others_choice covers only
3222 -- one component (small optimization possible???), but
3223 -- indispensable otherwise, because each one must be
3224 -- expanded individually to preserve side-effects.
3226 -- Ada 2005 (AI-287): In case of default initialization
3227 -- of components, we duplicate the corresponding default
3228 -- expression (from the record type declaration). The
3229 -- copy must carry the sloc of the association (not the
3230 -- original expression) to prevent spurious elaboration
3231 -- checks when the default includes function calls.
3233 if Box_Present
(Assoc
) then
3235 Is_Box_Present
:= True;
3237 if Expander_Active
then
3239 New_Copy_Tree_And_Copy_Dimensions
3240 (Expression
(Parent
(Compon
)),
3241 New_Sloc
=> Sloc
(Assoc
));
3243 return Expression
(Parent
(Compon
));
3247 if Present
(Others_Etype
)
3248 and then Base_Type
(Others_Etype
) /= Base_Type
(Typ
)
3250 -- If the components are of an anonymous access
3251 -- type they are distinct, but this is legal in
3252 -- Ada 2012 as long as designated types match.
3254 if (Ekind
(Typ
) = E_Anonymous_Access_Type
3255 or else Ekind
(Typ
) =
3256 E_Anonymous_Access_Subprogram_Type
)
3257 and then Designated_Type
(Typ
) =
3258 Designated_Type
(Others_Etype
)
3263 ("components in OTHERS choice must "
3264 & "have same type", Selector_Name
);
3268 Others_Etype
:= Typ
;
3270 -- Copy expression so that it is resolved
3271 -- independently for each component, This is needed
3272 -- for accessibility checks on compoents of anonymous
3273 -- access types, even in compile_only mode.
3275 if not Inside_A_Generic
then
3277 -- In ASIS mode, preanalyze the expression in an
3278 -- others association before making copies for
3279 -- separate resolution and accessibility checks.
3280 -- This ensures that the type of the expression is
3281 -- available to ASIS in all cases, in particular if
3282 -- the expression is itself an aggregate.
3285 Preanalyze_And_Resolve
(Expression
(Assoc
), Typ
);
3289 New_Copy_Tree_And_Copy_Dimensions
3290 (Expression
(Assoc
));
3293 return Expression
(Assoc
);
3298 elsif Chars
(Compon
) = Chars
(Selector_Name
) then
3301 -- Ada 2005 (AI-231)
3303 if Ada_Version
>= Ada_2005
3304 and then Known_Null
(Expression
(Assoc
))
3306 Check_Can_Never_Be_Null
(Compon
, Expression
(Assoc
));
3309 -- We need to duplicate the expression when several
3310 -- components are grouped together with a "|" choice.
3311 -- For instance "filed1 | filed2 => Expr"
3313 -- Ada 2005 (AI-287)
3315 if Box_Present
(Assoc
) then
3316 Is_Box_Present
:= True;
3318 -- Duplicate the default expression of the component
3319 -- from the record type declaration, so a new copy
3320 -- can be attached to the association.
3322 -- Note that we always copy the default expression,
3323 -- even when the association has a single choice, in
3324 -- order to create a proper association for the
3325 -- expanded aggregate.
3327 -- Component may have no default, in which case the
3328 -- expression is empty and the component is default-
3329 -- initialized, but an association for the component
3330 -- exists, and it is not covered by an others clause.
3332 -- Scalar and private types have no initialization
3333 -- procedure, so they remain uninitialized. If the
3334 -- target of the aggregate is a constant this
3335 -- deserves a warning.
3337 if No
(Expression
(Parent
(Compon
)))
3338 and then not Has_Non_Null_Base_Init_Proc
(Typ
)
3339 and then not Has_Aspect
(Typ
, Aspect_Default_Value
)
3340 and then not Is_Concurrent_Type
(Typ
)
3341 and then Nkind
(Parent
(N
)) = N_Object_Declaration
3342 and then Constant_Present
(Parent
(N
))
3344 Error_Msg_Node_2
:= Typ
;
3346 ("component&? of type& is uninitialized",
3347 Assoc
, Selector_Name
);
3349 -- An additional reminder if the component type
3350 -- is a generic formal.
3352 if Is_Generic_Type
(Base_Type
(Typ
)) then
3354 ("\instance should provide actual type with "
3355 & "initialization for&", Assoc
, Typ
);
3360 New_Copy_Tree_And_Copy_Dimensions
3361 (Expression
(Parent
(Compon
)));
3364 if Present
(Next
(Selector_Name
)) then
3365 Expr
:= New_Copy_Tree_And_Copy_Dimensions
3366 (Expression
(Assoc
));
3368 Expr
:= Expression
(Assoc
);
3372 Generate_Reference
(Compon
, Selector_Name
, 'm');
3376 ("more than one value supplied for &",
3377 Selector_Name
, Compon
);
3382 Next
(Selector_Name
);
3391 ---------------------------------------
3392 -- New_Copy_Tree_And_Copy_Dimensions --
3393 ---------------------------------------
3395 function New_Copy_Tree_And_Copy_Dimensions
3397 Map
: Elist_Id
:= No_Elist
;
3398 New_Sloc
: Source_Ptr
:= No_Location
;
3399 New_Scope
: Entity_Id
:= Empty
) return Node_Id
3401 New_Copy
: constant Node_Id
:=
3402 New_Copy_Tree
(Source
, Map
, New_Sloc
, New_Scope
);
3405 -- Move the dimensions of Source to New_Copy
3407 Copy_Dimensions
(Source
, New_Copy
);
3409 end New_Copy_Tree_And_Copy_Dimensions
;
3411 -----------------------
3412 -- Resolve_Aggr_Expr --
3413 -----------------------
3415 procedure Resolve_Aggr_Expr
(Expr
: Node_Id
; Component
: Node_Id
) is
3416 Expr_Type
: Entity_Id
:= Empty
;
3417 New_C
: Entity_Id
:= Component
;
3420 function Has_Expansion_Delayed
(Expr
: Node_Id
) return Boolean;
3421 -- If the expression is an aggregate (possibly qualified) then its
3422 -- expansion is delayed until the enclosing aggregate is expanded
3423 -- into assignments. In that case, do not generate checks on the
3424 -- expression, because they will be generated later, and will other-
3425 -- wise force a copy (to remove side-effects) that would leave a
3426 -- dynamic-sized aggregate in the code, something that gigi cannot
3430 -- Set to True if the resolved Expr node needs to be relocated when
3431 -- attached to the newly created association list. This node need not
3432 -- be relocated if its parent pointer is not set. In fact in this
3433 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
3434 -- True then we have analyzed the expression node in the original
3435 -- aggregate and hence it needs to be relocated when moved over to
3436 -- the new association list.
3438 ---------------------------
3439 -- Has_Expansion_Delayed --
3440 ---------------------------
3442 function Has_Expansion_Delayed
(Expr
: Node_Id
) return Boolean is
3443 Kind
: constant Node_Kind
:= Nkind
(Expr
);
3445 return (Nkind_In
(Kind
, N_Aggregate
, N_Extension_Aggregate
)
3446 and then Present
(Etype
(Expr
))
3447 and then Is_Record_Type
(Etype
(Expr
))
3448 and then Expansion_Delayed
(Expr
))
3449 or else (Kind
= N_Qualified_Expression
3450 and then Has_Expansion_Delayed
(Expression
(Expr
)));
3451 end Has_Expansion_Delayed
;
3453 -- Start of processing for Resolve_Aggr_Expr
3456 -- If the type of the component is elementary or the type of the
3457 -- aggregate does not contain discriminants, use the type of the
3458 -- component to resolve Expr.
3460 if Is_Elementary_Type
(Etype
(Component
))
3461 or else not Has_Discriminants
(Etype
(N
))
3463 Expr_Type
:= Etype
(Component
);
3465 -- Otherwise we have to pick up the new type of the component from
3466 -- the new constrained subtype of the aggregate. In fact components
3467 -- which are of a composite type might be constrained by a
3468 -- discriminant, and we want to resolve Expr against the subtype were
3469 -- all discriminant occurrences are replaced with their actual value.
3472 New_C
:= First_Component
(Etype
(N
));
3473 while Present
(New_C
) loop
3474 if Chars
(New_C
) = Chars
(Component
) then
3475 Expr_Type
:= Etype
(New_C
);
3479 Next_Component
(New_C
);
3482 pragma Assert
(Present
(Expr_Type
));
3484 -- For each range in an array type where a discriminant has been
3485 -- replaced with the constraint, check that this range is within
3486 -- the range of the base type. This checks is done in the init
3487 -- proc for regular objects, but has to be done here for
3488 -- aggregates since no init proc is called for them.
3490 if Is_Array_Type
(Expr_Type
) then
3493 -- Range of the current constrained index in the array
3495 Orig_Index
: Node_Id
:= First_Index
(Etype
(Component
));
3496 -- Range corresponding to the range Index above in the
3497 -- original unconstrained record type. The bounds of this
3498 -- range may be governed by discriminants.
3500 Unconstr_Index
: Node_Id
:= First_Index
(Etype
(Expr_Type
));
3501 -- Range corresponding to the range Index above for the
3502 -- unconstrained array type. This range is needed to apply
3506 Index
:= First_Index
(Expr_Type
);
3507 while Present
(Index
) loop
3508 if Depends_On_Discriminant
(Orig_Index
) then
3509 Apply_Range_Check
(Index
, Etype
(Unconstr_Index
));
3513 Next_Index
(Orig_Index
);
3514 Next_Index
(Unconstr_Index
);
3520 -- If the Parent pointer of Expr is not set, Expr is an expression
3521 -- duplicated by New_Tree_Copy (this happens for record aggregates
3522 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
3523 -- Such a duplicated expression must be attached to the tree
3524 -- before analysis and resolution to enforce the rule that a tree
3525 -- fragment should never be analyzed or resolved unless it is
3526 -- attached to the current compilation unit.
3528 if No
(Parent
(Expr
)) then
3529 Set_Parent
(Expr
, N
);
3535 Analyze_And_Resolve
(Expr
, Expr_Type
);
3536 Check_Expr_OK_In_Limited_Aggregate
(Expr
);
3537 Check_Non_Static_Context
(Expr
);
3538 Check_Unset_Reference
(Expr
);
3540 -- Check wrong use of class-wide types
3542 if Is_Class_Wide_Type
(Etype
(Expr
)) then
3543 Error_Msg_N
("dynamically tagged expression not allowed", Expr
);
3546 if not Has_Expansion_Delayed
(Expr
) then
3547 Aggregate_Constraint_Checks
(Expr
, Expr_Type
);
3550 -- If an aggregate component has a type with predicates, an explicit
3551 -- predicate check must be applied, as for an assignment statement,
3552 -- because the aggegate might not be expanded into individual
3553 -- component assignments.
3555 if Present
(Predicate_Function
(Expr_Type
)) then
3556 Apply_Predicate_Check
(Expr
, Expr_Type
);
3559 if Raises_Constraint_Error
(Expr
) then
3560 Set_Raises_Constraint_Error
(N
);
3563 -- If the expression has been marked as requiring a range check, then
3564 -- generate it here. It's a bit odd to be generating such checks in
3565 -- the analyzer, but harmless since Generate_Range_Check does nothing
3566 -- (other than making sure Do_Range_Check is set) if the expander is
3569 if Do_Range_Check
(Expr
) then
3570 Generate_Range_Check
(Expr
, Expr_Type
, CE_Range_Check_Failed
);
3574 New_Expr
:= Relocate_Node
(Expr
);
3576 -- Since New_Expr is not gonna be analyzed later on, we need to
3577 -- propagate here the dimensions form Expr to New_Expr.
3579 Copy_Dimensions
(Expr
, New_Expr
);
3585 Add_Association
(New_C
, New_Expr
, New_Assoc_List
);
3586 end Resolve_Aggr_Expr
;
3588 -- Start of processing for Resolve_Record_Aggregate
3591 -- A record aggregate is restricted in SPARK:
3593 -- Each named association can have only a single choice.
3594 -- OTHERS cannot be used.
3595 -- Positional and named associations cannot be mixed.
3597 if Present
(Component_Associations
(N
))
3598 and then Present
(First
(Component_Associations
(N
)))
3601 if Present
(Expressions
(N
)) then
3602 Check_SPARK_05_Restriction
3603 ("named association cannot follow positional one",
3604 First
(Choices
(First
(Component_Associations
(N
)))));
3611 Assoc
:= First
(Component_Associations
(N
));
3612 while Present
(Assoc
) loop
3613 if List_Length
(Choices
(Assoc
)) > 1 then
3614 Check_SPARK_05_Restriction
3615 ("component association in record aggregate must "
3616 & "contain a single choice", Assoc
);
3619 if Nkind
(First
(Choices
(Assoc
))) = N_Others_Choice
then
3620 Check_SPARK_05_Restriction
3621 ("record aggregate cannot contain OTHERS", Assoc
);
3624 Assoc
:= Next
(Assoc
);
3629 -- We may end up calling Duplicate_Subexpr on expressions that are
3630 -- attached to New_Assoc_List. For this reason we need to attach it
3631 -- to the tree by setting its parent pointer to N. This parent point
3632 -- will change in STEP 8 below.
3634 Set_Parent
(New_Assoc_List
, N
);
3636 -- STEP 1: abstract type and null record verification
3638 if Is_Abstract_Type
(Typ
) then
3639 Error_Msg_N
("type of aggregate cannot be abstract", N
);
3642 if No
(First_Entity
(Typ
)) and then Null_Record_Present
(N
) then
3646 elsif Present
(First_Entity
(Typ
))
3647 and then Null_Record_Present
(N
)
3648 and then not Is_Tagged_Type
(Typ
)
3650 Error_Msg_N
("record aggregate cannot be null", N
);
3653 -- If the type has no components, then the aggregate should either
3654 -- have "null record", or in Ada 2005 it could instead have a single
3655 -- component association given by "others => <>". For Ada 95 we flag an
3656 -- error at this point, but for Ada 2005 we proceed with checking the
3657 -- associations below, which will catch the case where it's not an
3658 -- aggregate with "others => <>". Note that the legality of a <>
3659 -- aggregate for a null record type was established by AI05-016.
3661 elsif No
(First_Entity
(Typ
))
3662 and then Ada_Version
< Ada_2005
3664 Error_Msg_N
("record aggregate must be null", N
);
3668 -- STEP 2: Verify aggregate structure
3671 Selector_Name
: Node_Id
;
3672 Bad_Aggregate
: Boolean := False;
3675 if Present
(Component_Associations
(N
)) then
3676 Assoc
:= First
(Component_Associations
(N
));
3681 while Present
(Assoc
) loop
3682 Selector_Name
:= First
(Choices
(Assoc
));
3683 while Present
(Selector_Name
) loop
3684 if Nkind
(Selector_Name
) = N_Identifier
then
3687 elsif Nkind
(Selector_Name
) = N_Others_Choice
then
3688 if Selector_Name
/= First
(Choices
(Assoc
))
3689 or else Present
(Next
(Selector_Name
))
3692 ("OTHERS must appear alone in a choice list",
3696 elsif Present
(Next
(Assoc
)) then
3698 ("OTHERS must appear last in an aggregate",
3702 -- (Ada 2005): If this is an association with a box,
3703 -- indicate that the association need not represent
3706 elsif Box_Present
(Assoc
) then
3712 ("selector name should be identifier or OTHERS",
3714 Bad_Aggregate
:= True;
3717 Next
(Selector_Name
);
3723 if Bad_Aggregate
then
3728 -- STEP 3: Find discriminant Values
3731 Discrim
: Entity_Id
;
3732 Missing_Discriminants
: Boolean := False;
3735 if Present
(Expressions
(N
)) then
3736 Positional_Expr
:= First
(Expressions
(N
));
3738 Positional_Expr
:= Empty
;
3741 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
3742 -- must not have unknown discriminants.
3744 if Is_Derived_Type
(Typ
)
3745 and then Has_Unknown_Discriminants
(Root_Type
(Typ
))
3746 and then Nkind
(N
) /= N_Extension_Aggregate
3749 ("aggregate not available for type& whose ancestor "
3750 & "has unknown discriminants ", N
, Typ
);
3753 if Has_Unknown_Discriminants
(Typ
)
3754 and then Present
(Underlying_Record_View
(Typ
))
3756 Discrim
:= First_Discriminant
(Underlying_Record_View
(Typ
));
3757 elsif Has_Discriminants
(Typ
) then
3758 Discrim
:= First_Discriminant
(Typ
);
3763 -- First find the discriminant values in the positional components
3765 while Present
(Discrim
) and then Present
(Positional_Expr
) loop
3766 if Discr_Present
(Discrim
) then
3767 Resolve_Aggr_Expr
(Positional_Expr
, Discrim
);
3769 -- Ada 2005 (AI-231)
3771 if Ada_Version
>= Ada_2005
3772 and then Known_Null
(Positional_Expr
)
3774 Check_Can_Never_Be_Null
(Discrim
, Positional_Expr
);
3777 Next
(Positional_Expr
);
3780 if Present
(Get_Value
(Discrim
, Component_Associations
(N
))) then
3782 ("more than one value supplied for discriminant&",
3786 Next_Discriminant
(Discrim
);
3789 -- Find remaining discriminant values if any among named components
3791 while Present
(Discrim
) loop
3792 Expr
:= Get_Value
(Discrim
, Component_Associations
(N
), True);
3794 if not Discr_Present
(Discrim
) then
3795 if Present
(Expr
) then
3797 ("more than one value supplied for discriminant &",
3801 elsif No
(Expr
) then
3803 ("no value supplied for discriminant &", N
, Discrim
);
3804 Missing_Discriminants
:= True;
3807 Resolve_Aggr_Expr
(Expr
, Discrim
);
3810 Next_Discriminant
(Discrim
);
3813 if Missing_Discriminants
then
3817 -- At this point and until the beginning of STEP 6, New_Assoc_List
3818 -- contains only the discriminants and their values.
3822 -- STEP 4: Set the Etype of the record aggregate
3824 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
3825 -- routine should really be exported in sem_util or some such and used
3826 -- in sem_ch3 and here rather than have a copy of the code which is a
3827 -- maintenance nightmare.
3829 -- ??? Performance WARNING. The current implementation creates a new
3830 -- itype for all aggregates whose base type is discriminated. This means
3831 -- that for record aggregates nested inside an array aggregate we will
3832 -- create a new itype for each record aggregate if the array component
3833 -- type has discriminants. For large aggregates this may be a problem.
3834 -- What should be done in this case is to reuse itypes as much as
3837 if Has_Discriminants
(Typ
)
3838 or else (Has_Unknown_Discriminants
(Typ
)
3839 and then Present
(Underlying_Record_View
(Typ
)))
3841 Build_Constrained_Itype
: declare
3842 Loc
: constant Source_Ptr
:= Sloc
(N
);
3844 Subtyp_Decl
: Node_Id
;
3847 C
: constant List_Id
:= New_List
;
3850 New_Assoc
:= First
(New_Assoc_List
);
3851 while Present
(New_Assoc
) loop
3852 Append
(Duplicate_Subexpr
(Expression
(New_Assoc
)), To
=> C
);
3856 if Has_Unknown_Discriminants
(Typ
)
3857 and then Present
(Underlying_Record_View
(Typ
))
3860 Make_Subtype_Indication
(Loc
,
3862 New_Occurrence_Of
(Underlying_Record_View
(Typ
), Loc
),
3864 Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
3867 Make_Subtype_Indication
(Loc
,
3869 New_Occurrence_Of
(Base_Type
(Typ
), Loc
),
3871 Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
3874 Def_Id
:= Create_Itype
(Ekind
(Typ
), N
);
3877 Make_Subtype_Declaration
(Loc
,
3878 Defining_Identifier
=> Def_Id
,
3879 Subtype_Indication
=> Indic
);
3880 Set_Parent
(Subtyp_Decl
, Parent
(N
));
3882 -- Itypes must be analyzed with checks off (see itypes.ads)
3884 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
3886 Set_Etype
(N
, Def_Id
);
3887 Check_Static_Discriminated_Subtype
3888 (Def_Id
, Expression
(First
(New_Assoc_List
)));
3889 end Build_Constrained_Itype
;
3895 -- STEP 5: Get remaining components according to discriminant values
3898 Record_Def
: Node_Id
;
3899 Parent_Typ
: Entity_Id
;
3900 Root_Typ
: Entity_Id
;
3901 Parent_Typ_List
: Elist_Id
;
3902 Parent_Elmt
: Elmt_Id
;
3903 Errors_Found
: Boolean := False;
3906 function Find_Private_Ancestor
return Entity_Id
;
3907 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3908 -- derived from a private view. Whether the aggregate is legal
3909 -- depends on the current visibility of the type as well as that
3910 -- of the parent of the ancestor.
3912 ---------------------------
3913 -- Find_Private_Ancestor --
3914 ---------------------------
3916 function Find_Private_Ancestor
return Entity_Id
is
3922 if Has_Private_Ancestor
(Par
)
3923 and then not Has_Private_Ancestor
(Etype
(Base_Type
(Par
)))
3927 elsif not Is_Derived_Type
(Par
) then
3931 Par
:= Etype
(Base_Type
(Par
));
3934 end Find_Private_Ancestor
;
3936 -- Start of processing for Step_5
3939 if Is_Derived_Type
(Typ
) and then Is_Tagged_Type
(Typ
) then
3940 Parent_Typ_List
:= New_Elmt_List
;
3942 -- If this is an extension aggregate, the component list must
3943 -- include all components that are not in the given ancestor type.
3944 -- Otherwise, the component list must include components of all
3945 -- ancestors, starting with the root.
3947 if Nkind
(N
) = N_Extension_Aggregate
then
3948 Root_Typ
:= Base_Type
(Etype
(Ancestor_Part
(N
)));
3951 -- AI05-0115: check legality of aggregate for type with
3952 -- aa private ancestor.
3954 Root_Typ
:= Root_Type
(Typ
);
3955 if Has_Private_Ancestor
(Typ
) then
3957 Ancestor
: constant Entity_Id
:=
3958 Find_Private_Ancestor
;
3959 Ancestor_Unit
: constant Entity_Id
:=
3960 Cunit_Entity
(Get_Source_Unit
(Ancestor
));
3961 Parent_Unit
: constant Entity_Id
:=
3963 (Get_Source_Unit
(Base_Type
(Etype
(Ancestor
))));
3965 -- Check whether we are in a scope that has full view
3966 -- over the private ancestor and its parent. This can
3967 -- only happen if the derivation takes place in a child
3968 -- unit of the unit that declares the parent, and we are
3969 -- in the private part or body of that child unit, else
3970 -- the aggregate is illegal.
3972 if Is_Child_Unit
(Ancestor_Unit
)
3973 and then Scope
(Ancestor_Unit
) = Parent_Unit
3974 and then In_Open_Scopes
(Scope
(Ancestor
))
3976 (In_Private_Part
(Scope
(Ancestor
))
3977 or else In_Package_Body
(Scope
(Ancestor
)))
3983 ("type of aggregate has private ancestor&!",
3985 Error_Msg_N
("must use extension aggregate!", N
);
3991 Dnode
:= Declaration_Node
(Base_Type
(Root_Typ
));
3993 -- If we don't get a full declaration, then we have some error
3994 -- which will get signalled later so skip this part. Otherwise
3995 -- gather components of root that apply to the aggregate type.
3996 -- We use the base type in case there is an applicable stored
3997 -- constraint that renames the discriminants of the root.
3999 if Nkind
(Dnode
) = N_Full_Type_Declaration
then
4000 Record_Def
:= Type_Definition
(Dnode
);
4003 Component_List
(Record_Def
),
4004 Governed_By
=> New_Assoc_List
,
4006 Report_Errors
=> Errors_Found
);
4008 if Errors_Found
then
4010 ("discriminant controlling variant part is not static",
4017 Parent_Typ
:= Base_Type
(Typ
);
4018 while Parent_Typ
/= Root_Typ
loop
4019 Prepend_Elmt
(Parent_Typ
, To
=> Parent_Typ_List
);
4020 Parent_Typ
:= Etype
(Parent_Typ
);
4022 if Nkind
(Parent
(Base_Type
(Parent_Typ
))) =
4023 N_Private_Type_Declaration
4024 or else Nkind
(Parent
(Base_Type
(Parent_Typ
))) =
4025 N_Private_Extension_Declaration
4027 if Nkind
(N
) /= N_Extension_Aggregate
then
4029 ("type of aggregate has private ancestor&!",
4031 Error_Msg_N
("must use extension aggregate!", N
);
4034 elsif Parent_Typ
/= Root_Typ
then
4036 ("ancestor part of aggregate must be private type&",
4037 Ancestor_Part
(N
), Parent_Typ
);
4041 -- The current view of ancestor part may be a private type,
4042 -- while the context type is always non-private.
4044 elsif Is_Private_Type
(Root_Typ
)
4045 and then Present
(Full_View
(Root_Typ
))
4046 and then Nkind
(N
) = N_Extension_Aggregate
4048 exit when Base_Type
(Full_View
(Root_Typ
)) = Parent_Typ
;
4052 -- Now collect components from all other ancestors, beginning
4053 -- with the current type. If the type has unknown discriminants
4054 -- use the component list of the Underlying_Record_View, which
4055 -- needs to be used for the subsequent expansion of the aggregate
4056 -- into assignments.
4058 Parent_Elmt
:= First_Elmt
(Parent_Typ_List
);
4059 while Present
(Parent_Elmt
) loop
4060 Parent_Typ
:= Node
(Parent_Elmt
);
4062 if Has_Unknown_Discriminants
(Parent_Typ
)
4063 and then Present
(Underlying_Record_View
(Typ
))
4065 Parent_Typ
:= Underlying_Record_View
(Parent_Typ
);
4068 Record_Def
:= Type_Definition
(Parent
(Base_Type
(Parent_Typ
)));
4069 Gather_Components
(Empty
,
4070 Component_List
(Record_Extension_Part
(Record_Def
)),
4071 Governed_By
=> New_Assoc_List
,
4073 Report_Errors
=> Errors_Found
);
4075 Next_Elmt
(Parent_Elmt
);
4078 -- Typ is not a derived tagged type
4081 Record_Def
:= Type_Definition
(Parent
(Base_Type
(Typ
)));
4083 if Null_Present
(Record_Def
) then
4086 elsif not Has_Unknown_Discriminants
(Typ
) then
4089 Component_List
(Record_Def
),
4090 Governed_By
=> New_Assoc_List
,
4092 Report_Errors
=> Errors_Found
);
4096 (Base_Type
(Underlying_Record_View
(Typ
)),
4097 Component_List
(Record_Def
),
4098 Governed_By
=> New_Assoc_List
,
4100 Report_Errors
=> Errors_Found
);
4104 if Errors_Found
then
4109 -- STEP 6: Find component Values
4112 Component_Elmt
:= First_Elmt
(Components
);
4114 -- First scan the remaining positional associations in the aggregate.
4115 -- Remember that at this point Positional_Expr contains the current
4116 -- positional association if any is left after looking for discriminant
4117 -- values in step 3.
4119 while Present
(Positional_Expr
) and then Present
(Component_Elmt
) loop
4120 Component
:= Node
(Component_Elmt
);
4121 Resolve_Aggr_Expr
(Positional_Expr
, Component
);
4123 -- Ada 2005 (AI-231)
4125 if Ada_Version
>= Ada_2005
and then Known_Null
(Positional_Expr
) then
4126 Check_Can_Never_Be_Null
(Component
, Positional_Expr
);
4129 if Present
(Get_Value
(Component
, Component_Associations
(N
))) then
4131 ("more than one value supplied for Component &", N
, Component
);
4134 Next
(Positional_Expr
);
4135 Next_Elmt
(Component_Elmt
);
4138 if Present
(Positional_Expr
) then
4140 ("too many components for record aggregate", Positional_Expr
);
4143 -- Now scan for the named arguments of the aggregate
4145 while Present
(Component_Elmt
) loop
4146 Component
:= Node
(Component_Elmt
);
4147 Expr
:= Get_Value
(Component
, Component_Associations
(N
), True);
4149 -- Note: The previous call to Get_Value sets the value of the
4150 -- variable Is_Box_Present.
4152 -- Ada 2005 (AI-287): Handle components with default initialization.
4153 -- Note: This feature was originally added to Ada 2005 for limited
4154 -- but it was finally allowed with any type.
4156 if Is_Box_Present
then
4157 Check_Box_Component
: declare
4158 Ctyp
: constant Entity_Id
:= Etype
(Component
);
4161 -- If there is a default expression for the aggregate, copy
4162 -- it into a new association. This copy must modify the scopes
4163 -- of internal types that may be attached to the expression
4164 -- (e.g. index subtypes of arrays) because in general the type
4165 -- declaration and the aggregate appear in different scopes,
4166 -- and the backend requires the scope of the type to match the
4167 -- point at which it is elaborated.
4169 -- If the component has an initialization procedure (IP) we
4170 -- pass the component to the expander, which will generate
4171 -- the call to such IP.
4173 -- If the component has discriminants, their values must
4174 -- be taken from their subtype. This is indispensable for
4175 -- constraints that are given by the current instance of an
4176 -- enclosing type, to allow the expansion of the aggregate to
4177 -- replace the reference to the current instance by the target
4178 -- object of the aggregate.
4180 if Present
(Parent
(Component
))
4182 Nkind
(Parent
(Component
)) = N_Component_Declaration
4183 and then Present
(Expression
(Parent
(Component
)))
4186 New_Copy_Tree_And_Copy_Dimensions
4187 (Expression
(Parent
(Component
)),
4188 New_Scope
=> Current_Scope
,
4189 New_Sloc
=> Sloc
(N
));
4192 (Component
=> Component
,
4194 Assoc_List
=> New_Assoc_List
);
4195 Set_Has_Self_Reference
(N
);
4197 -- A box-defaulted access component gets the value null. Also
4198 -- included are components of private types whose underlying
4199 -- type is an access type. In either case set the type of the
4200 -- literal, for subsequent use in semantic checks.
4202 elsif Present
(Underlying_Type
(Ctyp
))
4203 and then Is_Access_Type
(Underlying_Type
(Ctyp
))
4205 if not Is_Private_Type
(Ctyp
) then
4206 Expr
:= Make_Null
(Sloc
(N
));
4207 Set_Etype
(Expr
, Ctyp
);
4209 (Component
=> Component
,
4211 Assoc_List
=> New_Assoc_List
);
4213 -- If the component's type is private with an access type as
4214 -- its underlying type then we have to create an unchecked
4215 -- conversion to satisfy type checking.
4219 Qual_Null
: constant Node_Id
:=
4220 Make_Qualified_Expression
(Sloc
(N
),
4223 (Underlying_Type
(Ctyp
), Sloc
(N
)),
4224 Expression
=> Make_Null
(Sloc
(N
)));
4226 Convert_Null
: constant Node_Id
:=
4227 Unchecked_Convert_To
4231 Analyze_And_Resolve
(Convert_Null
, Ctyp
);
4233 (Component
=> Component
,
4234 Expr
=> Convert_Null
,
4235 Assoc_List
=> New_Assoc_List
);
4239 -- Ada 2012: If component is scalar with default value, use it
4241 elsif Is_Scalar_Type
(Ctyp
)
4242 and then Has_Default_Aspect
(Ctyp
)
4245 (Component
=> Component
,
4246 Expr
=> Default_Aspect_Value
4247 (First_Subtype
(Underlying_Type
(Ctyp
))),
4248 Assoc_List
=> New_Assoc_List
);
4250 elsif Has_Non_Null_Base_Init_Proc
(Ctyp
)
4251 or else not Expander_Active
4253 if Is_Record_Type
(Ctyp
)
4254 and then Has_Discriminants
(Ctyp
)
4255 and then not Is_Private_Type
(Ctyp
)
4257 -- We build a partially initialized aggregate with the
4258 -- values of the discriminants and box initialization
4259 -- for the rest, if other components are present.
4261 -- The type of the aggregate is the known subtype of
4262 -- the component. The capture of discriminants must
4263 -- be recursive because subcomponents may be constrained
4264 -- (transitively) by discriminants of enclosing types.
4265 -- For a private type with discriminants, a call to the
4266 -- initialization procedure will be generated, and no
4267 -- subaggregate is needed.
4269 Capture_Discriminants
: declare
4270 Loc
: constant Source_Ptr
:= Sloc
(N
);
4273 procedure Add_Discriminant_Values
4274 (New_Aggr
: Node_Id
;
4275 Assoc_List
: List_Id
);
4276 -- The constraint to a component may be given by a
4277 -- discriminant of the enclosing type, in which case
4278 -- we have to retrieve its value, which is part of the
4279 -- enclosing aggregate. Assoc_List provides the
4280 -- discriminant associations of the current type or
4281 -- of some enclosing record.
4283 procedure Propagate_Discriminants
4285 Assoc_List
: List_Id
);
4286 -- Nested components may themselves be discriminated
4287 -- types constrained by outer discriminants, whose
4288 -- values must be captured before the aggregate is
4289 -- expanded into assignments.
4291 -----------------------------
4292 -- Add_Discriminant_Values --
4293 -----------------------------
4295 procedure Add_Discriminant_Values
4296 (New_Aggr
: Node_Id
;
4297 Assoc_List
: List_Id
)
4301 Discr_Elmt
: Elmt_Id
;
4302 Discr_Val
: Node_Id
;
4306 Discr
:= First_Discriminant
(Etype
(New_Aggr
));
4309 (Discriminant_Constraint
(Etype
(New_Aggr
)));
4310 while Present
(Discr_Elmt
) loop
4311 Discr_Val
:= Node
(Discr_Elmt
);
4313 -- If the constraint is given by a discriminant
4314 -- it is a discriminant of an enclosing record,
4315 -- and its value has already been placed in the
4316 -- association list.
4318 if Is_Entity_Name
(Discr_Val
)
4320 Ekind
(Entity
(Discr_Val
)) = E_Discriminant
4322 Val
:= Entity
(Discr_Val
);
4324 Assoc
:= First
(Assoc_List
);
4325 while Present
(Assoc
) loop
4327 (Entity
(First
(Choices
(Assoc
))))
4329 Entity
(First
(Choices
(Assoc
))) = Val
4331 Discr_Val
:= Expression
(Assoc
);
4340 (Discr
, New_Copy_Tree
(Discr_Val
),
4341 Component_Associations
(New_Aggr
));
4343 -- If the discriminant constraint is a current
4344 -- instance, mark the current aggregate so that
4345 -- the self-reference can be expanded later.
4346 -- The constraint may refer to the subtype of
4347 -- aggregate, so use base type for comparison.
4349 if Nkind
(Discr_Val
) = N_Attribute_Reference
4350 and then Is_Entity_Name
(Prefix
(Discr_Val
))
4351 and then Is_Type
(Entity
(Prefix
(Discr_Val
)))
4352 and then Base_Type
(Etype
(N
)) =
4353 Entity
(Prefix
(Discr_Val
))
4355 Set_Has_Self_Reference
(N
);
4358 Next_Elmt
(Discr_Elmt
);
4359 Next_Discriminant
(Discr
);
4361 end Add_Discriminant_Values
;
4363 -----------------------------
4364 -- Propagate_Discriminants --
4365 -----------------------------
4367 procedure Propagate_Discriminants
4369 Assoc_List
: List_Id
)
4371 Aggr_Type
: constant Entity_Id
:=
4372 Base_Type
(Etype
(Aggr
));
4373 Def_Node
: constant Node_Id
:=
4375 (Declaration_Node
(Aggr_Type
));
4378 Comp_Elmt
: Elmt_Id
;
4379 Components
: constant Elist_Id
:= New_Elmt_List
;
4380 Needs_Box
: Boolean := False;
4383 procedure Process_Component
(Comp
: Entity_Id
);
4384 -- Add one component with a box association to the
4385 -- inner aggregate, and recurse if component is
4386 -- itself composite.
4388 -----------------------
4389 -- Process_Component --
4390 -----------------------
4392 procedure Process_Component
(Comp
: Entity_Id
) is
4393 T
: constant Entity_Id
:= Etype
(Comp
);
4397 if Is_Record_Type
(T
)
4398 and then Has_Discriminants
(T
)
4401 Make_Aggregate
(Loc
, New_List
, New_List
);
4402 Set_Etype
(New_Aggr
, T
);
4405 Component_Associations
(Aggr
));
4407 -- Collect discriminant values and recurse
4409 Add_Discriminant_Values
4410 (New_Aggr
, Assoc_List
);
4411 Propagate_Discriminants
4412 (New_Aggr
, Assoc_List
);
4417 end Process_Component
;
4419 -- Start of processing for Propagate_Discriminants
4422 -- The component type may be a variant type, so
4423 -- collect the components that are ruled by the
4424 -- known values of the discriminants. Their values
4425 -- have already been inserted into the component
4426 -- list of the current aggregate.
4428 if Nkind
(Def_Node
) = N_Record_Definition
4429 and then Present
(Component_List
(Def_Node
))
4432 (Variant_Part
(Component_List
(Def_Node
)))
4434 Gather_Components
(Aggr_Type
,
4435 Component_List
(Def_Node
),
4436 Governed_By
=> Component_Associations
(Aggr
),
4438 Report_Errors
=> Errors
);
4440 Comp_Elmt
:= First_Elmt
(Components
);
4441 while Present
(Comp_Elmt
) loop
4442 if Ekind
(Node
(Comp_Elmt
)) /= E_Discriminant
4444 Process_Component
(Node
(Comp_Elmt
));
4447 Next_Elmt
(Comp_Elmt
);
4450 -- No variant part, iterate over all components
4453 Comp
:= First_Component
(Etype
(Aggr
));
4454 while Present
(Comp
) loop
4455 Process_Component
(Comp
);
4456 Next_Component
(Comp
);
4461 Append_To
(Component_Associations
(Aggr
),
4462 Make_Component_Association
(Loc
,
4464 New_List
(Make_Others_Choice
(Loc
)),
4465 Expression
=> Empty
,
4466 Box_Present
=> True));
4468 end Propagate_Discriminants
;
4470 -- Start of processing for Capture_Discriminants
4473 Expr
:= Make_Aggregate
(Loc
, New_List
, New_List
);
4474 Set_Etype
(Expr
, Ctyp
);
4476 -- If the enclosing type has discriminants, they have
4477 -- been collected in the aggregate earlier, and they
4478 -- may appear as constraints of subcomponents.
4480 -- Similarly if this component has discriminants, they
4481 -- might in turn be propagated to their components.
4483 if Has_Discriminants
(Typ
) then
4484 Add_Discriminant_Values
(Expr
, New_Assoc_List
);
4485 Propagate_Discriminants
(Expr
, New_Assoc_List
);
4487 elsif Has_Discriminants
(Ctyp
) then
4488 Add_Discriminant_Values
4489 (Expr
, Component_Associations
(Expr
));
4490 Propagate_Discriminants
4491 (Expr
, Component_Associations
(Expr
));
4498 -- If the type has additional components, create
4499 -- an OTHERS box association for them.
4501 Comp
:= First_Component
(Ctyp
);
4502 while Present
(Comp
) loop
4503 if Ekind
(Comp
) = E_Component
then
4504 if not Is_Record_Type
(Etype
(Comp
)) then
4506 (Component_Associations
(Expr
),
4507 Make_Component_Association
(Loc
,
4510 Make_Others_Choice
(Loc
)),
4511 Expression
=> Empty
,
4512 Box_Present
=> True));
4517 Next_Component
(Comp
);
4523 (Component
=> Component
,
4525 Assoc_List
=> New_Assoc_List
);
4526 end Capture_Discriminants
;
4530 (Component
=> Component
,
4532 Assoc_List
=> New_Assoc_List
,
4533 Is_Box_Present
=> True);
4536 -- Otherwise we only need to resolve the expression if the
4537 -- component has partially initialized values (required to
4538 -- expand the corresponding assignments and run-time checks).
4540 elsif Present
(Expr
)
4541 and then Is_Partially_Initialized_Type
(Ctyp
)
4543 Resolve_Aggr_Expr
(Expr
, Component
);
4545 end Check_Box_Component
;
4547 elsif No
(Expr
) then
4549 -- Ignore hidden components associated with the position of the
4550 -- interface tags: these are initialized dynamically.
4552 if not Present
(Related_Type
(Component
)) then
4554 ("no value supplied for component &!", N
, Component
);
4558 Resolve_Aggr_Expr
(Expr
, Component
);
4561 Next_Elmt
(Component_Elmt
);
4564 -- STEP 7: check for invalid components + check type in choice list
4571 -- Type of first component in choice list
4574 if Present
(Component_Associations
(N
)) then
4575 Assoc
:= First
(Component_Associations
(N
));
4580 Verification
: while Present
(Assoc
) loop
4581 Selectr
:= First
(Choices
(Assoc
));
4584 if Nkind
(Selectr
) = N_Others_Choice
then
4586 -- Ada 2005 (AI-287): others choice may have expression or box
4588 if No
(Others_Etype
) and then not Others_Box
then
4590 ("OTHERS must represent at least one component", Selectr
);
4596 while Present
(Selectr
) loop
4597 New_Assoc
:= First
(New_Assoc_List
);
4598 while Present
(New_Assoc
) loop
4599 Component
:= First
(Choices
(New_Assoc
));
4601 if Chars
(Selectr
) = Chars
(Component
) then
4603 Check_Identifier
(Selectr
, Entity
(Component
));
4612 -- If no association, this is not a legal component of the type
4613 -- in question, unless its association is provided with a box.
4615 if No
(New_Assoc
) then
4616 if Box_Present
(Parent
(Selectr
)) then
4618 -- This may still be a bogus component with a box. Scan
4619 -- list of components to verify that a component with
4620 -- that name exists.
4626 C
:= First_Component
(Typ
);
4627 while Present
(C
) loop
4628 if Chars
(C
) = Chars
(Selectr
) then
4630 -- If the context is an extension aggregate,
4631 -- the component must not be inherited from
4632 -- the ancestor part of the aggregate.
4634 if Nkind
(N
) /= N_Extension_Aggregate
4636 Scope
(Original_Record_Component
(C
)) /=
4637 Etype
(Ancestor_Part
(N
))
4647 Error_Msg_Node_2
:= Typ
;
4648 Error_Msg_N
("& is not a component of}", Selectr
);
4652 elsif Chars
(Selectr
) /= Name_uTag
4653 and then Chars
(Selectr
) /= Name_uParent
4655 if not Has_Discriminants
(Typ
) then
4656 Error_Msg_Node_2
:= Typ
;
4657 Error_Msg_N
("& is not a component of}", Selectr
);
4660 ("& is not a component of the aggregate subtype",
4664 Check_Misspelled_Component
(Components
, Selectr
);
4667 elsif No
(Typech
) then
4668 Typech
:= Base_Type
(Etype
(Component
));
4670 -- AI05-0199: In Ada 2012, several components of anonymous
4671 -- access types can appear in a choice list, as long as the
4672 -- designated types match.
4674 elsif Typech
/= Base_Type
(Etype
(Component
)) then
4675 if Ada_Version
>= Ada_2012
4676 and then Ekind
(Typech
) = E_Anonymous_Access_Type
4678 Ekind
(Etype
(Component
)) = E_Anonymous_Access_Type
4679 and then Base_Type
(Designated_Type
(Typech
)) =
4680 Base_Type
(Designated_Type
(Etype
(Component
)))
4682 Subtypes_Statically_Match
(Typech
, (Etype
(Component
)))
4686 elsif not Box_Present
(Parent
(Selectr
)) then
4688 ("components in choice list must have same type",
4697 end loop Verification
;
4700 -- STEP 8: replace the original aggregate
4703 New_Aggregate
: constant Node_Id
:= New_Copy
(N
);
4706 Set_Expressions
(New_Aggregate
, No_List
);
4707 Set_Etype
(New_Aggregate
, Etype
(N
));
4708 Set_Component_Associations
(New_Aggregate
, New_Assoc_List
);
4709 Set_Check_Actuals
(New_Aggregate
, Check_Actuals
(N
));
4711 Rewrite
(N
, New_Aggregate
);
4714 -- Check the dimensions of the components in the record aggregate
4716 Analyze_Dimension_Extension_Or_Record_Aggregate
(N
);
4717 end Resolve_Record_Aggregate
;
4719 -----------------------------
4720 -- Check_Can_Never_Be_Null --
4721 -----------------------------
4723 procedure Check_Can_Never_Be_Null
(Typ
: Entity_Id
; Expr
: Node_Id
) is
4724 Comp_Typ
: Entity_Id
;
4728 (Ada_Version
>= Ada_2005
4729 and then Present
(Expr
)
4730 and then Known_Null
(Expr
));
4733 when E_Array_Type
=>
4734 Comp_Typ
:= Component_Type
(Typ
);
4738 Comp_Typ
:= Etype
(Typ
);
4744 if Can_Never_Be_Null
(Comp_Typ
) then
4746 -- Here we know we have a constraint error. Note that we do not use
4747 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
4748 -- seem the more natural approach. That's because in some cases the
4749 -- components are rewritten, and the replacement would be missed.
4750 -- We do not mark the whole aggregate as raising a constraint error,
4751 -- because the association may be a null array range.
4754 ("(Ada 2005) null not allowed in null-excluding component??", Expr
);
4756 ("\Constraint_Error will be raised at run time??", Expr
);
4759 Make_Raise_Constraint_Error
4760 (Sloc
(Expr
), Reason
=> CE_Access_Check_Failed
));
4761 Set_Etype
(Expr
, Comp_Typ
);
4762 Set_Analyzed
(Expr
);
4764 end Check_Can_Never_Be_Null
;
4766 ---------------------
4767 -- Sort_Case_Table --
4768 ---------------------
4770 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
) is
4771 U
: constant Int
:= Case_Table
'Last;
4779 T
:= Case_Table
(K
+ 1);
4783 and then Expr_Value
(Case_Table
(J
- 1).Lo
) > Expr_Value
(T
.Lo
)
4785 Case_Table
(J
) := Case_Table
(J
- 1);
4789 Case_Table
(J
) := T
;
4792 end Sort_Case_Table
;