Fix memory leaks in tree-vect-data-refs.c
[official-gcc.git] / gcc / ada / sem_aggr.adb
blob60cd131987254729c43c30ca9b6b1021d5e53ad8
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Tss; use Exp_Tss;
34 with Exp_Util; use Exp_Util;
35 with Freeze; use Freeze;
36 with Itypes; use Itypes;
37 with Lib; use Lib;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Namet.Sp; use Namet.Sp;
41 with Nmake; use Nmake;
42 with Nlists; use Nlists;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Ch13; use Sem_Ch13;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Util; use Sem_Util;
56 with Sem_Type; use Sem_Type;
57 with Sem_Warn; use Sem_Warn;
58 with Sinfo; use Sinfo;
59 with Snames; use Snames;
60 with Stringt; use Stringt;
61 with Stand; use Stand;
62 with Style; use Style;
63 with Targparm; use Targparm;
64 with Tbuild; use Tbuild;
65 with Uintp; use Uintp;
67 package body Sem_Aggr is
69 type Case_Bounds is record
70 Lo : Node_Id;
71 -- Low bound of choice. Once we sort the Case_Table, then entries
72 -- will be in order of ascending Choice_Lo values.
74 Hi : Node_Id;
75 -- High Bound of choice. The sort does not pay any attention to the
76 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
78 Highest : Uint;
79 -- If there are duplicates or missing entries, then in the sorted
80 -- table, this records the highest value among Choice_Hi values
81 -- seen so far, including this entry.
83 Choice : Node_Id;
84 -- The node of the choice
85 end record;
87 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
88 -- Table type used by Check_Case_Choices procedure. Entry zero is not
89 -- used (reserved for the sort). Real entries start at one.
91 -----------------------
92 -- Local Subprograms --
93 -----------------------
95 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
96 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
97 -- simple insertion sort is used since the choices in a case statement will
98 -- usually be in near sorted order.
100 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
101 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
102 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
103 -- the array case (the component type of the array will be used) or an
104 -- E_Component/E_Discriminant entity in the record case, in which case the
105 -- type of the component will be used for the test. If Typ is any other
106 -- kind of entity, the call is ignored. Expr is the component node in the
107 -- aggregate which is known to have a null value. A warning message will be
108 -- issued if the component is null excluding.
110 -- It would be better to pass the proper type for Typ ???
112 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
113 -- Check that Expr is either not limited or else is one of the cases of
114 -- expressions allowed for a limited component association (namely, an
115 -- aggregate, function call, or <> notation). Report error for violations.
116 -- Expression is also OK in an instance or inlining context, because we
117 -- have already pre-analyzed and it is known to be type correct.
119 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id);
120 -- Given aggregate Expr, check that sub-aggregates of Expr that are nested
121 -- at Level are qualified. If Level = 0, this applies to Expr directly.
122 -- Only issue errors in formal verification mode.
124 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean;
125 -- Return True of Expr is an aggregate not contained directly in another
126 -- aggregate.
128 ------------------------------------------------------
129 -- Subprograms used for RECORD AGGREGATE Processing --
130 ------------------------------------------------------
132 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
133 -- This procedure performs all the semantic checks required for record
134 -- aggregates. Note that for aggregates analysis and resolution go
135 -- hand in hand. Aggregate analysis has been delayed up to here and
136 -- it is done while resolving the aggregate.
138 -- N is the N_Aggregate node.
139 -- Typ is the record type for the aggregate resolution
141 -- While performing the semantic checks, this procedure builds a new
142 -- Component_Association_List where each record field appears alone in a
143 -- Component_Choice_List along with its corresponding expression. The
144 -- record fields in the Component_Association_List appear in the same order
145 -- in which they appear in the record type Typ.
147 -- Once this new Component_Association_List is built and all the semantic
148 -- checks performed, the original aggregate subtree is replaced with the
149 -- new named record aggregate just built. Note that subtree substitution is
150 -- performed with Rewrite so as to be able to retrieve the original
151 -- aggregate.
153 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
154 -- yields the aggregate format expected by Gigi. Typically, this kind of
155 -- tree manipulations are done in the expander. However, because the
156 -- semantic checks that need to be performed on record aggregates really go
157 -- hand in hand with the record aggregate normalization, the aggregate
158 -- subtree transformation is performed during resolution rather than
159 -- expansion. Had we decided otherwise we would have had to duplicate most
160 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
161 -- however, that all the expansion concerning aggregates for tagged records
162 -- is done in Expand_Record_Aggregate.
164 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
166 -- 1. Make sure that the record type against which the record aggregate
167 -- has to be resolved is not abstract. Furthermore if the type is a
168 -- null aggregate make sure the input aggregate N is also null.
170 -- 2. Verify that the structure of the aggregate is that of a record
171 -- aggregate. Specifically, look for component associations and ensure
172 -- that each choice list only has identifiers or the N_Others_Choice
173 -- node. Also make sure that if present, the N_Others_Choice occurs
174 -- last and by itself.
176 -- 3. If Typ contains discriminants, the values for each discriminant is
177 -- looked for. If the record type Typ has variants, we check that the
178 -- expressions corresponding to each discriminant ruling the (possibly
179 -- nested) variant parts of Typ, are static. This allows us to determine
180 -- the variant parts to which the rest of the aggregate must conform.
181 -- The names of discriminants with their values are saved in a new
182 -- association list, New_Assoc_List which is later augmented with the
183 -- names and values of the remaining components in the record type.
185 -- During this phase we also make sure that every discriminant is
186 -- assigned exactly one value. Note that when several values for a given
187 -- discriminant are found, semantic processing continues looking for
188 -- further errors. In this case it's the first discriminant value found
189 -- which we will be recorded.
191 -- IMPORTANT NOTE: For derived tagged types this procedure expects
192 -- First_Discriminant and Next_Discriminant to give the correct list
193 -- of discriminants, in the correct order.
195 -- 4. After all the discriminant values have been gathered, we can set the
196 -- Etype of the record aggregate. If Typ contains no discriminants this
197 -- is straightforward: the Etype of N is just Typ, otherwise a new
198 -- implicit constrained subtype of Typ is built to be the Etype of N.
200 -- 5. Gather the remaining record components according to the discriminant
201 -- values. This involves recursively traversing the record type
202 -- structure to see what variants are selected by the given discriminant
203 -- values. This processing is a little more convoluted if Typ is a
204 -- derived tagged types since we need to retrieve the record structure
205 -- of all the ancestors of Typ.
207 -- 6. After gathering the record components we look for their values in the
208 -- record aggregate and emit appropriate error messages should we not
209 -- find such values or should they be duplicated.
211 -- 7. We then make sure no illegal component names appear in the record
212 -- aggregate and make sure that the type of the record components
213 -- appearing in a same choice list is the same. Finally we ensure that
214 -- the others choice, if present, is used to provide the value of at
215 -- least a record component.
217 -- 8. The original aggregate node is replaced with the new named aggregate
218 -- built in steps 3 through 6, as explained earlier.
220 -- Given the complexity of record aggregate resolution, the primary goal of
221 -- this routine is clarity and simplicity rather than execution and storage
222 -- efficiency. If there are only positional components in the aggregate the
223 -- running time is linear. If there are associations the running time is
224 -- still linear as long as the order of the associations is not too far off
225 -- the order of the components in the record type. If this is not the case
226 -- the running time is at worst quadratic in the size of the association
227 -- list.
229 procedure Check_Misspelled_Component
230 (Elements : Elist_Id;
231 Component : Node_Id);
232 -- Give possible misspelling diagnostic if Component is likely to be a
233 -- misspelling of one of the components of the Assoc_List. This is called
234 -- by Resolve_Aggr_Expr after producing an invalid component error message.
236 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
237 -- An optimization: determine whether a discriminated subtype has a static
238 -- constraint, and contains array components whose length is also static,
239 -- either because they are constrained by the discriminant, or because the
240 -- original component bounds are static.
242 -----------------------------------------------------
243 -- Subprograms used for ARRAY AGGREGATE Processing --
244 -----------------------------------------------------
246 function Resolve_Array_Aggregate
247 (N : Node_Id;
248 Index : Node_Id;
249 Index_Constr : Node_Id;
250 Component_Typ : Entity_Id;
251 Others_Allowed : Boolean) return Boolean;
252 -- This procedure performs the semantic checks for an array aggregate.
253 -- True is returned if the aggregate resolution succeeds.
255 -- The procedure works by recursively checking each nested aggregate.
256 -- Specifically, after checking a sub-aggregate nested at the i-th level
257 -- we recursively check all the subaggregates at the i+1-st level (if any).
258 -- Note that for aggregates analysis and resolution go hand in hand.
259 -- Aggregate analysis has been delayed up to here and it is done while
260 -- resolving the aggregate.
262 -- N is the current N_Aggregate node to be checked.
264 -- Index is the index node corresponding to the array sub-aggregate that
265 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
266 -- corresponding index type (or subtype).
268 -- Index_Constr is the node giving the applicable index constraint if
269 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
270 -- contexts [...] that can be used to determine the bounds of the array
271 -- value specified by the aggregate". If Others_Allowed below is False
272 -- there is no applicable index constraint and this node is set to Index.
274 -- Component_Typ is the array component type.
276 -- Others_Allowed indicates whether an others choice is allowed
277 -- in the context where the top-level aggregate appeared.
279 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
281 -- 1. Make sure that the others choice, if present, is by itself and
282 -- appears last in the sub-aggregate. Check that we do not have
283 -- positional and named components in the array sub-aggregate (unless
284 -- the named association is an others choice). Finally if an others
285 -- choice is present, make sure it is allowed in the aggregate context.
287 -- 2. If the array sub-aggregate contains discrete_choices:
289 -- (A) Verify their validity. Specifically verify that:
291 -- (a) If a null range is present it must be the only possible
292 -- choice in the array aggregate.
294 -- (b) Ditto for a non static range.
296 -- (c) Ditto for a non static expression.
298 -- In addition this step analyzes and resolves each discrete_choice,
299 -- making sure that its type is the type of the corresponding Index.
300 -- If we are not at the lowest array aggregate level (in the case of
301 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
302 -- recursively on each component expression. Otherwise, resolve the
303 -- bottom level component expressions against the expected component
304 -- type ONLY IF the component corresponds to a single discrete choice
305 -- which is not an others choice (to see why read the DELAYED
306 -- COMPONENT RESOLUTION below).
308 -- (B) Determine the bounds of the sub-aggregate and lowest and
309 -- highest choice values.
311 -- 3. For positional aggregates:
313 -- (A) Loop over the component expressions either recursively invoking
314 -- Resolve_Array_Aggregate on each of these for multi-dimensional
315 -- array aggregates or resolving the bottom level component
316 -- expressions against the expected component type.
318 -- (B) Determine the bounds of the positional sub-aggregates.
320 -- 4. Try to determine statically whether the evaluation of the array
321 -- sub-aggregate raises Constraint_Error. If yes emit proper
322 -- warnings. The precise checks are the following:
324 -- (A) Check that the index range defined by aggregate bounds is
325 -- compatible with corresponding index subtype.
326 -- We also check against the base type. In fact it could be that
327 -- Low/High bounds of the base type are static whereas those of
328 -- the index subtype are not. Thus if we can statically catch
329 -- a problem with respect to the base type we are guaranteed
330 -- that the same problem will arise with the index subtype
332 -- (B) If we are dealing with a named aggregate containing an others
333 -- choice and at least one discrete choice then make sure the range
334 -- specified by the discrete choices does not overflow the
335 -- aggregate bounds. We also check against the index type and base
336 -- type bounds for the same reasons given in (A).
338 -- (C) If we are dealing with a positional aggregate with an others
339 -- choice make sure the number of positional elements specified
340 -- does not overflow the aggregate bounds. We also check against
341 -- the index type and base type bounds as mentioned in (A).
343 -- Finally construct an N_Range node giving the sub-aggregate bounds.
344 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
345 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
346 -- to build the appropriate aggregate subtype. Aggregate_Bounds
347 -- information is needed during expansion.
349 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
350 -- expressions in an array aggregate may call Duplicate_Subexpr or some
351 -- other routine that inserts code just outside the outermost aggregate.
352 -- If the array aggregate contains discrete choices or an others choice,
353 -- this may be wrong. Consider for instance the following example.
355 -- type Rec is record
356 -- V : Integer := 0;
357 -- end record;
359 -- type Acc_Rec is access Rec;
360 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
362 -- Then the transformation of "new Rec" that occurs during resolution
363 -- entails the following code modifications
365 -- P7b : constant Acc_Rec := new Rec;
366 -- RecIP (P7b.all);
367 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
369 -- This code transformation is clearly wrong, since we need to call
370 -- "new Rec" for each of the 3 array elements. To avoid this problem we
371 -- delay resolution of the components of non positional array aggregates
372 -- to the expansion phase. As an optimization, if the discrete choice
373 -- specifies a single value we do not delay resolution.
375 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
376 -- This routine returns the type or subtype of an array aggregate.
378 -- N is the array aggregate node whose type we return.
380 -- Typ is the context type in which N occurs.
382 -- This routine creates an implicit array subtype whose bounds are
383 -- those defined by the aggregate. When this routine is invoked
384 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
385 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
386 -- sub-aggregate bounds. When building the aggregate itype, this function
387 -- traverses the array aggregate N collecting such Aggregate_Bounds and
388 -- constructs the proper array aggregate itype.
390 -- Note that in the case of multidimensional aggregates each inner
391 -- sub-aggregate corresponding to a given array dimension, may provide a
392 -- different bounds. If it is possible to determine statically that
393 -- some sub-aggregates corresponding to the same index do not have the
394 -- same bounds, then a warning is emitted. If such check is not possible
395 -- statically (because some sub-aggregate bounds are dynamic expressions)
396 -- then this job is left to the expander. In all cases the particular
397 -- bounds that this function will chose for a given dimension is the first
398 -- N_Range node for a sub-aggregate corresponding to that dimension.
400 -- Note that the Raises_Constraint_Error flag of an array aggregate
401 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
402 -- is set in Resolve_Array_Aggregate but the aggregate is not
403 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
404 -- first construct the proper itype for the aggregate (Gigi needs
405 -- this). After constructing the proper itype we will eventually replace
406 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
407 -- Of course in cases such as:
409 -- type Arr is array (integer range <>) of Integer;
410 -- A : Arr := (positive range -1 .. 2 => 0);
412 -- The bounds of the aggregate itype are cooked up to look reasonable
413 -- (in this particular case the bounds will be 1 .. 2).
415 procedure Make_String_Into_Aggregate (N : Node_Id);
416 -- A string literal can appear in a context in which a one dimensional
417 -- array of characters is expected. This procedure simply rewrites the
418 -- string as an aggregate, prior to resolution.
420 ------------------------
421 -- Array_Aggr_Subtype --
422 ------------------------
424 function Array_Aggr_Subtype
425 (N : Node_Id;
426 Typ : Entity_Id) return Entity_Id
428 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
429 -- Number of aggregate index dimensions
431 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
432 -- Constrained N_Range of each index dimension in our aggregate itype
434 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
435 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
436 -- Low and High bounds for each index dimension in our aggregate itype
438 Is_Fully_Positional : Boolean := True;
440 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
441 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
442 -- to (sub-)aggregate N. This procedure collects and removes the side
443 -- effects of the constrained N_Range nodes corresponding to each index
444 -- dimension of our aggregate itype. These N_Range nodes are collected
445 -- in Aggr_Range above.
447 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
448 -- bounds of each index dimension. If, when collecting, two bounds
449 -- corresponding to the same dimension are static and found to differ,
450 -- then emit a warning, and mark N as raising Constraint_Error.
452 -------------------------
453 -- Collect_Aggr_Bounds --
454 -------------------------
456 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
457 This_Range : constant Node_Id := Aggregate_Bounds (N);
458 -- The aggregate range node of this specific sub-aggregate
460 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
461 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
462 -- The aggregate bounds of this specific sub-aggregate
464 Assoc : Node_Id;
465 Expr : Node_Id;
467 begin
468 Remove_Side_Effects (This_Low, Variable_Ref => True);
469 Remove_Side_Effects (This_High, Variable_Ref => True);
471 -- Collect the first N_Range for a given dimension that you find.
472 -- For a given dimension they must be all equal anyway.
474 if No (Aggr_Range (Dim)) then
475 Aggr_Low (Dim) := This_Low;
476 Aggr_High (Dim) := This_High;
477 Aggr_Range (Dim) := This_Range;
479 else
480 if Compile_Time_Known_Value (This_Low) then
481 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
482 Aggr_Low (Dim) := This_Low;
484 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
485 Set_Raises_Constraint_Error (N);
486 Error_Msg_Warn := SPARK_Mode /= On;
487 Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
488 Error_Msg_N ("\Constraint_Error [<<", N);
489 end if;
490 end if;
492 if Compile_Time_Known_Value (This_High) then
493 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
494 Aggr_High (Dim) := This_High;
496 elsif
497 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
498 then
499 Set_Raises_Constraint_Error (N);
500 Error_Msg_Warn := SPARK_Mode /= On;
501 Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
502 Error_Msg_N ("\Constraint_Error [<<", N);
503 end if;
504 end if;
505 end if;
507 if Dim < Aggr_Dimension then
509 -- Process positional components
511 if Present (Expressions (N)) then
512 Expr := First (Expressions (N));
513 while Present (Expr) loop
514 Collect_Aggr_Bounds (Expr, Dim + 1);
515 Next (Expr);
516 end loop;
517 end if;
519 -- Process component associations
521 if Present (Component_Associations (N)) then
522 Is_Fully_Positional := False;
524 Assoc := First (Component_Associations (N));
525 while Present (Assoc) loop
526 Expr := Expression (Assoc);
527 Collect_Aggr_Bounds (Expr, Dim + 1);
528 Next (Assoc);
529 end loop;
530 end if;
531 end if;
532 end Collect_Aggr_Bounds;
534 -- Array_Aggr_Subtype variables
536 Itype : Entity_Id;
537 -- The final itype of the overall aggregate
539 Index_Constraints : constant List_Id := New_List;
540 -- The list of index constraints of the aggregate itype
542 -- Start of processing for Array_Aggr_Subtype
544 begin
545 -- Make sure that the list of index constraints is properly attached to
546 -- the tree, and then collect the aggregate bounds.
548 Set_Parent (Index_Constraints, N);
549 Collect_Aggr_Bounds (N, 1);
551 -- Build the list of constrained indexes of our aggregate itype
553 for J in 1 .. Aggr_Dimension loop
554 Create_Index : declare
555 Index_Base : constant Entity_Id :=
556 Base_Type (Etype (Aggr_Range (J)));
557 Index_Typ : Entity_Id;
559 begin
560 -- Construct the Index subtype, and associate it with the range
561 -- construct that generates it.
563 Index_Typ :=
564 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
566 Set_Etype (Index_Typ, Index_Base);
568 if Is_Character_Type (Index_Base) then
569 Set_Is_Character_Type (Index_Typ);
570 end if;
572 Set_Size_Info (Index_Typ, (Index_Base));
573 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
574 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
575 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
577 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
578 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
579 end if;
581 Set_Etype (Aggr_Range (J), Index_Typ);
583 Append (Aggr_Range (J), To => Index_Constraints);
584 end Create_Index;
585 end loop;
587 -- Now build the Itype
589 Itype := Create_Itype (E_Array_Subtype, N);
591 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
592 Set_Convention (Itype, Convention (Typ));
593 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
594 Set_Etype (Itype, Base_Type (Typ));
595 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
596 Set_Is_Aliased (Itype, Is_Aliased (Typ));
597 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
599 Copy_Suppress_Status (Index_Check, Typ, Itype);
600 Copy_Suppress_Status (Length_Check, Typ, Itype);
602 Set_First_Index (Itype, First (Index_Constraints));
603 Set_Is_Constrained (Itype, True);
604 Set_Is_Internal (Itype, True);
606 -- A simple optimization: purely positional aggregates of static
607 -- components should be passed to gigi unexpanded whenever possible, and
608 -- regardless of the staticness of the bounds themselves. Subsequent
609 -- checks in exp_aggr verify that type is not packed, etc.
611 Set_Size_Known_At_Compile_Time
612 (Itype,
613 Is_Fully_Positional
614 and then Comes_From_Source (N)
615 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
617 -- We always need a freeze node for a packed array subtype, so that we
618 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
619 -- expansion is disabled, the packed array subtype is not built, and we
620 -- must not generate a freeze node for the type, or else it will appear
621 -- incomplete to gigi.
623 if Is_Packed (Itype)
624 and then not In_Spec_Expression
625 and then Expander_Active
626 then
627 Freeze_Itype (Itype, N);
628 end if;
630 return Itype;
631 end Array_Aggr_Subtype;
633 --------------------------------
634 -- Check_Misspelled_Component --
635 --------------------------------
637 procedure Check_Misspelled_Component
638 (Elements : Elist_Id;
639 Component : Node_Id)
641 Max_Suggestions : constant := 2;
643 Nr_Of_Suggestions : Natural := 0;
644 Suggestion_1 : Entity_Id := Empty;
645 Suggestion_2 : Entity_Id := Empty;
646 Component_Elmt : Elmt_Id;
648 begin
649 -- All the components of List are matched against Component and a count
650 -- is maintained of possible misspellings. When at the end of the the
651 -- analysis there are one or two (not more) possible misspellings,
652 -- these misspellings will be suggested as possible correction.
654 Component_Elmt := First_Elmt (Elements);
655 while Nr_Of_Suggestions <= Max_Suggestions
656 and then Present (Component_Elmt)
657 loop
658 if Is_Bad_Spelling_Of
659 (Chars (Node (Component_Elmt)),
660 Chars (Component))
661 then
662 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
664 case Nr_Of_Suggestions is
665 when 1 => Suggestion_1 := Node (Component_Elmt);
666 when 2 => Suggestion_2 := Node (Component_Elmt);
667 when others => exit;
668 end case;
669 end if;
671 Next_Elmt (Component_Elmt);
672 end loop;
674 -- Report at most two suggestions
676 if Nr_Of_Suggestions = 1 then
677 Error_Msg_NE -- CODEFIX
678 ("\possible misspelling of&", Component, Suggestion_1);
680 elsif Nr_Of_Suggestions = 2 then
681 Error_Msg_Node_2 := Suggestion_2;
682 Error_Msg_NE -- CODEFIX
683 ("\possible misspelling of& or&", Component, Suggestion_1);
684 end if;
685 end Check_Misspelled_Component;
687 ----------------------------------------
688 -- Check_Expr_OK_In_Limited_Aggregate --
689 ----------------------------------------
691 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
692 begin
693 if Is_Limited_Type (Etype (Expr))
694 and then Comes_From_Source (Expr)
695 then
696 if In_Instance_Body or else In_Inlined_Body then
697 null;
699 elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
700 Error_Msg_N
701 ("initialization not allowed for limited types", Expr);
702 Explain_Limited_Type (Etype (Expr), Expr);
703 end if;
704 end if;
705 end Check_Expr_OK_In_Limited_Aggregate;
707 -------------------------------
708 -- Check_Qualified_Aggregate --
709 -------------------------------
711 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id) is
712 Comp_Expr : Node_Id;
713 Comp_Assn : Node_Id;
715 begin
716 if Level = 0 then
717 if Nkind (Parent (Expr)) /= N_Qualified_Expression then
718 Check_SPARK_05_Restriction ("aggregate should be qualified", Expr);
719 end if;
721 else
722 Comp_Expr := First (Expressions (Expr));
723 while Present (Comp_Expr) loop
724 if Nkind (Comp_Expr) = N_Aggregate then
725 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
726 end if;
728 Comp_Expr := Next (Comp_Expr);
729 end loop;
731 Comp_Assn := First (Component_Associations (Expr));
732 while Present (Comp_Assn) loop
733 Comp_Expr := Expression (Comp_Assn);
735 if Nkind (Comp_Expr) = N_Aggregate then
736 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
737 end if;
739 Comp_Assn := Next (Comp_Assn);
740 end loop;
741 end if;
742 end Check_Qualified_Aggregate;
744 ----------------------------------------
745 -- Check_Static_Discriminated_Subtype --
746 ----------------------------------------
748 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
749 Disc : constant Entity_Id := First_Discriminant (T);
750 Comp : Entity_Id;
751 Ind : Entity_Id;
753 begin
754 if Has_Record_Rep_Clause (T) then
755 return;
757 elsif Present (Next_Discriminant (Disc)) then
758 return;
760 elsif Nkind (V) /= N_Integer_Literal then
761 return;
762 end if;
764 Comp := First_Component (T);
765 while Present (Comp) loop
766 if Is_Scalar_Type (Etype (Comp)) then
767 null;
769 elsif Is_Private_Type (Etype (Comp))
770 and then Present (Full_View (Etype (Comp)))
771 and then Is_Scalar_Type (Full_View (Etype (Comp)))
772 then
773 null;
775 elsif Is_Array_Type (Etype (Comp)) then
776 if Is_Bit_Packed_Array (Etype (Comp)) then
777 return;
778 end if;
780 Ind := First_Index (Etype (Comp));
781 while Present (Ind) loop
782 if Nkind (Ind) /= N_Range
783 or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
784 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
785 then
786 return;
787 end if;
789 Next_Index (Ind);
790 end loop;
792 else
793 return;
794 end if;
796 Next_Component (Comp);
797 end loop;
799 -- On exit, all components have statically known sizes
801 Set_Size_Known_At_Compile_Time (T);
802 end Check_Static_Discriminated_Subtype;
804 -------------------------
805 -- Is_Others_Aggregate --
806 -------------------------
808 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
809 begin
810 return No (Expressions (Aggr))
811 and then
812 Nkind (First (Choices (First (Component_Associations (Aggr))))) =
813 N_Others_Choice;
814 end Is_Others_Aggregate;
816 ----------------------------
817 -- Is_Top_Level_Aggregate --
818 ----------------------------
820 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean is
821 begin
822 return Nkind (Parent (Expr)) /= N_Aggregate
823 and then (Nkind (Parent (Expr)) /= N_Component_Association
824 or else Nkind (Parent (Parent (Expr))) /= N_Aggregate);
825 end Is_Top_Level_Aggregate;
827 --------------------------------
828 -- Make_String_Into_Aggregate --
829 --------------------------------
831 procedure Make_String_Into_Aggregate (N : Node_Id) is
832 Exprs : constant List_Id := New_List;
833 Loc : constant Source_Ptr := Sloc (N);
834 Str : constant String_Id := Strval (N);
835 Strlen : constant Nat := String_Length (Str);
836 C : Char_Code;
837 C_Node : Node_Id;
838 New_N : Node_Id;
839 P : Source_Ptr;
841 begin
842 P := Loc + 1;
843 for J in 1 .. Strlen loop
844 C := Get_String_Char (Str, J);
845 Set_Character_Literal_Name (C);
847 C_Node :=
848 Make_Character_Literal (P,
849 Chars => Name_Find,
850 Char_Literal_Value => UI_From_CC (C));
851 Set_Etype (C_Node, Any_Character);
852 Append_To (Exprs, C_Node);
854 P := P + 1;
855 -- Something special for wide strings???
856 end loop;
858 New_N := Make_Aggregate (Loc, Expressions => Exprs);
859 Set_Analyzed (New_N);
860 Set_Etype (New_N, Any_Composite);
862 Rewrite (N, New_N);
863 end Make_String_Into_Aggregate;
865 -----------------------
866 -- Resolve_Aggregate --
867 -----------------------
869 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
870 Loc : constant Source_Ptr := Sloc (N);
871 Pkind : constant Node_Kind := Nkind (Parent (N));
873 Aggr_Subtyp : Entity_Id;
874 -- The actual aggregate subtype. This is not necessarily the same as Typ
875 -- which is the subtype of the context in which the aggregate was found.
877 begin
878 -- Ignore junk empty aggregate resulting from parser error
880 if No (Expressions (N))
881 and then No (Component_Associations (N))
882 and then not Null_Record_Present (N)
883 then
884 return;
885 end if;
887 -- If the aggregate has box-initialized components, its type must be
888 -- frozen so that initialization procedures can properly be called
889 -- in the resolution that follows. The replacement of boxes with
890 -- initialization calls is properly an expansion activity but it must
891 -- be done during resolution.
893 if Expander_Active
894 and then Present (Component_Associations (N))
895 then
896 declare
897 Comp : Node_Id;
899 begin
900 Comp := First (Component_Associations (N));
901 while Present (Comp) loop
902 if Box_Present (Comp) then
903 Insert_Actions (N, Freeze_Entity (Typ, N));
904 exit;
905 end if;
907 Next (Comp);
908 end loop;
909 end;
910 end if;
912 -- An unqualified aggregate is restricted in SPARK to:
914 -- An aggregate item inside an aggregate for a multi-dimensional array
916 -- An expression being assigned to an unconstrained array, but only if
917 -- the aggregate specifies a value for OTHERS only.
919 if Nkind (Parent (N)) = N_Qualified_Expression then
920 if Is_Array_Type (Typ) then
921 Check_Qualified_Aggregate (Number_Dimensions (Typ), N);
922 else
923 Check_Qualified_Aggregate (1, N);
924 end if;
925 else
926 if Is_Array_Type (Typ)
927 and then Nkind (Parent (N)) = N_Assignment_Statement
928 and then not Is_Constrained (Etype (Name (Parent (N))))
929 then
930 if not Is_Others_Aggregate (N) then
931 Check_SPARK_05_Restriction
932 ("array aggregate should have only OTHERS", N);
933 end if;
935 elsif Is_Top_Level_Aggregate (N) then
936 Check_SPARK_05_Restriction ("aggregate should be qualified", N);
938 -- The legality of this unqualified aggregate is checked by calling
939 -- Check_Qualified_Aggregate from one of its enclosing aggregate,
940 -- unless one of these already causes an error to be issued.
942 else
943 null;
944 end if;
945 end if;
947 -- Check for aggregates not allowed in configurable run-time mode.
948 -- We allow all cases of aggregates that do not come from source, since
949 -- these are all assumed to be small (e.g. bounds of a string literal).
950 -- We also allow aggregates of types we know to be small.
952 if not Support_Aggregates_On_Target
953 and then Comes_From_Source (N)
954 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
955 then
956 Error_Msg_CRT ("aggregate", N);
957 end if;
959 -- Ada 2005 (AI-287): Limited aggregates allowed
961 -- In an instance, ignore aggregate subcomponents tnat may be limited,
962 -- because they originate in view conflicts. If the original aggregate
963 -- is legal and the actuals are legal, the aggregate itself is legal.
965 if Is_Limited_Type (Typ)
966 and then Ada_Version < Ada_2005
967 and then not In_Instance
968 then
969 Error_Msg_N ("aggregate type cannot be limited", N);
970 Explain_Limited_Type (Typ, N);
972 elsif Is_Class_Wide_Type (Typ) then
973 Error_Msg_N ("type of aggregate cannot be class-wide", N);
975 elsif Typ = Any_String
976 or else Typ = Any_Composite
977 then
978 Error_Msg_N ("no unique type for aggregate", N);
979 Set_Etype (N, Any_Composite);
981 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
982 Error_Msg_N ("null record forbidden in array aggregate", N);
984 elsif Is_Record_Type (Typ) then
985 Resolve_Record_Aggregate (N, Typ);
987 elsif Is_Array_Type (Typ) then
989 -- First a special test, for the case of a positional aggregate
990 -- of characters which can be replaced by a string literal.
992 -- Do not perform this transformation if this was a string literal to
993 -- start with, whose components needed constraint checks, or if the
994 -- component type is non-static, because it will require those checks
995 -- and be transformed back into an aggregate.
997 if Number_Dimensions (Typ) = 1
998 and then Is_Standard_Character_Type (Component_Type (Typ))
999 and then No (Component_Associations (N))
1000 and then not Is_Limited_Composite (Typ)
1001 and then not Is_Private_Composite (Typ)
1002 and then not Is_Bit_Packed_Array (Typ)
1003 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
1004 and then Is_OK_Static_Subtype (Component_Type (Typ))
1005 then
1006 declare
1007 Expr : Node_Id;
1009 begin
1010 Expr := First (Expressions (N));
1011 while Present (Expr) loop
1012 exit when Nkind (Expr) /= N_Character_Literal;
1013 Next (Expr);
1014 end loop;
1016 if No (Expr) then
1017 Start_String;
1019 Expr := First (Expressions (N));
1020 while Present (Expr) loop
1021 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
1022 Next (Expr);
1023 end loop;
1025 Rewrite (N, Make_String_Literal (Loc, End_String));
1027 Analyze_And_Resolve (N, Typ);
1028 return;
1029 end if;
1030 end;
1031 end if;
1033 -- Here if we have a real aggregate to deal with
1035 Array_Aggregate : declare
1036 Aggr_Resolved : Boolean;
1038 Aggr_Typ : constant Entity_Id := Etype (Typ);
1039 -- This is the unconstrained array type, which is the type against
1040 -- which the aggregate is to be resolved. Typ itself is the array
1041 -- type of the context which may not be the same subtype as the
1042 -- subtype for the final aggregate.
1044 begin
1045 -- In the following we determine whether an OTHERS choice is
1046 -- allowed inside the array aggregate. The test checks the context
1047 -- in which the array aggregate occurs. If the context does not
1048 -- permit it, or the aggregate type is unconstrained, an OTHERS
1049 -- choice is not allowed (except that it is always allowed on the
1050 -- right-hand side of an assignment statement; in this case the
1051 -- constrainedness of the type doesn't matter).
1053 -- If expansion is disabled (generic context, or semantics-only
1054 -- mode) actual subtypes cannot be constructed, and the type of an
1055 -- object may be its unconstrained nominal type. However, if the
1056 -- context is an assignment, we assume that OTHERS is allowed,
1057 -- because the target of the assignment will have a constrained
1058 -- subtype when fully compiled.
1060 -- Note that there is no node for Explicit_Actual_Parameter.
1061 -- To test for this context we therefore have to test for node
1062 -- N_Parameter_Association which itself appears only if there is a
1063 -- formal parameter. Consequently we also need to test for
1064 -- N_Procedure_Call_Statement or N_Function_Call.
1066 -- The context may be an N_Reference node, created by expansion.
1067 -- Legality of the others clause was established in the source,
1068 -- so the context is legal.
1070 Set_Etype (N, Aggr_Typ); -- May be overridden later on
1072 if Pkind = N_Assignment_Statement
1073 or else (Is_Constrained (Typ)
1074 and then
1075 (Pkind = N_Parameter_Association or else
1076 Pkind = N_Function_Call or else
1077 Pkind = N_Procedure_Call_Statement or else
1078 Pkind = N_Generic_Association or else
1079 Pkind = N_Formal_Object_Declaration or else
1080 Pkind = N_Simple_Return_Statement or else
1081 Pkind = N_Object_Declaration or else
1082 Pkind = N_Component_Declaration or else
1083 Pkind = N_Parameter_Specification or else
1084 Pkind = N_Qualified_Expression or else
1085 Pkind = N_Reference or else
1086 Pkind = N_Aggregate or else
1087 Pkind = N_Extension_Aggregate or else
1088 Pkind = N_Component_Association))
1089 then
1090 Aggr_Resolved :=
1091 Resolve_Array_Aggregate
1093 Index => First_Index (Aggr_Typ),
1094 Index_Constr => First_Index (Typ),
1095 Component_Typ => Component_Type (Typ),
1096 Others_Allowed => True);
1098 elsif not Expander_Active
1099 and then Pkind = N_Assignment_Statement
1100 then
1101 Aggr_Resolved :=
1102 Resolve_Array_Aggregate
1104 Index => First_Index (Aggr_Typ),
1105 Index_Constr => First_Index (Typ),
1106 Component_Typ => Component_Type (Typ),
1107 Others_Allowed => True);
1109 else
1110 Aggr_Resolved :=
1111 Resolve_Array_Aggregate
1113 Index => First_Index (Aggr_Typ),
1114 Index_Constr => First_Index (Aggr_Typ),
1115 Component_Typ => Component_Type (Typ),
1116 Others_Allowed => False);
1117 end if;
1119 if not Aggr_Resolved then
1121 -- A parenthesized expression may have been intended as an
1122 -- aggregate, leading to a type error when analyzing the
1123 -- component. This can also happen for a nested component
1124 -- (see Analyze_Aggr_Expr).
1126 if Paren_Count (N) > 0 then
1127 Error_Msg_N
1128 ("positional aggregate cannot have one component", N);
1129 end if;
1131 Aggr_Subtyp := Any_Composite;
1133 else
1134 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1135 end if;
1137 Set_Etype (N, Aggr_Subtyp);
1138 end Array_Aggregate;
1140 elsif Is_Private_Type (Typ)
1141 and then Present (Full_View (Typ))
1142 and then (In_Inlined_Body or In_Instance_Body)
1143 and then Is_Composite_Type (Full_View (Typ))
1144 then
1145 Resolve (N, Full_View (Typ));
1147 else
1148 Error_Msg_N ("illegal context for aggregate", N);
1149 end if;
1151 -- If we can determine statically that the evaluation of the aggregate
1152 -- raises Constraint_Error, then replace the aggregate with an
1153 -- N_Raise_Constraint_Error node, but set the Etype to the right
1154 -- aggregate subtype. Gigi needs this.
1156 if Raises_Constraint_Error (N) then
1157 Aggr_Subtyp := Etype (N);
1158 Rewrite (N,
1159 Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1160 Set_Raises_Constraint_Error (N);
1161 Set_Etype (N, Aggr_Subtyp);
1162 Set_Analyzed (N);
1163 end if;
1165 Check_Function_Writable_Actuals (N);
1166 end Resolve_Aggregate;
1168 -----------------------------
1169 -- Resolve_Array_Aggregate --
1170 -----------------------------
1172 function Resolve_Array_Aggregate
1173 (N : Node_Id;
1174 Index : Node_Id;
1175 Index_Constr : Node_Id;
1176 Component_Typ : Entity_Id;
1177 Others_Allowed : Boolean) return Boolean
1179 Loc : constant Source_Ptr := Sloc (N);
1181 Failure : constant Boolean := False;
1182 Success : constant Boolean := True;
1184 Index_Typ : constant Entity_Id := Etype (Index);
1185 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1186 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
1187 -- The type of the index corresponding to the array sub-aggregate along
1188 -- with its low and upper bounds.
1190 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1191 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1192 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
1193 -- Ditto for the base type
1195 function Add (Val : Uint; To : Node_Id) return Node_Id;
1196 -- Creates a new expression node where Val is added to expression To.
1197 -- Tries to constant fold whenever possible. To must be an already
1198 -- analyzed expression.
1200 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1201 -- Checks that AH (the upper bound of an array aggregate) is less than
1202 -- or equal to BH (the upper bound of the index base type). If the check
1203 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1204 -- set, and AH is replaced with a duplicate of BH.
1206 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1207 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1208 -- warning if not and sets the Raises_Constraint_Error flag in N.
1210 procedure Check_Length (L, H : Node_Id; Len : Uint);
1211 -- Checks that range L .. H contains at least Len elements. Emits a
1212 -- warning if not and sets the Raises_Constraint_Error flag in N.
1214 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1215 -- Returns True if range L .. H is dynamic or null
1217 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1218 -- Given expression node From, this routine sets OK to False if it
1219 -- cannot statically evaluate From. Otherwise it stores this static
1220 -- value into Value.
1222 function Resolve_Aggr_Expr
1223 (Expr : Node_Id;
1224 Single_Elmt : Boolean) return Boolean;
1225 -- Resolves aggregate expression Expr. Returns False if resolution
1226 -- fails. If Single_Elmt is set to False, the expression Expr may be
1227 -- used to initialize several array aggregate elements (this can happen
1228 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1229 -- In this event we do not resolve Expr unless expansion is disabled.
1230 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1232 -- NOTE: In the case of "... => <>", we pass the in the
1233 -- N_Component_Association node as Expr, since there is no Expression in
1234 -- that case, and we need a Sloc for the error message.
1236 ---------
1237 -- Add --
1238 ---------
1240 function Add (Val : Uint; To : Node_Id) return Node_Id is
1241 Expr_Pos : Node_Id;
1242 Expr : Node_Id;
1243 To_Pos : Node_Id;
1245 begin
1246 if Raises_Constraint_Error (To) then
1247 return To;
1248 end if;
1250 -- First test if we can do constant folding
1252 if Compile_Time_Known_Value (To)
1253 or else Nkind (To) = N_Integer_Literal
1254 then
1255 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1256 Set_Is_Static_Expression (Expr_Pos);
1257 Set_Etype (Expr_Pos, Etype (To));
1258 Set_Analyzed (Expr_Pos, Analyzed (To));
1260 if not Is_Enumeration_Type (Index_Typ) then
1261 Expr := Expr_Pos;
1263 -- If we are dealing with enumeration return
1264 -- Index_Typ'Val (Expr_Pos)
1266 else
1267 Expr :=
1268 Make_Attribute_Reference
1269 (Loc,
1270 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1271 Attribute_Name => Name_Val,
1272 Expressions => New_List (Expr_Pos));
1273 end if;
1275 return Expr;
1276 end if;
1278 -- If we are here no constant folding possible
1280 if not Is_Enumeration_Type (Index_Base) then
1281 Expr :=
1282 Make_Op_Add (Loc,
1283 Left_Opnd => Duplicate_Subexpr (To),
1284 Right_Opnd => Make_Integer_Literal (Loc, Val));
1286 -- If we are dealing with enumeration return
1287 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1289 else
1290 To_Pos :=
1291 Make_Attribute_Reference
1292 (Loc,
1293 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1294 Attribute_Name => Name_Pos,
1295 Expressions => New_List (Duplicate_Subexpr (To)));
1297 Expr_Pos :=
1298 Make_Op_Add (Loc,
1299 Left_Opnd => To_Pos,
1300 Right_Opnd => Make_Integer_Literal (Loc, Val));
1302 Expr :=
1303 Make_Attribute_Reference
1304 (Loc,
1305 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1306 Attribute_Name => Name_Val,
1307 Expressions => New_List (Expr_Pos));
1309 -- If the index type has a non standard representation, the
1310 -- attributes 'Val and 'Pos expand into function calls and the
1311 -- resulting expression is considered non-safe for reevaluation
1312 -- by the backend. Relocate it into a constant temporary in order
1313 -- to make it safe for reevaluation.
1315 if Has_Non_Standard_Rep (Etype (N)) then
1316 declare
1317 Def_Id : Entity_Id;
1319 begin
1320 Def_Id := Make_Temporary (Loc, 'R', Expr);
1321 Set_Etype (Def_Id, Index_Typ);
1322 Insert_Action (N,
1323 Make_Object_Declaration (Loc,
1324 Defining_Identifier => Def_Id,
1325 Object_Definition =>
1326 New_Occurrence_Of (Index_Typ, Loc),
1327 Constant_Present => True,
1328 Expression => Relocate_Node (Expr)));
1330 Expr := New_Occurrence_Of (Def_Id, Loc);
1331 end;
1332 end if;
1333 end if;
1335 return Expr;
1336 end Add;
1338 -----------------
1339 -- Check_Bound --
1340 -----------------
1342 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1343 Val_BH : Uint;
1344 Val_AH : Uint;
1346 OK_BH : Boolean;
1347 OK_AH : Boolean;
1349 begin
1350 Get (Value => Val_BH, From => BH, OK => OK_BH);
1351 Get (Value => Val_AH, From => AH, OK => OK_AH);
1353 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1354 Set_Raises_Constraint_Error (N);
1355 Error_Msg_Warn := SPARK_Mode /= On;
1356 Error_Msg_N ("upper bound out of range<<", AH);
1357 Error_Msg_N ("\Constraint_Error [<<", AH);
1359 -- You need to set AH to BH or else in the case of enumerations
1360 -- indexes we will not be able to resolve the aggregate bounds.
1362 AH := Duplicate_Subexpr (BH);
1363 end if;
1364 end Check_Bound;
1366 ------------------
1367 -- Check_Bounds --
1368 ------------------
1370 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1371 Val_L : Uint;
1372 Val_H : Uint;
1373 Val_AL : Uint;
1374 Val_AH : Uint;
1376 OK_L : Boolean;
1377 OK_H : Boolean;
1379 OK_AL : Boolean;
1380 OK_AH : Boolean;
1381 pragma Warnings (Off, OK_AL);
1382 pragma Warnings (Off, OK_AH);
1384 begin
1385 if Raises_Constraint_Error (N)
1386 or else Dynamic_Or_Null_Range (AL, AH)
1387 then
1388 return;
1389 end if;
1391 Get (Value => Val_L, From => L, OK => OK_L);
1392 Get (Value => Val_H, From => H, OK => OK_H);
1394 Get (Value => Val_AL, From => AL, OK => OK_AL);
1395 Get (Value => Val_AH, From => AH, OK => OK_AH);
1397 if OK_L and then Val_L > Val_AL then
1398 Set_Raises_Constraint_Error (N);
1399 Error_Msg_Warn := SPARK_Mode /= On;
1400 Error_Msg_N ("lower bound of aggregate out of range<<", N);
1401 Error_Msg_N ("\Constraint_Error [<<", N);
1402 end if;
1404 if OK_H and then Val_H < Val_AH then
1405 Set_Raises_Constraint_Error (N);
1406 Error_Msg_Warn := SPARK_Mode /= On;
1407 Error_Msg_N ("upper bound of aggregate out of range<<", N);
1408 Error_Msg_N ("\Constraint_Error [<<", N);
1409 end if;
1410 end Check_Bounds;
1412 ------------------
1413 -- Check_Length --
1414 ------------------
1416 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1417 Val_L : Uint;
1418 Val_H : Uint;
1420 OK_L : Boolean;
1421 OK_H : Boolean;
1423 Range_Len : Uint;
1425 begin
1426 if Raises_Constraint_Error (N) then
1427 return;
1428 end if;
1430 Get (Value => Val_L, From => L, OK => OK_L);
1431 Get (Value => Val_H, From => H, OK => OK_H);
1433 if not OK_L or else not OK_H then
1434 return;
1435 end if;
1437 -- If null range length is zero
1439 if Val_L > Val_H then
1440 Range_Len := Uint_0;
1441 else
1442 Range_Len := Val_H - Val_L + 1;
1443 end if;
1445 if Range_Len < Len then
1446 Set_Raises_Constraint_Error (N);
1447 Error_Msg_Warn := SPARK_Mode /= On;
1448 Error_Msg_N ("too many elements<<", N);
1449 Error_Msg_N ("\Constraint_Error [<<", N);
1450 end if;
1451 end Check_Length;
1453 ---------------------------
1454 -- Dynamic_Or_Null_Range --
1455 ---------------------------
1457 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1458 Val_L : Uint;
1459 Val_H : Uint;
1461 OK_L : Boolean;
1462 OK_H : Boolean;
1464 begin
1465 Get (Value => Val_L, From => L, OK => OK_L);
1466 Get (Value => Val_H, From => H, OK => OK_H);
1468 return not OK_L or else not OK_H
1469 or else not Is_OK_Static_Expression (L)
1470 or else not Is_OK_Static_Expression (H)
1471 or else Val_L > Val_H;
1472 end Dynamic_Or_Null_Range;
1474 ---------
1475 -- Get --
1476 ---------
1478 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1479 begin
1480 OK := True;
1482 if Compile_Time_Known_Value (From) then
1483 Value := Expr_Value (From);
1485 -- If expression From is something like Some_Type'Val (10) then
1486 -- Value = 10.
1488 elsif Nkind (From) = N_Attribute_Reference
1489 and then Attribute_Name (From) = Name_Val
1490 and then Compile_Time_Known_Value (First (Expressions (From)))
1491 then
1492 Value := Expr_Value (First (Expressions (From)));
1493 else
1494 Value := Uint_0;
1495 OK := False;
1496 end if;
1497 end Get;
1499 -----------------------
1500 -- Resolve_Aggr_Expr --
1501 -----------------------
1503 function Resolve_Aggr_Expr
1504 (Expr : Node_Id;
1505 Single_Elmt : Boolean) return Boolean
1507 Nxt_Ind : constant Node_Id := Next_Index (Index);
1508 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1509 -- Index is the current index corresponding to the expression
1511 Resolution_OK : Boolean := True;
1512 -- Set to False if resolution of the expression failed
1514 begin
1515 -- Defend against previous errors
1517 if Nkind (Expr) = N_Error
1518 or else Error_Posted (Expr)
1519 then
1520 return True;
1521 end if;
1523 -- If the array type against which we are resolving the aggregate
1524 -- has several dimensions, the expressions nested inside the
1525 -- aggregate must be further aggregates (or strings).
1527 if Present (Nxt_Ind) then
1528 if Nkind (Expr) /= N_Aggregate then
1530 -- A string literal can appear where a one-dimensional array
1531 -- of characters is expected. If the literal looks like an
1532 -- operator, it is still an operator symbol, which will be
1533 -- transformed into a string when analyzed.
1535 if Is_Character_Type (Component_Typ)
1536 and then No (Next_Index (Nxt_Ind))
1537 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1538 then
1539 -- A string literal used in a multidimensional array
1540 -- aggregate in place of the final one-dimensional
1541 -- aggregate must not be enclosed in parentheses.
1543 if Paren_Count (Expr) /= 0 then
1544 Error_Msg_N ("no parenthesis allowed here", Expr);
1545 end if;
1547 Make_String_Into_Aggregate (Expr);
1549 else
1550 Error_Msg_N ("nested array aggregate expected", Expr);
1552 -- If the expression is parenthesized, this may be
1553 -- a missing component association for a 1-aggregate.
1555 if Paren_Count (Expr) > 0 then
1556 Error_Msg_N
1557 ("\if single-component aggregate is intended, "
1558 & "write e.g. (1 ='> ...)", Expr);
1559 end if;
1561 return Failure;
1562 end if;
1563 end if;
1565 -- If it's "... => <>", nothing to resolve
1567 if Nkind (Expr) = N_Component_Association then
1568 pragma Assert (Box_Present (Expr));
1569 return Success;
1570 end if;
1572 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1573 -- Required to check the null-exclusion attribute (if present).
1574 -- This value may be overridden later on.
1576 Set_Etype (Expr, Etype (N));
1578 Resolution_OK := Resolve_Array_Aggregate
1579 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1581 else
1582 -- If it's "... => <>", nothing to resolve
1584 if Nkind (Expr) = N_Component_Association then
1585 pragma Assert (Box_Present (Expr));
1586 return Success;
1587 end if;
1589 -- Do not resolve the expressions of discrete or others choices
1590 -- unless the expression covers a single component, or the
1591 -- expander is inactive.
1593 -- In SPARK mode, expressions that can perform side-effects will
1594 -- be recognized by the gnat2why back-end, and the whole
1595 -- subprogram will be ignored. So semantic analysis can be
1596 -- performed safely.
1598 if Single_Elmt
1599 or else not Expander_Active
1600 or else In_Spec_Expression
1601 then
1602 Analyze_And_Resolve (Expr, Component_Typ);
1603 Check_Expr_OK_In_Limited_Aggregate (Expr);
1604 Check_Non_Static_Context (Expr);
1605 Aggregate_Constraint_Checks (Expr, Component_Typ);
1606 Check_Unset_Reference (Expr);
1607 end if;
1608 end if;
1610 -- If an aggregate component has a type with predicates, an explicit
1611 -- predicate check must be applied, as for an assignment statement,
1612 -- because the aggegate might not be expanded into individual
1613 -- component assignments.
1615 if Present (Predicate_Function (Component_Typ)) then
1616 Apply_Predicate_Check (Expr, Component_Typ);
1617 end if;
1619 if Raises_Constraint_Error (Expr)
1620 and then Nkind (Parent (Expr)) /= N_Component_Association
1621 then
1622 Set_Raises_Constraint_Error (N);
1623 end if;
1625 -- If the expression has been marked as requiring a range check,
1626 -- then generate it here. It's a bit odd to be generating such
1627 -- checks in the analyzer, but harmless since Generate_Range_Check
1628 -- does nothing (other than making sure Do_Range_Check is set) if
1629 -- the expander is not active.
1631 if Do_Range_Check (Expr) then
1632 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1633 end if;
1635 return Resolution_OK;
1636 end Resolve_Aggr_Expr;
1638 -- Variables local to Resolve_Array_Aggregate
1640 Assoc : Node_Id;
1641 Choice : Node_Id;
1642 Expr : Node_Id;
1643 Discard : Node_Id;
1645 Delete_Choice : Boolean;
1646 -- Used when replacing a subtype choice with predicate by a list
1648 Aggr_Low : Node_Id := Empty;
1649 Aggr_High : Node_Id := Empty;
1650 -- The actual low and high bounds of this sub-aggregate
1652 Choices_Low : Node_Id := Empty;
1653 Choices_High : Node_Id := Empty;
1654 -- The lowest and highest discrete choices values for a named aggregate
1656 Nb_Elements : Uint := Uint_0;
1657 -- The number of elements in a positional aggregate
1659 Others_Present : Boolean := False;
1661 Nb_Choices : Nat := 0;
1662 -- Contains the overall number of named choices in this sub-aggregate
1664 Nb_Discrete_Choices : Nat := 0;
1665 -- The overall number of discrete choices (not counting others choice)
1667 Case_Table_Size : Nat;
1668 -- Contains the size of the case table needed to sort aggregate choices
1670 -- Start of processing for Resolve_Array_Aggregate
1672 begin
1673 -- Ignore junk empty aggregate resulting from parser error
1675 if No (Expressions (N))
1676 and then No (Component_Associations (N))
1677 and then not Null_Record_Present (N)
1678 then
1679 return False;
1680 end if;
1682 -- STEP 1: make sure the aggregate is correctly formatted
1684 if Present (Component_Associations (N)) then
1685 Assoc := First (Component_Associations (N));
1686 while Present (Assoc) loop
1687 Choice := First (Choices (Assoc));
1688 Delete_Choice := False;
1689 while Present (Choice) loop
1690 if Nkind (Choice) = N_Others_Choice then
1691 Others_Present := True;
1693 if Choice /= First (Choices (Assoc))
1694 or else Present (Next (Choice))
1695 then
1696 Error_Msg_N
1697 ("OTHERS must appear alone in a choice list", Choice);
1698 return Failure;
1699 end if;
1701 if Present (Next (Assoc)) then
1702 Error_Msg_N
1703 ("OTHERS must appear last in an aggregate", Choice);
1704 return Failure;
1705 end if;
1707 if Ada_Version = Ada_83
1708 and then Assoc /= First (Component_Associations (N))
1709 and then Nkind_In (Parent (N), N_Assignment_Statement,
1710 N_Object_Declaration)
1711 then
1712 Error_Msg_N
1713 ("(Ada 83) illegal context for OTHERS choice", N);
1714 end if;
1716 elsif Is_Entity_Name (Choice) then
1717 Analyze (Choice);
1719 declare
1720 E : constant Entity_Id := Entity (Choice);
1721 New_Cs : List_Id;
1722 P : Node_Id;
1723 C : Node_Id;
1725 begin
1726 if Is_Type (E) and then Has_Predicates (E) then
1727 Freeze_Before (N, E);
1729 if Has_Dynamic_Predicate_Aspect (E) then
1730 Error_Msg_NE
1731 ("subtype& has dynamic predicate, not allowed "
1732 & "in aggregate choice", Choice, E);
1734 elsif not Is_OK_Static_Subtype (E) then
1735 Error_Msg_NE
1736 ("non-static subtype& has predicate, not allowed "
1737 & "in aggregate choice", Choice, E);
1738 end if;
1740 -- If the subtype has a static predicate, replace the
1741 -- original choice with the list of individual values
1742 -- covered by the predicate.
1744 if Present (Static_Discrete_Predicate (E)) then
1745 Delete_Choice := True;
1747 New_Cs := New_List;
1748 P := First (Static_Discrete_Predicate (E));
1749 while Present (P) loop
1750 C := New_Copy (P);
1751 Set_Sloc (C, Sloc (Choice));
1752 Append_To (New_Cs, C);
1753 Next (P);
1754 end loop;
1756 Insert_List_After (Choice, New_Cs);
1757 end if;
1758 end if;
1759 end;
1760 end if;
1762 Nb_Choices := Nb_Choices + 1;
1764 declare
1765 C : constant Node_Id := Choice;
1767 begin
1768 Next (Choice);
1770 if Delete_Choice then
1771 Remove (C);
1772 Nb_Choices := Nb_Choices - 1;
1773 Delete_Choice := False;
1774 end if;
1775 end;
1776 end loop;
1778 Next (Assoc);
1779 end loop;
1780 end if;
1782 -- At this point we know that the others choice, if present, is by
1783 -- itself and appears last in the aggregate. Check if we have mixed
1784 -- positional and discrete associations (other than the others choice).
1786 if Present (Expressions (N))
1787 and then (Nb_Choices > 1
1788 or else (Nb_Choices = 1 and then not Others_Present))
1789 then
1790 Error_Msg_N
1791 ("named association cannot follow positional association",
1792 First (Choices (First (Component_Associations (N)))));
1793 return Failure;
1794 end if;
1796 -- Test for the validity of an others choice if present
1798 if Others_Present and then not Others_Allowed then
1799 Error_Msg_N
1800 ("OTHERS choice not allowed here",
1801 First (Choices (First (Component_Associations (N)))));
1802 return Failure;
1803 end if;
1805 -- Protect against cascaded errors
1807 if Etype (Index_Typ) = Any_Type then
1808 return Failure;
1809 end if;
1811 -- STEP 2: Process named components
1813 if No (Expressions (N)) then
1814 if Others_Present then
1815 Case_Table_Size := Nb_Choices - 1;
1816 else
1817 Case_Table_Size := Nb_Choices;
1818 end if;
1820 Step_2 : declare
1821 Low : Node_Id;
1822 High : Node_Id;
1823 -- Denote the lowest and highest values in an aggregate choice
1825 S_Low : Node_Id := Empty;
1826 S_High : Node_Id := Empty;
1827 -- if a choice in an aggregate is a subtype indication these
1828 -- denote the lowest and highest values of the subtype
1830 Table : Case_Table_Type (0 .. Case_Table_Size);
1831 -- Used to sort all the different choice values. Entry zero is
1832 -- reserved for sorting purposes.
1834 Single_Choice : Boolean;
1835 -- Set to true every time there is a single discrete choice in a
1836 -- discrete association
1838 Prev_Nb_Discrete_Choices : Nat;
1839 -- Used to keep track of the number of discrete choices in the
1840 -- current association.
1842 Errors_Posted_On_Choices : Boolean := False;
1843 -- Keeps track of whether any choices have semantic errors
1845 function Empty_Range (A : Node_Id) return Boolean;
1846 -- If an association covers an empty range, some warnings on the
1847 -- expression of the association can be disabled.
1849 -----------------
1850 -- Empty_Range --
1851 -----------------
1853 function Empty_Range (A : Node_Id) return Boolean is
1854 R : constant Node_Id := First (Choices (A));
1855 begin
1856 return No (Next (R))
1857 and then Nkind (R) = N_Range
1858 and then Compile_Time_Compare
1859 (Low_Bound (R), High_Bound (R), False) = GT;
1860 end Empty_Range;
1862 -- Start of processing for Step_2
1864 begin
1865 -- STEP 2 (A): Check discrete choices validity
1867 Assoc := First (Component_Associations (N));
1868 while Present (Assoc) loop
1869 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1870 Choice := First (Choices (Assoc));
1871 loop
1872 Analyze (Choice);
1874 if Nkind (Choice) = N_Others_Choice then
1875 Single_Choice := False;
1876 exit;
1878 -- Test for subtype mark without constraint
1880 elsif Is_Entity_Name (Choice) and then
1881 Is_Type (Entity (Choice))
1882 then
1883 if Base_Type (Entity (Choice)) /= Index_Base then
1884 Error_Msg_N
1885 ("invalid subtype mark in aggregate choice",
1886 Choice);
1887 return Failure;
1888 end if;
1890 -- Case of subtype indication
1892 elsif Nkind (Choice) = N_Subtype_Indication then
1893 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1895 if Has_Dynamic_Predicate_Aspect
1896 (Entity (Subtype_Mark (Choice)))
1897 then
1898 Error_Msg_NE
1899 ("subtype& has dynamic predicate, "
1900 & "not allowed in aggregate choice",
1901 Choice, Entity (Subtype_Mark (Choice)));
1902 end if;
1904 -- Does the subtype indication evaluation raise CE?
1906 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1907 Get_Index_Bounds (Choice, Low, High);
1908 Check_Bounds (S_Low, S_High, Low, High);
1910 -- Case of range or expression
1912 else
1913 Resolve (Choice, Index_Base);
1914 Check_Unset_Reference (Choice);
1915 Check_Non_Static_Context (Choice);
1917 -- If semantic errors were posted on the choice, then
1918 -- record that for possible early return from later
1919 -- processing (see handling of enumeration choices).
1921 if Error_Posted (Choice) then
1922 Errors_Posted_On_Choices := True;
1923 end if;
1925 -- Do not range check a choice. This check is redundant
1926 -- since this test is already done when we check that the
1927 -- bounds of the array aggregate are within range.
1929 Set_Do_Range_Check (Choice, False);
1931 -- In SPARK, the choice must be static
1933 if not (Is_OK_Static_Expression (Choice)
1934 or else (Nkind (Choice) = N_Range
1935 and then Is_OK_Static_Range (Choice)))
1936 then
1937 Check_SPARK_05_Restriction
1938 ("choice should be static", Choice);
1939 end if;
1940 end if;
1942 -- If we could not resolve the discrete choice stop here
1944 if Etype (Choice) = Any_Type then
1945 return Failure;
1947 -- If the discrete choice raises CE get its original bounds
1949 elsif Nkind (Choice) = N_Raise_Constraint_Error then
1950 Set_Raises_Constraint_Error (N);
1951 Get_Index_Bounds (Original_Node (Choice), Low, High);
1953 -- Otherwise get its bounds as usual
1955 else
1956 Get_Index_Bounds (Choice, Low, High);
1957 end if;
1959 if (Dynamic_Or_Null_Range (Low, High)
1960 or else (Nkind (Choice) = N_Subtype_Indication
1961 and then
1962 Dynamic_Or_Null_Range (S_Low, S_High)))
1963 and then Nb_Choices /= 1
1964 then
1965 Error_Msg_N
1966 ("dynamic or empty choice in aggregate "
1967 & "must be the only choice", Choice);
1968 return Failure;
1969 end if;
1971 if not (All_Composite_Constraints_Static (Low)
1972 and then All_Composite_Constraints_Static (High)
1973 and then All_Composite_Constraints_Static (S_Low)
1974 and then All_Composite_Constraints_Static (S_High))
1975 then
1976 Check_Restriction (No_Dynamic_Sized_Objects, Choice);
1977 end if;
1979 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
1980 Table (Nb_Discrete_Choices).Lo := Low;
1981 Table (Nb_Discrete_Choices).Hi := High;
1982 Table (Nb_Discrete_Choices).Choice := Choice;
1984 Next (Choice);
1986 if No (Choice) then
1988 -- Check if we have a single discrete choice and whether
1989 -- this discrete choice specifies a single value.
1991 Single_Choice :=
1992 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
1993 and then (Low = High);
1995 exit;
1996 end if;
1997 end loop;
1999 -- Ada 2005 (AI-231)
2001 if Ada_Version >= Ada_2005
2002 and then Known_Null (Expression (Assoc))
2003 and then not Empty_Range (Assoc)
2004 then
2005 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2006 end if;
2008 -- Ada 2005 (AI-287): In case of default initialized component
2009 -- we delay the resolution to the expansion phase.
2011 if Box_Present (Assoc) then
2013 -- Ada 2005 (AI-287): In case of default initialization of a
2014 -- component the expander will generate calls to the
2015 -- corresponding initialization subprogram. We need to call
2016 -- Resolve_Aggr_Expr to check the rules about
2017 -- dimensionality.
2019 if not Resolve_Aggr_Expr
2020 (Assoc, Single_Elmt => Single_Choice)
2021 then
2022 return Failure;
2023 end if;
2025 elsif not Resolve_Aggr_Expr
2026 (Expression (Assoc), Single_Elmt => Single_Choice)
2027 then
2028 return Failure;
2030 -- Check incorrect use of dynamically tagged expression
2032 -- We differentiate here two cases because the expression may
2033 -- not be decorated. For example, the analysis and resolution
2034 -- of the expression associated with the others choice will be
2035 -- done later with the full aggregate. In such case we
2036 -- duplicate the expression tree to analyze the copy and
2037 -- perform the required check.
2039 elsif not Present (Etype (Expression (Assoc))) then
2040 declare
2041 Save_Analysis : constant Boolean := Full_Analysis;
2042 Expr : constant Node_Id :=
2043 New_Copy_Tree (Expression (Assoc));
2045 begin
2046 Expander_Mode_Save_And_Set (False);
2047 Full_Analysis := False;
2049 -- Analyze the expression, making sure it is properly
2050 -- attached to the tree before we do the analysis.
2052 Set_Parent (Expr, Parent (Expression (Assoc)));
2053 Analyze (Expr);
2055 -- If the expression is a literal, propagate this info
2056 -- to the expression in the association, to enable some
2057 -- optimizations downstream.
2059 if Is_Entity_Name (Expr)
2060 and then Present (Entity (Expr))
2061 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2062 then
2063 Analyze_And_Resolve
2064 (Expression (Assoc), Component_Typ);
2065 end if;
2067 Full_Analysis := Save_Analysis;
2068 Expander_Mode_Restore;
2070 if Is_Tagged_Type (Etype (Expr)) then
2071 Check_Dynamically_Tagged_Expression
2072 (Expr => Expr,
2073 Typ => Component_Type (Etype (N)),
2074 Related_Nod => N);
2075 end if;
2076 end;
2078 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2079 Check_Dynamically_Tagged_Expression
2080 (Expr => Expression (Assoc),
2081 Typ => Component_Type (Etype (N)),
2082 Related_Nod => N);
2083 end if;
2085 Next (Assoc);
2086 end loop;
2088 -- If aggregate contains more than one choice then these must be
2089 -- static. Check for duplicate and missing values.
2091 -- Note: there is duplicated code here wrt Check_Choice_Set in
2092 -- the body of Sem_Case, and it is possible we could just reuse
2093 -- that procedure. To be checked ???
2095 if Nb_Discrete_Choices > 1 then
2096 Check_Choices : declare
2097 Choice : Node_Id;
2098 -- Location of choice for messages
2100 Hi_Val : Uint;
2101 Lo_Val : Uint;
2102 -- High end of one range and Low end of the next. Should be
2103 -- contiguous if there is no hole in the list of values.
2105 Lo_Dup : Uint;
2106 Hi_Dup : Uint;
2107 -- End points of duplicated range
2109 Missing_Or_Duplicates : Boolean := False;
2110 -- Set True if missing or duplicate choices found
2112 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2113 -- Output continuation message with a representation of the
2114 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2115 -- choice node where the message is to be posted.
2117 ------------------------
2118 -- Output_Bad_Choices --
2119 ------------------------
2121 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2122 begin
2123 -- Enumeration type case
2125 if Is_Enumeration_Type (Index_Typ) then
2126 Error_Msg_Name_1 :=
2127 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2128 Error_Msg_Name_2 :=
2129 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2131 if Lo = Hi then
2132 Error_Msg_N ("\\ %!", C);
2133 else
2134 Error_Msg_N ("\\ % .. %!", C);
2135 end if;
2137 -- Integer types case
2139 else
2140 Error_Msg_Uint_1 := Lo;
2141 Error_Msg_Uint_2 := Hi;
2143 if Lo = Hi then
2144 Error_Msg_N ("\\ ^!", C);
2145 else
2146 Error_Msg_N ("\\ ^ .. ^!", C);
2147 end if;
2148 end if;
2149 end Output_Bad_Choices;
2151 -- Start of processing for Check_Choices
2153 begin
2154 Sort_Case_Table (Table);
2156 -- First we do a quick linear loop to find out if we have
2157 -- any duplicates or missing entries (usually we have a
2158 -- legal aggregate, so this will get us out quickly).
2160 for J in 1 .. Nb_Discrete_Choices - 1 loop
2161 Hi_Val := Expr_Value (Table (J).Hi);
2162 Lo_Val := Expr_Value (Table (J + 1).Lo);
2164 if Lo_Val <= Hi_Val
2165 or else (Lo_Val > Hi_Val + 1
2166 and then not Others_Present)
2167 then
2168 Missing_Or_Duplicates := True;
2169 exit;
2170 end if;
2171 end loop;
2173 -- If we have missing or duplicate entries, first fill in
2174 -- the Highest entries to make life easier in the following
2175 -- loops to detect bad entries.
2177 if Missing_Or_Duplicates then
2178 Table (1).Highest := Expr_Value (Table (1).Hi);
2180 for J in 2 .. Nb_Discrete_Choices loop
2181 Table (J).Highest :=
2182 UI_Max
2183 (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2184 end loop;
2186 -- Loop through table entries to find duplicate indexes
2188 for J in 2 .. Nb_Discrete_Choices loop
2189 Lo_Val := Expr_Value (Table (J).Lo);
2190 Hi_Val := Expr_Value (Table (J).Hi);
2192 -- Case where we have duplicates (the lower bound of
2193 -- this choice is less than or equal to the highest
2194 -- high bound found so far).
2196 if Lo_Val <= Table (J - 1).Highest then
2198 -- We move backwards looking for duplicates. We can
2199 -- abandon this loop as soon as we reach a choice
2200 -- highest value that is less than Lo_Val.
2202 for K in reverse 1 .. J - 1 loop
2203 exit when Table (K).Highest < Lo_Val;
2205 -- Here we may have duplicates between entries
2206 -- for K and J. Get range of duplicates.
2208 Lo_Dup :=
2209 UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2210 Hi_Dup :=
2211 UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2213 -- Nothing to do if duplicate range is null
2215 if Lo_Dup > Hi_Dup then
2216 null;
2218 -- Otherwise place proper message
2220 else
2221 -- We place message on later choice, with a
2222 -- line reference to the earlier choice.
2224 if Sloc (Table (J).Choice) <
2225 Sloc (Table (K).Choice)
2226 then
2227 Choice := Table (K).Choice;
2228 Error_Msg_Sloc := Sloc (Table (J).Choice);
2229 else
2230 Choice := Table (J).Choice;
2231 Error_Msg_Sloc := Sloc (Table (K).Choice);
2232 end if;
2234 if Lo_Dup = Hi_Dup then
2235 Error_Msg_N
2236 ("index value in array aggregate "
2237 & "duplicates the one given#!", Choice);
2238 else
2239 Error_Msg_N
2240 ("index values in array aggregate "
2241 & "duplicate those given#!", Choice);
2242 end if;
2244 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2245 end if;
2246 end loop;
2247 end if;
2248 end loop;
2250 -- Loop through entries in table to find missing indexes.
2251 -- Not needed if others, since missing impossible.
2253 if not Others_Present then
2254 for J in 2 .. Nb_Discrete_Choices loop
2255 Lo_Val := Expr_Value (Table (J).Lo);
2256 Hi_Val := Table (J - 1).Highest;
2258 if Lo_Val > Hi_Val + 1 then
2260 declare
2261 Error_Node : Node_Id;
2263 begin
2264 -- If the choice is the bound of a range in
2265 -- a subtype indication, it is not in the
2266 -- source lists for the aggregate itself, so
2267 -- post the error on the aggregate. Otherwise
2268 -- post it on choice itself.
2270 Choice := Table (J).Choice;
2272 if Is_List_Member (Choice) then
2273 Error_Node := Choice;
2274 else
2275 Error_Node := N;
2276 end if;
2278 if Hi_Val + 1 = Lo_Val - 1 then
2279 Error_Msg_N
2280 ("missing index value "
2281 & "in array aggregate!", Error_Node);
2282 else
2283 Error_Msg_N
2284 ("missing index values "
2285 & "in array aggregate!", Error_Node);
2286 end if;
2288 Output_Bad_Choices
2289 (Hi_Val + 1, Lo_Val - 1, Error_Node);
2290 end;
2291 end if;
2292 end loop;
2293 end if;
2295 -- If either missing or duplicate values, return failure
2297 Set_Etype (N, Any_Composite);
2298 return Failure;
2299 end if;
2300 end Check_Choices;
2301 end if;
2303 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2305 if Nb_Discrete_Choices > 0 then
2306 Choices_Low := Table (1).Lo;
2307 Choices_High := Table (Nb_Discrete_Choices).Hi;
2308 end if;
2310 -- If Others is present, then bounds of aggregate come from the
2311 -- index constraint (not the choices in the aggregate itself).
2313 if Others_Present then
2314 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2316 -- Abandon processing if either bound is already signalled as
2317 -- an error (prevents junk cascaded messages and blow ups).
2319 if Nkind (Aggr_Low) = N_Error
2320 or else
2321 Nkind (Aggr_High) = N_Error
2322 then
2323 return False;
2324 end if;
2326 -- No others clause present
2328 else
2329 -- Special processing if others allowed and not present. This
2330 -- means that the bounds of the aggregate come from the index
2331 -- constraint (and the length must match).
2333 if Others_Allowed then
2334 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2336 -- Abandon processing if either bound is already signalled
2337 -- as an error (stop junk cascaded messages and blow ups).
2339 if Nkind (Aggr_Low) = N_Error
2340 or else
2341 Nkind (Aggr_High) = N_Error
2342 then
2343 return False;
2344 end if;
2346 -- If others allowed, and no others present, then the array
2347 -- should cover all index values. If it does not, we will
2348 -- get a length check warning, but there is two cases where
2349 -- an additional warning is useful:
2351 -- If we have no positional components, and the length is
2352 -- wrong (which we can tell by others being allowed with
2353 -- missing components), and the index type is an enumeration
2354 -- type, then issue appropriate warnings about these missing
2355 -- components. They are only warnings, since the aggregate
2356 -- is fine, it's just the wrong length. We skip this check
2357 -- for standard character types (since there are no literals
2358 -- and it is too much trouble to concoct them), and also if
2359 -- any of the bounds have values that are not known at
2360 -- compile time.
2362 -- Another case warranting a warning is when the length
2363 -- is right, but as above we have an index type that is
2364 -- an enumeration, and the bounds do not match. This is a
2365 -- case where dubious sliding is allowed and we generate a
2366 -- warning that the bounds do not match.
2368 if No (Expressions (N))
2369 and then Nkind (Index) = N_Range
2370 and then Is_Enumeration_Type (Etype (Index))
2371 and then not Is_Standard_Character_Type (Etype (Index))
2372 and then Compile_Time_Known_Value (Aggr_Low)
2373 and then Compile_Time_Known_Value (Aggr_High)
2374 and then Compile_Time_Known_Value (Choices_Low)
2375 and then Compile_Time_Known_Value (Choices_High)
2376 then
2377 -- If any of the expressions or range bounds in choices
2378 -- have semantic errors, then do not attempt further
2379 -- resolution, to prevent cascaded errors.
2381 if Errors_Posted_On_Choices then
2382 return Failure;
2383 end if;
2385 declare
2386 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2387 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2388 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2389 CHi : constant Node_Id := Expr_Value_E (Choices_High);
2391 Ent : Entity_Id;
2393 begin
2394 -- Warning case 1, missing values at start/end. Only
2395 -- do the check if the number of entries is too small.
2397 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2399 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2400 then
2401 Error_Msg_N
2402 ("missing index value(s) in array aggregate??",
2405 -- Output missing value(s) at start
2407 if Chars (ALo) /= Chars (CLo) then
2408 Ent := Prev (CLo);
2410 if Chars (ALo) = Chars (Ent) then
2411 Error_Msg_Name_1 := Chars (ALo);
2412 Error_Msg_N ("\ %??", N);
2413 else
2414 Error_Msg_Name_1 := Chars (ALo);
2415 Error_Msg_Name_2 := Chars (Ent);
2416 Error_Msg_N ("\ % .. %??", N);
2417 end if;
2418 end if;
2420 -- Output missing value(s) at end
2422 if Chars (AHi) /= Chars (CHi) then
2423 Ent := Next (CHi);
2425 if Chars (AHi) = Chars (Ent) then
2426 Error_Msg_Name_1 := Chars (Ent);
2427 Error_Msg_N ("\ %??", N);
2428 else
2429 Error_Msg_Name_1 := Chars (Ent);
2430 Error_Msg_Name_2 := Chars (AHi);
2431 Error_Msg_N ("\ % .. %??", N);
2432 end if;
2433 end if;
2435 -- Warning case 2, dubious sliding. The First_Subtype
2436 -- test distinguishes between a constrained type where
2437 -- sliding is not allowed (so we will get a warning
2438 -- later that Constraint_Error will be raised), and
2439 -- the unconstrained case where sliding is permitted.
2441 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2443 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2444 and then Chars (ALo) /= Chars (CLo)
2445 and then
2446 not Is_Constrained (First_Subtype (Etype (N)))
2447 then
2448 Error_Msg_N
2449 ("bounds of aggregate do not match target??", N);
2450 end if;
2451 end;
2452 end if;
2453 end if;
2455 -- If no others, aggregate bounds come from aggregate
2457 Aggr_Low := Choices_Low;
2458 Aggr_High := Choices_High;
2459 end if;
2460 end Step_2;
2462 -- STEP 3: Process positional components
2464 else
2465 -- STEP 3 (A): Process positional elements
2467 Expr := First (Expressions (N));
2468 Nb_Elements := Uint_0;
2469 while Present (Expr) loop
2470 Nb_Elements := Nb_Elements + 1;
2472 -- Ada 2005 (AI-231)
2474 if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2475 Check_Can_Never_Be_Null (Etype (N), Expr);
2476 end if;
2478 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2479 return Failure;
2480 end if;
2482 -- Check incorrect use of dynamically tagged expression
2484 if Is_Tagged_Type (Etype (Expr)) then
2485 Check_Dynamically_Tagged_Expression
2486 (Expr => Expr,
2487 Typ => Component_Type (Etype (N)),
2488 Related_Nod => N);
2489 end if;
2491 Next (Expr);
2492 end loop;
2494 if Others_Present then
2495 Assoc := Last (Component_Associations (N));
2497 -- Ada 2005 (AI-231)
2499 if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2500 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2501 end if;
2503 -- Ada 2005 (AI-287): In case of default initialized component,
2504 -- we delay the resolution to the expansion phase.
2506 if Box_Present (Assoc) then
2508 -- Ada 2005 (AI-287): In case of default initialization of a
2509 -- component the expander will generate calls to the
2510 -- corresponding initialization subprogram. We need to call
2511 -- Resolve_Aggr_Expr to check the rules about
2512 -- dimensionality.
2514 if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2515 return Failure;
2516 end if;
2518 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2519 Single_Elmt => False)
2520 then
2521 return Failure;
2523 -- Check incorrect use of dynamically tagged expression. The
2524 -- expression of the others choice has not been resolved yet.
2525 -- In order to diagnose the semantic error we create a duplicate
2526 -- tree to analyze it and perform the check.
2528 else
2529 declare
2530 Save_Analysis : constant Boolean := Full_Analysis;
2531 Expr : constant Node_Id :=
2532 New_Copy_Tree (Expression (Assoc));
2534 begin
2535 Expander_Mode_Save_And_Set (False);
2536 Full_Analysis := False;
2537 Analyze (Expr);
2538 Full_Analysis := Save_Analysis;
2539 Expander_Mode_Restore;
2541 if Is_Tagged_Type (Etype (Expr)) then
2542 Check_Dynamically_Tagged_Expression
2543 (Expr => Expr,
2544 Typ => Component_Type (Etype (N)),
2545 Related_Nod => N);
2546 end if;
2547 end;
2548 end if;
2549 end if;
2551 -- STEP 3 (B): Compute the aggregate bounds
2553 if Others_Present then
2554 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2556 else
2557 if Others_Allowed then
2558 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2559 else
2560 Aggr_Low := Index_Typ_Low;
2561 end if;
2563 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2564 Check_Bound (Index_Base_High, Aggr_High);
2565 end if;
2566 end if;
2568 -- STEP 4: Perform static aggregate checks and save the bounds
2570 -- Check (A)
2572 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2573 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2575 -- Check (B)
2577 if Others_Present and then Nb_Discrete_Choices > 0 then
2578 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2579 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2580 Choices_Low, Choices_High);
2581 Check_Bounds (Index_Base_Low, Index_Base_High,
2582 Choices_Low, Choices_High);
2584 -- Check (C)
2586 elsif Others_Present and then Nb_Elements > 0 then
2587 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2588 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2589 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2590 end if;
2592 if Raises_Constraint_Error (Aggr_Low)
2593 or else Raises_Constraint_Error (Aggr_High)
2594 then
2595 Set_Raises_Constraint_Error (N);
2596 end if;
2598 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2600 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2601 -- since the addition node returned by Add is not yet analyzed. Attach
2602 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2603 -- analyzed when it is a literal bound whose type must be properly set.
2605 if Others_Present or else Nb_Discrete_Choices > 0 then
2606 Aggr_High := Duplicate_Subexpr (Aggr_High);
2608 if Etype (Aggr_High) = Universal_Integer then
2609 Set_Analyzed (Aggr_High, False);
2610 end if;
2611 end if;
2613 -- If the aggregate already has bounds attached to it, it means this is
2614 -- a positional aggregate created as an optimization by
2615 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2616 -- bounds.
2618 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2619 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
2620 Aggr_High := High_Bound (Aggregate_Bounds (N));
2621 end if;
2623 Set_Aggregate_Bounds
2624 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2626 -- The bounds may contain expressions that must be inserted upwards.
2627 -- Attach them fully to the tree. After analysis, remove side effects
2628 -- from upper bound, if still needed.
2630 Set_Parent (Aggregate_Bounds (N), N);
2631 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2632 Check_Unset_Reference (Aggregate_Bounds (N));
2634 if not Others_Present and then Nb_Discrete_Choices = 0 then
2635 Set_High_Bound
2636 (Aggregate_Bounds (N),
2637 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2638 end if;
2640 -- Check the dimensions of each component in the array aggregate
2642 Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2644 return Success;
2645 end Resolve_Array_Aggregate;
2647 ---------------------------------
2648 -- Resolve_Extension_Aggregate --
2649 ---------------------------------
2651 -- There are two cases to consider:
2653 -- a) If the ancestor part is a type mark, the components needed are the
2654 -- difference between the components of the expected type and the
2655 -- components of the given type mark.
2657 -- b) If the ancestor part is an expression, it must be unambiguous, and
2658 -- once we have its type we can also compute the needed components as in
2659 -- the previous case. In both cases, if the ancestor type is not the
2660 -- immediate ancestor, we have to build this ancestor recursively.
2662 -- In both cases, discriminants of the ancestor type do not play a role in
2663 -- the resolution of the needed components, because inherited discriminants
2664 -- cannot be used in a type extension. As a result we can compute
2665 -- independently the list of components of the ancestor type and of the
2666 -- expected type.
2668 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
2669 A : constant Node_Id := Ancestor_Part (N);
2670 A_Type : Entity_Id;
2671 I : Interp_Index;
2672 It : Interp;
2674 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
2675 -- If the type is limited, verify that the ancestor part is a legal
2676 -- expression (aggregate or function call, including 'Input)) that does
2677 -- not require a copy, as specified in 7.5(2).
2679 function Valid_Ancestor_Type return Boolean;
2680 -- Verify that the type of the ancestor part is a non-private ancestor
2681 -- of the expected type, which must be a type extension.
2683 ----------------------------
2684 -- Valid_Limited_Ancestor --
2685 ----------------------------
2687 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
2688 begin
2689 if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
2690 return True;
2692 -- The ancestor must be a call or an aggregate, but a call may
2693 -- have been expanded into a temporary, so check original node.
2695 elsif Nkind_In (Anc, N_Aggregate,
2696 N_Extension_Aggregate,
2697 N_Function_Call)
2698 then
2699 return True;
2701 elsif Nkind (Original_Node (Anc)) = N_Function_Call then
2702 return True;
2704 elsif Nkind (Anc) = N_Attribute_Reference
2705 and then Attribute_Name (Anc) = Name_Input
2706 then
2707 return True;
2709 elsif Nkind (Anc) = N_Qualified_Expression then
2710 return Valid_Limited_Ancestor (Expression (Anc));
2712 else
2713 return False;
2714 end if;
2715 end Valid_Limited_Ancestor;
2717 -------------------------
2718 -- Valid_Ancestor_Type --
2719 -------------------------
2721 function Valid_Ancestor_Type return Boolean is
2722 Imm_Type : Entity_Id;
2724 begin
2725 Imm_Type := Base_Type (Typ);
2726 while Is_Derived_Type (Imm_Type) loop
2727 if Etype (Imm_Type) = Base_Type (A_Type) then
2728 return True;
2730 -- The base type of the parent type may appear as a private
2731 -- extension if it is declared as such in a parent unit of the
2732 -- current one. For consistency of the subsequent analysis use
2733 -- the partial view for the ancestor part.
2735 elsif Is_Private_Type (Etype (Imm_Type))
2736 and then Present (Full_View (Etype (Imm_Type)))
2737 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
2738 then
2739 A_Type := Etype (Imm_Type);
2740 return True;
2742 -- The parent type may be a private extension. The aggregate is
2743 -- legal if the type of the aggregate is an extension of it that
2744 -- is not a private extension.
2746 elsif Is_Private_Type (A_Type)
2747 and then not Is_Private_Type (Imm_Type)
2748 and then Present (Full_View (A_Type))
2749 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
2750 then
2751 return True;
2753 else
2754 Imm_Type := Etype (Base_Type (Imm_Type));
2755 end if;
2756 end loop;
2758 -- If previous loop did not find a proper ancestor, report error
2760 Error_Msg_NE ("expect ancestor type of &", A, Typ);
2761 return False;
2762 end Valid_Ancestor_Type;
2764 -- Start of processing for Resolve_Extension_Aggregate
2766 begin
2767 -- Analyze the ancestor part and account for the case where it is a
2768 -- parameterless function call.
2770 Analyze (A);
2771 Check_Parameterless_Call (A);
2773 -- In SPARK, the ancestor part cannot be a type mark
2775 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
2776 Check_SPARK_05_Restriction ("ancestor part cannot be a type mark", A);
2778 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
2779 -- must not have unknown discriminants.
2781 if Has_Unknown_Discriminants (Root_Type (Typ)) then
2782 Error_Msg_NE
2783 ("aggregate not available for type& whose ancestor "
2784 & "has unknown discriminants", N, Typ);
2785 end if;
2786 end if;
2788 if not Is_Tagged_Type (Typ) then
2789 Error_Msg_N ("type of extension aggregate must be tagged", N);
2790 return;
2792 elsif Is_Limited_Type (Typ) then
2794 -- Ada 2005 (AI-287): Limited aggregates are allowed
2796 if Ada_Version < Ada_2005 then
2797 Error_Msg_N ("aggregate type cannot be limited", N);
2798 Explain_Limited_Type (Typ, N);
2799 return;
2801 elsif Valid_Limited_Ancestor (A) then
2802 null;
2804 else
2805 Error_Msg_N
2806 ("limited ancestor part must be aggregate or function call", A);
2807 end if;
2809 elsif Is_Class_Wide_Type (Typ) then
2810 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
2811 return;
2812 end if;
2814 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
2815 A_Type := Get_Full_View (Entity (A));
2817 if Valid_Ancestor_Type then
2818 Set_Entity (A, A_Type);
2819 Set_Etype (A, A_Type);
2821 Validate_Ancestor_Part (N);
2822 Resolve_Record_Aggregate (N, Typ);
2823 end if;
2825 elsif Nkind (A) /= N_Aggregate then
2826 if Is_Overloaded (A) then
2827 A_Type := Any_Type;
2829 Get_First_Interp (A, I, It);
2830 while Present (It.Typ) loop
2832 -- Only consider limited interpretations in the Ada 2005 case
2834 if Is_Tagged_Type (It.Typ)
2835 and then (Ada_Version >= Ada_2005
2836 or else not Is_Limited_Type (It.Typ))
2837 then
2838 if A_Type /= Any_Type then
2839 Error_Msg_N ("cannot resolve expression", A);
2840 return;
2841 else
2842 A_Type := It.Typ;
2843 end if;
2844 end if;
2846 Get_Next_Interp (I, It);
2847 end loop;
2849 if A_Type = Any_Type then
2850 if Ada_Version >= Ada_2005 then
2851 Error_Msg_N
2852 ("ancestor part must be of a tagged type", A);
2853 else
2854 Error_Msg_N
2855 ("ancestor part must be of a nonlimited tagged type", A);
2856 end if;
2858 return;
2859 end if;
2861 else
2862 A_Type := Etype (A);
2863 end if;
2865 if Valid_Ancestor_Type then
2866 Resolve (A, A_Type);
2867 Check_Unset_Reference (A);
2868 Check_Non_Static_Context (A);
2870 -- The aggregate is illegal if the ancestor expression is a call
2871 -- to a function with a limited unconstrained result, unless the
2872 -- type of the aggregate is a null extension. This restriction
2873 -- was added in AI05-67 to simplify implementation.
2875 if Nkind (A) = N_Function_Call
2876 and then Is_Limited_Type (A_Type)
2877 and then not Is_Null_Extension (Typ)
2878 and then not Is_Constrained (A_Type)
2879 then
2880 Error_Msg_N
2881 ("type of limited ancestor part must be constrained", A);
2883 -- Reject the use of CPP constructors that leave objects partially
2884 -- initialized. For example:
2886 -- type CPP_Root is tagged limited record ...
2887 -- pragma Import (CPP, CPP_Root);
2889 -- type CPP_DT is new CPP_Root and Iface ...
2890 -- pragma Import (CPP, CPP_DT);
2892 -- type Ada_DT is new CPP_DT with ...
2894 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
2896 -- Using the constructor of CPP_Root the slots of the dispatch
2897 -- table of CPP_DT cannot be set, and the secondary tag of
2898 -- CPP_DT is unknown.
2900 elsif Nkind (A) = N_Function_Call
2901 and then Is_CPP_Constructor_Call (A)
2902 and then Enclosing_CPP_Parent (Typ) /= A_Type
2903 then
2904 Error_Msg_NE
2905 ("??must use 'C'P'P constructor for type &", A,
2906 Enclosing_CPP_Parent (Typ));
2908 -- The following call is not needed if the previous warning
2909 -- is promoted to an error.
2911 Resolve_Record_Aggregate (N, Typ);
2913 elsif Is_Class_Wide_Type (Etype (A))
2914 and then Nkind (Original_Node (A)) = N_Function_Call
2915 then
2916 -- If the ancestor part is a dispatching call, it appears
2917 -- statically to be a legal ancestor, but it yields any member
2918 -- of the class, and it is not possible to determine whether
2919 -- it is an ancestor of the extension aggregate (much less
2920 -- which ancestor). It is not possible to determine the
2921 -- components of the extension part.
2923 -- This check implements AI-306, which in fact was motivated by
2924 -- an AdaCore query to the ARG after this test was added.
2926 Error_Msg_N ("ancestor part must be statically tagged", A);
2927 else
2928 Resolve_Record_Aggregate (N, Typ);
2929 end if;
2930 end if;
2932 else
2933 Error_Msg_N ("no unique type for this aggregate", A);
2934 end if;
2936 Check_Function_Writable_Actuals (N);
2937 end Resolve_Extension_Aggregate;
2939 ------------------------------
2940 -- Resolve_Record_Aggregate --
2941 ------------------------------
2943 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
2944 Assoc : Node_Id;
2945 -- N_Component_Association node belonging to the input aggregate N
2947 Expr : Node_Id;
2948 Positional_Expr : Node_Id;
2949 Component : Entity_Id;
2950 Component_Elmt : Elmt_Id;
2952 Components : constant Elist_Id := New_Elmt_List;
2953 -- Components is the list of the record components whose value must be
2954 -- provided in the aggregate. This list does include discriminants.
2956 New_Assoc_List : constant List_Id := New_List;
2957 New_Assoc : Node_Id;
2958 -- New_Assoc_List is the newly built list of N_Component_Association
2959 -- nodes. New_Assoc is one such N_Component_Association node in it.
2960 -- Note that while Assoc and New_Assoc contain the same kind of nodes,
2961 -- they are used to iterate over two different N_Component_Association
2962 -- lists.
2964 Others_Etype : Entity_Id := Empty;
2965 -- This variable is used to save the Etype of the last record component
2966 -- that takes its value from the others choice. Its purpose is:
2968 -- (a) make sure the others choice is useful
2970 -- (b) make sure the type of all the components whose value is
2971 -- subsumed by the others choice are the same.
2973 -- This variable is updated as a side effect of function Get_Value.
2975 Is_Box_Present : Boolean := False;
2976 Others_Box : Boolean := False;
2977 -- Ada 2005 (AI-287): Variables used in case of default initialization
2978 -- to provide a functionality similar to Others_Etype. Box_Present
2979 -- indicates that the component takes its default initialization;
2980 -- Others_Box indicates that at least one component takes its default
2981 -- initialization. Similar to Others_Etype, they are also updated as a
2982 -- side effect of function Get_Value.
2984 procedure Add_Association
2985 (Component : Entity_Id;
2986 Expr : Node_Id;
2987 Assoc_List : List_Id;
2988 Is_Box_Present : Boolean := False);
2989 -- Builds a new N_Component_Association node which associates Component
2990 -- to expression Expr and adds it to the association list being built,
2991 -- either New_Assoc_List, or the association being built for an inner
2992 -- aggregate.
2994 function Discr_Present (Discr : Entity_Id) return Boolean;
2995 -- If aggregate N is a regular aggregate this routine will return True.
2996 -- Otherwise, if N is an extension aggregate, Discr is a discriminant
2997 -- whose value may already have been specified by N's ancestor part.
2998 -- This routine checks whether this is indeed the case and if so returns
2999 -- False, signaling that no value for Discr should appear in N's
3000 -- aggregate part. Also, in this case, the routine appends to
3001 -- New_Assoc_List the discriminant value specified in the ancestor part.
3003 -- If the aggregate is in a context with expansion delayed, it will be
3004 -- reanalyzed. The inherited discriminant values must not be reinserted
3005 -- in the component list to prevent spurious errors, but they must be
3006 -- present on first analysis to build the proper subtype indications.
3007 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
3009 function Get_Value
3010 (Compon : Node_Id;
3011 From : List_Id;
3012 Consider_Others_Choice : Boolean := False)
3013 return Node_Id;
3014 -- Given a record component stored in parameter Compon, this function
3015 -- returns its value as it appears in the list From, which is a list
3016 -- of N_Component_Association nodes.
3018 -- If no component association has a choice for the searched component,
3019 -- the value provided by the others choice is returned, if there is one,
3020 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3021 -- returned. If there is more than one component association giving a
3022 -- value for the searched record component, an error message is emitted
3023 -- and the first found value is returned.
3025 -- If Consider_Others_Choice is set and the returned expression comes
3026 -- from the others choice, then Others_Etype is set as a side effect.
3027 -- An error message is emitted if the components taking their value from
3028 -- the others choice do not have same type.
3030 function New_Copy_Tree_And_Copy_Dimensions
3031 (Source : Node_Id;
3032 Map : Elist_Id := No_Elist;
3033 New_Sloc : Source_Ptr := No_Location;
3034 New_Scope : Entity_Id := Empty) return Node_Id;
3035 -- Same as New_Copy_Tree (defined in Sem_Util), except that this routine
3036 -- also copies the dimensions of Source to the returned node.
3038 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id);
3039 -- Analyzes and resolves expression Expr against the Etype of the
3040 -- Component. This routine also applies all appropriate checks to Expr.
3041 -- It finally saves a Expr in the newly created association list that
3042 -- will be attached to the final record aggregate. Note that if the
3043 -- Parent pointer of Expr is not set then Expr was produced with a
3044 -- New_Copy_Tree or some such.
3046 ---------------------
3047 -- Add_Association --
3048 ---------------------
3050 procedure Add_Association
3051 (Component : Entity_Id;
3052 Expr : Node_Id;
3053 Assoc_List : List_Id;
3054 Is_Box_Present : Boolean := False)
3056 Loc : Source_Ptr;
3057 Choice_List : constant List_Id := New_List;
3058 New_Assoc : Node_Id;
3060 begin
3061 -- If this is a box association the expression is missing, so
3062 -- use the Sloc of the aggregate itself for the new association.
3064 if Present (Expr) then
3065 Loc := Sloc (Expr);
3066 else
3067 Loc := Sloc (N);
3068 end if;
3070 Append (New_Occurrence_Of (Component, Loc), Choice_List);
3071 New_Assoc :=
3072 Make_Component_Association (Loc,
3073 Choices => Choice_List,
3074 Expression => Expr,
3075 Box_Present => Is_Box_Present);
3076 Append (New_Assoc, Assoc_List);
3077 end Add_Association;
3079 -------------------
3080 -- Discr_Present --
3081 -------------------
3083 function Discr_Present (Discr : Entity_Id) return Boolean is
3084 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3086 Loc : Source_Ptr;
3088 Ancestor : Node_Id;
3089 Comp_Assoc : Node_Id;
3090 Discr_Expr : Node_Id;
3092 Ancestor_Typ : Entity_Id;
3093 Orig_Discr : Entity_Id;
3094 D : Entity_Id;
3095 D_Val : Elmt_Id := No_Elmt; -- stop junk warning
3097 Ancestor_Is_Subtyp : Boolean;
3099 begin
3100 if Regular_Aggr then
3101 return True;
3102 end if;
3104 -- Check whether inherited discriminant values have already been
3105 -- inserted in the aggregate. This will be the case if we are
3106 -- re-analyzing an aggregate whose expansion was delayed.
3108 if Present (Component_Associations (N)) then
3109 Comp_Assoc := First (Component_Associations (N));
3110 while Present (Comp_Assoc) loop
3111 if Inherited_Discriminant (Comp_Assoc) then
3112 return True;
3113 end if;
3115 Next (Comp_Assoc);
3116 end loop;
3117 end if;
3119 Ancestor := Ancestor_Part (N);
3120 Ancestor_Typ := Etype (Ancestor);
3121 Loc := Sloc (Ancestor);
3123 -- For a private type with unknown discriminants, use the underlying
3124 -- record view if it is available.
3126 if Has_Unknown_Discriminants (Ancestor_Typ)
3127 and then Present (Full_View (Ancestor_Typ))
3128 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3129 then
3130 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3131 end if;
3133 Ancestor_Is_Subtyp :=
3134 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3136 -- If the ancestor part has no discriminants clearly N's aggregate
3137 -- part must provide a value for Discr.
3139 if not Has_Discriminants (Ancestor_Typ) then
3140 return True;
3142 -- If the ancestor part is an unconstrained subtype mark then the
3143 -- Discr must be present in N's aggregate part.
3145 elsif Ancestor_Is_Subtyp
3146 and then not Is_Constrained (Entity (Ancestor))
3147 then
3148 return True;
3149 end if;
3151 -- Now look to see if Discr was specified in the ancestor part
3153 if Ancestor_Is_Subtyp then
3154 D_Val := First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3155 end if;
3157 Orig_Discr := Original_Record_Component (Discr);
3159 D := First_Discriminant (Ancestor_Typ);
3160 while Present (D) loop
3162 -- If Ancestor has already specified Disc value then insert its
3163 -- value in the final aggregate.
3165 if Original_Record_Component (D) = Orig_Discr then
3166 if Ancestor_Is_Subtyp then
3167 Discr_Expr := New_Copy_Tree (Node (D_Val));
3168 else
3169 Discr_Expr :=
3170 Make_Selected_Component (Loc,
3171 Prefix => Duplicate_Subexpr (Ancestor),
3172 Selector_Name => New_Occurrence_Of (Discr, Loc));
3173 end if;
3175 Resolve_Aggr_Expr (Discr_Expr, Discr);
3176 Set_Inherited_Discriminant (Last (New_Assoc_List));
3177 return False;
3178 end if;
3180 Next_Discriminant (D);
3182 if Ancestor_Is_Subtyp then
3183 Next_Elmt (D_Val);
3184 end if;
3185 end loop;
3187 return True;
3188 end Discr_Present;
3190 ---------------
3191 -- Get_Value --
3192 ---------------
3194 function Get_Value
3195 (Compon : Node_Id;
3196 From : List_Id;
3197 Consider_Others_Choice : Boolean := False)
3198 return Node_Id
3200 Typ : constant Entity_Id := Etype (Compon);
3201 Assoc : Node_Id;
3202 Expr : Node_Id := Empty;
3203 Selector_Name : Node_Id;
3205 begin
3206 Is_Box_Present := False;
3208 if No (From) then
3209 return Empty;
3210 end if;
3212 Assoc := First (From);
3213 while Present (Assoc) loop
3214 Selector_Name := First (Choices (Assoc));
3215 while Present (Selector_Name) loop
3216 if Nkind (Selector_Name) = N_Others_Choice then
3217 if Consider_Others_Choice and then No (Expr) then
3219 -- We need to duplicate the expression for each
3220 -- successive component covered by the others choice.
3221 -- This is redundant if the others_choice covers only
3222 -- one component (small optimization possible???), but
3223 -- indispensable otherwise, because each one must be
3224 -- expanded individually to preserve side-effects.
3226 -- Ada 2005 (AI-287): In case of default initialization
3227 -- of components, we duplicate the corresponding default
3228 -- expression (from the record type declaration). The
3229 -- copy must carry the sloc of the association (not the
3230 -- original expression) to prevent spurious elaboration
3231 -- checks when the default includes function calls.
3233 if Box_Present (Assoc) then
3234 Others_Box := True;
3235 Is_Box_Present := True;
3237 if Expander_Active then
3238 return
3239 New_Copy_Tree_And_Copy_Dimensions
3240 (Expression (Parent (Compon)),
3241 New_Sloc => Sloc (Assoc));
3242 else
3243 return Expression (Parent (Compon));
3244 end if;
3246 else
3247 if Present (Others_Etype)
3248 and then Base_Type (Others_Etype) /= Base_Type (Typ)
3249 then
3250 -- If the components are of an anonymous access
3251 -- type they are distinct, but this is legal in
3252 -- Ada 2012 as long as designated types match.
3254 if (Ekind (Typ) = E_Anonymous_Access_Type
3255 or else Ekind (Typ) =
3256 E_Anonymous_Access_Subprogram_Type)
3257 and then Designated_Type (Typ) =
3258 Designated_Type (Others_Etype)
3259 then
3260 null;
3261 else
3262 Error_Msg_N
3263 ("components in OTHERS choice must "
3264 & "have same type", Selector_Name);
3265 end if;
3266 end if;
3268 Others_Etype := Typ;
3270 -- Copy expression so that it is resolved
3271 -- independently for each component, This is needed
3272 -- for accessibility checks on compoents of anonymous
3273 -- access types, even in compile_only mode.
3275 if not Inside_A_Generic then
3277 -- In ASIS mode, preanalyze the expression in an
3278 -- others association before making copies for
3279 -- separate resolution and accessibility checks.
3280 -- This ensures that the type of the expression is
3281 -- available to ASIS in all cases, in particular if
3282 -- the expression is itself an aggregate.
3284 if ASIS_Mode then
3285 Preanalyze_And_Resolve (Expression (Assoc), Typ);
3286 end if;
3288 return
3289 New_Copy_Tree_And_Copy_Dimensions
3290 (Expression (Assoc));
3292 else
3293 return Expression (Assoc);
3294 end if;
3295 end if;
3296 end if;
3298 elsif Chars (Compon) = Chars (Selector_Name) then
3299 if No (Expr) then
3301 -- Ada 2005 (AI-231)
3303 if Ada_Version >= Ada_2005
3304 and then Known_Null (Expression (Assoc))
3305 then
3306 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
3307 end if;
3309 -- We need to duplicate the expression when several
3310 -- components are grouped together with a "|" choice.
3311 -- For instance "filed1 | filed2 => Expr"
3313 -- Ada 2005 (AI-287)
3315 if Box_Present (Assoc) then
3316 Is_Box_Present := True;
3318 -- Duplicate the default expression of the component
3319 -- from the record type declaration, so a new copy
3320 -- can be attached to the association.
3322 -- Note that we always copy the default expression,
3323 -- even when the association has a single choice, in
3324 -- order to create a proper association for the
3325 -- expanded aggregate.
3327 -- Component may have no default, in which case the
3328 -- expression is empty and the component is default-
3329 -- initialized, but an association for the component
3330 -- exists, and it is not covered by an others clause.
3332 -- Scalar and private types have no initialization
3333 -- procedure, so they remain uninitialized. If the
3334 -- target of the aggregate is a constant this
3335 -- deserves a warning.
3337 if No (Expression (Parent (Compon)))
3338 and then not Has_Non_Null_Base_Init_Proc (Typ)
3339 and then not Has_Aspect (Typ, Aspect_Default_Value)
3340 and then not Is_Concurrent_Type (Typ)
3341 and then Nkind (Parent (N)) = N_Object_Declaration
3342 and then Constant_Present (Parent (N))
3343 then
3344 Error_Msg_Node_2 := Typ;
3345 Error_Msg_NE
3346 ("component&? of type& is uninitialized",
3347 Assoc, Selector_Name);
3349 -- An additional reminder if the component type
3350 -- is a generic formal.
3352 if Is_Generic_Type (Base_Type (Typ)) then
3353 Error_Msg_NE
3354 ("\instance should provide actual type with "
3355 & "initialization for&", Assoc, Typ);
3356 end if;
3357 end if;
3359 return
3360 New_Copy_Tree_And_Copy_Dimensions
3361 (Expression (Parent (Compon)));
3363 else
3364 if Present (Next (Selector_Name)) then
3365 Expr := New_Copy_Tree_And_Copy_Dimensions
3366 (Expression (Assoc));
3367 else
3368 Expr := Expression (Assoc);
3369 end if;
3370 end if;
3372 Generate_Reference (Compon, Selector_Name, 'm');
3374 else
3375 Error_Msg_NE
3376 ("more than one value supplied for &",
3377 Selector_Name, Compon);
3379 end if;
3380 end if;
3382 Next (Selector_Name);
3383 end loop;
3385 Next (Assoc);
3386 end loop;
3388 return Expr;
3389 end Get_Value;
3391 ---------------------------------------
3392 -- New_Copy_Tree_And_Copy_Dimensions --
3393 ---------------------------------------
3395 function New_Copy_Tree_And_Copy_Dimensions
3396 (Source : Node_Id;
3397 Map : Elist_Id := No_Elist;
3398 New_Sloc : Source_Ptr := No_Location;
3399 New_Scope : Entity_Id := Empty) return Node_Id
3401 New_Copy : constant Node_Id :=
3402 New_Copy_Tree (Source, Map, New_Sloc, New_Scope);
3404 begin
3405 -- Move the dimensions of Source to New_Copy
3407 Copy_Dimensions (Source, New_Copy);
3408 return New_Copy;
3409 end New_Copy_Tree_And_Copy_Dimensions;
3411 -----------------------
3412 -- Resolve_Aggr_Expr --
3413 -----------------------
3415 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id) is
3416 Expr_Type : Entity_Id := Empty;
3417 New_C : Entity_Id := Component;
3418 New_Expr : Node_Id;
3420 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
3421 -- If the expression is an aggregate (possibly qualified) then its
3422 -- expansion is delayed until the enclosing aggregate is expanded
3423 -- into assignments. In that case, do not generate checks on the
3424 -- expression, because they will be generated later, and will other-
3425 -- wise force a copy (to remove side-effects) that would leave a
3426 -- dynamic-sized aggregate in the code, something that gigi cannot
3427 -- handle.
3429 Relocate : Boolean;
3430 -- Set to True if the resolved Expr node needs to be relocated when
3431 -- attached to the newly created association list. This node need not
3432 -- be relocated if its parent pointer is not set. In fact in this
3433 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
3434 -- True then we have analyzed the expression node in the original
3435 -- aggregate and hence it needs to be relocated when moved over to
3436 -- the new association list.
3438 ---------------------------
3439 -- Has_Expansion_Delayed --
3440 ---------------------------
3442 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
3443 Kind : constant Node_Kind := Nkind (Expr);
3444 begin
3445 return (Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate)
3446 and then Present (Etype (Expr))
3447 and then Is_Record_Type (Etype (Expr))
3448 and then Expansion_Delayed (Expr))
3449 or else (Kind = N_Qualified_Expression
3450 and then Has_Expansion_Delayed (Expression (Expr)));
3451 end Has_Expansion_Delayed;
3453 -- Start of processing for Resolve_Aggr_Expr
3455 begin
3456 -- If the type of the component is elementary or the type of the
3457 -- aggregate does not contain discriminants, use the type of the
3458 -- component to resolve Expr.
3460 if Is_Elementary_Type (Etype (Component))
3461 or else not Has_Discriminants (Etype (N))
3462 then
3463 Expr_Type := Etype (Component);
3465 -- Otherwise we have to pick up the new type of the component from
3466 -- the new constrained subtype of the aggregate. In fact components
3467 -- which are of a composite type might be constrained by a
3468 -- discriminant, and we want to resolve Expr against the subtype were
3469 -- all discriminant occurrences are replaced with their actual value.
3471 else
3472 New_C := First_Component (Etype (N));
3473 while Present (New_C) loop
3474 if Chars (New_C) = Chars (Component) then
3475 Expr_Type := Etype (New_C);
3476 exit;
3477 end if;
3479 Next_Component (New_C);
3480 end loop;
3482 pragma Assert (Present (Expr_Type));
3484 -- For each range in an array type where a discriminant has been
3485 -- replaced with the constraint, check that this range is within
3486 -- the range of the base type. This checks is done in the init
3487 -- proc for regular objects, but has to be done here for
3488 -- aggregates since no init proc is called for them.
3490 if Is_Array_Type (Expr_Type) then
3491 declare
3492 Index : Node_Id;
3493 -- Range of the current constrained index in the array
3495 Orig_Index : Node_Id := First_Index (Etype (Component));
3496 -- Range corresponding to the range Index above in the
3497 -- original unconstrained record type. The bounds of this
3498 -- range may be governed by discriminants.
3500 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
3501 -- Range corresponding to the range Index above for the
3502 -- unconstrained array type. This range is needed to apply
3503 -- range checks.
3505 begin
3506 Index := First_Index (Expr_Type);
3507 while Present (Index) loop
3508 if Depends_On_Discriminant (Orig_Index) then
3509 Apply_Range_Check (Index, Etype (Unconstr_Index));
3510 end if;
3512 Next_Index (Index);
3513 Next_Index (Orig_Index);
3514 Next_Index (Unconstr_Index);
3515 end loop;
3516 end;
3517 end if;
3518 end if;
3520 -- If the Parent pointer of Expr is not set, Expr is an expression
3521 -- duplicated by New_Tree_Copy (this happens for record aggregates
3522 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
3523 -- Such a duplicated expression must be attached to the tree
3524 -- before analysis and resolution to enforce the rule that a tree
3525 -- fragment should never be analyzed or resolved unless it is
3526 -- attached to the current compilation unit.
3528 if No (Parent (Expr)) then
3529 Set_Parent (Expr, N);
3530 Relocate := False;
3531 else
3532 Relocate := True;
3533 end if;
3535 Analyze_And_Resolve (Expr, Expr_Type);
3536 Check_Expr_OK_In_Limited_Aggregate (Expr);
3537 Check_Non_Static_Context (Expr);
3538 Check_Unset_Reference (Expr);
3540 -- Check wrong use of class-wide types
3542 if Is_Class_Wide_Type (Etype (Expr)) then
3543 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
3544 end if;
3546 if not Has_Expansion_Delayed (Expr) then
3547 Aggregate_Constraint_Checks (Expr, Expr_Type);
3548 end if;
3550 -- If an aggregate component has a type with predicates, an explicit
3551 -- predicate check must be applied, as for an assignment statement,
3552 -- because the aggegate might not be expanded into individual
3553 -- component assignments.
3555 if Present (Predicate_Function (Expr_Type)) then
3556 Apply_Predicate_Check (Expr, Expr_Type);
3557 end if;
3559 if Raises_Constraint_Error (Expr) then
3560 Set_Raises_Constraint_Error (N);
3561 end if;
3563 -- If the expression has been marked as requiring a range check, then
3564 -- generate it here. It's a bit odd to be generating such checks in
3565 -- the analyzer, but harmless since Generate_Range_Check does nothing
3566 -- (other than making sure Do_Range_Check is set) if the expander is
3567 -- not active.
3569 if Do_Range_Check (Expr) then
3570 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
3571 end if;
3573 if Relocate then
3574 New_Expr := Relocate_Node (Expr);
3576 -- Since New_Expr is not gonna be analyzed later on, we need to
3577 -- propagate here the dimensions form Expr to New_Expr.
3579 Copy_Dimensions (Expr, New_Expr);
3581 else
3582 New_Expr := Expr;
3583 end if;
3585 Add_Association (New_C, New_Expr, New_Assoc_List);
3586 end Resolve_Aggr_Expr;
3588 -- Start of processing for Resolve_Record_Aggregate
3590 begin
3591 -- A record aggregate is restricted in SPARK:
3593 -- Each named association can have only a single choice.
3594 -- OTHERS cannot be used.
3595 -- Positional and named associations cannot be mixed.
3597 if Present (Component_Associations (N))
3598 and then Present (First (Component_Associations (N)))
3599 then
3601 if Present (Expressions (N)) then
3602 Check_SPARK_05_Restriction
3603 ("named association cannot follow positional one",
3604 First (Choices (First (Component_Associations (N)))));
3605 end if;
3607 declare
3608 Assoc : Node_Id;
3610 begin
3611 Assoc := First (Component_Associations (N));
3612 while Present (Assoc) loop
3613 if List_Length (Choices (Assoc)) > 1 then
3614 Check_SPARK_05_Restriction
3615 ("component association in record aggregate must "
3616 & "contain a single choice", Assoc);
3617 end if;
3619 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
3620 Check_SPARK_05_Restriction
3621 ("record aggregate cannot contain OTHERS", Assoc);
3622 end if;
3624 Assoc := Next (Assoc);
3625 end loop;
3626 end;
3627 end if;
3629 -- We may end up calling Duplicate_Subexpr on expressions that are
3630 -- attached to New_Assoc_List. For this reason we need to attach it
3631 -- to the tree by setting its parent pointer to N. This parent point
3632 -- will change in STEP 8 below.
3634 Set_Parent (New_Assoc_List, N);
3636 -- STEP 1: abstract type and null record verification
3638 if Is_Abstract_Type (Typ) then
3639 Error_Msg_N ("type of aggregate cannot be abstract", N);
3640 end if;
3642 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
3643 Set_Etype (N, Typ);
3644 return;
3646 elsif Present (First_Entity (Typ))
3647 and then Null_Record_Present (N)
3648 and then not Is_Tagged_Type (Typ)
3649 then
3650 Error_Msg_N ("record aggregate cannot be null", N);
3651 return;
3653 -- If the type has no components, then the aggregate should either
3654 -- have "null record", or in Ada 2005 it could instead have a single
3655 -- component association given by "others => <>". For Ada 95 we flag an
3656 -- error at this point, but for Ada 2005 we proceed with checking the
3657 -- associations below, which will catch the case where it's not an
3658 -- aggregate with "others => <>". Note that the legality of a <>
3659 -- aggregate for a null record type was established by AI05-016.
3661 elsif No (First_Entity (Typ))
3662 and then Ada_Version < Ada_2005
3663 then
3664 Error_Msg_N ("record aggregate must be null", N);
3665 return;
3666 end if;
3668 -- STEP 2: Verify aggregate structure
3670 Step_2 : declare
3671 Selector_Name : Node_Id;
3672 Bad_Aggregate : Boolean := False;
3674 begin
3675 if Present (Component_Associations (N)) then
3676 Assoc := First (Component_Associations (N));
3677 else
3678 Assoc := Empty;
3679 end if;
3681 while Present (Assoc) loop
3682 Selector_Name := First (Choices (Assoc));
3683 while Present (Selector_Name) loop
3684 if Nkind (Selector_Name) = N_Identifier then
3685 null;
3687 elsif Nkind (Selector_Name) = N_Others_Choice then
3688 if Selector_Name /= First (Choices (Assoc))
3689 or else Present (Next (Selector_Name))
3690 then
3691 Error_Msg_N
3692 ("OTHERS must appear alone in a choice list",
3693 Selector_Name);
3694 return;
3696 elsif Present (Next (Assoc)) then
3697 Error_Msg_N
3698 ("OTHERS must appear last in an aggregate",
3699 Selector_Name);
3700 return;
3702 -- (Ada 2005): If this is an association with a box,
3703 -- indicate that the association need not represent
3704 -- any component.
3706 elsif Box_Present (Assoc) then
3707 Others_Box := True;
3708 end if;
3710 else
3711 Error_Msg_N
3712 ("selector name should be identifier or OTHERS",
3713 Selector_Name);
3714 Bad_Aggregate := True;
3715 end if;
3717 Next (Selector_Name);
3718 end loop;
3720 Next (Assoc);
3721 end loop;
3723 if Bad_Aggregate then
3724 return;
3725 end if;
3726 end Step_2;
3728 -- STEP 3: Find discriminant Values
3730 Step_3 : declare
3731 Discrim : Entity_Id;
3732 Missing_Discriminants : Boolean := False;
3734 begin
3735 if Present (Expressions (N)) then
3736 Positional_Expr := First (Expressions (N));
3737 else
3738 Positional_Expr := Empty;
3739 end if;
3741 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
3742 -- must not have unknown discriminants.
3744 if Is_Derived_Type (Typ)
3745 and then Has_Unknown_Discriminants (Root_Type (Typ))
3746 and then Nkind (N) /= N_Extension_Aggregate
3747 then
3748 Error_Msg_NE
3749 ("aggregate not available for type& whose ancestor "
3750 & "has unknown discriminants ", N, Typ);
3751 end if;
3753 if Has_Unknown_Discriminants (Typ)
3754 and then Present (Underlying_Record_View (Typ))
3755 then
3756 Discrim := First_Discriminant (Underlying_Record_View (Typ));
3757 elsif Has_Discriminants (Typ) then
3758 Discrim := First_Discriminant (Typ);
3759 else
3760 Discrim := Empty;
3761 end if;
3763 -- First find the discriminant values in the positional components
3765 while Present (Discrim) and then Present (Positional_Expr) loop
3766 if Discr_Present (Discrim) then
3767 Resolve_Aggr_Expr (Positional_Expr, Discrim);
3769 -- Ada 2005 (AI-231)
3771 if Ada_Version >= Ada_2005
3772 and then Known_Null (Positional_Expr)
3773 then
3774 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
3775 end if;
3777 Next (Positional_Expr);
3778 end if;
3780 if Present (Get_Value (Discrim, Component_Associations (N))) then
3781 Error_Msg_NE
3782 ("more than one value supplied for discriminant&",
3783 N, Discrim);
3784 end if;
3786 Next_Discriminant (Discrim);
3787 end loop;
3789 -- Find remaining discriminant values if any among named components
3791 while Present (Discrim) loop
3792 Expr := Get_Value (Discrim, Component_Associations (N), True);
3794 if not Discr_Present (Discrim) then
3795 if Present (Expr) then
3796 Error_Msg_NE
3797 ("more than one value supplied for discriminant &",
3798 N, Discrim);
3799 end if;
3801 elsif No (Expr) then
3802 Error_Msg_NE
3803 ("no value supplied for discriminant &", N, Discrim);
3804 Missing_Discriminants := True;
3806 else
3807 Resolve_Aggr_Expr (Expr, Discrim);
3808 end if;
3810 Next_Discriminant (Discrim);
3811 end loop;
3813 if Missing_Discriminants then
3814 return;
3815 end if;
3817 -- At this point and until the beginning of STEP 6, New_Assoc_List
3818 -- contains only the discriminants and their values.
3820 end Step_3;
3822 -- STEP 4: Set the Etype of the record aggregate
3824 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
3825 -- routine should really be exported in sem_util or some such and used
3826 -- in sem_ch3 and here rather than have a copy of the code which is a
3827 -- maintenance nightmare.
3829 -- ??? Performance WARNING. The current implementation creates a new
3830 -- itype for all aggregates whose base type is discriminated. This means
3831 -- that for record aggregates nested inside an array aggregate we will
3832 -- create a new itype for each record aggregate if the array component
3833 -- type has discriminants. For large aggregates this may be a problem.
3834 -- What should be done in this case is to reuse itypes as much as
3835 -- possible.
3837 if Has_Discriminants (Typ)
3838 or else (Has_Unknown_Discriminants (Typ)
3839 and then Present (Underlying_Record_View (Typ)))
3840 then
3841 Build_Constrained_Itype : declare
3842 Loc : constant Source_Ptr := Sloc (N);
3843 Indic : Node_Id;
3844 Subtyp_Decl : Node_Id;
3845 Def_Id : Entity_Id;
3847 C : constant List_Id := New_List;
3849 begin
3850 New_Assoc := First (New_Assoc_List);
3851 while Present (New_Assoc) loop
3852 Append (Duplicate_Subexpr (Expression (New_Assoc)), To => C);
3853 Next (New_Assoc);
3854 end loop;
3856 if Has_Unknown_Discriminants (Typ)
3857 and then Present (Underlying_Record_View (Typ))
3858 then
3859 Indic :=
3860 Make_Subtype_Indication (Loc,
3861 Subtype_Mark =>
3862 New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
3863 Constraint =>
3864 Make_Index_Or_Discriminant_Constraint (Loc, C));
3865 else
3866 Indic :=
3867 Make_Subtype_Indication (Loc,
3868 Subtype_Mark =>
3869 New_Occurrence_Of (Base_Type (Typ), Loc),
3870 Constraint =>
3871 Make_Index_Or_Discriminant_Constraint (Loc, C));
3872 end if;
3874 Def_Id := Create_Itype (Ekind (Typ), N);
3876 Subtyp_Decl :=
3877 Make_Subtype_Declaration (Loc,
3878 Defining_Identifier => Def_Id,
3879 Subtype_Indication => Indic);
3880 Set_Parent (Subtyp_Decl, Parent (N));
3882 -- Itypes must be analyzed with checks off (see itypes.ads)
3884 Analyze (Subtyp_Decl, Suppress => All_Checks);
3886 Set_Etype (N, Def_Id);
3887 Check_Static_Discriminated_Subtype
3888 (Def_Id, Expression (First (New_Assoc_List)));
3889 end Build_Constrained_Itype;
3891 else
3892 Set_Etype (N, Typ);
3893 end if;
3895 -- STEP 5: Get remaining components according to discriminant values
3897 Step_5 : declare
3898 Record_Def : Node_Id;
3899 Parent_Typ : Entity_Id;
3900 Root_Typ : Entity_Id;
3901 Parent_Typ_List : Elist_Id;
3902 Parent_Elmt : Elmt_Id;
3903 Errors_Found : Boolean := False;
3904 Dnode : Node_Id;
3906 function Find_Private_Ancestor return Entity_Id;
3907 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3908 -- derived from a private view. Whether the aggregate is legal
3909 -- depends on the current visibility of the type as well as that
3910 -- of the parent of the ancestor.
3912 ---------------------------
3913 -- Find_Private_Ancestor --
3914 ---------------------------
3916 function Find_Private_Ancestor return Entity_Id is
3917 Par : Entity_Id;
3919 begin
3920 Par := Typ;
3921 loop
3922 if Has_Private_Ancestor (Par)
3923 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3924 then
3925 return Par;
3927 elsif not Is_Derived_Type (Par) then
3928 return Empty;
3930 else
3931 Par := Etype (Base_Type (Par));
3932 end if;
3933 end loop;
3934 end Find_Private_Ancestor;
3936 -- Start of processing for Step_5
3938 begin
3939 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
3940 Parent_Typ_List := New_Elmt_List;
3942 -- If this is an extension aggregate, the component list must
3943 -- include all components that are not in the given ancestor type.
3944 -- Otherwise, the component list must include components of all
3945 -- ancestors, starting with the root.
3947 if Nkind (N) = N_Extension_Aggregate then
3948 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
3950 else
3951 -- AI05-0115: check legality of aggregate for type with
3952 -- aa private ancestor.
3954 Root_Typ := Root_Type (Typ);
3955 if Has_Private_Ancestor (Typ) then
3956 declare
3957 Ancestor : constant Entity_Id :=
3958 Find_Private_Ancestor;
3959 Ancestor_Unit : constant Entity_Id :=
3960 Cunit_Entity (Get_Source_Unit (Ancestor));
3961 Parent_Unit : constant Entity_Id :=
3962 Cunit_Entity
3963 (Get_Source_Unit (Base_Type (Etype (Ancestor))));
3964 begin
3965 -- Check whether we are in a scope that has full view
3966 -- over the private ancestor and its parent. This can
3967 -- only happen if the derivation takes place in a child
3968 -- unit of the unit that declares the parent, and we are
3969 -- in the private part or body of that child unit, else
3970 -- the aggregate is illegal.
3972 if Is_Child_Unit (Ancestor_Unit)
3973 and then Scope (Ancestor_Unit) = Parent_Unit
3974 and then In_Open_Scopes (Scope (Ancestor))
3975 and then
3976 (In_Private_Part (Scope (Ancestor))
3977 or else In_Package_Body (Scope (Ancestor)))
3978 then
3979 null;
3981 else
3982 Error_Msg_NE
3983 ("type of aggregate has private ancestor&!",
3984 N, Root_Typ);
3985 Error_Msg_N ("must use extension aggregate!", N);
3986 return;
3987 end if;
3988 end;
3989 end if;
3991 Dnode := Declaration_Node (Base_Type (Root_Typ));
3993 -- If we don't get a full declaration, then we have some error
3994 -- which will get signalled later so skip this part. Otherwise
3995 -- gather components of root that apply to the aggregate type.
3996 -- We use the base type in case there is an applicable stored
3997 -- constraint that renames the discriminants of the root.
3999 if Nkind (Dnode) = N_Full_Type_Declaration then
4000 Record_Def := Type_Definition (Dnode);
4001 Gather_Components
4002 (Base_Type (Typ),
4003 Component_List (Record_Def),
4004 Governed_By => New_Assoc_List,
4005 Into => Components,
4006 Report_Errors => Errors_Found);
4008 if Errors_Found then
4009 Error_Msg_N
4010 ("discriminant controlling variant part is not static",
4012 return;
4013 end if;
4014 end if;
4015 end if;
4017 Parent_Typ := Base_Type (Typ);
4018 while Parent_Typ /= Root_Typ loop
4019 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
4020 Parent_Typ := Etype (Parent_Typ);
4022 if Nkind (Parent (Base_Type (Parent_Typ))) =
4023 N_Private_Type_Declaration
4024 or else Nkind (Parent (Base_Type (Parent_Typ))) =
4025 N_Private_Extension_Declaration
4026 then
4027 if Nkind (N) /= N_Extension_Aggregate then
4028 Error_Msg_NE
4029 ("type of aggregate has private ancestor&!",
4030 N, Parent_Typ);
4031 Error_Msg_N ("must use extension aggregate!", N);
4032 return;
4034 elsif Parent_Typ /= Root_Typ then
4035 Error_Msg_NE
4036 ("ancestor part of aggregate must be private type&",
4037 Ancestor_Part (N), Parent_Typ);
4038 return;
4039 end if;
4041 -- The current view of ancestor part may be a private type,
4042 -- while the context type is always non-private.
4044 elsif Is_Private_Type (Root_Typ)
4045 and then Present (Full_View (Root_Typ))
4046 and then Nkind (N) = N_Extension_Aggregate
4047 then
4048 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
4049 end if;
4050 end loop;
4052 -- Now collect components from all other ancestors, beginning
4053 -- with the current type. If the type has unknown discriminants
4054 -- use the component list of the Underlying_Record_View, which
4055 -- needs to be used for the subsequent expansion of the aggregate
4056 -- into assignments.
4058 Parent_Elmt := First_Elmt (Parent_Typ_List);
4059 while Present (Parent_Elmt) loop
4060 Parent_Typ := Node (Parent_Elmt);
4062 if Has_Unknown_Discriminants (Parent_Typ)
4063 and then Present (Underlying_Record_View (Typ))
4064 then
4065 Parent_Typ := Underlying_Record_View (Parent_Typ);
4066 end if;
4068 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4069 Gather_Components (Empty,
4070 Component_List (Record_Extension_Part (Record_Def)),
4071 Governed_By => New_Assoc_List,
4072 Into => Components,
4073 Report_Errors => Errors_Found);
4075 Next_Elmt (Parent_Elmt);
4076 end loop;
4078 -- Typ is not a derived tagged type
4080 else
4081 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
4083 if Null_Present (Record_Def) then
4084 null;
4086 elsif not Has_Unknown_Discriminants (Typ) then
4087 Gather_Components
4088 (Base_Type (Typ),
4089 Component_List (Record_Def),
4090 Governed_By => New_Assoc_List,
4091 Into => Components,
4092 Report_Errors => Errors_Found);
4094 else
4095 Gather_Components
4096 (Base_Type (Underlying_Record_View (Typ)),
4097 Component_List (Record_Def),
4098 Governed_By => New_Assoc_List,
4099 Into => Components,
4100 Report_Errors => Errors_Found);
4101 end if;
4102 end if;
4104 if Errors_Found then
4105 return;
4106 end if;
4107 end Step_5;
4109 -- STEP 6: Find component Values
4111 Component := Empty;
4112 Component_Elmt := First_Elmt (Components);
4114 -- First scan the remaining positional associations in the aggregate.
4115 -- Remember that at this point Positional_Expr contains the current
4116 -- positional association if any is left after looking for discriminant
4117 -- values in step 3.
4119 while Present (Positional_Expr) and then Present (Component_Elmt) loop
4120 Component := Node (Component_Elmt);
4121 Resolve_Aggr_Expr (Positional_Expr, Component);
4123 -- Ada 2005 (AI-231)
4125 if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
4126 Check_Can_Never_Be_Null (Component, Positional_Expr);
4127 end if;
4129 if Present (Get_Value (Component, Component_Associations (N))) then
4130 Error_Msg_NE
4131 ("more than one value supplied for Component &", N, Component);
4132 end if;
4134 Next (Positional_Expr);
4135 Next_Elmt (Component_Elmt);
4136 end loop;
4138 if Present (Positional_Expr) then
4139 Error_Msg_N
4140 ("too many components for record aggregate", Positional_Expr);
4141 end if;
4143 -- Now scan for the named arguments of the aggregate
4145 while Present (Component_Elmt) loop
4146 Component := Node (Component_Elmt);
4147 Expr := Get_Value (Component, Component_Associations (N), True);
4149 -- Note: The previous call to Get_Value sets the value of the
4150 -- variable Is_Box_Present.
4152 -- Ada 2005 (AI-287): Handle components with default initialization.
4153 -- Note: This feature was originally added to Ada 2005 for limited
4154 -- but it was finally allowed with any type.
4156 if Is_Box_Present then
4157 Check_Box_Component : declare
4158 Ctyp : constant Entity_Id := Etype (Component);
4160 begin
4161 -- If there is a default expression for the aggregate, copy
4162 -- it into a new association. This copy must modify the scopes
4163 -- of internal types that may be attached to the expression
4164 -- (e.g. index subtypes of arrays) because in general the type
4165 -- declaration and the aggregate appear in different scopes,
4166 -- and the backend requires the scope of the type to match the
4167 -- point at which it is elaborated.
4169 -- If the component has an initialization procedure (IP) we
4170 -- pass the component to the expander, which will generate
4171 -- the call to such IP.
4173 -- If the component has discriminants, their values must
4174 -- be taken from their subtype. This is indispensable for
4175 -- constraints that are given by the current instance of an
4176 -- enclosing type, to allow the expansion of the aggregate to
4177 -- replace the reference to the current instance by the target
4178 -- object of the aggregate.
4180 if Present (Parent (Component))
4181 and then
4182 Nkind (Parent (Component)) = N_Component_Declaration
4183 and then Present (Expression (Parent (Component)))
4184 then
4185 Expr :=
4186 New_Copy_Tree_And_Copy_Dimensions
4187 (Expression (Parent (Component)),
4188 New_Scope => Current_Scope,
4189 New_Sloc => Sloc (N));
4191 Add_Association
4192 (Component => Component,
4193 Expr => Expr,
4194 Assoc_List => New_Assoc_List);
4195 Set_Has_Self_Reference (N);
4197 -- A box-defaulted access component gets the value null. Also
4198 -- included are components of private types whose underlying
4199 -- type is an access type. In either case set the type of the
4200 -- literal, for subsequent use in semantic checks.
4202 elsif Present (Underlying_Type (Ctyp))
4203 and then Is_Access_Type (Underlying_Type (Ctyp))
4204 then
4205 if not Is_Private_Type (Ctyp) then
4206 Expr := Make_Null (Sloc (N));
4207 Set_Etype (Expr, Ctyp);
4208 Add_Association
4209 (Component => Component,
4210 Expr => Expr,
4211 Assoc_List => New_Assoc_List);
4213 -- If the component's type is private with an access type as
4214 -- its underlying type then we have to create an unchecked
4215 -- conversion to satisfy type checking.
4217 else
4218 declare
4219 Qual_Null : constant Node_Id :=
4220 Make_Qualified_Expression (Sloc (N),
4221 Subtype_Mark =>
4222 New_Occurrence_Of
4223 (Underlying_Type (Ctyp), Sloc (N)),
4224 Expression => Make_Null (Sloc (N)));
4226 Convert_Null : constant Node_Id :=
4227 Unchecked_Convert_To
4228 (Ctyp, Qual_Null);
4230 begin
4231 Analyze_And_Resolve (Convert_Null, Ctyp);
4232 Add_Association
4233 (Component => Component,
4234 Expr => Convert_Null,
4235 Assoc_List => New_Assoc_List);
4236 end;
4237 end if;
4239 -- Ada 2012: If component is scalar with default value, use it
4241 elsif Is_Scalar_Type (Ctyp)
4242 and then Has_Default_Aspect (Ctyp)
4243 then
4244 Add_Association
4245 (Component => Component,
4246 Expr => Default_Aspect_Value
4247 (First_Subtype (Underlying_Type (Ctyp))),
4248 Assoc_List => New_Assoc_List);
4250 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
4251 or else not Expander_Active
4252 then
4253 if Is_Record_Type (Ctyp)
4254 and then Has_Discriminants (Ctyp)
4255 and then not Is_Private_Type (Ctyp)
4256 then
4257 -- We build a partially initialized aggregate with the
4258 -- values of the discriminants and box initialization
4259 -- for the rest, if other components are present.
4261 -- The type of the aggregate is the known subtype of
4262 -- the component. The capture of discriminants must
4263 -- be recursive because subcomponents may be constrained
4264 -- (transitively) by discriminants of enclosing types.
4265 -- For a private type with discriminants, a call to the
4266 -- initialization procedure will be generated, and no
4267 -- subaggregate is needed.
4269 Capture_Discriminants : declare
4270 Loc : constant Source_Ptr := Sloc (N);
4271 Expr : Node_Id;
4273 procedure Add_Discriminant_Values
4274 (New_Aggr : Node_Id;
4275 Assoc_List : List_Id);
4276 -- The constraint to a component may be given by a
4277 -- discriminant of the enclosing type, in which case
4278 -- we have to retrieve its value, which is part of the
4279 -- enclosing aggregate. Assoc_List provides the
4280 -- discriminant associations of the current type or
4281 -- of some enclosing record.
4283 procedure Propagate_Discriminants
4284 (Aggr : Node_Id;
4285 Assoc_List : List_Id);
4286 -- Nested components may themselves be discriminated
4287 -- types constrained by outer discriminants, whose
4288 -- values must be captured before the aggregate is
4289 -- expanded into assignments.
4291 -----------------------------
4292 -- Add_Discriminant_Values --
4293 -----------------------------
4295 procedure Add_Discriminant_Values
4296 (New_Aggr : Node_Id;
4297 Assoc_List : List_Id)
4299 Assoc : Node_Id;
4300 Discr : Entity_Id;
4301 Discr_Elmt : Elmt_Id;
4302 Discr_Val : Node_Id;
4303 Val : Entity_Id;
4305 begin
4306 Discr := First_Discriminant (Etype (New_Aggr));
4307 Discr_Elmt :=
4308 First_Elmt
4309 (Discriminant_Constraint (Etype (New_Aggr)));
4310 while Present (Discr_Elmt) loop
4311 Discr_Val := Node (Discr_Elmt);
4313 -- If the constraint is given by a discriminant
4314 -- it is a discriminant of an enclosing record,
4315 -- and its value has already been placed in the
4316 -- association list.
4318 if Is_Entity_Name (Discr_Val)
4319 and then
4320 Ekind (Entity (Discr_Val)) = E_Discriminant
4321 then
4322 Val := Entity (Discr_Val);
4324 Assoc := First (Assoc_List);
4325 while Present (Assoc) loop
4326 if Present
4327 (Entity (First (Choices (Assoc))))
4328 and then
4329 Entity (First (Choices (Assoc))) = Val
4330 then
4331 Discr_Val := Expression (Assoc);
4332 exit;
4333 end if;
4335 Next (Assoc);
4336 end loop;
4337 end if;
4339 Add_Association
4340 (Discr, New_Copy_Tree (Discr_Val),
4341 Component_Associations (New_Aggr));
4343 -- If the discriminant constraint is a current
4344 -- instance, mark the current aggregate so that
4345 -- the self-reference can be expanded later.
4346 -- The constraint may refer to the subtype of
4347 -- aggregate, so use base type for comparison.
4349 if Nkind (Discr_Val) = N_Attribute_Reference
4350 and then Is_Entity_Name (Prefix (Discr_Val))
4351 and then Is_Type (Entity (Prefix (Discr_Val)))
4352 and then Base_Type (Etype (N)) =
4353 Entity (Prefix (Discr_Val))
4354 then
4355 Set_Has_Self_Reference (N);
4356 end if;
4358 Next_Elmt (Discr_Elmt);
4359 Next_Discriminant (Discr);
4360 end loop;
4361 end Add_Discriminant_Values;
4363 -----------------------------
4364 -- Propagate_Discriminants --
4365 -----------------------------
4367 procedure Propagate_Discriminants
4368 (Aggr : Node_Id;
4369 Assoc_List : List_Id)
4371 Aggr_Type : constant Entity_Id :=
4372 Base_Type (Etype (Aggr));
4373 Def_Node : constant Node_Id :=
4374 Type_Definition
4375 (Declaration_Node (Aggr_Type));
4377 Comp : Node_Id;
4378 Comp_Elmt : Elmt_Id;
4379 Components : constant Elist_Id := New_Elmt_List;
4380 Needs_Box : Boolean := False;
4381 Errors : Boolean;
4383 procedure Process_Component (Comp : Entity_Id);
4384 -- Add one component with a box association to the
4385 -- inner aggregate, and recurse if component is
4386 -- itself composite.
4388 -----------------------
4389 -- Process_Component --
4390 -----------------------
4392 procedure Process_Component (Comp : Entity_Id) is
4393 T : constant Entity_Id := Etype (Comp);
4394 New_Aggr : Node_Id;
4396 begin
4397 if Is_Record_Type (T)
4398 and then Has_Discriminants (T)
4399 then
4400 New_Aggr :=
4401 Make_Aggregate (Loc, New_List, New_List);
4402 Set_Etype (New_Aggr, T);
4403 Add_Association
4404 (Comp, New_Aggr,
4405 Component_Associations (Aggr));
4407 -- Collect discriminant values and recurse
4409 Add_Discriminant_Values
4410 (New_Aggr, Assoc_List);
4411 Propagate_Discriminants
4412 (New_Aggr, Assoc_List);
4414 else
4415 Needs_Box := True;
4416 end if;
4417 end Process_Component;
4419 -- Start of processing for Propagate_Discriminants
4421 begin
4422 -- The component type may be a variant type, so
4423 -- collect the components that are ruled by the
4424 -- known values of the discriminants. Their values
4425 -- have already been inserted into the component
4426 -- list of the current aggregate.
4428 if Nkind (Def_Node) = N_Record_Definition
4429 and then Present (Component_List (Def_Node))
4430 and then
4431 Present
4432 (Variant_Part (Component_List (Def_Node)))
4433 then
4434 Gather_Components (Aggr_Type,
4435 Component_List (Def_Node),
4436 Governed_By => Component_Associations (Aggr),
4437 Into => Components,
4438 Report_Errors => Errors);
4440 Comp_Elmt := First_Elmt (Components);
4441 while Present (Comp_Elmt) loop
4442 if Ekind (Node (Comp_Elmt)) /= E_Discriminant
4443 then
4444 Process_Component (Node (Comp_Elmt));
4445 end if;
4447 Next_Elmt (Comp_Elmt);
4448 end loop;
4450 -- No variant part, iterate over all components
4452 else
4453 Comp := First_Component (Etype (Aggr));
4454 while Present (Comp) loop
4455 Process_Component (Comp);
4456 Next_Component (Comp);
4457 end loop;
4458 end if;
4460 if Needs_Box then
4461 Append_To (Component_Associations (Aggr),
4462 Make_Component_Association (Loc,
4463 Choices =>
4464 New_List (Make_Others_Choice (Loc)),
4465 Expression => Empty,
4466 Box_Present => True));
4467 end if;
4468 end Propagate_Discriminants;
4470 -- Start of processing for Capture_Discriminants
4472 begin
4473 Expr := Make_Aggregate (Loc, New_List, New_List);
4474 Set_Etype (Expr, Ctyp);
4476 -- If the enclosing type has discriminants, they have
4477 -- been collected in the aggregate earlier, and they
4478 -- may appear as constraints of subcomponents.
4480 -- Similarly if this component has discriminants, they
4481 -- might in turn be propagated to their components.
4483 if Has_Discriminants (Typ) then
4484 Add_Discriminant_Values (Expr, New_Assoc_List);
4485 Propagate_Discriminants (Expr, New_Assoc_List);
4487 elsif Has_Discriminants (Ctyp) then
4488 Add_Discriminant_Values
4489 (Expr, Component_Associations (Expr));
4490 Propagate_Discriminants
4491 (Expr, Component_Associations (Expr));
4493 else
4494 declare
4495 Comp : Entity_Id;
4497 begin
4498 -- If the type has additional components, create
4499 -- an OTHERS box association for them.
4501 Comp := First_Component (Ctyp);
4502 while Present (Comp) loop
4503 if Ekind (Comp) = E_Component then
4504 if not Is_Record_Type (Etype (Comp)) then
4505 Append_To
4506 (Component_Associations (Expr),
4507 Make_Component_Association (Loc,
4508 Choices =>
4509 New_List (
4510 Make_Others_Choice (Loc)),
4511 Expression => Empty,
4512 Box_Present => True));
4513 end if;
4514 exit;
4515 end if;
4517 Next_Component (Comp);
4518 end loop;
4519 end;
4520 end if;
4522 Add_Association
4523 (Component => Component,
4524 Expr => Expr,
4525 Assoc_List => New_Assoc_List);
4526 end Capture_Discriminants;
4528 else
4529 Add_Association
4530 (Component => Component,
4531 Expr => Empty,
4532 Assoc_List => New_Assoc_List,
4533 Is_Box_Present => True);
4534 end if;
4536 -- Otherwise we only need to resolve the expression if the
4537 -- component has partially initialized values (required to
4538 -- expand the corresponding assignments and run-time checks).
4540 elsif Present (Expr)
4541 and then Is_Partially_Initialized_Type (Ctyp)
4542 then
4543 Resolve_Aggr_Expr (Expr, Component);
4544 end if;
4545 end Check_Box_Component;
4547 elsif No (Expr) then
4549 -- Ignore hidden components associated with the position of the
4550 -- interface tags: these are initialized dynamically.
4552 if not Present (Related_Type (Component)) then
4553 Error_Msg_NE
4554 ("no value supplied for component &!", N, Component);
4555 end if;
4557 else
4558 Resolve_Aggr_Expr (Expr, Component);
4559 end if;
4561 Next_Elmt (Component_Elmt);
4562 end loop;
4564 -- STEP 7: check for invalid components + check type in choice list
4566 Step_7 : declare
4567 Selectr : Node_Id;
4568 -- Selector name
4570 Typech : Entity_Id;
4571 -- Type of first component in choice list
4573 begin
4574 if Present (Component_Associations (N)) then
4575 Assoc := First (Component_Associations (N));
4576 else
4577 Assoc := Empty;
4578 end if;
4580 Verification : while Present (Assoc) loop
4581 Selectr := First (Choices (Assoc));
4582 Typech := Empty;
4584 if Nkind (Selectr) = N_Others_Choice then
4586 -- Ada 2005 (AI-287): others choice may have expression or box
4588 if No (Others_Etype) and then not Others_Box then
4589 Error_Msg_N
4590 ("OTHERS must represent at least one component", Selectr);
4591 end if;
4593 exit Verification;
4594 end if;
4596 while Present (Selectr) loop
4597 New_Assoc := First (New_Assoc_List);
4598 while Present (New_Assoc) loop
4599 Component := First (Choices (New_Assoc));
4601 if Chars (Selectr) = Chars (Component) then
4602 if Style_Check then
4603 Check_Identifier (Selectr, Entity (Component));
4604 end if;
4606 exit;
4607 end if;
4609 Next (New_Assoc);
4610 end loop;
4612 -- If no association, this is not a legal component of the type
4613 -- in question, unless its association is provided with a box.
4615 if No (New_Assoc) then
4616 if Box_Present (Parent (Selectr)) then
4618 -- This may still be a bogus component with a box. Scan
4619 -- list of components to verify that a component with
4620 -- that name exists.
4622 declare
4623 C : Entity_Id;
4625 begin
4626 C := First_Component (Typ);
4627 while Present (C) loop
4628 if Chars (C) = Chars (Selectr) then
4630 -- If the context is an extension aggregate,
4631 -- the component must not be inherited from
4632 -- the ancestor part of the aggregate.
4634 if Nkind (N) /= N_Extension_Aggregate
4635 or else
4636 Scope (Original_Record_Component (C)) /=
4637 Etype (Ancestor_Part (N))
4638 then
4639 exit;
4640 end if;
4641 end if;
4643 Next_Component (C);
4644 end loop;
4646 if No (C) then
4647 Error_Msg_Node_2 := Typ;
4648 Error_Msg_N ("& is not a component of}", Selectr);
4649 end if;
4650 end;
4652 elsif Chars (Selectr) /= Name_uTag
4653 and then Chars (Selectr) /= Name_uParent
4654 then
4655 if not Has_Discriminants (Typ) then
4656 Error_Msg_Node_2 := Typ;
4657 Error_Msg_N ("& is not a component of}", Selectr);
4658 else
4659 Error_Msg_N
4660 ("& is not a component of the aggregate subtype",
4661 Selectr);
4662 end if;
4664 Check_Misspelled_Component (Components, Selectr);
4665 end if;
4667 elsif No (Typech) then
4668 Typech := Base_Type (Etype (Component));
4670 -- AI05-0199: In Ada 2012, several components of anonymous
4671 -- access types can appear in a choice list, as long as the
4672 -- designated types match.
4674 elsif Typech /= Base_Type (Etype (Component)) then
4675 if Ada_Version >= Ada_2012
4676 and then Ekind (Typech) = E_Anonymous_Access_Type
4677 and then
4678 Ekind (Etype (Component)) = E_Anonymous_Access_Type
4679 and then Base_Type (Designated_Type (Typech)) =
4680 Base_Type (Designated_Type (Etype (Component)))
4681 and then
4682 Subtypes_Statically_Match (Typech, (Etype (Component)))
4683 then
4684 null;
4686 elsif not Box_Present (Parent (Selectr)) then
4687 Error_Msg_N
4688 ("components in choice list must have same type",
4689 Selectr);
4690 end if;
4691 end if;
4693 Next (Selectr);
4694 end loop;
4696 Next (Assoc);
4697 end loop Verification;
4698 end Step_7;
4700 -- STEP 8: replace the original aggregate
4702 Step_8 : declare
4703 New_Aggregate : constant Node_Id := New_Copy (N);
4705 begin
4706 Set_Expressions (New_Aggregate, No_List);
4707 Set_Etype (New_Aggregate, Etype (N));
4708 Set_Component_Associations (New_Aggregate, New_Assoc_List);
4709 Set_Check_Actuals (New_Aggregate, Check_Actuals (N));
4711 Rewrite (N, New_Aggregate);
4712 end Step_8;
4714 -- Check the dimensions of the components in the record aggregate
4716 Analyze_Dimension_Extension_Or_Record_Aggregate (N);
4717 end Resolve_Record_Aggregate;
4719 -----------------------------
4720 -- Check_Can_Never_Be_Null --
4721 -----------------------------
4723 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
4724 Comp_Typ : Entity_Id;
4726 begin
4727 pragma Assert
4728 (Ada_Version >= Ada_2005
4729 and then Present (Expr)
4730 and then Known_Null (Expr));
4732 case Ekind (Typ) is
4733 when E_Array_Type =>
4734 Comp_Typ := Component_Type (Typ);
4736 when E_Component |
4737 E_Discriminant =>
4738 Comp_Typ := Etype (Typ);
4740 when others =>
4741 return;
4742 end case;
4744 if Can_Never_Be_Null (Comp_Typ) then
4746 -- Here we know we have a constraint error. Note that we do not use
4747 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
4748 -- seem the more natural approach. That's because in some cases the
4749 -- components are rewritten, and the replacement would be missed.
4750 -- We do not mark the whole aggregate as raising a constraint error,
4751 -- because the association may be a null array range.
4753 Error_Msg_N
4754 ("(Ada 2005) null not allowed in null-excluding component??", Expr);
4755 Error_Msg_N
4756 ("\Constraint_Error will be raised at run time??", Expr);
4758 Rewrite (Expr,
4759 Make_Raise_Constraint_Error
4760 (Sloc (Expr), Reason => CE_Access_Check_Failed));
4761 Set_Etype (Expr, Comp_Typ);
4762 Set_Analyzed (Expr);
4763 end if;
4764 end Check_Can_Never_Be_Null;
4766 ---------------------
4767 -- Sort_Case_Table --
4768 ---------------------
4770 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
4771 U : constant Int := Case_Table'Last;
4772 K : Int;
4773 J : Int;
4774 T : Case_Bounds;
4776 begin
4777 K := 1;
4778 while K < U loop
4779 T := Case_Table (K + 1);
4781 J := K + 1;
4782 while J > 1
4783 and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
4784 loop
4785 Case_Table (J) := Case_Table (J - 1);
4786 J := J - 1;
4787 end loop;
4789 Case_Table (J) := T;
4790 K := K + 1;
4791 end loop;
4792 end Sort_Case_Table;
4794 end Sem_Aggr;