1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Einfo
; use Einfo
;
29 with Errout
; use Errout
;
30 with Exp_Dbug
; use Exp_Dbug
;
31 with Exp_Util
; use Exp_Util
;
32 with Layout
; use Layout
;
33 with Lib
.Xref
; use Lib
.Xref
;
34 with Namet
; use Namet
;
35 with Nlists
; use Nlists
;
36 with Nmake
; use Nmake
;
39 with Sem_Aux
; use Sem_Aux
;
40 with Sem_Ch3
; use Sem_Ch3
;
41 with Sem_Ch8
; use Sem_Ch8
;
42 with Sem_Ch13
; use Sem_Ch13
;
43 with Sem_Eval
; use Sem_Eval
;
44 with Sem_Res
; use Sem_Res
;
45 with Sem_Util
; use Sem_Util
;
46 with Sinfo
; use Sinfo
;
47 with Snames
; use Snames
;
48 with Stand
; use Stand
;
49 with Targparm
; use Targparm
;
50 with Tbuild
; use Tbuild
;
51 with Ttypes
; use Ttypes
;
52 with Uintp
; use Uintp
;
54 package body Exp_Pakd
is
56 ---------------------------
57 -- Endian Considerations --
58 ---------------------------
60 -- As described in the specification, bit numbering in a packed array
61 -- is consistent with bit numbering in a record representation clause,
62 -- and hence dependent on the endianness of the machine:
64 -- For little-endian machines, element zero is at the right hand end
65 -- (low order end) of a bit field.
67 -- For big-endian machines, element zero is at the left hand end
68 -- (high order end) of a bit field.
70 -- The shifts that are used to right justify a field therefore differ in
71 -- the two cases. For the little-endian case, we can simply use the bit
72 -- number (i.e. the element number * element size) as the count for a right
73 -- shift. For the big-endian case, we have to subtract the shift count from
74 -- an appropriate constant to use in the right shift. We use rotates
75 -- instead of shifts (which is necessary in the store case to preserve
76 -- other fields), and we expect that the backend will be able to change the
77 -- right rotate into a left rotate, avoiding the subtract, if the machine
78 -- architecture provides such an instruction.
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 procedure Compute_Linear_Subscript
87 Subscr
: out Node_Id
);
88 -- Given a constrained array type Atyp, and an indexed component node N
89 -- referencing an array object of this type, build an expression of type
90 -- Standard.Integer representing the zero-based linear subscript value.
91 -- This expression includes any required range checks.
93 procedure Convert_To_PAT_Type
(Aexp
: Node_Id
);
94 -- Given an expression of a packed array type, builds a corresponding
95 -- expression whose type is the implementation type used to represent
96 -- the packed array. Aexp is analyzed and resolved on entry and on exit.
98 procedure Get_Base_And_Bit_Offset
101 Offset
: out Node_Id
);
102 -- Given a node N for a name which involves a packed array reference,
103 -- return the base object of the reference and build an expression of
104 -- type Standard.Integer representing the zero-based offset in bits
105 -- from Base'Address to the first bit of the reference.
107 function Known_Aligned_Enough
(Obj
: Node_Id
; Csiz
: Nat
) return Boolean;
108 -- There are two versions of the Set routines, the ones used when the
109 -- object is known to be sufficiently well aligned given the number of
110 -- bits, and the ones used when the object is not known to be aligned.
111 -- This routine is used to determine which set to use. Obj is a reference
112 -- to the object, and Csiz is the component size of the packed array.
113 -- True is returned if the alignment of object is known to be sufficient,
114 -- defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
117 function Make_Shift_Left
(N
: Node_Id
; S
: Node_Id
) return Node_Id
;
118 -- Build a left shift node, checking for the case of a shift count of zero
120 function Make_Shift_Right
(N
: Node_Id
; S
: Node_Id
) return Node_Id
;
121 -- Build a right shift node, checking for the case of a shift count of zero
123 function RJ_Unchecked_Convert_To
125 Expr
: Node_Id
) return Node_Id
;
126 -- The packed array code does unchecked conversions which in some cases
127 -- may involve non-discrete types with differing sizes. The semantics of
128 -- such conversions is potentially endianness dependent, and the effect
129 -- we want here for such a conversion is to do the conversion in size as
130 -- though numeric items are involved, and we extend or truncate on the
131 -- left side. This happens naturally in the little-endian case, but in
132 -- the big endian case we can get left justification, when what we want
133 -- is right justification. This routine does the unchecked conversion in
134 -- a stepwise manner to ensure that it gives the expected result. Hence
135 -- the name (RJ = Right justified). The parameters Typ and Expr are as
136 -- for the case of a normal Unchecked_Convert_To call.
138 procedure Setup_Enumeration_Packed_Array_Reference
(N
: Node_Id
);
139 -- This routine is called in the Get and Set case for arrays that are
140 -- packed but not bit-packed, meaning that they have at least one
141 -- subscript that is of an enumeration type with a non-standard
142 -- representation. This routine modifies the given node to properly
143 -- reference the corresponding packed array type.
145 procedure Setup_Inline_Packed_Array_Reference
148 Obj
: in out Node_Id
;
150 Shift
: out Node_Id
);
151 -- This procedure performs common processing on the N_Indexed_Component
152 -- parameter given as N, whose prefix is a reference to a packed array.
153 -- This is used for the get and set when the component size is 1, 2, 4,
154 -- or for other component sizes when the packed array type is a modular
155 -- type (i.e. the cases that are handled with inline code).
159 -- N is the N_Indexed_Component node for the packed array reference
161 -- Atyp is the constrained array type (the actual subtype has been
162 -- computed if necessary to obtain the constraints, but this is still
163 -- the original array type, not the Packed_Array_Impl_Type value).
165 -- Obj is the object which is to be indexed. It is always of type Atyp.
169 -- Obj is the object containing the desired bit field. It is of type
170 -- Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
171 -- entire value, for the small static case, or the proper selected byte
172 -- from the array in the large or dynamic case. This node is analyzed
173 -- and resolved on return.
175 -- Shift is a node representing the shift count to be used in the
176 -- rotate right instruction that positions the field for access.
177 -- This node is analyzed and resolved on return.
179 -- Cmask is a mask corresponding to the width of the component field.
180 -- Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
182 -- Note: in some cases the call to this routine may generate actions
183 -- (for handling multi-use references and the generation of the packed
184 -- array type on the fly). Such actions are inserted into the tree
185 -- directly using Insert_Action.
187 function Revert_Storage_Order
(N
: Node_Id
) return Node_Id
;
188 -- Perform appropriate justification and byte ordering adjustments for N,
189 -- an element of a packed array type, when both the component type and
190 -- the enclosing packed array type have reverse scalar storage order.
191 -- On little-endian targets, the value is left justified before byte
192 -- swapping. The Etype of the returned expression is an integer type of
193 -- an appropriate power-of-2 size.
195 --------------------------
196 -- Revert_Storage_Order --
197 --------------------------
199 function Revert_Storage_Order
(N
: Node_Id
) return Node_Id
is
200 Loc
: constant Source_Ptr
:= Sloc
(N
);
201 T
: constant Entity_Id
:= Etype
(N
);
202 T_Size
: constant Uint
:= RM_Size
(T
);
216 -- Array component size is less than a byte: no swapping needed
219 Swap_T
:= RTE
(RE_Unsigned_8
);
222 -- Select byte swapping function depending on array component size
225 Swap_RE
:= RE_Bswap_16
;
227 elsif T_Size
<= 32 then
228 Swap_RE
:= RE_Bswap_32
;
230 else pragma Assert
(T_Size
<= 64);
231 Swap_RE
:= RE_Bswap_64
;
234 Swap_F
:= RTE
(Swap_RE
);
235 Swap_T
:= Etype
(Swap_F
);
239 Shift
:= Esize
(Swap_T
) - T_Size
;
241 Arg
:= RJ_Unchecked_Convert_To
(Swap_T
, N
);
243 if not Bytes_Big_Endian
and then Shift
> Uint_0
then
245 Make_Op_Shift_Left
(Loc
,
247 Right_Opnd
=> Make_Integer_Literal
(Loc
, Shift
));
250 if Present
(Swap_F
) then
252 Make_Function_Call
(Loc
,
253 Name
=> New_Occurrence_Of
(Swap_F
, Loc
),
254 Parameter_Associations
=> New_List
(Arg
));
259 Set_Etype
(Adjusted
, Swap_T
);
261 end Revert_Storage_Order
;
263 ------------------------------
264 -- Compute_Linear_Subscript --
265 ------------------------------
267 procedure Compute_Linear_Subscript
270 Subscr
: out Node_Id
)
272 Loc
: constant Source_Ptr
:= Sloc
(N
);
281 -- Loop through dimensions
283 Indx
:= First_Index
(Atyp
);
284 Oldsub
:= First
(Expressions
(N
));
286 while Present
(Indx
) loop
287 Styp
:= Etype
(Indx
);
288 Newsub
:= Relocate_Node
(Oldsub
);
290 -- Get expression for the subscript value. First, if Do_Range_Check
291 -- is set on a subscript, then we must do a range check against the
292 -- original bounds (not the bounds of the packed array type). We do
293 -- this by introducing a subtype conversion.
295 if Do_Range_Check
(Newsub
)
296 and then Etype
(Newsub
) /= Styp
298 Newsub
:= Convert_To
(Styp
, Newsub
);
301 -- Now evolve the expression for the subscript. First convert
302 -- the subscript to be zero based and of an integer type.
304 -- Case of integer type, where we just subtract to get lower bound
306 if Is_Integer_Type
(Styp
) then
308 -- If length of integer type is smaller than standard integer,
309 -- then we convert to integer first, then do the subtract
311 -- Integer (subscript) - Integer (Styp'First)
313 if Esize
(Styp
) < Esize
(Standard_Integer
) then
315 Make_Op_Subtract
(Loc
,
316 Left_Opnd
=> Convert_To
(Standard_Integer
, Newsub
),
318 Convert_To
(Standard_Integer
,
319 Make_Attribute_Reference
(Loc
,
320 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
321 Attribute_Name
=> Name_First
)));
323 -- For larger integer types, subtract first, then convert to
324 -- integer, this deals with strange long long integer bounds.
326 -- Integer (subscript - Styp'First)
330 Convert_To
(Standard_Integer
,
331 Make_Op_Subtract
(Loc
,
334 Make_Attribute_Reference
(Loc
,
335 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
336 Attribute_Name
=> Name_First
)));
339 -- For the enumeration case, we have to use 'Pos to get the value
340 -- to work with before subtracting the lower bound.
342 -- Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
344 -- This is not quite right for bizarre cases where the size of the
345 -- enumeration type is > Integer'Size bits due to rep clause ???
348 pragma Assert
(Is_Enumeration_Type
(Styp
));
351 Make_Op_Subtract
(Loc
,
352 Left_Opnd
=> Convert_To
(Standard_Integer
,
353 Make_Attribute_Reference
(Loc
,
354 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
355 Attribute_Name
=> Name_Pos
,
356 Expressions
=> New_List
(Newsub
))),
359 Convert_To
(Standard_Integer
,
360 Make_Attribute_Reference
(Loc
,
361 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
362 Attribute_Name
=> Name_Pos
,
363 Expressions
=> New_List
(
364 Make_Attribute_Reference
(Loc
,
365 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
366 Attribute_Name
=> Name_First
)))));
369 Set_Paren_Count
(Newsub
, 1);
371 -- For the first subscript, we just copy that subscript value
376 -- Otherwise, we must multiply what we already have by the current
377 -- stride and then add in the new value to the evolving subscript.
383 Make_Op_Multiply
(Loc
,
386 Make_Attribute_Reference
(Loc
,
387 Attribute_Name
=> Name_Range_Length
,
388 Prefix
=> New_Occurrence_Of
(Styp
, Loc
))),
389 Right_Opnd
=> Newsub
);
392 -- Move to next subscript
397 end Compute_Linear_Subscript
;
399 -------------------------
400 -- Convert_To_PAT_Type --
401 -------------------------
403 -- The PAT is always obtained from the actual subtype
405 procedure Convert_To_PAT_Type
(Aexp
: Node_Id
) is
409 Convert_To_Actual_Subtype
(Aexp
);
410 Act_ST
:= Underlying_Type
(Etype
(Aexp
));
411 Create_Packed_Array_Impl_Type
(Act_ST
);
413 -- Just replace the etype with the packed array type. This works because
414 -- the expression will not be further analyzed, and Gigi considers the
415 -- two types equivalent in any case.
417 -- This is not strictly the case ??? If the reference is an actual in
418 -- call, the expansion of the prefix is delayed, and must be reanalyzed,
419 -- see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
420 -- array reference, reanalysis can produce spurious type errors when the
421 -- PAT type is replaced again with the original type of the array. Same
422 -- for the case of a dereference. Ditto for function calls: expansion
423 -- may introduce additional actuals which will trigger errors if call is
424 -- reanalyzed. The following is correct and minimal, but the handling of
425 -- more complex packed expressions in actuals is confused. Probably the
426 -- problem only remains for actuals in calls.
428 Set_Etype
(Aexp
, Packed_Array_Impl_Type
(Act_ST
));
430 if Is_Entity_Name
(Aexp
)
432 (Nkind
(Aexp
) = N_Indexed_Component
433 and then Is_Entity_Name
(Prefix
(Aexp
)))
434 or else Nkind_In
(Aexp
, N_Explicit_Dereference
, N_Function_Call
)
438 end Convert_To_PAT_Type
;
440 -----------------------------------
441 -- Create_Packed_Array_Impl_Type --
442 -----------------------------------
444 procedure Create_Packed_Array_Impl_Type
(Typ
: Entity_Id
) is
445 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
446 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
447 Csize
: constant Uint
:= Component_Size
(Typ
);
462 procedure Install_PAT
;
463 -- This procedure is called with Decl set to the declaration for the
464 -- packed array type. It creates the type and installs it as required.
466 procedure Set_PB_Type
;
467 -- Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
468 -- requirements (see documentation in the spec of this package).
474 procedure Install_PAT
is
475 Pushed_Scope
: Boolean := False;
478 -- We do not want to put the declaration we have created in the tree
479 -- since it is often hard, and sometimes impossible to find a proper
480 -- place for it (the impossible case arises for a packed array type
481 -- with bounds depending on the discriminant, a declaration cannot
482 -- be put inside the record, and the reference to the discriminant
483 -- cannot be outside the record).
485 -- The solution is to analyze the declaration while temporarily
486 -- attached to the tree at an appropriate point, and then we install
487 -- the resulting type as an Itype in the packed array type field of
488 -- the original type, so that no explicit declaration is required.
490 -- Note: the packed type is created in the scope of its parent type.
491 -- There are at least some cases where the current scope is deeper,
492 -- and so when this is the case, we temporarily reset the scope
493 -- for the definition. This is clearly safe, since the first use
494 -- of the packed array type will be the implicit reference from
495 -- the corresponding unpacked type when it is elaborated.
497 if Is_Itype
(Typ
) then
498 Set_Parent
(Decl
, Associated_Node_For_Itype
(Typ
));
500 Set_Parent
(Decl
, Declaration_Node
(Typ
));
503 if Scope
(Typ
) /= Current_Scope
then
504 Push_Scope
(Scope
(Typ
));
505 Pushed_Scope
:= True;
508 Set_Is_Itype
(PAT
, True);
509 Set_Packed_Array_Impl_Type
(Typ
, PAT
);
510 Analyze
(Decl
, Suppress
=> All_Checks
);
516 -- Set Esize and RM_Size to the actual size of the packed object
517 -- Do not reset RM_Size if already set, as happens in the case of
520 if Unknown_Esize
(PAT
) then
521 Set_Esize
(PAT
, PASize
);
524 if Unknown_RM_Size
(PAT
) then
525 Set_RM_Size
(PAT
, PASize
);
528 Adjust_Esize_Alignment
(PAT
);
530 -- Set remaining fields of packed array type
532 Init_Alignment
(PAT
);
533 Set_Parent
(PAT
, Empty
);
534 Set_Associated_Node_For_Itype
(PAT
, Typ
);
535 Set_Is_Packed_Array_Impl_Type
(PAT
, True);
536 Set_Original_Array_Type
(PAT
, Typ
);
538 -- Propagate representation aspects
540 Set_Is_Atomic
(PAT
, Is_Atomic
(Typ
));
541 Set_Is_Independent
(PAT
, Is_Independent
(Typ
));
542 Set_Is_Volatile
(PAT
, Is_Volatile
(Typ
));
543 Set_Is_Volatile_Full_Access
(PAT
, Is_Volatile_Full_Access
(Typ
));
544 Set_Treat_As_Volatile
(PAT
, Treat_As_Volatile
(Typ
));
546 -- For a non-bit-packed array, propagate reverse storage order
547 -- flag from original base type to packed array base type.
549 if not Is_Bit_Packed_Array
(Typ
) then
550 Set_Reverse_Storage_Order
551 (Etype
(PAT
), Reverse_Storage_Order
(Base_Type
(Typ
)));
554 -- We definitely do not want to delay freezing for packed array
555 -- types. This is of particular importance for the itypes that are
556 -- generated for record components depending on discriminants where
557 -- there is no place to put the freeze node.
559 Set_Has_Delayed_Freeze
(PAT
, False);
560 Set_Has_Delayed_Freeze
(Etype
(PAT
), False);
562 -- If we did allocate a freeze node, then clear out the reference
563 -- since it is obsolete (should we delete the freeze node???)
565 Set_Freeze_Node
(PAT
, Empty
);
566 Set_Freeze_Node
(Etype
(PAT
), Empty
);
573 procedure Set_PB_Type
is
575 -- If the user has specified an explicit alignment for the
576 -- type or component, take it into account.
578 if Csize
<= 2 or else Csize
= 4 or else Csize
mod 2 /= 0
579 or else Alignment
(Typ
) = 1
580 or else Component_Alignment
(Typ
) = Calign_Storage_Unit
582 PB_Type
:= RTE
(RE_Packed_Bytes1
);
584 elsif Csize
mod 4 /= 0
585 or else Alignment
(Typ
) = 2
587 PB_Type
:= RTE
(RE_Packed_Bytes2
);
590 PB_Type
:= RTE
(RE_Packed_Bytes4
);
594 -- Start of processing for Create_Packed_Array_Impl_Type
597 -- If we already have a packed array type, nothing to do
599 if Present
(Packed_Array_Impl_Type
(Typ
)) then
603 -- If our immediate ancestor subtype is constrained, and it already
604 -- has a packed array type, then just share the same type, since the
605 -- bounds must be the same. If the ancestor is not an array type but
606 -- a private type, as can happen with multiple instantiations, create
607 -- a new packed type, to avoid privacy issues.
609 if Ekind
(Typ
) = E_Array_Subtype
then
610 Ancest
:= Ancestor_Subtype
(Typ
);
613 and then Is_Array_Type
(Ancest
)
614 and then Is_Constrained
(Ancest
)
615 and then Present
(Packed_Array_Impl_Type
(Ancest
))
617 Set_Packed_Array_Impl_Type
(Typ
, Packed_Array_Impl_Type
(Ancest
));
622 -- We preset the result type size from the size of the original array
623 -- type, since this size clearly belongs to the packed array type. The
624 -- size of the conceptual unpacked type is always set to unknown.
626 PASize
:= RM_Size
(Typ
);
628 -- Case of an array where at least one index is of an enumeration
629 -- type with a non-standard representation, but the component size
630 -- is not appropriate for bit packing. This is the case where we
631 -- have Is_Packed set (we would never be in this unit otherwise),
632 -- but Is_Bit_Packed_Array is false.
634 -- Note that if the component size is appropriate for bit packing,
635 -- then the circuit for the computation of the subscript properly
636 -- deals with the non-standard enumeration type case by taking the
639 if not Is_Bit_Packed_Array
(Typ
) then
641 -- Here we build a declaration:
643 -- type tttP is array (index1, index2, ...) of component_type
645 -- where index1, index2, are the index types. These are the same
646 -- as the index types of the original array, except for the non-
647 -- standard representation enumeration type case, where we have
650 -- For the unconstrained array case, we use
654 -- For the constrained case, we use
656 -- Natural range Enum_Type'Pos (Enum_Type'First) ..
657 -- Enum_Type'Pos (Enum_Type'Last);
659 -- Note that tttP is created even if no index subtype is a non
660 -- standard enumeration, because we still need to remove padding
661 -- normally inserted for component alignment.
664 Make_Defining_Identifier
(Loc
,
665 Chars
=> New_External_Name
(Chars
(Typ
), 'P'));
667 Set_Packed_Array_Impl_Type
(Typ
, PAT
);
670 Indexes
: constant List_Id
:= New_List
;
672 Indx_Typ
: Entity_Id
;
677 Indx
:= First_Index
(Typ
);
679 while Present
(Indx
) loop
680 Indx_Typ
:= Etype
(Indx
);
682 Enum_Case
:= Is_Enumeration_Type
(Indx_Typ
)
683 and then Has_Non_Standard_Rep
(Indx_Typ
);
685 -- Unconstrained case
687 if not Is_Constrained
(Typ
) then
689 Indx_Typ
:= Standard_Natural
;
692 Append_To
(Indexes
, New_Occurrence_Of
(Indx_Typ
, Loc
));
697 if not Enum_Case
then
698 Append_To
(Indexes
, New_Occurrence_Of
(Indx_Typ
, Loc
));
702 Make_Subtype_Indication
(Loc
,
704 New_Occurrence_Of
(Standard_Natural
, Loc
),
706 Make_Range_Constraint
(Loc
,
710 Make_Attribute_Reference
(Loc
,
712 New_Occurrence_Of
(Indx_Typ
, Loc
),
713 Attribute_Name
=> Name_Pos
,
714 Expressions
=> New_List
(
715 Make_Attribute_Reference
(Loc
,
717 New_Occurrence_Of
(Indx_Typ
, Loc
),
718 Attribute_Name
=> Name_First
))),
721 Make_Attribute_Reference
(Loc
,
723 New_Occurrence_Of
(Indx_Typ
, Loc
),
724 Attribute_Name
=> Name_Pos
,
725 Expressions
=> New_List
(
726 Make_Attribute_Reference
(Loc
,
728 New_Occurrence_Of
(Indx_Typ
, Loc
),
729 Attribute_Name
=> Name_Last
)))))));
737 if not Is_Constrained
(Typ
) then
739 Make_Unconstrained_Array_Definition
(Loc
,
740 Subtype_Marks
=> Indexes
,
741 Component_Definition
=>
742 Make_Component_Definition
(Loc
,
743 Aliased_Present
=> False,
744 Subtype_Indication
=>
745 New_Occurrence_Of
(Ctyp
, Loc
)));
749 Make_Constrained_Array_Definition
(Loc
,
750 Discrete_Subtype_Definitions
=> Indexes
,
751 Component_Definition
=>
752 Make_Component_Definition
(Loc
,
753 Aliased_Present
=> False,
754 Subtype_Indication
=>
755 New_Occurrence_Of
(Ctyp
, Loc
)));
759 Make_Full_Type_Declaration
(Loc
,
760 Defining_Identifier
=> PAT
,
761 Type_Definition
=> Typedef
);
764 -- Set type as packed array type and install it
766 Set_Is_Packed_Array_Impl_Type
(PAT
);
770 -- Case of bit-packing required for unconstrained array. We create
771 -- a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
773 elsif not Is_Constrained
(Typ
) then
775 -- When generating standard DWARF (i.e when GNAT_Encodings is
776 -- DWARF_GNAT_Encodings_Minimal), the ___XP suffix will be stripped
777 -- by the back-end but generate it anyway to ease compiler debugging.
778 -- This will help to distinguish implementation types from original
782 Make_Defining_Identifier
(Loc
,
783 Chars
=> Make_Packed_Array_Impl_Type_Name
(Typ
, Csize
));
785 Set_Packed_Array_Impl_Type
(Typ
, PAT
);
789 Make_Subtype_Declaration
(Loc
,
790 Defining_Identifier
=> PAT
,
791 Subtype_Indication
=> New_Occurrence_Of
(PB_Type
, Loc
));
795 -- Remaining code is for the case of bit-packing for constrained array
797 -- The name of the packed array subtype is
801 -- where sss is the component size in bits and ttt is the name of
802 -- the parent packed type.
806 Make_Defining_Identifier
(Loc
,
807 Chars
=> Make_Packed_Array_Impl_Type_Name
(Typ
, Csize
));
809 Set_Packed_Array_Impl_Type
(Typ
, PAT
);
811 -- Build an expression for the length of the array in bits.
812 -- This is the product of the length of each of the dimensions
818 Len_Expr
:= Empty
; -- suppress junk warning
822 Make_Attribute_Reference
(Loc
,
823 Attribute_Name
=> Name_Length
,
824 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
825 Expressions
=> New_List
(
826 Make_Integer_Literal
(Loc
, J
)));
833 Make_Op_Multiply
(Loc
,
834 Left_Opnd
=> Len_Expr
,
835 Right_Opnd
=> Len_Dim
);
839 exit when J
> Number_Dimensions
(Typ
);
843 -- Temporarily attach the length expression to the tree and analyze
844 -- and resolve it, so that we can test its value. We assume that the
845 -- total length fits in type Integer. This expression may involve
846 -- discriminants, so we treat it as a default/per-object expression.
848 Set_Parent
(Len_Expr
, Typ
);
849 Preanalyze_Spec_Expression
(Len_Expr
, Standard_Long_Long_Integer
);
851 -- Use a modular type if possible. We can do this if we have
852 -- static bounds, and the length is small enough, and the length
853 -- is not zero. We exclude the zero length case because the size
854 -- of things is always at least one, and the zero length object
855 -- would have an anomalous size.
857 if Compile_Time_Known_Value
(Len_Expr
) then
858 Len_Bits
:= Expr_Value
(Len_Expr
) * Csize
;
860 -- Check for size known to be too large
863 Uint_2
** (Standard_Integer_Size
- 1) * System_Storage_Unit
865 if System_Storage_Unit
= 8 then
867 ("packed array size cannot exceed " &
868 "Integer''Last bytes", Typ
);
871 ("packed array size cannot exceed " &
872 "Integer''Last storage units", Typ
);
875 -- Reset length to arbitrary not too high value to continue
877 Len_Expr
:= Make_Integer_Literal
(Loc
, 65535);
878 Analyze_And_Resolve
(Len_Expr
, Standard_Long_Long_Integer
);
881 -- We normally consider small enough to mean no larger than the
882 -- value of System_Max_Binary_Modulus_Power, checking that in the
883 -- case of values longer than word size, we have long shifts.
887 (Len_Bits
<= System_Word_Size
888 or else (Len_Bits
<= System_Max_Binary_Modulus_Power
889 and then Support_Long_Shifts_On_Target
))
891 -- We can use the modular type, it has the form:
893 -- subtype tttPn is btyp
894 -- range 0 .. 2 ** ((Typ'Length (1)
895 -- * ... * Typ'Length (n)) * Csize) - 1;
897 -- The bounds are statically known, and btyp is one of the
898 -- unsigned types, depending on the length.
900 if Len_Bits
<= Standard_Short_Short_Integer_Size
then
901 Btyp
:= RTE
(RE_Short_Short_Unsigned
);
903 elsif Len_Bits
<= Standard_Short_Integer_Size
then
904 Btyp
:= RTE
(RE_Short_Unsigned
);
906 elsif Len_Bits
<= Standard_Integer_Size
then
907 Btyp
:= RTE
(RE_Unsigned
);
909 elsif Len_Bits
<= Standard_Long_Integer_Size
then
910 Btyp
:= RTE
(RE_Long_Unsigned
);
913 Btyp
:= RTE
(RE_Long_Long_Unsigned
);
916 Lit
:= Make_Integer_Literal
(Loc
, 2 ** Len_Bits
- 1);
917 Set_Print_In_Hex
(Lit
);
920 Make_Subtype_Declaration
(Loc
,
921 Defining_Identifier
=> PAT
,
922 Subtype_Indication
=>
923 Make_Subtype_Indication
(Loc
,
924 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
927 Make_Range_Constraint
(Loc
,
931 Make_Integer_Literal
(Loc
, 0),
932 High_Bound
=> Lit
))));
934 if PASize
= Uint_0
then
940 -- Propagate a given alignment to the modular type. This can
941 -- cause it to be under-aligned, but that's OK.
943 if Present
(Alignment_Clause
(Typ
)) then
944 Set_Alignment
(PAT
, Alignment
(Typ
));
951 -- Could not use a modular type, for all other cases, we build
952 -- a packed array subtype:
955 -- System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
957 -- Bits is the length of the array in bits
964 Make_Op_Multiply
(Loc
,
966 Make_Integer_Literal
(Loc
, Csize
),
967 Right_Opnd
=> Len_Expr
),
970 Make_Integer_Literal
(Loc
, 7));
972 Set_Paren_Count
(Bits_U1
, 1);
975 Make_Op_Subtract
(Loc
,
978 Left_Opnd
=> Bits_U1
,
979 Right_Opnd
=> Make_Integer_Literal
(Loc
, 8)),
980 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
983 Make_Subtype_Declaration
(Loc
,
984 Defining_Identifier
=> PAT
,
985 Subtype_Indication
=>
986 Make_Subtype_Indication
(Loc
,
987 Subtype_Mark
=> New_Occurrence_Of
(PB_Type
, Loc
),
989 Make_Index_Or_Discriminant_Constraint
(Loc
,
990 Constraints
=> New_List
(
993 Make_Integer_Literal
(Loc
, 0),
995 Convert_To
(Standard_Integer
, PAT_High
))))));
999 -- Currently the code in this unit requires that packed arrays
1000 -- represented by non-modular arrays of bytes be on a byte
1001 -- boundary for bit sizes handled by System.Pack_nn units.
1002 -- That's because these units assume the array being accessed
1003 -- starts on a byte boundary.
1005 if Get_Id
(UI_To_Int
(Csize
)) /= RE_Null
then
1006 Set_Must_Be_On_Byte_Boundary
(Typ
);
1009 end Create_Packed_Array_Impl_Type
;
1011 -----------------------------------
1012 -- Expand_Bit_Packed_Element_Set --
1013 -----------------------------------
1015 procedure Expand_Bit_Packed_Element_Set
(N
: Node_Id
) is
1016 Loc
: constant Source_Ptr
:= Sloc
(N
);
1017 Lhs
: constant Node_Id
:= Name
(N
);
1019 Ass_OK
: constant Boolean := Assignment_OK
(Lhs
);
1020 -- Used to preserve assignment OK status when assignment is rewritten
1022 Rhs
: Node_Id
:= Expression
(N
);
1023 -- Initially Rhs is the right hand side value, it will be replaced
1024 -- later by an appropriate unchecked conversion for the assignment.
1034 -- The expression for the shift value that is required
1036 Shift_Used
: Boolean := False;
1037 -- Set True if Shift has been used in the generated code at least once,
1038 -- so that it must be duplicated if used again.
1043 Rhs_Val_Known
: Boolean;
1045 -- If the value of the right hand side as an integer constant is
1046 -- known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1047 -- contains the value. Otherwise Rhs_Val_Known is set False, and
1048 -- the Rhs_Val is undefined.
1050 function Get_Shift
return Node_Id
;
1051 -- Function used to get the value of Shift, making sure that it
1052 -- gets duplicated if the function is called more than once.
1058 function Get_Shift
return Node_Id
is
1060 -- If we used the shift value already, then duplicate it. We
1061 -- set a temporary parent in case actions have to be inserted.
1064 Set_Parent
(Shift
, N
);
1065 return Duplicate_Subexpr_No_Checks
(Shift
);
1067 -- If first time, use Shift unchanged, and set flag for first use
1075 -- Start of processing for Expand_Bit_Packed_Element_Set
1078 pragma Assert
(Is_Bit_Packed_Array
(Etype
(Prefix
(Lhs
))));
1080 Obj
:= Relocate_Node
(Prefix
(Lhs
));
1081 Convert_To_Actual_Subtype
(Obj
);
1082 Atyp
:= Etype
(Obj
);
1083 PAT
:= Packed_Array_Impl_Type
(Atyp
);
1084 Ctyp
:= Component_Type
(Atyp
);
1085 Csiz
:= UI_To_Int
(Component_Size
(Atyp
));
1087 -- We remove side effects, in case the rhs modifies the lhs, because we
1088 -- are about to transform the rhs into an expression that first READS
1089 -- the lhs, so we can do the necessary shifting and masking. Example:
1090 -- "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
1093 Remove_Side_Effects
(Rhs
);
1095 -- We convert the right hand side to the proper subtype to ensure
1096 -- that an appropriate range check is made (since the normal range
1097 -- check from assignment will be lost in the transformations). This
1098 -- conversion is analyzed immediately so that subsequent processing
1099 -- can work with an analyzed Rhs (and e.g. look at its Etype)
1101 -- If the right-hand side is a string literal, create a temporary for
1102 -- it, constant-folding is not ready to wrap the bit representation
1103 -- of a string literal.
1105 if Nkind
(Rhs
) = N_String_Literal
then
1110 Make_Object_Declaration
(Loc
,
1111 Defining_Identifier
=> Make_Temporary
(Loc
, 'T', Rhs
),
1112 Object_Definition
=> New_Occurrence_Of
(Ctyp
, Loc
),
1113 Expression
=> New_Copy_Tree
(Rhs
));
1115 Insert_Actions
(N
, New_List
(Decl
));
1116 Rhs
:= New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
);
1120 Rhs
:= Convert_To
(Ctyp
, Rhs
);
1121 Set_Parent
(Rhs
, N
);
1123 -- If we are building the initialization procedure for a packed array,
1124 -- and Initialize_Scalars is enabled, each component assignment is an
1125 -- out-of-range value by design. Compile this value without checks,
1126 -- because a call to the array init_proc must not raise an exception.
1128 -- Condition is not consistent with description above, Within_Init_Proc
1129 -- is True also when we are building the IP for a record or protected
1130 -- type that has a packed array component???
1133 and then Initialize_Scalars
1135 Analyze_And_Resolve
(Rhs
, Ctyp
, Suppress
=> All_Checks
);
1137 Analyze_And_Resolve
(Rhs
, Ctyp
);
1140 -- For the AAMP target, indexing of certain packed array is passed
1141 -- through to the back end without expansion, because the expansion
1142 -- results in very inefficient code on that target. This allows the
1143 -- GNAAMP back end to generate specialized macros that support more
1144 -- efficient indexing of packed arrays with components having sizes
1145 -- that are small powers of two.
1148 and then (Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4)
1153 -- Case of component size 1,2,4 or any component size for the modular
1154 -- case. These are the cases for which we can inline the code.
1156 if Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4
1157 or else (Present
(PAT
) and then Is_Modular_Integer_Type
(PAT
))
1159 Setup_Inline_Packed_Array_Reference
(Lhs
, Atyp
, Obj
, Cmask
, Shift
);
1161 -- The statement to be generated is:
1163 -- Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
1165 -- or in the case of a freestanding Reverse_Storage_Order object,
1167 -- Obj := Swap (atyp!((Swap (Obj) and Mask1)
1168 -- or (shift_left (rhs, Shift))))
1170 -- where Mask1 is obtained by shifting Cmask left Shift bits
1171 -- and then complementing the result.
1173 -- the "and Mask1" is omitted if rhs is constant and all 1 bits
1175 -- the "or ..." is omitted if rhs is constant and all 0 bits
1177 -- rhs is converted to the appropriate type
1179 -- The result is converted back to the array type, since
1180 -- otherwise we lose knowledge of the packed nature.
1182 -- Determine if right side is all 0 bits or all 1 bits
1184 if Compile_Time_Known_Value
(Rhs
) then
1185 Rhs_Val
:= Expr_Rep_Value
(Rhs
);
1186 Rhs_Val_Known
:= True;
1188 -- The following test catches the case of an unchecked conversion of
1189 -- an integer literal. This results from optimizing aggregates of
1192 elsif Nkind
(Rhs
) = N_Unchecked_Type_Conversion
1193 and then Compile_Time_Known_Value
(Expression
(Rhs
))
1195 Rhs_Val
:= Expr_Rep_Value
(Expression
(Rhs
));
1196 Rhs_Val_Known
:= True;
1200 Rhs_Val_Known
:= False;
1203 -- Some special checks for the case where the right hand value is
1204 -- known at compile time. Basically we have to take care of the
1205 -- implicit conversion to the subtype of the component object.
1207 if Rhs_Val_Known
then
1209 -- If we have a biased component type then we must manually do the
1210 -- biasing, since we are taking responsibility in this case for
1211 -- constructing the exact bit pattern to be used.
1213 if Has_Biased_Representation
(Ctyp
) then
1214 Rhs_Val
:= Rhs_Val
- Expr_Rep_Value
(Type_Low_Bound
(Ctyp
));
1217 -- For a negative value, we manually convert the two's complement
1218 -- value to a corresponding unsigned value, so that the proper
1219 -- field width is maintained. If we did not do this, we would
1220 -- get too many leading sign bits later on.
1223 Rhs_Val
:= 2 ** UI_From_Int
(Csiz
) + Rhs_Val
;
1227 -- Now create copies removing side effects. Note that in some complex
1228 -- cases, this may cause the fact that we have already set a packed
1229 -- array type on Obj to get lost. So we save the type of Obj, and
1230 -- make sure it is reset properly.
1232 New_Lhs
:= Duplicate_Subexpr
(Obj
, Name_Req
=> True);
1233 New_Rhs
:= Duplicate_Subexpr_No_Checks
(Obj
);
1235 -- First we deal with the "and"
1237 if not Rhs_Val_Known
or else Rhs_Val
/= Cmask
then
1243 if Compile_Time_Known_Value
(Shift
) then
1245 Make_Integer_Literal
(Loc
,
1246 Modulus
(Etype
(Obj
)) - 1 -
1247 (Cmask
* (2 ** Expr_Value
(Get_Shift
))));
1248 Set_Print_In_Hex
(Mask1
);
1251 Lit
:= Make_Integer_Literal
(Loc
, Cmask
);
1252 Set_Print_In_Hex
(Lit
);
1255 Right_Opnd
=> Make_Shift_Left
(Lit
, Get_Shift
));
1260 Left_Opnd
=> New_Rhs
,
1261 Right_Opnd
=> Mask1
);
1265 -- Then deal with the "or"
1267 if not Rhs_Val_Known
or else Rhs_Val
/= 0 then
1271 procedure Fixup_Rhs
;
1272 -- Adjust Rhs by bias if biased representation for components
1273 -- or remove extraneous high order sign bits if signed.
1275 procedure Fixup_Rhs
is
1276 Etyp
: constant Entity_Id
:= Etype
(Rhs
);
1279 -- For biased case, do the required biasing by simply
1280 -- converting to the biased subtype (the conversion
1281 -- will generate the required bias).
1283 if Has_Biased_Representation
(Ctyp
) then
1284 Rhs
:= Convert_To
(Ctyp
, Rhs
);
1286 -- For a signed integer type that is not biased, generate
1287 -- a conversion to unsigned to strip high order sign bits.
1289 elsif Is_Signed_Integer_Type
(Ctyp
) then
1290 Rhs
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Csiz
)), Rhs
);
1293 -- Set Etype, since it can be referenced before the node is
1294 -- completely analyzed.
1296 Set_Etype
(Rhs
, Etyp
);
1298 -- We now need to do an unchecked conversion of the
1299 -- result to the target type, but it is important that
1300 -- this conversion be a right justified conversion and
1301 -- not a left justified conversion.
1303 Rhs
:= RJ_Unchecked_Convert_To
(Etype
(Obj
), Rhs
);
1308 and then Compile_Time_Known_Value
(Get_Shift
)
1311 Make_Integer_Literal
(Loc
,
1312 Rhs_Val
* (2 ** Expr_Value
(Get_Shift
)));
1313 Set_Print_In_Hex
(Or_Rhs
);
1316 -- We have to convert the right hand side to Etype (Obj).
1317 -- A special case arises if what we have now is a Val
1318 -- attribute reference whose expression type is Etype (Obj).
1319 -- This happens for assignments of fields from the same
1320 -- array. In this case we get the required right hand side
1321 -- by simply removing the inner attribute reference.
1323 if Nkind
(Rhs
) = N_Attribute_Reference
1324 and then Attribute_Name
(Rhs
) = Name_Val
1325 and then Etype
(First
(Expressions
(Rhs
))) = Etype
(Obj
)
1327 Rhs
:= Relocate_Node
(First
(Expressions
(Rhs
)));
1330 -- If the value of the right hand side is a known integer
1331 -- value, then just replace it by an untyped constant,
1332 -- which will be properly retyped when we analyze and
1333 -- resolve the expression.
1335 elsif Rhs_Val_Known
then
1337 -- Note that Rhs_Val has already been normalized to
1338 -- be an unsigned value with the proper number of bits.
1340 Rhs
:= Make_Integer_Literal
(Loc
, Rhs_Val
);
1342 -- Otherwise we need an unchecked conversion
1348 Or_Rhs
:= Make_Shift_Left
(Rhs
, Get_Shift
);
1351 if Nkind
(New_Rhs
) = N_Op_And
then
1352 Set_Paren_Count
(New_Rhs
, 1);
1353 Set_Etype
(New_Rhs
, Etype
(Left_Opnd
(New_Rhs
)));
1358 Left_Opnd
=> New_Rhs
,
1359 Right_Opnd
=> Or_Rhs
);
1363 -- Now do the rewrite
1366 Make_Assignment_Statement
(Loc
,
1369 Unchecked_Convert_To
(Etype
(New_Lhs
), New_Rhs
)));
1370 Set_Assignment_OK
(Name
(N
), Ass_OK
);
1372 -- All other component sizes for non-modular case
1377 -- Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1379 -- where Subscr is the computed linear subscript
1382 Bits_nn
: constant Entity_Id
:= RTE
(Bits_Id
(Csiz
));
1389 if No
(Bits_nn
) then
1391 -- Error, most likely High_Integrity_Mode restriction
1396 -- Acquire proper Set entity. We use the aligned or unaligned
1397 -- case as appropriate.
1399 if Known_Aligned_Enough
(Obj
, Csiz
) then
1400 Set_nn
:= RTE
(Set_Id
(Csiz
));
1402 Set_nn
:= RTE
(SetU_Id
(Csiz
));
1405 -- Now generate the set reference
1407 Obj
:= Relocate_Node
(Prefix
(Lhs
));
1408 Convert_To_Actual_Subtype
(Obj
);
1409 Atyp
:= Etype
(Obj
);
1410 Compute_Linear_Subscript
(Atyp
, Lhs
, Subscr
);
1412 -- Set indication of whether the packed array has reverse SSO
1416 (Boolean_Literals
(Reverse_Storage_Order
(Atyp
)), Loc
);
1418 -- Below we must make the assumption that Obj is
1419 -- at least byte aligned, since otherwise its address
1420 -- cannot be taken. The assumption holds since the
1421 -- only arrays that can be misaligned are small packed
1422 -- arrays which are implemented as a modular type, and
1423 -- that is not the case here.
1426 Make_Procedure_Call_Statement
(Loc
,
1427 Name
=> New_Occurrence_Of
(Set_nn
, Loc
),
1428 Parameter_Associations
=> New_List
(
1429 Make_Attribute_Reference
(Loc
,
1431 Attribute_Name
=> Name_Address
),
1433 Unchecked_Convert_To
(Bits_nn
, Convert_To
(Ctyp
, Rhs
)),
1439 Analyze
(N
, Suppress
=> All_Checks
);
1440 end Expand_Bit_Packed_Element_Set
;
1442 -------------------------------------
1443 -- Expand_Packed_Address_Reference --
1444 -------------------------------------
1446 procedure Expand_Packed_Address_Reference
(N
: Node_Id
) is
1447 Loc
: constant Source_Ptr
:= Sloc
(N
);
1452 -- We build an expression that has the form
1454 -- outer_object'Address
1455 -- + (linear-subscript * component_size for each array reference
1456 -- + field'Bit_Position for each record field
1458 -- + ...) / Storage_Unit;
1460 Get_Base_And_Bit_Offset
(Prefix
(N
), Base
, Offset
);
1463 Unchecked_Convert_To
(RTE
(RE_Address
),
1466 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
1467 Make_Attribute_Reference
(Loc
,
1469 Attribute_Name
=> Name_Address
)),
1472 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
1473 Make_Op_Divide
(Loc
,
1474 Left_Opnd
=> Offset
,
1476 Make_Integer_Literal
(Loc
, System_Storage_Unit
))))));
1478 Analyze_And_Resolve
(N
, RTE
(RE_Address
));
1479 end Expand_Packed_Address_Reference
;
1481 ---------------------------------
1482 -- Expand_Packed_Bit_Reference --
1483 ---------------------------------
1485 procedure Expand_Packed_Bit_Reference
(N
: Node_Id
) is
1486 Loc
: constant Source_Ptr
:= Sloc
(N
);
1491 -- We build an expression that has the form
1493 -- (linear-subscript * component_size for each array reference
1494 -- + field'Bit_Position for each record field
1496 -- + ...) mod Storage_Unit;
1498 Get_Base_And_Bit_Offset
(Prefix
(N
), Base
, Offset
);
1501 Unchecked_Convert_To
(Universal_Integer
,
1503 Left_Opnd
=> Offset
,
1504 Right_Opnd
=> Make_Integer_Literal
(Loc
, System_Storage_Unit
))));
1506 Analyze_And_Resolve
(N
, Universal_Integer
);
1507 end Expand_Packed_Bit_Reference
;
1509 ------------------------------------
1510 -- Expand_Packed_Boolean_Operator --
1511 ------------------------------------
1513 -- This routine expands "a op b" for the packed cases
1515 procedure Expand_Packed_Boolean_Operator
(N
: Node_Id
) is
1516 Loc
: constant Source_Ptr
:= Sloc
(N
);
1517 Typ
: constant Entity_Id
:= Etype
(N
);
1518 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
1519 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
1526 Convert_To_Actual_Subtype
(L
);
1527 Convert_To_Actual_Subtype
(R
);
1529 Ensure_Defined
(Etype
(L
), N
);
1530 Ensure_Defined
(Etype
(R
), N
);
1532 Apply_Length_Check
(R
, Etype
(L
));
1537 -- Deal with silly case of XOR where the subcomponent has a range
1538 -- True .. True where an exception must be raised.
1540 if Nkind
(N
) = N_Op_Xor
then
1541 Silly_Boolean_Array_Xor_Test
(N
, Rtyp
);
1544 -- Now that that silliness is taken care of, get packed array type
1546 Convert_To_PAT_Type
(L
);
1547 Convert_To_PAT_Type
(R
);
1551 -- For the modular case, we expand a op b into
1553 -- rtyp!(pat!(a) op pat!(b))
1555 -- where rtyp is the Etype of the left operand. Note that we do not
1556 -- convert to the base type, since this would be unconstrained, and
1557 -- hence not have a corresponding packed array type set.
1559 -- Note that both operands must be modular for this code to be used
1561 if Is_Modular_Integer_Type
(PAT
)
1563 Is_Modular_Integer_Type
(Etype
(R
))
1569 if Nkind
(N
) = N_Op_And
then
1570 P
:= Make_Op_And
(Loc
, L
, R
);
1572 elsif Nkind
(N
) = N_Op_Or
then
1573 P
:= Make_Op_Or
(Loc
, L
, R
);
1575 else -- Nkind (N) = N_Op_Xor
1576 P
:= Make_Op_Xor
(Loc
, L
, R
);
1579 Rewrite
(N
, Unchecked_Convert_To
(Ltyp
, P
));
1582 -- For the array case, we insert the actions
1586 -- System.Bit_Ops.Bit_And/Or/Xor
1588 -- Ltype'Length * Ltype'Component_Size;
1590 -- Rtype'Length * Rtype'Component_Size
1593 -- where Left and Right are the Packed_Bytes{1,2,4} operands and
1594 -- the second argument and fourth arguments are the lengths of the
1595 -- operands in bits. Then we replace the expression by a reference
1598 -- Note that if we are mixing a modular and array operand, everything
1599 -- works fine, since we ensure that the modular representation has the
1600 -- same physical layout as the array representation (that's what the
1601 -- left justified modular stuff in the big-endian case is about).
1605 Result_Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
1609 if Nkind
(N
) = N_Op_And
then
1612 elsif Nkind
(N
) = N_Op_Or
then
1615 else -- Nkind (N) = N_Op_Xor
1619 Insert_Actions
(N
, New_List
(
1621 Make_Object_Declaration
(Loc
,
1622 Defining_Identifier
=> Result_Ent
,
1623 Object_Definition
=> New_Occurrence_Of
(Ltyp
, Loc
)),
1625 Make_Procedure_Call_Statement
(Loc
,
1626 Name
=> New_Occurrence_Of
(RTE
(E_Id
), Loc
),
1627 Parameter_Associations
=> New_List
(
1629 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1631 Attribute_Name
=> Name_Address
),
1633 Make_Op_Multiply
(Loc
,
1635 Make_Attribute_Reference
(Loc
,
1638 (Etype
(First_Index
(Ltyp
)), Loc
),
1639 Attribute_Name
=> Name_Range_Length
),
1642 Make_Integer_Literal
(Loc
, Component_Size
(Ltyp
))),
1644 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1646 Attribute_Name
=> Name_Address
),
1648 Make_Op_Multiply
(Loc
,
1650 Make_Attribute_Reference
(Loc
,
1653 (Etype
(First_Index
(Rtyp
)), Loc
),
1654 Attribute_Name
=> Name_Range_Length
),
1657 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
))),
1659 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1660 Prefix
=> New_Occurrence_Of
(Result_Ent
, Loc
),
1661 Attribute_Name
=> Name_Address
)))));
1664 New_Occurrence_Of
(Result_Ent
, Loc
));
1668 Analyze_And_Resolve
(N
, Typ
, Suppress
=> All_Checks
);
1669 end Expand_Packed_Boolean_Operator
;
1671 -------------------------------------
1672 -- Expand_Packed_Element_Reference --
1673 -------------------------------------
1675 procedure Expand_Packed_Element_Reference
(N
: Node_Id
) is
1676 Loc
: constant Source_Ptr
:= Sloc
(N
);
1688 -- If the node is an actual in a call, the prefix has not been fully
1689 -- expanded, to account for the additional expansion for in-out actuals
1690 -- (see expand_actuals for details). If the prefix itself is a packed
1691 -- reference as well, we have to recurse to complete the transformation
1694 if Nkind
(Prefix
(N
)) = N_Indexed_Component
1695 and then not Analyzed
(Prefix
(N
))
1696 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Prefix
(N
))))
1698 Expand_Packed_Element_Reference
(Prefix
(N
));
1701 -- The prefix may be rewritten below as a conversion. If it is a source
1702 -- entity generate reference to it now, to prevent spurious warnings
1703 -- about unused entities.
1705 if Is_Entity_Name
(Prefix
(N
))
1706 and then Comes_From_Source
(Prefix
(N
))
1708 Generate_Reference
(Entity
(Prefix
(N
)), Prefix
(N
), 'r');
1711 -- If not bit packed, we have the enumeration case, which is easily
1712 -- dealt with (just adjust the subscripts of the indexed component)
1714 -- Note: this leaves the result as an indexed component, which is
1715 -- still a variable, so can be used in the assignment case, as is
1716 -- required in the enumeration case.
1718 if not Is_Bit_Packed_Array
(Etype
(Prefix
(N
))) then
1719 Setup_Enumeration_Packed_Array_Reference
(N
);
1723 -- Remaining processing is for the bit-packed case
1725 Obj
:= Relocate_Node
(Prefix
(N
));
1726 Convert_To_Actual_Subtype
(Obj
);
1727 Atyp
:= Etype
(Obj
);
1728 PAT
:= Packed_Array_Impl_Type
(Atyp
);
1729 Ctyp
:= Component_Type
(Atyp
);
1730 Csiz
:= UI_To_Int
(Component_Size
(Atyp
));
1732 -- For the AAMP target, indexing of certain packed array is passed
1733 -- through to the back end without expansion, because the expansion
1734 -- results in very inefficient code on that target. This allows the
1735 -- GNAAMP back end to generate specialized macros that support more
1736 -- efficient indexing of packed arrays with components having sizes
1737 -- that are small powers of two.
1740 and then (Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4)
1745 -- Case of component size 1,2,4 or any component size for the modular
1746 -- case. These are the cases for which we can inline the code.
1748 if Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4
1749 or else (Present
(PAT
) and then Is_Modular_Integer_Type
(PAT
))
1751 Setup_Inline_Packed_Array_Reference
(N
, Atyp
, Obj
, Cmask
, Shift
);
1752 Lit
:= Make_Integer_Literal
(Loc
, Cmask
);
1753 Set_Print_In_Hex
(Lit
);
1755 -- We generate a shift right to position the field, followed by a
1756 -- masking operation to extract the bit field, and we finally do an
1757 -- unchecked conversion to convert the result to the required target.
1759 -- Note that the unchecked conversion automatically deals with the
1760 -- bias if we are dealing with a biased representation. What will
1761 -- happen is that we temporarily generate the biased representation,
1762 -- but almost immediately that will be converted to the original
1763 -- unbiased component type, and the bias will disappear.
1767 Left_Opnd
=> Make_Shift_Right
(Obj
, Shift
),
1769 Set_Etype
(Arg
, Ctyp
);
1771 -- Component extraction is performed on a native endianness scalar
1772 -- value: if Atyp has reverse storage order, then it has been byte
1773 -- swapped, and if the component being extracted is itself of a
1774 -- composite type with reverse storage order, then we need to swap
1775 -- it back to its expected endianness after extraction.
1777 if Reverse_Storage_Order
(Atyp
)
1778 and then (Is_Record_Type
(Ctyp
) or else Is_Array_Type
(Ctyp
))
1779 and then Reverse_Storage_Order
(Ctyp
)
1781 Arg
:= Revert_Storage_Order
(Arg
);
1784 -- We needed to analyze this before we do the unchecked convert
1785 -- below, but we need it temporarily attached to the tree for
1786 -- this analysis (hence the temporary Set_Parent call).
1788 Set_Parent
(Arg
, Parent
(N
));
1789 Analyze_And_Resolve
(Arg
);
1791 Rewrite
(N
, RJ_Unchecked_Convert_To
(Ctyp
, Arg
));
1793 -- All other component sizes for non-modular case
1798 -- Component_Type!(Get_nn (Arr'address, Subscr))
1800 -- where Subscr is the computed linear subscript
1805 Rev_SSO
: constant Node_Id
:=
1807 (Boolean_Literals
(Reverse_Storage_Order
(Atyp
)), Loc
);
1810 -- Acquire proper Get entity. We use the aligned or unaligned
1811 -- case as appropriate.
1813 if Known_Aligned_Enough
(Obj
, Csiz
) then
1814 Get_nn
:= RTE
(Get_Id
(Csiz
));
1816 Get_nn
:= RTE
(GetU_Id
(Csiz
));
1819 -- Now generate the get reference
1821 Compute_Linear_Subscript
(Atyp
, N
, Subscr
);
1823 -- Below we make the assumption that Obj is at least byte
1824 -- aligned, since otherwise its address cannot be taken.
1825 -- The assumption holds since the only arrays that can be
1826 -- misaligned are small packed arrays which are implemented
1827 -- as a modular type, and that is not the case here.
1830 Unchecked_Convert_To
(Ctyp
,
1831 Make_Function_Call
(Loc
,
1832 Name
=> New_Occurrence_Of
(Get_nn
, Loc
),
1833 Parameter_Associations
=> New_List
(
1834 Make_Attribute_Reference
(Loc
,
1836 Attribute_Name
=> Name_Address
),
1842 Analyze_And_Resolve
(N
, Ctyp
, Suppress
=> All_Checks
);
1843 end Expand_Packed_Element_Reference
;
1845 ----------------------
1846 -- Expand_Packed_Eq --
1847 ----------------------
1849 -- Handles expansion of "=" on packed array types
1851 procedure Expand_Packed_Eq
(N
: Node_Id
) is
1852 Loc
: constant Source_Ptr
:= Sloc
(N
);
1853 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
1854 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
1864 Convert_To_Actual_Subtype
(L
);
1865 Convert_To_Actual_Subtype
(R
);
1866 Ltyp
:= Underlying_Type
(Etype
(L
));
1867 Rtyp
:= Underlying_Type
(Etype
(R
));
1869 Convert_To_PAT_Type
(L
);
1870 Convert_To_PAT_Type
(R
);
1874 Make_Op_Multiply
(Loc
,
1876 Make_Attribute_Reference
(Loc
,
1877 Prefix
=> New_Occurrence_Of
(Ltyp
, Loc
),
1878 Attribute_Name
=> Name_Length
),
1880 Make_Integer_Literal
(Loc
, Component_Size
(Ltyp
)));
1883 Make_Op_Multiply
(Loc
,
1885 Make_Attribute_Reference
(Loc
,
1886 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
),
1887 Attribute_Name
=> Name_Length
),
1889 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
)));
1891 -- For the modular case, we transform the comparison to:
1893 -- Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
1895 -- where PAT is the packed array type. This works fine, since in the
1896 -- modular case we guarantee that the unused bits are always zeroes.
1897 -- We do have to compare the lengths because we could be comparing
1898 -- two different subtypes of the same base type.
1900 if Is_Modular_Integer_Type
(PAT
) then
1905 Left_Opnd
=> LLexpr
,
1906 Right_Opnd
=> RLexpr
),
1913 -- For the non-modular case, we call a runtime routine
1915 -- System.Bit_Ops.Bit_Eq
1916 -- (L'Address, L_Length, R'Address, R_Length)
1918 -- where PAT is the packed array type, and the lengths are the lengths
1919 -- in bits of the original packed arrays. This routine takes care of
1920 -- not comparing the unused bits in the last byte.
1924 Make_Function_Call
(Loc
,
1925 Name
=> New_Occurrence_Of
(RTE
(RE_Bit_Eq
), Loc
),
1926 Parameter_Associations
=> New_List
(
1927 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1929 Attribute_Name
=> Name_Address
),
1933 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1935 Attribute_Name
=> Name_Address
),
1940 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
1941 end Expand_Packed_Eq
;
1943 -----------------------
1944 -- Expand_Packed_Not --
1945 -----------------------
1947 -- Handles expansion of "not" on packed array types
1949 procedure Expand_Packed_Not
(N
: Node_Id
) is
1950 Loc
: constant Source_Ptr
:= Sloc
(N
);
1951 Typ
: constant Entity_Id
:= Etype
(N
);
1952 Opnd
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
1959 Convert_To_Actual_Subtype
(Opnd
);
1960 Rtyp
:= Etype
(Opnd
);
1962 -- Deal with silly False..False and True..True subtype case
1964 Silly_Boolean_Array_Not_Test
(N
, Rtyp
);
1966 -- Now that the silliness is taken care of, get packed array type
1968 Convert_To_PAT_Type
(Opnd
);
1969 PAT
:= Etype
(Opnd
);
1971 -- For the case where the packed array type is a modular type, "not A"
1972 -- expands simply into:
1974 -- Rtyp!(PAT!(A) xor Mask)
1976 -- where PAT is the packed array type, Mask is a mask of all 1 bits of
1977 -- length equal to the size of this packed type, and Rtyp is the actual
1978 -- actual subtype of the operand.
1980 Lit
:= Make_Integer_Literal
(Loc
, 2 ** RM_Size
(PAT
) - 1);
1981 Set_Print_In_Hex
(Lit
);
1983 if not Is_Array_Type
(PAT
) then
1985 Unchecked_Convert_To
(Rtyp
,
1988 Right_Opnd
=> Lit
)));
1990 -- For the array case, we insert the actions
1994 -- System.Bit_Ops.Bit_Not
1996 -- Typ'Length * Typ'Component_Size,
1999 -- where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
2000 -- is the length of the operand in bits. We then replace the expression
2001 -- with a reference to Result.
2005 Result_Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
2008 Insert_Actions
(N
, New_List
(
2009 Make_Object_Declaration
(Loc
,
2010 Defining_Identifier
=> Result_Ent
,
2011 Object_Definition
=> New_Occurrence_Of
(Rtyp
, Loc
)),
2013 Make_Procedure_Call_Statement
(Loc
,
2014 Name
=> New_Occurrence_Of
(RTE
(RE_Bit_Not
), Loc
),
2015 Parameter_Associations
=> New_List
(
2016 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2018 Attribute_Name
=> Name_Address
),
2020 Make_Op_Multiply
(Loc
,
2022 Make_Attribute_Reference
(Loc
,
2025 (Etype
(First_Index
(Rtyp
)), Loc
),
2026 Attribute_Name
=> Name_Range_Length
),
2029 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
))),
2031 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2032 Prefix
=> New_Occurrence_Of
(Result_Ent
, Loc
),
2033 Attribute_Name
=> Name_Address
)))));
2035 Rewrite
(N
, New_Occurrence_Of
(Result_Ent
, Loc
));
2039 Analyze_And_Resolve
(N
, Typ
, Suppress
=> All_Checks
);
2040 end Expand_Packed_Not
;
2042 -----------------------------
2043 -- Get_Base_And_Bit_Offset --
2044 -----------------------------
2046 procedure Get_Base_And_Bit_Offset
2049 Offset
: out Node_Id
)
2060 -- We build up an expression serially that has the form
2062 -- linear-subscript * component_size for each array reference
2063 -- + field'Bit_Position for each record field
2069 if Nkind
(Base
) = N_Indexed_Component
then
2070 Convert_To_Actual_Subtype
(Prefix
(Base
));
2071 Atyp
:= Etype
(Prefix
(Base
));
2072 Compute_Linear_Subscript
(Atyp
, Base
, Subscr
);
2075 Make_Op_Multiply
(Loc
,
2076 Left_Opnd
=> Subscr
,
2078 Make_Attribute_Reference
(Loc
,
2079 Prefix
=> New_Occurrence_Of
(Atyp
, Loc
),
2080 Attribute_Name
=> Name_Component_Size
));
2082 elsif Nkind
(Base
) = N_Selected_Component
then
2084 Make_Attribute_Reference
(Loc
,
2085 Prefix
=> Selector_Name
(Base
),
2086 Attribute_Name
=> Name_Bit_Position
);
2098 Left_Opnd
=> Offset
,
2099 Right_Opnd
=> Term
);
2102 Base
:= Prefix
(Base
);
2104 end Get_Base_And_Bit_Offset
;
2106 -------------------------------------
2107 -- Involves_Packed_Array_Reference --
2108 -------------------------------------
2110 function Involves_Packed_Array_Reference
(N
: Node_Id
) return Boolean is
2112 if Nkind
(N
) = N_Indexed_Component
2113 and then Is_Bit_Packed_Array
(Etype
(Prefix
(N
)))
2117 elsif Nkind
(N
) = N_Selected_Component
then
2118 return Involves_Packed_Array_Reference
(Prefix
(N
));
2123 end Involves_Packed_Array_Reference
;
2125 --------------------------
2126 -- Known_Aligned_Enough --
2127 --------------------------
2129 function Known_Aligned_Enough
(Obj
: Node_Id
; Csiz
: Nat
) return Boolean is
2130 Typ
: constant Entity_Id
:= Etype
(Obj
);
2132 function In_Partially_Packed_Record
(Comp
: Entity_Id
) return Boolean;
2133 -- If the component is in a record that contains previous packed
2134 -- components, consider it unaligned because the back-end might
2135 -- choose to pack the rest of the record. Lead to less efficient code,
2136 -- but safer vis-a-vis of back-end choices.
2138 --------------------------------
2139 -- In_Partially_Packed_Record --
2140 --------------------------------
2142 function In_Partially_Packed_Record
(Comp
: Entity_Id
) return Boolean is
2143 Rec_Type
: constant Entity_Id
:= Scope
(Comp
);
2144 Prev_Comp
: Entity_Id
;
2147 Prev_Comp
:= First_Entity
(Rec_Type
);
2148 while Present
(Prev_Comp
) loop
2149 if Is_Packed
(Etype
(Prev_Comp
)) then
2152 elsif Prev_Comp
= Comp
then
2156 Next_Entity
(Prev_Comp
);
2160 end In_Partially_Packed_Record
;
2162 -- Start of processing for Known_Aligned_Enough
2165 -- Odd bit sizes don't need alignment anyway
2167 if Csiz
mod 2 = 1 then
2170 -- If we have a specified alignment, see if it is sufficient, if not
2171 -- then we can't possibly be aligned enough in any case.
2173 elsif Known_Alignment
(Etype
(Obj
)) then
2174 -- Alignment required is 4 if size is a multiple of 4, and
2175 -- 2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2177 if Alignment
(Etype
(Obj
)) < 4 - (Csiz
mod 4) then
2182 -- OK, alignment should be sufficient, if object is aligned
2184 -- If object is strictly aligned, then it is definitely aligned
2186 if Strict_Alignment
(Typ
) then
2189 -- Case of subscripted array reference
2191 elsif Nkind
(Obj
) = N_Indexed_Component
then
2193 -- If we have a pointer to an array, then this is definitely
2194 -- aligned, because pointers always point to aligned versions.
2196 if Is_Access_Type
(Etype
(Prefix
(Obj
))) then
2199 -- Otherwise, go look at the prefix
2202 return Known_Aligned_Enough
(Prefix
(Obj
), Csiz
);
2205 -- Case of record field
2207 elsif Nkind
(Obj
) = N_Selected_Component
then
2209 -- What is significant here is whether the record type is packed
2211 if Is_Record_Type
(Etype
(Prefix
(Obj
)))
2212 and then Is_Packed
(Etype
(Prefix
(Obj
)))
2216 -- Or the component has a component clause which might cause
2217 -- the component to become unaligned (we can't tell if the
2218 -- backend is doing alignment computations).
2220 elsif Present
(Component_Clause
(Entity
(Selector_Name
(Obj
)))) then
2223 elsif In_Partially_Packed_Record
(Entity
(Selector_Name
(Obj
))) then
2226 -- In all other cases, go look at prefix
2229 return Known_Aligned_Enough
(Prefix
(Obj
), Csiz
);
2232 elsif Nkind
(Obj
) = N_Type_Conversion
then
2233 return Known_Aligned_Enough
(Expression
(Obj
), Csiz
);
2235 -- For a formal parameter, it is safer to assume that it is not
2236 -- aligned, because the formal may be unconstrained while the actual
2237 -- is constrained. In this situation, a small constrained packed
2238 -- array, represented in modular form, may be unaligned.
2240 elsif Is_Entity_Name
(Obj
) then
2241 return not Is_Formal
(Entity
(Obj
));
2244 -- If none of the above, must be aligned
2247 end Known_Aligned_Enough
;
2249 ---------------------
2250 -- Make_Shift_Left --
2251 ---------------------
2253 function Make_Shift_Left
(N
: Node_Id
; S
: Node_Id
) return Node_Id
is
2257 if Compile_Time_Known_Value
(S
) and then Expr_Value
(S
) = 0 then
2261 Make_Op_Shift_Left
(Sloc
(N
),
2264 Set_Shift_Count_OK
(Nod
, True);
2267 end Make_Shift_Left
;
2269 ----------------------
2270 -- Make_Shift_Right --
2271 ----------------------
2273 function Make_Shift_Right
(N
: Node_Id
; S
: Node_Id
) return Node_Id
is
2277 if Compile_Time_Known_Value
(S
) and then Expr_Value
(S
) = 0 then
2281 Make_Op_Shift_Right
(Sloc
(N
),
2284 Set_Shift_Count_OK
(Nod
, True);
2287 end Make_Shift_Right
;
2289 -----------------------------
2290 -- RJ_Unchecked_Convert_To --
2291 -----------------------------
2293 function RJ_Unchecked_Convert_To
2295 Expr
: Node_Id
) return Node_Id
2297 Source_Typ
: constant Entity_Id
:= Etype
(Expr
);
2298 Target_Typ
: constant Entity_Id
:= Typ
;
2300 Src
: Node_Id
:= Expr
;
2306 Source_Siz
:= UI_To_Int
(RM_Size
(Source_Typ
));
2307 Target_Siz
:= UI_To_Int
(RM_Size
(Target_Typ
));
2309 -- For a little-endian target type stored byte-swapped on a
2310 -- big-endian machine, do not mask to Target_Siz bits.
2313 and then (Is_Record_Type
(Target_Typ
)
2315 Is_Array_Type
(Target_Typ
))
2316 and then Reverse_Storage_Order
(Target_Typ
)
2318 Source_Siz
:= Target_Siz
;
2321 -- First step, if the source type is not a discrete type, then we first
2322 -- convert to a modular type of the source length, since otherwise, on
2323 -- a big-endian machine, we get left-justification. We do it for little-
2324 -- endian machines as well, because there might be junk bits that are
2325 -- not cleared if the type is not numeric.
2327 if Source_Siz
/= Target_Siz
2328 and then not Is_Discrete_Type
(Source_Typ
)
2330 Src
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Source_Siz
)), Src
);
2333 -- In the big endian case, if the lengths of the two types differ, then
2334 -- we must worry about possible left justification in the conversion,
2335 -- and avoiding that is what this is all about.
2337 if Bytes_Big_Endian
and then Source_Siz
/= Target_Siz
then
2339 -- Next step. If the target is not a discrete type, then we first
2340 -- convert to a modular type of the target length, since otherwise,
2341 -- on a big-endian machine, we get left-justification.
2343 if not Is_Discrete_Type
(Target_Typ
) then
2344 Src
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Target_Siz
)), Src
);
2348 -- And now we can do the final conversion to the target type
2350 return Unchecked_Convert_To
(Target_Typ
, Src
);
2351 end RJ_Unchecked_Convert_To
;
2353 ----------------------------------------------
2354 -- Setup_Enumeration_Packed_Array_Reference --
2355 ----------------------------------------------
2357 -- All we have to do here is to find the subscripts that correspond to the
2358 -- index positions that have non-standard enumeration types and insert a
2359 -- Pos attribute to get the proper subscript value.
2361 -- Finally the prefix must be uncheck-converted to the corresponding packed
2364 -- Note that the component type is unchanged, so we do not need to fiddle
2365 -- with the types (Gigi always automatically takes the packed array type if
2366 -- it is set, as it will be in this case).
2368 procedure Setup_Enumeration_Packed_Array_Reference
(N
: Node_Id
) is
2369 Pfx
: constant Node_Id
:= Prefix
(N
);
2370 Typ
: constant Entity_Id
:= Etype
(N
);
2371 Exprs
: constant List_Id
:= Expressions
(N
);
2375 -- If the array is unconstrained, then we replace the array reference
2376 -- with its actual subtype. This actual subtype will have a packed array
2377 -- type with appropriate bounds.
2379 if not Is_Constrained
(Packed_Array_Impl_Type
(Etype
(Pfx
))) then
2380 Convert_To_Actual_Subtype
(Pfx
);
2383 Expr
:= First
(Exprs
);
2384 while Present
(Expr
) loop
2386 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
2387 Expr_Typ
: constant Entity_Id
:= Etype
(Expr
);
2390 if Is_Enumeration_Type
(Expr_Typ
)
2391 and then Has_Non_Standard_Rep
(Expr_Typ
)
2394 Make_Attribute_Reference
(Loc
,
2395 Prefix
=> New_Occurrence_Of
(Expr_Typ
, Loc
),
2396 Attribute_Name
=> Name_Pos
,
2397 Expressions
=> New_List
(Relocate_Node
(Expr
))));
2398 Analyze_And_Resolve
(Expr
, Standard_Natural
);
2406 Make_Indexed_Component
(Sloc
(N
),
2408 Unchecked_Convert_To
(Packed_Array_Impl_Type
(Etype
(Pfx
)), Pfx
),
2409 Expressions
=> Exprs
));
2411 Analyze_And_Resolve
(N
, Typ
);
2412 end Setup_Enumeration_Packed_Array_Reference
;
2414 -----------------------------------------
2415 -- Setup_Inline_Packed_Array_Reference --
2416 -----------------------------------------
2418 procedure Setup_Inline_Packed_Array_Reference
2421 Obj
: in out Node_Id
;
2423 Shift
: out Node_Id
)
2425 Loc
: constant Source_Ptr
:= Sloc
(N
);
2432 Csiz
:= Component_Size
(Atyp
);
2434 Convert_To_PAT_Type
(Obj
);
2437 Cmask
:= 2 ** Csiz
- 1;
2439 if Is_Array_Type
(PAT
) then
2440 Otyp
:= Component_Type
(PAT
);
2441 Osiz
:= Component_Size
(PAT
);
2446 -- In the case where the PAT is a modular type, we want the actual
2447 -- size in bits of the modular value we use. This is neither the
2448 -- Object_Size nor the Value_Size, either of which may have been
2449 -- reset to strange values, but rather the minimum size. Note that
2450 -- since this is a modular type with full range, the issue of
2451 -- biased representation does not arise.
2453 Osiz
:= UI_From_Int
(Minimum_Size
(Otyp
));
2456 Compute_Linear_Subscript
(Atyp
, N
, Shift
);
2458 -- If the component size is not 1, then the subscript must be multiplied
2459 -- by the component size to get the shift count.
2463 Make_Op_Multiply
(Loc
,
2464 Left_Opnd
=> Make_Integer_Literal
(Loc
, Csiz
),
2465 Right_Opnd
=> Shift
);
2468 -- If we have the array case, then this shift count must be broken down
2469 -- into a byte subscript, and a shift within the byte.
2471 if Is_Array_Type
(PAT
) then
2474 New_Shift
: Node_Id
;
2477 -- We must analyze shift, since we will duplicate it
2479 Set_Parent
(Shift
, N
);
2481 (Shift
, Standard_Integer
, Suppress
=> All_Checks
);
2483 -- The shift count within the word is
2488 Left_Opnd
=> Duplicate_Subexpr
(Shift
),
2489 Right_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
));
2491 -- The subscript to be used on the PAT array is
2495 Make_Indexed_Component
(Loc
,
2497 Expressions
=> New_List
(
2498 Make_Op_Divide
(Loc
,
2499 Left_Opnd
=> Duplicate_Subexpr
(Shift
),
2500 Right_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
))));
2505 -- For the modular integer case, the object to be manipulated is the
2506 -- entire array, so Obj is unchanged. Note that we will reset its type
2507 -- to PAT before returning to the caller.
2513 -- The one remaining step is to modify the shift count for the
2514 -- big-endian case. Consider the following example in a byte:
2516 -- xxxxxxxx bits of byte
2517 -- vvvvvvvv bits of value
2518 -- 33221100 little-endian numbering
2519 -- 00112233 big-endian numbering
2521 -- Here we have the case of 2-bit fields
2523 -- For the little-endian case, we already have the proper shift count
2524 -- set, e.g. for element 2, the shift count is 2*2 = 4.
2526 -- For the big endian case, we have to adjust the shift count, computing
2527 -- it as (N - F) - Shift, where N is the number of bits in an element of
2528 -- the array used to implement the packed array, F is the number of bits
2529 -- in a source array element, and Shift is the count so far computed.
2531 -- We also have to adjust if the storage order is reversed
2533 if Bytes_Big_Endian
xor Reverse_Storage_Order
(Base_Type
(Atyp
)) then
2535 Make_Op_Subtract
(Loc
,
2536 Left_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
- Csiz
),
2537 Right_Opnd
=> Shift
);
2540 Set_Parent
(Shift
, N
);
2541 Set_Parent
(Obj
, N
);
2542 Analyze_And_Resolve
(Obj
, Otyp
, Suppress
=> All_Checks
);
2543 Analyze_And_Resolve
(Shift
, Standard_Integer
, Suppress
=> All_Checks
);
2545 -- Make sure final type of object is the appropriate packed type
2547 Set_Etype
(Obj
, Otyp
);
2549 end Setup_Inline_Packed_Array_Reference
;