1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
32 Let us demonstrate what is done on an example:
34 for (i = 0; i < 100; i++)
36 a[i+2] = a[i] + a[i+1];
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
68 In our example, we get the following chains (the chain for c is invalid).
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
94 e[i] + f[i+1] + e[i+1] + f[i]
96 can be reassociated as
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
100 and we can combine the chains for e and f into one chain.
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 upto RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
141 In our case, F = 2 and the (main loop of the) result is
143 for (i = 0; i < ...; i += 2)
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
171 for (i = 0; i < n; i++)
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
190 #include "coretypes.h"
195 #include "tree-flow.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
201 #include "diagnostic.h"
202 #include "tree-pass.h"
203 #include "tree-affine.h"
204 #include "tree-inline.h"
206 /* The maximum number of iterations between the considered memory
209 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
211 /* Data references (or phi nodes that carry data reference values across
214 typedef struct dref_d
216 /* The reference itself. */
217 struct data_reference
*ref
;
219 /* The statement in that the reference appears. */
222 /* In case that STMT is a phi node, this field is set to the SSA name
223 defined by it in replace_phis_by_defined_names (in order to avoid
224 pointing to phi node that got reallocated in the meantime). */
225 tree name_defined_by_phi
;
227 /* Distance of the reference from the root of the chain (in number of
228 iterations of the loop). */
231 /* Number of iterations offset from the first reference in the component. */
234 /* Number of the reference in a component, in dominance ordering. */
237 /* True if the memory reference is always accessed when the loop is
239 unsigned always_accessed
: 1;
243 DEF_VEC_ALLOC_P (dref
, heap
);
245 /* Type of the chain of the references. */
249 /* The addresses of the references in the chain are constant. */
252 /* There are only loads in the chain. */
255 /* Root of the chain is store, the rest are loads. */
258 /* A combination of two chains. */
262 /* Chains of data references. */
266 /* Type of the chain. */
267 enum chain_type type
;
269 /* For combination chains, the operator and the two chains that are
270 combined, and the type of the result. */
273 struct chain
*ch1
, *ch2
;
275 /* The references in the chain. */
276 VEC(dref
,heap
) *refs
;
278 /* The maximum distance of the reference in the chain from the root. */
281 /* The variables used to copy the value throughout iterations. */
282 VEC(tree
,heap
) *vars
;
284 /* Initializers for the variables. */
285 VEC(tree
,heap
) *inits
;
287 /* True if there is a use of a variable with the maximal distance
288 that comes after the root in the loop. */
289 unsigned has_max_use_after
: 1;
291 /* True if all the memory references in the chain are always accessed. */
292 unsigned all_always_accessed
: 1;
294 /* True if this chain was combined together with some other chain. */
295 unsigned combined
: 1;
299 DEF_VEC_ALLOC_P (chain_p
, heap
);
301 /* Describes the knowledge about the step of the memory references in
306 /* The step is zero. */
309 /* The step is nonzero. */
312 /* The step may or may not be nonzero. */
316 /* Components of the data dependence graph. */
320 /* The references in the component. */
321 VEC(dref
,heap
) *refs
;
323 /* What we know about the step of the references in the component. */
324 enum ref_step_type comp_step
;
326 /* Next component in the list. */
327 struct component
*next
;
330 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
332 static bitmap looparound_phis
;
334 /* Cache used by tree_to_aff_combination_expand. */
336 static struct pointer_map_t
*name_expansions
;
338 /* Dumps data reference REF to FILE. */
340 extern void dump_dref (FILE *, dref
);
342 dump_dref (FILE *file
, dref ref
)
347 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
348 fprintf (file
, " (id %u%s)\n", ref
->pos
,
349 DR_IS_READ (ref
->ref
) ? "" : ", write");
351 fprintf (file
, " offset ");
352 dump_double_int (file
, ref
->offset
, false);
353 fprintf (file
, "\n");
355 fprintf (file
, " distance %u\n", ref
->distance
);
359 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
360 fprintf (file
, " looparound ref\n");
362 fprintf (file
, " combination ref\n");
363 fprintf (file
, " in statement ");
364 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
365 fprintf (file
, "\n");
366 fprintf (file
, " distance %u\n", ref
->distance
);
371 /* Dumps CHAIN to FILE. */
373 extern void dump_chain (FILE *, chain_p
);
375 dump_chain (FILE *file
, chain_p chain
)
378 const char *chain_type
;
385 chain_type
= "Load motion";
389 chain_type
= "Loads-only";
393 chain_type
= "Store-loads";
397 chain_type
= "Combination";
404 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
405 chain
->combined
? " (combined)" : "");
406 if (chain
->type
!= CT_INVARIANT
)
407 fprintf (file
, " max distance %u%s\n", chain
->length
,
408 chain
->has_max_use_after
? "" : ", may reuse first");
410 if (chain
->type
== CT_COMBINATION
)
412 fprintf (file
, " equal to %p %s %p in type ",
413 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
414 (void *) chain
->ch2
);
415 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
416 fprintf (file
, "\n");
421 fprintf (file
, " vars");
422 for (i
= 0; VEC_iterate (tree
, chain
->vars
, i
, var
); i
++)
425 print_generic_expr (file
, var
, TDF_SLIM
);
427 fprintf (file
, "\n");
432 fprintf (file
, " inits");
433 for (i
= 0; VEC_iterate (tree
, chain
->inits
, i
, var
); i
++)
436 print_generic_expr (file
, var
, TDF_SLIM
);
438 fprintf (file
, "\n");
441 fprintf (file
, " references:\n");
442 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
445 fprintf (file
, "\n");
448 /* Dumps CHAINS to FILE. */
450 extern void dump_chains (FILE *, VEC (chain_p
, heap
) *);
452 dump_chains (FILE *file
, VEC (chain_p
, heap
) *chains
)
457 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
458 dump_chain (file
, chain
);
461 /* Dumps COMP to FILE. */
463 extern void dump_component (FILE *, struct component
*);
465 dump_component (FILE *file
, struct component
*comp
)
470 fprintf (file
, "Component%s:\n",
471 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
472 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
474 fprintf (file
, "\n");
477 /* Dumps COMPS to FILE. */
479 extern void dump_components (FILE *, struct component
*);
481 dump_components (FILE *file
, struct component
*comps
)
483 struct component
*comp
;
485 for (comp
= comps
; comp
; comp
= comp
->next
)
486 dump_component (file
, comp
);
489 /* Frees a chain CHAIN. */
492 release_chain (chain_p chain
)
500 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, ref
); i
++)
503 VEC_free (dref
, heap
, chain
->refs
);
504 VEC_free (tree
, heap
, chain
->vars
);
505 VEC_free (tree
, heap
, chain
->inits
);
513 release_chains (VEC (chain_p
, heap
) *chains
)
518 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
519 release_chain (chain
);
520 VEC_free (chain_p
, heap
, chains
);
523 /* Frees a component COMP. */
526 release_component (struct component
*comp
)
528 VEC_free (dref
, heap
, comp
->refs
);
532 /* Frees list of components COMPS. */
535 release_components (struct component
*comps
)
537 struct component
*act
, *next
;
539 for (act
= comps
; act
; act
= next
)
542 release_component (act
);
546 /* Finds a root of tree given by FATHERS containing A, and performs path
550 component_of (unsigned fathers
[], unsigned a
)
554 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
557 for (; a
!= root
; a
= n
)
566 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
567 components, A and B are components to merge. */
570 merge_comps (unsigned fathers
[], unsigned sizes
[], unsigned a
, unsigned b
)
572 unsigned ca
= component_of (fathers
, a
);
573 unsigned cb
= component_of (fathers
, b
);
578 if (sizes
[ca
] < sizes
[cb
])
580 sizes
[cb
] += sizes
[ca
];
585 sizes
[ca
] += sizes
[cb
];
590 /* Returns true if A is a reference that is suitable for predictive commoning
591 in the innermost loop that contains it. REF_STEP is set according to the
592 step of the reference A. */
595 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
597 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
600 || !is_gimple_reg_type (TREE_TYPE (ref
))
601 || tree_could_throw_p (ref
))
604 if (integer_zerop (step
))
605 *ref_step
= RS_INVARIANT
;
606 else if (integer_nonzerop (step
))
607 *ref_step
= RS_NONZERO
;
614 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
617 aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
)
621 tree_to_aff_combination_expand (DR_OFFSET (dr
), sizetype
, offset
,
623 aff_combination_const (&delta
, sizetype
, tree_to_double_int (DR_INIT (dr
)));
624 aff_combination_add (offset
, &delta
);
627 /* Determines number of iterations of the innermost enclosing loop before B
628 refers to exactly the same location as A and stores it to OFF. If A and
629 B do not have the same step, they never meet, or anything else fails,
630 returns false, otherwise returns true. Both A and B are assumed to
631 satisfy suitable_reference_p. */
634 determine_offset (struct data_reference
*a
, struct data_reference
*b
,
637 aff_tree diff
, baseb
, step
;
640 /* Check that both the references access the location in the same type. */
641 typea
= TREE_TYPE (DR_REF (a
));
642 typeb
= TREE_TYPE (DR_REF (b
));
643 if (!useless_type_conversion_p (typeb
, typea
))
646 /* Check whether the base address and the step of both references is the
648 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
649 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
652 if (integer_zerop (DR_STEP (a
)))
654 /* If the references have loop invariant address, check that they access
655 exactly the same location. */
656 *off
= double_int_zero
;
657 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
658 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
661 /* Compare the offsets of the addresses, and check whether the difference
662 is a multiple of step. */
663 aff_combination_dr_offset (a
, &diff
);
664 aff_combination_dr_offset (b
, &baseb
);
665 aff_combination_scale (&baseb
, double_int_minus_one
);
666 aff_combination_add (&diff
, &baseb
);
668 tree_to_aff_combination_expand (DR_STEP (a
), sizetype
,
669 &step
, &name_expansions
);
670 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
673 /* Returns the last basic block in LOOP for that we are sure that
674 it is executed whenever the loop is entered. */
677 last_always_executed_block (struct loop
*loop
)
680 VEC (edge
, heap
) *exits
= get_loop_exit_edges (loop
);
682 basic_block last
= loop
->latch
;
684 for (i
= 0; VEC_iterate (edge
, exits
, i
, ex
); i
++)
685 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
686 VEC_free (edge
, heap
, exits
);
691 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
693 static struct component
*
694 split_data_refs_to_components (struct loop
*loop
,
695 VEC (data_reference_p
, heap
) *datarefs
,
696 VEC (ddr_p
, heap
) *depends
)
698 unsigned i
, n
= VEC_length (data_reference_p
, datarefs
);
699 unsigned ca
, ia
, ib
, bad
;
700 unsigned *comp_father
= XNEWVEC (unsigned, n
+ 1);
701 unsigned *comp_size
= XNEWVEC (unsigned, n
+ 1);
702 struct component
**comps
;
703 struct data_reference
*dr
, *dra
, *drb
;
704 struct data_dependence_relation
*ddr
;
705 struct component
*comp_list
= NULL
, *comp
;
707 basic_block last_always_executed
= last_always_executed_block (loop
);
709 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
713 /* A fake reference for call or asm_expr that may clobber memory;
717 dr
->aux
= (void *) (size_t) i
;
722 /* A component reserved for the "bad" data references. */
726 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
728 enum ref_step_type dummy
;
730 if (!suitable_reference_p (dr
, &dummy
))
732 ia
= (unsigned) (size_t) dr
->aux
;
733 merge_comps (comp_father
, comp_size
, n
, ia
);
737 for (i
= 0; VEC_iterate (ddr_p
, depends
, i
, ddr
); i
++)
739 double_int dummy_off
;
741 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
746 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
747 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
751 bad
= component_of (comp_father
, n
);
753 /* If both A and B are reads, we may ignore unsuitable dependences. */
754 if (DR_IS_READ (dra
) && DR_IS_READ (drb
)
755 && (ia
== bad
|| ib
== bad
756 || !determine_offset (dra
, drb
, &dummy_off
)))
759 merge_comps (comp_father
, comp_size
, ia
, ib
);
762 comps
= XCNEWVEC (struct component
*, n
);
763 bad
= component_of (comp_father
, n
);
764 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
766 ia
= (unsigned) (size_t) dr
->aux
;
767 ca
= component_of (comp_father
, ia
);
774 comp
= XCNEW (struct component
);
775 comp
->refs
= VEC_alloc (dref
, heap
, comp_size
[ca
]);
779 dataref
= XCNEW (struct dref_d
);
781 dataref
->stmt
= DR_STMT (dr
);
782 dataref
->offset
= double_int_zero
;
783 dataref
->distance
= 0;
785 dataref
->always_accessed
786 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
787 gimple_bb (dataref
->stmt
));
788 dataref
->pos
= VEC_length (dref
, comp
->refs
);
789 VEC_quick_push (dref
, comp
->refs
, dataref
);
792 for (i
= 0; i
< n
; i
++)
797 comp
->next
= comp_list
;
809 /* Returns true if the component COMP satisfies the conditions
810 described in 2) at the beginning of this file. LOOP is the current
814 suitable_component_p (struct loop
*loop
, struct component
*comp
)
818 basic_block ba
, bp
= loop
->header
;
819 bool ok
, has_write
= false;
821 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
823 ba
= gimple_bb (a
->stmt
);
825 if (!just_once_each_iteration_p (loop
, ba
))
828 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
831 if (!DR_IS_READ (a
->ref
))
835 first
= VEC_index (dref
, comp
->refs
, 0);
836 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
838 first
->offset
= double_int_zero
;
840 for (i
= 1; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
842 if (!determine_offset (first
->ref
, a
->ref
, &a
->offset
))
845 #ifdef ENABLE_CHECKING
847 enum ref_step_type a_step
;
848 ok
= suitable_reference_p (a
->ref
, &a_step
);
849 gcc_assert (ok
&& a_step
== comp
->comp_step
);
854 /* If there is a write inside the component, we must know whether the
855 step is nonzero or not -- we would not otherwise be able to recognize
856 whether the value accessed by reads comes from the OFFSET-th iteration
857 or the previous one. */
858 if (has_write
&& comp
->comp_step
== RS_ANY
)
864 /* Check the conditions on references inside each of components COMPS,
865 and remove the unsuitable components from the list. The new list
866 of components is returned. The conditions are described in 2) at
867 the beginning of this file. LOOP is the current loop. */
869 static struct component
*
870 filter_suitable_components (struct loop
*loop
, struct component
*comps
)
872 struct component
**comp
, *act
;
874 for (comp
= &comps
; *comp
; )
877 if (suitable_component_p (loop
, act
))
885 for (i
= 0; VEC_iterate (dref
, act
->refs
, i
, ref
); i
++)
887 release_component (act
);
894 /* Compares two drefs A and B by their offset and position. Callback for
898 order_drefs (const void *a
, const void *b
)
900 const dref
*const da
= (const dref
*) a
;
901 const dref
*const db
= (const dref
*) b
;
902 int offcmp
= double_int_scmp ((*da
)->offset
, (*db
)->offset
);
907 return (*da
)->pos
- (*db
)->pos
;
910 /* Returns root of the CHAIN. */
913 get_chain_root (chain_p chain
)
915 return VEC_index (dref
, chain
->refs
, 0);
918 /* Adds REF to the chain CHAIN. */
921 add_ref_to_chain (chain_p chain
, dref ref
)
923 dref root
= get_chain_root (chain
);
926 gcc_assert (double_int_scmp (root
->offset
, ref
->offset
) <= 0);
927 dist
= double_int_add (ref
->offset
, double_int_neg (root
->offset
));
928 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE
), dist
) <= 0)
933 gcc_assert (double_int_fits_in_uhwi_p (dist
));
935 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
937 ref
->distance
= double_int_to_uhwi (dist
);
939 if (ref
->distance
>= chain
->length
)
941 chain
->length
= ref
->distance
;
942 chain
->has_max_use_after
= false;
945 if (ref
->distance
== chain
->length
946 && ref
->pos
> root
->pos
)
947 chain
->has_max_use_after
= true;
949 chain
->all_always_accessed
&= ref
->always_accessed
;
952 /* Returns the chain for invariant component COMP. */
955 make_invariant_chain (struct component
*comp
)
957 chain_p chain
= XCNEW (struct chain
);
961 chain
->type
= CT_INVARIANT
;
963 chain
->all_always_accessed
= true;
965 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, ref
); i
++)
967 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
968 chain
->all_always_accessed
&= ref
->always_accessed
;
974 /* Make a new chain rooted at REF. */
977 make_rooted_chain (dref ref
)
979 chain_p chain
= XCNEW (struct chain
);
981 chain
->type
= DR_IS_READ (ref
->ref
) ? CT_LOAD
: CT_STORE_LOAD
;
983 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
984 chain
->all_always_accessed
= ref
->always_accessed
;
991 /* Returns true if CHAIN is not trivial. */
994 nontrivial_chain_p (chain_p chain
)
996 return chain
!= NULL
&& VEC_length (dref
, chain
->refs
) > 1;
999 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1003 name_for_ref (dref ref
)
1007 if (is_gimple_assign (ref
->stmt
))
1009 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1010 name
= gimple_assign_lhs (ref
->stmt
);
1012 name
= gimple_assign_rhs1 (ref
->stmt
);
1015 name
= PHI_RESULT (ref
->stmt
);
1017 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1020 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1021 iterations of the innermost enclosing loop). */
1024 valid_initializer_p (struct data_reference
*ref
,
1025 unsigned distance
, struct data_reference
*root
)
1027 aff_tree diff
, base
, step
;
1030 /* Both REF and ROOT must be accessing the same object. */
1031 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1034 /* The initializer is defined outside of loop, hence its address must be
1035 invariant inside the loop. */
1036 gcc_assert (integer_zerop (DR_STEP (ref
)));
1038 /* If the address of the reference is invariant, initializer must access
1039 exactly the same location. */
1040 if (integer_zerop (DR_STEP (root
)))
1041 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1042 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1044 /* Verify that this index of REF is equal to the root's index at
1045 -DISTANCE-th iteration. */
1046 aff_combination_dr_offset (root
, &diff
);
1047 aff_combination_dr_offset (ref
, &base
);
1048 aff_combination_scale (&base
, double_int_minus_one
);
1049 aff_combination_add (&diff
, &base
);
1051 tree_to_aff_combination_expand (DR_STEP (root
), sizetype
, &step
,
1053 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1056 if (!double_int_equal_p (off
, uhwi_to_double_int (distance
)))
1062 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1063 initial value is correct (equal to initial value of REF shifted by one
1064 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1065 is the root of the current chain. */
1068 find_looparound_phi (struct loop
*loop
, dref ref
, dref root
)
1070 tree name
, init
, init_ref
;
1071 gimple phi
= NULL
, init_stmt
;
1072 edge latch
= loop_latch_edge (loop
);
1073 struct data_reference init_dr
;
1074 gimple_stmt_iterator psi
;
1076 if (is_gimple_assign (ref
->stmt
))
1078 if (DR_IS_READ (ref
->ref
))
1079 name
= gimple_assign_lhs (ref
->stmt
);
1081 name
= gimple_assign_rhs1 (ref
->stmt
);
1084 name
= PHI_RESULT (ref
->stmt
);
1088 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1090 phi
= gsi_stmt (psi
);
1091 if (PHI_ARG_DEF_FROM_EDGE (phi
, latch
) == name
)
1095 if (gsi_end_p (psi
))
1098 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1099 if (TREE_CODE (init
) != SSA_NAME
)
1101 init_stmt
= SSA_NAME_DEF_STMT (init
);
1102 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1104 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1106 init_ref
= gimple_assign_rhs1 (init_stmt
);
1107 if (!REFERENCE_CLASS_P (init_ref
)
1108 && !DECL_P (init_ref
))
1111 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1112 loop enclosing PHI). */
1113 memset (&init_dr
, 0, sizeof (struct data_reference
));
1114 DR_REF (&init_dr
) = init_ref
;
1115 DR_STMT (&init_dr
) = phi
;
1116 if (!dr_analyze_innermost (&init_dr
))
1119 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1125 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1128 insert_looparound_copy (chain_p chain
, dref ref
, gimple phi
)
1130 dref nw
= XCNEW (struct dref_d
), aref
;
1134 nw
->distance
= ref
->distance
+ 1;
1135 nw
->always_accessed
= 1;
1137 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, aref
); i
++)
1138 if (aref
->distance
>= nw
->distance
)
1140 VEC_safe_insert (dref
, heap
, chain
->refs
, i
, nw
);
1142 if (nw
->distance
> chain
->length
)
1144 chain
->length
= nw
->distance
;
1145 chain
->has_max_use_after
= false;
1149 /* For references in CHAIN that are copied around the LOOP (created previously
1150 by PRE, or by user), add the results of such copies to the chain. This
1151 enables us to remove the copies by unrolling, and may need less registers
1152 (also, it may allow us to combine chains together). */
1155 add_looparound_copies (struct loop
*loop
, chain_p chain
)
1158 dref ref
, root
= get_chain_root (chain
);
1161 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, ref
); i
++)
1163 phi
= find_looparound_phi (loop
, ref
, root
);
1167 bitmap_set_bit (looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1168 insert_looparound_copy (chain
, ref
, phi
);
1172 /* Find roots of the values and determine distances in the component COMP.
1173 The references are redistributed into CHAINS. LOOP is the current
1177 determine_roots_comp (struct loop
*loop
,
1178 struct component
*comp
,
1179 VEC (chain_p
, heap
) **chains
)
1183 chain_p chain
= NULL
;
1184 double_int last_ofs
= double_int_zero
;
1186 /* Invariants are handled specially. */
1187 if (comp
->comp_step
== RS_INVARIANT
)
1189 chain
= make_invariant_chain (comp
);
1190 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1194 qsort (VEC_address (dref
, comp
->refs
), VEC_length (dref
, comp
->refs
),
1195 sizeof (dref
), order_drefs
);
1197 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
1199 if (!chain
|| !DR_IS_READ (a
->ref
)
1200 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE
),
1201 double_int_add (a
->offset
,
1202 double_int_neg (last_ofs
))) <= 0)
1204 if (nontrivial_chain_p (chain
))
1206 add_looparound_copies (loop
, chain
);
1207 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1210 release_chain (chain
);
1211 chain
= make_rooted_chain (a
);
1212 last_ofs
= a
->offset
;
1216 add_ref_to_chain (chain
, a
);
1219 if (nontrivial_chain_p (chain
))
1221 add_looparound_copies (loop
, chain
);
1222 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1225 release_chain (chain
);
1228 /* Find roots of the values and determine distances in components COMPS, and
1229 separates the references to CHAINS. LOOP is the current loop. */
1232 determine_roots (struct loop
*loop
,
1233 struct component
*comps
, VEC (chain_p
, heap
) **chains
)
1235 struct component
*comp
;
1237 for (comp
= comps
; comp
; comp
= comp
->next
)
1238 determine_roots_comp (loop
, comp
, chains
);
1241 /* Replace the reference in statement STMT with temporary variable
1242 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1243 the reference in the statement. IN_LHS is true if the reference
1244 is in the lhs of STMT, false if it is in rhs. */
1247 replace_ref_with (gimple stmt
, tree new_tree
, bool set
, bool in_lhs
)
1251 gimple_stmt_iterator bsi
, psi
;
1253 if (gimple_code (stmt
) == GIMPLE_PHI
)
1255 gcc_assert (!in_lhs
&& !set
);
1257 val
= PHI_RESULT (stmt
);
1258 bsi
= gsi_after_labels (gimple_bb (stmt
));
1259 psi
= gsi_for_stmt (stmt
);
1260 remove_phi_node (&psi
, false);
1262 /* Turn the phi node into GIMPLE_ASSIGN. */
1263 new_stmt
= gimple_build_assign (val
, new_tree
);
1264 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1268 /* Since the reference is of gimple_reg type, it should only
1269 appear as lhs or rhs of modify statement. */
1270 gcc_assert (is_gimple_assign (stmt
));
1272 bsi
= gsi_for_stmt (stmt
);
1274 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1277 gcc_assert (!in_lhs
);
1278 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1279 stmt
= gsi_stmt (bsi
);
1286 /* We have statement
1290 If OLD is a memory reference, then VAL is gimple_val, and we transform
1296 Otherwise, we are replacing a combination chain,
1297 VAL is the expression that performs the combination, and OLD is an
1298 SSA name. In this case, we transform the assignment to
1305 val
= gimple_assign_lhs (stmt
);
1306 if (TREE_CODE (val
) != SSA_NAME
)
1308 gcc_assert (gimple_assign_copy_p (stmt
));
1309 val
= gimple_assign_rhs1 (stmt
);
1321 val
= gimple_assign_lhs (stmt
);
1324 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1325 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1328 /* Returns the reference to the address of REF in the ITER-th iteration of
1329 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1330 try to preserve the original shape of the reference (not rewrite it
1331 as an indirect ref to the address), to make tree_could_trap_p in
1332 prepare_initializers_chain return false more often. */
1335 ref_at_iteration (struct loop
*loop
, tree ref
, int iter
)
1337 tree idx
, *idx_p
, type
, val
, op0
= NULL_TREE
, ret
;
1341 if (handled_component_p (ref
))
1343 op0
= ref_at_iteration (loop
, TREE_OPERAND (ref
, 0), iter
);
1347 else if (!INDIRECT_REF_P (ref
))
1348 return unshare_expr (ref
);
1350 if (INDIRECT_REF_P (ref
))
1352 /* Take care for INDIRECT_REF and MISALIGNED_INDIRECT_REF at
1354 ret
= copy_node (ref
);
1355 idx
= TREE_OPERAND (ref
, 0);
1356 idx_p
= &TREE_OPERAND (ret
, 0);
1358 else if (TREE_CODE (ref
) == COMPONENT_REF
)
1360 /* Check that the offset is loop invariant. */
1361 if (TREE_OPERAND (ref
, 2)
1362 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 2)))
1365 return build3 (COMPONENT_REF
, TREE_TYPE (ref
), op0
,
1366 unshare_expr (TREE_OPERAND (ref
, 1)),
1367 unshare_expr (TREE_OPERAND (ref
, 2)));
1369 else if (TREE_CODE (ref
) == ARRAY_REF
)
1371 /* Check that the lower bound and the step are loop invariant. */
1372 if (TREE_OPERAND (ref
, 2)
1373 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 2)))
1375 if (TREE_OPERAND (ref
, 3)
1376 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 3)))
1379 ret
= build4 (ARRAY_REF
, TREE_TYPE (ref
), op0
, NULL_TREE
,
1380 unshare_expr (TREE_OPERAND (ref
, 2)),
1381 unshare_expr (TREE_OPERAND (ref
, 3)));
1382 idx
= TREE_OPERAND (ref
, 1);
1383 idx_p
= &TREE_OPERAND (ret
, 1);
1388 ok
= simple_iv (loop
, loop
, idx
, &iv
, true);
1391 iv
.base
= expand_simple_operations (iv
.base
);
1392 if (integer_zerop (iv
.step
))
1393 *idx_p
= unshare_expr (iv
.base
);
1396 type
= TREE_TYPE (iv
.base
);
1397 if (POINTER_TYPE_P (type
))
1399 val
= fold_build2 (MULT_EXPR
, sizetype
, iv
.step
,
1401 val
= fold_build2 (POINTER_PLUS_EXPR
, type
, iv
.base
, val
);
1405 val
= fold_build2 (MULT_EXPR
, type
, iv
.step
,
1406 build_int_cst_type (type
, iter
));
1407 val
= fold_build2 (PLUS_EXPR
, type
, iv
.base
, val
);
1409 *idx_p
= unshare_expr (val
);
1415 /* Get the initialization expression for the INDEX-th temporary variable
1419 get_init_expr (chain_p chain
, unsigned index
)
1421 if (chain
->type
== CT_COMBINATION
)
1423 tree e1
= get_init_expr (chain
->ch1
, index
);
1424 tree e2
= get_init_expr (chain
->ch2
, index
);
1426 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1429 return VEC_index (tree
, chain
->inits
, index
);
1432 /* Marks all virtual operands of statement STMT for renaming. */
1435 mark_virtual_ops_for_renaming (gimple stmt
)
1439 if (gimple_code (stmt
) == GIMPLE_PHI
)
1441 var
= PHI_RESULT (stmt
);
1442 if (is_gimple_reg (var
))
1445 if (TREE_CODE (var
) == SSA_NAME
)
1446 var
= SSA_NAME_VAR (var
);
1447 mark_sym_for_renaming (var
);
1452 if (gimple_vuse (stmt
))
1453 mark_sym_for_renaming (gimple_vop (cfun
));
1456 /* Returns a new temporary variable used for the I-th variable carrying
1457 value of REF. The variable's uid is marked in TMP_VARS. */
1460 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1462 tree type
= TREE_TYPE (ref
);
1463 /* We never access the components of the temporary variable in predictive
1465 tree var
= create_tmp_reg (type
, get_lsm_tmp_name (ref
, i
));
1467 add_referenced_var (var
);
1468 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1472 /* Creates the variables for CHAIN, as well as phi nodes for them and
1473 initialization on entry to LOOP. Uids of the newly created
1474 temporary variables are marked in TMP_VARS. */
1477 initialize_root_vars (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1480 unsigned n
= chain
->length
;
1481 dref root
= get_chain_root (chain
);
1482 bool reuse_first
= !chain
->has_max_use_after
;
1483 tree ref
, init
, var
, next
;
1486 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1488 /* If N == 0, then all the references are within the single iteration. And
1489 since this is an nonempty chain, reuse_first cannot be true. */
1490 gcc_assert (n
> 0 || !reuse_first
);
1492 chain
->vars
= VEC_alloc (tree
, heap
, n
+ 1);
1494 if (chain
->type
== CT_COMBINATION
)
1495 ref
= gimple_assign_lhs (root
->stmt
);
1497 ref
= DR_REF (root
->ref
);
1499 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1501 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1502 VEC_quick_push (tree
, chain
->vars
, var
);
1505 VEC_quick_push (tree
, chain
->vars
, VEC_index (tree
, chain
->vars
, 0));
1507 for (i
= 0; VEC_iterate (tree
, chain
->vars
, i
, var
); i
++)
1508 VEC_replace (tree
, chain
->vars
, i
, make_ssa_name (var
, NULL
));
1510 for (i
= 0; i
< n
; i
++)
1512 var
= VEC_index (tree
, chain
->vars
, i
);
1513 next
= VEC_index (tree
, chain
->vars
, i
+ 1);
1514 init
= get_init_expr (chain
, i
);
1516 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1518 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1520 phi
= create_phi_node (var
, loop
->header
);
1521 SSA_NAME_DEF_STMT (var
) = phi
;
1522 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1523 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1527 /* Create the variables and initialization statement for root of chain
1528 CHAIN. Uids of the newly created temporary variables are marked
1532 initialize_root (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1534 dref root
= get_chain_root (chain
);
1535 bool in_lhs
= (chain
->type
== CT_STORE_LOAD
1536 || chain
->type
== CT_COMBINATION
);
1538 initialize_root_vars (loop
, chain
, tmp_vars
);
1539 replace_ref_with (root
->stmt
,
1540 VEC_index (tree
, chain
->vars
, chain
->length
),
1544 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1545 initialization on entry to LOOP if necessary. The ssa name for the variable
1546 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1547 around the loop is created. Uid of the newly created temporary variable
1548 is marked in TMP_VARS. INITS is the list containing the (single)
1552 initialize_root_vars_lm (struct loop
*loop
, dref root
, bool written
,
1553 VEC(tree
, heap
) **vars
, VEC(tree
, heap
) *inits
,
1557 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
1560 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1562 /* Find the initializer for the variable, and check that it cannot
1564 init
= VEC_index (tree
, inits
, 0);
1566 *vars
= VEC_alloc (tree
, heap
, written
? 2 : 1);
1567 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
1568 VEC_quick_push (tree
, *vars
, var
);
1570 VEC_quick_push (tree
, *vars
, VEC_index (tree
, *vars
, 0));
1572 for (i
= 0; VEC_iterate (tree
, *vars
, i
, var
); i
++)
1573 VEC_replace (tree
, *vars
, i
, make_ssa_name (var
, NULL
));
1575 var
= VEC_index (tree
, *vars
, 0);
1577 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
1579 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1583 next
= VEC_index (tree
, *vars
, 1);
1584 phi
= create_phi_node (var
, loop
->header
);
1585 SSA_NAME_DEF_STMT (var
) = phi
;
1586 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1587 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1591 gimple init_stmt
= gimple_build_assign (var
, init
);
1592 mark_virtual_ops_for_renaming (init_stmt
);
1593 gsi_insert_on_edge_immediate (entry
, init_stmt
);
1598 /* Execute load motion for references in chain CHAIN. Uids of the newly
1599 created temporary variables are marked in TMP_VARS. */
1602 execute_load_motion (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1604 VEC (tree
, heap
) *vars
;
1606 unsigned n_writes
= 0, ridx
, i
;
1609 gcc_assert (chain
->type
== CT_INVARIANT
);
1610 gcc_assert (!chain
->combined
);
1611 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1612 if (!DR_IS_READ (a
->ref
))
1615 /* If there are no reads in the loop, there is nothing to do. */
1616 if (n_writes
== VEC_length (dref
, chain
->refs
))
1619 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
1620 &vars
, chain
->inits
, tmp_vars
);
1623 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1625 bool is_read
= DR_IS_READ (a
->ref
);
1626 mark_virtual_ops_for_renaming (a
->stmt
);
1628 if (!DR_IS_READ (a
->ref
))
1633 var
= VEC_index (tree
, vars
, 0);
1634 var
= make_ssa_name (SSA_NAME_VAR (var
), NULL
);
1635 VEC_replace (tree
, vars
, 0, var
);
1641 replace_ref_with (a
->stmt
, VEC_index (tree
, vars
, ridx
),
1642 !is_read
, !is_read
);
1645 VEC_free (tree
, heap
, vars
);
1648 /* Returns the single statement in that NAME is used, excepting
1649 the looparound phi nodes contained in one of the chains. If there is no
1650 such statement, or more statements, NULL is returned. */
1653 single_nonlooparound_use (tree name
)
1656 imm_use_iterator it
;
1657 gimple stmt
, ret
= NULL
;
1659 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
1661 stmt
= USE_STMT (use
);
1663 if (gimple_code (stmt
) == GIMPLE_PHI
)
1665 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1666 could not be processed anyway, so just fail for them. */
1667 if (bitmap_bit_p (looparound_phis
,
1668 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
1673 else if (ret
!= NULL
)
1682 /* Remove statement STMT, as well as the chain of assignments in that it is
1686 remove_stmt (gimple stmt
)
1690 gimple_stmt_iterator psi
;
1692 if (gimple_code (stmt
) == GIMPLE_PHI
)
1694 name
= PHI_RESULT (stmt
);
1695 next
= single_nonlooparound_use (name
);
1696 psi
= gsi_for_stmt (stmt
);
1697 remove_phi_node (&psi
, true);
1700 || !gimple_assign_ssa_name_copy_p (next
)
1701 || gimple_assign_rhs1 (next
) != name
)
1709 gimple_stmt_iterator bsi
;
1711 bsi
= gsi_for_stmt (stmt
);
1713 name
= gimple_assign_lhs (stmt
);
1714 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
1716 next
= single_nonlooparound_use (name
);
1718 mark_virtual_ops_for_renaming (stmt
);
1719 gsi_remove (&bsi
, true);
1720 release_defs (stmt
);
1723 || !gimple_assign_ssa_name_copy_p (next
)
1724 || gimple_assign_rhs1 (next
) != name
)
1731 /* Perform the predictive commoning optimization for a chain CHAIN.
1732 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1735 execute_pred_commoning_chain (struct loop
*loop
, chain_p chain
,
1742 if (chain
->combined
)
1744 /* For combined chains, just remove the statements that are used to
1745 compute the values of the expression (except for the root one). */
1746 for (i
= 1; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1747 remove_stmt (a
->stmt
);
1751 /* For non-combined chains, set up the variables that hold its value,
1752 and replace the uses of the original references by these
1754 root
= get_chain_root (chain
);
1755 mark_virtual_ops_for_renaming (root
->stmt
);
1757 initialize_root (loop
, chain
, tmp_vars
);
1758 for (i
= 1; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1760 mark_virtual_ops_for_renaming (a
->stmt
);
1761 var
= VEC_index (tree
, chain
->vars
, chain
->length
- a
->distance
);
1762 replace_ref_with (a
->stmt
, var
, false, false);
1767 /* Determines the unroll factor necessary to remove as many temporary variable
1768 copies as possible. CHAINS is the list of chains that will be
1772 determine_unroll_factor (VEC (chain_p
, heap
) *chains
)
1775 unsigned factor
= 1, af
, nfactor
, i
;
1776 unsigned max
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
1778 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1780 if (chain
->type
== CT_INVARIANT
|| chain
->combined
)
1783 /* The best unroll factor for this chain is equal to the number of
1784 temporary variables that we create for it. */
1786 if (chain
->has_max_use_after
)
1789 nfactor
= factor
* af
/ gcd (factor
, af
);
1797 /* Perform the predictive commoning optimization for CHAINS.
1798 Uids of the newly created temporary variables are marked in TMP_VARS. */
1801 execute_pred_commoning (struct loop
*loop
, VEC (chain_p
, heap
) *chains
,
1807 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1809 if (chain
->type
== CT_INVARIANT
)
1810 execute_load_motion (loop
, chain
, tmp_vars
);
1812 execute_pred_commoning_chain (loop
, chain
, tmp_vars
);
1815 update_ssa (TODO_update_ssa_only_virtuals
);
1818 /* For each reference in CHAINS, if its defining statement is
1819 phi node, record the ssa name that is defined by it. */
1822 replace_phis_by_defined_names (VEC (chain_p
, heap
) *chains
)
1828 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1829 for (j
= 0; VEC_iterate (dref
, chain
->refs
, j
, a
); j
++)
1831 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
1833 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
1839 /* For each reference in CHAINS, if name_defined_by_phi is not
1840 NULL, use it to set the stmt field. */
1843 replace_names_by_phis (VEC (chain_p
, heap
) *chains
)
1849 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1850 for (j
= 0; VEC_iterate (dref
, chain
->refs
, j
, a
); j
++)
1851 if (a
->stmt
== NULL
)
1853 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
1854 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
1855 a
->name_defined_by_phi
= NULL_TREE
;
1859 /* Wrapper over execute_pred_commoning, to pass it as a callback
1860 to tree_transform_and_unroll_loop. */
1864 VEC (chain_p
, heap
) *chains
;
1869 execute_pred_commoning_cbck (struct loop
*loop
, void *data
)
1871 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
1873 /* Restore phi nodes that were replaced by ssa names before
1874 tree_transform_and_unroll_loop (see detailed description in
1875 tree_predictive_commoning_loop). */
1876 replace_names_by_phis (dta
->chains
);
1877 execute_pred_commoning (loop
, dta
->chains
, dta
->tmp_vars
);
1880 /* Base NAME and all the names in the chain of phi nodes that use it
1881 on variable VAR. The phi nodes are recognized by being in the copies of
1882 the header of the LOOP. */
1885 base_names_in_chain_on (struct loop
*loop
, tree name
, tree var
)
1888 imm_use_iterator iter
;
1890 SSA_NAME_VAR (name
) = var
;
1895 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
1897 if (gimple_code (stmt
) == GIMPLE_PHI
1898 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
1901 BREAK_FROM_IMM_USE_STMT (iter
);
1907 name
= PHI_RESULT (phi
);
1908 SSA_NAME_VAR (name
) = var
;
1912 /* Given an unrolled LOOP after predictive commoning, remove the
1913 register copies arising from phi nodes by changing the base
1914 variables of SSA names. TMP_VARS is the set of the temporary variables
1915 for those we want to perform this. */
1918 eliminate_temp_copies (struct loop
*loop
, bitmap tmp_vars
)
1922 tree name
, use
, var
;
1923 gimple_stmt_iterator psi
;
1925 e
= loop_latch_edge (loop
);
1926 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1928 phi
= gsi_stmt (psi
);
1929 name
= PHI_RESULT (phi
);
1930 var
= SSA_NAME_VAR (name
);
1931 if (!bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
1933 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1934 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
1936 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1937 stmt
= SSA_NAME_DEF_STMT (use
);
1938 while (gimple_code (stmt
) == GIMPLE_PHI
1939 /* In case we could not unroll the loop enough to eliminate
1940 all copies, we may reach the loop header before the defining
1941 statement (in that case, some register copies will be present
1942 in loop latch in the final code, corresponding to the newly
1943 created looparound phi nodes). */
1944 && gimple_bb (stmt
) != loop
->header
)
1946 gcc_assert (single_pred_p (gimple_bb (stmt
)));
1947 use
= PHI_ARG_DEF (stmt
, 0);
1948 stmt
= SSA_NAME_DEF_STMT (use
);
1951 base_names_in_chain_on (loop
, use
, var
);
1955 /* Returns true if CHAIN is suitable to be combined. */
1958 chain_can_be_combined_p (chain_p chain
)
1960 return (!chain
->combined
1961 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
1964 /* Returns the modify statement that uses NAME. Skips over assignment
1965 statements, NAME is replaced with the actual name used in the returned
1969 find_use_stmt (tree
*name
)
1974 /* Skip over assignments. */
1977 stmt
= single_nonlooparound_use (*name
);
1981 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1984 lhs
= gimple_assign_lhs (stmt
);
1985 if (TREE_CODE (lhs
) != SSA_NAME
)
1988 if (gimple_assign_copy_p (stmt
))
1990 rhs
= gimple_assign_rhs1 (stmt
);
1996 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
1997 == GIMPLE_BINARY_RHS
)
2004 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2007 may_reassociate_p (tree type
, enum tree_code code
)
2009 if (FLOAT_TYPE_P (type
)
2010 && !flag_unsafe_math_optimizations
)
2013 return (commutative_tree_code (code
)
2014 && associative_tree_code (code
));
2017 /* If the operation used in STMT is associative and commutative, go through the
2018 tree of the same operations and returns its root. Distance to the root
2019 is stored in DISTANCE. */
2022 find_associative_operation_root (gimple stmt
, unsigned *distance
)
2026 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2027 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2030 if (!may_reassociate_p (type
, code
))
2035 lhs
= gimple_assign_lhs (stmt
);
2036 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2038 next
= find_use_stmt (&lhs
);
2040 || gimple_assign_rhs_code (next
) != code
)
2052 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2053 is no such statement, returns NULL_TREE. In case the operation used on
2054 NAME1 and NAME2 is associative and commutative, returns the root of the
2055 tree formed by this operation instead of the statement that uses NAME1 or
2059 find_common_use_stmt (tree
*name1
, tree
*name2
)
2061 gimple stmt1
, stmt2
;
2063 stmt1
= find_use_stmt (name1
);
2067 stmt2
= find_use_stmt (name2
);
2074 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2077 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2081 return (stmt1
== stmt2
? stmt1
: NULL
);
2084 /* Checks whether R1 and R2 are combined together using CODE, with the result
2085 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2086 if it is true. If CODE is ERROR_MARK, set these values instead. */
2089 combinable_refs_p (dref r1
, dref r2
,
2090 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2092 enum tree_code acode
;
2098 name1
= name_for_ref (r1
);
2099 name2
= name_for_ref (r2
);
2100 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2102 stmt
= find_common_use_stmt (&name1
, &name2
);
2107 acode
= gimple_assign_rhs_code (stmt
);
2108 aswap
= (!commutative_tree_code (acode
)
2109 && gimple_assign_rhs1 (stmt
) != name1
);
2110 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2112 if (*code
== ERROR_MARK
)
2120 return (*code
== acode
2122 && *rslt_type
== atype
);
2125 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2126 an assignment of the remaining operand. */
2129 remove_name_from_operation (gimple stmt
, tree op
)
2132 gimple_stmt_iterator si
;
2134 gcc_assert (is_gimple_assign (stmt
));
2136 if (gimple_assign_rhs1 (stmt
) == op
)
2137 other_op
= gimple_assign_rhs2 (stmt
);
2139 other_op
= gimple_assign_rhs1 (stmt
);
2141 si
= gsi_for_stmt (stmt
);
2142 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2144 /* We should not have reallocated STMT. */
2145 gcc_assert (gsi_stmt (si
) == stmt
);
2150 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2151 are combined in a single statement, and returns this statement. */
2154 reassociate_to_the_same_stmt (tree name1
, tree name2
)
2156 gimple stmt1
, stmt2
, root1
, root2
, s1
, s2
;
2157 gimple new_stmt
, tmp_stmt
;
2158 tree new_name
, tmp_name
, var
, r1
, r2
;
2159 unsigned dist1
, dist2
;
2160 enum tree_code code
;
2161 tree type
= TREE_TYPE (name1
);
2162 gimple_stmt_iterator bsi
;
2164 stmt1
= find_use_stmt (&name1
);
2165 stmt2
= find_use_stmt (&name2
);
2166 root1
= find_associative_operation_root (stmt1
, &dist1
);
2167 root2
= find_associative_operation_root (stmt2
, &dist2
);
2168 code
= gimple_assign_rhs_code (stmt1
);
2170 gcc_assert (root1
&& root2
&& root1
== root2
2171 && code
== gimple_assign_rhs_code (stmt2
));
2173 /* Find the root of the nearest expression in that both NAME1 and NAME2
2180 while (dist1
> dist2
)
2182 s1
= find_use_stmt (&r1
);
2183 r1
= gimple_assign_lhs (s1
);
2186 while (dist2
> dist1
)
2188 s2
= find_use_stmt (&r2
);
2189 r2
= gimple_assign_lhs (s2
);
2195 s1
= find_use_stmt (&r1
);
2196 r1
= gimple_assign_lhs (s1
);
2197 s2
= find_use_stmt (&r2
);
2198 r2
= gimple_assign_lhs (s2
);
2201 /* Remove NAME1 and NAME2 from the statements in that they are used
2203 remove_name_from_operation (stmt1
, name1
);
2204 remove_name_from_operation (stmt2
, name2
);
2206 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2207 combine it with the rhs of S1. */
2208 var
= create_tmp_reg (type
, "predreastmp");
2209 add_referenced_var (var
);
2210 new_name
= make_ssa_name (var
, NULL
);
2211 new_stmt
= gimple_build_assign_with_ops (code
, new_name
, name1
, name2
);
2213 var
= create_tmp_reg (type
, "predreastmp");
2214 add_referenced_var (var
);
2215 tmp_name
= make_ssa_name (var
, NULL
);
2217 /* Rhs of S1 may now be either a binary expression with operation
2218 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2219 so that name1 or name2 was removed from it). */
2220 tmp_stmt
= gimple_build_assign_with_ops (gimple_assign_rhs_code (s1
),
2222 gimple_assign_rhs1 (s1
),
2223 gimple_assign_rhs2 (s1
));
2225 bsi
= gsi_for_stmt (s1
);
2226 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2227 s1
= gsi_stmt (bsi
);
2230 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2231 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2236 /* Returns the statement that combines references R1 and R2. In case R1
2237 and R2 are not used in the same statement, but they are used with an
2238 associative and commutative operation in the same expression, reassociate
2239 the expression so that they are used in the same statement. */
2242 stmt_combining_refs (dref r1
, dref r2
)
2244 gimple stmt1
, stmt2
;
2245 tree name1
= name_for_ref (r1
);
2246 tree name2
= name_for_ref (r2
);
2248 stmt1
= find_use_stmt (&name1
);
2249 stmt2
= find_use_stmt (&name2
);
2253 return reassociate_to_the_same_stmt (name1
, name2
);
2256 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2257 description of the new chain is returned, otherwise we return NULL. */
2260 combine_chains (chain_p ch1
, chain_p ch2
)
2263 enum tree_code op
= ERROR_MARK
;
2268 tree rslt_type
= NULL_TREE
;
2272 if (ch1
->length
!= ch2
->length
)
2275 if (VEC_length (dref
, ch1
->refs
) != VEC_length (dref
, ch2
->refs
))
2278 for (i
= 0; (VEC_iterate (dref
, ch1
->refs
, i
, r1
)
2279 && VEC_iterate (dref
, ch2
->refs
, i
, r2
)); i
++)
2281 if (r1
->distance
!= r2
->distance
)
2284 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2295 new_chain
= XCNEW (struct chain
);
2296 new_chain
->type
= CT_COMBINATION
;
2298 new_chain
->ch1
= ch1
;
2299 new_chain
->ch2
= ch2
;
2300 new_chain
->rslt_type
= rslt_type
;
2301 new_chain
->length
= ch1
->length
;
2303 for (i
= 0; (VEC_iterate (dref
, ch1
->refs
, i
, r1
)
2304 && VEC_iterate (dref
, ch2
->refs
, i
, r2
)); i
++)
2306 nw
= XCNEW (struct dref_d
);
2307 nw
->stmt
= stmt_combining_refs (r1
, r2
);
2308 nw
->distance
= r1
->distance
;
2310 VEC_safe_push (dref
, heap
, new_chain
->refs
, nw
);
2313 new_chain
->has_max_use_after
= false;
2314 root_stmt
= get_chain_root (new_chain
)->stmt
;
2315 for (i
= 1; VEC_iterate (dref
, new_chain
->refs
, i
, nw
); i
++)
2317 if (nw
->distance
== new_chain
->length
2318 && !stmt_dominates_stmt_p (nw
->stmt
, root_stmt
))
2320 new_chain
->has_max_use_after
= true;
2325 ch1
->combined
= true;
2326 ch2
->combined
= true;
2330 /* Try to combine the CHAINS. */
2333 try_combine_chains (VEC (chain_p
, heap
) **chains
)
2336 chain_p ch1
, ch2
, cch
;
2337 VEC (chain_p
, heap
) *worklist
= NULL
;
2339 for (i
= 0; VEC_iterate (chain_p
, *chains
, i
, ch1
); i
++)
2340 if (chain_can_be_combined_p (ch1
))
2341 VEC_safe_push (chain_p
, heap
, worklist
, ch1
);
2343 while (!VEC_empty (chain_p
, worklist
))
2345 ch1
= VEC_pop (chain_p
, worklist
);
2346 if (!chain_can_be_combined_p (ch1
))
2349 for (j
= 0; VEC_iterate (chain_p
, *chains
, j
, ch2
); j
++)
2351 if (!chain_can_be_combined_p (ch2
))
2354 cch
= combine_chains (ch1
, ch2
);
2357 VEC_safe_push (chain_p
, heap
, worklist
, cch
);
2358 VEC_safe_push (chain_p
, heap
, *chains
, cch
);
2365 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2366 impossible because one of these initializers may trap, true otherwise. */
2369 prepare_initializers_chain (struct loop
*loop
, chain_p chain
)
2371 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
2372 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2376 edge entry
= loop_preheader_edge (loop
);
2378 /* Find the initializers for the variables, and check that they cannot
2380 chain
->inits
= VEC_alloc (tree
, heap
, n
);
2381 for (i
= 0; i
< n
; i
++)
2382 VEC_quick_push (tree
, chain
->inits
, NULL_TREE
);
2384 /* If we have replaced some looparound phi nodes, use their initializers
2385 instead of creating our own. */
2386 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, laref
); i
++)
2388 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
2391 gcc_assert (laref
->distance
> 0);
2392 VEC_replace (tree
, chain
->inits
, n
- laref
->distance
,
2393 PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
));
2396 for (i
= 0; i
< n
; i
++)
2398 if (VEC_index (tree
, chain
->inits
, i
) != NULL_TREE
)
2401 init
= ref_at_iteration (loop
, DR_REF (dr
), (int) i
- n
);
2405 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
2408 init
= force_gimple_operand (init
, &stmts
, false, NULL_TREE
);
2410 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
2412 VEC_replace (tree
, chain
->inits
, i
, init
);
2418 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2419 be used because the initializers might trap. */
2422 prepare_initializers (struct loop
*loop
, VEC (chain_p
, heap
) *chains
)
2427 for (i
= 0; i
< VEC_length (chain_p
, chains
); )
2429 chain
= VEC_index (chain_p
, chains
, i
);
2430 if (prepare_initializers_chain (loop
, chain
))
2434 release_chain (chain
);
2435 VEC_unordered_remove (chain_p
, chains
, i
);
2440 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2444 tree_predictive_commoning_loop (struct loop
*loop
)
2446 VEC (data_reference_p
, heap
) *datarefs
;
2447 VEC (ddr_p
, heap
) *dependences
;
2448 struct component
*components
;
2449 VEC (chain_p
, heap
) *chains
= NULL
;
2450 unsigned unroll_factor
;
2451 struct tree_niter_desc desc
;
2452 bool unroll
= false;
2456 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2457 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
2459 /* Find the data references and split them into components according to their
2460 dependence relations. */
2461 datarefs
= VEC_alloc (data_reference_p
, heap
, 10);
2462 dependences
= VEC_alloc (ddr_p
, heap
, 10);
2463 compute_data_dependences_for_loop (loop
, true, &datarefs
, &dependences
);
2464 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2465 dump_data_dependence_relations (dump_file
, dependences
);
2467 components
= split_data_refs_to_components (loop
, datarefs
, dependences
);
2468 free_dependence_relations (dependences
);
2471 free_data_refs (datarefs
);
2475 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2477 fprintf (dump_file
, "Initial state:\n\n");
2478 dump_components (dump_file
, components
);
2481 /* Find the suitable components and split them into chains. */
2482 components
= filter_suitable_components (loop
, components
);
2484 tmp_vars
= BITMAP_ALLOC (NULL
);
2485 looparound_phis
= BITMAP_ALLOC (NULL
);
2486 determine_roots (loop
, components
, &chains
);
2487 release_components (components
);
2491 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2493 "Predictive commoning failed: no suitable chains\n");
2496 prepare_initializers (loop
, chains
);
2498 /* Try to combine the chains that are always worked with together. */
2499 try_combine_chains (&chains
);
2501 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2503 fprintf (dump_file
, "Before commoning:\n\n");
2504 dump_chains (dump_file
, chains
);
2507 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2508 that its number of iterations is divisible by the factor. */
2509 unroll_factor
= determine_unroll_factor (chains
);
2511 unroll
= (unroll_factor
> 1
2512 && can_unroll_loop_p (loop
, unroll_factor
, &desc
));
2513 exit
= single_dom_exit (loop
);
2515 /* Execute the predictive commoning transformations, and possibly unroll the
2519 struct epcc_data dta
;
2521 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2522 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
2524 dta
.chains
= chains
;
2525 dta
.tmp_vars
= tmp_vars
;
2527 update_ssa (TODO_update_ssa_only_virtuals
);
2529 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2530 execute_pred_commoning_cbck is called may cause phi nodes to be
2531 reallocated, which is a problem since CHAINS may point to these
2532 statements. To fix this, we store the ssa names defined by the
2533 phi nodes here instead of the phi nodes themselves, and restore
2534 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2535 replace_phis_by_defined_names (chains
);
2537 tree_transform_and_unroll_loop (loop
, unroll_factor
, exit
, &desc
,
2538 execute_pred_commoning_cbck
, &dta
);
2539 eliminate_temp_copies (loop
, tmp_vars
);
2543 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2545 "Executing predictive commoning without unrolling.\n");
2546 execute_pred_commoning (loop
, chains
, tmp_vars
);
2550 release_chains (chains
);
2551 free_data_refs (datarefs
);
2552 BITMAP_FREE (tmp_vars
);
2553 BITMAP_FREE (looparound_phis
);
2555 free_affine_expand_cache (&name_expansions
);
2560 /* Runs predictive commoning. */
2563 tree_predictive_commoning (void)
2565 bool unrolled
= false;
2570 initialize_original_copy_tables ();
2571 FOR_EACH_LOOP (li
, loop
, LI_ONLY_INNERMOST
)
2572 if (optimize_loop_for_speed_p (loop
))
2574 unrolled
|= tree_predictive_commoning_loop (loop
);
2580 ret
= TODO_cleanup_cfg
;
2582 free_original_copy_tables ();