Merged r158465 through r158660 into branch.
[official-gcc.git] / gcc / testsuite / lib / target-supports.exp
blobe91c0331516c132a682ca6d487cd6d5a79f68f9e
1 # Copyright (C) 1999, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
2 # Free Software Foundation, Inc.
4 # This program is free software; you can redistribute it and/or modify
5 # it under the terms of the GNU General Public License as published by
6 # the Free Software Foundation; either version 3 of the License, or
7 # (at your option) any later version.
9 # This program is distributed in the hope that it will be useful,
10 # but WITHOUT ANY WARRANTY; without even the implied warranty of
11 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 # GNU General Public License for more details.
14 # You should have received a copy of the GNU General Public License
15 # along with GCC; see the file COPYING3. If not see
16 # <http://www.gnu.org/licenses/>.
18 # Please email any bugs, comments, and/or additions to this file to:
19 # gcc-patches@gcc.gnu.org
21 # This file defines procs for determining features supported by the target.
23 # Try to compile the code given by CONTENTS into an output file of
24 # type TYPE, where TYPE is as for target_compile. Return a list
25 # whose first element contains the compiler messages and whose
26 # second element is the name of the output file.
28 # BASENAME is a prefix to use for source and output files.
29 # If ARGS is not empty, its first element is a string that
30 # should be added to the command line.
32 # Assume by default that CONTENTS is C code.
33 # Otherwise, code should contain:
34 # "// C++" for c++,
35 # "! Fortran" for Fortran code,
36 # "/* ObjC", for ObjC
37 # and "// ObjC++" for ObjC++
38 # If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to
39 # allow for ObjC/ObjC++ specific flags.
40 proc check_compile {basename type contents args} {
41 global tool
42 verbose "check_compile tool: $tool for $basename"
44 if { [llength $args] > 0 } {
45 set options [list "additional_flags=[lindex $args 0]"]
46 } else {
47 set options ""
49 switch -glob -- $contents {
50 "*! Fortran*" { set src ${basename}[pid].f90 }
51 "*// C++*" { set src ${basename}[pid].cc }
52 "*// ObjC++*" { set src ${basename}[pid].mm }
53 "*/* ObjC*" { set src ${basename}[pid].m }
54 default {
55 switch -- $tool {
56 "objc" { set src ${basename}[pid].m }
57 "obj-c++" { set src ${basename}[pid].mm }
58 default { set src ${basename}[pid].c }
63 set compile_type $type
64 switch -glob $type {
65 assembly { set output ${basename}[pid].s }
66 object { set output ${basename}[pid].o }
67 executable { set output ${basename}[pid].exe }
68 "rtl-*" {
69 set output ${basename}[pid].s
70 lappend options "additional_flags=-fdump-$type"
71 set compile_type assembly
74 set f [open $src "w"]
75 puts $f $contents
76 close $f
77 set lines [${tool}_target_compile $src $output $compile_type "$options"]
78 file delete $src
80 set scan_output $output
81 # Don't try folding this into the switch above; calling "glob" before the
82 # file is created won't work.
83 if [regexp "rtl-(.*)" $type dummy rtl_type] {
84 set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
85 file delete $output
88 return [list $lines $scan_output]
91 proc current_target_name { } {
92 global target_info
93 if [info exists target_info(target,name)] {
94 set answer $target_info(target,name)
95 } else {
96 set answer ""
98 return $answer
101 # Implement an effective-target check for property PROP by invoking
102 # the Tcl command ARGS and seeing if it returns true.
104 proc check_cached_effective_target { prop args } {
105 global et_cache
107 set target [current_target_name]
108 if {![info exists et_cache($prop,target)]
109 || $et_cache($prop,target) != $target} {
110 verbose "check_cached_effective_target $prop: checking $target" 2
111 set et_cache($prop,target) $target
112 set et_cache($prop,value) [uplevel eval $args]
114 set value $et_cache($prop,value)
115 verbose "check_cached_effective_target $prop: returning $value for $target" 2
116 return $value
119 # Like check_compile, but delete the output file and return true if the
120 # compiler printed no messages.
121 proc check_no_compiler_messages_nocache {args} {
122 set result [eval check_compile $args]
123 set lines [lindex $result 0]
124 set output [lindex $result 1]
125 remote_file build delete $output
126 return [string match "" $lines]
129 # Like check_no_compiler_messages_nocache, but cache the result.
130 # PROP is the property we're checking, and doubles as a prefix for
131 # temporary filenames.
132 proc check_no_compiler_messages {prop args} {
133 return [check_cached_effective_target $prop {
134 eval [list check_no_compiler_messages_nocache $prop] $args
138 # Like check_compile, but return true if the compiler printed no
139 # messages and if the contents of the output file satisfy PATTERN.
140 # If PATTERN has the form "!REGEXP", the contents satisfy it if they
141 # don't match regular expression REGEXP, otherwise they satisfy it
142 # if they do match regular expression PATTERN. (PATTERN can start
143 # with something like "[!]" if the regular expression needs to match
144 # "!" as the first character.)
146 # Delete the output file before returning. The other arguments are
147 # as for check_compile.
148 proc check_no_messages_and_pattern_nocache {basename pattern args} {
149 global tool
151 set result [eval [list check_compile $basename] $args]
152 set lines [lindex $result 0]
153 set output [lindex $result 1]
155 set ok 0
156 if { [string match "" $lines] } {
157 set chan [open "$output"]
158 set invert [regexp {^!(.*)} $pattern dummy pattern]
159 set ok [expr { [regexp $pattern [read $chan]] != $invert }]
160 close $chan
163 remote_file build delete $output
164 return $ok
167 # Like check_no_messages_and_pattern_nocache, but cache the result.
168 # PROP is the property we're checking, and doubles as a prefix for
169 # temporary filenames.
170 proc check_no_messages_and_pattern {prop pattern args} {
171 return [check_cached_effective_target $prop {
172 eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
176 # Try to compile and run an executable from code CONTENTS. Return true
177 # if the compiler reports no messages and if execution "passes" in the
178 # usual DejaGNU sense. The arguments are as for check_compile, with
179 # TYPE implicitly being "executable".
180 proc check_runtime_nocache {basename contents args} {
181 global tool
183 set result [eval [list check_compile $basename executable $contents] $args]
184 set lines [lindex $result 0]
185 set output [lindex $result 1]
187 set ok 0
188 if { [string match "" $lines] } {
189 # No error messages, everything is OK.
190 set result [remote_load target "./$output" "" ""]
191 set status [lindex $result 0]
192 verbose "check_runtime_nocache $basename: status is <$status>" 2
193 if { $status == "pass" } {
194 set ok 1
197 remote_file build delete $output
198 return $ok
201 # Like check_runtime_nocache, but cache the result. PROP is the
202 # property we're checking, and doubles as a prefix for temporary
203 # filenames.
204 proc check_runtime {prop args} {
205 global tool
207 return [check_cached_effective_target $prop {
208 eval [list check_runtime_nocache $prop] $args
212 ###############################
213 # proc check_weak_available { }
214 ###############################
216 # weak symbols are only supported in some configs/object formats
217 # this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure
219 proc check_weak_available { } {
220 global target_triplet
221 global target_cpu
223 # All mips targets should support it
225 if { [ string first "mips" $target_cpu ] >= 0 } {
226 return 1
229 # All solaris2 targets should support it
231 if { [regexp ".*-solaris2.*" $target_triplet] } {
232 return 1
235 # DEC OSF/1/Digital UNIX/Tru64 UNIX supports it
237 if { [regexp "alpha.*osf.*" $target_triplet] } {
238 return 1
241 # Windows targets Cygwin and MingW32 support it
243 if { [regexp ".*mingw32|.*cygwin" $target_triplet] } {
244 return 1
247 # HP-UX 10.X doesn't support it
249 if { [istarget "hppa*-*-hpux10*"] } {
250 return 0
253 # ELF and ECOFF support it. a.out does with gas/gld but may also with
254 # other linkers, so we should try it
256 set objformat [gcc_target_object_format]
258 switch $objformat {
259 elf { return 1 }
260 ecoff { return 1 }
261 a.out { return 1 }
262 mach-o { return 1 }
263 som { return 1 }
264 unknown { return -1 }
265 default { return 0 }
269 ###############################
270 # proc check_weak_override_available { }
271 ###############################
273 # Like check_weak_available, but return 0 if weak symbol definitions
274 # cannot be overridden.
276 proc check_weak_override_available { } {
277 if { [istarget "*-*-mingw*"] } {
278 return 0
280 return [check_weak_available]
283 ###############################
284 # proc check_visibility_available { what_kind }
285 ###############################
287 # The visibility attribute is only support in some object formats
288 # This proc returns 1 if it is supported, 0 if not.
289 # The argument is the kind of visibility, default/protected/hidden/internal.
291 proc check_visibility_available { what_kind } {
292 global tool
293 global target_triplet
295 # On NetWare, support makes no sense.
296 if { [istarget *-*-netware*] } {
297 return 0
300 if [string match "" $what_kind] { set what_kind "hidden" }
302 return [check_no_compiler_messages visibility_available_$what_kind object "
303 void f() __attribute__((visibility(\"$what_kind\")));
304 void f() {}
308 ###############################
309 # proc check_alias_available { }
310 ###############################
312 # Determine if the target toolchain supports the alias attribute.
314 # Returns 2 if the target supports aliases. Returns 1 if the target
315 # only supports weak aliased. Returns 0 if the target does not
316 # support aliases at all. Returns -1 if support for aliases could not
317 # be determined.
319 proc check_alias_available { } {
320 global alias_available_saved
321 global tool
323 if [info exists alias_available_saved] {
324 verbose "check_alias_available returning saved $alias_available_saved" 2
325 } else {
326 set src alias[pid].c
327 set obj alias[pid].o
328 verbose "check_alias_available compiling testfile $src" 2
329 set f [open $src "w"]
330 # Compile a small test program. The definition of "g" is
331 # necessary to keep the Solaris assembler from complaining
332 # about the program.
333 puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
334 puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
335 close $f
336 set lines [${tool}_target_compile $src $obj object ""]
337 file delete $src
338 remote_file build delete $obj
340 if [string match "" $lines] then {
341 # No error messages, everything is OK.
342 set alias_available_saved 2
343 } else {
344 if [regexp "alias definitions not supported" $lines] {
345 verbose "check_alias_available target does not support aliases" 2
347 set objformat [gcc_target_object_format]
349 if { $objformat == "elf" } {
350 verbose "check_alias_available but target uses ELF format, so it ought to" 2
351 set alias_available_saved -1
352 } else {
353 set alias_available_saved 0
355 } else {
356 if [regexp "only weak aliases are supported" $lines] {
357 verbose "check_alias_available target supports only weak aliases" 2
358 set alias_available_saved 1
359 } else {
360 set alias_available_saved -1
365 verbose "check_alias_available returning $alias_available_saved" 2
368 return $alias_available_saved
371 # Returns true if --gc-sections is supported on the target.
373 proc check_gc_sections_available { } {
374 global gc_sections_available_saved
375 global tool
377 if {![info exists gc_sections_available_saved]} {
378 # Some targets don't support gc-sections despite whatever's
379 # advertised by ld's options.
380 if { [istarget alpha*-*-*]
381 || [istarget ia64-*-*] } {
382 set gc_sections_available_saved 0
383 return 0
386 # elf2flt uses -q (--emit-relocs), which is incompatible with
387 # --gc-sections.
388 if { [board_info target exists ldflags]
389 && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } {
390 set gc_sections_available_saved 0
391 return 0
394 # VxWorks kernel modules are relocatable objects linked with -r,
395 # while RTP executables are linked with -q (--emit-relocs).
396 # Both of these options are incompatible with --gc-sections.
397 if { [istarget *-*-vxworks*] } {
398 set gc_sections_available_saved 0
399 return 0
402 # Check if the ld used by gcc supports --gc-sections.
403 set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""]
404 regsub ".*\n\\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker
405 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0]
406 set ld_output [remote_exec host "$gcc_ld" "--help"]
407 if { [ string first "--gc-sections" $ld_output ] >= 0 } {
408 set gc_sections_available_saved 1
409 } else {
410 set gc_sections_available_saved 0
413 return $gc_sections_available_saved
416 # Return 1 if according to target_info struct and explicit target list
417 # target is supposed to support trampolines.
419 proc check_effective_target_trampolines { } {
420 if [target_info exists no_trampolines] {
421 return 0
423 if { [istarget avr-*-*]
424 || [istarget hppa2.0w-hp-hpux11.23]
425 || [istarget hppa64-hp-hpux11.23] } {
426 return 0;
428 return 1
431 # Return 1 if according to target_info struct and explicit target list
432 # target is supposed to keep null pointer checks. This could be due to
433 # use of option fno-delete-null-pointer-checks or hardwired in target.
435 proc check_effective_target_keeps_null_pointer_checks { } {
436 if [target_info exists keeps_null_pointer_checks] {
437 return 1
439 if { [istarget avr-*-*] } {
440 return 1;
442 return 0
445 # Return true if profiling is supported on the target.
447 proc check_profiling_available { test_what } {
448 global profiling_available_saved
450 verbose "Profiling argument is <$test_what>" 1
452 # These conditions depend on the argument so examine them before
453 # looking at the cache variable.
455 # Support for -p on solaris2 relies on mcrt1.o which comes with the
456 # vendor compiler. We cannot reliably predict the directory where the
457 # vendor compiler (and thus mcrt1.o) is installed so we can't
458 # necessarily find mcrt1.o even if we have it.
459 if { [istarget *-*-solaris2*] && [lindex $test_what 1] == "-p" } {
460 return 0
463 # Support for -p on irix relies on libprof1.a which doesn't appear to
464 # exist on any irix6 system currently posting testsuite results.
465 # Support for -pg on irix relies on gcrt1.o which doesn't exist yet.
466 # See: http://gcc.gnu.org/ml/gcc/2002-10/msg00169.html
467 if { [istarget mips*-*-irix*]
468 && ([lindex $test_what 1] == "-p" || [lindex $test_what 1] == "-pg") } {
469 return 0
472 # We don't yet support profiling for MIPS16.
473 if { [istarget mips*-*-*]
474 && ![check_effective_target_nomips16]
475 && ([lindex $test_what 1] == "-p"
476 || [lindex $test_what 1] == "-pg") } {
477 return 0
480 # MinGW does not support -p.
481 if { [istarget *-*-mingw*] && [lindex $test_what 1] == "-p" } {
482 return 0
485 # cygwin does not support -p.
486 if { [istarget *-*-cygwin*] && [lindex $test_what 1] == "-p" } {
487 return 0
490 # uClibc does not have gcrt1.o.
491 if { [check_effective_target_uclibc]
492 && ([lindex $test_what 1] == "-p"
493 || [lindex $test_what 1] == "-pg") } {
494 return 0
497 # Now examine the cache variable.
498 if {![info exists profiling_available_saved]} {
499 # Some targets don't have any implementation of __bb_init_func or are
500 # missing other needed machinery.
501 if { [istarget mmix-*-*]
502 || [istarget arm*-*-eabi*]
503 || [istarget picochip-*-*]
504 || [istarget *-*-netware*]
505 || [istarget arm*-*-elf]
506 || [istarget arm*-*-symbianelf*]
507 || [istarget avr-*-*]
508 || [istarget bfin-*-*]
509 || [istarget powerpc-*-eabi*]
510 || [istarget powerpc-*-elf]
511 || [istarget cris-*-*]
512 || [istarget crisv32-*-*]
513 || [istarget fido-*-elf]
514 || [istarget h8300-*-*]
515 || [istarget lm32-*-*]
516 || [istarget m32c-*-elf]
517 || [istarget m68k-*-elf]
518 || [istarget m68k-*-uclinux*]
519 || [istarget mep-*-elf]
520 || [istarget mips*-*-elf*]
521 || [istarget moxie-*-elf*]
522 || [istarget rx-*-*]
523 || [istarget xstormy16-*]
524 || [istarget xtensa*-*-elf]
525 || [istarget *-*-rtems*]
526 || [istarget *-*-vxworks*] } {
527 set profiling_available_saved 0
528 } else {
529 set profiling_available_saved 1
533 return $profiling_available_saved
536 # Check to see if a target is "freestanding". This is as per the definition
537 # in Section 4 of C99 standard. Effectively, it is a target which supports no
538 # extra headers or libraries other than what is considered essential.
539 proc check_effective_target_freestanding { } {
540 if { [istarget picochip-*-*] } then {
541 return 1
542 } else {
543 return 0
547 # Return 1 if target has packed layout of structure members by
548 # default, 0 otherwise. Note that this is slightly different than
549 # whether the target has "natural alignment": both attributes may be
550 # false.
552 proc check_effective_target_default_packed { } {
553 return [check_no_compiler_messages default_packed assembly {
554 struct x { char a; long b; } c;
555 int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1];
559 # Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See
560 # documentation, where the test also comes from.
562 proc check_effective_target_pcc_bitfield_type_matters { } {
563 # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty
564 # bitfields, but let's stick to the example code from the docs.
565 return [check_no_compiler_messages pcc_bitfield_type_matters assembly {
566 struct foo1 { char x; char :0; char y; };
567 struct foo2 { char x; int :0; char y; };
568 int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1];
572 # Return 1 if thread local storage (TLS) is supported, 0 otherwise.
574 proc check_effective_target_tls {} {
575 return [check_no_compiler_messages tls assembly {
576 __thread int i;
577 int f (void) { return i; }
578 void g (int j) { i = j; }
582 # Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise.
584 proc check_effective_target_tls_native {} {
585 # VxWorks uses emulated TLS machinery, but with non-standard helper
586 # functions, so we fail to automatically detect it.
587 global target_triplet
588 if { [regexp ".*-.*-vxworks.*" $target_triplet] } {
589 return 0
592 return [check_no_messages_and_pattern tls_native "!emutls" assembly {
593 __thread int i;
594 int f (void) { return i; }
595 void g (int j) { i = j; }
599 # Return 1 if TLS executables can run correctly, 0 otherwise.
601 proc check_effective_target_tls_runtime {} {
602 return [check_runtime tls_runtime {
603 __thread int thr = 0;
604 int main (void) { return thr; }
608 # Return 1 if compilation with -fgraphite is error-free for trivial
609 # code, 0 otherwise.
611 proc check_effective_target_fgraphite {} {
612 return [check_no_compiler_messages fgraphite object {
613 void foo (void) { }
614 } "-O1 -fgraphite"]
617 # Return 1 if compilation with -fopenmp is error-free for trivial
618 # code, 0 otherwise.
620 proc check_effective_target_fopenmp {} {
621 return [check_no_compiler_messages fopenmp object {
622 void foo (void) { }
623 } "-fopenmp"]
626 # Return 1 if compilation with -pthread is error-free for trivial
627 # code, 0 otherwise.
629 proc check_effective_target_pthread {} {
630 return [check_no_compiler_messages pthread object {
631 void foo (void) { }
632 } "-pthread"]
635 # Return 1 if compilation with -mpe-aligned-commons is error-free
636 # for trivial code, 0 otherwise.
638 proc check_effective_target_pe_aligned_commons {} {
639 if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
640 return [check_no_compiler_messages pe_aligned_commons object {
641 int foo;
642 } "-mpe-aligned-commons"]
644 return 0
647 # Return 1 if the target supports -static
648 proc check_effective_target_static {} {
649 return [check_no_compiler_messages static executable {
650 int main (void) { return 0; }
651 } "-static"]
654 # Return 1 if the target supports -fstack-protector
655 proc check_effective_target_fstack_protector {} {
656 return [check_runtime fstack_protector {
657 int main (void) { return 0; }
658 } "-fstack-protector"]
661 # Return 1 if compilation with -freorder-blocks-and-partition is error-free
662 # for trivial code, 0 otherwise.
664 proc check_effective_target_freorder {} {
665 return [check_no_compiler_messages freorder object {
666 void foo (void) { }
667 } "-freorder-blocks-and-partition"]
670 # Return 1 if -fpic and -fPIC are supported, as in no warnings or errors
671 # emitted, 0 otherwise. Whether a shared library can actually be built is
672 # out of scope for this test.
674 proc check_effective_target_fpic { } {
675 # Note that M68K has a multilib that supports -fpic but not
676 # -fPIC, so we need to check both. We test with a program that
677 # requires GOT references.
678 foreach arg {fpic fPIC} {
679 if [check_no_compiler_messages $arg object {
680 extern int foo (void); extern int bar;
681 int baz (void) { return foo () + bar; }
682 } "-$arg"] {
683 return 1
686 return 0
689 # Return true if the target supports -mpaired-single (as used on MIPS).
691 proc check_effective_target_mpaired_single { } {
692 return [check_no_compiler_messages mpaired_single object {
693 void foo (void) { }
694 } "-mpaired-single"]
697 # Return true if the target has access to FPU instructions.
699 proc check_effective_target_hard_float { } {
700 if { [istarget mips*-*-*] } {
701 return [check_no_compiler_messages hard_float assembly {
702 #if (defined __mips_soft_float || defined __mips16)
703 #error FOO
704 #endif
708 # This proc is actually checking the availabilty of FPU
709 # support for doubles, so on the RX we must fail if the
710 # 64-bit double multilib has been selected.
711 if { [istarget rx-*-*] } {
712 return 0
713 # return [check_no_compiler_messages hard_float assembly {
714 #if defined __RX_64_BIT_DOUBLES__
715 #error FOO
716 #endif
717 # }]
720 # The generic test equates hard_float with "no call for adding doubles".
721 return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand {
722 double a (double b, double c) { return b + c; }
726 # Return true if the target is a 64-bit MIPS target.
728 proc check_effective_target_mips64 { } {
729 return [check_no_compiler_messages mips64 assembly {
730 #ifndef __mips64
731 #error FOO
732 #endif
736 # Return true if the target is a MIPS target that does not produce
737 # MIPS16 code.
739 proc check_effective_target_nomips16 { } {
740 return [check_no_compiler_messages nomips16 object {
741 #ifndef __mips
742 #error FOO
743 #else
744 /* A cheap way of testing for -mflip-mips16. */
745 void foo (void) { asm ("addiu $20,$20,1"); }
746 void bar (void) { asm ("addiu $20,$20,1"); }
747 #endif
751 # Add the options needed for MIPS16 function attributes. At the moment,
752 # we don't support MIPS16 PIC.
754 proc add_options_for_mips16_attribute { flags } {
755 return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
758 # Return true if we can force a mode that allows MIPS16 code generation.
759 # We don't support MIPS16 PIC, and only support MIPS16 -mhard-float
760 # for o32 and o64.
762 proc check_effective_target_mips16_attribute { } {
763 return [check_no_compiler_messages mips16_attribute assembly {
764 #ifdef PIC
765 #error FOO
766 #endif
767 #if defined __mips_hard_float \
768 && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \
769 && (!defined _ABIO64 || _MIPS_SIM != _ABIO64)
770 #error FOO
771 #endif
772 } [add_options_for_mips16_attribute ""]]
775 # Return 1 if the target supports long double larger than double when
776 # using the new ABI, 0 otherwise.
778 proc check_effective_target_mips_newabi_large_long_double { } {
779 return [check_no_compiler_messages mips_newabi_large_long_double object {
780 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
781 } "-mabi=64"]
784 # Return 1 if the current multilib does not generate PIC by default.
786 proc check_effective_target_nonpic { } {
787 return [check_no_compiler_messages nonpic assembly {
788 #if __PIC__
789 #error FOO
790 #endif
794 # Return 1 if the target does not use a status wrapper.
796 proc check_effective_target_unwrapped { } {
797 if { [target_info needs_status_wrapper] != "" \
798 && [target_info needs_status_wrapper] != "0" } {
799 return 0
801 return 1
804 # Return true if iconv is supported on the target. In particular IBM1047.
806 proc check_iconv_available { test_what } {
807 global libiconv
809 # If the tool configuration file has not set libiconv, try "-liconv"
810 if { ![info exists libiconv] } {
811 set libiconv "-liconv"
813 set test_what [lindex $test_what 1]
814 return [check_runtime_nocache $test_what [subst {
815 #include <iconv.h>
816 int main (void)
818 iconv_t cd;
820 cd = iconv_open ("$test_what", "UTF-8");
821 if (cd == (iconv_t) -1)
822 return 1;
823 return 0;
825 }] $libiconv]
828 # Return true if named sections are supported on this target.
830 proc check_named_sections_available { } {
831 return [check_no_compiler_messages named_sections assembly {
832 int __attribute__ ((section("whatever"))) foo;
836 # Return 1 if the target supports Fortran real kinds larger than real(8),
837 # 0 otherwise.
839 # When the target name changes, replace the cached result.
841 proc check_effective_target_fortran_large_real { } {
842 return [check_no_compiler_messages fortran_large_real executable {
843 ! Fortran
844 integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
845 real(kind=k) :: x
846 x = cos (x)
851 # Return 1 if the target supports Fortran integer kinds larger than
852 # integer(8), 0 otherwise.
854 # When the target name changes, replace the cached result.
856 proc check_effective_target_fortran_large_int { } {
857 return [check_no_compiler_messages fortran_large_int executable {
858 ! Fortran
859 integer,parameter :: k = selected_int_kind (range (0_8) + 1)
860 integer(kind=k) :: i
865 # Return 1 if the target supports Fortran integer(16), 0 otherwise.
867 # When the target name changes, replace the cached result.
869 proc check_effective_target_fortran_integer_16 { } {
870 return [check_no_compiler_messages fortran_integer_16 executable {
871 ! Fortran
872 integer(16) :: i
877 # Return 1 if we can statically link libgfortran, 0 otherwise.
879 # When the target name changes, replace the cached result.
881 proc check_effective_target_static_libgfortran { } {
882 return [check_no_compiler_messages static_libgfortran executable {
883 ! Fortran
884 print *, 'test'
886 } "-static"]
889 # Return 1 if the target supports executing 750CL paired-single instructions, 0
890 # otherwise. Cache the result.
892 proc check_750cl_hw_available { } {
893 return [check_cached_effective_target 750cl_hw_available {
894 # If this is not the right target then we can skip the test.
895 if { ![istarget powerpc-*paired*] } {
896 expr 0
897 } else {
898 check_runtime_nocache 750cl_hw_available {
899 int main()
901 #ifdef __MACH__
902 asm volatile ("ps_mul v0,v0,v0");
903 #else
904 asm volatile ("ps_mul 0,0,0");
905 #endif
906 return 0;
908 } "-mpaired"
913 # Return 1 if the target supports executing SSE2 instructions, 0
914 # otherwise. Cache the result.
916 proc check_sse2_hw_available { } {
917 return [check_cached_effective_target sse2_hw_available {
918 # If this is not the right target then we can skip the test.
919 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
920 expr 0
921 } else {
922 check_runtime_nocache sse2_hw_available {
923 #include "cpuid.h"
924 int main ()
926 unsigned int eax, ebx, ecx, edx = 0;
927 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
928 return !(edx & bit_SSE2);
929 return 1;
931 } ""
936 # Return 1 if the target supports executing VSX instructions, 0
937 # otherwise. Cache the result.
939 proc check_vsx_hw_available { } {
940 return [check_cached_effective_target vsx_hw_available {
941 # Some simulators are known to not support VSX instructions.
942 # For now, disable on Darwin
943 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
944 expr 0
945 } else {
946 set options "-mvsx"
947 check_runtime_nocache vsx_hw_available {
948 int main()
950 #ifdef __MACH__
951 asm volatile ("xxlor vs0,vs0,vs0");
952 #else
953 asm volatile ("xxlor 0,0,0");
954 #endif
955 return 0;
957 } $options
962 # Return 1 if the target supports executing AltiVec instructions, 0
963 # otherwise. Cache the result.
965 proc check_vmx_hw_available { } {
966 return [check_cached_effective_target vmx_hw_available {
967 # Some simulators are known to not support VMX instructions.
968 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } {
969 expr 0
970 } else {
971 # Most targets don't require special flags for this test case, but
972 # Darwin does. Just to be sure, make sure VSX is not enabled for
973 # the altivec tests.
974 if { [istarget *-*-darwin*]
975 || [istarget *-*-aix*] } {
976 set options "-maltivec -mno-vsx"
977 } else {
978 set options "-mno-vsx"
980 check_runtime_nocache vmx_hw_available {
981 int main()
983 #ifdef __MACH__
984 asm volatile ("vor v0,v0,v0");
985 #else
986 asm volatile ("vor 0,0,0");
987 #endif
988 return 0;
990 } $options
995 # Return 1 if the target supports executing AltiVec and Cell PPU
996 # instructions, 0 otherwise. Cache the result.
998 proc check_effective_target_cell_hw { } {
999 return [check_cached_effective_target cell_hw_available {
1000 # Some simulators are known to not support VMX and PPU instructions.
1001 if { [istarget powerpc-*-eabi*] } {
1002 expr 0
1003 } else {
1004 # Most targets don't require special flags for this test
1005 # case, but Darwin and AIX do.
1006 if { [istarget *-*-darwin*]
1007 || [istarget *-*-aix*] } {
1008 set options "-maltivec -mcpu=cell"
1009 } else {
1010 set options "-mcpu=cell"
1012 check_runtime_nocache cell_hw_available {
1013 int main()
1015 #ifdef __MACH__
1016 asm volatile ("vor v0,v0,v0");
1017 asm volatile ("lvlx v0,r0,r0");
1018 #else
1019 asm volatile ("vor 0,0,0");
1020 asm volatile ("lvlx 0,0,0");
1021 #endif
1022 return 0;
1024 } $options
1029 # Return 1 if the target supports executing 64-bit instructions, 0
1030 # otherwise. Cache the result.
1032 proc check_effective_target_powerpc64 { } {
1033 global powerpc64_available_saved
1034 global tool
1036 if [info exists powerpc64_available_saved] {
1037 verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
1038 } else {
1039 set powerpc64_available_saved 0
1041 # Some simulators are known to not support powerpc64 instructions.
1042 if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } {
1043 verbose "check_effective_target_powerpc64 returning 0" 2
1044 return $powerpc64_available_saved
1047 # Set up, compile, and execute a test program containing a 64-bit
1048 # instruction. Include the current process ID in the file
1049 # names to prevent conflicts with invocations for multiple
1050 # testsuites.
1051 set src ppc[pid].c
1052 set exe ppc[pid].x
1054 set f [open $src "w"]
1055 puts $f "int main() {"
1056 puts $f "#ifdef __MACH__"
1057 puts $f " asm volatile (\"extsw r0,r0\");"
1058 puts $f "#else"
1059 puts $f " asm volatile (\"extsw 0,0\");"
1060 puts $f "#endif"
1061 puts $f " return 0; }"
1062 close $f
1064 set opts "additional_flags=-mcpu=G5"
1066 verbose "check_effective_target_powerpc64 compiling testfile $src" 2
1067 set lines [${tool}_target_compile $src $exe executable "$opts"]
1068 file delete $src
1070 if [string match "" $lines] then {
1071 # No error message, compilation succeeded.
1072 set result [${tool}_load "./$exe" "" ""]
1073 set status [lindex $result 0]
1074 remote_file build delete $exe
1075 verbose "check_effective_target_powerpc64 testfile status is <$status>" 2
1077 if { $status == "pass" } then {
1078 set powerpc64_available_saved 1
1080 } else {
1081 verbose "check_effective_target_powerpc64 testfile compilation failed" 2
1085 return $powerpc64_available_saved
1088 # GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing
1089 # complex float arguments. This affects gfortran tests that call cabsf
1090 # in libm built by an earlier compiler. Return 1 if libm uses the same
1091 # argument passing as the compiler under test, 0 otherwise.
1093 # When the target name changes, replace the cached result.
1095 proc check_effective_target_broken_cplxf_arg { } {
1096 return [check_cached_effective_target broken_cplxf_arg {
1097 # Skip the work for targets known not to be affected.
1098 if { ![istarget powerpc64-*-linux*] } {
1099 expr 0
1100 } elseif { ![is-effective-target lp64] } {
1101 expr 0
1102 } else {
1103 check_runtime_nocache broken_cplxf_arg {
1104 #include <complex.h>
1105 extern void abort (void);
1106 float fabsf (float);
1107 float cabsf (_Complex float);
1108 int main ()
1110 _Complex float cf;
1111 float f;
1112 cf = 3 + 4.0fi;
1113 f = cabsf (cf);
1114 if (fabsf (f - 5.0) > 0.0001)
1115 abort ();
1116 return 0;
1118 } "-lm"
1123 proc check_alpha_max_hw_available { } {
1124 return [check_runtime alpha_max_hw_available {
1125 int main() { return __builtin_alpha_amask(1<<8) != 0; }
1129 # Returns true iff the FUNCTION is available on the target system.
1130 # (This is essentially a Tcl implementation of Autoconf's
1131 # AC_CHECK_FUNC.)
1133 proc check_function_available { function } {
1134 return [check_no_compiler_messages ${function}_available \
1135 executable [subst {
1136 #ifdef __cplusplus
1137 extern "C"
1138 #endif
1139 char $function ();
1140 int main () { $function (); }
1144 # Returns true iff "fork" is available on the target system.
1146 proc check_fork_available {} {
1147 return [check_function_available "fork"]
1150 # Returns true iff "mkfifo" is available on the target system.
1152 proc check_mkfifo_available {} {
1153 if {[istarget *-*-cygwin*]} {
1154 # Cygwin has mkfifo, but support is incomplete.
1155 return 0
1158 return [check_function_available "mkfifo"]
1161 # Returns true iff "__cxa_atexit" is used on the target system.
1163 proc check_cxa_atexit_available { } {
1164 return [check_cached_effective_target cxa_atexit_available {
1165 if { [istarget "hppa*-*-hpux10*"] } {
1166 # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
1167 expr 0
1168 } elseif { [istarget "*-*-vxworks"] } {
1169 # vxworks doesn't have __cxa_atexit but subsequent test passes.
1170 expr 0
1171 } else {
1172 check_runtime_nocache cxa_atexit_available {
1173 // C++
1174 #include <stdlib.h>
1175 static unsigned int count;
1176 struct X
1178 X() { count = 1; }
1179 ~X()
1181 if (count != 3)
1182 exit(1);
1183 count = 4;
1186 void f()
1188 static X x;
1190 struct Y
1192 Y() { f(); count = 2; }
1193 ~Y()
1195 if (count != 2)
1196 exit(1);
1197 count = 3;
1200 Y y;
1201 int main() { return 0; }
1207 proc check_effective_target_objc2 { } {
1208 return [check_no_compiler_messages objc2 object {
1209 #ifdef __OBJC2__
1210 int dummy[1];
1211 #else
1212 #error
1213 #endif
1217 proc check_effective_target_next_runtime { } {
1218 return [check_no_compiler_messages objc2 object {
1219 #ifdef __NEXT_RUNTIME__
1220 int dummy[1];
1221 #else
1222 #error
1223 #endif
1227 # Return 1 if we're generating 32-bit code using default options, 0
1228 # otherwise.
1230 proc check_effective_target_ilp32 { } {
1231 return [check_no_compiler_messages ilp32 object {
1232 int dummy[sizeof (int) == 4
1233 && sizeof (void *) == 4
1234 && sizeof (long) == 4 ? 1 : -1];
1238 # Return 1 if we're generating 32-bit or larger integers using default
1239 # options, 0 otherwise.
1241 proc check_effective_target_int32plus { } {
1242 return [check_no_compiler_messages int32plus object {
1243 int dummy[sizeof (int) >= 4 ? 1 : -1];
1247 # Return 1 if we're generating 32-bit or larger pointers using default
1248 # options, 0 otherwise.
1250 proc check_effective_target_ptr32plus { } {
1251 return [check_no_compiler_messages ptr32plus object {
1252 int dummy[sizeof (void *) >= 4 ? 1 : -1];
1256 # Return 1 if we support 32-bit or larger array and structure sizes
1257 # using default options, 0 otherwise.
1259 proc check_effective_target_size32plus { } {
1260 return [check_no_compiler_messages size32plus object {
1261 char dummy[65537];
1265 # Returns 1 if we're generating 16-bit or smaller integers with the
1266 # default options, 0 otherwise.
1268 proc check_effective_target_int16 { } {
1269 return [check_no_compiler_messages int16 object {
1270 int dummy[sizeof (int) < 4 ? 1 : -1];
1274 # Return 1 if we're generating 64-bit code using default options, 0
1275 # otherwise.
1277 proc check_effective_target_lp64 { } {
1278 return [check_no_compiler_messages lp64 object {
1279 int dummy[sizeof (int) == 4
1280 && sizeof (void *) == 8
1281 && sizeof (long) == 8 ? 1 : -1];
1285 # Return 1 if we're generating 64-bit code using default llp64 options,
1286 # 0 otherwise.
1288 proc check_effective_target_llp64 { } {
1289 return [check_no_compiler_messages llp64 object {
1290 int dummy[sizeof (int) == 4
1291 && sizeof (void *) == 8
1292 && sizeof (long long) == 8
1293 && sizeof (long) == 4 ? 1 : -1];
1297 # Return 1 if the target supports long double larger than double,
1298 # 0 otherwise.
1300 proc check_effective_target_large_long_double { } {
1301 return [check_no_compiler_messages large_long_double object {
1302 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
1306 # Return 1 if the target supports double larger than float,
1307 # 0 otherwise.
1309 proc check_effective_target_large_double { } {
1310 return [check_no_compiler_messages large_double object {
1311 int dummy[sizeof(double) > sizeof(float) ? 1 : -1];
1315 # Return 1 if the target supports double of 64 bits,
1316 # 0 otherwise.
1318 proc check_effective_target_double64 { } {
1319 return [check_no_compiler_messages double64 object {
1320 int dummy[sizeof(double) == 8 ? 1 : -1];
1324 # Return 1 if the target supports double of at least 64 bits,
1325 # 0 otherwise.
1327 proc check_effective_target_double64plus { } {
1328 return [check_no_compiler_messages double64plus object {
1329 int dummy[sizeof(double) >= 8 ? 1 : -1];
1333 # Return 1 if the target supports compiling fixed-point,
1334 # 0 otherwise.
1336 proc check_effective_target_fixed_point { } {
1337 return [check_no_compiler_messages fixed_point object {
1338 _Sat _Fract x; _Sat _Accum y;
1342 # Return 1 if the target supports compiling decimal floating point,
1343 # 0 otherwise.
1345 proc check_effective_target_dfp_nocache { } {
1346 verbose "check_effective_target_dfp_nocache: compiling source" 2
1347 set ret [check_no_compiler_messages_nocache dfp object {
1348 float x __attribute__((mode(DD)));
1350 verbose "check_effective_target_dfp_nocache: returning $ret" 2
1351 return $ret
1354 proc check_effective_target_dfprt_nocache { } {
1355 return [check_runtime_nocache dfprt {
1356 typedef float d64 __attribute__((mode(DD)));
1357 d64 x = 1.2df, y = 2.3dd, z;
1358 int main () { z = x + y; return 0; }
1362 # Return 1 if the target supports compiling Decimal Floating Point,
1363 # 0 otherwise.
1365 # This won't change for different subtargets so cache the result.
1367 proc check_effective_target_dfp { } {
1368 return [check_cached_effective_target dfp {
1369 check_effective_target_dfp_nocache
1373 # Return 1 if the target supports linking and executing Decimal Floating
1374 # Point, 0 otherwise.
1376 # This won't change for different subtargets so cache the result.
1378 proc check_effective_target_dfprt { } {
1379 return [check_cached_effective_target dfprt {
1380 check_effective_target_dfprt_nocache
1384 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
1386 proc check_effective_target_ucn_nocache { } {
1387 # -std=c99 is only valid for C
1388 if [check_effective_target_c] {
1389 set ucnopts "-std=c99"
1391 append ucnopts " -fextended-identifiers"
1392 verbose "check_effective_target_ucn_nocache: compiling source" 2
1393 set ret [check_no_compiler_messages_nocache ucn object {
1394 int \u00C0;
1395 } $ucnopts]
1396 verbose "check_effective_target_ucn_nocache: returning $ret" 2
1397 return $ret
1400 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
1402 # This won't change for different subtargets, so cache the result.
1404 proc check_effective_target_ucn { } {
1405 return [check_cached_effective_target ucn {
1406 check_effective_target_ucn_nocache
1410 # Return 1 if the target needs a command line argument to enable a SIMD
1411 # instruction set.
1413 proc check_effective_target_vect_cmdline_needed { } {
1414 global et_vect_cmdline_needed_saved
1415 global et_vect_cmdline_needed_target_name
1417 if { ![info exists et_vect_cmdline_needed_target_name] } {
1418 set et_vect_cmdline_needed_target_name ""
1421 # If the target has changed since we set the cached value, clear it.
1422 set current_target [current_target_name]
1423 if { $current_target != $et_vect_cmdline_needed_target_name } {
1424 verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2
1425 set et_vect_cmdline_needed_target_name $current_target
1426 if { [info exists et_vect_cmdline_needed_saved] } {
1427 verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
1428 unset et_vect_cmdline_needed_saved
1432 if [info exists et_vect_cmdline_needed_saved] {
1433 verbose "check_effective_target_vect_cmdline_needed: using cached result" 2
1434 } else {
1435 set et_vect_cmdline_needed_saved 1
1436 if { [istarget alpha*-*-*]
1437 || [istarget ia64-*-*]
1438 || (([istarget x86_64-*-*] || [istarget i?86-*-*])
1439 && [check_effective_target_lp64])
1440 || ([istarget powerpc*-*-*]
1441 && ([check_effective_target_powerpc_spe]
1442 || [check_effective_target_powerpc_altivec]))
1443 || [istarget spu-*-*]
1444 || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
1445 set et_vect_cmdline_needed_saved 0
1449 verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2
1450 return $et_vect_cmdline_needed_saved
1453 # Return 1 if the target supports hardware vectors of int, 0 otherwise.
1455 # This won't change for different subtargets so cache the result.
1457 proc check_effective_target_vect_int { } {
1458 global et_vect_int_saved
1460 if [info exists et_vect_int_saved] {
1461 verbose "check_effective_target_vect_int: using cached result" 2
1462 } else {
1463 set et_vect_int_saved 0
1464 if { [istarget i?86-*-*]
1465 || ([istarget powerpc*-*-*]
1466 && ![istarget powerpc-*-linux*paired*])
1467 || [istarget spu-*-*]
1468 || [istarget x86_64-*-*]
1469 || [istarget sparc*-*-*]
1470 || [istarget alpha*-*-*]
1471 || [istarget ia64-*-*]
1472 || [check_effective_target_arm32] } {
1473 set et_vect_int_saved 1
1477 verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2
1478 return $et_vect_int_saved
1481 # Return 1 if the target supports signed int->float conversion
1484 proc check_effective_target_vect_intfloat_cvt { } {
1485 global et_vect_intfloat_cvt_saved
1487 if [info exists et_vect_intfloat_cvt_saved] {
1488 verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2
1489 } else {
1490 set et_vect_intfloat_cvt_saved 0
1491 if { [istarget i?86-*-*]
1492 || ([istarget powerpc*-*-*]
1493 && ![istarget powerpc-*-linux*paired*])
1494 || [istarget x86_64-*-*] } {
1495 set et_vect_intfloat_cvt_saved 1
1499 verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2
1500 return $et_vect_intfloat_cvt_saved
1504 # Return 1 if the target supports unsigned int->float conversion
1507 proc check_effective_target_vect_uintfloat_cvt { } {
1508 global et_vect_uintfloat_cvt_saved
1510 if [info exists et_vect_uintfloat_cvt_saved] {
1511 verbose "check_effective_target_vect_uintfloat_cvt: using cached result" 2
1512 } else {
1513 set et_vect_uintfloat_cvt_saved 0
1514 if { [istarget i?86-*-*]
1515 || ([istarget powerpc*-*-*]
1516 && ![istarget powerpc-*-linux*paired*])
1517 || [istarget x86_64-*-*] } {
1518 set et_vect_uintfloat_cvt_saved 1
1522 verbose "check_effective_target_vect_uintfloat_cvt: returning $et_vect_uintfloat_cvt_saved" 2
1523 return $et_vect_uintfloat_cvt_saved
1527 # Return 1 if the target supports signed float->int conversion
1530 proc check_effective_target_vect_floatint_cvt { } {
1531 global et_vect_floatint_cvt_saved
1533 if [info exists et_vect_floatint_cvt_saved] {
1534 verbose "check_effective_target_vect_floatint_cvt: using cached result" 2
1535 } else {
1536 set et_vect_floatint_cvt_saved 0
1537 if { [istarget i?86-*-*]
1538 || ([istarget powerpc*-*-*]
1539 && ![istarget powerpc-*-linux*paired*])
1540 || [istarget x86_64-*-*] } {
1541 set et_vect_floatint_cvt_saved 1
1545 verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2
1546 return $et_vect_floatint_cvt_saved
1549 # Return 1 if the target supports unsigned float->int conversion
1552 proc check_effective_target_vect_floatuint_cvt { } {
1553 global et_vect_floatuint_cvt_saved
1555 if [info exists et_vect_floatuint_cvt_saved] {
1556 verbose "check_effective_target_vect_floatuint_cvt: using cached result" 2
1557 } else {
1558 set et_vect_floatuint_cvt_saved 0
1559 if { ([istarget powerpc*-*-*]
1560 && ![istarget powerpc-*-linux*paired*]) } {
1561 set et_vect_floatuint_cvt_saved 1
1565 verbose "check_effective_target_vect_floatuint_cvt: returning $et_vect_floatuint_cvt_saved" 2
1566 return $et_vect_floatuint_cvt_saved
1569 # Return 1 is this is an arm target using 32-bit instructions
1570 proc check_effective_target_arm32 { } {
1571 return [check_no_compiler_messages arm32 assembly {
1572 #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__))
1573 #error FOO
1574 #endif
1578 # Return 1 if this is an ARM target supporting -mfpu=vfp
1579 # -mfloat-abi=softfp. Some multilibs may be incompatible with these
1580 # options.
1582 proc check_effective_target_arm_vfp_ok { } {
1583 if { [check_effective_target_arm32] } {
1584 return [check_no_compiler_messages arm_vfp_ok object {
1585 int dummy;
1586 } "-mfpu=vfp -mfloat-abi=softfp"]
1587 } else {
1588 return 0
1592 # Return 1 if this is an ARM target supporting -mfpu=vfp
1593 # -mfloat-abi=hard. Some multilibs may be incompatible with these
1594 # options.
1596 proc check_effective_target_arm_hard_vfp_ok { } {
1597 if { [check_effective_target_arm32] } {
1598 return [check_no_compiler_messages arm_hard_vfp_ok executable {
1599 int main() { return 0;}
1600 } "-mfpu=vfp -mfloat-abi=hard"]
1601 } else {
1602 return 0
1606 # Return 1 if this is an ARM target supporting -mfpu=neon
1607 # -mfloat-abi=softfp. Some multilibs may be incompatible with these
1608 # options.
1610 proc check_effective_target_arm_neon_ok { } {
1611 if { [check_effective_target_arm32] } {
1612 return [check_no_compiler_messages arm_neon_ok object {
1613 #include "arm_neon.h"
1614 int dummy;
1615 } "-mfpu=neon -mfloat-abi=softfp"]
1616 } else {
1617 return 0
1621 # Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be
1622 # used.
1624 proc check_effective_target_arm_thumb1_ok { } {
1625 return [check_no_compiler_messages arm_thumb1_ok assembly {
1626 #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
1627 #error FOO
1628 #endif
1629 } "-mthumb"]
1632 # Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be
1633 # used.
1635 proc check_effective_target_arm_thumb2_ok { } {
1636 return [check_no_compiler_messages arm_thumb2_ok assembly {
1637 #if !defined(__thumb2__)
1638 #error FOO
1639 #endif
1640 } "-mthumb"]
1643 # Return 1 if the target supports executing NEON instructions, 0
1644 # otherwise. Cache the result.
1646 proc check_effective_target_arm_neon_hw { } {
1647 return [check_runtime arm_neon_hw_available {
1649 main (void)
1651 long long a = 0, b = 1;
1652 asm ("vorr %P0, %P1, %P2"
1653 : "=w" (a)
1654 : "0" (a), "w" (b));
1655 return (a != 1);
1657 } "-mfpu=neon -mfloat-abi=softfp"]
1660 # Return 1 if this is a ARM target with NEON enabled.
1662 proc check_effective_target_arm_neon { } {
1663 if { [check_effective_target_arm32] } {
1664 return [check_no_compiler_messages arm_neon object {
1665 #ifndef __ARM_NEON__
1666 #error not NEON
1667 #else
1668 int dummy;
1669 #endif
1671 } else {
1672 return 0
1676 # Return 1 if this a Loongson-2E or -2F target using an ABI that supports
1677 # the Loongson vector modes.
1679 proc check_effective_target_mips_loongson { } {
1680 return [check_no_compiler_messages loongson assembly {
1681 #if !defined(__mips_loongson_vector_rev)
1682 #error FOO
1683 #endif
1687 # Return 1 if this is an ARM target that adheres to the ABI for the ARM
1688 # Architecture.
1690 proc check_effective_target_arm_eabi { } {
1691 return [check_no_compiler_messages arm_eabi object {
1692 #ifndef __ARM_EABI__
1693 #error not EABI
1694 #else
1695 int dummy;
1696 #endif
1700 # Return 1 if this is an ARM target supporting -mcpu=iwmmxt.
1701 # Some multilibs may be incompatible with this option.
1703 proc check_effective_target_arm_iwmmxt_ok { } {
1704 if { [check_effective_target_arm32] } {
1705 return [check_no_compiler_messages arm_iwmmxt_ok object {
1706 int dummy;
1707 } "-mcpu=iwmmxt"]
1708 } else {
1709 return 0
1713 # Return 1 if this is a PowerPC target with floating-point registers.
1715 proc check_effective_target_powerpc_fprs { } {
1716 if { [istarget powerpc*-*-*]
1717 || [istarget rs6000-*-*] } {
1718 return [check_no_compiler_messages powerpc_fprs object {
1719 #ifdef __NO_FPRS__
1720 #error no FPRs
1721 #else
1722 int dummy;
1723 #endif
1725 } else {
1726 return 0
1730 # Return 1 if this is a PowerPC target with hardware double-precision
1731 # floating point.
1733 proc check_effective_target_powerpc_hard_double { } {
1734 if { [istarget powerpc*-*-*]
1735 || [istarget rs6000-*-*] } {
1736 return [check_no_compiler_messages powerpc_hard_double object {
1737 #ifdef _SOFT_DOUBLE
1738 #error soft double
1739 #else
1740 int dummy;
1741 #endif
1743 } else {
1744 return 0
1748 # Return 1 if this is a PowerPC target supporting -maltivec.
1750 proc check_effective_target_powerpc_altivec_ok { } {
1751 if { ([istarget powerpc*-*-*]
1752 && ![istarget powerpc-*-linux*paired*])
1753 || [istarget rs6000-*-*] } {
1754 # AltiVec is not supported on AIX before 5.3.
1755 if { [istarget powerpc*-*-aix4*]
1756 || [istarget powerpc*-*-aix5.1*]
1757 || [istarget powerpc*-*-aix5.2*] } {
1758 return 0
1760 return [check_no_compiler_messages powerpc_altivec_ok object {
1761 int dummy;
1762 } "-maltivec"]
1763 } else {
1764 return 0
1768 # Return 1 if this is a PowerPC target supporting -mvsx
1770 proc check_effective_target_powerpc_vsx_ok { } {
1771 if { ([istarget powerpc*-*-*]
1772 && ![istarget powerpc-*-linux*paired*])
1773 || [istarget rs6000-*-*] } {
1774 # AltiVec is not supported on AIX before 5.3.
1775 if { [istarget powerpc*-*-aix4*]
1776 || [istarget powerpc*-*-aix5.1*]
1777 || [istarget powerpc*-*-aix5.2*] } {
1778 return 0
1780 return [check_no_compiler_messages powerpc_vsx_ok object {
1781 int main (void) {
1782 #ifdef __MACH__
1783 asm volatile ("xxlor vs0,vs0,vs0");
1784 #else
1785 asm volatile ("xxlor 0,0,0");
1786 #endif
1787 return 0;
1789 } "-mvsx"]
1790 } else {
1791 return 0
1795 # Return 1 if this is a PowerPC target supporting -mcpu=cell.
1797 proc check_effective_target_powerpc_ppu_ok { } {
1798 if [check_effective_target_powerpc_altivec_ok] {
1799 return [check_no_compiler_messages cell_asm_available object {
1800 int main (void) {
1801 #ifdef __MACH__
1802 asm volatile ("lvlx v0,v0,v0");
1803 #else
1804 asm volatile ("lvlx 0,0,0");
1805 #endif
1806 return 0;
1809 } else {
1810 return 0
1814 # Return 1 if this is a PowerPC target that supports SPU.
1816 proc check_effective_target_powerpc_spu { } {
1817 if [istarget powerpc*-*-linux*] {
1818 return [check_effective_target_powerpc_altivec_ok]
1819 } else {
1820 return 0
1824 # Return 1 if this is a PowerPC SPE target. The check includes options
1825 # specified by dg-options for this test, so don't cache the result.
1827 proc check_effective_target_powerpc_spe_nocache { } {
1828 if { [istarget powerpc*-*-*] } {
1829 return [check_no_compiler_messages_nocache powerpc_spe object {
1830 #ifndef __SPE__
1831 #error not SPE
1832 #else
1833 int dummy;
1834 #endif
1835 } [current_compiler_flags]]
1836 } else {
1837 return 0
1841 # Return 1 if this is a PowerPC target with SPE enabled.
1843 proc check_effective_target_powerpc_spe { } {
1844 if { [istarget powerpc*-*-*] } {
1845 return [check_no_compiler_messages powerpc_spe object {
1846 #ifndef __SPE__
1847 #error not SPE
1848 #else
1849 int dummy;
1850 #endif
1852 } else {
1853 return 0
1857 # Return 1 if this is a PowerPC target with Altivec enabled.
1859 proc check_effective_target_powerpc_altivec { } {
1860 if { [istarget powerpc*-*-*] } {
1861 return [check_no_compiler_messages powerpc_altivec object {
1862 #ifndef __ALTIVEC__
1863 #error not Altivec
1864 #else
1865 int dummy;
1866 #endif
1868 } else {
1869 return 0
1873 # Return 1 if this is a PowerPC 405 target. The check includes options
1874 # specified by dg-options for this test, so don't cache the result.
1876 proc check_effective_target_powerpc_405_nocache { } {
1877 if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } {
1878 return [check_no_compiler_messages_nocache powerpc_405 object {
1879 #ifdef __PPC405__
1880 int dummy;
1881 #else
1882 #error not a PPC405
1883 #endif
1884 } [current_compiler_flags]]
1885 } else {
1886 return 0
1890 # Return 1 if this is a SPU target with a toolchain that
1891 # supports automatic overlay generation.
1893 proc check_effective_target_spu_auto_overlay { } {
1894 if { [istarget spu*-*-elf*] } {
1895 return [check_no_compiler_messages spu_auto_overlay executable {
1896 int main (void) { }
1897 } "-Wl,--auto-overlay" ]
1898 } else {
1899 return 0
1903 # The VxWorks SPARC simulator accepts only EM_SPARC executables and
1904 # chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the
1905 # test environment appears to run executables on such a simulator.
1907 proc check_effective_target_ultrasparc_hw { } {
1908 return [check_runtime ultrasparc_hw {
1909 int main() { return 0; }
1910 } "-mcpu=ultrasparc"]
1913 # Return 1 if the target supports hardware vector shift operation.
1915 proc check_effective_target_vect_shift { } {
1916 global et_vect_shift_saved
1918 if [info exists et_vect_shift_saved] {
1919 verbose "check_effective_target_vect_shift: using cached result" 2
1920 } else {
1921 set et_vect_shift_saved 0
1922 if { ([istarget powerpc*-*-*]
1923 && ![istarget powerpc-*-linux*paired*])
1924 || [istarget ia64-*-*]
1925 || [istarget i?86-*-*]
1926 || [istarget x86_64-*-*]
1927 || [check_effective_target_arm32] } {
1928 set et_vect_shift_saved 1
1932 verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2
1933 return $et_vect_shift_saved
1936 # Return 1 if the target supports hardware vectors of long, 0 otherwise.
1938 # This can change for different subtargets so do not cache the result.
1940 proc check_effective_target_vect_long { } {
1941 if { [istarget i?86-*-*]
1942 || (([istarget powerpc*-*-*]
1943 && ![istarget powerpc-*-linux*paired*])
1944 && [check_effective_target_ilp32])
1945 || [istarget x86_64-*-*]
1946 || [check_effective_target_arm32]
1947 || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) } {
1948 set answer 1
1949 } else {
1950 set answer 0
1953 verbose "check_effective_target_vect_long: returning $answer" 2
1954 return $answer
1957 # Return 1 if the target supports hardware vectors of float, 0 otherwise.
1959 # This won't change for different subtargets so cache the result.
1961 proc check_effective_target_vect_float { } {
1962 global et_vect_float_saved
1964 if [info exists et_vect_float_saved] {
1965 verbose "check_effective_target_vect_float: using cached result" 2
1966 } else {
1967 set et_vect_float_saved 0
1968 if { [istarget i?86-*-*]
1969 || [istarget powerpc*-*-*]
1970 || [istarget spu-*-*]
1971 || [istarget mipsisa64*-*-*]
1972 || [istarget x86_64-*-*]
1973 || [istarget ia64-*-*]
1974 || [check_effective_target_arm32] } {
1975 set et_vect_float_saved 1
1979 verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2
1980 return $et_vect_float_saved
1983 # Return 1 if the target supports hardware vectors of double, 0 otherwise.
1985 # This won't change for different subtargets so cache the result.
1987 proc check_effective_target_vect_double { } {
1988 global et_vect_double_saved
1990 if [info exists et_vect_double_saved] {
1991 verbose "check_effective_target_vect_double: using cached result" 2
1992 } else {
1993 set et_vect_double_saved 0
1994 if { [istarget i?86-*-*]
1995 || [istarget x86_64-*-*]
1996 || [istarget spu-*-*] } {
1997 set et_vect_double_saved 1
2001 verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2
2002 return $et_vect_double_saved
2005 # Return 1 if the target supports hardware vectors of long long, 0 otherwise.
2007 # This won't change for different subtargets so cache the result.
2009 proc check_effective_target_vect_long_long { } {
2010 global et_vect_long_long_saved
2012 if [info exists et_vect_long_long_saved] {
2013 verbose "check_effective_target_vect_long_long: using cached result" 2
2014 } else {
2015 set et_vect_long_long_saved 0
2016 if { [istarget i?86-*-*]
2017 || [istarget x86_64-*-*] } {
2018 set et_vect_long_long_saved 1
2022 verbose "check_effective_target_vect_long_long: returning $et_vect_long_long_saved" 2
2023 return $et_vect_long_long_saved
2027 # Return 1 if the target plus current options does not support a vector
2028 # max instruction on "int", 0 otherwise.
2030 # This won't change for different subtargets so cache the result.
2032 proc check_effective_target_vect_no_int_max { } {
2033 global et_vect_no_int_max_saved
2035 if [info exists et_vect_no_int_max_saved] {
2036 verbose "check_effective_target_vect_no_int_max: using cached result" 2
2037 } else {
2038 set et_vect_no_int_max_saved 0
2039 if { [istarget sparc*-*-*]
2040 || [istarget spu-*-*]
2041 || [istarget alpha*-*-*] } {
2042 set et_vect_no_int_max_saved 1
2045 verbose "check_effective_target_vect_no_int_max: returning $et_vect_no_int_max_saved" 2
2046 return $et_vect_no_int_max_saved
2049 # Return 1 if the target plus current options does not support a vector
2050 # add instruction on "int", 0 otherwise.
2052 # This won't change for different subtargets so cache the result.
2054 proc check_effective_target_vect_no_int_add { } {
2055 global et_vect_no_int_add_saved
2057 if [info exists et_vect_no_int_add_saved] {
2058 verbose "check_effective_target_vect_no_int_add: using cached result" 2
2059 } else {
2060 set et_vect_no_int_add_saved 0
2061 # Alpha only supports vector add on V8QI and V4HI.
2062 if { [istarget alpha*-*-*] } {
2063 set et_vect_no_int_add_saved 1
2066 verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2
2067 return $et_vect_no_int_add_saved
2070 # Return 1 if the target plus current options does not support vector
2071 # bitwise instructions, 0 otherwise.
2073 # This won't change for different subtargets so cache the result.
2075 proc check_effective_target_vect_no_bitwise { } {
2076 global et_vect_no_bitwise_saved
2078 if [info exists et_vect_no_bitwise_saved] {
2079 verbose "check_effective_target_vect_no_bitwise: using cached result" 2
2080 } else {
2081 set et_vect_no_bitwise_saved 0
2083 verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2
2084 return $et_vect_no_bitwise_saved
2087 # Return 1 if the target plus current options supports vector permutation,
2088 # 0 otherwise.
2090 # This won't change for different subtargets so cache the result.
2092 proc check_effective_target_vect_perm { } {
2093 global et_vect_perm
2095 if [info exists et_vect_perm_saved] {
2096 verbose "check_effective_target_vect_perm: using cached result" 2
2097 } else {
2098 set et_vect_perm_saved 0
2099 if { [istarget powerpc*-*-*]
2100 || [istarget spu-*-*] } {
2101 set et_vect_perm_saved 1
2104 verbose "check_effective_target_vect_perm: returning $et_vect_perm_saved" 2
2105 return $et_vect_perm_saved
2108 # Return 1 if the target plus current options supports a vector
2109 # widening summation of *short* args into *int* result, 0 otherwise.
2111 # This won't change for different subtargets so cache the result.
2113 proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } {
2114 global et_vect_widen_sum_hi_to_si_pattern
2116 if [info exists et_vect_widen_sum_hi_to_si_pattern_saved] {
2117 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: using cached result" 2
2118 } else {
2119 set et_vect_widen_sum_hi_to_si_pattern_saved 0
2120 if { [istarget powerpc*-*-*] } {
2121 set et_vect_widen_sum_hi_to_si_pattern_saved 1
2124 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: returning $et_vect_widen_sum_hi_to_si_pattern_saved" 2
2125 return $et_vect_widen_sum_hi_to_si_pattern_saved
2128 # Return 1 if the target plus current options supports a vector
2129 # widening summation of *short* args into *int* result, 0 otherwise.
2130 # A target can also support this widening summation if it can support
2131 # promotion (unpacking) from shorts to ints.
2133 # This won't change for different subtargets so cache the result.
2135 proc check_effective_target_vect_widen_sum_hi_to_si { } {
2136 global et_vect_widen_sum_hi_to_si
2138 if [info exists et_vect_widen_sum_hi_to_si_saved] {
2139 verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2
2140 } else {
2141 set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack]
2142 if { [istarget powerpc*-*-*]
2143 || [istarget ia64-*-*] } {
2144 set et_vect_widen_sum_hi_to_si_saved 1
2147 verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2
2148 return $et_vect_widen_sum_hi_to_si_saved
2151 # Return 1 if the target plus current options supports a vector
2152 # widening summation of *char* args into *short* result, 0 otherwise.
2153 # A target can also support this widening summation if it can support
2154 # promotion (unpacking) from chars to shorts.
2156 # This won't change for different subtargets so cache the result.
2158 proc check_effective_target_vect_widen_sum_qi_to_hi { } {
2159 global et_vect_widen_sum_qi_to_hi
2161 if [info exists et_vect_widen_sum_qi_to_hi_saved] {
2162 verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2
2163 } else {
2164 set et_vect_widen_sum_qi_to_hi_saved 0
2165 if { [check_effective_target_vect_unpack]
2166 || [istarget ia64-*-*] } {
2167 set et_vect_widen_sum_qi_to_hi_saved 1
2170 verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2
2171 return $et_vect_widen_sum_qi_to_hi_saved
2174 # Return 1 if the target plus current options supports a vector
2175 # widening summation of *char* args into *int* result, 0 otherwise.
2177 # This won't change for different subtargets so cache the result.
2179 proc check_effective_target_vect_widen_sum_qi_to_si { } {
2180 global et_vect_widen_sum_qi_to_si
2182 if [info exists et_vect_widen_sum_qi_to_si_saved] {
2183 verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2
2184 } else {
2185 set et_vect_widen_sum_qi_to_si_saved 0
2186 if { [istarget powerpc*-*-*] } {
2187 set et_vect_widen_sum_qi_to_si_saved 1
2190 verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2
2191 return $et_vect_widen_sum_qi_to_si_saved
2194 # Return 1 if the target plus current options supports a vector
2195 # widening multiplication of *char* args into *short* result, 0 otherwise.
2196 # A target can also support this widening multplication if it can support
2197 # promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
2198 # multiplication of shorts).
2200 # This won't change for different subtargets so cache the result.
2203 proc check_effective_target_vect_widen_mult_qi_to_hi { } {
2204 global et_vect_widen_mult_qi_to_hi
2206 if [info exists et_vect_widen_mult_qi_to_hi_saved] {
2207 verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2
2208 } else {
2209 if { [check_effective_target_vect_unpack]
2210 && [check_effective_target_vect_short_mult] } {
2211 set et_vect_widen_mult_qi_to_hi_saved 1
2212 } else {
2213 set et_vect_widen_mult_qi_to_hi_saved 0
2215 if { [istarget powerpc*-*-*] } {
2216 set et_vect_widen_mult_qi_to_hi_saved 1
2219 verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2
2220 return $et_vect_widen_mult_qi_to_hi_saved
2223 # Return 1 if the target plus current options supports a vector
2224 # widening multiplication of *short* args into *int* result, 0 otherwise.
2225 # A target can also support this widening multplication if it can support
2226 # promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening
2227 # multiplication of ints).
2229 # This won't change for different subtargets so cache the result.
2232 proc check_effective_target_vect_widen_mult_hi_to_si { } {
2233 global et_vect_widen_mult_hi_to_si
2235 if [info exists et_vect_widen_mult_hi_to_si_saved] {
2236 verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2
2237 } else {
2238 if { [check_effective_target_vect_unpack]
2239 && [check_effective_target_vect_int_mult] } {
2240 set et_vect_widen_mult_hi_to_si_saved 1
2241 } else {
2242 set et_vect_widen_mult_hi_to_si_saved 0
2244 if { [istarget powerpc*-*-*]
2245 || [istarget spu-*-*]
2246 || [istarget i?86-*-*]
2247 || [istarget x86_64-*-*] } {
2248 set et_vect_widen_mult_hi_to_si_saved 1
2251 verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2
2252 return $et_vect_widen_mult_hi_to_si_saved
2255 # Return 1 if the target plus current options supports a vector
2256 # dot-product of signed chars, 0 otherwise.
2258 # This won't change for different subtargets so cache the result.
2260 proc check_effective_target_vect_sdot_qi { } {
2261 global et_vect_sdot_qi
2263 if [info exists et_vect_sdot_qi_saved] {
2264 verbose "check_effective_target_vect_sdot_qi: using cached result" 2
2265 } else {
2266 set et_vect_sdot_qi_saved 0
2268 verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2
2269 return $et_vect_sdot_qi_saved
2272 # Return 1 if the target plus current options supports a vector
2273 # dot-product of unsigned chars, 0 otherwise.
2275 # This won't change for different subtargets so cache the result.
2277 proc check_effective_target_vect_udot_qi { } {
2278 global et_vect_udot_qi
2280 if [info exists et_vect_udot_qi_saved] {
2281 verbose "check_effective_target_vect_udot_qi: using cached result" 2
2282 } else {
2283 set et_vect_udot_qi_saved 0
2284 if { [istarget powerpc*-*-*] } {
2285 set et_vect_udot_qi_saved 1
2288 verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2
2289 return $et_vect_udot_qi_saved
2292 # Return 1 if the target plus current options supports a vector
2293 # dot-product of signed shorts, 0 otherwise.
2295 # This won't change for different subtargets so cache the result.
2297 proc check_effective_target_vect_sdot_hi { } {
2298 global et_vect_sdot_hi
2300 if [info exists et_vect_sdot_hi_saved] {
2301 verbose "check_effective_target_vect_sdot_hi: using cached result" 2
2302 } else {
2303 set et_vect_sdot_hi_saved 0
2304 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
2305 || [istarget i?86-*-*]
2306 || [istarget x86_64-*-*] } {
2307 set et_vect_sdot_hi_saved 1
2310 verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2
2311 return $et_vect_sdot_hi_saved
2314 # Return 1 if the target plus current options supports a vector
2315 # dot-product of unsigned shorts, 0 otherwise.
2317 # This won't change for different subtargets so cache the result.
2319 proc check_effective_target_vect_udot_hi { } {
2320 global et_vect_udot_hi
2322 if [info exists et_vect_udot_hi_saved] {
2323 verbose "check_effective_target_vect_udot_hi: using cached result" 2
2324 } else {
2325 set et_vect_udot_hi_saved 0
2326 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) } {
2327 set et_vect_udot_hi_saved 1
2330 verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2
2331 return $et_vect_udot_hi_saved
2335 # Return 1 if the target plus current options supports a vector
2336 # demotion (packing) of shorts (to chars) and ints (to shorts)
2337 # using modulo arithmetic, 0 otherwise.
2339 # This won't change for different subtargets so cache the result.
2341 proc check_effective_target_vect_pack_trunc { } {
2342 global et_vect_pack_trunc
2344 if [info exists et_vect_pack_trunc_saved] {
2345 verbose "check_effective_target_vect_pack_trunc: using cached result" 2
2346 } else {
2347 set et_vect_pack_trunc_saved 0
2348 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
2349 || [istarget i?86-*-*]
2350 || [istarget x86_64-*-*]
2351 || [istarget spu-*-*] } {
2352 set et_vect_pack_trunc_saved 1
2355 verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2
2356 return $et_vect_pack_trunc_saved
2359 # Return 1 if the target plus current options supports a vector
2360 # promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
2362 # This won't change for different subtargets so cache the result.
2364 proc check_effective_target_vect_unpack { } {
2365 global et_vect_unpack
2367 if [info exists et_vect_unpack_saved] {
2368 verbose "check_effective_target_vect_unpack: using cached result" 2
2369 } else {
2370 set et_vect_unpack_saved 0
2371 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*])
2372 || [istarget i?86-*-*]
2373 || [istarget x86_64-*-*]
2374 || [istarget spu-*-*] } {
2375 set et_vect_unpack_saved 1
2378 verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2
2379 return $et_vect_unpack_saved
2382 # Return 1 if the target plus current options does not guarantee
2383 # that its STACK_BOUNDARY is >= the reguired vector alignment.
2385 # This won't change for different subtargets so cache the result.
2387 proc check_effective_target_unaligned_stack { } {
2388 global et_unaligned_stack_saved
2390 if [info exists et_unaligned_stack_saved] {
2391 verbose "check_effective_target_unaligned_stack: using cached result" 2
2392 } else {
2393 set et_unaligned_stack_saved 0
2395 verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2
2396 return $et_unaligned_stack_saved
2399 # Return 1 if the target plus current options does not support a vector
2400 # alignment mechanism, 0 otherwise.
2402 # This won't change for different subtargets so cache the result.
2404 proc check_effective_target_vect_no_align { } {
2405 global et_vect_no_align_saved
2407 if [info exists et_vect_no_align_saved] {
2408 verbose "check_effective_target_vect_no_align: using cached result" 2
2409 } else {
2410 set et_vect_no_align_saved 0
2411 if { [istarget mipsisa64*-*-*]
2412 || [istarget sparc*-*-*]
2413 || [istarget ia64-*-*]
2414 || [check_effective_target_arm32] } {
2415 set et_vect_no_align_saved 1
2418 verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2
2419 return $et_vect_no_align_saved
2422 # Return 1 if the target supports a vector misalign access, 0 otherwise.
2424 # This won't change for different subtargets so cache the result.
2426 proc check_effective_target_vect_hw_misalign { } {
2427 global et_vect_hw_misalign_saved
2429 if [info exists et_vect_hw_misalign_saved] {
2430 verbose "check_effective_target_vect_hw_misalign: using cached result" 2
2431 } else {
2432 set et_vect_hw_misalign_saved 0
2433 if { ([istarget x86_64-*-*]
2434 || [istarget i?86-*-*]) } {
2435 set et_vect_hw_misalign_saved 1
2438 verbose "check_effective_target_vect_hw_misalign: returning $et_vect_hw_misalign_saved" 2
2439 return $et_vect_hw_misalign_saved
2443 # Return 1 if arrays are aligned to the vector alignment
2444 # boundary, 0 otherwise.
2446 # This won't change for different subtargets so cache the result.
2448 proc check_effective_target_vect_aligned_arrays { } {
2449 global et_vect_aligned_arrays
2451 if [info exists et_vect_aligned_arrays_saved] {
2452 verbose "check_effective_target_vect_aligned_arrays: using cached result" 2
2453 } else {
2454 set et_vect_aligned_arrays_saved 0
2455 if { (([istarget x86_64-*-*]
2456 || [istarget i?86-*-*]) && [is-effective-target lp64])
2457 || [istarget spu-*-*] } {
2458 set et_vect_aligned_arrays_saved 1
2461 verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2
2462 return $et_vect_aligned_arrays_saved
2465 # Return 1 if types of size 32 bit or less are naturally aligned
2466 # (aligned to their type-size), 0 otherwise.
2468 # This won't change for different subtargets so cache the result.
2470 proc check_effective_target_natural_alignment_32 { } {
2471 global et_natural_alignment_32
2473 if [info exists et_natural_alignment_32_saved] {
2474 verbose "check_effective_target_natural_alignment_32: using cached result" 2
2475 } else {
2476 # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER.
2477 set et_natural_alignment_32_saved 1
2478 if { ([istarget *-*-darwin*] && [is-effective-target lp64]) } {
2479 set et_natural_alignment_32_saved 0
2482 verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2
2483 return $et_natural_alignment_32_saved
2486 # Return 1 if types of size 64 bit or less are naturally aligned (aligned to their
2487 # type-size), 0 otherwise.
2489 # This won't change for different subtargets so cache the result.
2491 proc check_effective_target_natural_alignment_64 { } {
2492 global et_natural_alignment_64
2494 if [info exists et_natural_alignment_64_saved] {
2495 verbose "check_effective_target_natural_alignment_64: using cached result" 2
2496 } else {
2497 set et_natural_alignment_64_saved 0
2498 if { ([is-effective-target lp64] && ![istarget *-*-darwin*])
2499 || [istarget spu-*-*] } {
2500 set et_natural_alignment_64_saved 1
2503 verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2
2504 return $et_natural_alignment_64_saved
2507 # Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
2509 # This won't change for different subtargets so cache the result.
2511 proc check_effective_target_vector_alignment_reachable { } {
2512 global et_vector_alignment_reachable
2514 if [info exists et_vector_alignment_reachable_saved] {
2515 verbose "check_effective_target_vector_alignment_reachable: using cached result" 2
2516 } else {
2517 if { [check_effective_target_vect_aligned_arrays]
2518 || [check_effective_target_natural_alignment_32] } {
2519 set et_vector_alignment_reachable_saved 1
2520 } else {
2521 set et_vector_alignment_reachable_saved 0
2524 verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2
2525 return $et_vector_alignment_reachable_saved
2528 # Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
2530 # This won't change for different subtargets so cache the result.
2532 proc check_effective_target_vector_alignment_reachable_for_64bit { } {
2533 global et_vector_alignment_reachable_for_64bit
2535 if [info exists et_vector_alignment_reachable_for_64bit_saved] {
2536 verbose "check_effective_target_vector_alignment_reachable_for_64bit: using cached result" 2
2537 } else {
2538 if { [check_effective_target_vect_aligned_arrays]
2539 || [check_effective_target_natural_alignment_64] } {
2540 set et_vector_alignment_reachable_for_64bit_saved 1
2541 } else {
2542 set et_vector_alignment_reachable_for_64bit_saved 0
2545 verbose "check_effective_target_vector_alignment_reachable_for_64bit: returning $et_vector_alignment_reachable_for_64bit_saved" 2
2546 return $et_vector_alignment_reachable_for_64bit_saved
2549 # Return 1 if the target supports vector conditional operations, 0 otherwise.
2551 proc check_effective_target_vect_condition { } {
2552 global et_vect_cond_saved
2554 if [info exists et_vect_cond_saved] {
2555 verbose "check_effective_target_vect_cond: using cached result" 2
2556 } else {
2557 set et_vect_cond_saved 0
2558 if { [istarget powerpc*-*-*]
2559 || [istarget ia64-*-*]
2560 || [istarget i?86-*-*]
2561 || [istarget spu-*-*]
2562 || [istarget x86_64-*-*] } {
2563 set et_vect_cond_saved 1
2567 verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2
2568 return $et_vect_cond_saved
2571 # Return 1 if the target supports vector char multiplication, 0 otherwise.
2573 proc check_effective_target_vect_char_mult { } {
2574 global et_vect_char_mult_saved
2576 if [info exists et_vect_char_mult_saved] {
2577 verbose "check_effective_target_vect_char_mult: using cached result" 2
2578 } else {
2579 set et_vect_char_mult_saved 0
2580 if { [istarget ia64-*-*]
2581 || [istarget i?86-*-*]
2582 || [istarget x86_64-*-*] } {
2583 set et_vect_char_mult_saved 1
2587 verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2
2588 return $et_vect_char_mult_saved
2591 # Return 1 if the target supports vector short multiplication, 0 otherwise.
2593 proc check_effective_target_vect_short_mult { } {
2594 global et_vect_short_mult_saved
2596 if [info exists et_vect_short_mult_saved] {
2597 verbose "check_effective_target_vect_short_mult: using cached result" 2
2598 } else {
2599 set et_vect_short_mult_saved 0
2600 if { [istarget ia64-*-*]
2601 || [istarget spu-*-*]
2602 || [istarget i?86-*-*]
2603 || [istarget x86_64-*-*]
2604 || [istarget powerpc*-*-*]
2605 || [check_effective_target_arm32] } {
2606 set et_vect_short_mult_saved 1
2610 verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2
2611 return $et_vect_short_mult_saved
2614 # Return 1 if the target supports vector int multiplication, 0 otherwise.
2616 proc check_effective_target_vect_int_mult { } {
2617 global et_vect_int_mult_saved
2619 if [info exists et_vect_int_mult_saved] {
2620 verbose "check_effective_target_vect_int_mult: using cached result" 2
2621 } else {
2622 set et_vect_int_mult_saved 0
2623 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
2624 || [istarget spu-*-*]
2625 || [istarget i?86-*-*]
2626 || [istarget x86_64-*-*]
2627 || [check_effective_target_arm32] } {
2628 set et_vect_int_mult_saved 1
2632 verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2
2633 return $et_vect_int_mult_saved
2636 # Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.
2638 proc check_effective_target_vect_extract_even_odd { } {
2639 global et_vect_extract_even_odd_saved
2641 if [info exists et_vect_extract_even_odd_saved] {
2642 verbose "check_effective_target_vect_extract_even_odd: using cached result" 2
2643 } else {
2644 set et_vect_extract_even_odd_saved 0
2645 if { [istarget powerpc*-*-*]
2646 || [istarget i?86-*-*]
2647 || [istarget x86_64-*-*]
2648 || [istarget spu-*-*] } {
2649 set et_vect_extract_even_odd_saved 1
2653 verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2
2654 return $et_vect_extract_even_odd_saved
2657 # Return 1 if the target supports vector even/odd elements extraction of
2658 # vectors with SImode elements or larger, 0 otherwise.
2660 proc check_effective_target_vect_extract_even_odd_wide { } {
2661 global et_vect_extract_even_odd_wide_saved
2663 if [info exists et_vect_extract_even_odd_wide_saved] {
2664 verbose "check_effective_target_vect_extract_even_odd_wide: using cached result" 2
2665 } else {
2666 set et_vect_extract_even_odd_wide_saved 0
2667 if { [istarget powerpc*-*-*]
2668 || [istarget i?86-*-*]
2669 || [istarget x86_64-*-*]
2670 || [istarget spu-*-*] } {
2671 set et_vect_extract_even_odd_wide_saved 1
2675 verbose "check_effective_target_vect_extract_even_wide_odd: returning $et_vect_extract_even_odd_wide_saved" 2
2676 return $et_vect_extract_even_odd_wide_saved
2679 # Return 1 if the target supports vector interleaving, 0 otherwise.
2681 proc check_effective_target_vect_interleave { } {
2682 global et_vect_interleave_saved
2684 if [info exists et_vect_interleave_saved] {
2685 verbose "check_effective_target_vect_interleave: using cached result" 2
2686 } else {
2687 set et_vect_interleave_saved 0
2688 if { [istarget powerpc*-*-*]
2689 || [istarget i?86-*-*]
2690 || [istarget x86_64-*-*]
2691 || [istarget spu-*-*] } {
2692 set et_vect_interleave_saved 1
2696 verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2
2697 return $et_vect_interleave_saved
2700 # Return 1 if the target supports vector interleaving and extract even/odd, 0 otherwise.
2701 proc check_effective_target_vect_strided { } {
2702 global et_vect_strided_saved
2704 if [info exists et_vect_strided_saved] {
2705 verbose "check_effective_target_vect_strided: using cached result" 2
2706 } else {
2707 set et_vect_strided_saved 0
2708 if { [check_effective_target_vect_interleave]
2709 && [check_effective_target_vect_extract_even_odd] } {
2710 set et_vect_strided_saved 1
2714 verbose "check_effective_target_vect_strided: returning $et_vect_strided_saved" 2
2715 return $et_vect_strided_saved
2718 # Return 1 if the target supports vector interleaving and extract even/odd
2719 # for wide element types, 0 otherwise.
2720 proc check_effective_target_vect_strided_wide { } {
2721 global et_vect_strided_wide_saved
2723 if [info exists et_vect_strided_wide_saved] {
2724 verbose "check_effective_target_vect_strided_wide: using cached result" 2
2725 } else {
2726 set et_vect_strided_wide_saved 0
2727 if { [check_effective_target_vect_interleave]
2728 && [check_effective_target_vect_extract_even_odd_wide] } {
2729 set et_vect_strided_wide_saved 1
2733 verbose "check_effective_target_vect_strided_wide: returning $et_vect_strided_wide_saved" 2
2734 return $et_vect_strided_wide_saved
2737 # Return 1 if the target supports section-anchors
2739 proc check_effective_target_section_anchors { } {
2740 global et_section_anchors_saved
2742 if [info exists et_section_anchors_saved] {
2743 verbose "check_effective_target_section_anchors: using cached result" 2
2744 } else {
2745 set et_section_anchors_saved 0
2746 if { [istarget powerpc*-*-*]
2747 || [istarget arm*-*-*] } {
2748 set et_section_anchors_saved 1
2752 verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2
2753 return $et_section_anchors_saved
2756 # Return 1 if the target supports atomic operations on "int" and "long".
2758 proc check_effective_target_sync_int_long { } {
2759 global et_sync_int_long_saved
2761 if [info exists et_sync_int_long_saved] {
2762 verbose "check_effective_target_sync_int_long: using cached result" 2
2763 } else {
2764 set et_sync_int_long_saved 0
2765 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
2766 # load-reserved/store-conditional instructions.
2767 if { [istarget ia64-*-*]
2768 || [istarget i?86-*-*]
2769 || [istarget x86_64-*-*]
2770 || [istarget alpha*-*-*]
2771 || [istarget bfin*-*linux*]
2772 || [istarget s390*-*-*]
2773 || [istarget powerpc*-*-*]
2774 || [istarget sparc64-*-*]
2775 || [istarget sparcv9-*-*]
2776 || [istarget mips*-*-*] } {
2777 set et_sync_int_long_saved 1
2781 verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2
2782 return $et_sync_int_long_saved
2785 # Return 1 if the target supports atomic operations on "char" and "short".
2787 proc check_effective_target_sync_char_short { } {
2788 global et_sync_char_short_saved
2790 if [info exists et_sync_char_short_saved] {
2791 verbose "check_effective_target_sync_char_short: using cached result" 2
2792 } else {
2793 set et_sync_char_short_saved 0
2794 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
2795 # load-reserved/store-conditional instructions.
2796 if { [istarget ia64-*-*]
2797 || [istarget i?86-*-*]
2798 || [istarget x86_64-*-*]
2799 || [istarget alpha*-*-*]
2800 || [istarget s390*-*-*]
2801 || [istarget powerpc*-*-*]
2802 || [istarget sparc64-*-*]
2803 || [istarget sparcv9-*-*]
2804 || [istarget mips*-*-*] } {
2805 set et_sync_char_short_saved 1
2809 verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2
2810 return $et_sync_char_short_saved
2813 # Return 1 if the target uses a ColdFire FPU.
2815 proc check_effective_target_coldfire_fpu { } {
2816 return [check_no_compiler_messages coldfire_fpu assembly {
2817 #ifndef __mcffpu__
2818 #error FOO
2819 #endif
2823 # Return true if this is a uClibc target.
2825 proc check_effective_target_uclibc {} {
2826 return [check_no_compiler_messages uclibc object {
2827 #include <features.h>
2828 #if !defined (__UCLIBC__)
2829 #error FOO
2830 #endif
2834 # Return true if this is a uclibc target and if the uclibc feature
2835 # described by __$feature__ is not present.
2837 proc check_missing_uclibc_feature {feature} {
2838 return [check_no_compiler_messages $feature object "
2839 #include <features.h>
2840 #if !defined (__UCLIBC) || defined (__${feature}__)
2841 #error FOO
2842 #endif
2846 # Return true if this is a Newlib target.
2848 proc check_effective_target_newlib {} {
2849 return [check_no_compiler_messages newlib object {
2850 #include <newlib.h>
2854 # Return 1 if
2855 # (a) an error of a few ULP is expected in string to floating-point
2856 # conversion functions; and
2857 # (b) overflow is not always detected correctly by those functions.
2859 proc check_effective_target_lax_strtofp {} {
2860 # By default, assume that all uClibc targets suffer from this.
2861 return [check_effective_target_uclibc]
2864 # Return 1 if this is a target for which wcsftime is a dummy
2865 # function that always returns 0.
2867 proc check_effective_target_dummy_wcsftime {} {
2868 # By default, assume that all uClibc targets suffer from this.
2869 return [check_effective_target_uclibc]
2872 # Return 1 if constructors with initialization priority arguments are
2873 # supposed on this target.
2875 proc check_effective_target_init_priority {} {
2876 return [check_no_compiler_messages init_priority assembly "
2877 void f() __attribute__((constructor (1000)));
2878 void f() \{\}
2882 # Return 1 if the target matches the effective target 'arg', 0 otherwise.
2883 # This can be used with any check_* proc that takes no argument and
2884 # returns only 1 or 0. It could be used with check_* procs that take
2885 # arguments with keywords that pass particular arguments.
2887 proc is-effective-target { arg } {
2888 set selected 0
2889 if { [info procs check_effective_target_${arg}] != [list] } {
2890 set selected [check_effective_target_${arg}]
2891 } else {
2892 switch $arg {
2893 "vmx_hw" { set selected [check_vmx_hw_available] }
2894 "named_sections" { set selected [check_named_sections_available] }
2895 "gc_sections" { set selected [check_gc_sections_available] }
2896 "cxa_atexit" { set selected [check_cxa_atexit_available] }
2897 default { error "unknown effective target keyword `$arg'" }
2900 verbose "is-effective-target: $arg $selected" 2
2901 return $selected
2904 # Return 1 if the argument is an effective-target keyword, 0 otherwise.
2906 proc is-effective-target-keyword { arg } {
2907 if { [info procs check_effective_target_${arg}] != [list] } {
2908 return 1
2909 } else {
2910 # These have different names for their check_* procs.
2911 switch $arg {
2912 "vmx_hw" { return 1 }
2913 "named_sections" { return 1 }
2914 "gc_sections" { return 1 }
2915 "cxa_atexit" { return 1 }
2916 default { return 0 }
2921 # Return 1 if target default to short enums
2923 proc check_effective_target_short_enums { } {
2924 return [check_no_compiler_messages short_enums assembly {
2925 enum foo { bar };
2926 int s[sizeof (enum foo) == 1 ? 1 : -1];
2930 # Return 1 if target supports merging string constants at link time.
2932 proc check_effective_target_string_merging { } {
2933 return [check_no_messages_and_pattern string_merging \
2934 "rodata\\.str" assembly {
2935 const char *var = "String";
2936 } {-O2}]
2939 # Return 1 if target has the basic signed and unsigned types in
2940 # <stdint.h>, 0 otherwise. This will be obsolete when GCC ensures a
2941 # working <stdint.h> for all targets.
2943 proc check_effective_target_stdint_types { } {
2944 return [check_no_compiler_messages stdint_types assembly {
2945 #include <stdint.h>
2946 int8_t a; int16_t b; int32_t c; int64_t d;
2947 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
2951 # Return 1 if target has the basic signed and unsigned types in
2952 # <inttypes.h>, 0 otherwise. This is for tests that GCC's notions of
2953 # these types agree with those in the header, as some systems have
2954 # only <inttypes.h>.
2956 proc check_effective_target_inttypes_types { } {
2957 return [check_no_compiler_messages inttypes_types assembly {
2958 #include <inttypes.h>
2959 int8_t a; int16_t b; int32_t c; int64_t d;
2960 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
2964 # Return 1 if programs are intended to be run on a simulator
2965 # (i.e. slowly) rather than hardware (i.e. fast).
2967 proc check_effective_target_simulator { } {
2969 # All "src/sim" simulators set this one.
2970 if [board_info target exists is_simulator] {
2971 return [board_info target is_simulator]
2974 # The "sid" simulators don't set that one, but at least they set
2975 # this one.
2976 if [board_info target exists slow_simulator] {
2977 return [board_info target slow_simulator]
2980 return 0
2983 # Return 1 if the target is a VxWorks kernel.
2985 proc check_effective_target_vxworks_kernel { } {
2986 return [check_no_compiler_messages vxworks_kernel assembly {
2987 #if !defined __vxworks || defined __RTP__
2988 #error NO
2989 #endif
2993 # Return 1 if the target is a VxWorks RTP.
2995 proc check_effective_target_vxworks_rtp { } {
2996 return [check_no_compiler_messages vxworks_rtp assembly {
2997 #if !defined __vxworks || !defined __RTP__
2998 #error NO
2999 #endif
3003 # Return 1 if the target is expected to provide wide character support.
3005 proc check_effective_target_wchar { } {
3006 if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} {
3007 return 0
3009 return [check_no_compiler_messages wchar assembly {
3010 #include <wchar.h>
3014 # Return 1 if the target has <pthread.h>.
3016 proc check_effective_target_pthread_h { } {
3017 return [check_no_compiler_messages pthread_h assembly {
3018 #include <pthread.h>
3022 # Return 1 if the target can truncate a file from a file-descriptor,
3023 # as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or
3024 # chsize. We test for a trivially functional truncation; no stubs.
3025 # As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a
3026 # different function to be used.
3028 proc check_effective_target_fd_truncate { } {
3029 set prog {
3030 #define _FILE_OFFSET_BITS 64
3031 #include <unistd.h>
3032 #include <stdio.h>
3033 #include <stdlib.h>
3034 int main ()
3036 FILE *f = fopen ("tst.tmp", "wb");
3037 int fd;
3038 const char t[] = "test writing more than ten characters";
3039 char s[11];
3040 fd = fileno (f);
3041 write (fd, t, sizeof (t) - 1);
3042 lseek (fd, 0, 0);
3043 if (ftruncate (fd, 10) != 0)
3044 exit (1);
3045 close (fd);
3046 f = fopen ("tst.tmp", "rb");
3047 if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
3048 exit (1);
3049 exit (0);
3053 if { [check_runtime ftruncate $prog] } {
3054 return 1;
3057 regsub "ftruncate" $prog "chsize" prog
3058 return [check_runtime chsize $prog]
3061 # Add to FLAGS all the target-specific flags needed to access the c99 runtime.
3063 proc add_options_for_c99_runtime { flags } {
3064 if { [istarget *-*-solaris2*] } {
3065 return "$flags -std=c99"
3067 if { [istarget powerpc-*-darwin*] } {
3068 return "$flags -mmacosx-version-min=10.3"
3070 return $flags
3073 # Add to FLAGS all the target-specific flags needed to enable
3074 # full IEEE compliance mode.
3076 proc add_options_for_ieee { flags } {
3077 if { [istarget "alpha*-*-*"]
3078 || [istarget "sh*-*-*"] } {
3079 return "$flags -mieee"
3081 return $flags
3084 # Add to FLAGS the flags needed to enable functions to bind locally
3085 # when using pic/PIC passes in the testsuite.
3087 proc add_options_for_bind_pic_locally { flags } {
3088 if {[check_no_compiler_messages using_pic2 assembly {
3089 #if __PIC__ != 2
3090 #error FOO
3091 #endif
3092 }]} {
3093 return "$flags -fPIE"
3095 if {[check_no_compiler_messages using_pic1 assembly {
3096 #if __PIC__ != 1
3097 #error FOO
3098 #endif
3099 }]} {
3100 return "$flags -fpie"
3103 return $flags
3106 # Return 1 if the target provides a full C99 runtime.
3108 proc check_effective_target_c99_runtime { } {
3109 return [check_cached_effective_target c99_runtime {
3110 global srcdir
3112 set file [open "$srcdir/gcc.dg/builtins-config.h"]
3113 set contents [read $file]
3114 close $file
3115 append contents {
3116 #ifndef HAVE_C99_RUNTIME
3117 #error FOO
3118 #endif
3120 check_no_compiler_messages_nocache c99_runtime assembly \
3121 $contents [add_options_for_c99_runtime ""]
3125 # Return 1 if target wchar_t is at least 4 bytes.
3127 proc check_effective_target_4byte_wchar_t { } {
3128 return [check_no_compiler_messages 4byte_wchar_t object {
3129 int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1];
3133 # Return 1 if the target supports automatic stack alignment.
3135 proc check_effective_target_automatic_stack_alignment { } {
3136 if { [istarget i?86*-*-*]
3137 || [istarget x86_64-*-*] } then {
3138 return 1
3139 } else {
3140 return 0
3144 # Return 1 if avx instructions can be compiled.
3146 proc check_effective_target_avx { } {
3147 return [check_no_compiler_messages avx object {
3148 void _mm256_zeroall (void)
3150 __builtin_ia32_vzeroall ();
3152 } "-O2 -mavx" ]
3155 # Return 1 if C wchar_t type is compatible with char16_t.
3157 proc check_effective_target_wchar_t_char16_t_compatible { } {
3158 return [check_no_compiler_messages wchar_t_char16_t object {
3159 __WCHAR_TYPE__ wc;
3160 __CHAR16_TYPE__ *p16 = &wc;
3161 char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
3165 # Return 1 if C wchar_t type is compatible with char32_t.
3167 proc check_effective_target_wchar_t_char32_t_compatible { } {
3168 return [check_no_compiler_messages wchar_t_char32_t object {
3169 __WCHAR_TYPE__ wc;
3170 __CHAR32_TYPE__ *p32 = &wc;
3171 char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
3175 # Return 1 if pow10 function exists.
3177 proc check_effective_target_pow10 { } {
3178 return [check_runtime pow10 {
3179 #include <math.h>
3180 int main () {
3181 double x;
3182 x = pow10 (1);
3183 return 0;
3185 } "-lm" ]
3188 # Return 1 if current options generate DFP instructions, 0 otherwise.
3190 proc check_effective_target_hard_dfp {} {
3191 return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
3192 typedef float d64 __attribute__((mode(DD)));
3193 d64 x, y, z;
3194 void foo (void) { z = x + y; }
3198 # Return 1 if string.h and wchar.h headers provide C++ requires overloads
3199 # for strchr etc. functions.
3201 proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
3202 return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
3203 #include <string.h>
3204 #include <wchar.h>
3205 #if !defined(__cplusplus) \
3206 || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
3207 || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
3208 ISO C++ correct string.h and wchar.h protos not supported.
3209 #else
3210 int i;
3211 #endif
3215 # Return 1 if the compiler has been configure with link-time optimization
3216 # (LTO) support.
3218 proc check_effective_target_lto { } {
3219 global ENABLE_LTO
3220 return [info exists ENABLE_LTO]
3223 # Return 1 if the language for the compiler under test is C.
3225 proc check_effective_target_c { } {
3226 global tool
3227 if [string match $tool "gcc"] {
3228 return 1
3230 return 0
3233 # Return 1 if the language for the compiler under test is C++.
3235 proc check_effective_target_c++ { } {
3236 global tool
3237 if [string match $tool "g++"] {
3238 return 1
3240 return 0