Make mode_for_size return an opt_mode
[official-gcc.git] / gcc / stor-layout.c
blobf9a28e7c849636ea1bf0a14fb07d37be4c458f27
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "debug.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 static tree self_referential_size (tree);
54 static void finalize_record_size (record_layout_info);
55 static void finalize_type_size (tree);
56 static void place_union_field (record_layout_info, tree);
57 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
58 HOST_WIDE_INT, tree);
59 extern void debug_rli (record_layout_info);
61 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
62 to serve as the actual size-expression for a type or decl. */
64 tree
65 variable_size (tree size)
67 /* Obviously. */
68 if (TREE_CONSTANT (size))
69 return size;
71 /* If the size is self-referential, we can't make a SAVE_EXPR (see
72 save_expr for the rationale). But we can do something else. */
73 if (CONTAINS_PLACEHOLDER_P (size))
74 return self_referential_size (size);
76 /* If we are in the global binding level, we can't make a SAVE_EXPR
77 since it may end up being shared across functions, so it is up
78 to the front-end to deal with this case. */
79 if (lang_hooks.decls.global_bindings_p ())
80 return size;
82 return save_expr (size);
85 /* An array of functions used for self-referential size computation. */
86 static GTY(()) vec<tree, va_gc> *size_functions;
88 /* Return true if T is a self-referential component reference. */
90 static bool
91 self_referential_component_ref_p (tree t)
93 if (TREE_CODE (t) != COMPONENT_REF)
94 return false;
96 while (REFERENCE_CLASS_P (t))
97 t = TREE_OPERAND (t, 0);
99 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
102 /* Similar to copy_tree_r but do not copy component references involving
103 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
104 and substituted in substitute_in_expr. */
106 static tree
107 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
109 enum tree_code code = TREE_CODE (*tp);
111 /* Stop at types, decls, constants like copy_tree_r. */
112 if (TREE_CODE_CLASS (code) == tcc_type
113 || TREE_CODE_CLASS (code) == tcc_declaration
114 || TREE_CODE_CLASS (code) == tcc_constant)
116 *walk_subtrees = 0;
117 return NULL_TREE;
120 /* This is the pattern built in ada/make_aligning_type. */
121 else if (code == ADDR_EXPR
122 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
124 *walk_subtrees = 0;
125 return NULL_TREE;
128 /* Default case: the component reference. */
129 else if (self_referential_component_ref_p (*tp))
131 *walk_subtrees = 0;
132 return NULL_TREE;
135 /* We're not supposed to have them in self-referential size trees
136 because we wouldn't properly control when they are evaluated.
137 However, not creating superfluous SAVE_EXPRs requires accurate
138 tracking of readonly-ness all the way down to here, which we
139 cannot always guarantee in practice. So punt in this case. */
140 else if (code == SAVE_EXPR)
141 return error_mark_node;
143 else if (code == STATEMENT_LIST)
144 gcc_unreachable ();
146 return copy_tree_r (tp, walk_subtrees, data);
149 /* Given a SIZE expression that is self-referential, return an equivalent
150 expression to serve as the actual size expression for a type. */
152 static tree
153 self_referential_size (tree size)
155 static unsigned HOST_WIDE_INT fnno = 0;
156 vec<tree> self_refs = vNULL;
157 tree param_type_list = NULL, param_decl_list = NULL;
158 tree t, ref, return_type, fntype, fnname, fndecl;
159 unsigned int i;
160 char buf[128];
161 vec<tree, va_gc> *args = NULL;
163 /* Do not factor out simple operations. */
164 t = skip_simple_constant_arithmetic (size);
165 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
166 return size;
168 /* Collect the list of self-references in the expression. */
169 find_placeholder_in_expr (size, &self_refs);
170 gcc_assert (self_refs.length () > 0);
172 /* Obtain a private copy of the expression. */
173 t = size;
174 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
175 return size;
176 size = t;
178 /* Build the parameter and argument lists in parallel; also
179 substitute the former for the latter in the expression. */
180 vec_alloc (args, self_refs.length ());
181 FOR_EACH_VEC_ELT (self_refs, i, ref)
183 tree subst, param_name, param_type, param_decl;
185 if (DECL_P (ref))
187 /* We shouldn't have true variables here. */
188 gcc_assert (TREE_READONLY (ref));
189 subst = ref;
191 /* This is the pattern built in ada/make_aligning_type. */
192 else if (TREE_CODE (ref) == ADDR_EXPR)
193 subst = ref;
194 /* Default case: the component reference. */
195 else
196 subst = TREE_OPERAND (ref, 1);
198 sprintf (buf, "p%d", i);
199 param_name = get_identifier (buf);
200 param_type = TREE_TYPE (ref);
201 param_decl
202 = build_decl (input_location, PARM_DECL, param_name, param_type);
203 DECL_ARG_TYPE (param_decl) = param_type;
204 DECL_ARTIFICIAL (param_decl) = 1;
205 TREE_READONLY (param_decl) = 1;
207 size = substitute_in_expr (size, subst, param_decl);
209 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
210 param_decl_list = chainon (param_decl, param_decl_list);
211 args->quick_push (ref);
214 self_refs.release ();
216 /* Append 'void' to indicate that the number of parameters is fixed. */
217 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
219 /* The 3 lists have been created in reverse order. */
220 param_type_list = nreverse (param_type_list);
221 param_decl_list = nreverse (param_decl_list);
223 /* Build the function type. */
224 return_type = TREE_TYPE (size);
225 fntype = build_function_type (return_type, param_type_list);
227 /* Build the function declaration. */
228 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
229 fnname = get_file_function_name (buf);
230 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
231 for (t = param_decl_list; t; t = DECL_CHAIN (t))
232 DECL_CONTEXT (t) = fndecl;
233 DECL_ARGUMENTS (fndecl) = param_decl_list;
234 DECL_RESULT (fndecl)
235 = build_decl (input_location, RESULT_DECL, 0, return_type);
236 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
238 /* The function has been created by the compiler and we don't
239 want to emit debug info for it. */
240 DECL_ARTIFICIAL (fndecl) = 1;
241 DECL_IGNORED_P (fndecl) = 1;
243 /* It is supposed to be "const" and never throw. */
244 TREE_READONLY (fndecl) = 1;
245 TREE_NOTHROW (fndecl) = 1;
247 /* We want it to be inlined when this is deemed profitable, as
248 well as discarded if every call has been integrated. */
249 DECL_DECLARED_INLINE_P (fndecl) = 1;
251 /* It is made up of a unique return statement. */
252 DECL_INITIAL (fndecl) = make_node (BLOCK);
253 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
254 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
255 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
256 TREE_STATIC (fndecl) = 1;
258 /* Put it onto the list of size functions. */
259 vec_safe_push (size_functions, fndecl);
261 /* Replace the original expression with a call to the size function. */
262 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
265 /* Take, queue and compile all the size functions. It is essential that
266 the size functions be gimplified at the very end of the compilation
267 in order to guarantee transparent handling of self-referential sizes.
268 Otherwise the GENERIC inliner would not be able to inline them back
269 at each of their call sites, thus creating artificial non-constant
270 size expressions which would trigger nasty problems later on. */
272 void
273 finalize_size_functions (void)
275 unsigned int i;
276 tree fndecl;
278 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
280 allocate_struct_function (fndecl, false);
281 set_cfun (NULL);
282 dump_function (TDI_original, fndecl);
284 /* As these functions are used to describe the layout of variable-length
285 structures, debug info generation needs their implementation. */
286 debug_hooks->size_function (fndecl);
287 gimplify_function_tree (fndecl);
288 cgraph_node::finalize_function (fndecl, false);
291 vec_free (size_functions);
294 /* Return a machine mode of class MCLASS with SIZE bits of precision,
295 if one exists. The mode may have padding bits as well the SIZE
296 value bits. If LIMIT is nonzero, disregard modes wider than
297 MAX_FIXED_MODE_SIZE. */
299 opt_machine_mode
300 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
302 machine_mode mode;
303 int i;
305 if (limit && size > MAX_FIXED_MODE_SIZE)
306 return opt_machine_mode ();
308 /* Get the first mode which has this size, in the specified class. */
309 FOR_EACH_MODE_IN_CLASS (mode, mclass)
310 if (GET_MODE_PRECISION (mode) == size)
311 return mode;
313 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
314 for (i = 0; i < NUM_INT_N_ENTS; i ++)
315 if (int_n_data[i].bitsize == size
316 && int_n_enabled_p[i])
317 return int_n_data[i].m;
319 return opt_machine_mode ();
322 /* Similar, except passed a tree node. */
324 machine_mode
325 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
327 unsigned HOST_WIDE_INT uhwi;
328 unsigned int ui;
330 if (!tree_fits_uhwi_p (size))
331 return BLKmode;
332 uhwi = tree_to_uhwi (size);
333 ui = uhwi;
334 if (uhwi != ui)
335 return BLKmode;
336 return mode_for_size (ui, mclass, limit).else_blk ();
339 /* Return the narrowest mode of class MCLASS that contains at least
340 SIZE bits. Abort if no such mode exists. */
342 machine_mode
343 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
345 machine_mode mode = VOIDmode;
346 int i;
348 /* Get the first mode which has at least this size, in the
349 specified class. */
350 FOR_EACH_MODE_IN_CLASS (mode, mclass)
351 if (GET_MODE_PRECISION (mode) >= size)
352 break;
354 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
355 for (i = 0; i < NUM_INT_N_ENTS; i ++)
356 if (int_n_data[i].bitsize >= size
357 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
358 && int_n_enabled_p[i])
359 mode = int_n_data[i].m;
361 if (mode == VOIDmode)
362 gcc_unreachable ();
364 return mode;
367 /* Return an integer mode of exactly the same size as MODE, if one exists. */
369 opt_scalar_int_mode
370 int_mode_for_mode (machine_mode mode)
372 switch (GET_MODE_CLASS (mode))
374 case MODE_INT:
375 case MODE_PARTIAL_INT:
376 return as_a <scalar_int_mode> (mode);
378 case MODE_COMPLEX_INT:
379 case MODE_COMPLEX_FLOAT:
380 case MODE_FLOAT:
381 case MODE_DECIMAL_FLOAT:
382 case MODE_VECTOR_INT:
383 case MODE_VECTOR_FLOAT:
384 case MODE_FRACT:
385 case MODE_ACCUM:
386 case MODE_UFRACT:
387 case MODE_UACCUM:
388 case MODE_VECTOR_FRACT:
389 case MODE_VECTOR_ACCUM:
390 case MODE_VECTOR_UFRACT:
391 case MODE_VECTOR_UACCUM:
392 case MODE_POINTER_BOUNDS:
393 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
395 case MODE_RANDOM:
396 if (mode == BLKmode)
397 return opt_scalar_int_mode ();
399 /* fall through */
401 case MODE_CC:
402 default:
403 gcc_unreachable ();
407 /* Find a mode that can be used for efficient bitwise operations on MODE.
408 Return BLKmode if no such mode exists. */
410 machine_mode
411 bitwise_mode_for_mode (machine_mode mode)
413 /* Quick exit if we already have a suitable mode. */
414 unsigned int bitsize = GET_MODE_BITSIZE (mode);
415 scalar_int_mode int_mode;
416 if (is_a <scalar_int_mode> (mode, &int_mode)
417 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
418 return int_mode;
420 /* Reuse the sanity checks from int_mode_for_mode. */
421 gcc_checking_assert ((int_mode_for_mode (mode), true));
423 /* Try to replace complex modes with complex modes. In general we
424 expect both components to be processed independently, so we only
425 care whether there is a register for the inner mode. */
426 if (COMPLEX_MODE_P (mode))
428 machine_mode trial = mode;
429 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
430 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
431 && have_regs_of_mode[GET_MODE_INNER (trial)])
432 return trial;
435 /* Try to replace vector modes with vector modes. Also try using vector
436 modes if an integer mode would be too big. */
437 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
439 machine_mode trial = mode;
440 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
441 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
442 && have_regs_of_mode[trial]
443 && targetm.vector_mode_supported_p (trial))
444 return trial;
447 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
448 return mode_for_size (bitsize, MODE_INT, true).else_blk ();
451 /* Find a type that can be used for efficient bitwise operations on MODE.
452 Return null if no such mode exists. */
454 tree
455 bitwise_type_for_mode (machine_mode mode)
457 mode = bitwise_mode_for_mode (mode);
458 if (mode == BLKmode)
459 return NULL_TREE;
461 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
462 tree inner_type = build_nonstandard_integer_type (inner_size, true);
464 if (VECTOR_MODE_P (mode))
465 return build_vector_type_for_mode (inner_type, mode);
467 if (COMPLEX_MODE_P (mode))
468 return build_complex_type (inner_type);
470 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
471 return inner_type;
474 /* Find a mode that is suitable for representing a vector with
475 NUNITS elements of mode INNERMODE. Returns BLKmode if there
476 is no suitable mode. */
478 machine_mode
479 mode_for_vector (scalar_mode innermode, unsigned nunits)
481 machine_mode mode;
483 /* First, look for a supported vector type. */
484 if (SCALAR_FLOAT_MODE_P (innermode))
485 mode = MIN_MODE_VECTOR_FLOAT;
486 else if (SCALAR_FRACT_MODE_P (innermode))
487 mode = MIN_MODE_VECTOR_FRACT;
488 else if (SCALAR_UFRACT_MODE_P (innermode))
489 mode = MIN_MODE_VECTOR_UFRACT;
490 else if (SCALAR_ACCUM_MODE_P (innermode))
491 mode = MIN_MODE_VECTOR_ACCUM;
492 else if (SCALAR_UACCUM_MODE_P (innermode))
493 mode = MIN_MODE_VECTOR_UACCUM;
494 else
495 mode = MIN_MODE_VECTOR_INT;
497 /* Do not check vector_mode_supported_p here. We'll do that
498 later in vector_type_mode. */
499 FOR_EACH_MODE_FROM (mode, mode)
500 if (GET_MODE_NUNITS (mode) == nunits
501 && GET_MODE_INNER (mode) == innermode)
502 break;
504 /* For integers, try mapping it to a same-sized scalar mode. */
505 if (mode == VOIDmode
506 && GET_MODE_CLASS (innermode) == MODE_INT)
508 unsigned int nbits = nunits * GET_MODE_BITSIZE (innermode);
509 mode = int_mode_for_size (nbits, 0).else_blk ();
512 if (mode == VOIDmode
513 || (GET_MODE_CLASS (mode) == MODE_INT
514 && !have_regs_of_mode[mode]))
515 return BLKmode;
517 return mode;
520 /* Return the alignment of MODE. This will be bounded by 1 and
521 BIGGEST_ALIGNMENT. */
523 unsigned int
524 get_mode_alignment (machine_mode mode)
526 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
529 /* Return the natural mode of an array, given that it is SIZE bytes in
530 total and has elements of type ELEM_TYPE. */
532 static machine_mode
533 mode_for_array (tree elem_type, tree size)
535 tree elem_size;
536 unsigned HOST_WIDE_INT int_size, int_elem_size;
537 bool limit_p;
539 /* One-element arrays get the component type's mode. */
540 elem_size = TYPE_SIZE (elem_type);
541 if (simple_cst_equal (size, elem_size))
542 return TYPE_MODE (elem_type);
544 limit_p = true;
545 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
547 int_size = tree_to_uhwi (size);
548 int_elem_size = tree_to_uhwi (elem_size);
549 if (int_elem_size > 0
550 && int_size % int_elem_size == 0
551 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
552 int_size / int_elem_size))
553 limit_p = false;
555 return mode_for_size_tree (size, MODE_INT, limit_p);
558 /* Subroutine of layout_decl: Force alignment required for the data type.
559 But if the decl itself wants greater alignment, don't override that. */
561 static inline void
562 do_type_align (tree type, tree decl)
564 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
566 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
567 if (TREE_CODE (decl) == FIELD_DECL)
568 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
570 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
571 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
574 /* Set the size, mode and alignment of a ..._DECL node.
575 TYPE_DECL does need this for C++.
576 Note that LABEL_DECL and CONST_DECL nodes do not need this,
577 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
578 Don't call layout_decl for them.
580 KNOWN_ALIGN is the amount of alignment we can assume this
581 decl has with no special effort. It is relevant only for FIELD_DECLs
582 and depends on the previous fields.
583 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
584 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
585 the record will be aligned to suit. */
587 void
588 layout_decl (tree decl, unsigned int known_align)
590 tree type = TREE_TYPE (decl);
591 enum tree_code code = TREE_CODE (decl);
592 rtx rtl = NULL_RTX;
593 location_t loc = DECL_SOURCE_LOCATION (decl);
595 if (code == CONST_DECL)
596 return;
598 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
599 || code == TYPE_DECL || code == FIELD_DECL);
601 rtl = DECL_RTL_IF_SET (decl);
603 if (type == error_mark_node)
604 type = void_type_node;
606 /* Usually the size and mode come from the data type without change,
607 however, the front-end may set the explicit width of the field, so its
608 size may not be the same as the size of its type. This happens with
609 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
610 also happens with other fields. For example, the C++ front-end creates
611 zero-sized fields corresponding to empty base classes, and depends on
612 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
613 size in bytes from the size in bits. If we have already set the mode,
614 don't set it again since we can be called twice for FIELD_DECLs. */
616 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
617 if (DECL_MODE (decl) == VOIDmode)
618 SET_DECL_MODE (decl, TYPE_MODE (type));
620 if (DECL_SIZE (decl) == 0)
622 DECL_SIZE (decl) = TYPE_SIZE (type);
623 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
625 else if (DECL_SIZE_UNIT (decl) == 0)
626 DECL_SIZE_UNIT (decl)
627 = fold_convert_loc (loc, sizetype,
628 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
629 bitsize_unit_node));
631 if (code != FIELD_DECL)
632 /* For non-fields, update the alignment from the type. */
633 do_type_align (type, decl);
634 else
635 /* For fields, it's a bit more complicated... */
637 bool old_user_align = DECL_USER_ALIGN (decl);
638 bool zero_bitfield = false;
639 bool packed_p = DECL_PACKED (decl);
640 unsigned int mfa;
642 if (DECL_BIT_FIELD (decl))
644 DECL_BIT_FIELD_TYPE (decl) = type;
646 /* A zero-length bit-field affects the alignment of the next
647 field. In essence such bit-fields are not influenced by
648 any packing due to #pragma pack or attribute packed. */
649 if (integer_zerop (DECL_SIZE (decl))
650 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
652 zero_bitfield = true;
653 packed_p = false;
654 if (PCC_BITFIELD_TYPE_MATTERS)
655 do_type_align (type, decl);
656 else
658 #ifdef EMPTY_FIELD_BOUNDARY
659 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
661 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
662 DECL_USER_ALIGN (decl) = 0;
664 #endif
668 /* See if we can use an ordinary integer mode for a bit-field.
669 Conditions are: a fixed size that is correct for another mode,
670 occupying a complete byte or bytes on proper boundary. */
671 if (TYPE_SIZE (type) != 0
672 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
673 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
675 machine_mode xmode
676 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
677 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
679 if (xmode != BLKmode
680 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
681 && (known_align == 0 || known_align >= xalign))
683 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
684 SET_DECL_MODE (decl, xmode);
685 DECL_BIT_FIELD (decl) = 0;
689 /* Turn off DECL_BIT_FIELD if we won't need it set. */
690 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
691 && known_align >= TYPE_ALIGN (type)
692 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
693 DECL_BIT_FIELD (decl) = 0;
695 else if (packed_p && DECL_USER_ALIGN (decl))
696 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
697 round up; we'll reduce it again below. We want packing to
698 supersede USER_ALIGN inherited from the type, but defer to
699 alignment explicitly specified on the field decl. */;
700 else
701 do_type_align (type, decl);
703 /* If the field is packed and not explicitly aligned, give it the
704 minimum alignment. Note that do_type_align may set
705 DECL_USER_ALIGN, so we need to check old_user_align instead. */
706 if (packed_p
707 && !old_user_align)
708 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
710 if (! packed_p && ! DECL_USER_ALIGN (decl))
712 /* Some targets (i.e. i386, VMS) limit struct field alignment
713 to a lower boundary than alignment of variables unless
714 it was overridden by attribute aligned. */
715 #ifdef BIGGEST_FIELD_ALIGNMENT
716 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
717 (unsigned) BIGGEST_FIELD_ALIGNMENT));
718 #endif
719 #ifdef ADJUST_FIELD_ALIGN
720 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
721 DECL_ALIGN (decl)));
722 #endif
725 if (zero_bitfield)
726 mfa = initial_max_fld_align * BITS_PER_UNIT;
727 else
728 mfa = maximum_field_alignment;
729 /* Should this be controlled by DECL_USER_ALIGN, too? */
730 if (mfa != 0)
731 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
734 /* Evaluate nonconstant size only once, either now or as soon as safe. */
735 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
736 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
737 if (DECL_SIZE_UNIT (decl) != 0
738 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
739 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
741 /* If requested, warn about definitions of large data objects. */
742 if (warn_larger_than
743 && (code == VAR_DECL || code == PARM_DECL)
744 && ! DECL_EXTERNAL (decl))
746 tree size = DECL_SIZE_UNIT (decl);
748 if (size != 0 && TREE_CODE (size) == INTEGER_CST
749 && compare_tree_int (size, larger_than_size) > 0)
751 int size_as_int = TREE_INT_CST_LOW (size);
753 if (compare_tree_int (size, size_as_int) == 0)
754 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
755 else
756 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
757 decl, larger_than_size);
761 /* If the RTL was already set, update its mode and mem attributes. */
762 if (rtl)
764 PUT_MODE (rtl, DECL_MODE (decl));
765 SET_DECL_RTL (decl, 0);
766 if (MEM_P (rtl))
767 set_mem_attributes (rtl, decl, 1);
768 SET_DECL_RTL (decl, rtl);
772 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
773 results of a previous call to layout_decl and calls it again. */
775 void
776 relayout_decl (tree decl)
778 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
779 SET_DECL_MODE (decl, VOIDmode);
780 if (!DECL_USER_ALIGN (decl))
781 SET_DECL_ALIGN (decl, 0);
782 if (DECL_RTL_SET_P (decl))
783 SET_DECL_RTL (decl, 0);
785 layout_decl (decl, 0);
788 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
789 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
790 is to be passed to all other layout functions for this record. It is the
791 responsibility of the caller to call `free' for the storage returned.
792 Note that garbage collection is not permitted until we finish laying
793 out the record. */
795 record_layout_info
796 start_record_layout (tree t)
798 record_layout_info rli = XNEW (struct record_layout_info_s);
800 rli->t = t;
802 /* If the type has a minimum specified alignment (via an attribute
803 declaration, for example) use it -- otherwise, start with a
804 one-byte alignment. */
805 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
806 rli->unpacked_align = rli->record_align;
807 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
809 #ifdef STRUCTURE_SIZE_BOUNDARY
810 /* Packed structures don't need to have minimum size. */
811 if (! TYPE_PACKED (t))
813 unsigned tmp;
815 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
816 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
817 if (maximum_field_alignment != 0)
818 tmp = MIN (tmp, maximum_field_alignment);
819 rli->record_align = MAX (rli->record_align, tmp);
821 #endif
823 rli->offset = size_zero_node;
824 rli->bitpos = bitsize_zero_node;
825 rli->prev_field = 0;
826 rli->pending_statics = 0;
827 rli->packed_maybe_necessary = 0;
828 rli->remaining_in_alignment = 0;
830 return rli;
833 /* Return the combined bit position for the byte offset OFFSET and the
834 bit position BITPOS.
836 These functions operate on byte and bit positions present in FIELD_DECLs
837 and assume that these expressions result in no (intermediate) overflow.
838 This assumption is necessary to fold the expressions as much as possible,
839 so as to avoid creating artificially variable-sized types in languages
840 supporting variable-sized types like Ada. */
842 tree
843 bit_from_pos (tree offset, tree bitpos)
845 if (TREE_CODE (offset) == PLUS_EXPR)
846 offset = size_binop (PLUS_EXPR,
847 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
848 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
849 else
850 offset = fold_convert (bitsizetype, offset);
851 return size_binop (PLUS_EXPR, bitpos,
852 size_binop (MULT_EXPR, offset, bitsize_unit_node));
855 /* Return the combined truncated byte position for the byte offset OFFSET and
856 the bit position BITPOS. */
858 tree
859 byte_from_pos (tree offset, tree bitpos)
861 tree bytepos;
862 if (TREE_CODE (bitpos) == MULT_EXPR
863 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
864 bytepos = TREE_OPERAND (bitpos, 0);
865 else
866 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
867 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
870 /* Split the bit position POS into a byte offset *POFFSET and a bit
871 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
873 void
874 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
875 tree pos)
877 tree toff_align = bitsize_int (off_align);
878 if (TREE_CODE (pos) == MULT_EXPR
879 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
881 *poffset = size_binop (MULT_EXPR,
882 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
883 size_int (off_align / BITS_PER_UNIT));
884 *pbitpos = bitsize_zero_node;
886 else
888 *poffset = size_binop (MULT_EXPR,
889 fold_convert (sizetype,
890 size_binop (FLOOR_DIV_EXPR, pos,
891 toff_align)),
892 size_int (off_align / BITS_PER_UNIT));
893 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
897 /* Given a pointer to bit and byte offsets and an offset alignment,
898 normalize the offsets so they are within the alignment. */
900 void
901 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
903 /* If the bit position is now larger than it should be, adjust it
904 downwards. */
905 if (compare_tree_int (*pbitpos, off_align) >= 0)
907 tree offset, bitpos;
908 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
909 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
910 *pbitpos = bitpos;
914 /* Print debugging information about the information in RLI. */
916 DEBUG_FUNCTION void
917 debug_rli (record_layout_info rli)
919 print_node_brief (stderr, "type", rli->t, 0);
920 print_node_brief (stderr, "\noffset", rli->offset, 0);
921 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
923 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
924 rli->record_align, rli->unpacked_align,
925 rli->offset_align);
927 /* The ms_struct code is the only that uses this. */
928 if (targetm.ms_bitfield_layout_p (rli->t))
929 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
931 if (rli->packed_maybe_necessary)
932 fprintf (stderr, "packed may be necessary\n");
934 if (!vec_safe_is_empty (rli->pending_statics))
936 fprintf (stderr, "pending statics:\n");
937 debug_vec_tree (rli->pending_statics);
941 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
942 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
944 void
945 normalize_rli (record_layout_info rli)
947 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
950 /* Returns the size in bytes allocated so far. */
952 tree
953 rli_size_unit_so_far (record_layout_info rli)
955 return byte_from_pos (rli->offset, rli->bitpos);
958 /* Returns the size in bits allocated so far. */
960 tree
961 rli_size_so_far (record_layout_info rli)
963 return bit_from_pos (rli->offset, rli->bitpos);
966 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
967 the next available location within the record is given by KNOWN_ALIGN.
968 Update the variable alignment fields in RLI, and return the alignment
969 to give the FIELD. */
971 unsigned int
972 update_alignment_for_field (record_layout_info rli, tree field,
973 unsigned int known_align)
975 /* The alignment required for FIELD. */
976 unsigned int desired_align;
977 /* The type of this field. */
978 tree type = TREE_TYPE (field);
979 /* True if the field was explicitly aligned by the user. */
980 bool user_align;
981 bool is_bitfield;
983 /* Do not attempt to align an ERROR_MARK node */
984 if (TREE_CODE (type) == ERROR_MARK)
985 return 0;
987 /* Lay out the field so we know what alignment it needs. */
988 layout_decl (field, known_align);
989 desired_align = DECL_ALIGN (field);
990 user_align = DECL_USER_ALIGN (field);
992 is_bitfield = (type != error_mark_node
993 && DECL_BIT_FIELD_TYPE (field)
994 && ! integer_zerop (TYPE_SIZE (type)));
996 /* Record must have at least as much alignment as any field.
997 Otherwise, the alignment of the field within the record is
998 meaningless. */
999 if (targetm.ms_bitfield_layout_p (rli->t))
1001 /* Here, the alignment of the underlying type of a bitfield can
1002 affect the alignment of a record; even a zero-sized field
1003 can do this. The alignment should be to the alignment of
1004 the type, except that for zero-size bitfields this only
1005 applies if there was an immediately prior, nonzero-size
1006 bitfield. (That's the way it is, experimentally.) */
1007 if ((!is_bitfield && !DECL_PACKED (field))
1008 || ((DECL_SIZE (field) == NULL_TREE
1009 || !integer_zerop (DECL_SIZE (field)))
1010 ? !DECL_PACKED (field)
1011 : (rli->prev_field
1012 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1013 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1015 unsigned int type_align = TYPE_ALIGN (type);
1016 type_align = MAX (type_align, desired_align);
1017 if (maximum_field_alignment != 0)
1018 type_align = MIN (type_align, maximum_field_alignment);
1019 rli->record_align = MAX (rli->record_align, type_align);
1020 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1023 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1025 /* Named bit-fields cause the entire structure to have the
1026 alignment implied by their type. Some targets also apply the same
1027 rules to unnamed bitfields. */
1028 if (DECL_NAME (field) != 0
1029 || targetm.align_anon_bitfield ())
1031 unsigned int type_align = TYPE_ALIGN (type);
1033 #ifdef ADJUST_FIELD_ALIGN
1034 if (! TYPE_USER_ALIGN (type))
1035 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1036 #endif
1038 /* Targets might chose to handle unnamed and hence possibly
1039 zero-width bitfield. Those are not influenced by #pragmas
1040 or packed attributes. */
1041 if (integer_zerop (DECL_SIZE (field)))
1043 if (initial_max_fld_align)
1044 type_align = MIN (type_align,
1045 initial_max_fld_align * BITS_PER_UNIT);
1047 else if (maximum_field_alignment != 0)
1048 type_align = MIN (type_align, maximum_field_alignment);
1049 else if (DECL_PACKED (field))
1050 type_align = MIN (type_align, BITS_PER_UNIT);
1052 /* The alignment of the record is increased to the maximum
1053 of the current alignment, the alignment indicated on the
1054 field (i.e., the alignment specified by an __aligned__
1055 attribute), and the alignment indicated by the type of
1056 the field. */
1057 rli->record_align = MAX (rli->record_align, desired_align);
1058 rli->record_align = MAX (rli->record_align, type_align);
1060 if (warn_packed)
1061 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1062 user_align |= TYPE_USER_ALIGN (type);
1065 else
1067 rli->record_align = MAX (rli->record_align, desired_align);
1068 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1071 TYPE_USER_ALIGN (rli->t) |= user_align;
1073 return desired_align;
1076 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1077 the field alignment of FIELD or FIELD isn't aligned. */
1079 static void
1080 handle_warn_if_not_align (tree field, unsigned int record_align)
1082 tree type = TREE_TYPE (field);
1084 if (type == error_mark_node)
1085 return;
1087 unsigned int warn_if_not_align = 0;
1089 int opt_w = 0;
1091 if (warn_if_not_aligned)
1093 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1094 if (!warn_if_not_align)
1095 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1096 if (warn_if_not_align)
1097 opt_w = OPT_Wif_not_aligned;
1100 if (!warn_if_not_align
1101 && warn_packed_not_aligned
1102 && TYPE_USER_ALIGN (type))
1104 warn_if_not_align = TYPE_ALIGN (type);
1105 opt_w = OPT_Wpacked_not_aligned;
1108 if (!warn_if_not_align)
1109 return;
1111 tree context = DECL_CONTEXT (field);
1113 warn_if_not_align /= BITS_PER_UNIT;
1114 record_align /= BITS_PER_UNIT;
1115 if ((record_align % warn_if_not_align) != 0)
1116 warning (opt_w, "alignment %u of %qT is less than %u",
1117 record_align, context, warn_if_not_align);
1119 unsigned HOST_WIDE_INT off
1120 = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1121 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) / BITS_PER_UNIT);
1122 if ((off % warn_if_not_align) != 0)
1123 warning (opt_w, "%q+D offset %wu in %qT isn't aligned to %u",
1124 field, off, context, warn_if_not_align);
1127 /* Called from place_field to handle unions. */
1129 static void
1130 place_union_field (record_layout_info rli, tree field)
1132 update_alignment_for_field (rli, field, /*known_align=*/0);
1134 DECL_FIELD_OFFSET (field) = size_zero_node;
1135 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1136 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1137 handle_warn_if_not_align (field, rli->record_align);
1139 /* If this is an ERROR_MARK return *after* having set the
1140 field at the start of the union. This helps when parsing
1141 invalid fields. */
1142 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1143 return;
1145 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1146 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1147 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1149 /* We assume the union's size will be a multiple of a byte so we don't
1150 bother with BITPOS. */
1151 if (TREE_CODE (rli->t) == UNION_TYPE)
1152 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1153 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1154 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1155 DECL_SIZE_UNIT (field), rli->offset);
1158 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1159 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1160 units of alignment than the underlying TYPE. */
1161 static int
1162 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1163 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1165 /* Note that the calculation of OFFSET might overflow; we calculate it so
1166 that we still get the right result as long as ALIGN is a power of two. */
1167 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1169 offset = offset % align;
1170 return ((offset + size + align - 1) / align
1171 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1174 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1175 is a FIELD_DECL to be added after those fields already present in
1176 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1177 callers that desire that behavior must manually perform that step.) */
1179 void
1180 place_field (record_layout_info rli, tree field)
1182 /* The alignment required for FIELD. */
1183 unsigned int desired_align;
1184 /* The alignment FIELD would have if we just dropped it into the
1185 record as it presently stands. */
1186 unsigned int known_align;
1187 unsigned int actual_align;
1188 /* The type of this field. */
1189 tree type = TREE_TYPE (field);
1191 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1193 /* If FIELD is static, then treat it like a separate variable, not
1194 really like a structure field. If it is a FUNCTION_DECL, it's a
1195 method. In both cases, all we do is lay out the decl, and we do
1196 it *after* the record is laid out. */
1197 if (VAR_P (field))
1199 vec_safe_push (rli->pending_statics, field);
1200 return;
1203 /* Enumerators and enum types which are local to this class need not
1204 be laid out. Likewise for initialized constant fields. */
1205 else if (TREE_CODE (field) != FIELD_DECL)
1206 return;
1208 /* Unions are laid out very differently than records, so split
1209 that code off to another function. */
1210 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1212 place_union_field (rli, field);
1213 return;
1216 else if (TREE_CODE (type) == ERROR_MARK)
1218 /* Place this field at the current allocation position, so we
1219 maintain monotonicity. */
1220 DECL_FIELD_OFFSET (field) = rli->offset;
1221 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1222 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1223 handle_warn_if_not_align (field, rli->record_align);
1224 return;
1227 if (AGGREGATE_TYPE_P (type)
1228 && TYPE_TYPELESS_STORAGE (type))
1229 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1231 /* Work out the known alignment so far. Note that A & (-A) is the
1232 value of the least-significant bit in A that is one. */
1233 if (! integer_zerop (rli->bitpos))
1234 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1235 else if (integer_zerop (rli->offset))
1236 known_align = 0;
1237 else if (tree_fits_uhwi_p (rli->offset))
1238 known_align = (BITS_PER_UNIT
1239 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1240 else
1241 known_align = rli->offset_align;
1243 desired_align = update_alignment_for_field (rli, field, known_align);
1244 if (known_align == 0)
1245 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1247 if (warn_packed && DECL_PACKED (field))
1249 if (known_align >= TYPE_ALIGN (type))
1251 if (TYPE_ALIGN (type) > desired_align)
1253 if (STRICT_ALIGNMENT)
1254 warning (OPT_Wattributes, "packed attribute causes "
1255 "inefficient alignment for %q+D", field);
1256 /* Don't warn if DECL_PACKED was set by the type. */
1257 else if (!TYPE_PACKED (rli->t))
1258 warning (OPT_Wattributes, "packed attribute is "
1259 "unnecessary for %q+D", field);
1262 else
1263 rli->packed_maybe_necessary = 1;
1266 /* Does this field automatically have alignment it needs by virtue
1267 of the fields that precede it and the record's own alignment? */
1268 if (known_align < desired_align)
1270 /* No, we need to skip space before this field.
1271 Bump the cumulative size to multiple of field alignment. */
1273 if (!targetm.ms_bitfield_layout_p (rli->t)
1274 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1275 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1277 /* If the alignment is still within offset_align, just align
1278 the bit position. */
1279 if (desired_align < rli->offset_align)
1280 rli->bitpos = round_up (rli->bitpos, desired_align);
1281 else
1283 /* First adjust OFFSET by the partial bits, then align. */
1284 rli->offset
1285 = size_binop (PLUS_EXPR, rli->offset,
1286 fold_convert (sizetype,
1287 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1288 bitsize_unit_node)));
1289 rli->bitpos = bitsize_zero_node;
1291 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1294 if (! TREE_CONSTANT (rli->offset))
1295 rli->offset_align = desired_align;
1296 if (targetm.ms_bitfield_layout_p (rli->t))
1297 rli->prev_field = NULL;
1300 /* Handle compatibility with PCC. Note that if the record has any
1301 variable-sized fields, we need not worry about compatibility. */
1302 if (PCC_BITFIELD_TYPE_MATTERS
1303 && ! targetm.ms_bitfield_layout_p (rli->t)
1304 && TREE_CODE (field) == FIELD_DECL
1305 && type != error_mark_node
1306 && DECL_BIT_FIELD (field)
1307 && (! DECL_PACKED (field)
1308 /* Enter for these packed fields only to issue a warning. */
1309 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1310 && maximum_field_alignment == 0
1311 && ! integer_zerop (DECL_SIZE (field))
1312 && tree_fits_uhwi_p (DECL_SIZE (field))
1313 && tree_fits_uhwi_p (rli->offset)
1314 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1316 unsigned int type_align = TYPE_ALIGN (type);
1317 tree dsize = DECL_SIZE (field);
1318 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1319 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1320 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1322 #ifdef ADJUST_FIELD_ALIGN
1323 if (! TYPE_USER_ALIGN (type))
1324 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1325 #endif
1327 /* A bit field may not span more units of alignment of its type
1328 than its type itself. Advance to next boundary if necessary. */
1329 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1331 if (DECL_PACKED (field))
1333 if (warn_packed_bitfield_compat == 1)
1334 inform
1335 (input_location,
1336 "offset of packed bit-field %qD has changed in GCC 4.4",
1337 field);
1339 else
1340 rli->bitpos = round_up (rli->bitpos, type_align);
1343 if (! DECL_PACKED (field))
1344 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1346 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1347 TYPE_WARN_IF_NOT_ALIGN (type));
1350 #ifdef BITFIELD_NBYTES_LIMITED
1351 if (BITFIELD_NBYTES_LIMITED
1352 && ! targetm.ms_bitfield_layout_p (rli->t)
1353 && TREE_CODE (field) == FIELD_DECL
1354 && type != error_mark_node
1355 && DECL_BIT_FIELD_TYPE (field)
1356 && ! DECL_PACKED (field)
1357 && ! integer_zerop (DECL_SIZE (field))
1358 && tree_fits_uhwi_p (DECL_SIZE (field))
1359 && tree_fits_uhwi_p (rli->offset)
1360 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1362 unsigned int type_align = TYPE_ALIGN (type);
1363 tree dsize = DECL_SIZE (field);
1364 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1365 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1366 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1368 #ifdef ADJUST_FIELD_ALIGN
1369 if (! TYPE_USER_ALIGN (type))
1370 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1371 #endif
1373 if (maximum_field_alignment != 0)
1374 type_align = MIN (type_align, maximum_field_alignment);
1375 /* ??? This test is opposite the test in the containing if
1376 statement, so this code is unreachable currently. */
1377 else if (DECL_PACKED (field))
1378 type_align = MIN (type_align, BITS_PER_UNIT);
1380 /* A bit field may not span the unit of alignment of its type.
1381 Advance to next boundary if necessary. */
1382 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1383 rli->bitpos = round_up (rli->bitpos, type_align);
1385 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1386 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1387 TYPE_WARN_IF_NOT_ALIGN (type));
1389 #endif
1391 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1392 A subtlety:
1393 When a bit field is inserted into a packed record, the whole
1394 size of the underlying type is used by one or more same-size
1395 adjacent bitfields. (That is, if its long:3, 32 bits is
1396 used in the record, and any additional adjacent long bitfields are
1397 packed into the same chunk of 32 bits. However, if the size
1398 changes, a new field of that size is allocated.) In an unpacked
1399 record, this is the same as using alignment, but not equivalent
1400 when packing.
1402 Note: for compatibility, we use the type size, not the type alignment
1403 to determine alignment, since that matches the documentation */
1405 if (targetm.ms_bitfield_layout_p (rli->t))
1407 tree prev_saved = rli->prev_field;
1408 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1410 /* This is a bitfield if it exists. */
1411 if (rli->prev_field)
1413 /* If both are bitfields, nonzero, and the same size, this is
1414 the middle of a run. Zero declared size fields are special
1415 and handled as "end of run". (Note: it's nonzero declared
1416 size, but equal type sizes!) (Since we know that both
1417 the current and previous fields are bitfields by the
1418 time we check it, DECL_SIZE must be present for both.) */
1419 if (DECL_BIT_FIELD_TYPE (field)
1420 && !integer_zerop (DECL_SIZE (field))
1421 && !integer_zerop (DECL_SIZE (rli->prev_field))
1422 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1423 && tree_fits_uhwi_p (TYPE_SIZE (type))
1424 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1426 /* We're in the middle of a run of equal type size fields; make
1427 sure we realign if we run out of bits. (Not decl size,
1428 type size!) */
1429 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1431 if (rli->remaining_in_alignment < bitsize)
1433 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1435 /* out of bits; bump up to next 'word'. */
1436 rli->bitpos
1437 = size_binop (PLUS_EXPR, rli->bitpos,
1438 bitsize_int (rli->remaining_in_alignment));
1439 rli->prev_field = field;
1440 if (typesize < bitsize)
1441 rli->remaining_in_alignment = 0;
1442 else
1443 rli->remaining_in_alignment = typesize - bitsize;
1445 else
1446 rli->remaining_in_alignment -= bitsize;
1448 else
1450 /* End of a run: if leaving a run of bitfields of the same type
1451 size, we have to "use up" the rest of the bits of the type
1452 size.
1454 Compute the new position as the sum of the size for the prior
1455 type and where we first started working on that type.
1456 Note: since the beginning of the field was aligned then
1457 of course the end will be too. No round needed. */
1459 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1461 rli->bitpos
1462 = size_binop (PLUS_EXPR, rli->bitpos,
1463 bitsize_int (rli->remaining_in_alignment));
1465 else
1466 /* We "use up" size zero fields; the code below should behave
1467 as if the prior field was not a bitfield. */
1468 prev_saved = NULL;
1470 /* Cause a new bitfield to be captured, either this time (if
1471 currently a bitfield) or next time we see one. */
1472 if (!DECL_BIT_FIELD_TYPE (field)
1473 || integer_zerop (DECL_SIZE (field)))
1474 rli->prev_field = NULL;
1477 normalize_rli (rli);
1480 /* If we're starting a new run of same type size bitfields
1481 (or a run of non-bitfields), set up the "first of the run"
1482 fields.
1484 That is, if the current field is not a bitfield, or if there
1485 was a prior bitfield the type sizes differ, or if there wasn't
1486 a prior bitfield the size of the current field is nonzero.
1488 Note: we must be sure to test ONLY the type size if there was
1489 a prior bitfield and ONLY for the current field being zero if
1490 there wasn't. */
1492 if (!DECL_BIT_FIELD_TYPE (field)
1493 || (prev_saved != NULL
1494 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1495 : !integer_zerop (DECL_SIZE (field)) ))
1497 /* Never smaller than a byte for compatibility. */
1498 unsigned int type_align = BITS_PER_UNIT;
1500 /* (When not a bitfield), we could be seeing a flex array (with
1501 no DECL_SIZE). Since we won't be using remaining_in_alignment
1502 until we see a bitfield (and come by here again) we just skip
1503 calculating it. */
1504 if (DECL_SIZE (field) != NULL
1505 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1506 && tree_fits_uhwi_p (DECL_SIZE (field)))
1508 unsigned HOST_WIDE_INT bitsize
1509 = tree_to_uhwi (DECL_SIZE (field));
1510 unsigned HOST_WIDE_INT typesize
1511 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1513 if (typesize < bitsize)
1514 rli->remaining_in_alignment = 0;
1515 else
1516 rli->remaining_in_alignment = typesize - bitsize;
1519 /* Now align (conventionally) for the new type. */
1520 type_align = TYPE_ALIGN (TREE_TYPE (field));
1522 if (maximum_field_alignment != 0)
1523 type_align = MIN (type_align, maximum_field_alignment);
1525 rli->bitpos = round_up (rli->bitpos, type_align);
1527 /* If we really aligned, don't allow subsequent bitfields
1528 to undo that. */
1529 rli->prev_field = NULL;
1533 /* Offset so far becomes the position of this field after normalizing. */
1534 normalize_rli (rli);
1535 DECL_FIELD_OFFSET (field) = rli->offset;
1536 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1537 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1538 handle_warn_if_not_align (field, rli->record_align);
1540 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1541 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1542 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1544 /* If this field ended up more aligned than we thought it would be (we
1545 approximate this by seeing if its position changed), lay out the field
1546 again; perhaps we can use an integral mode for it now. */
1547 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1548 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1549 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1550 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1551 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1552 actual_align = (BITS_PER_UNIT
1553 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1554 else
1555 actual_align = DECL_OFFSET_ALIGN (field);
1556 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1557 store / extract bit field operations will check the alignment of the
1558 record against the mode of bit fields. */
1560 if (known_align != actual_align)
1561 layout_decl (field, actual_align);
1563 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1564 rli->prev_field = field;
1566 /* Now add size of this field to the size of the record. If the size is
1567 not constant, treat the field as being a multiple of bytes and just
1568 adjust the offset, resetting the bit position. Otherwise, apportion the
1569 size amongst the bit position and offset. First handle the case of an
1570 unspecified size, which can happen when we have an invalid nested struct
1571 definition, such as struct j { struct j { int i; } }. The error message
1572 is printed in finish_struct. */
1573 if (DECL_SIZE (field) == 0)
1574 /* Do nothing. */;
1575 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1576 || TREE_OVERFLOW (DECL_SIZE (field)))
1578 rli->offset
1579 = size_binop (PLUS_EXPR, rli->offset,
1580 fold_convert (sizetype,
1581 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1582 bitsize_unit_node)));
1583 rli->offset
1584 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1585 rli->bitpos = bitsize_zero_node;
1586 rli->offset_align = MIN (rli->offset_align, desired_align);
1588 else if (targetm.ms_bitfield_layout_p (rli->t))
1590 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1592 /* If we ended a bitfield before the full length of the type then
1593 pad the struct out to the full length of the last type. */
1594 if ((DECL_CHAIN (field) == NULL
1595 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1596 && DECL_BIT_FIELD_TYPE (field)
1597 && !integer_zerop (DECL_SIZE (field)))
1598 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1599 bitsize_int (rli->remaining_in_alignment));
1601 normalize_rli (rli);
1603 else
1605 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1606 normalize_rli (rli);
1610 /* Assuming that all the fields have been laid out, this function uses
1611 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1612 indicated by RLI. */
1614 static void
1615 finalize_record_size (record_layout_info rli)
1617 tree unpadded_size, unpadded_size_unit;
1619 /* Now we want just byte and bit offsets, so set the offset alignment
1620 to be a byte and then normalize. */
1621 rli->offset_align = BITS_PER_UNIT;
1622 normalize_rli (rli);
1624 /* Determine the desired alignment. */
1625 #ifdef ROUND_TYPE_ALIGN
1626 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1627 rli->record_align));
1628 #else
1629 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1630 #endif
1632 /* Compute the size so far. Be sure to allow for extra bits in the
1633 size in bytes. We have guaranteed above that it will be no more
1634 than a single byte. */
1635 unpadded_size = rli_size_so_far (rli);
1636 unpadded_size_unit = rli_size_unit_so_far (rli);
1637 if (! integer_zerop (rli->bitpos))
1638 unpadded_size_unit
1639 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1641 /* Round the size up to be a multiple of the required alignment. */
1642 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1643 TYPE_SIZE_UNIT (rli->t)
1644 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1646 if (TREE_CONSTANT (unpadded_size)
1647 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1648 && input_location != BUILTINS_LOCATION)
1649 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1651 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1652 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1653 && TREE_CONSTANT (unpadded_size))
1655 tree unpacked_size;
1657 #ifdef ROUND_TYPE_ALIGN
1658 rli->unpacked_align
1659 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1660 #else
1661 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1662 #endif
1664 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1665 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1667 if (TYPE_NAME (rli->t))
1669 tree name;
1671 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1672 name = TYPE_NAME (rli->t);
1673 else
1674 name = DECL_NAME (TYPE_NAME (rli->t));
1676 if (STRICT_ALIGNMENT)
1677 warning (OPT_Wpacked, "packed attribute causes inefficient "
1678 "alignment for %qE", name);
1679 else
1680 warning (OPT_Wpacked,
1681 "packed attribute is unnecessary for %qE", name);
1683 else
1685 if (STRICT_ALIGNMENT)
1686 warning (OPT_Wpacked,
1687 "packed attribute causes inefficient alignment");
1688 else
1689 warning (OPT_Wpacked, "packed attribute is unnecessary");
1695 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1697 void
1698 compute_record_mode (tree type)
1700 tree field;
1701 machine_mode mode = VOIDmode;
1703 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1704 However, if possible, we use a mode that fits in a register
1705 instead, in order to allow for better optimization down the
1706 line. */
1707 SET_TYPE_MODE (type, BLKmode);
1709 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1710 return;
1712 /* A record which has any BLKmode members must itself be
1713 BLKmode; it can't go in a register. Unless the member is
1714 BLKmode only because it isn't aligned. */
1715 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1717 if (TREE_CODE (field) != FIELD_DECL)
1718 continue;
1720 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1721 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1722 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1723 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1724 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1725 || ! tree_fits_uhwi_p (bit_position (field))
1726 || DECL_SIZE (field) == 0
1727 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1728 return;
1730 /* If this field is the whole struct, remember its mode so
1731 that, say, we can put a double in a class into a DF
1732 register instead of forcing it to live in the stack. */
1733 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1734 mode = DECL_MODE (field);
1736 /* With some targets, it is sub-optimal to access an aligned
1737 BLKmode structure as a scalar. */
1738 if (targetm.member_type_forces_blk (field, mode))
1739 return;
1742 /* If we only have one real field; use its mode if that mode's size
1743 matches the type's size. This only applies to RECORD_TYPE. This
1744 does not apply to unions. */
1745 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1746 && tree_fits_uhwi_p (TYPE_SIZE (type))
1747 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1748 SET_TYPE_MODE (type, mode);
1749 else
1750 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1752 /* If structure's known alignment is less than what the scalar
1753 mode would need, and it matters, then stick with BLKmode. */
1754 if (TYPE_MODE (type) != BLKmode
1755 && STRICT_ALIGNMENT
1756 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1757 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1759 /* If this is the only reason this type is BLKmode, then
1760 don't force containing types to be BLKmode. */
1761 TYPE_NO_FORCE_BLK (type) = 1;
1762 SET_TYPE_MODE (type, BLKmode);
1766 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1767 out. */
1769 static void
1770 finalize_type_size (tree type)
1772 /* Normally, use the alignment corresponding to the mode chosen.
1773 However, where strict alignment is not required, avoid
1774 over-aligning structures, since most compilers do not do this
1775 alignment. */
1776 if (TYPE_MODE (type) != BLKmode
1777 && TYPE_MODE (type) != VOIDmode
1778 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1780 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1782 /* Don't override a larger alignment requirement coming from a user
1783 alignment of one of the fields. */
1784 if (mode_align >= TYPE_ALIGN (type))
1786 SET_TYPE_ALIGN (type, mode_align);
1787 TYPE_USER_ALIGN (type) = 0;
1791 /* Do machine-dependent extra alignment. */
1792 #ifdef ROUND_TYPE_ALIGN
1793 SET_TYPE_ALIGN (type,
1794 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1795 #endif
1797 /* If we failed to find a simple way to calculate the unit size
1798 of the type, find it by division. */
1799 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1800 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1801 result will fit in sizetype. We will get more efficient code using
1802 sizetype, so we force a conversion. */
1803 TYPE_SIZE_UNIT (type)
1804 = fold_convert (sizetype,
1805 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1806 bitsize_unit_node));
1808 if (TYPE_SIZE (type) != 0)
1810 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1811 TYPE_SIZE_UNIT (type)
1812 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1815 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1816 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1817 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1818 if (TYPE_SIZE_UNIT (type) != 0
1819 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1820 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1822 /* Also layout any other variants of the type. */
1823 if (TYPE_NEXT_VARIANT (type)
1824 || type != TYPE_MAIN_VARIANT (type))
1826 tree variant;
1827 /* Record layout info of this variant. */
1828 tree size = TYPE_SIZE (type);
1829 tree size_unit = TYPE_SIZE_UNIT (type);
1830 unsigned int align = TYPE_ALIGN (type);
1831 unsigned int precision = TYPE_PRECISION (type);
1832 unsigned int user_align = TYPE_USER_ALIGN (type);
1833 machine_mode mode = TYPE_MODE (type);
1835 /* Copy it into all variants. */
1836 for (variant = TYPE_MAIN_VARIANT (type);
1837 variant != 0;
1838 variant = TYPE_NEXT_VARIANT (variant))
1840 TYPE_SIZE (variant) = size;
1841 TYPE_SIZE_UNIT (variant) = size_unit;
1842 unsigned valign = align;
1843 if (TYPE_USER_ALIGN (variant))
1844 valign = MAX (valign, TYPE_ALIGN (variant));
1845 else
1846 TYPE_USER_ALIGN (variant) = user_align;
1847 SET_TYPE_ALIGN (variant, valign);
1848 TYPE_PRECISION (variant) = precision;
1849 SET_TYPE_MODE (variant, mode);
1854 /* Return a new underlying object for a bitfield started with FIELD. */
1856 static tree
1857 start_bitfield_representative (tree field)
1859 tree repr = make_node (FIELD_DECL);
1860 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1861 /* Force the representative to begin at a BITS_PER_UNIT aligned
1862 boundary - C++ may use tail-padding of a base object to
1863 continue packing bits so the bitfield region does not start
1864 at bit zero (see g++.dg/abi/bitfield5.C for example).
1865 Unallocated bits may happen for other reasons as well,
1866 for example Ada which allows explicit bit-granular structure layout. */
1867 DECL_FIELD_BIT_OFFSET (repr)
1868 = size_binop (BIT_AND_EXPR,
1869 DECL_FIELD_BIT_OFFSET (field),
1870 bitsize_int (~(BITS_PER_UNIT - 1)));
1871 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1872 DECL_SIZE (repr) = DECL_SIZE (field);
1873 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1874 DECL_PACKED (repr) = DECL_PACKED (field);
1875 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1876 /* There are no indirect accesses to this field. If we introduce
1877 some then they have to use the record alias set. This makes
1878 sure to properly conflict with [indirect] accesses to addressable
1879 fields of the bitfield group. */
1880 DECL_NONADDRESSABLE_P (repr) = 1;
1881 return repr;
1884 /* Finish up a bitfield group that was started by creating the underlying
1885 object REPR with the last field in the bitfield group FIELD. */
1887 static void
1888 finish_bitfield_representative (tree repr, tree field)
1890 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1891 tree nextf, size;
1893 size = size_diffop (DECL_FIELD_OFFSET (field),
1894 DECL_FIELD_OFFSET (repr));
1895 while (TREE_CODE (size) == COMPOUND_EXPR)
1896 size = TREE_OPERAND (size, 1);
1897 gcc_assert (tree_fits_uhwi_p (size));
1898 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1899 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1900 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1901 + tree_to_uhwi (DECL_SIZE (field)));
1903 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1904 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1906 /* Now nothing tells us how to pad out bitsize ... */
1907 nextf = DECL_CHAIN (field);
1908 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1909 nextf = DECL_CHAIN (nextf);
1910 if (nextf)
1912 tree maxsize;
1913 /* If there was an error, the field may be not laid out
1914 correctly. Don't bother to do anything. */
1915 if (TREE_TYPE (nextf) == error_mark_node)
1916 return;
1917 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1918 DECL_FIELD_OFFSET (repr));
1919 if (tree_fits_uhwi_p (maxsize))
1921 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1922 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1923 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1924 /* If the group ends within a bitfield nextf does not need to be
1925 aligned to BITS_PER_UNIT. Thus round up. */
1926 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1928 else
1929 maxbitsize = bitsize;
1931 else
1933 /* Note that if the C++ FE sets up tail-padding to be re-used it
1934 creates a as-base variant of the type with TYPE_SIZE adjusted
1935 accordingly. So it is safe to include tail-padding here. */
1936 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
1937 (DECL_CONTEXT (field));
1938 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
1939 /* We cannot generally rely on maxsize to fold to an integer constant,
1940 so use bitsize as fallback for this case. */
1941 if (tree_fits_uhwi_p (maxsize))
1942 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1943 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1944 else
1945 maxbitsize = bitsize;
1948 /* Only if we don't artificially break up the representative in
1949 the middle of a large bitfield with different possibly
1950 overlapping representatives. And all representatives start
1951 at byte offset. */
1952 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1954 /* Find the smallest nice mode to use. */
1955 opt_scalar_int_mode mode_iter;
1956 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1957 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
1958 break;
1960 scalar_int_mode mode;
1961 if (!mode_iter.exists (&mode)
1962 || GET_MODE_BITSIZE (mode) > maxbitsize
1963 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
1965 /* We really want a BLKmode representative only as a last resort,
1966 considering the member b in
1967 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1968 Otherwise we simply want to split the representative up
1969 allowing for overlaps within the bitfield region as required for
1970 struct { int a : 7; int b : 7;
1971 int c : 10; int d; } __attribute__((packed));
1972 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1973 DECL_SIZE (repr) = bitsize_int (bitsize);
1974 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1975 SET_DECL_MODE (repr, BLKmode);
1976 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1977 bitsize / BITS_PER_UNIT);
1979 else
1981 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1982 DECL_SIZE (repr) = bitsize_int (modesize);
1983 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1984 SET_DECL_MODE (repr, mode);
1985 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1988 /* Remember whether the bitfield group is at the end of the
1989 structure or not. */
1990 DECL_CHAIN (repr) = nextf;
1993 /* Compute and set FIELD_DECLs for the underlying objects we should
1994 use for bitfield access for the structure T. */
1996 void
1997 finish_bitfield_layout (tree t)
1999 tree field, prev;
2000 tree repr = NULL_TREE;
2002 /* Unions would be special, for the ease of type-punning optimizations
2003 we could use the underlying type as hint for the representative
2004 if the bitfield would fit and the representative would not exceed
2005 the union in size. */
2006 if (TREE_CODE (t) != RECORD_TYPE)
2007 return;
2009 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2010 field; field = DECL_CHAIN (field))
2012 if (TREE_CODE (field) != FIELD_DECL)
2013 continue;
2015 /* In the C++ memory model, consecutive bit fields in a structure are
2016 considered one memory location and updating a memory location
2017 may not store into adjacent memory locations. */
2018 if (!repr
2019 && DECL_BIT_FIELD_TYPE (field))
2021 /* Start new representative. */
2022 repr = start_bitfield_representative (field);
2024 else if (repr
2025 && ! DECL_BIT_FIELD_TYPE (field))
2027 /* Finish off new representative. */
2028 finish_bitfield_representative (repr, prev);
2029 repr = NULL_TREE;
2031 else if (DECL_BIT_FIELD_TYPE (field))
2033 gcc_assert (repr != NULL_TREE);
2035 /* Zero-size bitfields finish off a representative and
2036 do not have a representative themselves. This is
2037 required by the C++ memory model. */
2038 if (integer_zerop (DECL_SIZE (field)))
2040 finish_bitfield_representative (repr, prev);
2041 repr = NULL_TREE;
2044 /* We assume that either DECL_FIELD_OFFSET of the representative
2045 and each bitfield member is a constant or they are equal.
2046 This is because we need to be able to compute the bit-offset
2047 of each field relative to the representative in get_bit_range
2048 during RTL expansion.
2049 If these constraints are not met, simply force a new
2050 representative to be generated. That will at most
2051 generate worse code but still maintain correctness with
2052 respect to the C++ memory model. */
2053 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2054 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2055 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2056 DECL_FIELD_OFFSET (field), 0)))
2058 finish_bitfield_representative (repr, prev);
2059 repr = start_bitfield_representative (field);
2062 else
2063 continue;
2065 if (repr)
2066 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2068 prev = field;
2071 if (repr)
2072 finish_bitfield_representative (repr, prev);
2075 /* Do all of the work required to layout the type indicated by RLI,
2076 once the fields have been laid out. This function will call `free'
2077 for RLI, unless FREE_P is false. Passing a value other than false
2078 for FREE_P is bad practice; this option only exists to support the
2079 G++ 3.2 ABI. */
2081 void
2082 finish_record_layout (record_layout_info rli, int free_p)
2084 tree variant;
2086 /* Compute the final size. */
2087 finalize_record_size (rli);
2089 /* Compute the TYPE_MODE for the record. */
2090 compute_record_mode (rli->t);
2092 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2093 finalize_type_size (rli->t);
2095 /* Compute bitfield representatives. */
2096 finish_bitfield_layout (rli->t);
2098 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2099 With C++ templates, it is too early to do this when the attribute
2100 is being parsed. */
2101 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2102 variant = TYPE_NEXT_VARIANT (variant))
2104 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2105 TYPE_REVERSE_STORAGE_ORDER (variant)
2106 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2109 /* Lay out any static members. This is done now because their type
2110 may use the record's type. */
2111 while (!vec_safe_is_empty (rli->pending_statics))
2112 layout_decl (rli->pending_statics->pop (), 0);
2114 /* Clean up. */
2115 if (free_p)
2117 vec_free (rli->pending_statics);
2118 free (rli);
2123 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2124 NAME, its fields are chained in reverse on FIELDS.
2126 If ALIGN_TYPE is non-null, it is given the same alignment as
2127 ALIGN_TYPE. */
2129 void
2130 finish_builtin_struct (tree type, const char *name, tree fields,
2131 tree align_type)
2133 tree tail, next;
2135 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2137 DECL_FIELD_CONTEXT (fields) = type;
2138 next = DECL_CHAIN (fields);
2139 DECL_CHAIN (fields) = tail;
2141 TYPE_FIELDS (type) = tail;
2143 if (align_type)
2145 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2146 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2147 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2148 TYPE_WARN_IF_NOT_ALIGN (align_type));
2151 layout_type (type);
2152 #if 0 /* not yet, should get fixed properly later */
2153 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2154 #else
2155 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2156 TYPE_DECL, get_identifier (name), type);
2157 #endif
2158 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2159 layout_decl (TYPE_NAME (type), 0);
2162 /* Calculate the mode, size, and alignment for TYPE.
2163 For an array type, calculate the element separation as well.
2164 Record TYPE on the chain of permanent or temporary types
2165 so that dbxout will find out about it.
2167 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2168 layout_type does nothing on such a type.
2170 If the type is incomplete, its TYPE_SIZE remains zero. */
2172 void
2173 layout_type (tree type)
2175 gcc_assert (type);
2177 if (type == error_mark_node)
2178 return;
2180 /* We don't want finalize_type_size to copy an alignment attribute to
2181 variants that don't have it. */
2182 type = TYPE_MAIN_VARIANT (type);
2184 /* Do nothing if type has been laid out before. */
2185 if (TYPE_SIZE (type))
2186 return;
2188 switch (TREE_CODE (type))
2190 case LANG_TYPE:
2191 /* This kind of type is the responsibility
2192 of the language-specific code. */
2193 gcc_unreachable ();
2195 case BOOLEAN_TYPE:
2196 case INTEGER_TYPE:
2197 case ENUMERAL_TYPE:
2199 scalar_int_mode mode
2200 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2201 SET_TYPE_MODE (type, mode);
2202 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2203 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2204 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2205 break;
2208 case REAL_TYPE:
2210 /* Allow the caller to choose the type mode, which is how decimal
2211 floats are distinguished from binary ones. */
2212 if (TYPE_MODE (type) == VOIDmode)
2213 SET_TYPE_MODE
2214 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2215 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2216 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2217 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2218 break;
2221 case FIXED_POINT_TYPE:
2223 /* TYPE_MODE (type) has been set already. */
2224 scalar_mode mode = SCALAR_TYPE_MODE (type);
2225 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2226 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2227 break;
2230 case COMPLEX_TYPE:
2231 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2232 SET_TYPE_MODE (type,
2233 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2235 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2236 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2237 break;
2239 case VECTOR_TYPE:
2241 int nunits = TYPE_VECTOR_SUBPARTS (type);
2242 tree innertype = TREE_TYPE (type);
2244 gcc_assert (!(nunits & (nunits - 1)));
2246 /* Find an appropriate mode for the vector type. */
2247 if (TYPE_MODE (type) == VOIDmode)
2248 SET_TYPE_MODE (type,
2249 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2250 nunits));
2252 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2253 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2254 /* Several boolean vector elements may fit in a single unit. */
2255 if (VECTOR_BOOLEAN_TYPE_P (type)
2256 && type->type_common.mode != BLKmode)
2257 TYPE_SIZE_UNIT (type)
2258 = size_int (GET_MODE_SIZE (type->type_common.mode));
2259 else
2260 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2261 TYPE_SIZE_UNIT (innertype),
2262 size_int (nunits));
2263 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2264 TYPE_SIZE (innertype),
2265 bitsize_int (nunits));
2267 /* For vector types, we do not default to the mode's alignment.
2268 Instead, query a target hook, defaulting to natural alignment.
2269 This prevents ABI changes depending on whether or not native
2270 vector modes are supported. */
2271 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2273 /* However, if the underlying mode requires a bigger alignment than
2274 what the target hook provides, we cannot use the mode. For now,
2275 simply reject that case. */
2276 gcc_assert (TYPE_ALIGN (type)
2277 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2278 break;
2281 case VOID_TYPE:
2282 /* This is an incomplete type and so doesn't have a size. */
2283 SET_TYPE_ALIGN (type, 1);
2284 TYPE_USER_ALIGN (type) = 0;
2285 SET_TYPE_MODE (type, VOIDmode);
2286 break;
2288 case POINTER_BOUNDS_TYPE:
2289 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2290 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2291 break;
2293 case OFFSET_TYPE:
2294 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2295 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2296 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2297 integral, which may be an __intN. */
2298 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2299 TYPE_PRECISION (type) = POINTER_SIZE;
2300 break;
2302 case FUNCTION_TYPE:
2303 case METHOD_TYPE:
2304 /* It's hard to see what the mode and size of a function ought to
2305 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2306 make it consistent with that. */
2307 SET_TYPE_MODE (type,
2308 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2309 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2310 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2311 break;
2313 case POINTER_TYPE:
2314 case REFERENCE_TYPE:
2316 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2317 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2318 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2319 TYPE_UNSIGNED (type) = 1;
2320 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2322 break;
2324 case ARRAY_TYPE:
2326 tree index = TYPE_DOMAIN (type);
2327 tree element = TREE_TYPE (type);
2329 /* We need to know both bounds in order to compute the size. */
2330 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2331 && TYPE_SIZE (element))
2333 tree ub = TYPE_MAX_VALUE (index);
2334 tree lb = TYPE_MIN_VALUE (index);
2335 tree element_size = TYPE_SIZE (element);
2336 tree length;
2338 /* Make sure that an array of zero-sized element is zero-sized
2339 regardless of its extent. */
2340 if (integer_zerop (element_size))
2341 length = size_zero_node;
2343 /* The computation should happen in the original signedness so
2344 that (possible) negative values are handled appropriately
2345 when determining overflow. */
2346 else
2348 /* ??? When it is obvious that the range is signed
2349 represent it using ssizetype. */
2350 if (TREE_CODE (lb) == INTEGER_CST
2351 && TREE_CODE (ub) == INTEGER_CST
2352 && TYPE_UNSIGNED (TREE_TYPE (lb))
2353 && tree_int_cst_lt (ub, lb))
2355 lb = wide_int_to_tree (ssizetype,
2356 offset_int::from (lb, SIGNED));
2357 ub = wide_int_to_tree (ssizetype,
2358 offset_int::from (ub, SIGNED));
2360 length
2361 = fold_convert (sizetype,
2362 size_binop (PLUS_EXPR,
2363 build_int_cst (TREE_TYPE (lb), 1),
2364 size_binop (MINUS_EXPR, ub, lb)));
2367 /* ??? We have no way to distinguish a null-sized array from an
2368 array spanning the whole sizetype range, so we arbitrarily
2369 decide that [0, -1] is the only valid representation. */
2370 if (integer_zerop (length)
2371 && TREE_OVERFLOW (length)
2372 && integer_zerop (lb))
2373 length = size_zero_node;
2375 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2376 fold_convert (bitsizetype,
2377 length));
2379 /* If we know the size of the element, calculate the total size
2380 directly, rather than do some division thing below. This
2381 optimization helps Fortran assumed-size arrays (where the
2382 size of the array is determined at runtime) substantially. */
2383 if (TYPE_SIZE_UNIT (element))
2384 TYPE_SIZE_UNIT (type)
2385 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2388 /* Now round the alignment and size,
2389 using machine-dependent criteria if any. */
2391 unsigned align = TYPE_ALIGN (element);
2392 if (TYPE_USER_ALIGN (type))
2393 align = MAX (align, TYPE_ALIGN (type));
2394 else
2395 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2396 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2397 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2398 TYPE_WARN_IF_NOT_ALIGN (element));
2399 #ifdef ROUND_TYPE_ALIGN
2400 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2401 #else
2402 align = MAX (align, BITS_PER_UNIT);
2403 #endif
2404 SET_TYPE_ALIGN (type, align);
2405 SET_TYPE_MODE (type, BLKmode);
2406 if (TYPE_SIZE (type) != 0
2407 && ! targetm.member_type_forces_blk (type, VOIDmode)
2408 /* BLKmode elements force BLKmode aggregate;
2409 else extract/store fields may lose. */
2410 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2411 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2413 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2414 TYPE_SIZE (type)));
2415 if (TYPE_MODE (type) != BLKmode
2416 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2417 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2419 TYPE_NO_FORCE_BLK (type) = 1;
2420 SET_TYPE_MODE (type, BLKmode);
2423 if (AGGREGATE_TYPE_P (element))
2424 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2425 /* When the element size is constant, check that it is at least as
2426 large as the element alignment. */
2427 if (TYPE_SIZE_UNIT (element)
2428 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2429 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2430 TYPE_ALIGN_UNIT. */
2431 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2432 && !integer_zerop (TYPE_SIZE_UNIT (element))
2433 && compare_tree_int (TYPE_SIZE_UNIT (element),
2434 TYPE_ALIGN_UNIT (element)) < 0)
2435 error ("alignment of array elements is greater than element size");
2436 break;
2439 case RECORD_TYPE:
2440 case UNION_TYPE:
2441 case QUAL_UNION_TYPE:
2443 tree field;
2444 record_layout_info rli;
2446 /* Initialize the layout information. */
2447 rli = start_record_layout (type);
2449 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2450 in the reverse order in building the COND_EXPR that denotes
2451 its size. We reverse them again later. */
2452 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2453 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2455 /* Place all the fields. */
2456 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2457 place_field (rli, field);
2459 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2460 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2462 /* Finish laying out the record. */
2463 finish_record_layout (rli, /*free_p=*/true);
2465 break;
2467 default:
2468 gcc_unreachable ();
2471 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2472 records and unions, finish_record_layout already called this
2473 function. */
2474 if (!RECORD_OR_UNION_TYPE_P (type))
2475 finalize_type_size (type);
2477 /* We should never see alias sets on incomplete aggregates. And we
2478 should not call layout_type on not incomplete aggregates. */
2479 if (AGGREGATE_TYPE_P (type))
2480 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2483 /* Return the least alignment required for type TYPE. */
2485 unsigned int
2486 min_align_of_type (tree type)
2488 unsigned int align = TYPE_ALIGN (type);
2489 if (!TYPE_USER_ALIGN (type))
2491 align = MIN (align, BIGGEST_ALIGNMENT);
2492 #ifdef BIGGEST_FIELD_ALIGNMENT
2493 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2494 #endif
2495 unsigned int field_align = align;
2496 #ifdef ADJUST_FIELD_ALIGN
2497 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2498 #endif
2499 align = MIN (align, field_align);
2501 return align / BITS_PER_UNIT;
2504 /* Create and return a type for signed integers of PRECISION bits. */
2506 tree
2507 make_signed_type (int precision)
2509 tree type = make_node (INTEGER_TYPE);
2511 TYPE_PRECISION (type) = precision;
2513 fixup_signed_type (type);
2514 return type;
2517 /* Create and return a type for unsigned integers of PRECISION bits. */
2519 tree
2520 make_unsigned_type (int precision)
2522 tree type = make_node (INTEGER_TYPE);
2524 TYPE_PRECISION (type) = precision;
2526 fixup_unsigned_type (type);
2527 return type;
2530 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2531 and SATP. */
2533 tree
2534 make_fract_type (int precision, int unsignedp, int satp)
2536 tree type = make_node (FIXED_POINT_TYPE);
2538 TYPE_PRECISION (type) = precision;
2540 if (satp)
2541 TYPE_SATURATING (type) = 1;
2543 /* Lay out the type: set its alignment, size, etc. */
2544 TYPE_UNSIGNED (type) = unsignedp;
2545 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2546 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2547 layout_type (type);
2549 return type;
2552 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2553 and SATP. */
2555 tree
2556 make_accum_type (int precision, int unsignedp, int satp)
2558 tree type = make_node (FIXED_POINT_TYPE);
2560 TYPE_PRECISION (type) = precision;
2562 if (satp)
2563 TYPE_SATURATING (type) = 1;
2565 /* Lay out the type: set its alignment, size, etc. */
2566 TYPE_UNSIGNED (type) = unsignedp;
2567 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2568 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2569 layout_type (type);
2571 return type;
2574 /* Initialize sizetypes so layout_type can use them. */
2576 void
2577 initialize_sizetypes (void)
2579 int precision, bprecision;
2581 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2582 if (strcmp (SIZETYPE, "unsigned int") == 0)
2583 precision = INT_TYPE_SIZE;
2584 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2585 precision = LONG_TYPE_SIZE;
2586 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2587 precision = LONG_LONG_TYPE_SIZE;
2588 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2589 precision = SHORT_TYPE_SIZE;
2590 else
2592 int i;
2594 precision = -1;
2595 for (i = 0; i < NUM_INT_N_ENTS; i++)
2596 if (int_n_enabled_p[i])
2598 char name[50];
2599 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2601 if (strcmp (name, SIZETYPE) == 0)
2603 precision = int_n_data[i].bitsize;
2606 if (precision == -1)
2607 gcc_unreachable ();
2610 bprecision
2611 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2612 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2613 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2614 bprecision = HOST_BITS_PER_DOUBLE_INT;
2616 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2617 sizetype = make_node (INTEGER_TYPE);
2618 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2619 TYPE_PRECISION (sizetype) = precision;
2620 TYPE_UNSIGNED (sizetype) = 1;
2621 bitsizetype = make_node (INTEGER_TYPE);
2622 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2623 TYPE_PRECISION (bitsizetype) = bprecision;
2624 TYPE_UNSIGNED (bitsizetype) = 1;
2626 /* Now layout both types manually. */
2627 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2628 SET_TYPE_MODE (sizetype, mode);
2629 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2630 TYPE_SIZE (sizetype) = bitsize_int (precision);
2631 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2632 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2634 mode = smallest_int_mode_for_size (bprecision);
2635 SET_TYPE_MODE (bitsizetype, mode);
2636 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2637 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2638 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2639 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2641 /* Create the signed variants of *sizetype. */
2642 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2643 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2644 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2645 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2648 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2649 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2650 for TYPE, based on the PRECISION and whether or not the TYPE
2651 IS_UNSIGNED. PRECISION need not correspond to a width supported
2652 natively by the hardware; for example, on a machine with 8-bit,
2653 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2654 61. */
2656 void
2657 set_min_and_max_values_for_integral_type (tree type,
2658 int precision,
2659 signop sgn)
2661 /* For bitfields with zero width we end up creating integer types
2662 with zero precision. Don't assign any minimum/maximum values
2663 to those types, they don't have any valid value. */
2664 if (precision < 1)
2665 return;
2667 TYPE_MIN_VALUE (type)
2668 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2669 TYPE_MAX_VALUE (type)
2670 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2673 /* Set the extreme values of TYPE based on its precision in bits,
2674 then lay it out. Used when make_signed_type won't do
2675 because the tree code is not INTEGER_TYPE. */
2677 void
2678 fixup_signed_type (tree type)
2680 int precision = TYPE_PRECISION (type);
2682 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2684 /* Lay out the type: set its alignment, size, etc. */
2685 layout_type (type);
2688 /* Set the extreme values of TYPE based on its precision in bits,
2689 then lay it out. This is used both in `make_unsigned_type'
2690 and for enumeral types. */
2692 void
2693 fixup_unsigned_type (tree type)
2695 int precision = TYPE_PRECISION (type);
2697 TYPE_UNSIGNED (type) = 1;
2699 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2701 /* Lay out the type: set its alignment, size, etc. */
2702 layout_type (type);
2705 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2706 starting at BITPOS.
2708 BITREGION_START is the bit position of the first bit in this
2709 sequence of bit fields. BITREGION_END is the last bit in this
2710 sequence. If these two fields are non-zero, we should restrict the
2711 memory access to that range. Otherwise, we are allowed to touch
2712 any adjacent non bit-fields.
2714 ALIGN is the alignment of the underlying object in bits.
2715 VOLATILEP says whether the bitfield is volatile. */
2717 bit_field_mode_iterator
2718 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2719 HOST_WIDE_INT bitregion_start,
2720 HOST_WIDE_INT bitregion_end,
2721 unsigned int align, bool volatilep)
2722 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2723 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2724 m_bitregion_end (bitregion_end), m_align (align),
2725 m_volatilep (volatilep), m_count (0)
2727 if (!m_bitregion_end)
2729 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2730 the bitfield is mapped and won't trap, provided that ALIGN isn't
2731 too large. The cap is the biggest required alignment for data,
2732 or at least the word size. And force one such chunk at least. */
2733 unsigned HOST_WIDE_INT units
2734 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2735 if (bitsize <= 0)
2736 bitsize = 1;
2737 m_bitregion_end = bitpos + bitsize + units - 1;
2738 m_bitregion_end -= m_bitregion_end % units + 1;
2742 /* Calls to this function return successively larger modes that can be used
2743 to represent the bitfield. Return true if another bitfield mode is
2744 available, storing it in *OUT_MODE if so. */
2746 bool
2747 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2749 scalar_int_mode mode;
2750 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2752 unsigned int unit = GET_MODE_BITSIZE (mode);
2754 /* Skip modes that don't have full precision. */
2755 if (unit != GET_MODE_PRECISION (mode))
2756 continue;
2758 /* Stop if the mode is too wide to handle efficiently. */
2759 if (unit > MAX_FIXED_MODE_SIZE)
2760 break;
2762 /* Don't deliver more than one multiword mode; the smallest one
2763 should be used. */
2764 if (m_count > 0 && unit > BITS_PER_WORD)
2765 break;
2767 /* Skip modes that are too small. */
2768 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2769 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2770 if (subend > unit)
2771 continue;
2773 /* Stop if the mode goes outside the bitregion. */
2774 HOST_WIDE_INT start = m_bitpos - substart;
2775 if (m_bitregion_start && start < m_bitregion_start)
2776 break;
2777 HOST_WIDE_INT end = start + unit;
2778 if (end > m_bitregion_end + 1)
2779 break;
2781 /* Stop if the mode requires too much alignment. */
2782 if (GET_MODE_ALIGNMENT (mode) > m_align
2783 && SLOW_UNALIGNED_ACCESS (mode, m_align))
2784 break;
2786 *out_mode = mode;
2787 m_mode = GET_MODE_WIDER_MODE (mode);
2788 m_count++;
2789 return true;
2791 return false;
2794 /* Return true if smaller modes are generally preferred for this kind
2795 of bitfield. */
2797 bool
2798 bit_field_mode_iterator::prefer_smaller_modes ()
2800 return (m_volatilep
2801 ? targetm.narrow_volatile_bitfield ()
2802 : !SLOW_BYTE_ACCESS);
2805 /* Find the best machine mode to use when referencing a bit field of length
2806 BITSIZE bits starting at BITPOS.
2808 BITREGION_START is the bit position of the first bit in this
2809 sequence of bit fields. BITREGION_END is the last bit in this
2810 sequence. If these two fields are non-zero, we should restrict the
2811 memory access to that range. Otherwise, we are allowed to touch
2812 any adjacent non bit-fields.
2814 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2815 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2816 doesn't want to apply a specific limit.
2818 If no mode meets all these conditions, we return VOIDmode.
2820 The underlying object is known to be aligned to a boundary of ALIGN bits.
2822 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2823 smallest mode meeting these conditions.
2825 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2826 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2827 all the conditions.
2829 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2830 decide which of the above modes should be used. */
2832 bool
2833 get_best_mode (int bitsize, int bitpos,
2834 unsigned HOST_WIDE_INT bitregion_start,
2835 unsigned HOST_WIDE_INT bitregion_end,
2836 unsigned int align,
2837 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2838 scalar_int_mode *best_mode)
2840 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2841 bitregion_end, align, volatilep);
2842 scalar_int_mode mode;
2843 bool found = false;
2844 while (iter.next_mode (&mode)
2845 /* ??? For historical reasons, reject modes that would normally
2846 receive greater alignment, even if unaligned accesses are
2847 acceptable. This has both advantages and disadvantages.
2848 Removing this check means that something like:
2850 struct s { unsigned int x; unsigned int y; };
2851 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2853 can be implemented using a single load and compare on
2854 64-bit machines that have no alignment restrictions.
2855 For example, on powerpc64-linux-gnu, we would generate:
2857 ld 3,0(3)
2858 cntlzd 3,3
2859 srdi 3,3,6
2862 rather than:
2864 lwz 9,0(3)
2865 cmpwi 7,9,0
2866 bne 7,.L3
2867 lwz 3,4(3)
2868 cntlzw 3,3
2869 srwi 3,3,5
2870 extsw 3,3
2872 .p2align 4,,15
2873 .L3:
2874 li 3,0
2877 However, accessing more than one field can make life harder
2878 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2879 has a series of unsigned short copies followed by a series of
2880 unsigned short comparisons. With this check, both the copies
2881 and comparisons remain 16-bit accesses and FRE is able
2882 to eliminate the latter. Without the check, the comparisons
2883 can be done using 2 64-bit operations, which FRE isn't able
2884 to handle in the same way.
2886 Either way, it would probably be worth disabling this check
2887 during expand. One particular example where removing the
2888 check would help is the get_best_mode call in store_bit_field.
2889 If we are given a memory bitregion of 128 bits that is aligned
2890 to a 64-bit boundary, and the bitfield we want to modify is
2891 in the second half of the bitregion, this check causes
2892 store_bitfield to turn the memory into a 64-bit reference
2893 to the _first_ half of the region. We later use
2894 adjust_bitfield_address to get a reference to the correct half,
2895 but doing so looks to adjust_bitfield_address as though we are
2896 moving past the end of the original object, so it drops the
2897 associated MEM_EXPR and MEM_OFFSET. Removing the check
2898 causes store_bit_field to keep a 128-bit memory reference,
2899 so that the final bitfield reference still has a MEM_EXPR
2900 and MEM_OFFSET. */
2901 && GET_MODE_ALIGNMENT (mode) <= align
2902 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
2904 *best_mode = mode;
2905 found = true;
2906 if (iter.prefer_smaller_modes ())
2907 break;
2910 return found;
2913 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2914 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2916 void
2917 get_mode_bounds (scalar_int_mode mode, int sign,
2918 scalar_int_mode target_mode,
2919 rtx *mmin, rtx *mmax)
2921 unsigned size = GET_MODE_PRECISION (mode);
2922 unsigned HOST_WIDE_INT min_val, max_val;
2924 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2926 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2927 if (mode == BImode)
2929 if (STORE_FLAG_VALUE < 0)
2931 min_val = STORE_FLAG_VALUE;
2932 max_val = 0;
2934 else
2936 min_val = 0;
2937 max_val = STORE_FLAG_VALUE;
2940 else if (sign)
2942 min_val = -(HOST_WIDE_INT_1U << (size - 1));
2943 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
2945 else
2947 min_val = 0;
2948 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
2951 *mmin = gen_int_mode (min_val, target_mode);
2952 *mmax = gen_int_mode (max_val, target_mode);
2955 #include "gt-stor-layout.h"