PR testsuite/79169
[official-gcc.git] / gcc / tree-vrp.c
blobac37d3f6e149a3562c5585f63ceb28c14657638c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "intl.h"
51 #include "cfgloop.h"
52 #include "tree-scalar-evolution.h"
53 #include "tree-ssa-propagate.h"
54 #include "tree-chrec.h"
55 #include "tree-ssa-threadupdate.h"
56 #include "tree-ssa-scopedtables.h"
57 #include "tree-ssa-threadedge.h"
58 #include "omp-general.h"
59 #include "target.h"
60 #include "case-cfn-macros.h"
61 #include "params.h"
62 #include "alloc-pool.h"
63 #include "domwalk.h"
64 #include "tree-cfgcleanup.h"
66 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
68 /* Allocation pools for tree-vrp allocations. */
69 static object_allocator<value_range> vrp_value_range_pool ("Tree VRP value ranges");
70 static bitmap_obstack vrp_equiv_obstack;
72 /* Set of SSA names found live during the RPO traversal of the function
73 for still active basic-blocks. */
74 static sbitmap *live;
76 /* Return true if the SSA name NAME is live on the edge E. */
78 static bool
79 live_on_edge (edge e, tree name)
81 return (live[e->dest->index]
82 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
85 /* Local functions. */
86 static int compare_values (tree val1, tree val2);
87 static int compare_values_warnv (tree val1, tree val2, bool *);
88 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
89 tree, tree, bool, bool *,
90 bool *);
92 /* Location information for ASSERT_EXPRs. Each instance of this
93 structure describes an ASSERT_EXPR for an SSA name. Since a single
94 SSA name may have more than one assertion associated with it, these
95 locations are kept in a linked list attached to the corresponding
96 SSA name. */
97 struct assert_locus
99 /* Basic block where the assertion would be inserted. */
100 basic_block bb;
102 /* Some assertions need to be inserted on an edge (e.g., assertions
103 generated by COND_EXPRs). In those cases, BB will be NULL. */
104 edge e;
106 /* Pointer to the statement that generated this assertion. */
107 gimple_stmt_iterator si;
109 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
110 enum tree_code comp_code;
112 /* Value being compared against. */
113 tree val;
115 /* Expression to compare. */
116 tree expr;
118 /* Next node in the linked list. */
119 assert_locus *next;
122 /* If bit I is present, it means that SSA name N_i has a list of
123 assertions that should be inserted in the IL. */
124 static bitmap need_assert_for;
126 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
127 holds a list of ASSERT_LOCUS_T nodes that describe where
128 ASSERT_EXPRs for SSA name N_I should be inserted. */
129 static assert_locus **asserts_for;
131 /* Value range array. After propagation, VR_VALUE[I] holds the range
132 of values that SSA name N_I may take. */
133 static unsigned num_vr_values;
134 static value_range **vr_value;
135 static bool values_propagated;
137 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
138 number of executable edges we saw the last time we visited the
139 node. */
140 static int *vr_phi_edge_counts;
142 struct switch_update {
143 gswitch *stmt;
144 tree vec;
147 static vec<edge> to_remove_edges;
148 static vec<switch_update> to_update_switch_stmts;
151 /* Return the maximum value for TYPE. */
153 static inline tree
154 vrp_val_max (const_tree type)
156 if (!INTEGRAL_TYPE_P (type))
157 return NULL_TREE;
159 return TYPE_MAX_VALUE (type);
162 /* Return the minimum value for TYPE. */
164 static inline tree
165 vrp_val_min (const_tree type)
167 if (!INTEGRAL_TYPE_P (type))
168 return NULL_TREE;
170 return TYPE_MIN_VALUE (type);
173 /* Return whether VAL is equal to the maximum value of its type. This
174 will be true for a positive overflow infinity. We can't do a
175 simple equality comparison with TYPE_MAX_VALUE because C typedefs
176 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
177 to the integer constant with the same value in the type. */
179 static inline bool
180 vrp_val_is_max (const_tree val)
182 tree type_max = vrp_val_max (TREE_TYPE (val));
183 return (val == type_max
184 || (type_max != NULL_TREE
185 && operand_equal_p (val, type_max, 0)));
188 /* Return whether VAL is equal to the minimum value of its type. This
189 will be true for a negative overflow infinity. */
191 static inline bool
192 vrp_val_is_min (const_tree val)
194 tree type_min = vrp_val_min (TREE_TYPE (val));
195 return (val == type_min
196 || (type_min != NULL_TREE
197 && operand_equal_p (val, type_min, 0)));
201 /* Return whether TYPE should use an overflow infinity distinct from
202 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
203 represent a signed overflow during VRP computations. An infinity
204 is distinct from a half-range, which will go from some number to
205 TYPE_{MIN,MAX}_VALUE. */
207 static inline bool
208 needs_overflow_infinity (const_tree type)
210 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
213 /* Return whether TYPE can support our overflow infinity
214 representation: we use the TREE_OVERFLOW flag, which only exists
215 for constants. If TYPE doesn't support this, we don't optimize
216 cases which would require signed overflow--we drop them to
217 VARYING. */
219 static inline bool
220 supports_overflow_infinity (const_tree type)
222 tree min = vrp_val_min (type), max = vrp_val_max (type);
223 gcc_checking_assert (needs_overflow_infinity (type));
224 return (min != NULL_TREE
225 && CONSTANT_CLASS_P (min)
226 && max != NULL_TREE
227 && CONSTANT_CLASS_P (max));
230 /* VAL is the maximum or minimum value of a type. Return a
231 corresponding overflow infinity. */
233 static inline tree
234 make_overflow_infinity (tree val)
236 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
237 val = copy_node (val);
238 TREE_OVERFLOW (val) = 1;
239 return val;
242 /* Return a negative overflow infinity for TYPE. */
244 static inline tree
245 negative_overflow_infinity (tree type)
247 gcc_checking_assert (supports_overflow_infinity (type));
248 return make_overflow_infinity (vrp_val_min (type));
251 /* Return a positive overflow infinity for TYPE. */
253 static inline tree
254 positive_overflow_infinity (tree type)
256 gcc_checking_assert (supports_overflow_infinity (type));
257 return make_overflow_infinity (vrp_val_max (type));
260 /* Return whether VAL is a negative overflow infinity. */
262 static inline bool
263 is_negative_overflow_infinity (const_tree val)
265 return (TREE_OVERFLOW_P (val)
266 && needs_overflow_infinity (TREE_TYPE (val))
267 && vrp_val_is_min (val));
270 /* Return whether VAL is a positive overflow infinity. */
272 static inline bool
273 is_positive_overflow_infinity (const_tree val)
275 return (TREE_OVERFLOW_P (val)
276 && needs_overflow_infinity (TREE_TYPE (val))
277 && vrp_val_is_max (val));
280 /* Return whether VAL is a positive or negative overflow infinity. */
282 static inline bool
283 is_overflow_infinity (const_tree val)
285 return (TREE_OVERFLOW_P (val)
286 && needs_overflow_infinity (TREE_TYPE (val))
287 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
290 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
292 static inline bool
293 stmt_overflow_infinity (gimple *stmt)
295 if (is_gimple_assign (stmt)
296 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
297 GIMPLE_SINGLE_RHS)
298 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
299 return false;
302 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
303 the same value with TREE_OVERFLOW clear. This can be used to avoid
304 confusing a regular value with an overflow value. */
306 static inline tree
307 avoid_overflow_infinity (tree val)
309 if (!is_overflow_infinity (val))
310 return val;
312 if (vrp_val_is_max (val))
313 return vrp_val_max (TREE_TYPE (val));
314 else
316 gcc_checking_assert (vrp_val_is_min (val));
317 return vrp_val_min (TREE_TYPE (val));
322 /* Set value range VR to VR_UNDEFINED. */
324 static inline void
325 set_value_range_to_undefined (value_range *vr)
327 vr->type = VR_UNDEFINED;
328 vr->min = vr->max = NULL_TREE;
329 if (vr->equiv)
330 bitmap_clear (vr->equiv);
334 /* Set value range VR to VR_VARYING. */
336 static inline void
337 set_value_range_to_varying (value_range *vr)
339 vr->type = VR_VARYING;
340 vr->min = vr->max = NULL_TREE;
341 if (vr->equiv)
342 bitmap_clear (vr->equiv);
346 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
348 static void
349 set_value_range (value_range *vr, enum value_range_type t, tree min,
350 tree max, bitmap equiv)
352 /* Check the validity of the range. */
353 if (flag_checking
354 && (t == VR_RANGE || t == VR_ANTI_RANGE))
356 int cmp;
358 gcc_assert (min && max);
360 gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
361 && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
363 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
364 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
366 cmp = compare_values (min, max);
367 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
370 if (flag_checking
371 && (t == VR_UNDEFINED || t == VR_VARYING))
373 gcc_assert (min == NULL_TREE && max == NULL_TREE);
374 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
377 vr->type = t;
378 vr->min = min;
379 vr->max = max;
381 /* Since updating the equivalence set involves deep copying the
382 bitmaps, only do it if absolutely necessary. */
383 if (vr->equiv == NULL
384 && equiv != NULL)
385 vr->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
387 if (equiv != vr->equiv)
389 if (equiv && !bitmap_empty_p (equiv))
390 bitmap_copy (vr->equiv, equiv);
391 else
392 bitmap_clear (vr->equiv);
397 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
398 This means adjusting T, MIN and MAX representing the case of a
399 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
400 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
401 In corner cases where MAX+1 or MIN-1 wraps this will fall back
402 to varying.
403 This routine exists to ease canonicalization in the case where we
404 extract ranges from var + CST op limit. */
406 static void
407 set_and_canonicalize_value_range (value_range *vr, enum value_range_type t,
408 tree min, tree max, bitmap equiv)
410 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
411 if (t == VR_UNDEFINED)
413 set_value_range_to_undefined (vr);
414 return;
416 else if (t == VR_VARYING)
418 set_value_range_to_varying (vr);
419 return;
422 /* Nothing to canonicalize for symbolic ranges. */
423 if (TREE_CODE (min) != INTEGER_CST
424 || TREE_CODE (max) != INTEGER_CST)
426 set_value_range (vr, t, min, max, equiv);
427 return;
430 /* Wrong order for min and max, to swap them and the VR type we need
431 to adjust them. */
432 if (tree_int_cst_lt (max, min))
434 tree one, tmp;
436 /* For one bit precision if max < min, then the swapped
437 range covers all values, so for VR_RANGE it is varying and
438 for VR_ANTI_RANGE empty range, so drop to varying as well. */
439 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
441 set_value_range_to_varying (vr);
442 return;
445 one = build_int_cst (TREE_TYPE (min), 1);
446 tmp = int_const_binop (PLUS_EXPR, max, one);
447 max = int_const_binop (MINUS_EXPR, min, one);
448 min = tmp;
450 /* There's one corner case, if we had [C+1, C] before we now have
451 that again. But this represents an empty value range, so drop
452 to varying in this case. */
453 if (tree_int_cst_lt (max, min))
455 set_value_range_to_varying (vr);
456 return;
459 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
462 /* Anti-ranges that can be represented as ranges should be so. */
463 if (t == VR_ANTI_RANGE)
465 bool is_min = vrp_val_is_min (min);
466 bool is_max = vrp_val_is_max (max);
468 if (is_min && is_max)
470 /* We cannot deal with empty ranges, drop to varying.
471 ??? This could be VR_UNDEFINED instead. */
472 set_value_range_to_varying (vr);
473 return;
475 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
476 && (is_min || is_max))
478 /* Non-empty boolean ranges can always be represented
479 as a singleton range. */
480 if (is_min)
481 min = max = vrp_val_max (TREE_TYPE (min));
482 else
483 min = max = vrp_val_min (TREE_TYPE (min));
484 t = VR_RANGE;
486 else if (is_min
487 /* As a special exception preserve non-null ranges. */
488 && !(TYPE_UNSIGNED (TREE_TYPE (min))
489 && integer_zerop (max)))
491 tree one = build_int_cst (TREE_TYPE (max), 1);
492 min = int_const_binop (PLUS_EXPR, max, one);
493 max = vrp_val_max (TREE_TYPE (max));
494 t = VR_RANGE;
496 else if (is_max)
498 tree one = build_int_cst (TREE_TYPE (min), 1);
499 max = int_const_binop (MINUS_EXPR, min, one);
500 min = vrp_val_min (TREE_TYPE (min));
501 t = VR_RANGE;
505 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
506 to make sure VRP iteration terminates, otherwise we can get into
507 oscillations. */
509 set_value_range (vr, t, min, max, equiv);
512 /* Copy value range FROM into value range TO. */
514 static inline void
515 copy_value_range (value_range *to, value_range *from)
517 set_value_range (to, from->type, from->min, from->max, from->equiv);
520 /* Set value range VR to a single value. This function is only called
521 with values we get from statements, and exists to clear the
522 TREE_OVERFLOW flag so that we don't think we have an overflow
523 infinity when we shouldn't. */
525 static inline void
526 set_value_range_to_value (value_range *vr, tree val, bitmap equiv)
528 gcc_assert (is_gimple_min_invariant (val));
529 if (TREE_OVERFLOW_P (val))
530 val = drop_tree_overflow (val);
531 set_value_range (vr, VR_RANGE, val, val, equiv);
534 /* Set value range VR to a non-negative range of type TYPE.
535 OVERFLOW_INFINITY indicates whether to use an overflow infinity
536 rather than TYPE_MAX_VALUE; this should be true if we determine
537 that the range is nonnegative based on the assumption that signed
538 overflow does not occur. */
540 static inline void
541 set_value_range_to_nonnegative (value_range *vr, tree type,
542 bool overflow_infinity)
544 tree zero;
546 if (overflow_infinity && !supports_overflow_infinity (type))
548 set_value_range_to_varying (vr);
549 return;
552 zero = build_int_cst (type, 0);
553 set_value_range (vr, VR_RANGE, zero,
554 (overflow_infinity
555 ? positive_overflow_infinity (type)
556 : TYPE_MAX_VALUE (type)),
557 vr->equiv);
560 /* Set value range VR to a non-NULL range of type TYPE. */
562 static inline void
563 set_value_range_to_nonnull (value_range *vr, tree type)
565 tree zero = build_int_cst (type, 0);
566 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
570 /* Set value range VR to a NULL range of type TYPE. */
572 static inline void
573 set_value_range_to_null (value_range *vr, tree type)
575 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
579 /* Set value range VR to a range of a truthvalue of type TYPE. */
581 static inline void
582 set_value_range_to_truthvalue (value_range *vr, tree type)
584 if (TYPE_PRECISION (type) == 1)
585 set_value_range_to_varying (vr);
586 else
587 set_value_range (vr, VR_RANGE,
588 build_int_cst (type, 0), build_int_cst (type, 1),
589 vr->equiv);
593 /* If abs (min) < abs (max), set VR to [-max, max], if
594 abs (min) >= abs (max), set VR to [-min, min]. */
596 static void
597 abs_extent_range (value_range *vr, tree min, tree max)
599 int cmp;
601 gcc_assert (TREE_CODE (min) == INTEGER_CST);
602 gcc_assert (TREE_CODE (max) == INTEGER_CST);
603 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
604 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
605 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
606 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
607 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
609 set_value_range_to_varying (vr);
610 return;
612 cmp = compare_values (min, max);
613 if (cmp == -1)
614 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
615 else if (cmp == 0 || cmp == 1)
617 max = min;
618 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
620 else
622 set_value_range_to_varying (vr);
623 return;
625 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
629 /* Return value range information for VAR.
631 If we have no values ranges recorded (ie, VRP is not running), then
632 return NULL. Otherwise create an empty range if none existed for VAR. */
634 static value_range *
635 get_value_range (const_tree var)
637 static const value_range vr_const_varying
638 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
639 value_range *vr;
640 tree sym;
641 unsigned ver = SSA_NAME_VERSION (var);
643 /* If we have no recorded ranges, then return NULL. */
644 if (! vr_value)
645 return NULL;
647 /* If we query the range for a new SSA name return an unmodifiable VARYING.
648 We should get here at most from the substitute-and-fold stage which
649 will never try to change values. */
650 if (ver >= num_vr_values)
651 return CONST_CAST (value_range *, &vr_const_varying);
653 vr = vr_value[ver];
654 if (vr)
655 return vr;
657 /* After propagation finished do not allocate new value-ranges. */
658 if (values_propagated)
659 return CONST_CAST (value_range *, &vr_const_varying);
661 /* Create a default value range. */
662 vr_value[ver] = vr = vrp_value_range_pool.allocate ();
663 memset (vr, 0, sizeof (*vr));
665 /* Defer allocating the equivalence set. */
666 vr->equiv = NULL;
668 /* If VAR is a default definition of a parameter, the variable can
669 take any value in VAR's type. */
670 if (SSA_NAME_IS_DEFAULT_DEF (var))
672 sym = SSA_NAME_VAR (var);
673 if (TREE_CODE (sym) == PARM_DECL)
675 /* Try to use the "nonnull" attribute to create ~[0, 0]
676 anti-ranges for pointers. Note that this is only valid with
677 default definitions of PARM_DECLs. */
678 if (POINTER_TYPE_P (TREE_TYPE (sym))
679 && (nonnull_arg_p (sym)
680 || get_ptr_nonnull (var)))
681 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
682 else if (INTEGRAL_TYPE_P (TREE_TYPE (sym)))
684 wide_int min, max;
685 value_range_type rtype = get_range_info (var, &min, &max);
686 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
687 set_value_range (vr, rtype,
688 wide_int_to_tree (TREE_TYPE (var), min),
689 wide_int_to_tree (TREE_TYPE (var), max),
690 NULL);
691 else
692 set_value_range_to_varying (vr);
694 else
695 set_value_range_to_varying (vr);
697 else if (TREE_CODE (sym) == RESULT_DECL
698 && DECL_BY_REFERENCE (sym))
699 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
702 return vr;
705 /* Set value-ranges of all SSA names defined by STMT to varying. */
707 static void
708 set_defs_to_varying (gimple *stmt)
710 ssa_op_iter i;
711 tree def;
712 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
714 value_range *vr = get_value_range (def);
715 /* Avoid writing to vr_const_varying get_value_range may return. */
716 if (vr->type != VR_VARYING)
717 set_value_range_to_varying (vr);
722 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
724 static inline bool
725 vrp_operand_equal_p (const_tree val1, const_tree val2)
727 if (val1 == val2)
728 return true;
729 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
730 return false;
731 return is_overflow_infinity (val1) == is_overflow_infinity (val2);
734 /* Return true, if the bitmaps B1 and B2 are equal. */
736 static inline bool
737 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
739 return (b1 == b2
740 || ((!b1 || bitmap_empty_p (b1))
741 && (!b2 || bitmap_empty_p (b2)))
742 || (b1 && b2
743 && bitmap_equal_p (b1, b2)));
746 /* Update the value range and equivalence set for variable VAR to
747 NEW_VR. Return true if NEW_VR is different from VAR's previous
748 value.
750 NOTE: This function assumes that NEW_VR is a temporary value range
751 object created for the sole purpose of updating VAR's range. The
752 storage used by the equivalence set from NEW_VR will be freed by
753 this function. Do not call update_value_range when NEW_VR
754 is the range object associated with another SSA name. */
756 static inline bool
757 update_value_range (const_tree var, value_range *new_vr)
759 value_range *old_vr;
760 bool is_new;
762 /* If there is a value-range on the SSA name from earlier analysis
763 factor that in. */
764 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
766 wide_int min, max;
767 value_range_type rtype = get_range_info (var, &min, &max);
768 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
770 tree nr_min, nr_max;
771 /* Range info on SSA names doesn't carry overflow information
772 so make sure to preserve the overflow bit on the lattice. */
773 if (rtype == VR_RANGE
774 && needs_overflow_infinity (TREE_TYPE (var))
775 && (new_vr->type == VR_VARYING
776 || (new_vr->type == VR_RANGE
777 && is_negative_overflow_infinity (new_vr->min)))
778 && wi::eq_p (vrp_val_min (TREE_TYPE (var)), min))
779 nr_min = negative_overflow_infinity (TREE_TYPE (var));
780 else
781 nr_min = wide_int_to_tree (TREE_TYPE (var), min);
782 if (rtype == VR_RANGE
783 && needs_overflow_infinity (TREE_TYPE (var))
784 && (new_vr->type == VR_VARYING
785 || (new_vr->type == VR_RANGE
786 && is_positive_overflow_infinity (new_vr->max)))
787 && wi::eq_p (vrp_val_max (TREE_TYPE (var)), max))
788 nr_max = positive_overflow_infinity (TREE_TYPE (var));
789 else
790 nr_max = wide_int_to_tree (TREE_TYPE (var), max);
791 value_range nr = VR_INITIALIZER;
792 set_and_canonicalize_value_range (&nr, rtype, nr_min, nr_max, NULL);
793 vrp_intersect_ranges (new_vr, &nr);
797 /* Update the value range, if necessary. */
798 old_vr = get_value_range (var);
799 is_new = old_vr->type != new_vr->type
800 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
801 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
802 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
804 if (is_new)
806 /* Do not allow transitions up the lattice. The following
807 is slightly more awkward than just new_vr->type < old_vr->type
808 because VR_RANGE and VR_ANTI_RANGE need to be considered
809 the same. We may not have is_new when transitioning to
810 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
811 called. */
812 if (new_vr->type == VR_UNDEFINED)
814 BITMAP_FREE (new_vr->equiv);
815 set_value_range_to_varying (old_vr);
816 set_value_range_to_varying (new_vr);
817 return true;
819 else
820 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
821 new_vr->equiv);
824 BITMAP_FREE (new_vr->equiv);
826 return is_new;
830 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
831 point where equivalence processing can be turned on/off. */
833 static void
834 add_equivalence (bitmap *equiv, const_tree var)
836 unsigned ver = SSA_NAME_VERSION (var);
837 value_range *vr = get_value_range (var);
839 if (*equiv == NULL)
840 *equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
841 bitmap_set_bit (*equiv, ver);
842 if (vr && vr->equiv)
843 bitmap_ior_into (*equiv, vr->equiv);
847 /* Return true if VR is ~[0, 0]. */
849 static inline bool
850 range_is_nonnull (value_range *vr)
852 return vr->type == VR_ANTI_RANGE
853 && integer_zerop (vr->min)
854 && integer_zerop (vr->max);
858 /* Return true if VR is [0, 0]. */
860 static inline bool
861 range_is_null (value_range *vr)
863 return vr->type == VR_RANGE
864 && integer_zerop (vr->min)
865 && integer_zerop (vr->max);
868 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
869 a singleton. */
871 static inline bool
872 range_int_cst_p (value_range *vr)
874 return (vr->type == VR_RANGE
875 && TREE_CODE (vr->max) == INTEGER_CST
876 && TREE_CODE (vr->min) == INTEGER_CST);
879 /* Return true if VR is a INTEGER_CST singleton. */
881 static inline bool
882 range_int_cst_singleton_p (value_range *vr)
884 return (range_int_cst_p (vr)
885 && !is_overflow_infinity (vr->min)
886 && !is_overflow_infinity (vr->max)
887 && tree_int_cst_equal (vr->min, vr->max));
890 /* Return true if value range VR involves at least one symbol. */
892 static inline bool
893 symbolic_range_p (value_range *vr)
895 return (!is_gimple_min_invariant (vr->min)
896 || !is_gimple_min_invariant (vr->max));
899 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
900 otherwise. We only handle additive operations and set NEG to true if the
901 symbol is negated and INV to the invariant part, if any. */
903 static tree
904 get_single_symbol (tree t, bool *neg, tree *inv)
906 bool neg_;
907 tree inv_;
909 *inv = NULL_TREE;
910 *neg = false;
912 if (TREE_CODE (t) == PLUS_EXPR
913 || TREE_CODE (t) == POINTER_PLUS_EXPR
914 || TREE_CODE (t) == MINUS_EXPR)
916 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
918 neg_ = (TREE_CODE (t) == MINUS_EXPR);
919 inv_ = TREE_OPERAND (t, 0);
920 t = TREE_OPERAND (t, 1);
922 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
924 neg_ = false;
925 inv_ = TREE_OPERAND (t, 1);
926 t = TREE_OPERAND (t, 0);
928 else
929 return NULL_TREE;
931 else
933 neg_ = false;
934 inv_ = NULL_TREE;
937 if (TREE_CODE (t) == NEGATE_EXPR)
939 t = TREE_OPERAND (t, 0);
940 neg_ = !neg_;
943 if (TREE_CODE (t) != SSA_NAME)
944 return NULL_TREE;
946 *neg = neg_;
947 *inv = inv_;
948 return t;
951 /* The reverse operation: build a symbolic expression with TYPE
952 from symbol SYM, negated according to NEG, and invariant INV. */
954 static tree
955 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
957 const bool pointer_p = POINTER_TYPE_P (type);
958 tree t = sym;
960 if (neg)
961 t = build1 (NEGATE_EXPR, type, t);
963 if (integer_zerop (inv))
964 return t;
966 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
969 /* Return true if value range VR involves exactly one symbol SYM. */
971 static bool
972 symbolic_range_based_on_p (value_range *vr, const_tree sym)
974 bool neg, min_has_symbol, max_has_symbol;
975 tree inv;
977 if (is_gimple_min_invariant (vr->min))
978 min_has_symbol = false;
979 else if (get_single_symbol (vr->min, &neg, &inv) == sym)
980 min_has_symbol = true;
981 else
982 return false;
984 if (is_gimple_min_invariant (vr->max))
985 max_has_symbol = false;
986 else if (get_single_symbol (vr->max, &neg, &inv) == sym)
987 max_has_symbol = true;
988 else
989 return false;
991 return (min_has_symbol || max_has_symbol);
994 /* Return true if value range VR uses an overflow infinity. */
996 static inline bool
997 overflow_infinity_range_p (value_range *vr)
999 return (vr->type == VR_RANGE
1000 && (is_overflow_infinity (vr->min)
1001 || is_overflow_infinity (vr->max)));
1004 /* Return false if we can not make a valid comparison based on VR;
1005 this will be the case if it uses an overflow infinity and overflow
1006 is not undefined (i.e., -fno-strict-overflow is in effect).
1007 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
1008 uses an overflow infinity. */
1010 static bool
1011 usable_range_p (value_range *vr, bool *strict_overflow_p)
1013 gcc_assert (vr->type == VR_RANGE);
1014 if (is_overflow_infinity (vr->min))
1016 *strict_overflow_p = true;
1017 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
1018 return false;
1020 if (is_overflow_infinity (vr->max))
1022 *strict_overflow_p = true;
1023 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
1024 return false;
1026 return true;
1029 /* Return true if the result of assignment STMT is know to be non-zero.
1030 If the return value is based on the assumption that signed overflow is
1031 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1032 *STRICT_OVERFLOW_P.*/
1034 static bool
1035 gimple_assign_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
1037 enum tree_code code = gimple_assign_rhs_code (stmt);
1038 switch (get_gimple_rhs_class (code))
1040 case GIMPLE_UNARY_RHS:
1041 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1042 gimple_expr_type (stmt),
1043 gimple_assign_rhs1 (stmt),
1044 strict_overflow_p);
1045 case GIMPLE_BINARY_RHS:
1046 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1047 gimple_expr_type (stmt),
1048 gimple_assign_rhs1 (stmt),
1049 gimple_assign_rhs2 (stmt),
1050 strict_overflow_p);
1051 case GIMPLE_TERNARY_RHS:
1052 return false;
1053 case GIMPLE_SINGLE_RHS:
1054 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1055 strict_overflow_p);
1056 case GIMPLE_INVALID_RHS:
1057 gcc_unreachable ();
1058 default:
1059 gcc_unreachable ();
1063 /* Return true if STMT is known to compute a non-zero value.
1064 If the return value is based on the assumption that signed overflow is
1065 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1066 *STRICT_OVERFLOW_P.*/
1068 static bool
1069 gimple_stmt_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
1071 switch (gimple_code (stmt))
1073 case GIMPLE_ASSIGN:
1074 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1075 case GIMPLE_CALL:
1077 tree fndecl = gimple_call_fndecl (stmt);
1078 if (!fndecl) return false;
1079 if (flag_delete_null_pointer_checks && !flag_check_new
1080 && DECL_IS_OPERATOR_NEW (fndecl)
1081 && !TREE_NOTHROW (fndecl))
1082 return true;
1083 /* References are always non-NULL. */
1084 if (flag_delete_null_pointer_checks
1085 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1086 return true;
1087 if (flag_delete_null_pointer_checks &&
1088 lookup_attribute ("returns_nonnull",
1089 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1090 return true;
1092 gcall *call_stmt = as_a<gcall *> (stmt);
1093 unsigned rf = gimple_call_return_flags (call_stmt);
1094 if (rf & ERF_RETURNS_ARG)
1096 unsigned argnum = rf & ERF_RETURN_ARG_MASK;
1097 if (argnum < gimple_call_num_args (call_stmt))
1099 tree arg = gimple_call_arg (call_stmt, argnum);
1100 if (SSA_VAR_P (arg)
1101 && infer_nonnull_range_by_attribute (stmt, arg))
1102 return true;
1105 return gimple_alloca_call_p (stmt);
1107 default:
1108 gcc_unreachable ();
1112 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1113 obtained so far. */
1115 static bool
1116 vrp_stmt_computes_nonzero (gimple *stmt, bool *strict_overflow_p)
1118 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1119 return true;
1121 /* If we have an expression of the form &X->a, then the expression
1122 is nonnull if X is nonnull. */
1123 if (is_gimple_assign (stmt)
1124 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1126 tree expr = gimple_assign_rhs1 (stmt);
1127 tree base = get_base_address (TREE_OPERAND (expr, 0));
1129 if (base != NULL_TREE
1130 && TREE_CODE (base) == MEM_REF
1131 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1133 value_range *vr = get_value_range (TREE_OPERAND (base, 0));
1134 if (range_is_nonnull (vr))
1135 return true;
1139 return false;
1142 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1143 a gimple invariant, or SSA_NAME +- CST. */
1145 static bool
1146 valid_value_p (tree expr)
1148 if (TREE_CODE (expr) == SSA_NAME)
1149 return true;
1151 if (TREE_CODE (expr) == PLUS_EXPR
1152 || TREE_CODE (expr) == MINUS_EXPR)
1153 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1154 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1156 return is_gimple_min_invariant (expr);
1159 /* Return
1160 1 if VAL < VAL2
1161 0 if !(VAL < VAL2)
1162 -2 if those are incomparable. */
1163 static inline int
1164 operand_less_p (tree val, tree val2)
1166 /* LT is folded faster than GE and others. Inline the common case. */
1167 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1169 if (! is_positive_overflow_infinity (val2))
1170 return tree_int_cst_lt (val, val2);
1172 else
1174 tree tcmp;
1176 fold_defer_overflow_warnings ();
1178 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1180 fold_undefer_and_ignore_overflow_warnings ();
1182 if (!tcmp
1183 || TREE_CODE (tcmp) != INTEGER_CST)
1184 return -2;
1186 if (!integer_zerop (tcmp))
1187 return 1;
1190 /* val >= val2, not considering overflow infinity. */
1191 if (is_negative_overflow_infinity (val))
1192 return is_negative_overflow_infinity (val2) ? 0 : 1;
1193 else if (is_positive_overflow_infinity (val2))
1194 return is_positive_overflow_infinity (val) ? 0 : 1;
1196 return 0;
1199 /* Compare two values VAL1 and VAL2. Return
1201 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1202 -1 if VAL1 < VAL2,
1203 0 if VAL1 == VAL2,
1204 +1 if VAL1 > VAL2, and
1205 +2 if VAL1 != VAL2
1207 This is similar to tree_int_cst_compare but supports pointer values
1208 and values that cannot be compared at compile time.
1210 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1211 true if the return value is only valid if we assume that signed
1212 overflow is undefined. */
1214 static int
1215 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1217 if (val1 == val2)
1218 return 0;
1220 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1221 both integers. */
1222 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1223 == POINTER_TYPE_P (TREE_TYPE (val2)));
1225 /* Convert the two values into the same type. This is needed because
1226 sizetype causes sign extension even for unsigned types. */
1227 val2 = fold_convert (TREE_TYPE (val1), val2);
1228 STRIP_USELESS_TYPE_CONVERSION (val2);
1230 const bool overflow_undefined
1231 = INTEGRAL_TYPE_P (TREE_TYPE (val1))
1232 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
1233 tree inv1, inv2;
1234 bool neg1, neg2;
1235 tree sym1 = get_single_symbol (val1, &neg1, &inv1);
1236 tree sym2 = get_single_symbol (val2, &neg2, &inv2);
1238 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
1239 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
1240 if (sym1 && sym2)
1242 /* Both values must use the same name with the same sign. */
1243 if (sym1 != sym2 || neg1 != neg2)
1244 return -2;
1246 /* [-]NAME + CST == [-]NAME + CST. */
1247 if (inv1 == inv2)
1248 return 0;
1250 /* If overflow is defined we cannot simplify more. */
1251 if (!overflow_undefined)
1252 return -2;
1254 if (strict_overflow_p != NULL
1255 && (!inv1 || !TREE_NO_WARNING (val1))
1256 && (!inv2 || !TREE_NO_WARNING (val2)))
1257 *strict_overflow_p = true;
1259 if (!inv1)
1260 inv1 = build_int_cst (TREE_TYPE (val1), 0);
1261 if (!inv2)
1262 inv2 = build_int_cst (TREE_TYPE (val2), 0);
1264 return compare_values_warnv (inv1, inv2, strict_overflow_p);
1267 const bool cst1 = is_gimple_min_invariant (val1);
1268 const bool cst2 = is_gimple_min_invariant (val2);
1270 /* If one is of the form '[-]NAME + CST' and the other is constant, then
1271 it might be possible to say something depending on the constants. */
1272 if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
1274 if (!overflow_undefined)
1275 return -2;
1277 if (strict_overflow_p != NULL
1278 && (!sym1 || !TREE_NO_WARNING (val1))
1279 && (!sym2 || !TREE_NO_WARNING (val2)))
1280 *strict_overflow_p = true;
1282 const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
1283 tree cst = cst1 ? val1 : val2;
1284 tree inv = cst1 ? inv2 : inv1;
1286 /* Compute the difference between the constants. If it overflows or
1287 underflows, this means that we can trivially compare the NAME with
1288 it and, consequently, the two values with each other. */
1289 wide_int diff = wi::sub (cst, inv);
1290 if (wi::cmp (0, inv, sgn) != wi::cmp (diff, cst, sgn))
1292 const int res = wi::cmp (cst, inv, sgn);
1293 return cst1 ? res : -res;
1296 return -2;
1299 /* We cannot say anything more for non-constants. */
1300 if (!cst1 || !cst2)
1301 return -2;
1303 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1305 /* We cannot compare overflowed values, except for overflow
1306 infinities. */
1307 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1309 if (strict_overflow_p != NULL)
1310 *strict_overflow_p = true;
1311 if (is_negative_overflow_infinity (val1))
1312 return is_negative_overflow_infinity (val2) ? 0 : -1;
1313 else if (is_negative_overflow_infinity (val2))
1314 return 1;
1315 else if (is_positive_overflow_infinity (val1))
1316 return is_positive_overflow_infinity (val2) ? 0 : 1;
1317 else if (is_positive_overflow_infinity (val2))
1318 return -1;
1319 return -2;
1322 return tree_int_cst_compare (val1, val2);
1324 else
1326 tree t;
1328 /* First see if VAL1 and VAL2 are not the same. */
1329 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1330 return 0;
1332 /* If VAL1 is a lower address than VAL2, return -1. */
1333 if (operand_less_p (val1, val2) == 1)
1334 return -1;
1336 /* If VAL1 is a higher address than VAL2, return +1. */
1337 if (operand_less_p (val2, val1) == 1)
1338 return 1;
1340 /* If VAL1 is different than VAL2, return +2.
1341 For integer constants we either have already returned -1 or 1
1342 or they are equivalent. We still might succeed in proving
1343 something about non-trivial operands. */
1344 if (TREE_CODE (val1) != INTEGER_CST
1345 || TREE_CODE (val2) != INTEGER_CST)
1347 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1348 if (t && integer_onep (t))
1349 return 2;
1352 return -2;
1356 /* Compare values like compare_values_warnv, but treat comparisons of
1357 nonconstants which rely on undefined overflow as incomparable. */
1359 static int
1360 compare_values (tree val1, tree val2)
1362 bool sop;
1363 int ret;
1365 sop = false;
1366 ret = compare_values_warnv (val1, val2, &sop);
1367 if (sop
1368 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1369 ret = -2;
1370 return ret;
1374 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1375 0 if VAL is not inside [MIN, MAX],
1376 -2 if we cannot tell either way.
1378 Benchmark compile/20001226-1.c compilation time after changing this
1379 function. */
1381 static inline int
1382 value_inside_range (tree val, tree min, tree max)
1384 int cmp1, cmp2;
1386 cmp1 = operand_less_p (val, min);
1387 if (cmp1 == -2)
1388 return -2;
1389 if (cmp1 == 1)
1390 return 0;
1392 cmp2 = operand_less_p (max, val);
1393 if (cmp2 == -2)
1394 return -2;
1396 return !cmp2;
1400 /* Return true if value ranges VR0 and VR1 have a non-empty
1401 intersection.
1403 Benchmark compile/20001226-1.c compilation time after changing this
1404 function.
1407 static inline bool
1408 value_ranges_intersect_p (value_range *vr0, value_range *vr1)
1410 /* The value ranges do not intersect if the maximum of the first range is
1411 less than the minimum of the second range or vice versa.
1412 When those relations are unknown, we can't do any better. */
1413 if (operand_less_p (vr0->max, vr1->min) != 0)
1414 return false;
1415 if (operand_less_p (vr1->max, vr0->min) != 0)
1416 return false;
1417 return true;
1421 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1422 include the value zero, -2 if we cannot tell. */
1424 static inline int
1425 range_includes_zero_p (tree min, tree max)
1427 tree zero = build_int_cst (TREE_TYPE (min), 0);
1428 return value_inside_range (zero, min, max);
1431 /* Return true if *VR is know to only contain nonnegative values. */
1433 static inline bool
1434 value_range_nonnegative_p (value_range *vr)
1436 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1437 which would return a useful value should be encoded as a
1438 VR_RANGE. */
1439 if (vr->type == VR_RANGE)
1441 int result = compare_values (vr->min, integer_zero_node);
1442 return (result == 0 || result == 1);
1445 return false;
1448 /* If *VR has a value rante that is a single constant value return that,
1449 otherwise return NULL_TREE. */
1451 static tree
1452 value_range_constant_singleton (value_range *vr)
1454 if (vr->type == VR_RANGE
1455 && vrp_operand_equal_p (vr->min, vr->max)
1456 && is_gimple_min_invariant (vr->min))
1457 return vr->min;
1459 return NULL_TREE;
1462 /* If OP has a value range with a single constant value return that,
1463 otherwise return NULL_TREE. This returns OP itself if OP is a
1464 constant. */
1466 static tree
1467 op_with_constant_singleton_value_range (tree op)
1469 if (is_gimple_min_invariant (op))
1470 return op;
1472 if (TREE_CODE (op) != SSA_NAME)
1473 return NULL_TREE;
1475 return value_range_constant_singleton (get_value_range (op));
1478 /* Return true if op is in a boolean [0, 1] value-range. */
1480 static bool
1481 op_with_boolean_value_range_p (tree op)
1483 value_range *vr;
1485 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1486 return true;
1488 if (integer_zerop (op)
1489 || integer_onep (op))
1490 return true;
1492 if (TREE_CODE (op) != SSA_NAME)
1493 return false;
1495 vr = get_value_range (op);
1496 return (vr->type == VR_RANGE
1497 && integer_zerop (vr->min)
1498 && integer_onep (vr->max));
1501 /* Extract value range information for VAR when (OP COND_CODE LIMIT) is
1502 true and store it in *VR_P. */
1504 static void
1505 extract_range_for_var_from_comparison_expr (tree var, enum tree_code cond_code,
1506 tree op, tree limit,
1507 value_range *vr_p)
1509 tree min, max, type;
1510 value_range *limit_vr;
1511 limit = avoid_overflow_infinity (limit);
1512 type = TREE_TYPE (var);
1513 gcc_assert (limit != var);
1515 /* For pointer arithmetic, we only keep track of pointer equality
1516 and inequality. */
1517 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1519 set_value_range_to_varying (vr_p);
1520 return;
1523 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1524 try to use LIMIT's range to avoid creating symbolic ranges
1525 unnecessarily. */
1526 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1528 /* LIMIT's range is only interesting if it has any useful information. */
1529 if (! limit_vr
1530 || limit_vr->type == VR_UNDEFINED
1531 || limit_vr->type == VR_VARYING
1532 || (symbolic_range_p (limit_vr)
1533 && ! (limit_vr->type == VR_RANGE
1534 && (limit_vr->min == limit_vr->max
1535 || operand_equal_p (limit_vr->min, limit_vr->max, 0)))))
1536 limit_vr = NULL;
1538 /* Initially, the new range has the same set of equivalences of
1539 VAR's range. This will be revised before returning the final
1540 value. Since assertions may be chained via mutually exclusive
1541 predicates, we will need to trim the set of equivalences before
1542 we are done. */
1543 gcc_assert (vr_p->equiv == NULL);
1544 add_equivalence (&vr_p->equiv, var);
1546 /* Extract a new range based on the asserted comparison for VAR and
1547 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1548 will only use it for equality comparisons (EQ_EXPR). For any
1549 other kind of assertion, we cannot derive a range from LIMIT's
1550 anti-range that can be used to describe the new range. For
1551 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1552 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1553 no single range for x_2 that could describe LE_EXPR, so we might
1554 as well build the range [b_4, +INF] for it.
1555 One special case we handle is extracting a range from a
1556 range test encoded as (unsigned)var + CST <= limit. */
1557 if (TREE_CODE (op) == NOP_EXPR
1558 || TREE_CODE (op) == PLUS_EXPR)
1560 if (TREE_CODE (op) == PLUS_EXPR)
1562 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (op, 1)),
1563 TREE_OPERAND (op, 1));
1564 max = int_const_binop (PLUS_EXPR, limit, min);
1565 op = TREE_OPERAND (op, 0);
1567 else
1569 min = build_int_cst (TREE_TYPE (var), 0);
1570 max = limit;
1573 /* Make sure to not set TREE_OVERFLOW on the final type
1574 conversion. We are willingly interpreting large positive
1575 unsigned values as negative signed values here. */
1576 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1577 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
1579 /* We can transform a max, min range to an anti-range or
1580 vice-versa. Use set_and_canonicalize_value_range which does
1581 this for us. */
1582 if (cond_code == LE_EXPR)
1583 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1584 min, max, vr_p->equiv);
1585 else if (cond_code == GT_EXPR)
1586 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1587 min, max, vr_p->equiv);
1588 else
1589 gcc_unreachable ();
1591 else if (cond_code == EQ_EXPR)
1593 enum value_range_type range_type;
1595 if (limit_vr)
1597 range_type = limit_vr->type;
1598 min = limit_vr->min;
1599 max = limit_vr->max;
1601 else
1603 range_type = VR_RANGE;
1604 min = limit;
1605 max = limit;
1608 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1610 /* When asserting the equality VAR == LIMIT and LIMIT is another
1611 SSA name, the new range will also inherit the equivalence set
1612 from LIMIT. */
1613 if (TREE_CODE (limit) == SSA_NAME)
1614 add_equivalence (&vr_p->equiv, limit);
1616 else if (cond_code == NE_EXPR)
1618 /* As described above, when LIMIT's range is an anti-range and
1619 this assertion is an inequality (NE_EXPR), then we cannot
1620 derive anything from the anti-range. For instance, if
1621 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1622 not imply that VAR's range is [0, 0]. So, in the case of
1623 anti-ranges, we just assert the inequality using LIMIT and
1624 not its anti-range.
1626 If LIMIT_VR is a range, we can only use it to build a new
1627 anti-range if LIMIT_VR is a single-valued range. For
1628 instance, if LIMIT_VR is [0, 1], the predicate
1629 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1630 Rather, it means that for value 0 VAR should be ~[0, 0]
1631 and for value 1, VAR should be ~[1, 1]. We cannot
1632 represent these ranges.
1634 The only situation in which we can build a valid
1635 anti-range is when LIMIT_VR is a single-valued range
1636 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1637 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1638 if (limit_vr
1639 && limit_vr->type == VR_RANGE
1640 && compare_values (limit_vr->min, limit_vr->max) == 0)
1642 min = limit_vr->min;
1643 max = limit_vr->max;
1645 else
1647 /* In any other case, we cannot use LIMIT's range to build a
1648 valid anti-range. */
1649 min = max = limit;
1652 /* If MIN and MAX cover the whole range for their type, then
1653 just use the original LIMIT. */
1654 if (INTEGRAL_TYPE_P (type)
1655 && vrp_val_is_min (min)
1656 && vrp_val_is_max (max))
1657 min = max = limit;
1659 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1660 min, max, vr_p->equiv);
1662 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1664 min = TYPE_MIN_VALUE (type);
1666 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1667 max = limit;
1668 else
1670 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1671 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1672 LT_EXPR. */
1673 max = limit_vr->max;
1676 /* If the maximum value forces us to be out of bounds, simply punt.
1677 It would be pointless to try and do anything more since this
1678 all should be optimized away above us. */
1679 if ((cond_code == LT_EXPR
1680 && compare_values (max, min) == 0)
1681 || is_overflow_infinity (max))
1682 set_value_range_to_varying (vr_p);
1683 else
1685 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1686 if (cond_code == LT_EXPR)
1688 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1689 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1690 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1691 build_int_cst (TREE_TYPE (max), -1));
1692 else
1693 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1694 build_int_cst (TREE_TYPE (max), 1));
1695 if (EXPR_P (max))
1696 TREE_NO_WARNING (max) = 1;
1699 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1702 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1704 max = TYPE_MAX_VALUE (type);
1706 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1707 min = limit;
1708 else
1710 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1711 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1712 GT_EXPR. */
1713 min = limit_vr->min;
1716 /* If the minimum value forces us to be out of bounds, simply punt.
1717 It would be pointless to try and do anything more since this
1718 all should be optimized away above us. */
1719 if ((cond_code == GT_EXPR
1720 && compare_values (min, max) == 0)
1721 || is_overflow_infinity (min))
1722 set_value_range_to_varying (vr_p);
1723 else
1725 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1726 if (cond_code == GT_EXPR)
1728 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1729 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1730 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1731 build_int_cst (TREE_TYPE (min), -1));
1732 else
1733 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1734 build_int_cst (TREE_TYPE (min), 1));
1735 if (EXPR_P (min))
1736 TREE_NO_WARNING (min) = 1;
1739 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1742 else
1743 gcc_unreachable ();
1745 /* Finally intersect the new range with what we already know about var. */
1746 vrp_intersect_ranges (vr_p, get_value_range (var));
1749 /* Extract value range information from an ASSERT_EXPR EXPR and store
1750 it in *VR_P. */
1752 static void
1753 extract_range_from_assert (value_range *vr_p, tree expr)
1755 tree var = ASSERT_EXPR_VAR (expr);
1756 tree cond = ASSERT_EXPR_COND (expr);
1757 tree limit, op;
1758 enum tree_code cond_code;
1759 gcc_assert (COMPARISON_CLASS_P (cond));
1761 /* Find VAR in the ASSERT_EXPR conditional. */
1762 if (var == TREE_OPERAND (cond, 0)
1763 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1764 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1766 /* If the predicate is of the form VAR COMP LIMIT, then we just
1767 take LIMIT from the RHS and use the same comparison code. */
1768 cond_code = TREE_CODE (cond);
1769 limit = TREE_OPERAND (cond, 1);
1770 op = TREE_OPERAND (cond, 0);
1772 else
1774 /* If the predicate is of the form LIMIT COMP VAR, then we need
1775 to flip around the comparison code to create the proper range
1776 for VAR. */
1777 cond_code = swap_tree_comparison (TREE_CODE (cond));
1778 limit = TREE_OPERAND (cond, 0);
1779 op = TREE_OPERAND (cond, 1);
1781 extract_range_for_var_from_comparison_expr (var, cond_code, op,
1782 limit, vr_p);
1785 /* Extract range information from SSA name VAR and store it in VR. If
1786 VAR has an interesting range, use it. Otherwise, create the
1787 range [VAR, VAR] and return it. This is useful in situations where
1788 we may have conditionals testing values of VARYING names. For
1789 instance,
1791 x_3 = y_5;
1792 if (x_3 > y_5)
1795 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1796 always false. */
1798 static void
1799 extract_range_from_ssa_name (value_range *vr, tree var)
1801 value_range *var_vr = get_value_range (var);
1803 if (var_vr->type != VR_VARYING)
1804 copy_value_range (vr, var_vr);
1805 else
1806 set_value_range (vr, VR_RANGE, var, var, NULL);
1808 add_equivalence (&vr->equiv, var);
1812 /* Wrapper around int_const_binop. If the operation overflows and we
1813 are not using wrapping arithmetic, then adjust the result to be
1814 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1815 NULL_TREE if we need to use an overflow infinity representation but
1816 the type does not support it. */
1818 static tree
1819 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1821 tree res;
1823 res = int_const_binop (code, val1, val2);
1825 /* If we are using unsigned arithmetic, operate symbolically
1826 on -INF and +INF as int_const_binop only handles signed overflow. */
1827 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1829 int checkz = compare_values (res, val1);
1830 bool overflow = false;
1832 /* Ensure that res = val1 [+*] val2 >= val1
1833 or that res = val1 - val2 <= val1. */
1834 if ((code == PLUS_EXPR
1835 && !(checkz == 1 || checkz == 0))
1836 || (code == MINUS_EXPR
1837 && !(checkz == 0 || checkz == -1)))
1839 overflow = true;
1841 /* Checking for multiplication overflow is done by dividing the
1842 output of the multiplication by the first input of the
1843 multiplication. If the result of that division operation is
1844 not equal to the second input of the multiplication, then the
1845 multiplication overflowed. */
1846 else if (code == MULT_EXPR && !integer_zerop (val1))
1848 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1849 res,
1850 val1);
1851 int check = compare_values (tmp, val2);
1853 if (check != 0)
1854 overflow = true;
1857 if (overflow)
1859 res = copy_node (res);
1860 TREE_OVERFLOW (res) = 1;
1864 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1865 /* If the singed operation wraps then int_const_binop has done
1866 everything we want. */
1868 /* Signed division of -1/0 overflows and by the time it gets here
1869 returns NULL_TREE. */
1870 else if (!res)
1871 return NULL_TREE;
1872 else if ((TREE_OVERFLOW (res)
1873 && !TREE_OVERFLOW (val1)
1874 && !TREE_OVERFLOW (val2))
1875 || is_overflow_infinity (val1)
1876 || is_overflow_infinity (val2))
1878 /* If the operation overflowed but neither VAL1 nor VAL2 are
1879 overflown, return -INF or +INF depending on the operation
1880 and the combination of signs of the operands. */
1881 int sgn1 = tree_int_cst_sgn (val1);
1882 int sgn2 = tree_int_cst_sgn (val2);
1884 if (needs_overflow_infinity (TREE_TYPE (res))
1885 && !supports_overflow_infinity (TREE_TYPE (res)))
1886 return NULL_TREE;
1888 /* We have to punt on adding infinities of different signs,
1889 since we can't tell what the sign of the result should be.
1890 Likewise for subtracting infinities of the same sign. */
1891 if (((code == PLUS_EXPR && sgn1 != sgn2)
1892 || (code == MINUS_EXPR && sgn1 == sgn2))
1893 && is_overflow_infinity (val1)
1894 && is_overflow_infinity (val2))
1895 return NULL_TREE;
1897 /* Don't try to handle division or shifting of infinities. */
1898 if ((code == TRUNC_DIV_EXPR
1899 || code == FLOOR_DIV_EXPR
1900 || code == CEIL_DIV_EXPR
1901 || code == EXACT_DIV_EXPR
1902 || code == ROUND_DIV_EXPR
1903 || code == RSHIFT_EXPR)
1904 && (is_overflow_infinity (val1)
1905 || is_overflow_infinity (val2)))
1906 return NULL_TREE;
1908 /* Notice that we only need to handle the restricted set of
1909 operations handled by extract_range_from_binary_expr.
1910 Among them, only multiplication, addition and subtraction
1911 can yield overflow without overflown operands because we
1912 are working with integral types only... except in the
1913 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1914 for division too. */
1916 /* For multiplication, the sign of the overflow is given
1917 by the comparison of the signs of the operands. */
1918 if ((code == MULT_EXPR && sgn1 == sgn2)
1919 /* For addition, the operands must be of the same sign
1920 to yield an overflow. Its sign is therefore that
1921 of one of the operands, for example the first. For
1922 infinite operands X + -INF is negative, not positive. */
1923 || (code == PLUS_EXPR
1924 && (sgn1 >= 0
1925 ? !is_negative_overflow_infinity (val2)
1926 : is_positive_overflow_infinity (val2)))
1927 /* For subtraction, non-infinite operands must be of
1928 different signs to yield an overflow. Its sign is
1929 therefore that of the first operand or the opposite of
1930 that of the second operand. A first operand of 0 counts
1931 as positive here, for the corner case 0 - (-INF), which
1932 overflows, but must yield +INF. For infinite operands 0
1933 - INF is negative, not positive. */
1934 || (code == MINUS_EXPR
1935 && (sgn1 >= 0
1936 ? !is_positive_overflow_infinity (val2)
1937 : is_negative_overflow_infinity (val2)))
1938 /* We only get in here with positive shift count, so the
1939 overflow direction is the same as the sign of val1.
1940 Actually rshift does not overflow at all, but we only
1941 handle the case of shifting overflowed -INF and +INF. */
1942 || (code == RSHIFT_EXPR
1943 && sgn1 >= 0)
1944 /* For division, the only case is -INF / -1 = +INF. */
1945 || code == TRUNC_DIV_EXPR
1946 || code == FLOOR_DIV_EXPR
1947 || code == CEIL_DIV_EXPR
1948 || code == EXACT_DIV_EXPR
1949 || code == ROUND_DIV_EXPR)
1950 return (needs_overflow_infinity (TREE_TYPE (res))
1951 ? positive_overflow_infinity (TREE_TYPE (res))
1952 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1953 else
1954 return (needs_overflow_infinity (TREE_TYPE (res))
1955 ? negative_overflow_infinity (TREE_TYPE (res))
1956 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1959 return res;
1963 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
1964 bitmask if some bit is unset, it means for all numbers in the range
1965 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1966 bitmask if some bit is set, it means for all numbers in the range
1967 the bit is 1, otherwise it might be 0 or 1. */
1969 static bool
1970 zero_nonzero_bits_from_vr (const tree expr_type,
1971 value_range *vr,
1972 wide_int *may_be_nonzero,
1973 wide_int *must_be_nonzero)
1975 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1976 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1977 if (!range_int_cst_p (vr)
1978 || is_overflow_infinity (vr->min)
1979 || is_overflow_infinity (vr->max))
1980 return false;
1982 if (range_int_cst_singleton_p (vr))
1984 *may_be_nonzero = vr->min;
1985 *must_be_nonzero = *may_be_nonzero;
1987 else if (tree_int_cst_sgn (vr->min) >= 0
1988 || tree_int_cst_sgn (vr->max) < 0)
1990 wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
1991 *may_be_nonzero = wi::bit_or (vr->min, vr->max);
1992 *must_be_nonzero = wi::bit_and (vr->min, vr->max);
1993 if (xor_mask != 0)
1995 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
1996 may_be_nonzero->get_precision ());
1997 *may_be_nonzero = *may_be_nonzero | mask;
1998 *must_be_nonzero = must_be_nonzero->and_not (mask);
2002 return true;
2005 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2006 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2007 false otherwise. If *AR can be represented with a single range
2008 *VR1 will be VR_UNDEFINED. */
2010 static bool
2011 ranges_from_anti_range (value_range *ar,
2012 value_range *vr0, value_range *vr1)
2014 tree type = TREE_TYPE (ar->min);
2016 vr0->type = VR_UNDEFINED;
2017 vr1->type = VR_UNDEFINED;
2019 if (ar->type != VR_ANTI_RANGE
2020 || TREE_CODE (ar->min) != INTEGER_CST
2021 || TREE_CODE (ar->max) != INTEGER_CST
2022 || !vrp_val_min (type)
2023 || !vrp_val_max (type))
2024 return false;
2026 if (!vrp_val_is_min (ar->min))
2028 vr0->type = VR_RANGE;
2029 vr0->min = vrp_val_min (type);
2030 vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
2032 if (!vrp_val_is_max (ar->max))
2034 vr1->type = VR_RANGE;
2035 vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
2036 vr1->max = vrp_val_max (type);
2038 if (vr0->type == VR_UNDEFINED)
2040 *vr0 = *vr1;
2041 vr1->type = VR_UNDEFINED;
2044 return vr0->type != VR_UNDEFINED;
2047 /* Helper to extract a value-range *VR for a multiplicative operation
2048 *VR0 CODE *VR1. */
2050 static void
2051 extract_range_from_multiplicative_op_1 (value_range *vr,
2052 enum tree_code code,
2053 value_range *vr0, value_range *vr1)
2055 enum value_range_type type;
2056 tree val[4];
2057 size_t i;
2058 tree min, max;
2059 bool sop;
2060 int cmp;
2062 /* Multiplications, divisions and shifts are a bit tricky to handle,
2063 depending on the mix of signs we have in the two ranges, we
2064 need to operate on different values to get the minimum and
2065 maximum values for the new range. One approach is to figure
2066 out all the variations of range combinations and do the
2067 operations.
2069 However, this involves several calls to compare_values and it
2070 is pretty convoluted. It's simpler to do the 4 operations
2071 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2072 MAX1) and then figure the smallest and largest values to form
2073 the new range. */
2074 gcc_assert (code == MULT_EXPR
2075 || code == TRUNC_DIV_EXPR
2076 || code == FLOOR_DIV_EXPR
2077 || code == CEIL_DIV_EXPR
2078 || code == EXACT_DIV_EXPR
2079 || code == ROUND_DIV_EXPR
2080 || code == RSHIFT_EXPR
2081 || code == LSHIFT_EXPR);
2082 gcc_assert ((vr0->type == VR_RANGE
2083 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2084 && vr0->type == vr1->type);
2086 type = vr0->type;
2088 /* Compute the 4 cross operations. */
2089 sop = false;
2090 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2091 if (val[0] == NULL_TREE)
2092 sop = true;
2094 if (vr1->max == vr1->min)
2095 val[1] = NULL_TREE;
2096 else
2098 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2099 if (val[1] == NULL_TREE)
2100 sop = true;
2103 if (vr0->max == vr0->min)
2104 val[2] = NULL_TREE;
2105 else
2107 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2108 if (val[2] == NULL_TREE)
2109 sop = true;
2112 if (vr0->min == vr0->max || vr1->min == vr1->max)
2113 val[3] = NULL_TREE;
2114 else
2116 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2117 if (val[3] == NULL_TREE)
2118 sop = true;
2121 if (sop)
2123 set_value_range_to_varying (vr);
2124 return;
2127 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2128 of VAL[i]. */
2129 min = val[0];
2130 max = val[0];
2131 for (i = 1; i < 4; i++)
2133 if (!is_gimple_min_invariant (min)
2134 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2135 || !is_gimple_min_invariant (max)
2136 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2137 break;
2139 if (val[i])
2141 if (!is_gimple_min_invariant (val[i])
2142 || (TREE_OVERFLOW (val[i])
2143 && !is_overflow_infinity (val[i])))
2145 /* If we found an overflowed value, set MIN and MAX
2146 to it so that we set the resulting range to
2147 VARYING. */
2148 min = max = val[i];
2149 break;
2152 if (compare_values (val[i], min) == -1)
2153 min = val[i];
2155 if (compare_values (val[i], max) == 1)
2156 max = val[i];
2160 /* If either MIN or MAX overflowed, then set the resulting range to
2161 VARYING. But we do accept an overflow infinity
2162 representation. */
2163 if (min == NULL_TREE
2164 || !is_gimple_min_invariant (min)
2165 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2166 || max == NULL_TREE
2167 || !is_gimple_min_invariant (max)
2168 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2170 set_value_range_to_varying (vr);
2171 return;
2174 /* We punt if:
2175 1) [-INF, +INF]
2176 2) [-INF, +-INF(OVF)]
2177 3) [+-INF(OVF), +INF]
2178 4) [+-INF(OVF), +-INF(OVF)]
2179 We learn nothing when we have INF and INF(OVF) on both sides.
2180 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2181 overflow. */
2182 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2183 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2185 set_value_range_to_varying (vr);
2186 return;
2189 cmp = compare_values (min, max);
2190 if (cmp == -2 || cmp == 1)
2192 /* If the new range has its limits swapped around (MIN > MAX),
2193 then the operation caused one of them to wrap around, mark
2194 the new range VARYING. */
2195 set_value_range_to_varying (vr);
2197 else
2198 set_value_range (vr, type, min, max, NULL);
2201 /* Extract range information from a binary operation CODE based on
2202 the ranges of each of its operands *VR0 and *VR1 with resulting
2203 type EXPR_TYPE. The resulting range is stored in *VR. */
2205 static void
2206 extract_range_from_binary_expr_1 (value_range *vr,
2207 enum tree_code code, tree expr_type,
2208 value_range *vr0_, value_range *vr1_)
2210 value_range vr0 = *vr0_, vr1 = *vr1_;
2211 value_range vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2212 enum value_range_type type;
2213 tree min = NULL_TREE, max = NULL_TREE;
2214 int cmp;
2216 if (!INTEGRAL_TYPE_P (expr_type)
2217 && !POINTER_TYPE_P (expr_type))
2219 set_value_range_to_varying (vr);
2220 return;
2223 /* Not all binary expressions can be applied to ranges in a
2224 meaningful way. Handle only arithmetic operations. */
2225 if (code != PLUS_EXPR
2226 && code != MINUS_EXPR
2227 && code != POINTER_PLUS_EXPR
2228 && code != MULT_EXPR
2229 && code != TRUNC_DIV_EXPR
2230 && code != FLOOR_DIV_EXPR
2231 && code != CEIL_DIV_EXPR
2232 && code != EXACT_DIV_EXPR
2233 && code != ROUND_DIV_EXPR
2234 && code != TRUNC_MOD_EXPR
2235 && code != RSHIFT_EXPR
2236 && code != LSHIFT_EXPR
2237 && code != MIN_EXPR
2238 && code != MAX_EXPR
2239 && code != BIT_AND_EXPR
2240 && code != BIT_IOR_EXPR
2241 && code != BIT_XOR_EXPR)
2243 set_value_range_to_varying (vr);
2244 return;
2247 /* If both ranges are UNDEFINED, so is the result. */
2248 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2250 set_value_range_to_undefined (vr);
2251 return;
2253 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2254 code. At some point we may want to special-case operations that
2255 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2256 operand. */
2257 else if (vr0.type == VR_UNDEFINED)
2258 set_value_range_to_varying (&vr0);
2259 else if (vr1.type == VR_UNDEFINED)
2260 set_value_range_to_varying (&vr1);
2262 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2263 and express ~[] op X as ([]' op X) U ([]'' op X). */
2264 if (vr0.type == VR_ANTI_RANGE
2265 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2267 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2268 if (vrtem1.type != VR_UNDEFINED)
2270 value_range vrres = VR_INITIALIZER;
2271 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2272 &vrtem1, vr1_);
2273 vrp_meet (vr, &vrres);
2275 return;
2277 /* Likewise for X op ~[]. */
2278 if (vr1.type == VR_ANTI_RANGE
2279 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2281 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2282 if (vrtem1.type != VR_UNDEFINED)
2284 value_range vrres = VR_INITIALIZER;
2285 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2286 vr0_, &vrtem1);
2287 vrp_meet (vr, &vrres);
2289 return;
2292 /* The type of the resulting value range defaults to VR0.TYPE. */
2293 type = vr0.type;
2295 /* Refuse to operate on VARYING ranges, ranges of different kinds
2296 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2297 because we may be able to derive a useful range even if one of
2298 the operands is VR_VARYING or symbolic range. Similarly for
2299 divisions, MIN/MAX and PLUS/MINUS.
2301 TODO, we may be able to derive anti-ranges in some cases. */
2302 if (code != BIT_AND_EXPR
2303 && code != BIT_IOR_EXPR
2304 && code != TRUNC_DIV_EXPR
2305 && code != FLOOR_DIV_EXPR
2306 && code != CEIL_DIV_EXPR
2307 && code != EXACT_DIV_EXPR
2308 && code != ROUND_DIV_EXPR
2309 && code != TRUNC_MOD_EXPR
2310 && code != MIN_EXPR
2311 && code != MAX_EXPR
2312 && code != PLUS_EXPR
2313 && code != MINUS_EXPR
2314 && code != RSHIFT_EXPR
2315 && (vr0.type == VR_VARYING
2316 || vr1.type == VR_VARYING
2317 || vr0.type != vr1.type
2318 || symbolic_range_p (&vr0)
2319 || symbolic_range_p (&vr1)))
2321 set_value_range_to_varying (vr);
2322 return;
2325 /* Now evaluate the expression to determine the new range. */
2326 if (POINTER_TYPE_P (expr_type))
2328 if (code == MIN_EXPR || code == MAX_EXPR)
2330 /* For MIN/MAX expressions with pointers, we only care about
2331 nullness, if both are non null, then the result is nonnull.
2332 If both are null, then the result is null. Otherwise they
2333 are varying. */
2334 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2335 set_value_range_to_nonnull (vr, expr_type);
2336 else if (range_is_null (&vr0) && range_is_null (&vr1))
2337 set_value_range_to_null (vr, expr_type);
2338 else
2339 set_value_range_to_varying (vr);
2341 else if (code == POINTER_PLUS_EXPR)
2343 /* For pointer types, we are really only interested in asserting
2344 whether the expression evaluates to non-NULL. */
2345 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2346 set_value_range_to_nonnull (vr, expr_type);
2347 else if (range_is_null (&vr0) && range_is_null (&vr1))
2348 set_value_range_to_null (vr, expr_type);
2349 else
2350 set_value_range_to_varying (vr);
2352 else if (code == BIT_AND_EXPR)
2354 /* For pointer types, we are really only interested in asserting
2355 whether the expression evaluates to non-NULL. */
2356 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2357 set_value_range_to_nonnull (vr, expr_type);
2358 else if (range_is_null (&vr0) || range_is_null (&vr1))
2359 set_value_range_to_null (vr, expr_type);
2360 else
2361 set_value_range_to_varying (vr);
2363 else
2364 set_value_range_to_varying (vr);
2366 return;
2369 /* For integer ranges, apply the operation to each end of the
2370 range and see what we end up with. */
2371 if (code == PLUS_EXPR || code == MINUS_EXPR)
2373 const bool minus_p = (code == MINUS_EXPR);
2374 tree min_op0 = vr0.min;
2375 tree min_op1 = minus_p ? vr1.max : vr1.min;
2376 tree max_op0 = vr0.max;
2377 tree max_op1 = minus_p ? vr1.min : vr1.max;
2378 tree sym_min_op0 = NULL_TREE;
2379 tree sym_min_op1 = NULL_TREE;
2380 tree sym_max_op0 = NULL_TREE;
2381 tree sym_max_op1 = NULL_TREE;
2382 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
2384 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2385 single-symbolic ranges, try to compute the precise resulting range,
2386 but only if we know that this resulting range will also be constant
2387 or single-symbolic. */
2388 if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
2389 && (TREE_CODE (min_op0) == INTEGER_CST
2390 || (sym_min_op0
2391 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
2392 && (TREE_CODE (min_op1) == INTEGER_CST
2393 || (sym_min_op1
2394 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
2395 && (!(sym_min_op0 && sym_min_op1)
2396 || (sym_min_op0 == sym_min_op1
2397 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
2398 && (TREE_CODE (max_op0) == INTEGER_CST
2399 || (sym_max_op0
2400 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
2401 && (TREE_CODE (max_op1) == INTEGER_CST
2402 || (sym_max_op1
2403 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
2404 && (!(sym_max_op0 && sym_max_op1)
2405 || (sym_max_op0 == sym_max_op1
2406 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
2408 const signop sgn = TYPE_SIGN (expr_type);
2409 const unsigned int prec = TYPE_PRECISION (expr_type);
2410 wide_int type_min, type_max, wmin, wmax;
2411 int min_ovf = 0;
2412 int max_ovf = 0;
2414 /* Get the lower and upper bounds of the type. */
2415 if (TYPE_OVERFLOW_WRAPS (expr_type))
2417 type_min = wi::min_value (prec, sgn);
2418 type_max = wi::max_value (prec, sgn);
2420 else
2422 type_min = vrp_val_min (expr_type);
2423 type_max = vrp_val_max (expr_type);
2426 /* Combine the lower bounds, if any. */
2427 if (min_op0 && min_op1)
2429 if (minus_p)
2431 wmin = wi::sub (min_op0, min_op1);
2433 /* Check for overflow. */
2434 if (wi::cmp (0, min_op1, sgn)
2435 != wi::cmp (wmin, min_op0, sgn))
2436 min_ovf = wi::cmp (min_op0, min_op1, sgn);
2438 else
2440 wmin = wi::add (min_op0, min_op1);
2442 /* Check for overflow. */
2443 if (wi::cmp (min_op1, 0, sgn)
2444 != wi::cmp (wmin, min_op0, sgn))
2445 min_ovf = wi::cmp (min_op0, wmin, sgn);
2448 else if (min_op0)
2449 wmin = min_op0;
2450 else if (min_op1)
2451 wmin = minus_p ? wi::neg (min_op1) : min_op1;
2452 else
2453 wmin = wi::shwi (0, prec);
2455 /* Combine the upper bounds, if any. */
2456 if (max_op0 && max_op1)
2458 if (minus_p)
2460 wmax = wi::sub (max_op0, max_op1);
2462 /* Check for overflow. */
2463 if (wi::cmp (0, max_op1, sgn)
2464 != wi::cmp (wmax, max_op0, sgn))
2465 max_ovf = wi::cmp (max_op0, max_op1, sgn);
2467 else
2469 wmax = wi::add (max_op0, max_op1);
2471 if (wi::cmp (max_op1, 0, sgn)
2472 != wi::cmp (wmax, max_op0, sgn))
2473 max_ovf = wi::cmp (max_op0, wmax, sgn);
2476 else if (max_op0)
2477 wmax = max_op0;
2478 else if (max_op1)
2479 wmax = minus_p ? wi::neg (max_op1) : max_op1;
2480 else
2481 wmax = wi::shwi (0, prec);
2483 /* Check for type overflow. */
2484 if (min_ovf == 0)
2486 if (wi::cmp (wmin, type_min, sgn) == -1)
2487 min_ovf = -1;
2488 else if (wi::cmp (wmin, type_max, sgn) == 1)
2489 min_ovf = 1;
2491 if (max_ovf == 0)
2493 if (wi::cmp (wmax, type_min, sgn) == -1)
2494 max_ovf = -1;
2495 else if (wi::cmp (wmax, type_max, sgn) == 1)
2496 max_ovf = 1;
2499 /* If we have overflow for the constant part and the resulting
2500 range will be symbolic, drop to VR_VARYING. */
2501 if ((min_ovf && sym_min_op0 != sym_min_op1)
2502 || (max_ovf && sym_max_op0 != sym_max_op1))
2504 set_value_range_to_varying (vr);
2505 return;
2508 if (TYPE_OVERFLOW_WRAPS (expr_type))
2510 /* If overflow wraps, truncate the values and adjust the
2511 range kind and bounds appropriately. */
2512 wide_int tmin = wide_int::from (wmin, prec, sgn);
2513 wide_int tmax = wide_int::from (wmax, prec, sgn);
2514 if (min_ovf == max_ovf)
2516 /* No overflow or both overflow or underflow. The
2517 range kind stays VR_RANGE. */
2518 min = wide_int_to_tree (expr_type, tmin);
2519 max = wide_int_to_tree (expr_type, tmax);
2521 else if ((min_ovf == -1 && max_ovf == 0)
2522 || (max_ovf == 1 && min_ovf == 0))
2524 /* Min underflow or max overflow. The range kind
2525 changes to VR_ANTI_RANGE. */
2526 bool covers = false;
2527 wide_int tem = tmin;
2528 type = VR_ANTI_RANGE;
2529 tmin = tmax + 1;
2530 if (wi::cmp (tmin, tmax, sgn) < 0)
2531 covers = true;
2532 tmax = tem - 1;
2533 if (wi::cmp (tmax, tem, sgn) > 0)
2534 covers = true;
2535 /* If the anti-range would cover nothing, drop to varying.
2536 Likewise if the anti-range bounds are outside of the
2537 types values. */
2538 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
2540 set_value_range_to_varying (vr);
2541 return;
2543 min = wide_int_to_tree (expr_type, tmin);
2544 max = wide_int_to_tree (expr_type, tmax);
2546 else
2548 /* Other underflow and/or overflow, drop to VR_VARYING. */
2549 set_value_range_to_varying (vr);
2550 return;
2553 else
2555 /* If overflow does not wrap, saturate to the types min/max
2556 value. */
2557 if (min_ovf == -1)
2559 if (needs_overflow_infinity (expr_type)
2560 && supports_overflow_infinity (expr_type))
2561 min = negative_overflow_infinity (expr_type);
2562 else
2563 min = wide_int_to_tree (expr_type, type_min);
2565 else if (min_ovf == 1)
2567 if (needs_overflow_infinity (expr_type)
2568 && supports_overflow_infinity (expr_type))
2569 min = positive_overflow_infinity (expr_type);
2570 else
2571 min = wide_int_to_tree (expr_type, type_max);
2573 else
2574 min = wide_int_to_tree (expr_type, wmin);
2576 if (max_ovf == -1)
2578 if (needs_overflow_infinity (expr_type)
2579 && supports_overflow_infinity (expr_type))
2580 max = negative_overflow_infinity (expr_type);
2581 else
2582 max = wide_int_to_tree (expr_type, type_min);
2584 else if (max_ovf == 1)
2586 if (needs_overflow_infinity (expr_type)
2587 && supports_overflow_infinity (expr_type))
2588 max = positive_overflow_infinity (expr_type);
2589 else
2590 max = wide_int_to_tree (expr_type, type_max);
2592 else
2593 max = wide_int_to_tree (expr_type, wmax);
2596 if (needs_overflow_infinity (expr_type)
2597 && supports_overflow_infinity (expr_type))
2599 if ((min_op0 && is_negative_overflow_infinity (min_op0))
2600 || (min_op1
2601 && (minus_p
2602 ? is_positive_overflow_infinity (min_op1)
2603 : is_negative_overflow_infinity (min_op1))))
2604 min = negative_overflow_infinity (expr_type);
2605 if ((max_op0 && is_positive_overflow_infinity (max_op0))
2606 || (max_op1
2607 && (minus_p
2608 ? is_negative_overflow_infinity (max_op1)
2609 : is_positive_overflow_infinity (max_op1))))
2610 max = positive_overflow_infinity (expr_type);
2613 /* If the result lower bound is constant, we're done;
2614 otherwise, build the symbolic lower bound. */
2615 if (sym_min_op0 == sym_min_op1)
2617 else if (sym_min_op0)
2618 min = build_symbolic_expr (expr_type, sym_min_op0,
2619 neg_min_op0, min);
2620 else if (sym_min_op1)
2621 min = build_symbolic_expr (expr_type, sym_min_op1,
2622 neg_min_op1 ^ minus_p, min);
2624 /* Likewise for the upper bound. */
2625 if (sym_max_op0 == sym_max_op1)
2627 else if (sym_max_op0)
2628 max = build_symbolic_expr (expr_type, sym_max_op0,
2629 neg_max_op0, max);
2630 else if (sym_max_op1)
2631 max = build_symbolic_expr (expr_type, sym_max_op1,
2632 neg_max_op1 ^ minus_p, max);
2634 else
2636 /* For other cases, for example if we have a PLUS_EXPR with two
2637 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2638 to compute a precise range for such a case.
2639 ??? General even mixed range kind operations can be expressed
2640 by for example transforming ~[3, 5] + [1, 2] to range-only
2641 operations and a union primitive:
2642 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2643 [-INF+1, 4] U [6, +INF(OVF)]
2644 though usually the union is not exactly representable with
2645 a single range or anti-range as the above is
2646 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2647 but one could use a scheme similar to equivalences for this. */
2648 set_value_range_to_varying (vr);
2649 return;
2652 else if (code == MIN_EXPR
2653 || code == MAX_EXPR)
2655 if (vr0.type == VR_RANGE
2656 && !symbolic_range_p (&vr0))
2658 type = VR_RANGE;
2659 if (vr1.type == VR_RANGE
2660 && !symbolic_range_p (&vr1))
2662 /* For operations that make the resulting range directly
2663 proportional to the original ranges, apply the operation to
2664 the same end of each range. */
2665 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2666 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2668 else if (code == MIN_EXPR)
2670 min = vrp_val_min (expr_type);
2671 max = vr0.max;
2673 else if (code == MAX_EXPR)
2675 min = vr0.min;
2676 max = vrp_val_max (expr_type);
2679 else if (vr1.type == VR_RANGE
2680 && !symbolic_range_p (&vr1))
2682 type = VR_RANGE;
2683 if (code == MIN_EXPR)
2685 min = vrp_val_min (expr_type);
2686 max = vr1.max;
2688 else if (code == MAX_EXPR)
2690 min = vr1.min;
2691 max = vrp_val_max (expr_type);
2694 else
2696 set_value_range_to_varying (vr);
2697 return;
2700 else if (code == MULT_EXPR)
2702 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2703 drop to varying. This test requires 2*prec bits if both
2704 operands are signed and 2*prec + 2 bits if either is not. */
2706 signop sign = TYPE_SIGN (expr_type);
2707 unsigned int prec = TYPE_PRECISION (expr_type);
2709 if (range_int_cst_p (&vr0)
2710 && range_int_cst_p (&vr1)
2711 && TYPE_OVERFLOW_WRAPS (expr_type))
2713 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2714 typedef generic_wide_int
2715 <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2716 vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2717 vrp_int size = sizem1 + 1;
2719 /* Extend the values using the sign of the result to PREC2.
2720 From here on out, everthing is just signed math no matter
2721 what the input types were. */
2722 vrp_int min0 = vrp_int_cst (vr0.min);
2723 vrp_int max0 = vrp_int_cst (vr0.max);
2724 vrp_int min1 = vrp_int_cst (vr1.min);
2725 vrp_int max1 = vrp_int_cst (vr1.max);
2726 /* Canonicalize the intervals. */
2727 if (sign == UNSIGNED)
2729 if (wi::ltu_p (size, min0 + max0))
2731 min0 -= size;
2732 max0 -= size;
2735 if (wi::ltu_p (size, min1 + max1))
2737 min1 -= size;
2738 max1 -= size;
2742 vrp_int prod0 = min0 * min1;
2743 vrp_int prod1 = min0 * max1;
2744 vrp_int prod2 = max0 * min1;
2745 vrp_int prod3 = max0 * max1;
2747 /* Sort the 4 products so that min is in prod0 and max is in
2748 prod3. */
2749 /* min0min1 > max0max1 */
2750 if (prod0 > prod3)
2751 std::swap (prod0, prod3);
2753 /* min0max1 > max0min1 */
2754 if (prod1 > prod2)
2755 std::swap (prod1, prod2);
2757 if (prod0 > prod1)
2758 std::swap (prod0, prod1);
2760 if (prod2 > prod3)
2761 std::swap (prod2, prod3);
2763 /* diff = max - min. */
2764 prod2 = prod3 - prod0;
2765 if (wi::geu_p (prod2, sizem1))
2767 /* the range covers all values. */
2768 set_value_range_to_varying (vr);
2769 return;
2772 /* The following should handle the wrapping and selecting
2773 VR_ANTI_RANGE for us. */
2774 min = wide_int_to_tree (expr_type, prod0);
2775 max = wide_int_to_tree (expr_type, prod3);
2776 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2777 return;
2780 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2781 drop to VR_VARYING. It would take more effort to compute a
2782 precise range for such a case. For example, if we have
2783 op0 == 65536 and op1 == 65536 with their ranges both being
2784 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2785 we cannot claim that the product is in ~[0,0]. Note that we
2786 are guaranteed to have vr0.type == vr1.type at this
2787 point. */
2788 if (vr0.type == VR_ANTI_RANGE
2789 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2791 set_value_range_to_varying (vr);
2792 return;
2795 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2796 return;
2798 else if (code == RSHIFT_EXPR
2799 || code == LSHIFT_EXPR)
2801 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2802 then drop to VR_VARYING. Outside of this range we get undefined
2803 behavior from the shift operation. We cannot even trust
2804 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2805 shifts, and the operation at the tree level may be widened. */
2806 if (range_int_cst_p (&vr1)
2807 && compare_tree_int (vr1.min, 0) >= 0
2808 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2810 if (code == RSHIFT_EXPR)
2812 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2813 useful ranges just from the shift count. E.g.
2814 x >> 63 for signed 64-bit x is always [-1, 0]. */
2815 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2817 vr0.type = type = VR_RANGE;
2818 vr0.min = vrp_val_min (expr_type);
2819 vr0.max = vrp_val_max (expr_type);
2821 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2822 return;
2824 /* We can map lshifts by constants to MULT_EXPR handling. */
2825 else if (code == LSHIFT_EXPR
2826 && range_int_cst_singleton_p (&vr1))
2828 bool saved_flag_wrapv;
2829 value_range vr1p = VR_INITIALIZER;
2830 vr1p.type = VR_RANGE;
2831 vr1p.min = (wide_int_to_tree
2832 (expr_type,
2833 wi::set_bit_in_zero (tree_to_shwi (vr1.min),
2834 TYPE_PRECISION (expr_type))));
2835 vr1p.max = vr1p.min;
2836 /* We have to use a wrapping multiply though as signed overflow
2837 on lshifts is implementation defined in C89. */
2838 saved_flag_wrapv = flag_wrapv;
2839 flag_wrapv = 1;
2840 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2841 &vr0, &vr1p);
2842 flag_wrapv = saved_flag_wrapv;
2843 return;
2845 else if (code == LSHIFT_EXPR
2846 && range_int_cst_p (&vr0))
2848 int prec = TYPE_PRECISION (expr_type);
2849 int overflow_pos = prec;
2850 int bound_shift;
2851 wide_int low_bound, high_bound;
2852 bool uns = TYPE_UNSIGNED (expr_type);
2853 bool in_bounds = false;
2855 if (!uns)
2856 overflow_pos -= 1;
2858 bound_shift = overflow_pos - tree_to_shwi (vr1.max);
2859 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
2860 overflow. However, for that to happen, vr1.max needs to be
2861 zero, which means vr1 is a singleton range of zero, which
2862 means it should be handled by the previous LSHIFT_EXPR
2863 if-clause. */
2864 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
2865 wide_int complement = ~(bound - 1);
2867 if (uns)
2869 low_bound = bound;
2870 high_bound = complement;
2871 if (wi::ltu_p (vr0.max, low_bound))
2873 /* [5, 6] << [1, 2] == [10, 24]. */
2874 /* We're shifting out only zeroes, the value increases
2875 monotonically. */
2876 in_bounds = true;
2878 else if (wi::ltu_p (high_bound, vr0.min))
2880 /* [0xffffff00, 0xffffffff] << [1, 2]
2881 == [0xfffffc00, 0xfffffffe]. */
2882 /* We're shifting out only ones, the value decreases
2883 monotonically. */
2884 in_bounds = true;
2887 else
2889 /* [-1, 1] << [1, 2] == [-4, 4]. */
2890 low_bound = complement;
2891 high_bound = bound;
2892 if (wi::lts_p (vr0.max, high_bound)
2893 && wi::lts_p (low_bound, vr0.min))
2895 /* For non-negative numbers, we're shifting out only
2896 zeroes, the value increases monotonically.
2897 For negative numbers, we're shifting out only ones, the
2898 value decreases monotomically. */
2899 in_bounds = true;
2903 if (in_bounds)
2905 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2906 return;
2910 set_value_range_to_varying (vr);
2911 return;
2913 else if (code == TRUNC_DIV_EXPR
2914 || code == FLOOR_DIV_EXPR
2915 || code == CEIL_DIV_EXPR
2916 || code == EXACT_DIV_EXPR
2917 || code == ROUND_DIV_EXPR)
2919 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2921 /* For division, if op1 has VR_RANGE but op0 does not, something
2922 can be deduced just from that range. Say [min, max] / [4, max]
2923 gives [min / 4, max / 4] range. */
2924 if (vr1.type == VR_RANGE
2925 && !symbolic_range_p (&vr1)
2926 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2928 vr0.type = type = VR_RANGE;
2929 vr0.min = vrp_val_min (expr_type);
2930 vr0.max = vrp_val_max (expr_type);
2932 else
2934 set_value_range_to_varying (vr);
2935 return;
2939 /* For divisions, if flag_non_call_exceptions is true, we must
2940 not eliminate a division by zero. */
2941 if (cfun->can_throw_non_call_exceptions
2942 && (vr1.type != VR_RANGE
2943 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2945 set_value_range_to_varying (vr);
2946 return;
2949 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2950 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2951 include 0. */
2952 if (vr0.type == VR_RANGE
2953 && (vr1.type != VR_RANGE
2954 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2956 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2957 int cmp;
2959 min = NULL_TREE;
2960 max = NULL_TREE;
2961 if (TYPE_UNSIGNED (expr_type)
2962 || value_range_nonnegative_p (&vr1))
2964 /* For unsigned division or when divisor is known
2965 to be non-negative, the range has to cover
2966 all numbers from 0 to max for positive max
2967 and all numbers from min to 0 for negative min. */
2968 cmp = compare_values (vr0.max, zero);
2969 if (cmp == -1)
2971 /* When vr0.max < 0, vr1.min != 0 and value
2972 ranges for dividend and divisor are available. */
2973 if (vr1.type == VR_RANGE
2974 && !symbolic_range_p (&vr0)
2975 && !symbolic_range_p (&vr1)
2976 && compare_values (vr1.min, zero) != 0)
2977 max = int_const_binop (code, vr0.max, vr1.min);
2978 else
2979 max = zero;
2981 else if (cmp == 0 || cmp == 1)
2982 max = vr0.max;
2983 else
2984 type = VR_VARYING;
2985 cmp = compare_values (vr0.min, zero);
2986 if (cmp == 1)
2988 /* For unsigned division when value ranges for dividend
2989 and divisor are available. */
2990 if (vr1.type == VR_RANGE
2991 && !symbolic_range_p (&vr0)
2992 && !symbolic_range_p (&vr1)
2993 && compare_values (vr1.max, zero) != 0)
2994 min = int_const_binop (code, vr0.min, vr1.max);
2995 else
2996 min = zero;
2998 else if (cmp == 0 || cmp == -1)
2999 min = vr0.min;
3000 else
3001 type = VR_VARYING;
3003 else
3005 /* Otherwise the range is -max .. max or min .. -min
3006 depending on which bound is bigger in absolute value,
3007 as the division can change the sign. */
3008 abs_extent_range (vr, vr0.min, vr0.max);
3009 return;
3011 if (type == VR_VARYING)
3013 set_value_range_to_varying (vr);
3014 return;
3017 else if (!symbolic_range_p (&vr0) && !symbolic_range_p (&vr1))
3019 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3020 return;
3023 else if (code == TRUNC_MOD_EXPR)
3025 if (range_is_null (&vr1))
3027 set_value_range_to_undefined (vr);
3028 return;
3030 /* ABS (A % B) < ABS (B) and either
3031 0 <= A % B <= A or A <= A % B <= 0. */
3032 type = VR_RANGE;
3033 signop sgn = TYPE_SIGN (expr_type);
3034 unsigned int prec = TYPE_PRECISION (expr_type);
3035 wide_int wmin, wmax, tmp;
3036 wide_int zero = wi::zero (prec);
3037 wide_int one = wi::one (prec);
3038 if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1))
3040 wmax = wi::sub (vr1.max, one);
3041 if (sgn == SIGNED)
3043 tmp = wi::sub (wi::minus_one (prec), vr1.min);
3044 wmax = wi::smax (wmax, tmp);
3047 else
3049 wmax = wi::max_value (prec, sgn);
3050 /* X % INT_MIN may be INT_MAX. */
3051 if (sgn == UNSIGNED)
3052 wmax = wmax - one;
3055 if (sgn == UNSIGNED)
3056 wmin = zero;
3057 else
3059 wmin = -wmax;
3060 if (vr0.type == VR_RANGE && TREE_CODE (vr0.min) == INTEGER_CST)
3062 tmp = vr0.min;
3063 if (wi::gts_p (tmp, zero))
3064 tmp = zero;
3065 wmin = wi::smax (wmin, tmp);
3069 if (vr0.type == VR_RANGE && TREE_CODE (vr0.max) == INTEGER_CST)
3071 tmp = vr0.max;
3072 if (sgn == SIGNED && wi::neg_p (tmp))
3073 tmp = zero;
3074 wmax = wi::min (wmax, tmp, sgn);
3077 min = wide_int_to_tree (expr_type, wmin);
3078 max = wide_int_to_tree (expr_type, wmax);
3080 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3082 bool int_cst_range0, int_cst_range1;
3083 wide_int may_be_nonzero0, may_be_nonzero1;
3084 wide_int must_be_nonzero0, must_be_nonzero1;
3086 int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
3087 &may_be_nonzero0,
3088 &must_be_nonzero0);
3089 int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
3090 &may_be_nonzero1,
3091 &must_be_nonzero1);
3093 type = VR_RANGE;
3094 if (code == BIT_AND_EXPR)
3096 min = wide_int_to_tree (expr_type,
3097 must_be_nonzero0 & must_be_nonzero1);
3098 wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
3099 /* If both input ranges contain only negative values we can
3100 truncate the result range maximum to the minimum of the
3101 input range maxima. */
3102 if (int_cst_range0 && int_cst_range1
3103 && tree_int_cst_sgn (vr0.max) < 0
3104 && tree_int_cst_sgn (vr1.max) < 0)
3106 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3107 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3109 /* If either input range contains only non-negative values
3110 we can truncate the result range maximum to the respective
3111 maximum of the input range. */
3112 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3113 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3114 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3115 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3116 max = wide_int_to_tree (expr_type, wmax);
3117 cmp = compare_values (min, max);
3118 /* PR68217: In case of signed & sign-bit-CST should
3119 result in [-INF, 0] instead of [-INF, INF]. */
3120 if (cmp == -2 || cmp == 1)
3122 wide_int sign_bit
3123 = wi::set_bit_in_zero (TYPE_PRECISION (expr_type) - 1,
3124 TYPE_PRECISION (expr_type));
3125 if (!TYPE_UNSIGNED (expr_type)
3126 && ((value_range_constant_singleton (&vr0)
3127 && !wi::cmps (vr0.min, sign_bit))
3128 || (value_range_constant_singleton (&vr1)
3129 && !wi::cmps (vr1.min, sign_bit))))
3131 min = TYPE_MIN_VALUE (expr_type);
3132 max = build_int_cst (expr_type, 0);
3136 else if (code == BIT_IOR_EXPR)
3138 max = wide_int_to_tree (expr_type,
3139 may_be_nonzero0 | may_be_nonzero1);
3140 wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
3141 /* If the input ranges contain only positive values we can
3142 truncate the minimum of the result range to the maximum
3143 of the input range minima. */
3144 if (int_cst_range0 && int_cst_range1
3145 && tree_int_cst_sgn (vr0.min) >= 0
3146 && tree_int_cst_sgn (vr1.min) >= 0)
3148 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3149 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3151 /* If either input range contains only negative values
3152 we can truncate the minimum of the result range to the
3153 respective minimum range. */
3154 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3155 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3156 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3157 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3158 min = wide_int_to_tree (expr_type, wmin);
3160 else if (code == BIT_XOR_EXPR)
3162 wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
3163 | ~(may_be_nonzero0 | may_be_nonzero1));
3164 wide_int result_one_bits
3165 = (must_be_nonzero0.and_not (may_be_nonzero1)
3166 | must_be_nonzero1.and_not (may_be_nonzero0));
3167 max = wide_int_to_tree (expr_type, ~result_zero_bits);
3168 min = wide_int_to_tree (expr_type, result_one_bits);
3169 /* If the range has all positive or all negative values the
3170 result is better than VARYING. */
3171 if (tree_int_cst_sgn (min) < 0
3172 || tree_int_cst_sgn (max) >= 0)
3174 else
3175 max = min = NULL_TREE;
3178 else
3179 gcc_unreachable ();
3181 /* If either MIN or MAX overflowed, then set the resulting range to
3182 VARYING. But we do accept an overflow infinity representation. */
3183 if (min == NULL_TREE
3184 || (TREE_OVERFLOW_P (min) && !is_overflow_infinity (min))
3185 || max == NULL_TREE
3186 || (TREE_OVERFLOW_P (max) && !is_overflow_infinity (max)))
3188 set_value_range_to_varying (vr);
3189 return;
3192 /* We punt if:
3193 1) [-INF, +INF]
3194 2) [-INF, +-INF(OVF)]
3195 3) [+-INF(OVF), +INF]
3196 4) [+-INF(OVF), +-INF(OVF)]
3197 We learn nothing when we have INF and INF(OVF) on both sides.
3198 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3199 overflow. */
3200 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3201 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3203 set_value_range_to_varying (vr);
3204 return;
3207 cmp = compare_values (min, max);
3208 if (cmp == -2 || cmp == 1)
3210 /* If the new range has its limits swapped around (MIN > MAX),
3211 then the operation caused one of them to wrap around, mark
3212 the new range VARYING. */
3213 set_value_range_to_varying (vr);
3215 else
3216 set_value_range (vr, type, min, max, NULL);
3219 /* Extract range information from a binary expression OP0 CODE OP1 based on
3220 the ranges of each of its operands with resulting type EXPR_TYPE.
3221 The resulting range is stored in *VR. */
3223 static void
3224 extract_range_from_binary_expr (value_range *vr,
3225 enum tree_code code,
3226 tree expr_type, tree op0, tree op1)
3228 value_range vr0 = VR_INITIALIZER;
3229 value_range vr1 = VR_INITIALIZER;
3231 /* Get value ranges for each operand. For constant operands, create
3232 a new value range with the operand to simplify processing. */
3233 if (TREE_CODE (op0) == SSA_NAME)
3234 vr0 = *(get_value_range (op0));
3235 else if (is_gimple_min_invariant (op0))
3236 set_value_range_to_value (&vr0, op0, NULL);
3237 else
3238 set_value_range_to_varying (&vr0);
3240 if (TREE_CODE (op1) == SSA_NAME)
3241 vr1 = *(get_value_range (op1));
3242 else if (is_gimple_min_invariant (op1))
3243 set_value_range_to_value (&vr1, op1, NULL);
3244 else
3245 set_value_range_to_varying (&vr1);
3247 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3249 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3250 and based on the other operand, for example if it was deduced from a
3251 symbolic comparison. When a bound of the range of the first operand
3252 is invariant, we set the corresponding bound of the new range to INF
3253 in order to avoid recursing on the range of the second operand. */
3254 if (vr->type == VR_VARYING
3255 && (code == PLUS_EXPR || code == MINUS_EXPR)
3256 && TREE_CODE (op1) == SSA_NAME
3257 && vr0.type == VR_RANGE
3258 && symbolic_range_based_on_p (&vr0, op1))
3260 const bool minus_p = (code == MINUS_EXPR);
3261 value_range n_vr1 = VR_INITIALIZER;
3263 /* Try with VR0 and [-INF, OP1]. */
3264 if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
3265 set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
3267 /* Try with VR0 and [OP1, +INF]. */
3268 else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
3269 set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
3271 /* Try with VR0 and [OP1, OP1]. */
3272 else
3273 set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
3275 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
3278 if (vr->type == VR_VARYING
3279 && (code == PLUS_EXPR || code == MINUS_EXPR)
3280 && TREE_CODE (op0) == SSA_NAME
3281 && vr1.type == VR_RANGE
3282 && symbolic_range_based_on_p (&vr1, op0))
3284 const bool minus_p = (code == MINUS_EXPR);
3285 value_range n_vr0 = VR_INITIALIZER;
3287 /* Try with [-INF, OP0] and VR1. */
3288 if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
3289 set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
3291 /* Try with [OP0, +INF] and VR1. */
3292 else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
3293 set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
3295 /* Try with [OP0, OP0] and VR1. */
3296 else
3297 set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
3299 extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
3303 /* Extract range information from a unary operation CODE based on
3304 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3305 The resulting range is stored in *VR. */
3307 void
3308 extract_range_from_unary_expr (value_range *vr,
3309 enum tree_code code, tree type,
3310 value_range *vr0_, tree op0_type)
3312 value_range vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3314 /* VRP only operates on integral and pointer types. */
3315 if (!(INTEGRAL_TYPE_P (op0_type)
3316 || POINTER_TYPE_P (op0_type))
3317 || !(INTEGRAL_TYPE_P (type)
3318 || POINTER_TYPE_P (type)))
3320 set_value_range_to_varying (vr);
3321 return;
3324 /* If VR0 is UNDEFINED, so is the result. */
3325 if (vr0.type == VR_UNDEFINED)
3327 set_value_range_to_undefined (vr);
3328 return;
3331 /* Handle operations that we express in terms of others. */
3332 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3334 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3335 copy_value_range (vr, &vr0);
3336 return;
3338 else if (code == NEGATE_EXPR)
3340 /* -X is simply 0 - X, so re-use existing code that also handles
3341 anti-ranges fine. */
3342 value_range zero = VR_INITIALIZER;
3343 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3344 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3345 return;
3347 else if (code == BIT_NOT_EXPR)
3349 /* ~X is simply -1 - X, so re-use existing code that also handles
3350 anti-ranges fine. */
3351 value_range minusone = VR_INITIALIZER;
3352 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3353 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3354 type, &minusone, &vr0);
3355 return;
3358 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3359 and express op ~[] as (op []') U (op []''). */
3360 if (vr0.type == VR_ANTI_RANGE
3361 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3363 extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type);
3364 if (vrtem1.type != VR_UNDEFINED)
3366 value_range vrres = VR_INITIALIZER;
3367 extract_range_from_unary_expr (&vrres, code, type,
3368 &vrtem1, op0_type);
3369 vrp_meet (vr, &vrres);
3371 return;
3374 if (CONVERT_EXPR_CODE_P (code))
3376 tree inner_type = op0_type;
3377 tree outer_type = type;
3379 /* If the expression evaluates to a pointer, we are only interested in
3380 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3381 if (POINTER_TYPE_P (type))
3383 if (range_is_nonnull (&vr0))
3384 set_value_range_to_nonnull (vr, type);
3385 else if (range_is_null (&vr0))
3386 set_value_range_to_null (vr, type);
3387 else
3388 set_value_range_to_varying (vr);
3389 return;
3392 /* If VR0 is varying and we increase the type precision, assume
3393 a full range for the following transformation. */
3394 if (vr0.type == VR_VARYING
3395 && INTEGRAL_TYPE_P (inner_type)
3396 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3398 vr0.type = VR_RANGE;
3399 vr0.min = TYPE_MIN_VALUE (inner_type);
3400 vr0.max = TYPE_MAX_VALUE (inner_type);
3403 /* If VR0 is a constant range or anti-range and the conversion is
3404 not truncating we can convert the min and max values and
3405 canonicalize the resulting range. Otherwise we can do the
3406 conversion if the size of the range is less than what the
3407 precision of the target type can represent and the range is
3408 not an anti-range. */
3409 if ((vr0.type == VR_RANGE
3410 || vr0.type == VR_ANTI_RANGE)
3411 && TREE_CODE (vr0.min) == INTEGER_CST
3412 && TREE_CODE (vr0.max) == INTEGER_CST
3413 && (!is_overflow_infinity (vr0.min)
3414 || (vr0.type == VR_RANGE
3415 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3416 && needs_overflow_infinity (outer_type)
3417 && supports_overflow_infinity (outer_type)))
3418 && (!is_overflow_infinity (vr0.max)
3419 || (vr0.type == VR_RANGE
3420 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3421 && needs_overflow_infinity (outer_type)
3422 && supports_overflow_infinity (outer_type)))
3423 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3424 || (vr0.type == VR_RANGE
3425 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3426 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3427 size_int (TYPE_PRECISION (outer_type)))))))
3429 tree new_min, new_max;
3430 if (is_overflow_infinity (vr0.min))
3431 new_min = negative_overflow_infinity (outer_type);
3432 else
3433 new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
3434 0, false);
3435 if (is_overflow_infinity (vr0.max))
3436 new_max = positive_overflow_infinity (outer_type);
3437 else
3438 new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
3439 0, false);
3440 set_and_canonicalize_value_range (vr, vr0.type,
3441 new_min, new_max, NULL);
3442 return;
3445 set_value_range_to_varying (vr);
3446 return;
3448 else if (code == ABS_EXPR)
3450 tree min, max;
3451 int cmp;
3453 /* Pass through vr0 in the easy cases. */
3454 if (TYPE_UNSIGNED (type)
3455 || value_range_nonnegative_p (&vr0))
3457 copy_value_range (vr, &vr0);
3458 return;
3461 /* For the remaining varying or symbolic ranges we can't do anything
3462 useful. */
3463 if (vr0.type == VR_VARYING
3464 || symbolic_range_p (&vr0))
3466 set_value_range_to_varying (vr);
3467 return;
3470 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3471 useful range. */
3472 if (!TYPE_OVERFLOW_UNDEFINED (type)
3473 && ((vr0.type == VR_RANGE
3474 && vrp_val_is_min (vr0.min))
3475 || (vr0.type == VR_ANTI_RANGE
3476 && !vrp_val_is_min (vr0.min))))
3478 set_value_range_to_varying (vr);
3479 return;
3482 /* ABS_EXPR may flip the range around, if the original range
3483 included negative values. */
3484 if (is_overflow_infinity (vr0.min))
3485 min = positive_overflow_infinity (type);
3486 else if (!vrp_val_is_min (vr0.min))
3487 min = fold_unary_to_constant (code, type, vr0.min);
3488 else if (!needs_overflow_infinity (type))
3489 min = TYPE_MAX_VALUE (type);
3490 else if (supports_overflow_infinity (type))
3491 min = positive_overflow_infinity (type);
3492 else
3494 set_value_range_to_varying (vr);
3495 return;
3498 if (is_overflow_infinity (vr0.max))
3499 max = positive_overflow_infinity (type);
3500 else if (!vrp_val_is_min (vr0.max))
3501 max = fold_unary_to_constant (code, type, vr0.max);
3502 else if (!needs_overflow_infinity (type))
3503 max = TYPE_MAX_VALUE (type);
3504 else if (supports_overflow_infinity (type)
3505 /* We shouldn't generate [+INF, +INF] as set_value_range
3506 doesn't like this and ICEs. */
3507 && !is_positive_overflow_infinity (min))
3508 max = positive_overflow_infinity (type);
3509 else
3511 set_value_range_to_varying (vr);
3512 return;
3515 cmp = compare_values (min, max);
3517 /* If a VR_ANTI_RANGEs contains zero, then we have
3518 ~[-INF, min(MIN, MAX)]. */
3519 if (vr0.type == VR_ANTI_RANGE)
3521 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3523 /* Take the lower of the two values. */
3524 if (cmp != 1)
3525 max = min;
3527 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3528 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3529 flag_wrapv is set and the original anti-range doesn't include
3530 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3531 if (TYPE_OVERFLOW_WRAPS (type))
3533 tree type_min_value = TYPE_MIN_VALUE (type);
3535 min = (vr0.min != type_min_value
3536 ? int_const_binop (PLUS_EXPR, type_min_value,
3537 build_int_cst (TREE_TYPE (type_min_value), 1))
3538 : type_min_value);
3540 else
3542 if (overflow_infinity_range_p (&vr0))
3543 min = negative_overflow_infinity (type);
3544 else
3545 min = TYPE_MIN_VALUE (type);
3548 else
3550 /* All else has failed, so create the range [0, INF], even for
3551 flag_wrapv since TYPE_MIN_VALUE is in the original
3552 anti-range. */
3553 vr0.type = VR_RANGE;
3554 min = build_int_cst (type, 0);
3555 if (needs_overflow_infinity (type))
3557 if (supports_overflow_infinity (type))
3558 max = positive_overflow_infinity (type);
3559 else
3561 set_value_range_to_varying (vr);
3562 return;
3565 else
3566 max = TYPE_MAX_VALUE (type);
3570 /* If the range contains zero then we know that the minimum value in the
3571 range will be zero. */
3572 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3574 if (cmp == 1)
3575 max = min;
3576 min = build_int_cst (type, 0);
3578 else
3580 /* If the range was reversed, swap MIN and MAX. */
3581 if (cmp == 1)
3582 std::swap (min, max);
3585 cmp = compare_values (min, max);
3586 if (cmp == -2 || cmp == 1)
3588 /* If the new range has its limits swapped around (MIN > MAX),
3589 then the operation caused one of them to wrap around, mark
3590 the new range VARYING. */
3591 set_value_range_to_varying (vr);
3593 else
3594 set_value_range (vr, vr0.type, min, max, NULL);
3595 return;
3598 /* For unhandled operations fall back to varying. */
3599 set_value_range_to_varying (vr);
3600 return;
3604 /* Extract range information from a unary expression CODE OP0 based on
3605 the range of its operand with resulting type TYPE.
3606 The resulting range is stored in *VR. */
3608 static void
3609 extract_range_from_unary_expr (value_range *vr, enum tree_code code,
3610 tree type, tree op0)
3612 value_range vr0 = VR_INITIALIZER;
3614 /* Get value ranges for the operand. For constant operands, create
3615 a new value range with the operand to simplify processing. */
3616 if (TREE_CODE (op0) == SSA_NAME)
3617 vr0 = *(get_value_range (op0));
3618 else if (is_gimple_min_invariant (op0))
3619 set_value_range_to_value (&vr0, op0, NULL);
3620 else
3621 set_value_range_to_varying (&vr0);
3623 extract_range_from_unary_expr (vr, code, type, &vr0, TREE_TYPE (op0));
3627 /* Extract range information from a conditional expression STMT based on
3628 the ranges of each of its operands and the expression code. */
3630 static void
3631 extract_range_from_cond_expr (value_range *vr, gassign *stmt)
3633 tree op0, op1;
3634 value_range vr0 = VR_INITIALIZER;
3635 value_range vr1 = VR_INITIALIZER;
3637 /* Get value ranges for each operand. For constant operands, create
3638 a new value range with the operand to simplify processing. */
3639 op0 = gimple_assign_rhs2 (stmt);
3640 if (TREE_CODE (op0) == SSA_NAME)
3641 vr0 = *(get_value_range (op0));
3642 else if (is_gimple_min_invariant (op0))
3643 set_value_range_to_value (&vr0, op0, NULL);
3644 else
3645 set_value_range_to_varying (&vr0);
3647 op1 = gimple_assign_rhs3 (stmt);
3648 if (TREE_CODE (op1) == SSA_NAME)
3649 vr1 = *(get_value_range (op1));
3650 else if (is_gimple_min_invariant (op1))
3651 set_value_range_to_value (&vr1, op1, NULL);
3652 else
3653 set_value_range_to_varying (&vr1);
3655 /* The resulting value range is the union of the operand ranges */
3656 copy_value_range (vr, &vr0);
3657 vrp_meet (vr, &vr1);
3661 /* Extract range information from a comparison expression EXPR based
3662 on the range of its operand and the expression code. */
3664 static void
3665 extract_range_from_comparison (value_range *vr, enum tree_code code,
3666 tree type, tree op0, tree op1)
3668 bool sop = false;
3669 tree val;
3671 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3672 NULL);
3674 /* A disadvantage of using a special infinity as an overflow
3675 representation is that we lose the ability to record overflow
3676 when we don't have an infinity. So we have to ignore a result
3677 which relies on overflow. */
3679 if (val && !is_overflow_infinity (val) && !sop)
3681 /* Since this expression was found on the RHS of an assignment,
3682 its type may be different from _Bool. Convert VAL to EXPR's
3683 type. */
3684 val = fold_convert (type, val);
3685 if (is_gimple_min_invariant (val))
3686 set_value_range_to_value (vr, val, vr->equiv);
3687 else
3688 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3690 else
3691 /* The result of a comparison is always true or false. */
3692 set_value_range_to_truthvalue (vr, type);
3695 /* Helper function for simplify_internal_call_using_ranges and
3696 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3697 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3698 always overflow. Set *OVF to true if it is known to always
3699 overflow. */
3701 static bool
3702 check_for_binary_op_overflow (enum tree_code subcode, tree type,
3703 tree op0, tree op1, bool *ovf)
3705 value_range vr0 = VR_INITIALIZER;
3706 value_range vr1 = VR_INITIALIZER;
3707 if (TREE_CODE (op0) == SSA_NAME)
3708 vr0 = *get_value_range (op0);
3709 else if (TREE_CODE (op0) == INTEGER_CST)
3710 set_value_range_to_value (&vr0, op0, NULL);
3711 else
3712 set_value_range_to_varying (&vr0);
3714 if (TREE_CODE (op1) == SSA_NAME)
3715 vr1 = *get_value_range (op1);
3716 else if (TREE_CODE (op1) == INTEGER_CST)
3717 set_value_range_to_value (&vr1, op1, NULL);
3718 else
3719 set_value_range_to_varying (&vr1);
3721 if (!range_int_cst_p (&vr0)
3722 || TREE_OVERFLOW (vr0.min)
3723 || TREE_OVERFLOW (vr0.max))
3725 vr0.min = vrp_val_min (TREE_TYPE (op0));
3726 vr0.max = vrp_val_max (TREE_TYPE (op0));
3728 if (!range_int_cst_p (&vr1)
3729 || TREE_OVERFLOW (vr1.min)
3730 || TREE_OVERFLOW (vr1.max))
3732 vr1.min = vrp_val_min (TREE_TYPE (op1));
3733 vr1.max = vrp_val_max (TREE_TYPE (op1));
3735 *ovf = arith_overflowed_p (subcode, type, vr0.min,
3736 subcode == MINUS_EXPR ? vr1.max : vr1.min);
3737 if (arith_overflowed_p (subcode, type, vr0.max,
3738 subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf)
3739 return false;
3740 if (subcode == MULT_EXPR)
3742 if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf
3743 || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf)
3744 return false;
3746 if (*ovf)
3748 /* So far we found that there is an overflow on the boundaries.
3749 That doesn't prove that there is an overflow even for all values
3750 in between the boundaries. For that compute widest_int range
3751 of the result and see if it doesn't overlap the range of
3752 type. */
3753 widest_int wmin, wmax;
3754 widest_int w[4];
3755 int i;
3756 w[0] = wi::to_widest (vr0.min);
3757 w[1] = wi::to_widest (vr0.max);
3758 w[2] = wi::to_widest (vr1.min);
3759 w[3] = wi::to_widest (vr1.max);
3760 for (i = 0; i < 4; i++)
3762 widest_int wt;
3763 switch (subcode)
3765 case PLUS_EXPR:
3766 wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
3767 break;
3768 case MINUS_EXPR:
3769 wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
3770 break;
3771 case MULT_EXPR:
3772 wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
3773 break;
3774 default:
3775 gcc_unreachable ();
3777 if (i == 0)
3779 wmin = wt;
3780 wmax = wt;
3782 else
3784 wmin = wi::smin (wmin, wt);
3785 wmax = wi::smax (wmax, wt);
3788 /* The result of op0 CODE op1 is known to be in range
3789 [wmin, wmax]. */
3790 widest_int wtmin = wi::to_widest (vrp_val_min (type));
3791 widest_int wtmax = wi::to_widest (vrp_val_max (type));
3792 /* If all values in [wmin, wmax] are smaller than
3793 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3794 the arithmetic operation will always overflow. */
3795 if (wmax < wtmin || wmin > wtmax)
3796 return true;
3797 return false;
3799 return true;
3802 /* Try to derive a nonnegative or nonzero range out of STMT relying
3803 primarily on generic routines in fold in conjunction with range data.
3804 Store the result in *VR */
3806 static void
3807 extract_range_basic (value_range *vr, gimple *stmt)
3809 bool sop = false;
3810 tree type = gimple_expr_type (stmt);
3812 if (is_gimple_call (stmt))
3814 tree arg;
3815 int mini, maxi, zerov = 0, prec;
3816 enum tree_code subcode = ERROR_MARK;
3817 combined_fn cfn = gimple_call_combined_fn (stmt);
3819 switch (cfn)
3821 case CFN_BUILT_IN_CONSTANT_P:
3822 /* If the call is __builtin_constant_p and the argument is a
3823 function parameter resolve it to false. This avoids bogus
3824 array bound warnings.
3825 ??? We could do this as early as inlining is finished. */
3826 arg = gimple_call_arg (stmt, 0);
3827 if (TREE_CODE (arg) == SSA_NAME
3828 && SSA_NAME_IS_DEFAULT_DEF (arg)
3829 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL
3830 && cfun->after_inlining)
3832 set_value_range_to_null (vr, type);
3833 return;
3835 break;
3836 /* Both __builtin_ffs* and __builtin_popcount return
3837 [0, prec]. */
3838 CASE_CFN_FFS:
3839 CASE_CFN_POPCOUNT:
3840 arg = gimple_call_arg (stmt, 0);
3841 prec = TYPE_PRECISION (TREE_TYPE (arg));
3842 mini = 0;
3843 maxi = prec;
3844 if (TREE_CODE (arg) == SSA_NAME)
3846 value_range *vr0 = get_value_range (arg);
3847 /* If arg is non-zero, then ffs or popcount
3848 are non-zero. */
3849 if (((vr0->type == VR_RANGE
3850 && range_includes_zero_p (vr0->min, vr0->max) == 0)
3851 || (vr0->type == VR_ANTI_RANGE
3852 && range_includes_zero_p (vr0->min, vr0->max) == 1))
3853 && !is_overflow_infinity (vr0->min)
3854 && !is_overflow_infinity (vr0->max))
3855 mini = 1;
3856 /* If some high bits are known to be zero,
3857 we can decrease the maximum. */
3858 if (vr0->type == VR_RANGE
3859 && TREE_CODE (vr0->max) == INTEGER_CST
3860 && !operand_less_p (vr0->min,
3861 build_zero_cst (TREE_TYPE (vr0->min)))
3862 && !is_overflow_infinity (vr0->max))
3863 maxi = tree_floor_log2 (vr0->max) + 1;
3865 goto bitop_builtin;
3866 /* __builtin_parity* returns [0, 1]. */
3867 CASE_CFN_PARITY:
3868 mini = 0;
3869 maxi = 1;
3870 goto bitop_builtin;
3871 /* __builtin_c[lt]z* return [0, prec-1], except for
3872 when the argument is 0, but that is undefined behavior.
3873 On many targets where the CLZ RTL or optab value is defined
3874 for 0 the value is prec, so include that in the range
3875 by default. */
3876 CASE_CFN_CLZ:
3877 arg = gimple_call_arg (stmt, 0);
3878 prec = TYPE_PRECISION (TREE_TYPE (arg));
3879 mini = 0;
3880 maxi = prec;
3881 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3882 != CODE_FOR_nothing
3883 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3884 zerov)
3885 /* Handle only the single common value. */
3886 && zerov != prec)
3887 /* Magic value to give up, unless vr0 proves
3888 arg is non-zero. */
3889 mini = -2;
3890 if (TREE_CODE (arg) == SSA_NAME)
3892 value_range *vr0 = get_value_range (arg);
3893 /* From clz of VR_RANGE minimum we can compute
3894 result maximum. */
3895 if (vr0->type == VR_RANGE
3896 && TREE_CODE (vr0->min) == INTEGER_CST
3897 && !is_overflow_infinity (vr0->min))
3899 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3900 if (maxi != prec)
3901 mini = 0;
3903 else if (vr0->type == VR_ANTI_RANGE
3904 && integer_zerop (vr0->min)
3905 && !is_overflow_infinity (vr0->min))
3907 maxi = prec - 1;
3908 mini = 0;
3910 if (mini == -2)
3911 break;
3912 /* From clz of VR_RANGE maximum we can compute
3913 result minimum. */
3914 if (vr0->type == VR_RANGE
3915 && TREE_CODE (vr0->max) == INTEGER_CST
3916 && !is_overflow_infinity (vr0->max))
3918 mini = prec - 1 - tree_floor_log2 (vr0->max);
3919 if (mini == prec)
3920 break;
3923 if (mini == -2)
3924 break;
3925 goto bitop_builtin;
3926 /* __builtin_ctz* return [0, prec-1], except for
3927 when the argument is 0, but that is undefined behavior.
3928 If there is a ctz optab for this mode and
3929 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3930 otherwise just assume 0 won't be seen. */
3931 CASE_CFN_CTZ:
3932 arg = gimple_call_arg (stmt, 0);
3933 prec = TYPE_PRECISION (TREE_TYPE (arg));
3934 mini = 0;
3935 maxi = prec - 1;
3936 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3937 != CODE_FOR_nothing
3938 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3939 zerov))
3941 /* Handle only the two common values. */
3942 if (zerov == -1)
3943 mini = -1;
3944 else if (zerov == prec)
3945 maxi = prec;
3946 else
3947 /* Magic value to give up, unless vr0 proves
3948 arg is non-zero. */
3949 mini = -2;
3951 if (TREE_CODE (arg) == SSA_NAME)
3953 value_range *vr0 = get_value_range (arg);
3954 /* If arg is non-zero, then use [0, prec - 1]. */
3955 if (((vr0->type == VR_RANGE
3956 && integer_nonzerop (vr0->min))
3957 || (vr0->type == VR_ANTI_RANGE
3958 && integer_zerop (vr0->min)))
3959 && !is_overflow_infinity (vr0->min))
3961 mini = 0;
3962 maxi = prec - 1;
3964 /* If some high bits are known to be zero,
3965 we can decrease the result maximum. */
3966 if (vr0->type == VR_RANGE
3967 && TREE_CODE (vr0->max) == INTEGER_CST
3968 && !is_overflow_infinity (vr0->max))
3970 maxi = tree_floor_log2 (vr0->max);
3971 /* For vr0 [0, 0] give up. */
3972 if (maxi == -1)
3973 break;
3976 if (mini == -2)
3977 break;
3978 goto bitop_builtin;
3979 /* __builtin_clrsb* returns [0, prec-1]. */
3980 CASE_CFN_CLRSB:
3981 arg = gimple_call_arg (stmt, 0);
3982 prec = TYPE_PRECISION (TREE_TYPE (arg));
3983 mini = 0;
3984 maxi = prec - 1;
3985 goto bitop_builtin;
3986 bitop_builtin:
3987 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3988 build_int_cst (type, maxi), NULL);
3989 return;
3990 case CFN_UBSAN_CHECK_ADD:
3991 subcode = PLUS_EXPR;
3992 break;
3993 case CFN_UBSAN_CHECK_SUB:
3994 subcode = MINUS_EXPR;
3995 break;
3996 case CFN_UBSAN_CHECK_MUL:
3997 subcode = MULT_EXPR;
3998 break;
3999 case CFN_GOACC_DIM_SIZE:
4000 case CFN_GOACC_DIM_POS:
4001 /* Optimizing these two internal functions helps the loop
4002 optimizer eliminate outer comparisons. Size is [1,N]
4003 and pos is [0,N-1]. */
4005 bool is_pos = cfn == CFN_GOACC_DIM_POS;
4006 int axis = oacc_get_ifn_dim_arg (stmt);
4007 int size = oacc_get_fn_dim_size (current_function_decl, axis);
4009 if (!size)
4010 /* If it's dynamic, the backend might know a hardware
4011 limitation. */
4012 size = targetm.goacc.dim_limit (axis);
4014 tree type = TREE_TYPE (gimple_call_lhs (stmt));
4015 set_value_range (vr, VR_RANGE,
4016 build_int_cst (type, is_pos ? 0 : 1),
4017 size ? build_int_cst (type, size - is_pos)
4018 : vrp_val_max (type), NULL);
4020 return;
4021 case CFN_BUILT_IN_STRLEN:
4022 if (tree lhs = gimple_call_lhs (stmt))
4023 if (ptrdiff_type_node
4024 && (TYPE_PRECISION (ptrdiff_type_node)
4025 == TYPE_PRECISION (TREE_TYPE (lhs))))
4027 tree type = TREE_TYPE (lhs);
4028 tree max = vrp_val_max (ptrdiff_type_node);
4029 wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
4030 tree range_min = build_zero_cst (type);
4031 tree range_max = wide_int_to_tree (type, wmax - 1);
4032 set_value_range (vr, VR_RANGE, range_min, range_max, NULL);
4033 return;
4035 break;
4036 default:
4037 break;
4039 if (subcode != ERROR_MARK)
4041 bool saved_flag_wrapv = flag_wrapv;
4042 /* Pretend the arithmetics is wrapping. If there is
4043 any overflow, we'll complain, but will actually do
4044 wrapping operation. */
4045 flag_wrapv = 1;
4046 extract_range_from_binary_expr (vr, subcode, type,
4047 gimple_call_arg (stmt, 0),
4048 gimple_call_arg (stmt, 1));
4049 flag_wrapv = saved_flag_wrapv;
4051 /* If for both arguments vrp_valueize returned non-NULL,
4052 this should have been already folded and if not, it
4053 wasn't folded because of overflow. Avoid removing the
4054 UBSAN_CHECK_* calls in that case. */
4055 if (vr->type == VR_RANGE
4056 && (vr->min == vr->max
4057 || operand_equal_p (vr->min, vr->max, 0)))
4058 set_value_range_to_varying (vr);
4059 return;
4062 /* Handle extraction of the two results (result of arithmetics and
4063 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
4064 internal function. */
4065 else if (is_gimple_assign (stmt)
4066 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
4067 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
4068 && INTEGRAL_TYPE_P (type))
4070 enum tree_code code = gimple_assign_rhs_code (stmt);
4071 tree op = gimple_assign_rhs1 (stmt);
4072 if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
4074 gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
4075 if (is_gimple_call (g) && gimple_call_internal_p (g))
4077 enum tree_code subcode = ERROR_MARK;
4078 switch (gimple_call_internal_fn (g))
4080 case IFN_ADD_OVERFLOW:
4081 subcode = PLUS_EXPR;
4082 break;
4083 case IFN_SUB_OVERFLOW:
4084 subcode = MINUS_EXPR;
4085 break;
4086 case IFN_MUL_OVERFLOW:
4087 subcode = MULT_EXPR;
4088 break;
4089 default:
4090 break;
4092 if (subcode != ERROR_MARK)
4094 tree op0 = gimple_call_arg (g, 0);
4095 tree op1 = gimple_call_arg (g, 1);
4096 if (code == IMAGPART_EXPR)
4098 bool ovf = false;
4099 if (check_for_binary_op_overflow (subcode, type,
4100 op0, op1, &ovf))
4101 set_value_range_to_value (vr,
4102 build_int_cst (type, ovf),
4103 NULL);
4104 else if (TYPE_PRECISION (type) == 1
4105 && !TYPE_UNSIGNED (type))
4106 set_value_range_to_varying (vr);
4107 else
4108 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
4109 build_int_cst (type, 1), NULL);
4111 else if (types_compatible_p (type, TREE_TYPE (op0))
4112 && types_compatible_p (type, TREE_TYPE (op1)))
4114 bool saved_flag_wrapv = flag_wrapv;
4115 /* Pretend the arithmetics is wrapping. If there is
4116 any overflow, IMAGPART_EXPR will be set. */
4117 flag_wrapv = 1;
4118 extract_range_from_binary_expr (vr, subcode, type,
4119 op0, op1);
4120 flag_wrapv = saved_flag_wrapv;
4122 else
4124 value_range vr0 = VR_INITIALIZER;
4125 value_range vr1 = VR_INITIALIZER;
4126 bool saved_flag_wrapv = flag_wrapv;
4127 /* Pretend the arithmetics is wrapping. If there is
4128 any overflow, IMAGPART_EXPR will be set. */
4129 flag_wrapv = 1;
4130 extract_range_from_unary_expr (&vr0, NOP_EXPR,
4131 type, op0);
4132 extract_range_from_unary_expr (&vr1, NOP_EXPR,
4133 type, op1);
4134 extract_range_from_binary_expr_1 (vr, subcode, type,
4135 &vr0, &vr1);
4136 flag_wrapv = saved_flag_wrapv;
4138 return;
4143 if (INTEGRAL_TYPE_P (type)
4144 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
4145 set_value_range_to_nonnegative (vr, type,
4146 sop || stmt_overflow_infinity (stmt));
4147 else if (vrp_stmt_computes_nonzero (stmt, &sop)
4148 && !sop)
4149 set_value_range_to_nonnull (vr, type);
4150 else
4151 set_value_range_to_varying (vr);
4155 /* Try to compute a useful range out of assignment STMT and store it
4156 in *VR. */
4158 static void
4159 extract_range_from_assignment (value_range *vr, gassign *stmt)
4161 enum tree_code code = gimple_assign_rhs_code (stmt);
4163 if (code == ASSERT_EXPR)
4164 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
4165 else if (code == SSA_NAME)
4166 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
4167 else if (TREE_CODE_CLASS (code) == tcc_binary)
4168 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
4169 gimple_expr_type (stmt),
4170 gimple_assign_rhs1 (stmt),
4171 gimple_assign_rhs2 (stmt));
4172 else if (TREE_CODE_CLASS (code) == tcc_unary)
4173 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
4174 gimple_expr_type (stmt),
4175 gimple_assign_rhs1 (stmt));
4176 else if (code == COND_EXPR)
4177 extract_range_from_cond_expr (vr, stmt);
4178 else if (TREE_CODE_CLASS (code) == tcc_comparison)
4179 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
4180 gimple_expr_type (stmt),
4181 gimple_assign_rhs1 (stmt),
4182 gimple_assign_rhs2 (stmt));
4183 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
4184 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
4185 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
4186 else
4187 set_value_range_to_varying (vr);
4189 if (vr->type == VR_VARYING)
4190 extract_range_basic (vr, stmt);
4193 /* Given a range VR, a LOOP and a variable VAR, determine whether it
4194 would be profitable to adjust VR using scalar evolution information
4195 for VAR. If so, update VR with the new limits. */
4197 static void
4198 adjust_range_with_scev (value_range *vr, struct loop *loop,
4199 gimple *stmt, tree var)
4201 tree init, step, chrec, tmin, tmax, min, max, type, tem;
4202 enum ev_direction dir;
4204 /* TODO. Don't adjust anti-ranges. An anti-range may provide
4205 better opportunities than a regular range, but I'm not sure. */
4206 if (vr->type == VR_ANTI_RANGE)
4207 return;
4209 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
4211 /* Like in PR19590, scev can return a constant function. */
4212 if (is_gimple_min_invariant (chrec))
4214 set_value_range_to_value (vr, chrec, vr->equiv);
4215 return;
4218 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4219 return;
4221 init = initial_condition_in_loop_num (chrec, loop->num);
4222 tem = op_with_constant_singleton_value_range (init);
4223 if (tem)
4224 init = tem;
4225 step = evolution_part_in_loop_num (chrec, loop->num);
4226 tem = op_with_constant_singleton_value_range (step);
4227 if (tem)
4228 step = tem;
4230 /* If STEP is symbolic, we can't know whether INIT will be the
4231 minimum or maximum value in the range. Also, unless INIT is
4232 a simple expression, compare_values and possibly other functions
4233 in tree-vrp won't be able to handle it. */
4234 if (step == NULL_TREE
4235 || !is_gimple_min_invariant (step)
4236 || !valid_value_p (init))
4237 return;
4239 dir = scev_direction (chrec);
4240 if (/* Do not adjust ranges if we do not know whether the iv increases
4241 or decreases, ... */
4242 dir == EV_DIR_UNKNOWN
4243 /* ... or if it may wrap. */
4244 || scev_probably_wraps_p (NULL_TREE, init, step, stmt,
4245 get_chrec_loop (chrec), true))
4246 return;
4248 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4249 negative_overflow_infinity and positive_overflow_infinity,
4250 because we have concluded that the loop probably does not
4251 wrap. */
4253 type = TREE_TYPE (var);
4254 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
4255 tmin = lower_bound_in_type (type, type);
4256 else
4257 tmin = TYPE_MIN_VALUE (type);
4258 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
4259 tmax = upper_bound_in_type (type, type);
4260 else
4261 tmax = TYPE_MAX_VALUE (type);
4263 /* Try to use estimated number of iterations for the loop to constrain the
4264 final value in the evolution. */
4265 if (TREE_CODE (step) == INTEGER_CST
4266 && is_gimple_val (init)
4267 && (TREE_CODE (init) != SSA_NAME
4268 || get_value_range (init)->type == VR_RANGE))
4270 widest_int nit;
4272 /* We are only entering here for loop header PHI nodes, so using
4273 the number of latch executions is the correct thing to use. */
4274 if (max_loop_iterations (loop, &nit))
4276 value_range maxvr = VR_INITIALIZER;
4277 signop sgn = TYPE_SIGN (TREE_TYPE (step));
4278 bool overflow;
4280 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
4281 &overflow);
4282 /* If the multiplication overflowed we can't do a meaningful
4283 adjustment. Likewise if the result doesn't fit in the type
4284 of the induction variable. For a signed type we have to
4285 check whether the result has the expected signedness which
4286 is that of the step as number of iterations is unsigned. */
4287 if (!overflow
4288 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
4289 && (sgn == UNSIGNED
4290 || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
4292 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
4293 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
4294 TREE_TYPE (init), init, tem);
4295 /* Likewise if the addition did. */
4296 if (maxvr.type == VR_RANGE)
4298 value_range initvr = VR_INITIALIZER;
4300 if (TREE_CODE (init) == SSA_NAME)
4301 initvr = *(get_value_range (init));
4302 else if (is_gimple_min_invariant (init))
4303 set_value_range_to_value (&initvr, init, NULL);
4304 else
4305 return;
4307 /* Check if init + nit * step overflows. Though we checked
4308 scev {init, step}_loop doesn't wrap, it is not enough
4309 because the loop may exit immediately. Overflow could
4310 happen in the plus expression in this case. */
4311 if ((dir == EV_DIR_DECREASES
4312 && (is_negative_overflow_infinity (maxvr.min)
4313 || compare_values (maxvr.min, initvr.min) != -1))
4314 || (dir == EV_DIR_GROWS
4315 && (is_positive_overflow_infinity (maxvr.max)
4316 || compare_values (maxvr.max, initvr.max) != 1)))
4317 return;
4319 tmin = maxvr.min;
4320 tmax = maxvr.max;
4326 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4328 min = tmin;
4329 max = tmax;
4331 /* For VARYING or UNDEFINED ranges, just about anything we get
4332 from scalar evolutions should be better. */
4334 if (dir == EV_DIR_DECREASES)
4335 max = init;
4336 else
4337 min = init;
4339 else if (vr->type == VR_RANGE)
4341 min = vr->min;
4342 max = vr->max;
4344 if (dir == EV_DIR_DECREASES)
4346 /* INIT is the maximum value. If INIT is lower than VR->MAX
4347 but no smaller than VR->MIN, set VR->MAX to INIT. */
4348 if (compare_values (init, max) == -1)
4349 max = init;
4351 /* According to the loop information, the variable does not
4352 overflow. If we think it does, probably because of an
4353 overflow due to arithmetic on a different INF value,
4354 reset now. */
4355 if (is_negative_overflow_infinity (min)
4356 || compare_values (min, tmin) == -1)
4357 min = tmin;
4360 else
4362 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4363 if (compare_values (init, min) == 1)
4364 min = init;
4366 if (is_positive_overflow_infinity (max)
4367 || compare_values (tmax, max) == -1)
4368 max = tmax;
4371 else
4372 return;
4374 /* If we just created an invalid range with the minimum
4375 greater than the maximum, we fail conservatively.
4376 This should happen only in unreachable
4377 parts of code, or for invalid programs. */
4378 if (compare_values (min, max) == 1
4379 || (is_negative_overflow_infinity (min)
4380 && is_positive_overflow_infinity (max)))
4381 return;
4383 /* Even for valid range info, sometimes overflow flag will leak in.
4384 As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
4385 drop them except for +-overflow_infinity which still need special
4386 handling in vrp pass. */
4387 if (TREE_OVERFLOW_P (min)
4388 && ! is_negative_overflow_infinity (min))
4389 min = drop_tree_overflow (min);
4390 if (TREE_OVERFLOW_P (max)
4391 && ! is_positive_overflow_infinity (max))
4392 max = drop_tree_overflow (max);
4394 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4398 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4400 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4401 all the values in the ranges.
4403 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4405 - Return NULL_TREE if it is not always possible to determine the
4406 value of the comparison.
4408 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4409 overflow infinity was used in the test. */
4412 static tree
4413 compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1,
4414 bool *strict_overflow_p)
4416 /* VARYING or UNDEFINED ranges cannot be compared. */
4417 if (vr0->type == VR_VARYING
4418 || vr0->type == VR_UNDEFINED
4419 || vr1->type == VR_VARYING
4420 || vr1->type == VR_UNDEFINED)
4421 return NULL_TREE;
4423 /* Anti-ranges need to be handled separately. */
4424 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4426 /* If both are anti-ranges, then we cannot compute any
4427 comparison. */
4428 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4429 return NULL_TREE;
4431 /* These comparisons are never statically computable. */
4432 if (comp == GT_EXPR
4433 || comp == GE_EXPR
4434 || comp == LT_EXPR
4435 || comp == LE_EXPR)
4436 return NULL_TREE;
4438 /* Equality can be computed only between a range and an
4439 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4440 if (vr0->type == VR_RANGE)
4442 /* To simplify processing, make VR0 the anti-range. */
4443 value_range *tmp = vr0;
4444 vr0 = vr1;
4445 vr1 = tmp;
4448 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4450 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4451 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4452 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4454 return NULL_TREE;
4457 if (!usable_range_p (vr0, strict_overflow_p)
4458 || !usable_range_p (vr1, strict_overflow_p))
4459 return NULL_TREE;
4461 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4462 operands around and change the comparison code. */
4463 if (comp == GT_EXPR || comp == GE_EXPR)
4465 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4466 std::swap (vr0, vr1);
4469 if (comp == EQ_EXPR)
4471 /* Equality may only be computed if both ranges represent
4472 exactly one value. */
4473 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4474 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4476 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4477 strict_overflow_p);
4478 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4479 strict_overflow_p);
4480 if (cmp_min == 0 && cmp_max == 0)
4481 return boolean_true_node;
4482 else if (cmp_min != -2 && cmp_max != -2)
4483 return boolean_false_node;
4485 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4486 else if (compare_values_warnv (vr0->min, vr1->max,
4487 strict_overflow_p) == 1
4488 || compare_values_warnv (vr1->min, vr0->max,
4489 strict_overflow_p) == 1)
4490 return boolean_false_node;
4492 return NULL_TREE;
4494 else if (comp == NE_EXPR)
4496 int cmp1, cmp2;
4498 /* If VR0 is completely to the left or completely to the right
4499 of VR1, they are always different. Notice that we need to
4500 make sure that both comparisons yield similar results to
4501 avoid comparing values that cannot be compared at
4502 compile-time. */
4503 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4504 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4505 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4506 return boolean_true_node;
4508 /* If VR0 and VR1 represent a single value and are identical,
4509 return false. */
4510 else if (compare_values_warnv (vr0->min, vr0->max,
4511 strict_overflow_p) == 0
4512 && compare_values_warnv (vr1->min, vr1->max,
4513 strict_overflow_p) == 0
4514 && compare_values_warnv (vr0->min, vr1->min,
4515 strict_overflow_p) == 0
4516 && compare_values_warnv (vr0->max, vr1->max,
4517 strict_overflow_p) == 0)
4518 return boolean_false_node;
4520 /* Otherwise, they may or may not be different. */
4521 else
4522 return NULL_TREE;
4524 else if (comp == LT_EXPR || comp == LE_EXPR)
4526 int tst;
4528 /* If VR0 is to the left of VR1, return true. */
4529 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4530 if ((comp == LT_EXPR && tst == -1)
4531 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4533 if (overflow_infinity_range_p (vr0)
4534 || overflow_infinity_range_p (vr1))
4535 *strict_overflow_p = true;
4536 return boolean_true_node;
4539 /* If VR0 is to the right of VR1, return false. */
4540 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4541 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4542 || (comp == LE_EXPR && tst == 1))
4544 if (overflow_infinity_range_p (vr0)
4545 || overflow_infinity_range_p (vr1))
4546 *strict_overflow_p = true;
4547 return boolean_false_node;
4550 /* Otherwise, we don't know. */
4551 return NULL_TREE;
4554 gcc_unreachable ();
4558 /* Given a value range VR, a value VAL and a comparison code COMP, return
4559 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4560 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4561 always returns false. Return NULL_TREE if it is not always
4562 possible to determine the value of the comparison. Also set
4563 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4564 infinity was used in the test. */
4566 static tree
4567 compare_range_with_value (enum tree_code comp, value_range *vr, tree val,
4568 bool *strict_overflow_p)
4570 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4571 return NULL_TREE;
4573 /* Anti-ranges need to be handled separately. */
4574 if (vr->type == VR_ANTI_RANGE)
4576 /* For anti-ranges, the only predicates that we can compute at
4577 compile time are equality and inequality. */
4578 if (comp == GT_EXPR
4579 || comp == GE_EXPR
4580 || comp == LT_EXPR
4581 || comp == LE_EXPR)
4582 return NULL_TREE;
4584 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4585 if (value_inside_range (val, vr->min, vr->max) == 1)
4586 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4588 return NULL_TREE;
4591 if (!usable_range_p (vr, strict_overflow_p))
4592 return NULL_TREE;
4594 if (comp == EQ_EXPR)
4596 /* EQ_EXPR may only be computed if VR represents exactly
4597 one value. */
4598 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4600 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4601 if (cmp == 0)
4602 return boolean_true_node;
4603 else if (cmp == -1 || cmp == 1 || cmp == 2)
4604 return boolean_false_node;
4606 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4607 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4608 return boolean_false_node;
4610 return NULL_TREE;
4612 else if (comp == NE_EXPR)
4614 /* If VAL is not inside VR, then they are always different. */
4615 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4616 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4617 return boolean_true_node;
4619 /* If VR represents exactly one value equal to VAL, then return
4620 false. */
4621 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4622 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4623 return boolean_false_node;
4625 /* Otherwise, they may or may not be different. */
4626 return NULL_TREE;
4628 else if (comp == LT_EXPR || comp == LE_EXPR)
4630 int tst;
4632 /* If VR is to the left of VAL, return true. */
4633 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4634 if ((comp == LT_EXPR && tst == -1)
4635 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4637 if (overflow_infinity_range_p (vr))
4638 *strict_overflow_p = true;
4639 return boolean_true_node;
4642 /* If VR is to the right of VAL, return false. */
4643 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4644 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4645 || (comp == LE_EXPR && tst == 1))
4647 if (overflow_infinity_range_p (vr))
4648 *strict_overflow_p = true;
4649 return boolean_false_node;
4652 /* Otherwise, we don't know. */
4653 return NULL_TREE;
4655 else if (comp == GT_EXPR || comp == GE_EXPR)
4657 int tst;
4659 /* If VR is to the right of VAL, return true. */
4660 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4661 if ((comp == GT_EXPR && tst == 1)
4662 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4664 if (overflow_infinity_range_p (vr))
4665 *strict_overflow_p = true;
4666 return boolean_true_node;
4669 /* If VR is to the left of VAL, return false. */
4670 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4671 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4672 || (comp == GE_EXPR && tst == -1))
4674 if (overflow_infinity_range_p (vr))
4675 *strict_overflow_p = true;
4676 return boolean_false_node;
4679 /* Otherwise, we don't know. */
4680 return NULL_TREE;
4683 gcc_unreachable ();
4687 /* Debugging dumps. */
4689 void dump_value_range (FILE *, const value_range *);
4690 void debug_value_range (value_range *);
4691 void dump_all_value_ranges (FILE *);
4692 void debug_all_value_ranges (void);
4693 void dump_vr_equiv (FILE *, bitmap);
4694 void debug_vr_equiv (bitmap);
4697 /* Dump value range VR to FILE. */
4699 void
4700 dump_value_range (FILE *file, const value_range *vr)
4702 if (vr == NULL)
4703 fprintf (file, "[]");
4704 else if (vr->type == VR_UNDEFINED)
4705 fprintf (file, "UNDEFINED");
4706 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4708 tree type = TREE_TYPE (vr->min);
4710 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4712 if (is_negative_overflow_infinity (vr->min))
4713 fprintf (file, "-INF(OVF)");
4714 else if (INTEGRAL_TYPE_P (type)
4715 && !TYPE_UNSIGNED (type)
4716 && vrp_val_is_min (vr->min))
4717 fprintf (file, "-INF");
4718 else
4719 print_generic_expr (file, vr->min, 0);
4721 fprintf (file, ", ");
4723 if (is_positive_overflow_infinity (vr->max))
4724 fprintf (file, "+INF(OVF)");
4725 else if (INTEGRAL_TYPE_P (type)
4726 && vrp_val_is_max (vr->max))
4727 fprintf (file, "+INF");
4728 else
4729 print_generic_expr (file, vr->max, 0);
4731 fprintf (file, "]");
4733 if (vr->equiv)
4735 bitmap_iterator bi;
4736 unsigned i, c = 0;
4738 fprintf (file, " EQUIVALENCES: { ");
4740 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4742 print_generic_expr (file, ssa_name (i), 0);
4743 fprintf (file, " ");
4744 c++;
4747 fprintf (file, "} (%u elements)", c);
4750 else if (vr->type == VR_VARYING)
4751 fprintf (file, "VARYING");
4752 else
4753 fprintf (file, "INVALID RANGE");
4757 /* Dump value range VR to stderr. */
4759 DEBUG_FUNCTION void
4760 debug_value_range (value_range *vr)
4762 dump_value_range (stderr, vr);
4763 fprintf (stderr, "\n");
4767 /* Dump value ranges of all SSA_NAMEs to FILE. */
4769 void
4770 dump_all_value_ranges (FILE *file)
4772 size_t i;
4774 for (i = 0; i < num_vr_values; i++)
4776 if (vr_value[i])
4778 print_generic_expr (file, ssa_name (i), 0);
4779 fprintf (file, ": ");
4780 dump_value_range (file, vr_value[i]);
4781 fprintf (file, "\n");
4785 fprintf (file, "\n");
4789 /* Dump all value ranges to stderr. */
4791 DEBUG_FUNCTION void
4792 debug_all_value_ranges (void)
4794 dump_all_value_ranges (stderr);
4798 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4799 create a new SSA name N and return the assertion assignment
4800 'N = ASSERT_EXPR <V, V OP W>'. */
4802 static gimple *
4803 build_assert_expr_for (tree cond, tree v)
4805 tree a;
4806 gassign *assertion;
4808 gcc_assert (TREE_CODE (v) == SSA_NAME
4809 && COMPARISON_CLASS_P (cond));
4811 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4812 assertion = gimple_build_assign (NULL_TREE, a);
4814 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4815 operand of the ASSERT_EXPR. Create it so the new name and the old one
4816 are registered in the replacement table so that we can fix the SSA web
4817 after adding all the ASSERT_EXPRs. */
4818 create_new_def_for (v, assertion, NULL);
4820 return assertion;
4824 /* Return false if EXPR is a predicate expression involving floating
4825 point values. */
4827 static inline bool
4828 fp_predicate (gimple *stmt)
4830 GIMPLE_CHECK (stmt, GIMPLE_COND);
4832 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4835 /* If the range of values taken by OP can be inferred after STMT executes,
4836 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4837 describes the inferred range. Return true if a range could be
4838 inferred. */
4840 static bool
4841 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
4843 *val_p = NULL_TREE;
4844 *comp_code_p = ERROR_MARK;
4846 /* Do not attempt to infer anything in names that flow through
4847 abnormal edges. */
4848 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4849 return false;
4851 /* If STMT is the last statement of a basic block with no normal
4852 successors, there is no point inferring anything about any of its
4853 operands. We would not be able to find a proper insertion point
4854 for the assertion, anyway. */
4855 if (stmt_ends_bb_p (stmt))
4857 edge_iterator ei;
4858 edge e;
4860 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4861 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
4862 break;
4863 if (e == NULL)
4864 return false;
4867 if (infer_nonnull_range (stmt, op))
4869 *val_p = build_int_cst (TREE_TYPE (op), 0);
4870 *comp_code_p = NE_EXPR;
4871 return true;
4874 return false;
4878 void dump_asserts_for (FILE *, tree);
4879 void debug_asserts_for (tree);
4880 void dump_all_asserts (FILE *);
4881 void debug_all_asserts (void);
4883 /* Dump all the registered assertions for NAME to FILE. */
4885 void
4886 dump_asserts_for (FILE *file, tree name)
4888 assert_locus *loc;
4890 fprintf (file, "Assertions to be inserted for ");
4891 print_generic_expr (file, name, 0);
4892 fprintf (file, "\n");
4894 loc = asserts_for[SSA_NAME_VERSION (name)];
4895 while (loc)
4897 fprintf (file, "\t");
4898 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4899 fprintf (file, "\n\tBB #%d", loc->bb->index);
4900 if (loc->e)
4902 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4903 loc->e->dest->index);
4904 dump_edge_info (file, loc->e, dump_flags, 0);
4906 fprintf (file, "\n\tPREDICATE: ");
4907 print_generic_expr (file, loc->expr, 0);
4908 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4909 print_generic_expr (file, loc->val, 0);
4910 fprintf (file, "\n\n");
4911 loc = loc->next;
4914 fprintf (file, "\n");
4918 /* Dump all the registered assertions for NAME to stderr. */
4920 DEBUG_FUNCTION void
4921 debug_asserts_for (tree name)
4923 dump_asserts_for (stderr, name);
4927 /* Dump all the registered assertions for all the names to FILE. */
4929 void
4930 dump_all_asserts (FILE *file)
4932 unsigned i;
4933 bitmap_iterator bi;
4935 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4936 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4937 dump_asserts_for (file, ssa_name (i));
4938 fprintf (file, "\n");
4942 /* Dump all the registered assertions for all the names to stderr. */
4944 DEBUG_FUNCTION void
4945 debug_all_asserts (void)
4947 dump_all_asserts (stderr);
4951 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4952 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4953 E->DEST, then register this location as a possible insertion point
4954 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4956 BB, E and SI provide the exact insertion point for the new
4957 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4958 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4959 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4960 must not be NULL. */
4962 static void
4963 register_new_assert_for (tree name, tree expr,
4964 enum tree_code comp_code,
4965 tree val,
4966 basic_block bb,
4967 edge e,
4968 gimple_stmt_iterator si)
4970 assert_locus *n, *loc, *last_loc;
4971 basic_block dest_bb;
4973 gcc_checking_assert (bb == NULL || e == NULL);
4975 if (e == NULL)
4976 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4977 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4979 /* Never build an assert comparing against an integer constant with
4980 TREE_OVERFLOW set. This confuses our undefined overflow warning
4981 machinery. */
4982 if (TREE_OVERFLOW_P (val))
4983 val = drop_tree_overflow (val);
4985 /* The new assertion A will be inserted at BB or E. We need to
4986 determine if the new location is dominated by a previously
4987 registered location for A. If we are doing an edge insertion,
4988 assume that A will be inserted at E->DEST. Note that this is not
4989 necessarily true.
4991 If E is a critical edge, it will be split. But even if E is
4992 split, the new block will dominate the same set of blocks that
4993 E->DEST dominates.
4995 The reverse, however, is not true, blocks dominated by E->DEST
4996 will not be dominated by the new block created to split E. So,
4997 if the insertion location is on a critical edge, we will not use
4998 the new location to move another assertion previously registered
4999 at a block dominated by E->DEST. */
5000 dest_bb = (bb) ? bb : e->dest;
5002 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
5003 VAL at a block dominating DEST_BB, then we don't need to insert a new
5004 one. Similarly, if the same assertion already exists at a block
5005 dominated by DEST_BB and the new location is not on a critical
5006 edge, then update the existing location for the assertion (i.e.,
5007 move the assertion up in the dominance tree).
5009 Note, this is implemented as a simple linked list because there
5010 should not be more than a handful of assertions registered per
5011 name. If this becomes a performance problem, a table hashed by
5012 COMP_CODE and VAL could be implemented. */
5013 loc = asserts_for[SSA_NAME_VERSION (name)];
5014 last_loc = loc;
5015 while (loc)
5017 if (loc->comp_code == comp_code
5018 && (loc->val == val
5019 || operand_equal_p (loc->val, val, 0))
5020 && (loc->expr == expr
5021 || operand_equal_p (loc->expr, expr, 0)))
5023 /* If E is not a critical edge and DEST_BB
5024 dominates the existing location for the assertion, move
5025 the assertion up in the dominance tree by updating its
5026 location information. */
5027 if ((e == NULL || !EDGE_CRITICAL_P (e))
5028 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
5030 loc->bb = dest_bb;
5031 loc->e = e;
5032 loc->si = si;
5033 return;
5035 /* If we have the same assertion on all incoming edges of a BB
5036 instead insert it at the beginning of it. */
5037 if (e && loc->e
5038 && dest_bb == loc->e->dest
5039 && EDGE_COUNT (dest_bb->preds) == 2)
5041 loc->bb = dest_bb;
5042 loc->e = NULL;
5043 loc->si = gsi_none ();
5044 return;
5048 /* Update the last node of the list and move to the next one. */
5049 last_loc = loc;
5050 loc = loc->next;
5053 /* If we didn't find an assertion already registered for
5054 NAME COMP_CODE VAL, add a new one at the end of the list of
5055 assertions associated with NAME. */
5056 n = XNEW (struct assert_locus);
5057 n->bb = dest_bb;
5058 n->e = e;
5059 n->si = si;
5060 n->comp_code = comp_code;
5061 n->val = val;
5062 n->expr = expr;
5063 n->next = NULL;
5065 if (last_loc)
5066 last_loc->next = n;
5067 else
5068 asserts_for[SSA_NAME_VERSION (name)] = n;
5070 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
5073 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
5074 Extract a suitable test code and value and store them into *CODE_P and
5075 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
5077 If no extraction was possible, return FALSE, otherwise return TRUE.
5079 If INVERT is true, then we invert the result stored into *CODE_P. */
5081 static bool
5082 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
5083 tree cond_op0, tree cond_op1,
5084 bool invert, enum tree_code *code_p,
5085 tree *val_p)
5087 enum tree_code comp_code;
5088 tree val;
5090 /* Otherwise, we have a comparison of the form NAME COMP VAL
5091 or VAL COMP NAME. */
5092 if (name == cond_op1)
5094 /* If the predicate is of the form VAL COMP NAME, flip
5095 COMP around because we need to register NAME as the
5096 first operand in the predicate. */
5097 comp_code = swap_tree_comparison (cond_code);
5098 val = cond_op0;
5100 else if (name == cond_op0)
5102 /* The comparison is of the form NAME COMP VAL, so the
5103 comparison code remains unchanged. */
5104 comp_code = cond_code;
5105 val = cond_op1;
5107 else
5108 gcc_unreachable ();
5110 /* Invert the comparison code as necessary. */
5111 if (invert)
5112 comp_code = invert_tree_comparison (comp_code, 0);
5114 /* VRP only handles integral and pointer types. */
5115 if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
5116 && ! POINTER_TYPE_P (TREE_TYPE (val)))
5117 return false;
5119 /* Do not register always-false predicates.
5120 FIXME: this works around a limitation in fold() when dealing with
5121 enumerations. Given 'enum { N1, N2 } x;', fold will not
5122 fold 'if (x > N2)' to 'if (0)'. */
5123 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
5124 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
5126 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
5127 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
5129 if (comp_code == GT_EXPR
5130 && (!max
5131 || compare_values (val, max) == 0))
5132 return false;
5134 if (comp_code == LT_EXPR
5135 && (!min
5136 || compare_values (val, min) == 0))
5137 return false;
5139 *code_p = comp_code;
5140 *val_p = val;
5141 return true;
5144 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
5145 (otherwise return VAL). VAL and MASK must be zero-extended for
5146 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
5147 (to transform signed values into unsigned) and at the end xor
5148 SGNBIT back. */
5150 static wide_int
5151 masked_increment (const wide_int &val_in, const wide_int &mask,
5152 const wide_int &sgnbit, unsigned int prec)
5154 wide_int bit = wi::one (prec), res;
5155 unsigned int i;
5157 wide_int val = val_in ^ sgnbit;
5158 for (i = 0; i < prec; i++, bit += bit)
5160 res = mask;
5161 if ((res & bit) == 0)
5162 continue;
5163 res = bit - 1;
5164 res = (val + bit).and_not (res);
5165 res &= mask;
5166 if (wi::gtu_p (res, val))
5167 return res ^ sgnbit;
5169 return val ^ sgnbit;
5172 /* Try to register an edge assertion for SSA name NAME on edge E for
5173 the condition COND contributing to the conditional jump pointed to by BSI.
5174 Invert the condition COND if INVERT is true. */
5176 static void
5177 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
5178 enum tree_code cond_code,
5179 tree cond_op0, tree cond_op1, bool invert)
5181 tree val;
5182 enum tree_code comp_code;
5184 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5185 cond_op0,
5186 cond_op1,
5187 invert, &comp_code, &val))
5188 return;
5190 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5191 reachable from E. */
5192 if (live_on_edge (e, name))
5193 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
5195 /* In the case of NAME <= CST and NAME being defined as
5196 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5197 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5198 This catches range and anti-range tests. */
5199 if ((comp_code == LE_EXPR
5200 || comp_code == GT_EXPR)
5201 && TREE_CODE (val) == INTEGER_CST
5202 && TYPE_UNSIGNED (TREE_TYPE (val)))
5204 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5205 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
5207 /* Extract CST2 from the (optional) addition. */
5208 if (is_gimple_assign (def_stmt)
5209 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
5211 name2 = gimple_assign_rhs1 (def_stmt);
5212 cst2 = gimple_assign_rhs2 (def_stmt);
5213 if (TREE_CODE (name2) == SSA_NAME
5214 && TREE_CODE (cst2) == INTEGER_CST)
5215 def_stmt = SSA_NAME_DEF_STMT (name2);
5218 /* Extract NAME2 from the (optional) sign-changing cast. */
5219 if (gimple_assign_cast_p (def_stmt))
5221 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
5222 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5223 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
5224 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
5225 name3 = gimple_assign_rhs1 (def_stmt);
5228 /* If name3 is used later, create an ASSERT_EXPR for it. */
5229 if (name3 != NULL_TREE
5230 && TREE_CODE (name3) == SSA_NAME
5231 && (cst2 == NULL_TREE
5232 || TREE_CODE (cst2) == INTEGER_CST)
5233 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
5234 && live_on_edge (e, name3))
5236 tree tmp;
5238 /* Build an expression for the range test. */
5239 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
5240 if (cst2 != NULL_TREE)
5241 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5243 if (dump_file)
5245 fprintf (dump_file, "Adding assert for ");
5246 print_generic_expr (dump_file, name3, 0);
5247 fprintf (dump_file, " from ");
5248 print_generic_expr (dump_file, tmp, 0);
5249 fprintf (dump_file, "\n");
5252 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
5255 /* If name2 is used later, create an ASSERT_EXPR for it. */
5256 if (name2 != NULL_TREE
5257 && TREE_CODE (name2) == SSA_NAME
5258 && TREE_CODE (cst2) == INTEGER_CST
5259 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5260 && live_on_edge (e, name2))
5262 tree tmp;
5264 /* Build an expression for the range test. */
5265 tmp = name2;
5266 if (TREE_TYPE (name) != TREE_TYPE (name2))
5267 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
5268 if (cst2 != NULL_TREE)
5269 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5271 if (dump_file)
5273 fprintf (dump_file, "Adding assert for ");
5274 print_generic_expr (dump_file, name2, 0);
5275 fprintf (dump_file, " from ");
5276 print_generic_expr (dump_file, tmp, 0);
5277 fprintf (dump_file, "\n");
5280 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
5284 /* In the case of post-in/decrement tests like if (i++) ... and uses
5285 of the in/decremented value on the edge the extra name we want to
5286 assert for is not on the def chain of the name compared. Instead
5287 it is in the set of use stmts.
5288 Similar cases happen for conversions that were simplified through
5289 fold_{sign_changed,widened}_comparison. */
5290 if ((comp_code == NE_EXPR
5291 || comp_code == EQ_EXPR)
5292 && TREE_CODE (val) == INTEGER_CST)
5294 imm_use_iterator ui;
5295 gimple *use_stmt;
5296 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
5298 if (!is_gimple_assign (use_stmt))
5299 continue;
5301 /* Cut off to use-stmts that are dominating the predecessor. */
5302 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
5303 continue;
5305 tree name2 = gimple_assign_lhs (use_stmt);
5306 if (TREE_CODE (name2) != SSA_NAME
5307 || !live_on_edge (e, name2))
5308 continue;
5310 enum tree_code code = gimple_assign_rhs_code (use_stmt);
5311 tree cst;
5312 if (code == PLUS_EXPR
5313 || code == MINUS_EXPR)
5315 cst = gimple_assign_rhs2 (use_stmt);
5316 if (TREE_CODE (cst) != INTEGER_CST)
5317 continue;
5318 cst = int_const_binop (code, val, cst);
5320 else if (CONVERT_EXPR_CODE_P (code))
5322 /* For truncating conversions we cannot record
5323 an inequality. */
5324 if (comp_code == NE_EXPR
5325 && (TYPE_PRECISION (TREE_TYPE (name2))
5326 < TYPE_PRECISION (TREE_TYPE (name))))
5327 continue;
5328 cst = fold_convert (TREE_TYPE (name2), val);
5330 else
5331 continue;
5333 if (TREE_OVERFLOW_P (cst))
5334 cst = drop_tree_overflow (cst);
5335 register_new_assert_for (name2, name2, comp_code, cst,
5336 NULL, e, bsi);
5340 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5341 && TREE_CODE (val) == INTEGER_CST)
5343 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5344 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5345 tree val2 = NULL_TREE;
5346 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5347 wide_int mask = wi::zero (prec);
5348 unsigned int nprec = prec;
5349 enum tree_code rhs_code = ERROR_MARK;
5351 if (is_gimple_assign (def_stmt))
5352 rhs_code = gimple_assign_rhs_code (def_stmt);
5354 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
5355 assert that A != CST1 -+ CST2. */
5356 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
5357 && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
5359 tree op0 = gimple_assign_rhs1 (def_stmt);
5360 tree op1 = gimple_assign_rhs2 (def_stmt);
5361 if (TREE_CODE (op0) == SSA_NAME
5362 && TREE_CODE (op1) == INTEGER_CST
5363 && live_on_edge (e, op0))
5365 enum tree_code reverse_op = (rhs_code == PLUS_EXPR
5366 ? MINUS_EXPR : PLUS_EXPR);
5367 op1 = int_const_binop (reverse_op, val, op1);
5368 if (TREE_OVERFLOW (op1))
5369 op1 = drop_tree_overflow (op1);
5370 register_new_assert_for (op0, op0, comp_code, op1, NULL, e, bsi);
5374 /* Add asserts for NAME cmp CST and NAME being defined
5375 as NAME = (int) NAME2. */
5376 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5377 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5378 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5379 && gimple_assign_cast_p (def_stmt))
5381 name2 = gimple_assign_rhs1 (def_stmt);
5382 if (CONVERT_EXPR_CODE_P (rhs_code)
5383 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5384 && TYPE_UNSIGNED (TREE_TYPE (name2))
5385 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5386 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5387 || !tree_int_cst_equal (val,
5388 TYPE_MIN_VALUE (TREE_TYPE (val))))
5389 && live_on_edge (e, name2))
5391 tree tmp, cst;
5392 enum tree_code new_comp_code = comp_code;
5394 cst = fold_convert (TREE_TYPE (name2),
5395 TYPE_MIN_VALUE (TREE_TYPE (val)));
5396 /* Build an expression for the range test. */
5397 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5398 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5399 fold_convert (TREE_TYPE (name2), val));
5400 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5402 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5403 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5404 build_int_cst (TREE_TYPE (name2), 1));
5407 if (dump_file)
5409 fprintf (dump_file, "Adding assert for ");
5410 print_generic_expr (dump_file, name2, 0);
5411 fprintf (dump_file, " from ");
5412 print_generic_expr (dump_file, tmp, 0);
5413 fprintf (dump_file, "\n");
5416 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5417 e, bsi);
5421 /* Add asserts for NAME cmp CST and NAME being defined as
5422 NAME = NAME2 >> CST2.
5424 Extract CST2 from the right shift. */
5425 if (rhs_code == RSHIFT_EXPR)
5427 name2 = gimple_assign_rhs1 (def_stmt);
5428 cst2 = gimple_assign_rhs2 (def_stmt);
5429 if (TREE_CODE (name2) == SSA_NAME
5430 && tree_fits_uhwi_p (cst2)
5431 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5432 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5433 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5434 && live_on_edge (e, name2))
5436 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
5437 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5440 if (val2 != NULL_TREE
5441 && TREE_CODE (val2) == INTEGER_CST
5442 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5443 TREE_TYPE (val),
5444 val2, cst2), val))
5446 enum tree_code new_comp_code = comp_code;
5447 tree tmp, new_val;
5449 tmp = name2;
5450 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5452 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5454 tree type = build_nonstandard_integer_type (prec, 1);
5455 tmp = build1 (NOP_EXPR, type, name2);
5456 val2 = fold_convert (type, val2);
5458 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5459 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
5460 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5462 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5464 wide_int minval
5465 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5466 new_val = val2;
5467 if (minval == new_val)
5468 new_val = NULL_TREE;
5470 else
5472 wide_int maxval
5473 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5474 mask |= val2;
5475 if (mask == maxval)
5476 new_val = NULL_TREE;
5477 else
5478 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
5481 if (new_val)
5483 if (dump_file)
5485 fprintf (dump_file, "Adding assert for ");
5486 print_generic_expr (dump_file, name2, 0);
5487 fprintf (dump_file, " from ");
5488 print_generic_expr (dump_file, tmp, 0);
5489 fprintf (dump_file, "\n");
5492 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5493 NULL, e, bsi);
5497 /* Add asserts for NAME cmp CST and NAME being defined as
5498 NAME = NAME2 & CST2.
5500 Extract CST2 from the and.
5502 Also handle
5503 NAME = (unsigned) NAME2;
5504 casts where NAME's type is unsigned and has smaller precision
5505 than NAME2's type as if it was NAME = NAME2 & MASK. */
5506 names[0] = NULL_TREE;
5507 names[1] = NULL_TREE;
5508 cst2 = NULL_TREE;
5509 if (rhs_code == BIT_AND_EXPR
5510 || (CONVERT_EXPR_CODE_P (rhs_code)
5511 && INTEGRAL_TYPE_P (TREE_TYPE (val))
5512 && TYPE_UNSIGNED (TREE_TYPE (val))
5513 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5514 > prec))
5516 name2 = gimple_assign_rhs1 (def_stmt);
5517 if (rhs_code == BIT_AND_EXPR)
5518 cst2 = gimple_assign_rhs2 (def_stmt);
5519 else
5521 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5522 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5524 if (TREE_CODE (name2) == SSA_NAME
5525 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5526 && TREE_CODE (cst2) == INTEGER_CST
5527 && !integer_zerop (cst2)
5528 && (nprec > 1
5529 || TYPE_UNSIGNED (TREE_TYPE (val))))
5531 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
5532 if (gimple_assign_cast_p (def_stmt2))
5534 names[1] = gimple_assign_rhs1 (def_stmt2);
5535 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5536 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5537 || (TYPE_PRECISION (TREE_TYPE (name2))
5538 != TYPE_PRECISION (TREE_TYPE (names[1])))
5539 || !live_on_edge (e, names[1]))
5540 names[1] = NULL_TREE;
5542 if (live_on_edge (e, name2))
5543 names[0] = name2;
5546 if (names[0] || names[1])
5548 wide_int minv, maxv, valv, cst2v;
5549 wide_int tem, sgnbit;
5550 bool valid_p = false, valn, cst2n;
5551 enum tree_code ccode = comp_code;
5553 valv = wide_int::from (val, nprec, UNSIGNED);
5554 cst2v = wide_int::from (cst2, nprec, UNSIGNED);
5555 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5556 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
5557 /* If CST2 doesn't have most significant bit set,
5558 but VAL is negative, we have comparison like
5559 if ((x & 0x123) > -4) (always true). Just give up. */
5560 if (!cst2n && valn)
5561 ccode = ERROR_MARK;
5562 if (cst2n)
5563 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5564 else
5565 sgnbit = wi::zero (nprec);
5566 minv = valv & cst2v;
5567 switch (ccode)
5569 case EQ_EXPR:
5570 /* Minimum unsigned value for equality is VAL & CST2
5571 (should be equal to VAL, otherwise we probably should
5572 have folded the comparison into false) and
5573 maximum unsigned value is VAL | ~CST2. */
5574 maxv = valv | ~cst2v;
5575 valid_p = true;
5576 break;
5578 case NE_EXPR:
5579 tem = valv | ~cst2v;
5580 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5581 if (valv == 0)
5583 cst2n = false;
5584 sgnbit = wi::zero (nprec);
5585 goto gt_expr;
5587 /* If (VAL | ~CST2) is all ones, handle it as
5588 (X & CST2) < VAL. */
5589 if (tem == -1)
5591 cst2n = false;
5592 valn = false;
5593 sgnbit = wi::zero (nprec);
5594 goto lt_expr;
5596 if (!cst2n && wi::neg_p (cst2v))
5597 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5598 if (sgnbit != 0)
5600 if (valv == sgnbit)
5602 cst2n = true;
5603 valn = true;
5604 goto gt_expr;
5606 if (tem == wi::mask (nprec - 1, false, nprec))
5608 cst2n = true;
5609 goto lt_expr;
5611 if (!cst2n)
5612 sgnbit = wi::zero (nprec);
5614 break;
5616 case GE_EXPR:
5617 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5618 is VAL and maximum unsigned value is ~0. For signed
5619 comparison, if CST2 doesn't have most significant bit
5620 set, handle it similarly. If CST2 has MSB set,
5621 the minimum is the same, and maximum is ~0U/2. */
5622 if (minv != valv)
5624 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5625 VAL. */
5626 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5627 if (minv == valv)
5628 break;
5630 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5631 valid_p = true;
5632 break;
5634 case GT_EXPR:
5635 gt_expr:
5636 /* Find out smallest MINV where MINV > VAL
5637 && (MINV & CST2) == MINV, if any. If VAL is signed and
5638 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5639 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5640 if (minv == valv)
5641 break;
5642 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5643 valid_p = true;
5644 break;
5646 case LE_EXPR:
5647 /* Minimum unsigned value for <= is 0 and maximum
5648 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5649 Otherwise, find smallest VAL2 where VAL2 > VAL
5650 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5651 as maximum.
5652 For signed comparison, if CST2 doesn't have most
5653 significant bit set, handle it similarly. If CST2 has
5654 MSB set, the maximum is the same and minimum is INT_MIN. */
5655 if (minv == valv)
5656 maxv = valv;
5657 else
5659 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5660 if (maxv == valv)
5661 break;
5662 maxv -= 1;
5664 maxv |= ~cst2v;
5665 minv = sgnbit;
5666 valid_p = true;
5667 break;
5669 case LT_EXPR:
5670 lt_expr:
5671 /* Minimum unsigned value for < is 0 and maximum
5672 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5673 Otherwise, find smallest VAL2 where VAL2 > VAL
5674 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5675 as maximum.
5676 For signed comparison, if CST2 doesn't have most
5677 significant bit set, handle it similarly. If CST2 has
5678 MSB set, the maximum is the same and minimum is INT_MIN. */
5679 if (minv == valv)
5681 if (valv == sgnbit)
5682 break;
5683 maxv = valv;
5685 else
5687 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5688 if (maxv == valv)
5689 break;
5691 maxv -= 1;
5692 maxv |= ~cst2v;
5693 minv = sgnbit;
5694 valid_p = true;
5695 break;
5697 default:
5698 break;
5700 if (valid_p
5701 && (maxv - minv) != -1)
5703 tree tmp, new_val, type;
5704 int i;
5706 for (i = 0; i < 2; i++)
5707 if (names[i])
5709 wide_int maxv2 = maxv;
5710 tmp = names[i];
5711 type = TREE_TYPE (names[i]);
5712 if (!TYPE_UNSIGNED (type))
5714 type = build_nonstandard_integer_type (nprec, 1);
5715 tmp = build1 (NOP_EXPR, type, names[i]);
5717 if (minv != 0)
5719 tmp = build2 (PLUS_EXPR, type, tmp,
5720 wide_int_to_tree (type, -minv));
5721 maxv2 = maxv - minv;
5723 new_val = wide_int_to_tree (type, maxv2);
5725 if (dump_file)
5727 fprintf (dump_file, "Adding assert for ");
5728 print_generic_expr (dump_file, names[i], 0);
5729 fprintf (dump_file, " from ");
5730 print_generic_expr (dump_file, tmp, 0);
5731 fprintf (dump_file, "\n");
5734 register_new_assert_for (names[i], tmp, LE_EXPR,
5735 new_val, NULL, e, bsi);
5742 /* OP is an operand of a truth value expression which is known to have
5743 a particular value. Register any asserts for OP and for any
5744 operands in OP's defining statement.
5746 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5747 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5749 static void
5750 register_edge_assert_for_1 (tree op, enum tree_code code,
5751 edge e, gimple_stmt_iterator bsi)
5753 gimple *op_def;
5754 tree val;
5755 enum tree_code rhs_code;
5757 /* We only care about SSA_NAMEs. */
5758 if (TREE_CODE (op) != SSA_NAME)
5759 return;
5761 /* We know that OP will have a zero or nonzero value. If OP is used
5762 more than once go ahead and register an assert for OP. */
5763 if (live_on_edge (e, op))
5765 val = build_int_cst (TREE_TYPE (op), 0);
5766 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5769 /* Now look at how OP is set. If it's set from a comparison,
5770 a truth operation or some bit operations, then we may be able
5771 to register information about the operands of that assignment. */
5772 op_def = SSA_NAME_DEF_STMT (op);
5773 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5774 return;
5776 rhs_code = gimple_assign_rhs_code (op_def);
5778 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5780 bool invert = (code == EQ_EXPR ? true : false);
5781 tree op0 = gimple_assign_rhs1 (op_def);
5782 tree op1 = gimple_assign_rhs2 (op_def);
5784 if (TREE_CODE (op0) == SSA_NAME)
5785 register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1, invert);
5786 if (TREE_CODE (op1) == SSA_NAME)
5787 register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1, invert);
5789 else if ((code == NE_EXPR
5790 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5791 || (code == EQ_EXPR
5792 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5794 /* Recurse on each operand. */
5795 tree op0 = gimple_assign_rhs1 (op_def);
5796 tree op1 = gimple_assign_rhs2 (op_def);
5797 if (TREE_CODE (op0) == SSA_NAME
5798 && has_single_use (op0))
5799 register_edge_assert_for_1 (op0, code, e, bsi);
5800 if (TREE_CODE (op1) == SSA_NAME
5801 && has_single_use (op1))
5802 register_edge_assert_for_1 (op1, code, e, bsi);
5804 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5805 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5807 /* Recurse, flipping CODE. */
5808 code = invert_tree_comparison (code, false);
5809 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5811 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5813 /* Recurse through the copy. */
5814 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5816 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5818 /* Recurse through the type conversion, unless it is a narrowing
5819 conversion or conversion from non-integral type. */
5820 tree rhs = gimple_assign_rhs1 (op_def);
5821 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5822 && (TYPE_PRECISION (TREE_TYPE (rhs))
5823 <= TYPE_PRECISION (TREE_TYPE (op))))
5824 register_edge_assert_for_1 (rhs, code, e, bsi);
5828 /* Try to register an edge assertion for SSA name NAME on edge E for
5829 the condition COND contributing to the conditional jump pointed to by
5830 SI. */
5832 static void
5833 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5834 enum tree_code cond_code, tree cond_op0,
5835 tree cond_op1)
5837 tree val;
5838 enum tree_code comp_code;
5839 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5841 /* Do not attempt to infer anything in names that flow through
5842 abnormal edges. */
5843 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5844 return;
5846 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5847 cond_op0, cond_op1,
5848 is_else_edge,
5849 &comp_code, &val))
5850 return;
5852 /* Register ASSERT_EXPRs for name. */
5853 register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5854 cond_op1, is_else_edge);
5857 /* If COND is effectively an equality test of an SSA_NAME against
5858 the value zero or one, then we may be able to assert values
5859 for SSA_NAMEs which flow into COND. */
5861 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5862 statement of NAME we can assert both operands of the BIT_AND_EXPR
5863 have nonzero value. */
5864 if (((comp_code == EQ_EXPR && integer_onep (val))
5865 || (comp_code == NE_EXPR && integer_zerop (val))))
5867 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5869 if (is_gimple_assign (def_stmt)
5870 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5872 tree op0 = gimple_assign_rhs1 (def_stmt);
5873 tree op1 = gimple_assign_rhs2 (def_stmt);
5874 register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5875 register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5879 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5880 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5881 have zero value. */
5882 if (((comp_code == EQ_EXPR && integer_zerop (val))
5883 || (comp_code == NE_EXPR && integer_onep (val))))
5885 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5887 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5888 necessarily zero value, or if type-precision is one. */
5889 if (is_gimple_assign (def_stmt)
5890 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5891 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5892 || comp_code == EQ_EXPR)))
5894 tree op0 = gimple_assign_rhs1 (def_stmt);
5895 tree op1 = gimple_assign_rhs2 (def_stmt);
5896 register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5897 register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5903 /* Determine whether the outgoing edges of BB should receive an
5904 ASSERT_EXPR for each of the operands of BB's LAST statement.
5905 The last statement of BB must be a COND_EXPR.
5907 If any of the sub-graphs rooted at BB have an interesting use of
5908 the predicate operands, an assert location node is added to the
5909 list of assertions for the corresponding operands. */
5911 static void
5912 find_conditional_asserts (basic_block bb, gcond *last)
5914 gimple_stmt_iterator bsi;
5915 tree op;
5916 edge_iterator ei;
5917 edge e;
5918 ssa_op_iter iter;
5920 bsi = gsi_for_stmt (last);
5922 /* Look for uses of the operands in each of the sub-graphs
5923 rooted at BB. We need to check each of the outgoing edges
5924 separately, so that we know what kind of ASSERT_EXPR to
5925 insert. */
5926 FOR_EACH_EDGE (e, ei, bb->succs)
5928 if (e->dest == bb)
5929 continue;
5931 /* Register the necessary assertions for each operand in the
5932 conditional predicate. */
5933 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5934 register_edge_assert_for (op, e, bsi,
5935 gimple_cond_code (last),
5936 gimple_cond_lhs (last),
5937 gimple_cond_rhs (last));
5941 struct case_info
5943 tree expr;
5944 basic_block bb;
5947 /* Compare two case labels sorting first by the destination bb index
5948 and then by the case value. */
5950 static int
5951 compare_case_labels (const void *p1, const void *p2)
5953 const struct case_info *ci1 = (const struct case_info *) p1;
5954 const struct case_info *ci2 = (const struct case_info *) p2;
5955 int idx1 = ci1->bb->index;
5956 int idx2 = ci2->bb->index;
5958 if (idx1 < idx2)
5959 return -1;
5960 else if (idx1 == idx2)
5962 /* Make sure the default label is first in a group. */
5963 if (!CASE_LOW (ci1->expr))
5964 return -1;
5965 else if (!CASE_LOW (ci2->expr))
5966 return 1;
5967 else
5968 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5969 CASE_LOW (ci2->expr));
5971 else
5972 return 1;
5975 /* Determine whether the outgoing edges of BB should receive an
5976 ASSERT_EXPR for each of the operands of BB's LAST statement.
5977 The last statement of BB must be a SWITCH_EXPR.
5979 If any of the sub-graphs rooted at BB have an interesting use of
5980 the predicate operands, an assert location node is added to the
5981 list of assertions for the corresponding operands. */
5983 static void
5984 find_switch_asserts (basic_block bb, gswitch *last)
5986 gimple_stmt_iterator bsi;
5987 tree op;
5988 edge e;
5989 struct case_info *ci;
5990 size_t n = gimple_switch_num_labels (last);
5991 #if GCC_VERSION >= 4000
5992 unsigned int idx;
5993 #else
5994 /* Work around GCC 3.4 bug (PR 37086). */
5995 volatile unsigned int idx;
5996 #endif
5998 bsi = gsi_for_stmt (last);
5999 op = gimple_switch_index (last);
6000 if (TREE_CODE (op) != SSA_NAME)
6001 return;
6003 /* Build a vector of case labels sorted by destination label. */
6004 ci = XNEWVEC (struct case_info, n);
6005 for (idx = 0; idx < n; ++idx)
6007 ci[idx].expr = gimple_switch_label (last, idx);
6008 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
6010 edge default_edge = find_edge (bb, ci[0].bb);
6011 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
6013 for (idx = 0; idx < n; ++idx)
6015 tree min, max;
6016 tree cl = ci[idx].expr;
6017 basic_block cbb = ci[idx].bb;
6019 min = CASE_LOW (cl);
6020 max = CASE_HIGH (cl);
6022 /* If there are multiple case labels with the same destination
6023 we need to combine them to a single value range for the edge. */
6024 if (idx + 1 < n && cbb == ci[idx + 1].bb)
6026 /* Skip labels until the last of the group. */
6027 do {
6028 ++idx;
6029 } while (idx < n && cbb == ci[idx].bb);
6030 --idx;
6032 /* Pick up the maximum of the case label range. */
6033 if (CASE_HIGH (ci[idx].expr))
6034 max = CASE_HIGH (ci[idx].expr);
6035 else
6036 max = CASE_LOW (ci[idx].expr);
6039 /* Can't extract a useful assertion out of a range that includes the
6040 default label. */
6041 if (min == NULL_TREE)
6042 continue;
6044 /* Find the edge to register the assert expr on. */
6045 e = find_edge (bb, cbb);
6047 /* Register the necessary assertions for the operand in the
6048 SWITCH_EXPR. */
6049 register_edge_assert_for (op, e, bsi,
6050 max ? GE_EXPR : EQ_EXPR,
6051 op, fold_convert (TREE_TYPE (op), min));
6052 if (max)
6053 register_edge_assert_for (op, e, bsi, LE_EXPR, op,
6054 fold_convert (TREE_TYPE (op), max));
6057 XDELETEVEC (ci);
6059 if (!live_on_edge (default_edge, op))
6060 return;
6062 /* Now register along the default label assertions that correspond to the
6063 anti-range of each label. */
6064 int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS);
6065 if (insertion_limit == 0)
6066 return;
6068 /* We can't do this if the default case shares a label with another case. */
6069 tree default_cl = gimple_switch_default_label (last);
6070 for (idx = 1; idx < n; idx++)
6072 tree min, max;
6073 tree cl = gimple_switch_label (last, idx);
6074 if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
6075 continue;
6077 min = CASE_LOW (cl);
6078 max = CASE_HIGH (cl);
6080 /* Combine contiguous case ranges to reduce the number of assertions
6081 to insert. */
6082 for (idx = idx + 1; idx < n; idx++)
6084 tree next_min, next_max;
6085 tree next_cl = gimple_switch_label (last, idx);
6086 if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
6087 break;
6089 next_min = CASE_LOW (next_cl);
6090 next_max = CASE_HIGH (next_cl);
6092 wide_int difference = wi::sub (next_min, max ? max : min);
6093 if (wi::eq_p (difference, 1))
6094 max = next_max ? next_max : next_min;
6095 else
6096 break;
6098 idx--;
6100 if (max == NULL_TREE)
6102 /* Register the assertion OP != MIN. */
6103 min = fold_convert (TREE_TYPE (op), min);
6104 register_edge_assert_for (op, default_edge, bsi, NE_EXPR, op, min);
6106 else
6108 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
6109 which will give OP the anti-range ~[MIN,MAX]. */
6110 tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
6111 min = fold_convert (TREE_TYPE (uop), min);
6112 max = fold_convert (TREE_TYPE (uop), max);
6114 tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
6115 tree rhs = int_const_binop (MINUS_EXPR, max, min);
6116 register_new_assert_for (op, lhs, GT_EXPR, rhs,
6117 NULL, default_edge, bsi);
6120 if (--insertion_limit == 0)
6121 break;
6126 /* Traverse all the statements in block BB looking for statements that
6127 may generate useful assertions for the SSA names in their operand.
6128 If a statement produces a useful assertion A for name N_i, then the
6129 list of assertions already generated for N_i is scanned to
6130 determine if A is actually needed.
6132 If N_i already had the assertion A at a location dominating the
6133 current location, then nothing needs to be done. Otherwise, the
6134 new location for A is recorded instead.
6136 1- For every statement S in BB, all the variables used by S are
6137 added to bitmap FOUND_IN_SUBGRAPH.
6139 2- If statement S uses an operand N in a way that exposes a known
6140 value range for N, then if N was not already generated by an
6141 ASSERT_EXPR, create a new assert location for N. For instance,
6142 if N is a pointer and the statement dereferences it, we can
6143 assume that N is not NULL.
6145 3- COND_EXPRs are a special case of #2. We can derive range
6146 information from the predicate but need to insert different
6147 ASSERT_EXPRs for each of the sub-graphs rooted at the
6148 conditional block. If the last statement of BB is a conditional
6149 expression of the form 'X op Y', then
6151 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6153 b) If the conditional is the only entry point to the sub-graph
6154 corresponding to the THEN_CLAUSE, recurse into it. On
6155 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6156 an ASSERT_EXPR is added for the corresponding variable.
6158 c) Repeat step (b) on the ELSE_CLAUSE.
6160 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6162 For instance,
6164 if (a == 9)
6165 b = a;
6166 else
6167 b = c + 1;
6169 In this case, an assertion on the THEN clause is useful to
6170 determine that 'a' is always 9 on that edge. However, an assertion
6171 on the ELSE clause would be unnecessary.
6173 4- If BB does not end in a conditional expression, then we recurse
6174 into BB's dominator children.
6176 At the end of the recursive traversal, every SSA name will have a
6177 list of locations where ASSERT_EXPRs should be added. When a new
6178 location for name N is found, it is registered by calling
6179 register_new_assert_for. That function keeps track of all the
6180 registered assertions to prevent adding unnecessary assertions.
6181 For instance, if a pointer P_4 is dereferenced more than once in a
6182 dominator tree, only the location dominating all the dereference of
6183 P_4 will receive an ASSERT_EXPR. */
6185 static void
6186 find_assert_locations_1 (basic_block bb, sbitmap live)
6188 gimple *last;
6190 last = last_stmt (bb);
6192 /* If BB's last statement is a conditional statement involving integer
6193 operands, determine if we need to add ASSERT_EXPRs. */
6194 if (last
6195 && gimple_code (last) == GIMPLE_COND
6196 && !fp_predicate (last)
6197 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6198 find_conditional_asserts (bb, as_a <gcond *> (last));
6200 /* If BB's last statement is a switch statement involving integer
6201 operands, determine if we need to add ASSERT_EXPRs. */
6202 if (last
6203 && gimple_code (last) == GIMPLE_SWITCH
6204 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6205 find_switch_asserts (bb, as_a <gswitch *> (last));
6207 /* Traverse all the statements in BB marking used names and looking
6208 for statements that may infer assertions for their used operands. */
6209 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
6210 gsi_prev (&si))
6212 gimple *stmt;
6213 tree op;
6214 ssa_op_iter i;
6216 stmt = gsi_stmt (si);
6218 if (is_gimple_debug (stmt))
6219 continue;
6221 /* See if we can derive an assertion for any of STMT's operands. */
6222 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6224 tree value;
6225 enum tree_code comp_code;
6227 /* If op is not live beyond this stmt, do not bother to insert
6228 asserts for it. */
6229 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
6230 continue;
6232 /* If OP is used in such a way that we can infer a value
6233 range for it, and we don't find a previous assertion for
6234 it, create a new assertion location node for OP. */
6235 if (infer_value_range (stmt, op, &comp_code, &value))
6237 /* If we are able to infer a nonzero value range for OP,
6238 then walk backwards through the use-def chain to see if OP
6239 was set via a typecast.
6241 If so, then we can also infer a nonzero value range
6242 for the operand of the NOP_EXPR. */
6243 if (comp_code == NE_EXPR && integer_zerop (value))
6245 tree t = op;
6246 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
6248 while (is_gimple_assign (def_stmt)
6249 && CONVERT_EXPR_CODE_P
6250 (gimple_assign_rhs_code (def_stmt))
6251 && TREE_CODE
6252 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
6253 && POINTER_TYPE_P
6254 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
6256 t = gimple_assign_rhs1 (def_stmt);
6257 def_stmt = SSA_NAME_DEF_STMT (t);
6259 /* Note we want to register the assert for the
6260 operand of the NOP_EXPR after SI, not after the
6261 conversion. */
6262 if (bitmap_bit_p (live, SSA_NAME_VERSION (t)))
6263 register_new_assert_for (t, t, comp_code, value,
6264 bb, NULL, si);
6268 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
6272 /* Update live. */
6273 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6274 bitmap_set_bit (live, SSA_NAME_VERSION (op));
6275 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
6276 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
6279 /* Traverse all PHI nodes in BB, updating live. */
6280 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6281 gsi_next (&si))
6283 use_operand_p arg_p;
6284 ssa_op_iter i;
6285 gphi *phi = si.phi ();
6286 tree res = gimple_phi_result (phi);
6288 if (virtual_operand_p (res))
6289 continue;
6291 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
6293 tree arg = USE_FROM_PTR (arg_p);
6294 if (TREE_CODE (arg) == SSA_NAME)
6295 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
6298 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
6302 /* Do an RPO walk over the function computing SSA name liveness
6303 on-the-fly and deciding on assert expressions to insert. */
6305 static void
6306 find_assert_locations (void)
6308 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6309 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6310 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6311 int rpo_cnt, i;
6313 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
6314 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
6315 for (i = 0; i < rpo_cnt; ++i)
6316 bb_rpo[rpo[i]] = i;
6318 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6319 the order we compute liveness and insert asserts we otherwise
6320 fail to insert asserts into the loop latch. */
6321 loop_p loop;
6322 FOR_EACH_LOOP (loop, 0)
6324 i = loop->latch->index;
6325 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
6326 for (gphi_iterator gsi = gsi_start_phis (loop->header);
6327 !gsi_end_p (gsi); gsi_next (&gsi))
6329 gphi *phi = gsi.phi ();
6330 if (virtual_operand_p (gimple_phi_result (phi)))
6331 continue;
6332 tree arg = gimple_phi_arg_def (phi, j);
6333 if (TREE_CODE (arg) == SSA_NAME)
6335 if (live[i] == NULL)
6337 live[i] = sbitmap_alloc (num_ssa_names);
6338 bitmap_clear (live[i]);
6340 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
6345 for (i = rpo_cnt - 1; i >= 0; --i)
6347 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
6348 edge e;
6349 edge_iterator ei;
6351 if (!live[rpo[i]])
6353 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
6354 bitmap_clear (live[rpo[i]]);
6357 /* Process BB and update the live information with uses in
6358 this block. */
6359 find_assert_locations_1 (bb, live[rpo[i]]);
6361 /* Merge liveness into the predecessor blocks and free it. */
6362 if (!bitmap_empty_p (live[rpo[i]]))
6364 int pred_rpo = i;
6365 FOR_EACH_EDGE (e, ei, bb->preds)
6367 int pred = e->src->index;
6368 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6369 continue;
6371 if (!live[pred])
6373 live[pred] = sbitmap_alloc (num_ssa_names);
6374 bitmap_clear (live[pred]);
6376 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6378 if (bb_rpo[pred] < pred_rpo)
6379 pred_rpo = bb_rpo[pred];
6382 /* Record the RPO number of the last visited block that needs
6383 live information from this block. */
6384 last_rpo[rpo[i]] = pred_rpo;
6386 else
6388 sbitmap_free (live[rpo[i]]);
6389 live[rpo[i]] = NULL;
6392 /* We can free all successors live bitmaps if all their
6393 predecessors have been visited already. */
6394 FOR_EACH_EDGE (e, ei, bb->succs)
6395 if (last_rpo[e->dest->index] == i
6396 && live[e->dest->index])
6398 sbitmap_free (live[e->dest->index]);
6399 live[e->dest->index] = NULL;
6403 XDELETEVEC (rpo);
6404 XDELETEVEC (bb_rpo);
6405 XDELETEVEC (last_rpo);
6406 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6407 if (live[i])
6408 sbitmap_free (live[i]);
6409 XDELETEVEC (live);
6412 /* Create an ASSERT_EXPR for NAME and insert it in the location
6413 indicated by LOC. Return true if we made any edge insertions. */
6415 static bool
6416 process_assert_insertions_for (tree name, assert_locus *loc)
6418 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6419 gimple *stmt;
6420 tree cond;
6421 gimple *assert_stmt;
6422 edge_iterator ei;
6423 edge e;
6425 /* If we have X <=> X do not insert an assert expr for that. */
6426 if (loc->expr == loc->val)
6427 return false;
6429 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6430 assert_stmt = build_assert_expr_for (cond, name);
6431 if (loc->e)
6433 /* We have been asked to insert the assertion on an edge. This
6434 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6435 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6436 || (gimple_code (gsi_stmt (loc->si))
6437 == GIMPLE_SWITCH));
6439 gsi_insert_on_edge (loc->e, assert_stmt);
6440 return true;
6443 /* If the stmt iterator points at the end then this is an insertion
6444 at the beginning of a block. */
6445 if (gsi_end_p (loc->si))
6447 gimple_stmt_iterator si = gsi_after_labels (loc->bb);
6448 gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
6449 return false;
6452 /* Otherwise, we can insert right after LOC->SI iff the
6453 statement must not be the last statement in the block. */
6454 stmt = gsi_stmt (loc->si);
6455 if (!stmt_ends_bb_p (stmt))
6457 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6458 return false;
6461 /* If STMT must be the last statement in BB, we can only insert new
6462 assertions on the non-abnormal edge out of BB. Note that since
6463 STMT is not control flow, there may only be one non-abnormal/eh edge
6464 out of BB. */
6465 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6466 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
6468 gsi_insert_on_edge (e, assert_stmt);
6469 return true;
6472 gcc_unreachable ();
6476 /* Process all the insertions registered for every name N_i registered
6477 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6478 found in ASSERTS_FOR[i]. */
6480 static void
6481 process_assert_insertions (void)
6483 unsigned i;
6484 bitmap_iterator bi;
6485 bool update_edges_p = false;
6486 int num_asserts = 0;
6488 if (dump_file && (dump_flags & TDF_DETAILS))
6489 dump_all_asserts (dump_file);
6491 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6493 assert_locus *loc = asserts_for[i];
6494 gcc_assert (loc);
6496 while (loc)
6498 assert_locus *next = loc->next;
6499 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6500 free (loc);
6501 loc = next;
6502 num_asserts++;
6506 if (update_edges_p)
6507 gsi_commit_edge_inserts ();
6509 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6510 num_asserts);
6514 /* Traverse the flowgraph looking for conditional jumps to insert range
6515 expressions. These range expressions are meant to provide information
6516 to optimizations that need to reason in terms of value ranges. They
6517 will not be expanded into RTL. For instance, given:
6519 x = ...
6520 y = ...
6521 if (x < y)
6522 y = x - 2;
6523 else
6524 x = y + 3;
6526 this pass will transform the code into:
6528 x = ...
6529 y = ...
6530 if (x < y)
6532 x = ASSERT_EXPR <x, x < y>
6533 y = x - 2
6535 else
6537 y = ASSERT_EXPR <y, x >= y>
6538 x = y + 3
6541 The idea is that once copy and constant propagation have run, other
6542 optimizations will be able to determine what ranges of values can 'x'
6543 take in different paths of the code, simply by checking the reaching
6544 definition of 'x'. */
6546 static void
6547 insert_range_assertions (void)
6549 need_assert_for = BITMAP_ALLOC (NULL);
6550 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
6552 calculate_dominance_info (CDI_DOMINATORS);
6554 find_assert_locations ();
6555 if (!bitmap_empty_p (need_assert_for))
6557 process_assert_insertions ();
6558 update_ssa (TODO_update_ssa_no_phi);
6561 if (dump_file && (dump_flags & TDF_DETAILS))
6563 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6564 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6567 free (asserts_for);
6568 BITMAP_FREE (need_assert_for);
6571 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6572 and "struct" hacks. If VRP can determine that the
6573 array subscript is a constant, check if it is outside valid
6574 range. If the array subscript is a RANGE, warn if it is
6575 non-overlapping with valid range.
6576 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6578 static void
6579 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6581 value_range *vr = NULL;
6582 tree low_sub, up_sub;
6583 tree low_bound, up_bound, up_bound_p1;
6585 if (TREE_NO_WARNING (ref))
6586 return;
6588 low_sub = up_sub = TREE_OPERAND (ref, 1);
6589 up_bound = array_ref_up_bound (ref);
6591 /* Can not check flexible arrays. */
6592 if (!up_bound
6593 || TREE_CODE (up_bound) != INTEGER_CST)
6594 return;
6596 /* Accesses to trailing arrays via pointers may access storage
6597 beyond the types array bounds. */
6598 if (warn_array_bounds < 2
6599 && array_at_struct_end_p (ref))
6600 return;
6602 low_bound = array_ref_low_bound (ref);
6603 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
6604 build_int_cst (TREE_TYPE (up_bound), 1));
6606 /* Empty array. */
6607 if (tree_int_cst_equal (low_bound, up_bound_p1))
6609 warning_at (location, OPT_Warray_bounds,
6610 "array subscript is above array bounds");
6611 TREE_NO_WARNING (ref) = 1;
6614 if (TREE_CODE (low_sub) == SSA_NAME)
6616 vr = get_value_range (low_sub);
6617 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6619 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6620 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6624 if (vr && vr->type == VR_ANTI_RANGE)
6626 if (TREE_CODE (up_sub) == INTEGER_CST
6627 && (ignore_off_by_one
6628 ? tree_int_cst_lt (up_bound, up_sub)
6629 : tree_int_cst_le (up_bound, up_sub))
6630 && TREE_CODE (low_sub) == INTEGER_CST
6631 && tree_int_cst_le (low_sub, low_bound))
6633 warning_at (location, OPT_Warray_bounds,
6634 "array subscript is outside array bounds");
6635 TREE_NO_WARNING (ref) = 1;
6638 else if (TREE_CODE (up_sub) == INTEGER_CST
6639 && (ignore_off_by_one
6640 ? !tree_int_cst_le (up_sub, up_bound_p1)
6641 : !tree_int_cst_le (up_sub, up_bound)))
6643 if (dump_file && (dump_flags & TDF_DETAILS))
6645 fprintf (dump_file, "Array bound warning for ");
6646 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6647 fprintf (dump_file, "\n");
6649 warning_at (location, OPT_Warray_bounds,
6650 "array subscript is above array bounds");
6651 TREE_NO_WARNING (ref) = 1;
6653 else if (TREE_CODE (low_sub) == INTEGER_CST
6654 && tree_int_cst_lt (low_sub, low_bound))
6656 if (dump_file && (dump_flags & TDF_DETAILS))
6658 fprintf (dump_file, "Array bound warning for ");
6659 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6660 fprintf (dump_file, "\n");
6662 warning_at (location, OPT_Warray_bounds,
6663 "array subscript is below array bounds");
6664 TREE_NO_WARNING (ref) = 1;
6668 /* Searches if the expr T, located at LOCATION computes
6669 address of an ARRAY_REF, and call check_array_ref on it. */
6671 static void
6672 search_for_addr_array (tree t, location_t location)
6674 /* Check each ARRAY_REFs in the reference chain. */
6677 if (TREE_CODE (t) == ARRAY_REF)
6678 check_array_ref (location, t, true /*ignore_off_by_one*/);
6680 t = TREE_OPERAND (t, 0);
6682 while (handled_component_p (t));
6684 if (TREE_CODE (t) == MEM_REF
6685 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6686 && !TREE_NO_WARNING (t))
6688 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6689 tree low_bound, up_bound, el_sz;
6690 offset_int idx;
6691 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6692 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6693 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6694 return;
6696 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6697 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6698 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6699 if (!low_bound
6700 || TREE_CODE (low_bound) != INTEGER_CST
6701 || !up_bound
6702 || TREE_CODE (up_bound) != INTEGER_CST
6703 || !el_sz
6704 || TREE_CODE (el_sz) != INTEGER_CST)
6705 return;
6707 idx = mem_ref_offset (t);
6708 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
6709 if (idx < 0)
6711 if (dump_file && (dump_flags & TDF_DETAILS))
6713 fprintf (dump_file, "Array bound warning for ");
6714 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6715 fprintf (dump_file, "\n");
6717 warning_at (location, OPT_Warray_bounds,
6718 "array subscript is below array bounds");
6719 TREE_NO_WARNING (t) = 1;
6721 else if (idx > (wi::to_offset (up_bound)
6722 - wi::to_offset (low_bound) + 1))
6724 if (dump_file && (dump_flags & TDF_DETAILS))
6726 fprintf (dump_file, "Array bound warning for ");
6727 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6728 fprintf (dump_file, "\n");
6730 warning_at (location, OPT_Warray_bounds,
6731 "array subscript is above array bounds");
6732 TREE_NO_WARNING (t) = 1;
6737 /* walk_tree() callback that checks if *TP is
6738 an ARRAY_REF inside an ADDR_EXPR (in which an array
6739 subscript one outside the valid range is allowed). Call
6740 check_array_ref for each ARRAY_REF found. The location is
6741 passed in DATA. */
6743 static tree
6744 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6746 tree t = *tp;
6747 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6748 location_t location;
6750 if (EXPR_HAS_LOCATION (t))
6751 location = EXPR_LOCATION (t);
6752 else
6754 location_t *locp = (location_t *) wi->info;
6755 location = *locp;
6758 *walk_subtree = TRUE;
6760 if (TREE_CODE (t) == ARRAY_REF)
6761 check_array_ref (location, t, false /*ignore_off_by_one*/);
6763 else if (TREE_CODE (t) == ADDR_EXPR)
6765 search_for_addr_array (t, location);
6766 *walk_subtree = FALSE;
6769 return NULL_TREE;
6772 /* Walk over all statements of all reachable BBs and call check_array_bounds
6773 on them. */
6775 static void
6776 check_all_array_refs (void)
6778 basic_block bb;
6779 gimple_stmt_iterator si;
6781 FOR_EACH_BB_FN (bb, cfun)
6783 edge_iterator ei;
6784 edge e;
6785 bool executable = false;
6787 /* Skip blocks that were found to be unreachable. */
6788 FOR_EACH_EDGE (e, ei, bb->preds)
6789 executable |= !!(e->flags & EDGE_EXECUTABLE);
6790 if (!executable)
6791 continue;
6793 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6795 gimple *stmt = gsi_stmt (si);
6796 struct walk_stmt_info wi;
6797 if (!gimple_has_location (stmt)
6798 || is_gimple_debug (stmt))
6799 continue;
6801 memset (&wi, 0, sizeof (wi));
6803 location_t loc = gimple_location (stmt);
6804 wi.info = &loc;
6806 walk_gimple_op (gsi_stmt (si),
6807 check_array_bounds,
6808 &wi);
6813 /* Return true if all imm uses of VAR are either in STMT, or
6814 feed (optionally through a chain of single imm uses) GIMPLE_COND
6815 in basic block COND_BB. */
6817 static bool
6818 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
6820 use_operand_p use_p, use2_p;
6821 imm_use_iterator iter;
6823 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6824 if (USE_STMT (use_p) != stmt)
6826 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
6827 if (is_gimple_debug (use_stmt))
6828 continue;
6829 while (is_gimple_assign (use_stmt)
6830 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6831 && single_imm_use (gimple_assign_lhs (use_stmt),
6832 &use2_p, &use_stmt2))
6833 use_stmt = use_stmt2;
6834 if (gimple_code (use_stmt) != GIMPLE_COND
6835 || gimple_bb (use_stmt) != cond_bb)
6836 return false;
6838 return true;
6841 /* Handle
6842 _4 = x_3 & 31;
6843 if (_4 != 0)
6844 goto <bb 6>;
6845 else
6846 goto <bb 7>;
6847 <bb 6>:
6848 __builtin_unreachable ();
6849 <bb 7>:
6850 x_5 = ASSERT_EXPR <x_3, ...>;
6851 If x_3 has no other immediate uses (checked by caller),
6852 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6853 from the non-zero bitmask. */
6855 static void
6856 maybe_set_nonzero_bits (basic_block bb, tree var)
6858 edge e = single_pred_edge (bb);
6859 basic_block cond_bb = e->src;
6860 gimple *stmt = last_stmt (cond_bb);
6861 tree cst;
6863 if (stmt == NULL
6864 || gimple_code (stmt) != GIMPLE_COND
6865 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6866 ? EQ_EXPR : NE_EXPR)
6867 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6868 || !integer_zerop (gimple_cond_rhs (stmt)))
6869 return;
6871 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6872 if (!is_gimple_assign (stmt)
6873 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6874 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6875 return;
6876 if (gimple_assign_rhs1 (stmt) != var)
6878 gimple *stmt2;
6880 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6881 return;
6882 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6883 if (!gimple_assign_cast_p (stmt2)
6884 || gimple_assign_rhs1 (stmt2) != var
6885 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6886 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6887 != TYPE_PRECISION (TREE_TYPE (var))))
6888 return;
6890 cst = gimple_assign_rhs2 (stmt);
6891 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
6894 /* Convert range assertion expressions into the implied copies and
6895 copy propagate away the copies. Doing the trivial copy propagation
6896 here avoids the need to run the full copy propagation pass after
6897 VRP.
6899 FIXME, this will eventually lead to copy propagation removing the
6900 names that had useful range information attached to them. For
6901 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6902 then N_i will have the range [3, +INF].
6904 However, by converting the assertion into the implied copy
6905 operation N_i = N_j, we will then copy-propagate N_j into the uses
6906 of N_i and lose the range information. We may want to hold on to
6907 ASSERT_EXPRs a little while longer as the ranges could be used in
6908 things like jump threading.
6910 The problem with keeping ASSERT_EXPRs around is that passes after
6911 VRP need to handle them appropriately.
6913 Another approach would be to make the range information a first
6914 class property of the SSA_NAME so that it can be queried from
6915 any pass. This is made somewhat more complex by the need for
6916 multiple ranges to be associated with one SSA_NAME. */
6918 static void
6919 remove_range_assertions (void)
6921 basic_block bb;
6922 gimple_stmt_iterator si;
6923 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6924 a basic block preceeded by GIMPLE_COND branching to it and
6925 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6926 int is_unreachable;
6928 /* Note that the BSI iterator bump happens at the bottom of the
6929 loop and no bump is necessary if we're removing the statement
6930 referenced by the current BSI. */
6931 FOR_EACH_BB_FN (bb, cfun)
6932 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6934 gimple *stmt = gsi_stmt (si);
6936 if (is_gimple_assign (stmt)
6937 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6939 tree lhs = gimple_assign_lhs (stmt);
6940 tree rhs = gimple_assign_rhs1 (stmt);
6941 tree var;
6943 var = ASSERT_EXPR_VAR (rhs);
6945 if (TREE_CODE (var) == SSA_NAME
6946 && !POINTER_TYPE_P (TREE_TYPE (lhs))
6947 && SSA_NAME_RANGE_INFO (lhs))
6949 if (is_unreachable == -1)
6951 is_unreachable = 0;
6952 if (single_pred_p (bb)
6953 && assert_unreachable_fallthru_edge_p
6954 (single_pred_edge (bb)))
6955 is_unreachable = 1;
6957 /* Handle
6958 if (x_7 >= 10 && x_7 < 20)
6959 __builtin_unreachable ();
6960 x_8 = ASSERT_EXPR <x_7, ...>;
6961 if the only uses of x_7 are in the ASSERT_EXPR and
6962 in the condition. In that case, we can copy the
6963 range info from x_8 computed in this pass also
6964 for x_7. */
6965 if (is_unreachable
6966 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6967 single_pred (bb)))
6969 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
6970 SSA_NAME_RANGE_INFO (lhs)->get_min (),
6971 SSA_NAME_RANGE_INFO (lhs)->get_max ());
6972 maybe_set_nonzero_bits (bb, var);
6976 /* Propagate the RHS into every use of the LHS. */
6977 replace_uses_by (lhs, var);
6979 /* And finally, remove the copy, it is not needed. */
6980 gsi_remove (&si, true);
6981 release_defs (stmt);
6983 else
6985 if (!is_gimple_debug (gsi_stmt (si)))
6986 is_unreachable = 0;
6987 gsi_next (&si);
6993 /* Return true if STMT is interesting for VRP. */
6995 static bool
6996 stmt_interesting_for_vrp (gimple *stmt)
6998 if (gimple_code (stmt) == GIMPLE_PHI)
7000 tree res = gimple_phi_result (stmt);
7001 return (!virtual_operand_p (res)
7002 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
7003 || POINTER_TYPE_P (TREE_TYPE (res))));
7005 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7007 tree lhs = gimple_get_lhs (stmt);
7009 /* In general, assignments with virtual operands are not useful
7010 for deriving ranges, with the obvious exception of calls to
7011 builtin functions. */
7012 if (lhs && TREE_CODE (lhs) == SSA_NAME
7013 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7014 || POINTER_TYPE_P (TREE_TYPE (lhs)))
7015 && (is_gimple_call (stmt)
7016 || !gimple_vuse (stmt)))
7017 return true;
7018 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
7019 switch (gimple_call_internal_fn (stmt))
7021 case IFN_ADD_OVERFLOW:
7022 case IFN_SUB_OVERFLOW:
7023 case IFN_MUL_OVERFLOW:
7024 /* These internal calls return _Complex integer type,
7025 but are interesting to VRP nevertheless. */
7026 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7027 return true;
7028 break;
7029 default:
7030 break;
7033 else if (gimple_code (stmt) == GIMPLE_COND
7034 || gimple_code (stmt) == GIMPLE_SWITCH)
7035 return true;
7037 return false;
7040 /* Initialize VRP lattice. */
7042 static void
7043 vrp_initialize_lattice ()
7045 values_propagated = false;
7046 num_vr_values = num_ssa_names;
7047 vr_value = XCNEWVEC (value_range *, num_vr_values);
7048 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
7049 bitmap_obstack_initialize (&vrp_equiv_obstack);
7052 /* Initialization required by ssa_propagate engine. */
7054 static void
7055 vrp_initialize ()
7057 basic_block bb;
7059 FOR_EACH_BB_FN (bb, cfun)
7061 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7062 gsi_next (&si))
7064 gphi *phi = si.phi ();
7065 if (!stmt_interesting_for_vrp (phi))
7067 tree lhs = PHI_RESULT (phi);
7068 set_value_range_to_varying (get_value_range (lhs));
7069 prop_set_simulate_again (phi, false);
7071 else
7072 prop_set_simulate_again (phi, true);
7075 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
7076 gsi_next (&si))
7078 gimple *stmt = gsi_stmt (si);
7080 /* If the statement is a control insn, then we do not
7081 want to avoid simulating the statement once. Failure
7082 to do so means that those edges will never get added. */
7083 if (stmt_ends_bb_p (stmt))
7084 prop_set_simulate_again (stmt, true);
7085 else if (!stmt_interesting_for_vrp (stmt))
7087 set_defs_to_varying (stmt);
7088 prop_set_simulate_again (stmt, false);
7090 else
7091 prop_set_simulate_again (stmt, true);
7096 /* Return the singleton value-range for NAME or NAME. */
7098 static inline tree
7099 vrp_valueize (tree name)
7101 if (TREE_CODE (name) == SSA_NAME)
7103 value_range *vr = get_value_range (name);
7104 if (vr->type == VR_RANGE
7105 && (TREE_CODE (vr->min) == SSA_NAME
7106 || is_gimple_min_invariant (vr->min))
7107 && vrp_operand_equal_p (vr->min, vr->max))
7108 return vr->min;
7110 return name;
7113 /* Return the singleton value-range for NAME if that is a constant
7114 but signal to not follow SSA edges. */
7116 static inline tree
7117 vrp_valueize_1 (tree name)
7119 if (TREE_CODE (name) == SSA_NAME)
7121 /* If the definition may be simulated again we cannot follow
7122 this SSA edge as the SSA propagator does not necessarily
7123 re-visit the use. */
7124 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
7125 if (!gimple_nop_p (def_stmt)
7126 && prop_simulate_again_p (def_stmt))
7127 return NULL_TREE;
7128 value_range *vr = get_value_range (name);
7129 if (range_int_cst_singleton_p (vr))
7130 return vr->min;
7132 return name;
7135 /* Visit assignment STMT. If it produces an interesting range, record
7136 the range in VR and set LHS to OUTPUT_P. */
7138 static void
7139 vrp_visit_assignment_or_call (gimple *stmt, tree *output_p, value_range *vr)
7141 tree lhs;
7142 enum gimple_code code = gimple_code (stmt);
7143 lhs = gimple_get_lhs (stmt);
7144 *output_p = NULL_TREE;
7146 /* We only keep track of ranges in integral and pointer types. */
7147 if (TREE_CODE (lhs) == SSA_NAME
7148 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7149 /* It is valid to have NULL MIN/MAX values on a type. See
7150 build_range_type. */
7151 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
7152 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
7153 || POINTER_TYPE_P (TREE_TYPE (lhs))))
7155 *output_p = lhs;
7157 /* Try folding the statement to a constant first. */
7158 tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
7159 vrp_valueize_1);
7160 if (tem)
7162 if (TREE_CODE (tem) == SSA_NAME
7163 && (SSA_NAME_IS_DEFAULT_DEF (tem)
7164 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (tem))))
7166 extract_range_from_ssa_name (vr, tem);
7167 return;
7169 else if (is_gimple_min_invariant (tem))
7171 set_value_range_to_value (vr, tem, NULL);
7172 return;
7175 /* Then dispatch to value-range extracting functions. */
7176 if (code == GIMPLE_CALL)
7177 extract_range_basic (vr, stmt);
7178 else
7179 extract_range_from_assignment (vr, as_a <gassign *> (stmt));
7183 /* Helper that gets the value range of the SSA_NAME with version I
7184 or a symbolic range containing the SSA_NAME only if the value range
7185 is varying or undefined. */
7187 static inline value_range
7188 get_vr_for_comparison (int i)
7190 value_range vr = *get_value_range (ssa_name (i));
7192 /* If name N_i does not have a valid range, use N_i as its own
7193 range. This allows us to compare against names that may
7194 have N_i in their ranges. */
7195 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
7197 vr.type = VR_RANGE;
7198 vr.min = ssa_name (i);
7199 vr.max = ssa_name (i);
7202 return vr;
7205 /* Compare all the value ranges for names equivalent to VAR with VAL
7206 using comparison code COMP. Return the same value returned by
7207 compare_range_with_value, including the setting of
7208 *STRICT_OVERFLOW_P. */
7210 static tree
7211 compare_name_with_value (enum tree_code comp, tree var, tree val,
7212 bool *strict_overflow_p, bool use_equiv_p)
7214 bitmap_iterator bi;
7215 unsigned i;
7216 bitmap e;
7217 tree retval, t;
7218 int used_strict_overflow;
7219 bool sop;
7220 value_range equiv_vr;
7222 /* Get the set of equivalences for VAR. */
7223 e = get_value_range (var)->equiv;
7225 /* Start at -1. Set it to 0 if we do a comparison without relying
7226 on overflow, or 1 if all comparisons rely on overflow. */
7227 used_strict_overflow = -1;
7229 /* Compare vars' value range with val. */
7230 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
7231 sop = false;
7232 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
7233 if (retval)
7234 used_strict_overflow = sop ? 1 : 0;
7236 /* If the equiv set is empty we have done all work we need to do. */
7237 if (e == NULL)
7239 if (retval
7240 && used_strict_overflow > 0)
7241 *strict_overflow_p = true;
7242 return retval;
7245 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
7247 tree name = ssa_name (i);
7248 if (! name)
7249 continue;
7251 if (! use_equiv_p
7252 && ! SSA_NAME_IS_DEFAULT_DEF (name)
7253 && prop_simulate_again_p (SSA_NAME_DEF_STMT (name)))
7254 continue;
7256 equiv_vr = get_vr_for_comparison (i);
7257 sop = false;
7258 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
7259 if (t)
7261 /* If we get different answers from different members
7262 of the equivalence set this check must be in a dead
7263 code region. Folding it to a trap representation
7264 would be correct here. For now just return don't-know. */
7265 if (retval != NULL
7266 && t != retval)
7268 retval = NULL_TREE;
7269 break;
7271 retval = t;
7273 if (!sop)
7274 used_strict_overflow = 0;
7275 else if (used_strict_overflow < 0)
7276 used_strict_overflow = 1;
7280 if (retval
7281 && used_strict_overflow > 0)
7282 *strict_overflow_p = true;
7284 return retval;
7288 /* Given a comparison code COMP and names N1 and N2, compare all the
7289 ranges equivalent to N1 against all the ranges equivalent to N2
7290 to determine the value of N1 COMP N2. Return the same value
7291 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7292 whether we relied on an overflow infinity in the comparison. */
7295 static tree
7296 compare_names (enum tree_code comp, tree n1, tree n2,
7297 bool *strict_overflow_p)
7299 tree t, retval;
7300 bitmap e1, e2;
7301 bitmap_iterator bi1, bi2;
7302 unsigned i1, i2;
7303 int used_strict_overflow;
7304 static bitmap_obstack *s_obstack = NULL;
7305 static bitmap s_e1 = NULL, s_e2 = NULL;
7307 /* Compare the ranges of every name equivalent to N1 against the
7308 ranges of every name equivalent to N2. */
7309 e1 = get_value_range (n1)->equiv;
7310 e2 = get_value_range (n2)->equiv;
7312 /* Use the fake bitmaps if e1 or e2 are not available. */
7313 if (s_obstack == NULL)
7315 s_obstack = XNEW (bitmap_obstack);
7316 bitmap_obstack_initialize (s_obstack);
7317 s_e1 = BITMAP_ALLOC (s_obstack);
7318 s_e2 = BITMAP_ALLOC (s_obstack);
7320 if (e1 == NULL)
7321 e1 = s_e1;
7322 if (e2 == NULL)
7323 e2 = s_e2;
7325 /* Add N1 and N2 to their own set of equivalences to avoid
7326 duplicating the body of the loop just to check N1 and N2
7327 ranges. */
7328 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
7329 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
7331 /* If the equivalence sets have a common intersection, then the two
7332 names can be compared without checking their ranges. */
7333 if (bitmap_intersect_p (e1, e2))
7335 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7336 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7338 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
7339 ? boolean_true_node
7340 : boolean_false_node;
7343 /* Start at -1. Set it to 0 if we do a comparison without relying
7344 on overflow, or 1 if all comparisons rely on overflow. */
7345 used_strict_overflow = -1;
7347 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7348 N2 to their own set of equivalences to avoid duplicating the body
7349 of the loop just to check N1 and N2 ranges. */
7350 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
7352 if (! ssa_name (i1))
7353 continue;
7355 value_range vr1 = get_vr_for_comparison (i1);
7357 t = retval = NULL_TREE;
7358 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7360 if (! ssa_name (i2))
7361 continue;
7363 bool sop = false;
7365 value_range vr2 = get_vr_for_comparison (i2);
7367 t = compare_ranges (comp, &vr1, &vr2, &sop);
7368 if (t)
7370 /* If we get different answers from different members
7371 of the equivalence set this check must be in a dead
7372 code region. Folding it to a trap representation
7373 would be correct here. For now just return don't-know. */
7374 if (retval != NULL
7375 && t != retval)
7377 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7378 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7379 return NULL_TREE;
7381 retval = t;
7383 if (!sop)
7384 used_strict_overflow = 0;
7385 else if (used_strict_overflow < 0)
7386 used_strict_overflow = 1;
7390 if (retval)
7392 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7393 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7394 if (used_strict_overflow > 0)
7395 *strict_overflow_p = true;
7396 return retval;
7400 /* None of the equivalent ranges are useful in computing this
7401 comparison. */
7402 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7403 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7404 return NULL_TREE;
7407 /* Helper function for vrp_evaluate_conditional_warnv & other
7408 optimizers. */
7410 static tree
7411 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7412 tree op0, tree op1,
7413 bool * strict_overflow_p)
7415 value_range *vr0, *vr1;
7417 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7418 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7420 tree res = NULL_TREE;
7421 if (vr0 && vr1)
7422 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
7423 if (!res && vr0)
7424 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
7425 if (!res && vr1)
7426 res = (compare_range_with_value
7427 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7428 return res;
7431 /* Helper function for vrp_evaluate_conditional_warnv. */
7433 static tree
7434 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7435 tree op1, bool use_equiv_p,
7436 bool *strict_overflow_p, bool *only_ranges)
7438 tree ret;
7439 if (only_ranges)
7440 *only_ranges = true;
7442 /* We only deal with integral and pointer types. */
7443 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7444 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7445 return NULL_TREE;
7447 if ((ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7448 (code, op0, op1, strict_overflow_p)))
7449 return ret;
7450 if (only_ranges)
7451 *only_ranges = false;
7452 /* Do not use compare_names during propagation, it's quadratic. */
7453 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME
7454 && use_equiv_p)
7455 return compare_names (code, op0, op1, strict_overflow_p);
7456 else if (TREE_CODE (op0) == SSA_NAME)
7457 return compare_name_with_value (code, op0, op1,
7458 strict_overflow_p, use_equiv_p);
7459 else if (TREE_CODE (op1) == SSA_NAME)
7460 return compare_name_with_value (swap_tree_comparison (code), op1, op0,
7461 strict_overflow_p, use_equiv_p);
7462 return NULL_TREE;
7465 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7466 information. Return NULL if the conditional can not be evaluated.
7467 The ranges of all the names equivalent with the operands in COND
7468 will be used when trying to compute the value. If the result is
7469 based on undefined signed overflow, issue a warning if
7470 appropriate. */
7472 static tree
7473 vrp_evaluate_conditional (tree_code code, tree op0, tree op1, gimple *stmt)
7475 bool sop;
7476 tree ret;
7477 bool only_ranges;
7479 /* Some passes and foldings leak constants with overflow flag set
7480 into the IL. Avoid doing wrong things with these and bail out. */
7481 if ((TREE_CODE (op0) == INTEGER_CST
7482 && TREE_OVERFLOW (op0))
7483 || (TREE_CODE (op1) == INTEGER_CST
7484 && TREE_OVERFLOW (op1)))
7485 return NULL_TREE;
7487 sop = false;
7488 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7489 &only_ranges);
7491 if (ret && sop)
7493 enum warn_strict_overflow_code wc;
7494 const char* warnmsg;
7496 if (is_gimple_min_invariant (ret))
7498 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7499 warnmsg = G_("assuming signed overflow does not occur when "
7500 "simplifying conditional to constant");
7502 else
7504 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7505 warnmsg = G_("assuming signed overflow does not occur when "
7506 "simplifying conditional");
7509 if (issue_strict_overflow_warning (wc))
7511 location_t location;
7513 if (!gimple_has_location (stmt))
7514 location = input_location;
7515 else
7516 location = gimple_location (stmt);
7517 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7521 if (warn_type_limits
7522 && ret && only_ranges
7523 && TREE_CODE_CLASS (code) == tcc_comparison
7524 && TREE_CODE (op0) == SSA_NAME)
7526 /* If the comparison is being folded and the operand on the LHS
7527 is being compared against a constant value that is outside of
7528 the natural range of OP0's type, then the predicate will
7529 always fold regardless of the value of OP0. If -Wtype-limits
7530 was specified, emit a warning. */
7531 tree type = TREE_TYPE (op0);
7532 value_range *vr0 = get_value_range (op0);
7534 if (vr0->type == VR_RANGE
7535 && INTEGRAL_TYPE_P (type)
7536 && vrp_val_is_min (vr0->min)
7537 && vrp_val_is_max (vr0->max)
7538 && is_gimple_min_invariant (op1))
7540 location_t location;
7542 if (!gimple_has_location (stmt))
7543 location = input_location;
7544 else
7545 location = gimple_location (stmt);
7547 warning_at (location, OPT_Wtype_limits,
7548 integer_zerop (ret)
7549 ? G_("comparison always false "
7550 "due to limited range of data type")
7551 : G_("comparison always true "
7552 "due to limited range of data type"));
7556 return ret;
7560 /* Visit conditional statement STMT. If we can determine which edge
7561 will be taken out of STMT's basic block, record it in
7562 *TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */
7564 static void
7565 vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
7567 tree val;
7568 bool sop;
7570 *taken_edge_p = NULL;
7572 if (dump_file && (dump_flags & TDF_DETAILS))
7574 tree use;
7575 ssa_op_iter i;
7577 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7578 print_gimple_stmt (dump_file, stmt, 0, 0);
7579 fprintf (dump_file, "\nWith known ranges\n");
7581 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7583 fprintf (dump_file, "\t");
7584 print_generic_expr (dump_file, use, 0);
7585 fprintf (dump_file, ": ");
7586 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7589 fprintf (dump_file, "\n");
7592 /* Compute the value of the predicate COND by checking the known
7593 ranges of each of its operands.
7595 Note that we cannot evaluate all the equivalent ranges here
7596 because those ranges may not yet be final and with the current
7597 propagation strategy, we cannot determine when the value ranges
7598 of the names in the equivalence set have changed.
7600 For instance, given the following code fragment
7602 i_5 = PHI <8, i_13>
7604 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7605 if (i_14 == 1)
7608 Assume that on the first visit to i_14, i_5 has the temporary
7609 range [8, 8] because the second argument to the PHI function is
7610 not yet executable. We derive the range ~[0, 0] for i_14 and the
7611 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7612 the first time, since i_14 is equivalent to the range [8, 8], we
7613 determine that the predicate is always false.
7615 On the next round of propagation, i_13 is determined to be
7616 VARYING, which causes i_5 to drop down to VARYING. So, another
7617 visit to i_14 is scheduled. In this second visit, we compute the
7618 exact same range and equivalence set for i_14, namely ~[0, 0] and
7619 { i_5 }. But we did not have the previous range for i_5
7620 registered, so vrp_visit_assignment thinks that the range for
7621 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7622 is not visited again, which stops propagation from visiting
7623 statements in the THEN clause of that if().
7625 To properly fix this we would need to keep the previous range
7626 value for the names in the equivalence set. This way we would've
7627 discovered that from one visit to the other i_5 changed from
7628 range [8, 8] to VR_VARYING.
7630 However, fixing this apparent limitation may not be worth the
7631 additional checking. Testing on several code bases (GCC, DLV,
7632 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7633 4 more predicates folded in SPEC. */
7634 sop = false;
7636 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7637 gimple_cond_lhs (stmt),
7638 gimple_cond_rhs (stmt),
7639 false, &sop, NULL);
7640 if (val)
7642 if (!sop)
7643 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7644 else
7646 if (dump_file && (dump_flags & TDF_DETAILS))
7647 fprintf (dump_file,
7648 "\nIgnoring predicate evaluation because "
7649 "it assumes that signed overflow is undefined");
7650 val = NULL_TREE;
7654 if (dump_file && (dump_flags & TDF_DETAILS))
7656 fprintf (dump_file, "\nPredicate evaluates to: ");
7657 if (val == NULL_TREE)
7658 fprintf (dump_file, "DON'T KNOW\n");
7659 else
7660 print_generic_stmt (dump_file, val, 0);
7664 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7665 that includes the value VAL. The search is restricted to the range
7666 [START_IDX, n - 1] where n is the size of VEC.
7668 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7669 returned.
7671 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7672 it is placed in IDX and false is returned.
7674 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7675 returned. */
7677 static bool
7678 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
7680 size_t n = gimple_switch_num_labels (stmt);
7681 size_t low, high;
7683 /* Find case label for minimum of the value range or the next one.
7684 At each iteration we are searching in [low, high - 1]. */
7686 for (low = start_idx, high = n; high != low; )
7688 tree t;
7689 int cmp;
7690 /* Note that i != high, so we never ask for n. */
7691 size_t i = (high + low) / 2;
7692 t = gimple_switch_label (stmt, i);
7694 /* Cache the result of comparing CASE_LOW and val. */
7695 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7697 if (cmp == 0)
7699 /* Ranges cannot be empty. */
7700 *idx = i;
7701 return true;
7703 else if (cmp > 0)
7704 high = i;
7705 else
7707 low = i + 1;
7708 if (CASE_HIGH (t) != NULL
7709 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7711 *idx = i;
7712 return true;
7717 *idx = high;
7718 return false;
7721 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7722 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7723 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7724 then MAX_IDX < MIN_IDX.
7725 Returns true if the default label is not needed. */
7727 static bool
7728 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
7729 size_t *max_idx)
7731 size_t i, j;
7732 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7733 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7735 if (i == j
7736 && min_take_default
7737 && max_take_default)
7739 /* Only the default case label reached.
7740 Return an empty range. */
7741 *min_idx = 1;
7742 *max_idx = 0;
7743 return false;
7745 else
7747 bool take_default = min_take_default || max_take_default;
7748 tree low, high;
7749 size_t k;
7751 if (max_take_default)
7752 j--;
7754 /* If the case label range is continuous, we do not need
7755 the default case label. Verify that. */
7756 high = CASE_LOW (gimple_switch_label (stmt, i));
7757 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7758 high = CASE_HIGH (gimple_switch_label (stmt, i));
7759 for (k = i + 1; k <= j; ++k)
7761 low = CASE_LOW (gimple_switch_label (stmt, k));
7762 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7764 take_default = true;
7765 break;
7767 high = low;
7768 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7769 high = CASE_HIGH (gimple_switch_label (stmt, k));
7772 *min_idx = i;
7773 *max_idx = j;
7774 return !take_default;
7778 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7779 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7780 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7781 Returns true if the default label is not needed. */
7783 static bool
7784 find_case_label_ranges (gswitch *stmt, value_range *vr, size_t *min_idx1,
7785 size_t *max_idx1, size_t *min_idx2,
7786 size_t *max_idx2)
7788 size_t i, j, k, l;
7789 unsigned int n = gimple_switch_num_labels (stmt);
7790 bool take_default;
7791 tree case_low, case_high;
7792 tree min = vr->min, max = vr->max;
7794 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7796 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7798 /* Set second range to emtpy. */
7799 *min_idx2 = 1;
7800 *max_idx2 = 0;
7802 if (vr->type == VR_RANGE)
7804 *min_idx1 = i;
7805 *max_idx1 = j;
7806 return !take_default;
7809 /* Set first range to all case labels. */
7810 *min_idx1 = 1;
7811 *max_idx1 = n - 1;
7813 if (i > j)
7814 return false;
7816 /* Make sure all the values of case labels [i , j] are contained in
7817 range [MIN, MAX]. */
7818 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7819 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7820 if (tree_int_cst_compare (case_low, min) < 0)
7821 i += 1;
7822 if (case_high != NULL_TREE
7823 && tree_int_cst_compare (max, case_high) < 0)
7824 j -= 1;
7826 if (i > j)
7827 return false;
7829 /* If the range spans case labels [i, j], the corresponding anti-range spans
7830 the labels [1, i - 1] and [j + 1, n - 1]. */
7831 k = j + 1;
7832 l = n - 1;
7833 if (k > l)
7835 k = 1;
7836 l = 0;
7839 j = i - 1;
7840 i = 1;
7841 if (i > j)
7843 i = k;
7844 j = l;
7845 k = 1;
7846 l = 0;
7849 *min_idx1 = i;
7850 *max_idx1 = j;
7851 *min_idx2 = k;
7852 *max_idx2 = l;
7853 return false;
7856 /* Visit switch statement STMT. If we can determine which edge
7857 will be taken out of STMT's basic block, record it in
7858 *TAKEN_EDGE_P. Otherwise, *TAKEN_EDGE_P set to NULL. */
7860 static void
7861 vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
7863 tree op, val;
7864 value_range *vr;
7865 size_t i = 0, j = 0, k, l;
7866 bool take_default;
7868 *taken_edge_p = NULL;
7869 op = gimple_switch_index (stmt);
7870 if (TREE_CODE (op) != SSA_NAME)
7871 return;
7873 vr = get_value_range (op);
7874 if (dump_file && (dump_flags & TDF_DETAILS))
7876 fprintf (dump_file, "\nVisiting switch expression with operand ");
7877 print_generic_expr (dump_file, op, 0);
7878 fprintf (dump_file, " with known range ");
7879 dump_value_range (dump_file, vr);
7880 fprintf (dump_file, "\n");
7883 if ((vr->type != VR_RANGE
7884 && vr->type != VR_ANTI_RANGE)
7885 || symbolic_range_p (vr))
7886 return;
7888 /* Find the single edge that is taken from the switch expression. */
7889 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7891 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7892 label */
7893 if (j < i)
7895 gcc_assert (take_default);
7896 val = gimple_switch_default_label (stmt);
7898 else
7900 /* Check if labels with index i to j and maybe the default label
7901 are all reaching the same label. */
7903 val = gimple_switch_label (stmt, i);
7904 if (take_default
7905 && CASE_LABEL (gimple_switch_default_label (stmt))
7906 != CASE_LABEL (val))
7908 if (dump_file && (dump_flags & TDF_DETAILS))
7909 fprintf (dump_file, " not a single destination for this "
7910 "range\n");
7911 return;
7913 for (++i; i <= j; ++i)
7915 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7917 if (dump_file && (dump_flags & TDF_DETAILS))
7918 fprintf (dump_file, " not a single destination for this "
7919 "range\n");
7920 return;
7923 for (; k <= l; ++k)
7925 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7927 if (dump_file && (dump_flags & TDF_DETAILS))
7928 fprintf (dump_file, " not a single destination for this "
7929 "range\n");
7930 return;
7935 *taken_edge_p = find_edge (gimple_bb (stmt),
7936 label_to_block (CASE_LABEL (val)));
7938 if (dump_file && (dump_flags & TDF_DETAILS))
7940 fprintf (dump_file, " will take edge to ");
7941 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7946 /* Evaluate statement STMT. If the statement produces a useful range,
7947 set VR and corepsponding OUTPUT_P.
7949 If STMT is a conditional branch and we can determine its truth
7950 value, the taken edge is recorded in *TAKEN_EDGE_P. */
7952 static void
7953 extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
7954 tree *output_p, value_range *vr)
7957 if (dump_file && (dump_flags & TDF_DETAILS))
7959 fprintf (dump_file, "\nVisiting statement:\n");
7960 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
7963 if (!stmt_interesting_for_vrp (stmt))
7964 gcc_assert (stmt_ends_bb_p (stmt));
7965 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7966 vrp_visit_assignment_or_call (stmt, output_p, vr);
7967 else if (gimple_code (stmt) == GIMPLE_COND)
7968 vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
7969 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7970 vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
7973 /* Evaluate statement STMT. If the statement produces a useful range,
7974 return SSA_PROP_INTERESTING and record the SSA name with the
7975 interesting range into *OUTPUT_P.
7977 If STMT is a conditional branch and we can determine its truth
7978 value, the taken edge is recorded in *TAKEN_EDGE_P.
7980 If STMT produces a varying value, return SSA_PROP_VARYING. */
7982 static enum ssa_prop_result
7983 vrp_visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
7985 value_range vr = VR_INITIALIZER;
7986 tree lhs = gimple_get_lhs (stmt);
7987 extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);
7989 if (*output_p)
7991 if (update_value_range (*output_p, &vr))
7993 if (dump_file && (dump_flags & TDF_DETAILS))
7995 fprintf (dump_file, "Found new range for ");
7996 print_generic_expr (dump_file, *output_p, 0);
7997 fprintf (dump_file, ": ");
7998 dump_value_range (dump_file, &vr);
7999 fprintf (dump_file, "\n");
8002 if (vr.type == VR_VARYING)
8003 return SSA_PROP_VARYING;
8005 return SSA_PROP_INTERESTING;
8007 return SSA_PROP_NOT_INTERESTING;
8010 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
8011 switch (gimple_call_internal_fn (stmt))
8013 case IFN_ADD_OVERFLOW:
8014 case IFN_SUB_OVERFLOW:
8015 case IFN_MUL_OVERFLOW:
8016 /* These internal calls return _Complex integer type,
8017 which VRP does not track, but the immediate uses
8018 thereof might be interesting. */
8019 if (lhs && TREE_CODE (lhs) == SSA_NAME)
8021 imm_use_iterator iter;
8022 use_operand_p use_p;
8023 enum ssa_prop_result res = SSA_PROP_VARYING;
8025 set_value_range_to_varying (get_value_range (lhs));
8027 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
8029 gimple *use_stmt = USE_STMT (use_p);
8030 if (!is_gimple_assign (use_stmt))
8031 continue;
8032 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
8033 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
8034 continue;
8035 tree rhs1 = gimple_assign_rhs1 (use_stmt);
8036 tree use_lhs = gimple_assign_lhs (use_stmt);
8037 if (TREE_CODE (rhs1) != rhs_code
8038 || TREE_OPERAND (rhs1, 0) != lhs
8039 || TREE_CODE (use_lhs) != SSA_NAME
8040 || !stmt_interesting_for_vrp (use_stmt)
8041 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
8042 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
8043 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
8044 continue;
8046 /* If there is a change in the value range for any of the
8047 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
8048 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
8049 or IMAGPART_EXPR immediate uses, but none of them have
8050 a change in their value ranges, return
8051 SSA_PROP_NOT_INTERESTING. If there are no
8052 {REAL,IMAG}PART_EXPR uses at all,
8053 return SSA_PROP_VARYING. */
8054 value_range new_vr = VR_INITIALIZER;
8055 extract_range_basic (&new_vr, use_stmt);
8056 value_range *old_vr = get_value_range (use_lhs);
8057 if (old_vr->type != new_vr.type
8058 || !vrp_operand_equal_p (old_vr->min, new_vr.min)
8059 || !vrp_operand_equal_p (old_vr->max, new_vr.max)
8060 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv))
8061 res = SSA_PROP_INTERESTING;
8062 else
8063 res = SSA_PROP_NOT_INTERESTING;
8064 BITMAP_FREE (new_vr.equiv);
8065 if (res == SSA_PROP_INTERESTING)
8067 *output_p = lhs;
8068 return res;
8072 return res;
8074 break;
8075 default:
8076 break;
8079 /* All other statements produce nothing of interest for VRP, so mark
8080 their outputs varying and prevent further simulation. */
8081 set_defs_to_varying (stmt);
8083 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
8086 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8087 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8088 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8089 possible such range. The resulting range is not canonicalized. */
8091 static void
8092 union_ranges (enum value_range_type *vr0type,
8093 tree *vr0min, tree *vr0max,
8094 enum value_range_type vr1type,
8095 tree vr1min, tree vr1max)
8097 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8098 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8100 /* [] is vr0, () is vr1 in the following classification comments. */
8101 if (mineq && maxeq)
8103 /* [( )] */
8104 if (*vr0type == vr1type)
8105 /* Nothing to do for equal ranges. */
8107 else if ((*vr0type == VR_RANGE
8108 && vr1type == VR_ANTI_RANGE)
8109 || (*vr0type == VR_ANTI_RANGE
8110 && vr1type == VR_RANGE))
8112 /* For anti-range with range union the result is varying. */
8113 goto give_up;
8115 else
8116 gcc_unreachable ();
8118 else if (operand_less_p (*vr0max, vr1min) == 1
8119 || operand_less_p (vr1max, *vr0min) == 1)
8121 /* [ ] ( ) or ( ) [ ]
8122 If the ranges have an empty intersection, result of the union
8123 operation is the anti-range or if both are anti-ranges
8124 it covers all. */
8125 if (*vr0type == VR_ANTI_RANGE
8126 && vr1type == VR_ANTI_RANGE)
8127 goto give_up;
8128 else if (*vr0type == VR_ANTI_RANGE
8129 && vr1type == VR_RANGE)
8131 else if (*vr0type == VR_RANGE
8132 && vr1type == VR_ANTI_RANGE)
8134 *vr0type = vr1type;
8135 *vr0min = vr1min;
8136 *vr0max = vr1max;
8138 else if (*vr0type == VR_RANGE
8139 && vr1type == VR_RANGE)
8141 /* The result is the convex hull of both ranges. */
8142 if (operand_less_p (*vr0max, vr1min) == 1)
8144 /* If the result can be an anti-range, create one. */
8145 if (TREE_CODE (*vr0max) == INTEGER_CST
8146 && TREE_CODE (vr1min) == INTEGER_CST
8147 && vrp_val_is_min (*vr0min)
8148 && vrp_val_is_max (vr1max))
8150 tree min = int_const_binop (PLUS_EXPR,
8151 *vr0max,
8152 build_int_cst (TREE_TYPE (*vr0max), 1));
8153 tree max = int_const_binop (MINUS_EXPR,
8154 vr1min,
8155 build_int_cst (TREE_TYPE (vr1min), 1));
8156 if (!operand_less_p (max, min))
8158 *vr0type = VR_ANTI_RANGE;
8159 *vr0min = min;
8160 *vr0max = max;
8162 else
8163 *vr0max = vr1max;
8165 else
8166 *vr0max = vr1max;
8168 else
8170 /* If the result can be an anti-range, create one. */
8171 if (TREE_CODE (vr1max) == INTEGER_CST
8172 && TREE_CODE (*vr0min) == INTEGER_CST
8173 && vrp_val_is_min (vr1min)
8174 && vrp_val_is_max (*vr0max))
8176 tree min = int_const_binop (PLUS_EXPR,
8177 vr1max,
8178 build_int_cst (TREE_TYPE (vr1max), 1));
8179 tree max = int_const_binop (MINUS_EXPR,
8180 *vr0min,
8181 build_int_cst (TREE_TYPE (*vr0min), 1));
8182 if (!operand_less_p (max, min))
8184 *vr0type = VR_ANTI_RANGE;
8185 *vr0min = min;
8186 *vr0max = max;
8188 else
8189 *vr0min = vr1min;
8191 else
8192 *vr0min = vr1min;
8195 else
8196 gcc_unreachable ();
8198 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8199 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8201 /* [ ( ) ] or [( ) ] or [ ( )] */
8202 if (*vr0type == VR_RANGE
8203 && vr1type == VR_RANGE)
8205 else if (*vr0type == VR_ANTI_RANGE
8206 && vr1type == VR_ANTI_RANGE)
8208 *vr0type = vr1type;
8209 *vr0min = vr1min;
8210 *vr0max = vr1max;
8212 else if (*vr0type == VR_ANTI_RANGE
8213 && vr1type == VR_RANGE)
8215 /* Arbitrarily choose the right or left gap. */
8216 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
8217 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8218 build_int_cst (TREE_TYPE (vr1min), 1));
8219 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
8220 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8221 build_int_cst (TREE_TYPE (vr1max), 1));
8222 else
8223 goto give_up;
8225 else if (*vr0type == VR_RANGE
8226 && vr1type == VR_ANTI_RANGE)
8227 /* The result covers everything. */
8228 goto give_up;
8229 else
8230 gcc_unreachable ();
8232 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8233 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8235 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8236 if (*vr0type == VR_RANGE
8237 && vr1type == VR_RANGE)
8239 *vr0type = vr1type;
8240 *vr0min = vr1min;
8241 *vr0max = vr1max;
8243 else if (*vr0type == VR_ANTI_RANGE
8244 && vr1type == VR_ANTI_RANGE)
8246 else if (*vr0type == VR_RANGE
8247 && vr1type == VR_ANTI_RANGE)
8249 *vr0type = VR_ANTI_RANGE;
8250 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
8252 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8253 build_int_cst (TREE_TYPE (*vr0min), 1));
8254 *vr0min = vr1min;
8256 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
8258 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8259 build_int_cst (TREE_TYPE (*vr0max), 1));
8260 *vr0max = vr1max;
8262 else
8263 goto give_up;
8265 else if (*vr0type == VR_ANTI_RANGE
8266 && vr1type == VR_RANGE)
8267 /* The result covers everything. */
8268 goto give_up;
8269 else
8270 gcc_unreachable ();
8272 else if ((operand_less_p (vr1min, *vr0max) == 1
8273 || operand_equal_p (vr1min, *vr0max, 0))
8274 && operand_less_p (*vr0min, vr1min) == 1
8275 && operand_less_p (*vr0max, vr1max) == 1)
8277 /* [ ( ] ) or [ ]( ) */
8278 if (*vr0type == VR_RANGE
8279 && vr1type == VR_RANGE)
8280 *vr0max = vr1max;
8281 else if (*vr0type == VR_ANTI_RANGE
8282 && vr1type == VR_ANTI_RANGE)
8283 *vr0min = vr1min;
8284 else if (*vr0type == VR_ANTI_RANGE
8285 && vr1type == VR_RANGE)
8287 if (TREE_CODE (vr1min) == INTEGER_CST)
8288 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8289 build_int_cst (TREE_TYPE (vr1min), 1));
8290 else
8291 goto give_up;
8293 else if (*vr0type == VR_RANGE
8294 && vr1type == VR_ANTI_RANGE)
8296 if (TREE_CODE (*vr0max) == INTEGER_CST)
8298 *vr0type = vr1type;
8299 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8300 build_int_cst (TREE_TYPE (*vr0max), 1));
8301 *vr0max = vr1max;
8303 else
8304 goto give_up;
8306 else
8307 gcc_unreachable ();
8309 else if ((operand_less_p (*vr0min, vr1max) == 1
8310 || operand_equal_p (*vr0min, vr1max, 0))
8311 && operand_less_p (vr1min, *vr0min) == 1
8312 && operand_less_p (vr1max, *vr0max) == 1)
8314 /* ( [ ) ] or ( )[ ] */
8315 if (*vr0type == VR_RANGE
8316 && vr1type == VR_RANGE)
8317 *vr0min = vr1min;
8318 else if (*vr0type == VR_ANTI_RANGE
8319 && vr1type == VR_ANTI_RANGE)
8320 *vr0max = vr1max;
8321 else if (*vr0type == VR_ANTI_RANGE
8322 && vr1type == VR_RANGE)
8324 if (TREE_CODE (vr1max) == INTEGER_CST)
8325 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8326 build_int_cst (TREE_TYPE (vr1max), 1));
8327 else
8328 goto give_up;
8330 else if (*vr0type == VR_RANGE
8331 && vr1type == VR_ANTI_RANGE)
8333 if (TREE_CODE (*vr0min) == INTEGER_CST)
8335 *vr0type = vr1type;
8336 *vr0min = vr1min;
8337 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8338 build_int_cst (TREE_TYPE (*vr0min), 1));
8340 else
8341 goto give_up;
8343 else
8344 gcc_unreachable ();
8346 else
8347 goto give_up;
8349 return;
8351 give_up:
8352 *vr0type = VR_VARYING;
8353 *vr0min = NULL_TREE;
8354 *vr0max = NULL_TREE;
8357 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8358 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8359 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8360 possible such range. The resulting range is not canonicalized. */
8362 static void
8363 intersect_ranges (enum value_range_type *vr0type,
8364 tree *vr0min, tree *vr0max,
8365 enum value_range_type vr1type,
8366 tree vr1min, tree vr1max)
8368 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8369 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8371 /* [] is vr0, () is vr1 in the following classification comments. */
8372 if (mineq && maxeq)
8374 /* [( )] */
8375 if (*vr0type == vr1type)
8376 /* Nothing to do for equal ranges. */
8378 else if ((*vr0type == VR_RANGE
8379 && vr1type == VR_ANTI_RANGE)
8380 || (*vr0type == VR_ANTI_RANGE
8381 && vr1type == VR_RANGE))
8383 /* For anti-range with range intersection the result is empty. */
8384 *vr0type = VR_UNDEFINED;
8385 *vr0min = NULL_TREE;
8386 *vr0max = NULL_TREE;
8388 else
8389 gcc_unreachable ();
8391 else if (operand_less_p (*vr0max, vr1min) == 1
8392 || operand_less_p (vr1max, *vr0min) == 1)
8394 /* [ ] ( ) or ( ) [ ]
8395 If the ranges have an empty intersection, the result of the
8396 intersect operation is the range for intersecting an
8397 anti-range with a range or empty when intersecting two ranges. */
8398 if (*vr0type == VR_RANGE
8399 && vr1type == VR_ANTI_RANGE)
8401 else if (*vr0type == VR_ANTI_RANGE
8402 && vr1type == VR_RANGE)
8404 *vr0type = vr1type;
8405 *vr0min = vr1min;
8406 *vr0max = vr1max;
8408 else if (*vr0type == VR_RANGE
8409 && vr1type == VR_RANGE)
8411 *vr0type = VR_UNDEFINED;
8412 *vr0min = NULL_TREE;
8413 *vr0max = NULL_TREE;
8415 else if (*vr0type == VR_ANTI_RANGE
8416 && vr1type == VR_ANTI_RANGE)
8418 /* If the anti-ranges are adjacent to each other merge them. */
8419 if (TREE_CODE (*vr0max) == INTEGER_CST
8420 && TREE_CODE (vr1min) == INTEGER_CST
8421 && operand_less_p (*vr0max, vr1min) == 1
8422 && integer_onep (int_const_binop (MINUS_EXPR,
8423 vr1min, *vr0max)))
8424 *vr0max = vr1max;
8425 else if (TREE_CODE (vr1max) == INTEGER_CST
8426 && TREE_CODE (*vr0min) == INTEGER_CST
8427 && operand_less_p (vr1max, *vr0min) == 1
8428 && integer_onep (int_const_binop (MINUS_EXPR,
8429 *vr0min, vr1max)))
8430 *vr0min = vr1min;
8431 /* Else arbitrarily take VR0. */
8434 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8435 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8437 /* [ ( ) ] or [( ) ] or [ ( )] */
8438 if (*vr0type == VR_RANGE
8439 && vr1type == VR_RANGE)
8441 /* If both are ranges the result is the inner one. */
8442 *vr0type = vr1type;
8443 *vr0min = vr1min;
8444 *vr0max = vr1max;
8446 else if (*vr0type == VR_RANGE
8447 && vr1type == VR_ANTI_RANGE)
8449 /* Choose the right gap if the left one is empty. */
8450 if (mineq)
8452 if (TREE_CODE (vr1max) == INTEGER_CST)
8453 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8454 build_int_cst (TREE_TYPE (vr1max), 1));
8455 else
8456 *vr0min = vr1max;
8458 /* Choose the left gap if the right one is empty. */
8459 else if (maxeq)
8461 if (TREE_CODE (vr1min) == INTEGER_CST)
8462 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8463 build_int_cst (TREE_TYPE (vr1min), 1));
8464 else
8465 *vr0max = vr1min;
8467 /* Choose the anti-range if the range is effectively varying. */
8468 else if (vrp_val_is_min (*vr0min)
8469 && vrp_val_is_max (*vr0max))
8471 *vr0type = vr1type;
8472 *vr0min = vr1min;
8473 *vr0max = vr1max;
8475 /* Else choose the range. */
8477 else if (*vr0type == VR_ANTI_RANGE
8478 && vr1type == VR_ANTI_RANGE)
8479 /* If both are anti-ranges the result is the outer one. */
8481 else if (*vr0type == VR_ANTI_RANGE
8482 && vr1type == VR_RANGE)
8484 /* The intersection is empty. */
8485 *vr0type = VR_UNDEFINED;
8486 *vr0min = NULL_TREE;
8487 *vr0max = NULL_TREE;
8489 else
8490 gcc_unreachable ();
8492 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8493 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8495 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8496 if (*vr0type == VR_RANGE
8497 && vr1type == VR_RANGE)
8498 /* Choose the inner range. */
8500 else if (*vr0type == VR_ANTI_RANGE
8501 && vr1type == VR_RANGE)
8503 /* Choose the right gap if the left is empty. */
8504 if (mineq)
8506 *vr0type = VR_RANGE;
8507 if (TREE_CODE (*vr0max) == INTEGER_CST)
8508 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8509 build_int_cst (TREE_TYPE (*vr0max), 1));
8510 else
8511 *vr0min = *vr0max;
8512 *vr0max = vr1max;
8514 /* Choose the left gap if the right is empty. */
8515 else if (maxeq)
8517 *vr0type = VR_RANGE;
8518 if (TREE_CODE (*vr0min) == INTEGER_CST)
8519 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8520 build_int_cst (TREE_TYPE (*vr0min), 1));
8521 else
8522 *vr0max = *vr0min;
8523 *vr0min = vr1min;
8525 /* Choose the anti-range if the range is effectively varying. */
8526 else if (vrp_val_is_min (vr1min)
8527 && vrp_val_is_max (vr1max))
8529 /* Else choose the range. */
8530 else
8532 *vr0type = vr1type;
8533 *vr0min = vr1min;
8534 *vr0max = vr1max;
8537 else if (*vr0type == VR_ANTI_RANGE
8538 && vr1type == VR_ANTI_RANGE)
8540 /* If both are anti-ranges the result is the outer one. */
8541 *vr0type = vr1type;
8542 *vr0min = vr1min;
8543 *vr0max = vr1max;
8545 else if (vr1type == VR_ANTI_RANGE
8546 && *vr0type == VR_RANGE)
8548 /* The intersection is empty. */
8549 *vr0type = VR_UNDEFINED;
8550 *vr0min = NULL_TREE;
8551 *vr0max = NULL_TREE;
8553 else
8554 gcc_unreachable ();
8556 else if ((operand_less_p (vr1min, *vr0max) == 1
8557 || operand_equal_p (vr1min, *vr0max, 0))
8558 && operand_less_p (*vr0min, vr1min) == 1)
8560 /* [ ( ] ) or [ ]( ) */
8561 if (*vr0type == VR_ANTI_RANGE
8562 && vr1type == VR_ANTI_RANGE)
8563 *vr0max = vr1max;
8564 else if (*vr0type == VR_RANGE
8565 && vr1type == VR_RANGE)
8566 *vr0min = vr1min;
8567 else if (*vr0type == VR_RANGE
8568 && vr1type == VR_ANTI_RANGE)
8570 if (TREE_CODE (vr1min) == INTEGER_CST)
8571 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8572 build_int_cst (TREE_TYPE (vr1min), 1));
8573 else
8574 *vr0max = vr1min;
8576 else if (*vr0type == VR_ANTI_RANGE
8577 && vr1type == VR_RANGE)
8579 *vr0type = VR_RANGE;
8580 if (TREE_CODE (*vr0max) == INTEGER_CST)
8581 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8582 build_int_cst (TREE_TYPE (*vr0max), 1));
8583 else
8584 *vr0min = *vr0max;
8585 *vr0max = vr1max;
8587 else
8588 gcc_unreachable ();
8590 else if ((operand_less_p (*vr0min, vr1max) == 1
8591 || operand_equal_p (*vr0min, vr1max, 0))
8592 && operand_less_p (vr1min, *vr0min) == 1)
8594 /* ( [ ) ] or ( )[ ] */
8595 if (*vr0type == VR_ANTI_RANGE
8596 && vr1type == VR_ANTI_RANGE)
8597 *vr0min = vr1min;
8598 else if (*vr0type == VR_RANGE
8599 && vr1type == VR_RANGE)
8600 *vr0max = vr1max;
8601 else if (*vr0type == VR_RANGE
8602 && vr1type == VR_ANTI_RANGE)
8604 if (TREE_CODE (vr1max) == INTEGER_CST)
8605 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8606 build_int_cst (TREE_TYPE (vr1max), 1));
8607 else
8608 *vr0min = vr1max;
8610 else if (*vr0type == VR_ANTI_RANGE
8611 && vr1type == VR_RANGE)
8613 *vr0type = VR_RANGE;
8614 if (TREE_CODE (*vr0min) == INTEGER_CST)
8615 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8616 build_int_cst (TREE_TYPE (*vr0min), 1));
8617 else
8618 *vr0max = *vr0min;
8619 *vr0min = vr1min;
8621 else
8622 gcc_unreachable ();
8625 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8626 result for the intersection. That's always a conservative
8627 correct estimate unless VR1 is a constant singleton range
8628 in which case we choose that. */
8629 if (vr1type == VR_RANGE
8630 && is_gimple_min_invariant (vr1min)
8631 && vrp_operand_equal_p (vr1min, vr1max))
8633 *vr0type = vr1type;
8634 *vr0min = vr1min;
8635 *vr0max = vr1max;
8638 return;
8642 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8643 in *VR0. This may not be the smallest possible such range. */
8645 static void
8646 vrp_intersect_ranges_1 (value_range *vr0, value_range *vr1)
8648 value_range saved;
8650 /* If either range is VR_VARYING the other one wins. */
8651 if (vr1->type == VR_VARYING)
8652 return;
8653 if (vr0->type == VR_VARYING)
8655 copy_value_range (vr0, vr1);
8656 return;
8659 /* When either range is VR_UNDEFINED the resulting range is
8660 VR_UNDEFINED, too. */
8661 if (vr0->type == VR_UNDEFINED)
8662 return;
8663 if (vr1->type == VR_UNDEFINED)
8665 set_value_range_to_undefined (vr0);
8666 return;
8669 /* Save the original vr0 so we can return it as conservative intersection
8670 result when our worker turns things to varying. */
8671 saved = *vr0;
8672 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8673 vr1->type, vr1->min, vr1->max);
8674 /* Make sure to canonicalize the result though as the inversion of a
8675 VR_RANGE can still be a VR_RANGE. */
8676 set_and_canonicalize_value_range (vr0, vr0->type,
8677 vr0->min, vr0->max, vr0->equiv);
8678 /* If that failed, use the saved original VR0. */
8679 if (vr0->type == VR_VARYING)
8681 *vr0 = saved;
8682 return;
8684 /* If the result is VR_UNDEFINED there is no need to mess with
8685 the equivalencies. */
8686 if (vr0->type == VR_UNDEFINED)
8687 return;
8689 /* The resulting set of equivalences for range intersection is the union of
8690 the two sets. */
8691 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8692 bitmap_ior_into (vr0->equiv, vr1->equiv);
8693 else if (vr1->equiv && !vr0->equiv)
8695 vr0->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
8696 bitmap_copy (vr0->equiv, vr1->equiv);
8700 void
8701 vrp_intersect_ranges (value_range *vr0, value_range *vr1)
8703 if (dump_file && (dump_flags & TDF_DETAILS))
8705 fprintf (dump_file, "Intersecting\n ");
8706 dump_value_range (dump_file, vr0);
8707 fprintf (dump_file, "\nand\n ");
8708 dump_value_range (dump_file, vr1);
8709 fprintf (dump_file, "\n");
8711 vrp_intersect_ranges_1 (vr0, vr1);
8712 if (dump_file && (dump_flags & TDF_DETAILS))
8714 fprintf (dump_file, "to\n ");
8715 dump_value_range (dump_file, vr0);
8716 fprintf (dump_file, "\n");
8720 /* Meet operation for value ranges. Given two value ranges VR0 and
8721 VR1, store in VR0 a range that contains both VR0 and VR1. This
8722 may not be the smallest possible such range. */
8724 static void
8725 vrp_meet_1 (value_range *vr0, const value_range *vr1)
8727 value_range saved;
8729 if (vr0->type == VR_UNDEFINED)
8731 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8732 return;
8735 if (vr1->type == VR_UNDEFINED)
8737 /* VR0 already has the resulting range. */
8738 return;
8741 if (vr0->type == VR_VARYING)
8743 /* Nothing to do. VR0 already has the resulting range. */
8744 return;
8747 if (vr1->type == VR_VARYING)
8749 set_value_range_to_varying (vr0);
8750 return;
8753 saved = *vr0;
8754 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8755 vr1->type, vr1->min, vr1->max);
8756 if (vr0->type == VR_VARYING)
8758 /* Failed to find an efficient meet. Before giving up and setting
8759 the result to VARYING, see if we can at least derive a useful
8760 anti-range. FIXME, all this nonsense about distinguishing
8761 anti-ranges from ranges is necessary because of the odd
8762 semantics of range_includes_zero_p and friends. */
8763 if (((saved.type == VR_RANGE
8764 && range_includes_zero_p (saved.min, saved.max) == 0)
8765 || (saved.type == VR_ANTI_RANGE
8766 && range_includes_zero_p (saved.min, saved.max) == 1))
8767 && ((vr1->type == VR_RANGE
8768 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8769 || (vr1->type == VR_ANTI_RANGE
8770 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8772 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8774 /* Since this meet operation did not result from the meeting of
8775 two equivalent names, VR0 cannot have any equivalences. */
8776 if (vr0->equiv)
8777 bitmap_clear (vr0->equiv);
8778 return;
8781 set_value_range_to_varying (vr0);
8782 return;
8784 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8785 vr0->equiv);
8786 if (vr0->type == VR_VARYING)
8787 return;
8789 /* The resulting set of equivalences is always the intersection of
8790 the two sets. */
8791 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8792 bitmap_and_into (vr0->equiv, vr1->equiv);
8793 else if (vr0->equiv && !vr1->equiv)
8794 bitmap_clear (vr0->equiv);
8797 void
8798 vrp_meet (value_range *vr0, const value_range *vr1)
8800 if (dump_file && (dump_flags & TDF_DETAILS))
8802 fprintf (dump_file, "Meeting\n ");
8803 dump_value_range (dump_file, vr0);
8804 fprintf (dump_file, "\nand\n ");
8805 dump_value_range (dump_file, vr1);
8806 fprintf (dump_file, "\n");
8808 vrp_meet_1 (vr0, vr1);
8809 if (dump_file && (dump_flags & TDF_DETAILS))
8811 fprintf (dump_file, "to\n ");
8812 dump_value_range (dump_file, vr0);
8813 fprintf (dump_file, "\n");
8818 /* Visit all arguments for PHI node PHI that flow through executable
8819 edges. If a valid value range can be derived from all the incoming
8820 value ranges, set a new range in VR_RESULT. */
8822 static void
8823 extract_range_from_phi_node (gphi *phi, value_range *vr_result)
8825 size_t i;
8826 tree lhs = PHI_RESULT (phi);
8827 value_range *lhs_vr = get_value_range (lhs);
8828 bool first = true;
8829 int edges, old_edges;
8830 struct loop *l;
8832 if (dump_file && (dump_flags & TDF_DETAILS))
8834 fprintf (dump_file, "\nVisiting PHI node: ");
8835 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8838 bool may_simulate_backedge_again = false;
8839 edges = 0;
8840 for (i = 0; i < gimple_phi_num_args (phi); i++)
8842 edge e = gimple_phi_arg_edge (phi, i);
8844 if (dump_file && (dump_flags & TDF_DETAILS))
8846 fprintf (dump_file,
8847 " Argument #%d (%d -> %d %sexecutable)\n",
8848 (int) i, e->src->index, e->dest->index,
8849 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8852 if (e->flags & EDGE_EXECUTABLE)
8854 tree arg = PHI_ARG_DEF (phi, i);
8855 value_range vr_arg;
8857 ++edges;
8859 if (TREE_CODE (arg) == SSA_NAME)
8861 /* See if we are eventually going to change one of the args. */
8862 gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
8863 if (! gimple_nop_p (def_stmt)
8864 && prop_simulate_again_p (def_stmt)
8865 && e->flags & EDGE_DFS_BACK)
8866 may_simulate_backedge_again = true;
8868 vr_arg = *(get_value_range (arg));
8869 /* Do not allow equivalences or symbolic ranges to leak in from
8870 backedges. That creates invalid equivalencies.
8871 See PR53465 and PR54767. */
8872 if (e->flags & EDGE_DFS_BACK)
8874 if (vr_arg.type == VR_RANGE
8875 || vr_arg.type == VR_ANTI_RANGE)
8877 vr_arg.equiv = NULL;
8878 if (symbolic_range_p (&vr_arg))
8880 vr_arg.type = VR_VARYING;
8881 vr_arg.min = NULL_TREE;
8882 vr_arg.max = NULL_TREE;
8886 else
8888 /* If the non-backedge arguments range is VR_VARYING then
8889 we can still try recording a simple equivalence. */
8890 if (vr_arg.type == VR_VARYING)
8892 vr_arg.type = VR_RANGE;
8893 vr_arg.min = arg;
8894 vr_arg.max = arg;
8895 vr_arg.equiv = NULL;
8899 else
8901 if (TREE_OVERFLOW_P (arg))
8902 arg = drop_tree_overflow (arg);
8904 vr_arg.type = VR_RANGE;
8905 vr_arg.min = arg;
8906 vr_arg.max = arg;
8907 vr_arg.equiv = NULL;
8910 if (dump_file && (dump_flags & TDF_DETAILS))
8912 fprintf (dump_file, "\t");
8913 print_generic_expr (dump_file, arg, dump_flags);
8914 fprintf (dump_file, ": ");
8915 dump_value_range (dump_file, &vr_arg);
8916 fprintf (dump_file, "\n");
8919 if (first)
8920 copy_value_range (vr_result, &vr_arg);
8921 else
8922 vrp_meet (vr_result, &vr_arg);
8923 first = false;
8925 if (vr_result->type == VR_VARYING)
8926 break;
8930 if (vr_result->type == VR_VARYING)
8931 goto varying;
8932 else if (vr_result->type == VR_UNDEFINED)
8933 goto update_range;
8935 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8936 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8938 /* To prevent infinite iterations in the algorithm, derive ranges
8939 when the new value is slightly bigger or smaller than the
8940 previous one. We don't do this if we have seen a new executable
8941 edge; this helps us avoid an overflow infinity for conditionals
8942 which are not in a loop. If the old value-range was VR_UNDEFINED
8943 use the updated range and iterate one more time. If we will not
8944 simulate this PHI again via the backedge allow us to iterate. */
8945 if (edges > 0
8946 && gimple_phi_num_args (phi) > 1
8947 && edges == old_edges
8948 && lhs_vr->type != VR_UNDEFINED
8949 && may_simulate_backedge_again)
8951 /* Compare old and new ranges, fall back to varying if the
8952 values are not comparable. */
8953 int cmp_min = compare_values (lhs_vr->min, vr_result->min);
8954 if (cmp_min == -2)
8955 goto varying;
8956 int cmp_max = compare_values (lhs_vr->max, vr_result->max);
8957 if (cmp_max == -2)
8958 goto varying;
8960 /* For non VR_RANGE or for pointers fall back to varying if
8961 the range changed. */
8962 if ((lhs_vr->type != VR_RANGE || vr_result->type != VR_RANGE
8963 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8964 && (cmp_min != 0 || cmp_max != 0))
8965 goto varying;
8967 /* If the new minimum is larger than the previous one
8968 retain the old value. If the new minimum value is smaller
8969 than the previous one and not -INF go all the way to -INF + 1.
8970 In the first case, to avoid infinite bouncing between different
8971 minimums, and in the other case to avoid iterating millions of
8972 times to reach -INF. Going to -INF + 1 also lets the following
8973 iteration compute whether there will be any overflow, at the
8974 expense of one additional iteration. */
8975 if (cmp_min < 0)
8976 vr_result->min = lhs_vr->min;
8977 else if (cmp_min > 0
8978 && !vrp_val_is_min (vr_result->min))
8979 vr_result->min
8980 = int_const_binop (PLUS_EXPR,
8981 vrp_val_min (TREE_TYPE (vr_result->min)),
8982 build_int_cst (TREE_TYPE (vr_result->min), 1));
8984 /* Similarly for the maximum value. */
8985 if (cmp_max > 0)
8986 vr_result->max = lhs_vr->max;
8987 else if (cmp_max < 0
8988 && !vrp_val_is_max (vr_result->max))
8989 vr_result->max
8990 = int_const_binop (MINUS_EXPR,
8991 vrp_val_max (TREE_TYPE (vr_result->min)),
8992 build_int_cst (TREE_TYPE (vr_result->min), 1));
8994 /* If we dropped either bound to +-INF then if this is a loop
8995 PHI node SCEV may known more about its value-range. */
8996 if (cmp_min > 0 || cmp_min < 0
8997 || cmp_max < 0 || cmp_max > 0)
8998 goto scev_check;
9000 goto infinite_check;
9003 goto update_range;
9005 varying:
9006 set_value_range_to_varying (vr_result);
9008 scev_check:
9009 /* If this is a loop PHI node SCEV may known more about its value-range.
9010 scev_check can be reached from two paths, one is a fall through from above
9011 "varying" label, the other is direct goto from code block which tries to
9012 avoid infinite simulation. */
9013 if ((l = loop_containing_stmt (phi))
9014 && l->header == gimple_bb (phi))
9015 adjust_range_with_scev (vr_result, l, phi, lhs);
9017 infinite_check:
9018 /* If we will end up with a (-INF, +INF) range, set it to
9019 VARYING. Same if the previous max value was invalid for
9020 the type and we end up with vr_result.min > vr_result.max. */
9021 if ((vr_result->type == VR_RANGE || vr_result->type == VR_ANTI_RANGE)
9022 && !((vrp_val_is_max (vr_result->max) && vrp_val_is_min (vr_result->min))
9023 || compare_values (vr_result->min, vr_result->max) > 0))
9025 else
9026 set_value_range_to_varying (vr_result);
9028 /* If the new range is different than the previous value, keep
9029 iterating. */
9030 update_range:
9031 return;
9034 /* Visit all arguments for PHI node PHI that flow through executable
9035 edges. If a valid value range can be derived from all the incoming
9036 value ranges, set a new range for the LHS of PHI. */
9038 static enum ssa_prop_result
9039 vrp_visit_phi_node (gphi *phi)
9041 tree lhs = PHI_RESULT (phi);
9042 value_range vr_result = VR_INITIALIZER;
9043 extract_range_from_phi_node (phi, &vr_result);
9044 if (update_value_range (lhs, &vr_result))
9046 if (dump_file && (dump_flags & TDF_DETAILS))
9048 fprintf (dump_file, "Found new range for ");
9049 print_generic_expr (dump_file, lhs, 0);
9050 fprintf (dump_file, ": ");
9051 dump_value_range (dump_file, &vr_result);
9052 fprintf (dump_file, "\n");
9055 if (vr_result.type == VR_VARYING)
9056 return SSA_PROP_VARYING;
9058 return SSA_PROP_INTERESTING;
9061 /* Nothing changed, don't add outgoing edges. */
9062 return SSA_PROP_NOT_INTERESTING;
9065 /* Simplify boolean operations if the source is known
9066 to be already a boolean. */
9067 static bool
9068 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9070 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9071 tree lhs, op0, op1;
9072 bool need_conversion;
9074 /* We handle only !=/== case here. */
9075 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
9077 op0 = gimple_assign_rhs1 (stmt);
9078 if (!op_with_boolean_value_range_p (op0))
9079 return false;
9081 op1 = gimple_assign_rhs2 (stmt);
9082 if (!op_with_boolean_value_range_p (op1))
9083 return false;
9085 /* Reduce number of cases to handle to NE_EXPR. As there is no
9086 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
9087 if (rhs_code == EQ_EXPR)
9089 if (TREE_CODE (op1) == INTEGER_CST)
9090 op1 = int_const_binop (BIT_XOR_EXPR, op1,
9091 build_int_cst (TREE_TYPE (op1), 1));
9092 else
9093 return false;
9096 lhs = gimple_assign_lhs (stmt);
9097 need_conversion
9098 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
9100 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
9101 if (need_conversion
9102 && !TYPE_UNSIGNED (TREE_TYPE (op0))
9103 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
9104 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
9105 return false;
9107 /* For A != 0 we can substitute A itself. */
9108 if (integer_zerop (op1))
9109 gimple_assign_set_rhs_with_ops (gsi,
9110 need_conversion
9111 ? NOP_EXPR : TREE_CODE (op0), op0);
9112 /* For A != B we substitute A ^ B. Either with conversion. */
9113 else if (need_conversion)
9115 tree tem = make_ssa_name (TREE_TYPE (op0));
9116 gassign *newop
9117 = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
9118 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
9119 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
9120 && TYPE_PRECISION (TREE_TYPE (tem)) > 1)
9121 set_range_info (tem, VR_RANGE,
9122 wi::zero (TYPE_PRECISION (TREE_TYPE (tem))),
9123 wi::one (TYPE_PRECISION (TREE_TYPE (tem))));
9124 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
9126 /* Or without. */
9127 else
9128 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
9129 update_stmt (gsi_stmt (*gsi));
9130 fold_stmt (gsi, follow_single_use_edges);
9132 return true;
9135 /* Simplify a division or modulo operator to a right shift or
9136 bitwise and if the first operand is unsigned or is greater
9137 than zero and the second operand is an exact power of two.
9138 For TRUNC_MOD_EXPR op0 % op1 with constant op1, optimize it
9139 into just op0 if op0's range is known to be a subset of
9140 [-op1 + 1, op1 - 1] for signed and [0, op1 - 1] for unsigned
9141 modulo. */
9143 static bool
9144 simplify_div_or_mod_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9146 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9147 tree val = NULL;
9148 tree op0 = gimple_assign_rhs1 (stmt);
9149 tree op1 = gimple_assign_rhs2 (stmt);
9150 value_range *vr = get_value_range (op0);
9152 if (rhs_code == TRUNC_MOD_EXPR
9153 && TREE_CODE (op1) == INTEGER_CST
9154 && tree_int_cst_sgn (op1) == 1
9155 && range_int_cst_p (vr)
9156 && tree_int_cst_lt (vr->max, op1))
9158 if (TYPE_UNSIGNED (TREE_TYPE (op0))
9159 || tree_int_cst_sgn (vr->min) >= 0
9160 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1), op1),
9161 vr->min))
9163 /* If op0 already has the range op0 % op1 has,
9164 then TRUNC_MOD_EXPR won't change anything. */
9165 gimple_assign_set_rhs_from_tree (gsi, op0);
9166 return true;
9170 if (!integer_pow2p (op1))
9172 /* X % -Y can be only optimized into X % Y either if
9173 X is not INT_MIN, or Y is not -1. Fold it now, as after
9174 remove_range_assertions the range info might be not available
9175 anymore. */
9176 if (rhs_code == TRUNC_MOD_EXPR
9177 && fold_stmt (gsi, follow_single_use_edges))
9178 return true;
9179 return false;
9182 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
9183 val = integer_one_node;
9184 else
9186 bool sop = false;
9188 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
9190 if (val
9191 && sop
9192 && integer_onep (val)
9193 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9195 location_t location;
9197 if (!gimple_has_location (stmt))
9198 location = input_location;
9199 else
9200 location = gimple_location (stmt);
9201 warning_at (location, OPT_Wstrict_overflow,
9202 "assuming signed overflow does not occur when "
9203 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9207 if (val && integer_onep (val))
9209 tree t;
9211 if (rhs_code == TRUNC_DIV_EXPR)
9213 t = build_int_cst (integer_type_node, tree_log2 (op1));
9214 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
9215 gimple_assign_set_rhs1 (stmt, op0);
9216 gimple_assign_set_rhs2 (stmt, t);
9218 else
9220 t = build_int_cst (TREE_TYPE (op1), 1);
9221 t = int_const_binop (MINUS_EXPR, op1, t);
9222 t = fold_convert (TREE_TYPE (op0), t);
9224 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
9225 gimple_assign_set_rhs1 (stmt, op0);
9226 gimple_assign_set_rhs2 (stmt, t);
9229 update_stmt (stmt);
9230 fold_stmt (gsi, follow_single_use_edges);
9231 return true;
9234 return false;
9237 /* Simplify a min or max if the ranges of the two operands are
9238 disjoint. Return true if we do simplify. */
9240 static bool
9241 simplify_min_or_max_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9243 tree op0 = gimple_assign_rhs1 (stmt);
9244 tree op1 = gimple_assign_rhs2 (stmt);
9245 bool sop = false;
9246 tree val;
9248 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9249 (LE_EXPR, op0, op1, &sop));
9250 if (!val)
9252 sop = false;
9253 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9254 (LT_EXPR, op0, op1, &sop));
9257 if (val)
9259 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9261 location_t location;
9263 if (!gimple_has_location (stmt))
9264 location = input_location;
9265 else
9266 location = gimple_location (stmt);
9267 warning_at (location, OPT_Wstrict_overflow,
9268 "assuming signed overflow does not occur when "
9269 "simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
9272 /* VAL == TRUE -> OP0 < or <= op1
9273 VAL == FALSE -> OP0 > or >= op1. */
9274 tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR)
9275 == integer_zerop (val)) ? op0 : op1;
9276 gimple_assign_set_rhs_from_tree (gsi, res);
9277 return true;
9280 return false;
9283 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9284 ABS_EXPR. If the operand is <= 0, then simplify the
9285 ABS_EXPR into a NEGATE_EXPR. */
9287 static bool
9288 simplify_abs_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9290 tree op = gimple_assign_rhs1 (stmt);
9291 value_range *vr = get_value_range (op);
9293 if (vr)
9295 tree val = NULL;
9296 bool sop = false;
9298 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
9299 if (!val)
9301 /* The range is neither <= 0 nor > 0. Now see if it is
9302 either < 0 or >= 0. */
9303 sop = false;
9304 val = compare_range_with_value (LT_EXPR, vr, integer_zero_node,
9305 &sop);
9308 if (val)
9310 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9312 location_t location;
9314 if (!gimple_has_location (stmt))
9315 location = input_location;
9316 else
9317 location = gimple_location (stmt);
9318 warning_at (location, OPT_Wstrict_overflow,
9319 "assuming signed overflow does not occur when "
9320 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9323 gimple_assign_set_rhs1 (stmt, op);
9324 if (integer_zerop (val))
9325 gimple_assign_set_rhs_code (stmt, SSA_NAME);
9326 else
9327 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
9328 update_stmt (stmt);
9329 fold_stmt (gsi, follow_single_use_edges);
9330 return true;
9334 return false;
9337 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9338 If all the bits that are being cleared by & are already
9339 known to be zero from VR, or all the bits that are being
9340 set by | are already known to be one from VR, the bit
9341 operation is redundant. */
9343 static bool
9344 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9346 tree op0 = gimple_assign_rhs1 (stmt);
9347 tree op1 = gimple_assign_rhs2 (stmt);
9348 tree op = NULL_TREE;
9349 value_range vr0 = VR_INITIALIZER;
9350 value_range vr1 = VR_INITIALIZER;
9351 wide_int may_be_nonzero0, may_be_nonzero1;
9352 wide_int must_be_nonzero0, must_be_nonzero1;
9353 wide_int mask;
9355 if (TREE_CODE (op0) == SSA_NAME)
9356 vr0 = *(get_value_range (op0));
9357 else if (is_gimple_min_invariant (op0))
9358 set_value_range_to_value (&vr0, op0, NULL);
9359 else
9360 return false;
9362 if (TREE_CODE (op1) == SSA_NAME)
9363 vr1 = *(get_value_range (op1));
9364 else if (is_gimple_min_invariant (op1))
9365 set_value_range_to_value (&vr1, op1, NULL);
9366 else
9367 return false;
9369 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
9370 &must_be_nonzero0))
9371 return false;
9372 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
9373 &must_be_nonzero1))
9374 return false;
9376 switch (gimple_assign_rhs_code (stmt))
9378 case BIT_AND_EXPR:
9379 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9380 if (mask == 0)
9382 op = op0;
9383 break;
9385 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9386 if (mask == 0)
9388 op = op1;
9389 break;
9391 break;
9392 case BIT_IOR_EXPR:
9393 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9394 if (mask == 0)
9396 op = op1;
9397 break;
9399 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9400 if (mask == 0)
9402 op = op0;
9403 break;
9405 break;
9406 default:
9407 gcc_unreachable ();
9410 if (op == NULL_TREE)
9411 return false;
9413 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
9414 update_stmt (gsi_stmt (*gsi));
9415 return true;
9418 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9419 a known value range VR.
9421 If there is one and only one value which will satisfy the
9422 conditional, then return that value. Else return NULL.
9424 If signed overflow must be undefined for the value to satisfy
9425 the conditional, then set *STRICT_OVERFLOW_P to true. */
9427 static tree
9428 test_for_singularity (enum tree_code cond_code, tree op0,
9429 tree op1, value_range *vr,
9430 bool *strict_overflow_p)
9432 tree min = NULL;
9433 tree max = NULL;
9435 /* Extract minimum/maximum values which satisfy the conditional as it was
9436 written. */
9437 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
9439 /* This should not be negative infinity; there is no overflow
9440 here. */
9441 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
9443 max = op1;
9444 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
9446 tree one = build_int_cst (TREE_TYPE (op0), 1);
9447 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
9448 if (EXPR_P (max))
9449 TREE_NO_WARNING (max) = 1;
9452 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
9454 /* This should not be positive infinity; there is no overflow
9455 here. */
9456 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
9458 min = op1;
9459 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
9461 tree one = build_int_cst (TREE_TYPE (op0), 1);
9462 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
9463 if (EXPR_P (min))
9464 TREE_NO_WARNING (min) = 1;
9468 /* Now refine the minimum and maximum values using any
9469 value range information we have for op0. */
9470 if (min && max)
9472 if (compare_values (vr->min, min) == 1)
9473 min = vr->min;
9474 if (compare_values (vr->max, max) == -1)
9475 max = vr->max;
9477 /* If the new min/max values have converged to a single value,
9478 then there is only one value which can satisfy the condition,
9479 return that value. */
9480 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
9482 if ((cond_code == LE_EXPR || cond_code == LT_EXPR)
9483 && is_overflow_infinity (vr->max))
9484 *strict_overflow_p = true;
9485 if ((cond_code == GE_EXPR || cond_code == GT_EXPR)
9486 && is_overflow_infinity (vr->min))
9487 *strict_overflow_p = true;
9489 return min;
9492 return NULL;
9495 /* Return whether the value range *VR fits in an integer type specified
9496 by PRECISION and UNSIGNED_P. */
9498 static bool
9499 range_fits_type_p (value_range *vr, unsigned dest_precision, signop dest_sgn)
9501 tree src_type;
9502 unsigned src_precision;
9503 widest_int tem;
9504 signop src_sgn;
9506 /* We can only handle integral and pointer types. */
9507 src_type = TREE_TYPE (vr->min);
9508 if (!INTEGRAL_TYPE_P (src_type)
9509 && !POINTER_TYPE_P (src_type))
9510 return false;
9512 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9513 and so is an identity transform. */
9514 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
9515 src_sgn = TYPE_SIGN (src_type);
9516 if ((src_precision < dest_precision
9517 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
9518 || (src_precision == dest_precision && src_sgn == dest_sgn))
9519 return true;
9521 /* Now we can only handle ranges with constant bounds. */
9522 if (vr->type != VR_RANGE
9523 || TREE_CODE (vr->min) != INTEGER_CST
9524 || TREE_CODE (vr->max) != INTEGER_CST)
9525 return false;
9527 /* For sign changes, the MSB of the wide_int has to be clear.
9528 An unsigned value with its MSB set cannot be represented by
9529 a signed wide_int, while a negative value cannot be represented
9530 by an unsigned wide_int. */
9531 if (src_sgn != dest_sgn
9532 && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
9533 return false;
9535 /* Then we can perform the conversion on both ends and compare
9536 the result for equality. */
9537 tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
9538 if (tem != wi::to_widest (vr->min))
9539 return false;
9540 tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
9541 if (tem != wi::to_widest (vr->max))
9542 return false;
9544 return true;
9547 /* Simplify a conditional using a relational operator to an equality
9548 test if the range information indicates only one value can satisfy
9549 the original conditional. */
9551 static bool
9552 simplify_cond_using_ranges (gcond *stmt)
9554 tree op0 = gimple_cond_lhs (stmt);
9555 tree op1 = gimple_cond_rhs (stmt);
9556 enum tree_code cond_code = gimple_cond_code (stmt);
9558 if (cond_code != NE_EXPR
9559 && cond_code != EQ_EXPR
9560 && TREE_CODE (op0) == SSA_NAME
9561 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9562 && is_gimple_min_invariant (op1))
9564 value_range *vr = get_value_range (op0);
9566 /* If we have range information for OP0, then we might be
9567 able to simplify this conditional. */
9568 if (vr->type == VR_RANGE)
9570 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
9571 bool sop = false;
9572 tree new_tree = test_for_singularity (cond_code, op0, op1, vr, &sop);
9574 if (new_tree
9575 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9577 if (dump_file)
9579 fprintf (dump_file, "Simplified relational ");
9580 print_gimple_stmt (dump_file, stmt, 0, 0);
9581 fprintf (dump_file, " into ");
9584 gimple_cond_set_code (stmt, EQ_EXPR);
9585 gimple_cond_set_lhs (stmt, op0);
9586 gimple_cond_set_rhs (stmt, new_tree);
9588 update_stmt (stmt);
9590 if (dump_file)
9592 print_gimple_stmt (dump_file, stmt, 0, 0);
9593 fprintf (dump_file, "\n");
9596 if (sop && issue_strict_overflow_warning (wc))
9598 location_t location = input_location;
9599 if (gimple_has_location (stmt))
9600 location = gimple_location (stmt);
9602 warning_at (location, OPT_Wstrict_overflow,
9603 "assuming signed overflow does not occur when "
9604 "simplifying conditional");
9607 return true;
9610 /* Try again after inverting the condition. We only deal
9611 with integral types here, so no need to worry about
9612 issues with inverting FP comparisons. */
9613 sop = false;
9614 new_tree = test_for_singularity
9615 (invert_tree_comparison (cond_code, false),
9616 op0, op1, vr, &sop);
9618 if (new_tree
9619 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9621 if (dump_file)
9623 fprintf (dump_file, "Simplified relational ");
9624 print_gimple_stmt (dump_file, stmt, 0, 0);
9625 fprintf (dump_file, " into ");
9628 gimple_cond_set_code (stmt, NE_EXPR);
9629 gimple_cond_set_lhs (stmt, op0);
9630 gimple_cond_set_rhs (stmt, new_tree);
9632 update_stmt (stmt);
9634 if (dump_file)
9636 print_gimple_stmt (dump_file, stmt, 0, 0);
9637 fprintf (dump_file, "\n");
9640 if (sop && issue_strict_overflow_warning (wc))
9642 location_t location = input_location;
9643 if (gimple_has_location (stmt))
9644 location = gimple_location (stmt);
9646 warning_at (location, OPT_Wstrict_overflow,
9647 "assuming signed overflow does not occur when "
9648 "simplifying conditional");
9651 return true;
9656 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9657 see if OP0 was set by a type conversion where the source of
9658 the conversion is another SSA_NAME with a range that fits
9659 into the range of OP0's type.
9661 If so, the conversion is redundant as the earlier SSA_NAME can be
9662 used for the comparison directly if we just massage the constant in the
9663 comparison. */
9664 if (TREE_CODE (op0) == SSA_NAME
9665 && TREE_CODE (op1) == INTEGER_CST)
9667 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
9668 tree innerop;
9670 if (!is_gimple_assign (def_stmt)
9671 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9672 return false;
9674 innerop = gimple_assign_rhs1 (def_stmt);
9676 if (TREE_CODE (innerop) == SSA_NAME
9677 && !POINTER_TYPE_P (TREE_TYPE (innerop))
9678 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)
9679 && desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0)))
9681 value_range *vr = get_value_range (innerop);
9683 if (range_int_cst_p (vr)
9684 && range_fits_type_p (vr,
9685 TYPE_PRECISION (TREE_TYPE (op0)),
9686 TYPE_SIGN (TREE_TYPE (op0)))
9687 && int_fits_type_p (op1, TREE_TYPE (innerop))
9688 /* The range must not have overflowed, or if it did overflow
9689 we must not be wrapping/trapping overflow and optimizing
9690 with strict overflow semantics. */
9691 && ((!is_negative_overflow_infinity (vr->min)
9692 && !is_positive_overflow_infinity (vr->max))
9693 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
9695 /* If the range overflowed and the user has asked for warnings
9696 when strict overflow semantics were used to optimize code,
9697 issue an appropriate warning. */
9698 if (cond_code != EQ_EXPR && cond_code != NE_EXPR
9699 && (is_negative_overflow_infinity (vr->min)
9700 || is_positive_overflow_infinity (vr->max))
9701 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
9703 location_t location;
9705 if (!gimple_has_location (stmt))
9706 location = input_location;
9707 else
9708 location = gimple_location (stmt);
9709 warning_at (location, OPT_Wstrict_overflow,
9710 "assuming signed overflow does not occur when "
9711 "simplifying conditional");
9714 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9715 gimple_cond_set_lhs (stmt, innerop);
9716 gimple_cond_set_rhs (stmt, newconst);
9717 return true;
9722 return false;
9725 /* Simplify a switch statement using the value range of the switch
9726 argument. */
9728 static bool
9729 simplify_switch_using_ranges (gswitch *stmt)
9731 tree op = gimple_switch_index (stmt);
9732 value_range *vr = NULL;
9733 bool take_default;
9734 edge e;
9735 edge_iterator ei;
9736 size_t i = 0, j = 0, n, n2;
9737 tree vec2;
9738 switch_update su;
9739 size_t k = 1, l = 0;
9741 if (TREE_CODE (op) == SSA_NAME)
9743 vr = get_value_range (op);
9745 /* We can only handle integer ranges. */
9746 if ((vr->type != VR_RANGE
9747 && vr->type != VR_ANTI_RANGE)
9748 || symbolic_range_p (vr))
9749 return false;
9751 /* Find case label for min/max of the value range. */
9752 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9754 else if (TREE_CODE (op) == INTEGER_CST)
9756 take_default = !find_case_label_index (stmt, 1, op, &i);
9757 if (take_default)
9759 i = 1;
9760 j = 0;
9762 else
9764 j = i;
9767 else
9768 return false;
9770 n = gimple_switch_num_labels (stmt);
9772 /* We can truncate the case label ranges that partially overlap with OP's
9773 value range. */
9774 size_t min_idx = 1, max_idx = 0;
9775 if (vr != NULL)
9776 find_case_label_range (stmt, vr->min, vr->max, &min_idx, &max_idx);
9777 if (min_idx <= max_idx)
9779 tree min_label = gimple_switch_label (stmt, min_idx);
9780 tree max_label = gimple_switch_label (stmt, max_idx);
9782 /* Avoid changing the type of the case labels when truncating. */
9783 tree case_label_type = TREE_TYPE (CASE_LOW (min_label));
9784 tree vr_min = fold_convert (case_label_type, vr->min);
9785 tree vr_max = fold_convert (case_label_type, vr->max);
9787 if (vr->type == VR_RANGE)
9789 /* If OP's value range is [2,8] and the low label range is
9790 0 ... 3, truncate the label's range to 2 .. 3. */
9791 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9792 && CASE_HIGH (min_label) != NULL_TREE
9793 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
9794 CASE_LOW (min_label) = vr_min;
9796 /* If OP's value range is [2,8] and the high label range is
9797 7 ... 10, truncate the label's range to 7 .. 8. */
9798 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
9799 && CASE_HIGH (max_label) != NULL_TREE
9800 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
9801 CASE_HIGH (max_label) = vr_max;
9803 else if (vr->type == VR_ANTI_RANGE)
9805 tree one_cst = build_one_cst (case_label_type);
9807 if (min_label == max_label)
9809 /* If OP's value range is ~[7,8] and the label's range is
9810 7 ... 10, truncate the label's range to 9 ... 10. */
9811 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0
9812 && CASE_HIGH (min_label) != NULL_TREE
9813 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0)
9814 CASE_LOW (min_label)
9815 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
9817 /* If OP's value range is ~[7,8] and the label's range is
9818 5 ... 8, truncate the label's range to 5 ... 6. */
9819 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9820 && CASE_HIGH (min_label) != NULL_TREE
9821 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0)
9822 CASE_HIGH (min_label)
9823 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
9825 else
9827 /* If OP's value range is ~[2,8] and the low label range is
9828 0 ... 3, truncate the label's range to 0 ... 1. */
9829 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9830 && CASE_HIGH (min_label) != NULL_TREE
9831 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
9832 CASE_HIGH (min_label)
9833 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
9835 /* If OP's value range is ~[2,8] and the high label range is
9836 7 ... 10, truncate the label's range to 9 ... 10. */
9837 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
9838 && CASE_HIGH (max_label) != NULL_TREE
9839 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
9840 CASE_LOW (max_label)
9841 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
9845 /* Canonicalize singleton case ranges. */
9846 if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label)))
9847 CASE_HIGH (min_label) = NULL_TREE;
9848 if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label)))
9849 CASE_HIGH (max_label) = NULL_TREE;
9852 /* We can also eliminate case labels that lie completely outside OP's value
9853 range. */
9855 /* Bail out if this is just all edges taken. */
9856 if (i == 1
9857 && j == n - 1
9858 && take_default)
9859 return false;
9861 /* Build a new vector of taken case labels. */
9862 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9863 n2 = 0;
9865 /* Add the default edge, if necessary. */
9866 if (take_default)
9867 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9869 for (; i <= j; ++i, ++n2)
9870 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9872 for (; k <= l; ++k, ++n2)
9873 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9875 /* Mark needed edges. */
9876 for (i = 0; i < n2; ++i)
9878 e = find_edge (gimple_bb (stmt),
9879 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9880 e->aux = (void *)-1;
9883 /* Queue not needed edges for later removal. */
9884 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9886 if (e->aux == (void *)-1)
9888 e->aux = NULL;
9889 continue;
9892 if (dump_file && (dump_flags & TDF_DETAILS))
9894 fprintf (dump_file, "removing unreachable case label\n");
9896 to_remove_edges.safe_push (e);
9897 e->flags &= ~EDGE_EXECUTABLE;
9900 /* And queue an update for the stmt. */
9901 su.stmt = stmt;
9902 su.vec = vec2;
9903 to_update_switch_stmts.safe_push (su);
9904 return false;
9907 /* Simplify an integral conversion from an SSA name in STMT. */
9909 static bool
9910 simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9912 tree innerop, middleop, finaltype;
9913 gimple *def_stmt;
9914 signop inner_sgn, middle_sgn, final_sgn;
9915 unsigned inner_prec, middle_prec, final_prec;
9916 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9918 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9919 if (!INTEGRAL_TYPE_P (finaltype))
9920 return false;
9921 middleop = gimple_assign_rhs1 (stmt);
9922 def_stmt = SSA_NAME_DEF_STMT (middleop);
9923 if (!is_gimple_assign (def_stmt)
9924 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9925 return false;
9926 innerop = gimple_assign_rhs1 (def_stmt);
9927 if (TREE_CODE (innerop) != SSA_NAME
9928 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9929 return false;
9931 /* Get the value-range of the inner operand. Use get_range_info in
9932 case innerop was created during substitute-and-fold. */
9933 wide_int imin, imax;
9934 if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop))
9935 || get_range_info (innerop, &imin, &imax) != VR_RANGE)
9936 return false;
9937 innermin = widest_int::from (imin, TYPE_SIGN (TREE_TYPE (innerop)));
9938 innermax = widest_int::from (imax, TYPE_SIGN (TREE_TYPE (innerop)));
9940 /* Simulate the conversion chain to check if the result is equal if
9941 the middle conversion is removed. */
9942 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9943 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9944 final_prec = TYPE_PRECISION (finaltype);
9946 /* If the first conversion is not injective, the second must not
9947 be widening. */
9948 if (wi::gtu_p (innermax - innermin,
9949 wi::mask <widest_int> (middle_prec, false))
9950 && middle_prec < final_prec)
9951 return false;
9952 /* We also want a medium value so that we can track the effect that
9953 narrowing conversions with sign change have. */
9954 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
9955 if (inner_sgn == UNSIGNED)
9956 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
9957 else
9958 innermed = 0;
9959 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
9960 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
9961 innermed = innermin;
9963 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
9964 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
9965 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
9966 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
9968 /* Require that the final conversion applied to both the original
9969 and the intermediate range produces the same result. */
9970 final_sgn = TYPE_SIGN (finaltype);
9971 if (wi::ext (middlemin, final_prec, final_sgn)
9972 != wi::ext (innermin, final_prec, final_sgn)
9973 || wi::ext (middlemed, final_prec, final_sgn)
9974 != wi::ext (innermed, final_prec, final_sgn)
9975 || wi::ext (middlemax, final_prec, final_sgn)
9976 != wi::ext (innermax, final_prec, final_sgn))
9977 return false;
9979 gimple_assign_set_rhs1 (stmt, innerop);
9980 fold_stmt (gsi, follow_single_use_edges);
9981 return true;
9984 /* Simplify a conversion from integral SSA name to float in STMT. */
9986 static bool
9987 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi,
9988 gimple *stmt)
9990 tree rhs1 = gimple_assign_rhs1 (stmt);
9991 value_range *vr = get_value_range (rhs1);
9992 machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9993 machine_mode mode;
9994 tree tem;
9995 gassign *conv;
9997 /* We can only handle constant ranges. */
9998 if (vr->type != VR_RANGE
9999 || TREE_CODE (vr->min) != INTEGER_CST
10000 || TREE_CODE (vr->max) != INTEGER_CST)
10001 return false;
10003 /* First check if we can use a signed type in place of an unsigned. */
10004 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
10005 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
10006 != CODE_FOR_nothing)
10007 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
10008 mode = TYPE_MODE (TREE_TYPE (rhs1));
10009 /* If we can do the conversion in the current input mode do nothing. */
10010 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
10011 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
10012 return false;
10013 /* Otherwise search for a mode we can use, starting from the narrowest
10014 integer mode available. */
10015 else
10017 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
10020 /* If we cannot do a signed conversion to float from mode
10021 or if the value-range does not fit in the signed type
10022 try with a wider mode. */
10023 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
10024 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
10025 break;
10027 mode = GET_MODE_WIDER_MODE (mode);
10028 /* But do not widen the input. Instead leave that to the
10029 optabs expansion code. */
10030 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
10031 return false;
10033 while (mode != VOIDmode);
10034 if (mode == VOIDmode)
10035 return false;
10038 /* It works, insert a truncation or sign-change before the
10039 float conversion. */
10040 tem = make_ssa_name (build_nonstandard_integer_type
10041 (GET_MODE_PRECISION (mode), 0));
10042 conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
10043 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
10044 gimple_assign_set_rhs1 (stmt, tem);
10045 fold_stmt (gsi, follow_single_use_edges);
10047 return true;
10050 /* Simplify an internal fn call using ranges if possible. */
10052 static bool
10053 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
10055 enum tree_code subcode;
10056 bool is_ubsan = false;
10057 bool ovf = false;
10058 switch (gimple_call_internal_fn (stmt))
10060 case IFN_UBSAN_CHECK_ADD:
10061 subcode = PLUS_EXPR;
10062 is_ubsan = true;
10063 break;
10064 case IFN_UBSAN_CHECK_SUB:
10065 subcode = MINUS_EXPR;
10066 is_ubsan = true;
10067 break;
10068 case IFN_UBSAN_CHECK_MUL:
10069 subcode = MULT_EXPR;
10070 is_ubsan = true;
10071 break;
10072 case IFN_ADD_OVERFLOW:
10073 subcode = PLUS_EXPR;
10074 break;
10075 case IFN_SUB_OVERFLOW:
10076 subcode = MINUS_EXPR;
10077 break;
10078 case IFN_MUL_OVERFLOW:
10079 subcode = MULT_EXPR;
10080 break;
10081 default:
10082 return false;
10085 tree op0 = gimple_call_arg (stmt, 0);
10086 tree op1 = gimple_call_arg (stmt, 1);
10087 tree type;
10088 if (is_ubsan)
10090 type = TREE_TYPE (op0);
10091 if (VECTOR_TYPE_P (type))
10092 return false;
10094 else if (gimple_call_lhs (stmt) == NULL_TREE)
10095 return false;
10096 else
10097 type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
10098 if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
10099 || (is_ubsan && ovf))
10100 return false;
10102 gimple *g;
10103 location_t loc = gimple_location (stmt);
10104 if (is_ubsan)
10105 g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
10106 else
10108 int prec = TYPE_PRECISION (type);
10109 tree utype = type;
10110 if (ovf
10111 || !useless_type_conversion_p (type, TREE_TYPE (op0))
10112 || !useless_type_conversion_p (type, TREE_TYPE (op1)))
10113 utype = build_nonstandard_integer_type (prec, 1);
10114 if (TREE_CODE (op0) == INTEGER_CST)
10115 op0 = fold_convert (utype, op0);
10116 else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
10118 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
10119 gimple_set_location (g, loc);
10120 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10121 op0 = gimple_assign_lhs (g);
10123 if (TREE_CODE (op1) == INTEGER_CST)
10124 op1 = fold_convert (utype, op1);
10125 else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
10127 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
10128 gimple_set_location (g, loc);
10129 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10130 op1 = gimple_assign_lhs (g);
10132 g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
10133 gimple_set_location (g, loc);
10134 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10135 if (utype != type)
10137 g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
10138 gimple_assign_lhs (g));
10139 gimple_set_location (g, loc);
10140 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10142 g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
10143 gimple_assign_lhs (g),
10144 build_int_cst (type, ovf));
10146 gimple_set_location (g, loc);
10147 gsi_replace (gsi, g, false);
10148 return true;
10151 /* Return true if VAR is a two-valued variable. Set a and b with the
10152 two-values when it is true. Return false otherwise. */
10154 static bool
10155 two_valued_val_range_p (tree var, tree *a, tree *b)
10157 value_range *vr = get_value_range (var);
10158 if ((vr->type != VR_RANGE
10159 && vr->type != VR_ANTI_RANGE)
10160 || TREE_CODE (vr->min) != INTEGER_CST
10161 || TREE_CODE (vr->max) != INTEGER_CST)
10162 return false;
10164 if (vr->type == VR_RANGE
10165 && wi::sub (vr->max, vr->min) == 1)
10167 *a = vr->min;
10168 *b = vr->max;
10169 return true;
10172 /* ~[TYPE_MIN + 1, TYPE_MAX - 1] */
10173 if (vr->type == VR_ANTI_RANGE
10174 && wi::sub (vr->min, vrp_val_min (TREE_TYPE (var))) == 1
10175 && wi::sub (vrp_val_max (TREE_TYPE (var)), vr->max) == 1)
10177 *a = vrp_val_min (TREE_TYPE (var));
10178 *b = vrp_val_max (TREE_TYPE (var));
10179 return true;
10182 return false;
10185 /* Simplify STMT using ranges if possible. */
10187 static bool
10188 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
10190 gimple *stmt = gsi_stmt (*gsi);
10191 if (is_gimple_assign (stmt))
10193 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
10194 tree rhs1 = gimple_assign_rhs1 (stmt);
10195 tree rhs2 = gimple_assign_rhs2 (stmt);
10196 tree lhs = gimple_assign_lhs (stmt);
10197 tree val1 = NULL_TREE, val2 = NULL_TREE;
10198 use_operand_p use_p;
10199 gimple *use_stmt;
10201 /* Convert:
10202 LHS = CST BINOP VAR
10203 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10205 LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2)
10207 Also handles:
10208 LHS = VAR BINOP CST
10209 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10211 LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */
10213 if (TREE_CODE_CLASS (rhs_code) == tcc_binary
10214 && INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10215 && ((TREE_CODE (rhs1) == INTEGER_CST
10216 && TREE_CODE (rhs2) == SSA_NAME)
10217 || (TREE_CODE (rhs2) == INTEGER_CST
10218 && TREE_CODE (rhs1) == SSA_NAME))
10219 && single_imm_use (lhs, &use_p, &use_stmt)
10220 && gimple_code (use_stmt) == GIMPLE_COND)
10223 tree new_rhs1 = NULL_TREE;
10224 tree new_rhs2 = NULL_TREE;
10225 tree cmp_var = NULL_TREE;
10227 if (TREE_CODE (rhs2) == SSA_NAME
10228 && two_valued_val_range_p (rhs2, &val1, &val2))
10230 /* Optimize RHS1 OP [VAL1, VAL2]. */
10231 new_rhs1 = int_const_binop (rhs_code, rhs1, val1);
10232 new_rhs2 = int_const_binop (rhs_code, rhs1, val2);
10233 cmp_var = rhs2;
10235 else if (TREE_CODE (rhs1) == SSA_NAME
10236 && two_valued_val_range_p (rhs1, &val1, &val2))
10238 /* Optimize [VAL1, VAL2] OP RHS2. */
10239 new_rhs1 = int_const_binop (rhs_code, val1, rhs2);
10240 new_rhs2 = int_const_binop (rhs_code, val2, rhs2);
10241 cmp_var = rhs1;
10244 /* If we could not find two-vals or the optimzation is invalid as
10245 in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */
10246 if (new_rhs1 && new_rhs2)
10248 tree cond = build2 (EQ_EXPR, boolean_type_node, cmp_var, val1);
10249 gimple_assign_set_rhs_with_ops (gsi,
10250 COND_EXPR, cond,
10251 new_rhs1,
10252 new_rhs2);
10253 update_stmt (gsi_stmt (*gsi));
10254 fold_stmt (gsi, follow_single_use_edges);
10255 return true;
10259 switch (rhs_code)
10261 case EQ_EXPR:
10262 case NE_EXPR:
10263 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
10264 if the RHS is zero or one, and the LHS are known to be boolean
10265 values. */
10266 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10267 return simplify_truth_ops_using_ranges (gsi, stmt);
10268 break;
10270 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
10271 and BIT_AND_EXPR respectively if the first operand is greater
10272 than zero and the second operand is an exact power of two.
10273 Also optimize TRUNC_MOD_EXPR away if the second operand is
10274 constant and the first operand already has the right value
10275 range. */
10276 case TRUNC_DIV_EXPR:
10277 case TRUNC_MOD_EXPR:
10278 if (TREE_CODE (rhs1) == SSA_NAME
10279 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10280 return simplify_div_or_mod_using_ranges (gsi, stmt);
10281 break;
10283 /* Transform ABS (X) into X or -X as appropriate. */
10284 case ABS_EXPR:
10285 if (TREE_CODE (rhs1) == SSA_NAME
10286 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10287 return simplify_abs_using_ranges (gsi, stmt);
10288 break;
10290 case BIT_AND_EXPR:
10291 case BIT_IOR_EXPR:
10292 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
10293 if all the bits being cleared are already cleared or
10294 all the bits being set are already set. */
10295 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10296 return simplify_bit_ops_using_ranges (gsi, stmt);
10297 break;
10299 CASE_CONVERT:
10300 if (TREE_CODE (rhs1) == SSA_NAME
10301 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10302 return simplify_conversion_using_ranges (gsi, stmt);
10303 break;
10305 case FLOAT_EXPR:
10306 if (TREE_CODE (rhs1) == SSA_NAME
10307 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10308 return simplify_float_conversion_using_ranges (gsi, stmt);
10309 break;
10311 case MIN_EXPR:
10312 case MAX_EXPR:
10313 return simplify_min_or_max_using_ranges (gsi, stmt);
10315 default:
10316 break;
10319 else if (gimple_code (stmt) == GIMPLE_COND)
10320 return simplify_cond_using_ranges (as_a <gcond *> (stmt));
10321 else if (gimple_code (stmt) == GIMPLE_SWITCH)
10322 return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
10323 else if (is_gimple_call (stmt)
10324 && gimple_call_internal_p (stmt))
10325 return simplify_internal_call_using_ranges (gsi, stmt);
10327 return false;
10330 /* If the statement pointed by SI has a predicate whose value can be
10331 computed using the value range information computed by VRP, compute
10332 its value and return true. Otherwise, return false. */
10334 static bool
10335 fold_predicate_in (gimple_stmt_iterator *si)
10337 bool assignment_p = false;
10338 tree val;
10339 gimple *stmt = gsi_stmt (*si);
10341 if (is_gimple_assign (stmt)
10342 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
10344 assignment_p = true;
10345 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
10346 gimple_assign_rhs1 (stmt),
10347 gimple_assign_rhs2 (stmt),
10348 stmt);
10350 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10351 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10352 gimple_cond_lhs (cond_stmt),
10353 gimple_cond_rhs (cond_stmt),
10354 stmt);
10355 else
10356 return false;
10358 if (val)
10360 if (assignment_p)
10361 val = fold_convert (gimple_expr_type (stmt), val);
10363 if (dump_file)
10365 fprintf (dump_file, "Folding predicate ");
10366 print_gimple_expr (dump_file, stmt, 0, 0);
10367 fprintf (dump_file, " to ");
10368 print_generic_expr (dump_file, val, 0);
10369 fprintf (dump_file, "\n");
10372 if (is_gimple_assign (stmt))
10373 gimple_assign_set_rhs_from_tree (si, val);
10374 else
10376 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
10377 gcond *cond_stmt = as_a <gcond *> (stmt);
10378 if (integer_zerop (val))
10379 gimple_cond_make_false (cond_stmt);
10380 else if (integer_onep (val))
10381 gimple_cond_make_true (cond_stmt);
10382 else
10383 gcc_unreachable ();
10386 return true;
10389 return false;
10392 /* Callback for substitute_and_fold folding the stmt at *SI. */
10394 static bool
10395 vrp_fold_stmt (gimple_stmt_iterator *si)
10397 if (fold_predicate_in (si))
10398 return true;
10400 return simplify_stmt_using_ranges (si);
10403 /* Unwindable const/copy equivalences. */
10404 const_and_copies *equiv_stack;
10406 /* A trivial wrapper so that we can present the generic jump threading
10407 code with a simple API for simplifying statements. STMT is the
10408 statement we want to simplify, WITHIN_STMT provides the location
10409 for any overflow warnings. */
10411 static tree
10412 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
10413 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED)
10415 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10416 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10417 gimple_cond_lhs (cond_stmt),
10418 gimple_cond_rhs (cond_stmt),
10419 within_stmt);
10421 /* We simplify a switch statement by trying to determine which case label
10422 will be taken. If we are successful then we return the corresponding
10423 CASE_LABEL_EXPR. */
10424 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
10426 tree op = gimple_switch_index (switch_stmt);
10427 if (TREE_CODE (op) != SSA_NAME)
10428 return NULL_TREE;
10430 value_range *vr = get_value_range (op);
10431 if ((vr->type != VR_RANGE && vr->type != VR_ANTI_RANGE)
10432 || symbolic_range_p (vr))
10433 return NULL_TREE;
10435 if (vr->type == VR_RANGE)
10437 size_t i, j;
10438 /* Get the range of labels that contain a part of the operand's
10439 value range. */
10440 find_case_label_range (switch_stmt, vr->min, vr->max, &i, &j);
10442 /* Is there only one such label? */
10443 if (i == j)
10445 tree label = gimple_switch_label (switch_stmt, i);
10447 /* The i'th label will be taken only if the value range of the
10448 operand is entirely within the bounds of this label. */
10449 if (CASE_HIGH (label) != NULL_TREE
10450 ? (tree_int_cst_compare (CASE_LOW (label), vr->min) <= 0
10451 && tree_int_cst_compare (CASE_HIGH (label), vr->max) >= 0)
10452 : (tree_int_cst_equal (CASE_LOW (label), vr->min)
10453 && tree_int_cst_equal (vr->min, vr->max)))
10454 return label;
10457 /* If there are no such labels then the default label will be
10458 taken. */
10459 if (i > j)
10460 return gimple_switch_label (switch_stmt, 0);
10463 if (vr->type == VR_ANTI_RANGE)
10465 unsigned n = gimple_switch_num_labels (switch_stmt);
10466 tree min_label = gimple_switch_label (switch_stmt, 1);
10467 tree max_label = gimple_switch_label (switch_stmt, n - 1);
10469 /* The default label will be taken only if the anti-range of the
10470 operand is entirely outside the bounds of all the (non-default)
10471 case labels. */
10472 if (tree_int_cst_compare (vr->min, CASE_LOW (min_label)) <= 0
10473 && (CASE_HIGH (max_label) != NULL_TREE
10474 ? tree_int_cst_compare (vr->max, CASE_HIGH (max_label)) >= 0
10475 : tree_int_cst_compare (vr->max, CASE_LOW (max_label)) >= 0))
10476 return gimple_switch_label (switch_stmt, 0);
10479 return NULL_TREE;
10482 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
10484 value_range new_vr = VR_INITIALIZER;
10485 tree lhs = gimple_assign_lhs (assign_stmt);
10487 if (TREE_CODE (lhs) == SSA_NAME
10488 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10489 || POINTER_TYPE_P (TREE_TYPE (lhs))))
10491 extract_range_from_assignment (&new_vr, assign_stmt);
10492 if (range_int_cst_singleton_p (&new_vr))
10493 return new_vr.min;
10497 return NULL_TREE;
10500 /* Blocks which have more than one predecessor and more than
10501 one successor present jump threading opportunities, i.e.,
10502 when the block is reached from a specific predecessor, we
10503 may be able to determine which of the outgoing edges will
10504 be traversed. When this optimization applies, we are able
10505 to avoid conditionals at runtime and we may expose secondary
10506 optimization opportunities.
10508 This routine is effectively a driver for the generic jump
10509 threading code. It basically just presents the generic code
10510 with edges that may be suitable for jump threading.
10512 Unlike DOM, we do not iterate VRP if jump threading was successful.
10513 While iterating may expose new opportunities for VRP, it is expected
10514 those opportunities would be very limited and the compile time cost
10515 to expose those opportunities would be significant.
10517 As jump threading opportunities are discovered, they are registered
10518 for later realization. */
10520 static void
10521 identify_jump_threads (void)
10523 basic_block bb;
10524 gcond *dummy;
10525 int i;
10526 edge e;
10528 /* Ugh. When substituting values earlier in this pass we can
10529 wipe the dominance information. So rebuild the dominator
10530 information as we need it within the jump threading code. */
10531 calculate_dominance_info (CDI_DOMINATORS);
10533 /* We do not allow VRP information to be used for jump threading
10534 across a back edge in the CFG. Otherwise it becomes too
10535 difficult to avoid eliminating loop exit tests. Of course
10536 EDGE_DFS_BACK is not accurate at this time so we have to
10537 recompute it. */
10538 mark_dfs_back_edges ();
10540 /* Do not thread across edges we are about to remove. Just marking
10541 them as EDGE_IGNORE will do. */
10542 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10543 e->flags |= EDGE_IGNORE;
10545 /* Allocate our unwinder stack to unwind any temporary equivalences
10546 that might be recorded. */
10547 equiv_stack = new const_and_copies ();
10549 /* To avoid lots of silly node creation, we create a single
10550 conditional and just modify it in-place when attempting to
10551 thread jumps. */
10552 dummy = gimple_build_cond (EQ_EXPR,
10553 integer_zero_node, integer_zero_node,
10554 NULL, NULL);
10556 /* Walk through all the blocks finding those which present a
10557 potential jump threading opportunity. We could set this up
10558 as a dominator walker and record data during the walk, but
10559 I doubt it's worth the effort for the classes of jump
10560 threading opportunities we are trying to identify at this
10561 point in compilation. */
10562 FOR_EACH_BB_FN (bb, cfun)
10564 gimple *last;
10566 /* If the generic jump threading code does not find this block
10567 interesting, then there is nothing to do. */
10568 if (! potentially_threadable_block (bb))
10569 continue;
10571 last = last_stmt (bb);
10573 /* We're basically looking for a switch or any kind of conditional with
10574 integral or pointer type arguments. Note the type of the second
10575 argument will be the same as the first argument, so no need to
10576 check it explicitly.
10578 We also handle the case where there are no statements in the
10579 block. This come up with forwarder blocks that are not
10580 optimized away because they lead to a loop header. But we do
10581 want to thread through them as we can sometimes thread to the
10582 loop exit which is obviously profitable. */
10583 if (!last
10584 || gimple_code (last) == GIMPLE_SWITCH
10585 || (gimple_code (last) == GIMPLE_COND
10586 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
10587 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
10588 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
10589 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
10590 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
10592 edge_iterator ei;
10594 /* We've got a block with multiple predecessors and multiple
10595 successors which also ends in a suitable conditional or
10596 switch statement. For each predecessor, see if we can thread
10597 it to a specific successor. */
10598 FOR_EACH_EDGE (e, ei, bb->preds)
10600 /* Do not thread across edges marked to ignoreor abnormal
10601 edges in the CFG. */
10602 if (e->flags & (EDGE_IGNORE | EDGE_COMPLEX))
10603 continue;
10605 thread_across_edge (dummy, e, true, equiv_stack, NULL,
10606 simplify_stmt_for_jump_threading);
10611 /* Clear EDGE_IGNORE. */
10612 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10613 e->flags &= ~EDGE_IGNORE;
10615 /* We do not actually update the CFG or SSA graphs at this point as
10616 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10617 handle ASSERT_EXPRs gracefully. */
10620 /* We identified all the jump threading opportunities earlier, but could
10621 not transform the CFG at that time. This routine transforms the
10622 CFG and arranges for the dominator tree to be rebuilt if necessary.
10624 Note the SSA graph update will occur during the normal TODO
10625 processing by the pass manager. */
10626 static void
10627 finalize_jump_threads (void)
10629 thread_through_all_blocks (false);
10630 delete equiv_stack;
10633 /* Free VRP lattice. */
10635 static void
10636 vrp_free_lattice ()
10638 /* Free allocated memory. */
10639 free (vr_value);
10640 free (vr_phi_edge_counts);
10641 bitmap_obstack_release (&vrp_equiv_obstack);
10642 vrp_value_range_pool.release ();
10644 /* So that we can distinguish between VRP data being available
10645 and not available. */
10646 vr_value = NULL;
10647 vr_phi_edge_counts = NULL;
10650 /* Traverse all the blocks folding conditionals with known ranges. */
10652 static void
10653 vrp_finalize (bool warn_array_bounds_p)
10655 size_t i;
10657 values_propagated = true;
10659 if (dump_file)
10661 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
10662 dump_all_value_ranges (dump_file);
10663 fprintf (dump_file, "\n");
10666 /* Set value range to non pointer SSA_NAMEs. */
10667 for (i = 0; i < num_vr_values; i++)
10668 if (vr_value[i])
10670 tree name = ssa_name (i);
10672 if (!name
10673 || (vr_value[i]->type == VR_VARYING)
10674 || (vr_value[i]->type == VR_UNDEFINED)
10675 || (TREE_CODE (vr_value[i]->min) != INTEGER_CST)
10676 || (TREE_CODE (vr_value[i]->max) != INTEGER_CST))
10677 continue;
10679 if (POINTER_TYPE_P (TREE_TYPE (name))
10680 && ((vr_value[i]->type == VR_RANGE
10681 && range_includes_zero_p (vr_value[i]->min,
10682 vr_value[i]->max) == 0)
10683 || (vr_value[i]->type == VR_ANTI_RANGE
10684 && range_includes_zero_p (vr_value[i]->min,
10685 vr_value[i]->max) == 1)))
10686 set_ptr_nonnull (name);
10687 else if (!POINTER_TYPE_P (TREE_TYPE (name)))
10688 set_range_info (name, vr_value[i]->type, vr_value[i]->min,
10689 vr_value[i]->max);
10692 substitute_and_fold (op_with_constant_singleton_value_range, vrp_fold_stmt);
10694 if (warn_array_bounds && warn_array_bounds_p)
10695 check_all_array_refs ();
10697 /* We must identify jump threading opportunities before we release
10698 the datastructures built by VRP. */
10699 identify_jump_threads ();
10702 /* evrp_dom_walker visits the basic blocks in the dominance order and set
10703 the Value Ranges (VR) for SSA_NAMEs in the scope. Use this VR to
10704 discover more VRs. */
10706 class evrp_dom_walker : public dom_walker
10708 public:
10709 evrp_dom_walker ()
10710 : dom_walker (CDI_DOMINATORS), stack (10)
10712 need_eh_cleanup = BITMAP_ALLOC (NULL);
10714 ~evrp_dom_walker ()
10716 BITMAP_FREE (need_eh_cleanup);
10718 virtual edge before_dom_children (basic_block);
10719 virtual void after_dom_children (basic_block);
10720 void push_value_range (tree var, value_range *vr);
10721 value_range *pop_value_range (tree var);
10722 value_range *try_find_new_range (tree op, tree_code code, tree limit);
10724 /* Cond_stack holds the old VR. */
10725 auto_vec<std::pair <tree, value_range*> > stack;
10726 bitmap need_eh_cleanup;
10727 auto_vec<gimple *> stmts_to_fixup;
10728 auto_vec<gimple *> stmts_to_remove;
10731 /* Find new range for OP such that (OP CODE LIMIT) is true. */
10733 value_range *
10734 evrp_dom_walker::try_find_new_range (tree op, tree_code code, tree limit)
10736 value_range vr = VR_INITIALIZER;
10737 value_range *old_vr = get_value_range (op);
10739 /* Discover VR when condition is true. */
10740 extract_range_for_var_from_comparison_expr (op, code, op,
10741 limit, &vr);
10742 if (old_vr->type == VR_RANGE || old_vr->type == VR_ANTI_RANGE)
10743 vrp_intersect_ranges (&vr, old_vr);
10744 /* If we found any usable VR, set the VR to ssa_name and create a
10745 PUSH old value in the stack with the old VR. */
10746 if (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE)
10748 if (old_vr->type == vr.type
10749 && vrp_operand_equal_p (old_vr->min, vr.min)
10750 && vrp_operand_equal_p (old_vr->max, vr.max))
10751 return NULL;
10752 value_range *new_vr = vrp_value_range_pool.allocate ();
10753 *new_vr = vr;
10754 return new_vr;
10756 return NULL;
10759 /* See if there is any new scope is entered with new VR and set that VR to
10760 ssa_name before visiting the statements in the scope. */
10762 edge
10763 evrp_dom_walker::before_dom_children (basic_block bb)
10765 tree op0 = NULL_TREE;
10766 edge_iterator ei;
10767 edge e;
10769 if (dump_file && (dump_flags & TDF_DETAILS))
10770 fprintf (dump_file, "Visiting BB%d\n", bb->index);
10772 stack.safe_push (std::make_pair (NULL_TREE, (value_range *)NULL));
10774 edge pred_e = NULL;
10775 FOR_EACH_EDGE (e, ei, bb->preds)
10777 /* Ignore simple backedges from this to allow recording conditions
10778 in loop headers. */
10779 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
10780 continue;
10781 if (! pred_e)
10782 pred_e = e;
10783 else
10785 pred_e = NULL;
10786 break;
10789 if (pred_e)
10791 gimple *stmt = last_stmt (pred_e->src);
10792 if (stmt
10793 && gimple_code (stmt) == GIMPLE_COND
10794 && (op0 = gimple_cond_lhs (stmt))
10795 && TREE_CODE (op0) == SSA_NAME
10796 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))
10797 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))))
10799 if (dump_file && (dump_flags & TDF_DETAILS))
10801 fprintf (dump_file, "Visiting controlling predicate ");
10802 print_gimple_stmt (dump_file, stmt, 0, 0);
10804 /* Entering a new scope. Try to see if we can find a VR
10805 here. */
10806 tree op1 = gimple_cond_rhs (stmt);
10807 tree_code code = gimple_cond_code (stmt);
10809 if (TREE_OVERFLOW_P (op1))
10810 op1 = drop_tree_overflow (op1);
10812 /* If condition is false, invert the cond. */
10813 if (pred_e->flags & EDGE_FALSE_VALUE)
10814 code = invert_tree_comparison (gimple_cond_code (stmt),
10815 HONOR_NANS (op0));
10816 /* Add VR when (OP0 CODE OP1) condition is true. */
10817 value_range *op0_range = try_find_new_range (op0, code, op1);
10819 /* Register ranges for y in x < y where
10820 y might have ranges that are useful. */
10821 tree limit;
10822 tree_code new_code;
10823 if (TREE_CODE (op1) == SSA_NAME
10824 && extract_code_and_val_from_cond_with_ops (op1, code,
10825 op0, op1,
10826 false,
10827 &new_code, &limit))
10829 /* Add VR when (OP1 NEW_CODE LIMIT) condition is true. */
10830 value_range *op1_range = try_find_new_range (op1, new_code, limit);
10831 if (op1_range)
10832 push_value_range (op1, op1_range);
10835 if (op0_range)
10836 push_value_range (op0, op0_range);
10840 /* Visit PHI stmts and discover any new VRs possible. */
10841 bool has_unvisited_preds = false;
10842 FOR_EACH_EDGE (e, ei, bb->preds)
10843 if (e->flags & EDGE_EXECUTABLE
10844 && !(e->src->flags & BB_VISITED))
10846 has_unvisited_preds = true;
10847 break;
10850 for (gphi_iterator gpi = gsi_start_phis (bb);
10851 !gsi_end_p (gpi); gsi_next (&gpi))
10853 gphi *phi = gpi.phi ();
10854 tree lhs = PHI_RESULT (phi);
10855 if (virtual_operand_p (lhs))
10856 continue;
10857 value_range vr_result = VR_INITIALIZER;
10858 bool interesting = stmt_interesting_for_vrp (phi);
10859 if (interesting && dump_file && (dump_flags & TDF_DETAILS))
10861 fprintf (dump_file, "Visiting PHI node ");
10862 print_gimple_stmt (dump_file, phi, 0, 0);
10864 if (!has_unvisited_preds
10865 && interesting)
10866 extract_range_from_phi_node (phi, &vr_result);
10867 else
10869 set_value_range_to_varying (&vr_result);
10870 /* When we have an unvisited executable predecessor we can't
10871 use PHI arg ranges which may be still UNDEFINED but have
10872 to use VARYING for them. But we can still resort to
10873 SCEV for loop header PHIs. */
10874 struct loop *l;
10875 if (interesting
10876 && (l = loop_containing_stmt (phi))
10877 && l->header == gimple_bb (phi))
10878 adjust_range_with_scev (&vr_result, l, phi, lhs);
10880 update_value_range (lhs, &vr_result);
10882 /* Mark PHIs whose lhs we fully propagate for removal. */
10883 tree val = op_with_constant_singleton_value_range (lhs);
10884 if (val && may_propagate_copy (lhs, val))
10886 stmts_to_remove.safe_push (phi);
10887 continue;
10890 /* Set the SSA with the value range. */
10891 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
10893 if ((vr_result.type == VR_RANGE
10894 || vr_result.type == VR_ANTI_RANGE)
10895 && (TREE_CODE (vr_result.min) == INTEGER_CST)
10896 && (TREE_CODE (vr_result.max) == INTEGER_CST))
10897 set_range_info (lhs,
10898 vr_result.type, vr_result.min, vr_result.max);
10900 else if (POINTER_TYPE_P (TREE_TYPE (lhs))
10901 && ((vr_result.type == VR_RANGE
10902 && range_includes_zero_p (vr_result.min,
10903 vr_result.max) == 0)
10904 || (vr_result.type == VR_ANTI_RANGE
10905 && range_includes_zero_p (vr_result.min,
10906 vr_result.max) == 1)))
10907 set_ptr_nonnull (lhs);
10910 edge taken_edge = NULL;
10912 /* Visit all other stmts and discover any new VRs possible. */
10913 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
10914 !gsi_end_p (gsi); gsi_next (&gsi))
10916 gimple *stmt = gsi_stmt (gsi);
10917 tree output = NULL_TREE;
10918 gimple *old_stmt = stmt;
10919 bool was_noreturn = (is_gimple_call (stmt)
10920 && gimple_call_noreturn_p (stmt));
10922 if (dump_file && (dump_flags & TDF_DETAILS))
10924 fprintf (dump_file, "Visiting stmt ");
10925 print_gimple_stmt (dump_file, stmt, 0, 0);
10928 if (gcond *cond = dyn_cast <gcond *> (stmt))
10930 vrp_visit_cond_stmt (cond, &taken_edge);
10931 if (taken_edge)
10933 if (taken_edge->flags & EDGE_TRUE_VALUE)
10934 gimple_cond_make_true (cond);
10935 else if (taken_edge->flags & EDGE_FALSE_VALUE)
10936 gimple_cond_make_false (cond);
10937 else
10938 gcc_unreachable ();
10939 update_stmt (stmt);
10942 else if (stmt_interesting_for_vrp (stmt))
10944 edge taken_edge;
10945 value_range vr = VR_INITIALIZER;
10946 extract_range_from_stmt (stmt, &taken_edge, &output, &vr);
10947 if (output
10948 && (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE))
10950 update_value_range (output, &vr);
10951 vr = *get_value_range (output);
10953 /* Mark stmts whose output we fully propagate for removal. */
10954 tree val;
10955 if ((val = op_with_constant_singleton_value_range (output))
10956 && may_propagate_copy (output, val)
10957 && !stmt_could_throw_p (stmt)
10958 && !gimple_has_side_effects (stmt))
10960 stmts_to_remove.safe_push (stmt);
10961 continue;
10964 /* Set the SSA with the value range. */
10965 if (INTEGRAL_TYPE_P (TREE_TYPE (output)))
10967 if ((vr.type == VR_RANGE
10968 || vr.type == VR_ANTI_RANGE)
10969 && (TREE_CODE (vr.min) == INTEGER_CST)
10970 && (TREE_CODE (vr.max) == INTEGER_CST))
10971 set_range_info (output, vr.type, vr.min, vr.max);
10973 else if (POINTER_TYPE_P (TREE_TYPE (output))
10974 && ((vr.type == VR_RANGE
10975 && range_includes_zero_p (vr.min,
10976 vr.max) == 0)
10977 || (vr.type == VR_ANTI_RANGE
10978 && range_includes_zero_p (vr.min,
10979 vr.max) == 1)))
10980 set_ptr_nonnull (output);
10982 else
10983 set_defs_to_varying (stmt);
10985 else
10986 set_defs_to_varying (stmt);
10988 /* See if we can derive a range for any of STMT's operands. */
10989 tree op;
10990 ssa_op_iter i;
10991 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
10993 tree value;
10994 enum tree_code comp_code;
10996 /* If OP is used in such a way that we can infer a value
10997 range for it, and we don't find a previous assertion for
10998 it, create a new assertion location node for OP. */
10999 if (infer_value_range (stmt, op, &comp_code, &value))
11001 /* If we are able to infer a nonzero value range for OP,
11002 then walk backwards through the use-def chain to see if OP
11003 was set via a typecast.
11004 If so, then we can also infer a nonzero value range
11005 for the operand of the NOP_EXPR. */
11006 if (comp_code == NE_EXPR && integer_zerop (value))
11008 tree t = op;
11009 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
11010 while (is_gimple_assign (def_stmt)
11011 && CONVERT_EXPR_CODE_P
11012 (gimple_assign_rhs_code (def_stmt))
11013 && TREE_CODE
11014 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
11015 && POINTER_TYPE_P
11016 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
11018 t = gimple_assign_rhs1 (def_stmt);
11019 def_stmt = SSA_NAME_DEF_STMT (t);
11021 /* Add VR when (T COMP_CODE value) condition is
11022 true. */
11023 value_range *op_range
11024 = try_find_new_range (t, comp_code, value);
11025 if (op_range)
11026 push_value_range (t, op_range);
11029 /* Add VR when (OP COMP_CODE value) condition is true. */
11030 value_range *op_range = try_find_new_range (op,
11031 comp_code, value);
11032 if (op_range)
11033 push_value_range (op, op_range);
11037 /* Try folding stmts with the VR discovered. */
11038 bool did_replace
11039 = replace_uses_in (stmt, op_with_constant_singleton_value_range);
11040 if (fold_stmt (&gsi, follow_single_use_edges)
11041 || did_replace)
11043 stmt = gsi_stmt (gsi);
11044 update_stmt (stmt);
11045 did_replace = true;
11048 if (did_replace)
11050 /* If we cleaned up EH information from the statement,
11051 remove EH edges. */
11052 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
11053 bitmap_set_bit (need_eh_cleanup, bb->index);
11055 /* If we turned a not noreturn call into a noreturn one
11056 schedule it for fixup. */
11057 if (!was_noreturn
11058 && is_gimple_call (stmt)
11059 && gimple_call_noreturn_p (stmt))
11060 stmts_to_fixup.safe_push (stmt);
11062 if (gimple_assign_single_p (stmt))
11064 tree rhs = gimple_assign_rhs1 (stmt);
11065 if (TREE_CODE (rhs) == ADDR_EXPR)
11066 recompute_tree_invariant_for_addr_expr (rhs);
11071 /* Visit BB successor PHI nodes and replace PHI args. */
11072 FOR_EACH_EDGE (e, ei, bb->succs)
11074 for (gphi_iterator gpi = gsi_start_phis (e->dest);
11075 !gsi_end_p (gpi); gsi_next (&gpi))
11077 gphi *phi = gpi.phi ();
11078 use_operand_p use_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
11079 tree arg = USE_FROM_PTR (use_p);
11080 if (TREE_CODE (arg) != SSA_NAME
11081 || virtual_operand_p (arg))
11082 continue;
11083 tree val = op_with_constant_singleton_value_range (arg);
11084 if (val && may_propagate_copy (arg, val))
11085 propagate_value (use_p, val);
11089 bb->flags |= BB_VISITED;
11091 return taken_edge;
11094 /* Restore/pop VRs valid only for BB when we leave BB. */
11096 void
11097 evrp_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
11099 gcc_checking_assert (!stack.is_empty ());
11100 while (stack.last ().first != NULL_TREE)
11101 pop_value_range (stack.last ().first);
11102 stack.pop ();
11105 /* Push the Value Range of VAR to the stack and update it with new VR. */
11107 void
11108 evrp_dom_walker::push_value_range (tree var, value_range *vr)
11110 if (SSA_NAME_VERSION (var) >= num_vr_values)
11111 return;
11112 if (dump_file && (dump_flags & TDF_DETAILS))
11114 fprintf (dump_file, "pushing new range for ");
11115 print_generic_expr (dump_file, var, 0);
11116 fprintf (dump_file, ": ");
11117 dump_value_range (dump_file, vr);
11118 fprintf (dump_file, "\n");
11120 stack.safe_push (std::make_pair (var, get_value_range (var)));
11121 vr_value[SSA_NAME_VERSION (var)] = vr;
11124 /* Pop the Value Range from the vrp_stack and update VAR with it. */
11126 value_range *
11127 evrp_dom_walker::pop_value_range (tree var)
11129 value_range *vr = stack.last ().second;
11130 gcc_checking_assert (var == stack.last ().first);
11131 if (dump_file && (dump_flags & TDF_DETAILS))
11133 fprintf (dump_file, "popping range for ");
11134 print_generic_expr (dump_file, var, 0);
11135 fprintf (dump_file, ", restoring ");
11136 dump_value_range (dump_file, vr);
11137 fprintf (dump_file, "\n");
11139 vr_value[SSA_NAME_VERSION (var)] = vr;
11140 stack.pop ();
11141 return vr;
11145 /* Main entry point for the early vrp pass which is a simplified non-iterative
11146 version of vrp where basic blocks are visited in dominance order. Value
11147 ranges discovered in early vrp will also be used by ipa-vrp. */
11149 static unsigned int
11150 execute_early_vrp ()
11152 edge e;
11153 edge_iterator ei;
11154 basic_block bb;
11156 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11157 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11158 scev_initialize ();
11159 calculate_dominance_info (CDI_DOMINATORS);
11160 FOR_EACH_BB_FN (bb, cfun)
11162 bb->flags &= ~BB_VISITED;
11163 FOR_EACH_EDGE (e, ei, bb->preds)
11164 e->flags |= EDGE_EXECUTABLE;
11166 vrp_initialize_lattice ();
11168 /* Walk stmts in dominance order and propagate VRP. */
11169 evrp_dom_walker walker;
11170 walker.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
11172 if (dump_file)
11174 fprintf (dump_file, "\nValue ranges after Early VRP:\n\n");
11175 dump_all_value_ranges (dump_file);
11176 fprintf (dump_file, "\n");
11179 /* Remove stmts in reverse order to make debug stmt creation possible. */
11180 while (! walker.stmts_to_remove.is_empty ())
11182 gimple *stmt = walker.stmts_to_remove.pop ();
11183 if (dump_file && dump_flags & TDF_DETAILS)
11185 fprintf (dump_file, "Removing dead stmt ");
11186 print_gimple_stmt (dump_file, stmt, 0, 0);
11187 fprintf (dump_file, "\n");
11189 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
11190 if (gimple_code (stmt) == GIMPLE_PHI)
11191 remove_phi_node (&gsi, true);
11192 else
11194 unlink_stmt_vdef (stmt);
11195 gsi_remove (&gsi, true);
11196 release_defs (stmt);
11200 if (!bitmap_empty_p (walker.need_eh_cleanup))
11201 gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup);
11203 /* Fixup stmts that became noreturn calls. This may require splitting
11204 blocks and thus isn't possible during the dominator walk. Do this
11205 in reverse order so we don't inadvertedly remove a stmt we want to
11206 fixup by visiting a dominating now noreturn call first. */
11207 while (!walker.stmts_to_fixup.is_empty ())
11209 gimple *stmt = walker.stmts_to_fixup.pop ();
11210 fixup_noreturn_call (stmt);
11213 vrp_free_lattice ();
11214 scev_finalize ();
11215 loop_optimizer_finalize ();
11216 return 0;
11220 /* Main entry point to VRP (Value Range Propagation). This pass is
11221 loosely based on J. R. C. Patterson, ``Accurate Static Branch
11222 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
11223 Programming Language Design and Implementation, pp. 67-78, 1995.
11224 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
11226 This is essentially an SSA-CCP pass modified to deal with ranges
11227 instead of constants.
11229 While propagating ranges, we may find that two or more SSA name
11230 have equivalent, though distinct ranges. For instance,
11232 1 x_9 = p_3->a;
11233 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
11234 3 if (p_4 == q_2)
11235 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
11236 5 endif
11237 6 if (q_2)
11239 In the code above, pointer p_5 has range [q_2, q_2], but from the
11240 code we can also determine that p_5 cannot be NULL and, if q_2 had
11241 a non-varying range, p_5's range should also be compatible with it.
11243 These equivalences are created by two expressions: ASSERT_EXPR and
11244 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
11245 result of another assertion, then we can use the fact that p_5 and
11246 p_4 are equivalent when evaluating p_5's range.
11248 Together with value ranges, we also propagate these equivalences
11249 between names so that we can take advantage of information from
11250 multiple ranges when doing final replacement. Note that this
11251 equivalency relation is transitive but not symmetric.
11253 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
11254 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
11255 in contexts where that assertion does not hold (e.g., in line 6).
11257 TODO, the main difference between this pass and Patterson's is that
11258 we do not propagate edge probabilities. We only compute whether
11259 edges can be taken or not. That is, instead of having a spectrum
11260 of jump probabilities between 0 and 1, we only deal with 0, 1 and
11261 DON'T KNOW. In the future, it may be worthwhile to propagate
11262 probabilities to aid branch prediction. */
11264 static unsigned int
11265 execute_vrp (bool warn_array_bounds_p)
11267 int i;
11268 edge e;
11269 switch_update *su;
11271 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11272 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11273 scev_initialize ();
11275 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
11276 Inserting assertions may split edges which will invalidate
11277 EDGE_DFS_BACK. */
11278 insert_range_assertions ();
11280 to_remove_edges.create (10);
11281 to_update_switch_stmts.create (5);
11282 threadedge_initialize_values ();
11284 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
11285 mark_dfs_back_edges ();
11287 vrp_initialize_lattice ();
11288 vrp_initialize ();
11289 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
11290 vrp_finalize (warn_array_bounds_p);
11291 vrp_free_lattice ();
11293 free_numbers_of_iterations_estimates (cfun);
11295 /* ASSERT_EXPRs must be removed before finalizing jump threads
11296 as finalizing jump threads calls the CFG cleanup code which
11297 does not properly handle ASSERT_EXPRs. */
11298 remove_range_assertions ();
11300 /* If we exposed any new variables, go ahead and put them into
11301 SSA form now, before we handle jump threading. This simplifies
11302 interactions between rewriting of _DECL nodes into SSA form
11303 and rewriting SSA_NAME nodes into SSA form after block
11304 duplication and CFG manipulation. */
11305 update_ssa (TODO_update_ssa);
11307 finalize_jump_threads ();
11309 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
11310 CFG in a broken state and requires a cfg_cleanup run. */
11311 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
11312 remove_edge (e);
11313 /* Update SWITCH_EXPR case label vector. */
11314 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
11316 size_t j;
11317 size_t n = TREE_VEC_LENGTH (su->vec);
11318 tree label;
11319 gimple_switch_set_num_labels (su->stmt, n);
11320 for (j = 0; j < n; j++)
11321 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
11322 /* As we may have replaced the default label with a regular one
11323 make sure to make it a real default label again. This ensures
11324 optimal expansion. */
11325 label = gimple_switch_label (su->stmt, 0);
11326 CASE_LOW (label) = NULL_TREE;
11327 CASE_HIGH (label) = NULL_TREE;
11330 if (to_remove_edges.length () > 0)
11332 free_dominance_info (CDI_DOMINATORS);
11333 loops_state_set (LOOPS_NEED_FIXUP);
11336 to_remove_edges.release ();
11337 to_update_switch_stmts.release ();
11338 threadedge_finalize_values ();
11340 scev_finalize ();
11341 loop_optimizer_finalize ();
11342 return 0;
11345 namespace {
11347 const pass_data pass_data_vrp =
11349 GIMPLE_PASS, /* type */
11350 "vrp", /* name */
11351 OPTGROUP_NONE, /* optinfo_flags */
11352 TV_TREE_VRP, /* tv_id */
11353 PROP_ssa, /* properties_required */
11354 0, /* properties_provided */
11355 0, /* properties_destroyed */
11356 0, /* todo_flags_start */
11357 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
11360 class pass_vrp : public gimple_opt_pass
11362 public:
11363 pass_vrp (gcc::context *ctxt)
11364 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
11367 /* opt_pass methods: */
11368 opt_pass * clone () { return new pass_vrp (m_ctxt); }
11369 void set_pass_param (unsigned int n, bool param)
11371 gcc_assert (n == 0);
11372 warn_array_bounds_p = param;
11374 virtual bool gate (function *) { return flag_tree_vrp != 0; }
11375 virtual unsigned int execute (function *)
11376 { return execute_vrp (warn_array_bounds_p); }
11378 private:
11379 bool warn_array_bounds_p;
11380 }; // class pass_vrp
11382 } // anon namespace
11384 gimple_opt_pass *
11385 make_pass_vrp (gcc::context *ctxt)
11387 return new pass_vrp (ctxt);
11390 namespace {
11392 const pass_data pass_data_early_vrp =
11394 GIMPLE_PASS, /* type */
11395 "evrp", /* name */
11396 OPTGROUP_NONE, /* optinfo_flags */
11397 TV_TREE_EARLY_VRP, /* tv_id */
11398 PROP_ssa, /* properties_required */
11399 0, /* properties_provided */
11400 0, /* properties_destroyed */
11401 0, /* todo_flags_start */
11402 ( TODO_cleanup_cfg | TODO_update_ssa | TODO_verify_all ),
11405 class pass_early_vrp : public gimple_opt_pass
11407 public:
11408 pass_early_vrp (gcc::context *ctxt)
11409 : gimple_opt_pass (pass_data_early_vrp, ctxt)
11412 /* opt_pass methods: */
11413 opt_pass * clone () { return new pass_early_vrp (m_ctxt); }
11414 virtual bool gate (function *)
11416 return flag_tree_vrp != 0;
11418 virtual unsigned int execute (function *)
11419 { return execute_early_vrp (); }
11421 }; // class pass_vrp
11422 } // anon namespace
11424 gimple_opt_pass *
11425 make_pass_early_vrp (gcc::context *ctxt)
11427 return new pass_early_vrp (ctxt);