Fix cygwin performance loss on linpack.
[official-gcc.git] / gcc / gimple-ssa-strength-reduction.c
blobb8078230f340241b030f48a6fade564a22859b40
1 /* Straight-line strength reduction.
2 Copyright (C) 2012-2015 Free Software Foundation, Inc.
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "backend.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "gimple.h"
43 #include "cfghooks.h"
44 #include "tree-pass.h"
45 #include "ssa.h"
46 #include "expmed.h"
47 #include "gimple-pretty-print.h"
48 #include "fold-const.h"
49 #include "gimple-iterator.h"
50 #include "gimplify-me.h"
51 #include "stor-layout.h"
52 #include "cfgloop.h"
53 #include "tree-cfg.h"
54 #include "domwalk.h"
55 #include "params.h"
56 #include "tree-ssa-address.h"
57 #include "tree-affine.h"
58 #include "builtins.h"
60 /* Information about a strength reduction candidate. Each statement
61 in the candidate table represents an expression of one of the
62 following forms (the special case of CAND_REF will be described
63 later):
65 (CAND_MULT) S1: X = (B + i) * S
66 (CAND_ADD) S1: X = B + (i * S)
68 Here X and B are SSA names, i is an integer constant, and S is
69 either an SSA name or a constant. We call B the "base," i the
70 "index", and S the "stride."
72 Any statement S0 that dominates S1 and is of the form:
74 (CAND_MULT) S0: Y = (B + i') * S
75 (CAND_ADD) S0: Y = B + (i' * S)
77 is called a "basis" for S1. In both cases, S1 may be replaced by
79 S1': X = Y + (i - i') * S,
81 where (i - i') * S is folded to the extent possible.
83 All gimple statements are visited in dominator order, and each
84 statement that may contribute to one of the forms of S1 above is
85 given at least one entry in the candidate table. Such statements
86 include addition, pointer addition, subtraction, multiplication,
87 negation, copies, and nontrivial type casts. If a statement may
88 represent more than one expression of the forms of S1 above,
89 multiple "interpretations" are stored in the table and chained
90 together. Examples:
92 * An add of two SSA names may treat either operand as the base.
93 * A multiply of two SSA names, likewise.
94 * A copy or cast may be thought of as either a CAND_MULT with
95 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
97 Candidate records are allocated from an obstack. They are addressed
98 both from a hash table keyed on S1, and from a vector of candidate
99 pointers arranged in predominator order.
101 Opportunity note
102 ----------------
103 Currently we don't recognize:
105 S0: Y = (S * i') - B
106 S1: X = (S * i) - B
108 as a strength reduction opportunity, even though this S1 would
109 also be replaceable by the S1' above. This can be added if it
110 comes up in practice.
112 Strength reduction in addressing
113 --------------------------------
114 There is another kind of candidate known as CAND_REF. A CAND_REF
115 describes a statement containing a memory reference having
116 complex addressing that might benefit from strength reduction.
117 Specifically, we are interested in references for which
118 get_inner_reference returns a base address, offset, and bitpos as
119 follows:
121 base: MEM_REF (T1, C1)
122 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
123 bitpos: C4 * BITS_PER_UNIT
125 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
126 arbitrary integer constants. Note that C2 may be zero, in which
127 case the offset will be MULT_EXPR (T2, C3).
129 When this pattern is recognized, the original memory reference
130 can be replaced with:
132 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
133 C1 + (C2 * C3) + C4)
135 which distributes the multiply to allow constant folding. When
136 two or more addressing expressions can be represented by MEM_REFs
137 of this form, differing only in the constants C1, C2, and C4,
138 making this substitution produces more efficient addressing during
139 the RTL phases. When there are not at least two expressions with
140 the same values of T1, T2, and C3, there is nothing to be gained
141 by the replacement.
143 Strength reduction of CAND_REFs uses the same infrastructure as
144 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
145 field, MULT_EXPR (T2, C3) in the stride (S) field, and
146 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
147 is thus another CAND_REF with the same B and S values. When at
148 least two CAND_REFs are chained together using the basis relation,
149 each of them is replaced as above, resulting in improved code
150 generation for addressing.
152 Conditional candidates
153 ======================
155 Conditional candidates are best illustrated with an example.
156 Consider the code sequence:
158 (1) x_0 = ...;
159 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
160 if (...)
161 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
162 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
163 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
164 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
166 Here strength reduction is complicated by the uncertain value of x_2.
167 A legitimate transformation is:
169 (1) x_0 = ...;
170 (2) a_0 = x_0 * 5;
171 if (...)
173 (3) [x_1 = x_0 + 1;]
174 (3a) t_1 = a_0 + 5;
176 (4) [x_2 = PHI <x_0, x_1>;]
177 (4a) t_2 = PHI <a_0, t_1>;
178 (5) [x_3 = x_2 + 1;]
179 (6r) a_1 = t_2 + 5;
181 where the bracketed instructions may go dead.
183 To recognize this opportunity, we have to observe that statement (6)
184 has a "hidden basis" (2). The hidden basis is unlike a normal basis
185 in that the statement and the hidden basis have different base SSA
186 names (x_2 and x_0, respectively). The relationship is established
187 when a statement's base name (x_2) is defined by a phi statement (4),
188 each argument of which (x_0, x_1) has an identical "derived base name."
189 If the argument is defined by a candidate (as x_1 is by (3)) that is a
190 CAND_ADD having a stride of 1, the derived base name of the argument is
191 the base name of the candidate (x_0). Otherwise, the argument itself
192 is its derived base name (as is the case with argument x_0).
194 The hidden basis for statement (6) is the nearest dominating candidate
195 whose base name is the derived base name (x_0) of the feeding phi (4),
196 and whose stride is identical to that of the statement. We can then
197 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
198 allowing the final replacement of (6) by the strength-reduced (6r).
200 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
201 A CAND_PHI is not a candidate for replacement, but is maintained in the
202 candidate table to ease discovery of hidden bases. Any phi statement
203 whose arguments share a common derived base name is entered into the
204 table with the derived base name, an (arbitrary) index of zero, and a
205 stride of 1. A statement with a hidden basis can then be detected by
206 simply looking up its feeding phi definition in the candidate table,
207 extracting the derived base name, and searching for a basis in the
208 usual manner after substituting the derived base name.
210 Note that the transformation is only valid when the original phi and
211 the statements that define the phi's arguments are all at the same
212 position in the loop hierarchy. */
215 /* Index into the candidate vector, offset by 1. VECs are zero-based,
216 while cand_idx's are one-based, with zero indicating null. */
217 typedef unsigned cand_idx;
219 /* The kind of candidate. */
220 enum cand_kind
222 CAND_MULT,
223 CAND_ADD,
224 CAND_REF,
225 CAND_PHI
228 struct slsr_cand_d
230 /* The candidate statement S1. */
231 gimple *cand_stmt;
233 /* The base expression B: often an SSA name, but not always. */
234 tree base_expr;
236 /* The stride S. */
237 tree stride;
239 /* The index constant i. */
240 widest_int index;
242 /* The type of the candidate. This is normally the type of base_expr,
243 but casts may have occurred when combining feeding instructions.
244 A candidate can only be a basis for candidates of the same final type.
245 (For CAND_REFs, this is the type to be used for operand 1 of the
246 replacement MEM_REF.) */
247 tree cand_type;
249 /* The kind of candidate (CAND_MULT, etc.). */
250 enum cand_kind kind;
252 /* Index of this candidate in the candidate vector. */
253 cand_idx cand_num;
255 /* Index of the next candidate record for the same statement.
256 A statement may be useful in more than one way (e.g., due to
257 commutativity). So we can have multiple "interpretations"
258 of a statement. */
259 cand_idx next_interp;
261 /* Index of the basis statement S0, if any, in the candidate vector. */
262 cand_idx basis;
264 /* First candidate for which this candidate is a basis, if one exists. */
265 cand_idx dependent;
267 /* Next candidate having the same basis as this one. */
268 cand_idx sibling;
270 /* If this is a conditional candidate, the CAND_PHI candidate
271 that defines the base SSA name B. */
272 cand_idx def_phi;
274 /* Savings that can be expected from eliminating dead code if this
275 candidate is replaced. */
276 int dead_savings;
279 typedef struct slsr_cand_d slsr_cand, *slsr_cand_t;
280 typedef const struct slsr_cand_d *const_slsr_cand_t;
282 /* Pointers to candidates are chained together as part of a mapping
283 from base expressions to the candidates that use them. */
285 struct cand_chain_d
287 /* Base expression for the chain of candidates: often, but not
288 always, an SSA name. */
289 tree base_expr;
291 /* Pointer to a candidate. */
292 slsr_cand_t cand;
294 /* Chain pointer. */
295 struct cand_chain_d *next;
299 typedef struct cand_chain_d cand_chain, *cand_chain_t;
300 typedef const struct cand_chain_d *const_cand_chain_t;
302 /* Information about a unique "increment" associated with candidates
303 having an SSA name for a stride. An increment is the difference
304 between the index of the candidate and the index of its basis,
305 i.e., (i - i') as discussed in the module commentary.
307 When we are not going to generate address arithmetic we treat
308 increments that differ only in sign as the same, allowing sharing
309 of the cost of initializers. The absolute value of the increment
310 is stored in the incr_info. */
312 struct incr_info_d
314 /* The increment that relates a candidate to its basis. */
315 widest_int incr;
317 /* How many times the increment occurs in the candidate tree. */
318 unsigned count;
320 /* Cost of replacing candidates using this increment. Negative and
321 zero costs indicate replacement should be performed. */
322 int cost;
324 /* If this increment is profitable but is not -1, 0, or 1, it requires
325 an initializer T_0 = stride * incr to be found or introduced in the
326 nearest common dominator of all candidates. This field holds T_0
327 for subsequent use. */
328 tree initializer;
330 /* If the initializer was found to already exist, this is the block
331 where it was found. */
332 basic_block init_bb;
335 typedef struct incr_info_d incr_info, *incr_info_t;
337 /* Candidates are maintained in a vector. If candidate X dominates
338 candidate Y, then X appears before Y in the vector; but the
339 converse does not necessarily hold. */
340 static vec<slsr_cand_t> cand_vec;
342 enum cost_consts
344 COST_NEUTRAL = 0,
345 COST_INFINITE = 1000
348 enum stride_status
350 UNKNOWN_STRIDE = 0,
351 KNOWN_STRIDE = 1
354 enum phi_adjust_status
356 NOT_PHI_ADJUST = 0,
357 PHI_ADJUST = 1
360 enum count_phis_status
362 DONT_COUNT_PHIS = 0,
363 COUNT_PHIS = 1
366 /* Pointer map embodying a mapping from statements to candidates. */
367 static hash_map<gimple *, slsr_cand_t> *stmt_cand_map;
369 /* Obstack for candidates. */
370 static struct obstack cand_obstack;
372 /* Obstack for candidate chains. */
373 static struct obstack chain_obstack;
375 /* An array INCR_VEC of incr_infos is used during analysis of related
376 candidates having an SSA name for a stride. INCR_VEC_LEN describes
377 its current length. MAX_INCR_VEC_LEN is used to avoid costly
378 pathological cases. */
379 static incr_info_t incr_vec;
380 static unsigned incr_vec_len;
381 const int MAX_INCR_VEC_LEN = 16;
383 /* For a chain of candidates with unknown stride, indicates whether or not
384 we must generate pointer arithmetic when replacing statements. */
385 static bool address_arithmetic_p;
387 /* Forward function declarations. */
388 static slsr_cand_t base_cand_from_table (tree);
389 static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
390 static bool legal_cast_p_1 (tree, tree);
392 /* Produce a pointer to the IDX'th candidate in the candidate vector. */
394 static slsr_cand_t
395 lookup_cand (cand_idx idx)
397 return cand_vec[idx - 1];
400 /* Helper for hashing a candidate chain header. */
402 struct cand_chain_hasher : nofree_ptr_hash <cand_chain>
404 static inline hashval_t hash (const cand_chain *);
405 static inline bool equal (const cand_chain *, const cand_chain *);
408 inline hashval_t
409 cand_chain_hasher::hash (const cand_chain *p)
411 tree base_expr = p->base_expr;
412 return iterative_hash_expr (base_expr, 0);
415 inline bool
416 cand_chain_hasher::equal (const cand_chain *chain1, const cand_chain *chain2)
418 return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
421 /* Hash table embodying a mapping from base exprs to chains of candidates. */
422 static hash_table<cand_chain_hasher> *base_cand_map;
424 /* Pointer map used by tree_to_aff_combination_expand. */
425 static hash_map<tree, name_expansion *> *name_expansions;
426 /* Pointer map embodying a mapping from bases to alternative bases. */
427 static hash_map<tree, tree> *alt_base_map;
429 /* Given BASE, use the tree affine combiniation facilities to
430 find the underlying tree expression for BASE, with any
431 immediate offset excluded.
433 N.B. we should eliminate this backtracking with better forward
434 analysis in a future release. */
436 static tree
437 get_alternative_base (tree base)
439 tree *result = alt_base_map->get (base);
441 if (result == NULL)
443 tree expr;
444 aff_tree aff;
446 tree_to_aff_combination_expand (base, TREE_TYPE (base),
447 &aff, &name_expansions);
448 aff.offset = 0;
449 expr = aff_combination_to_tree (&aff);
451 gcc_assert (!alt_base_map->put (base, base == expr ? NULL : expr));
453 return expr == base ? NULL : expr;
456 return *result;
459 /* Look in the candidate table for a CAND_PHI that defines BASE and
460 return it if found; otherwise return NULL. */
462 static cand_idx
463 find_phi_def (tree base)
465 slsr_cand_t c;
467 if (TREE_CODE (base) != SSA_NAME)
468 return 0;
470 c = base_cand_from_table (base);
472 if (!c || c->kind != CAND_PHI)
473 return 0;
475 return c->cand_num;
478 /* Helper routine for find_basis_for_candidate. May be called twice:
479 once for the candidate's base expr, and optionally again either for
480 the candidate's phi definition or for a CAND_REF's alternative base
481 expression. */
483 static slsr_cand_t
484 find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
486 cand_chain mapping_key;
487 cand_chain_t chain;
488 slsr_cand_t basis = NULL;
490 // Limit potential of N^2 behavior for long candidate chains.
491 int iters = 0;
492 int max_iters = PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN);
494 mapping_key.base_expr = base_expr;
495 chain = base_cand_map->find (&mapping_key);
497 for (; chain && iters < max_iters; chain = chain->next, ++iters)
499 slsr_cand_t one_basis = chain->cand;
501 if (one_basis->kind != c->kind
502 || one_basis->cand_stmt == c->cand_stmt
503 || !operand_equal_p (one_basis->stride, c->stride, 0)
504 || !types_compatible_p (one_basis->cand_type, c->cand_type)
505 || !dominated_by_p (CDI_DOMINATORS,
506 gimple_bb (c->cand_stmt),
507 gimple_bb (one_basis->cand_stmt)))
508 continue;
510 if (!basis || basis->cand_num < one_basis->cand_num)
511 basis = one_basis;
514 return basis;
517 /* Use the base expr from candidate C to look for possible candidates
518 that can serve as a basis for C. Each potential basis must also
519 appear in a block that dominates the candidate statement and have
520 the same stride and type. If more than one possible basis exists,
521 the one with highest index in the vector is chosen; this will be
522 the most immediately dominating basis. */
524 static int
525 find_basis_for_candidate (slsr_cand_t c)
527 slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
529 /* If a candidate doesn't have a basis using its base expression,
530 it may have a basis hidden by one or more intervening phis. */
531 if (!basis && c->def_phi)
533 basic_block basis_bb, phi_bb;
534 slsr_cand_t phi_cand = lookup_cand (c->def_phi);
535 basis = find_basis_for_base_expr (c, phi_cand->base_expr);
537 if (basis)
539 /* A hidden basis must dominate the phi-definition of the
540 candidate's base name. */
541 phi_bb = gimple_bb (phi_cand->cand_stmt);
542 basis_bb = gimple_bb (basis->cand_stmt);
544 if (phi_bb == basis_bb
545 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
547 basis = NULL;
548 c->basis = 0;
551 /* If we found a hidden basis, estimate additional dead-code
552 savings if the phi and its feeding statements can be removed. */
553 if (basis && has_single_use (gimple_phi_result (phi_cand->cand_stmt)))
554 c->dead_savings += phi_cand->dead_savings;
558 if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
560 tree alt_base_expr = get_alternative_base (c->base_expr);
561 if (alt_base_expr)
562 basis = find_basis_for_base_expr (c, alt_base_expr);
565 if (basis)
567 c->sibling = basis->dependent;
568 basis->dependent = c->cand_num;
569 return basis->cand_num;
572 return 0;
575 /* Record a mapping from BASE to C, indicating that C may potentially serve
576 as a basis using that base expression. BASE may be the same as
577 C->BASE_EXPR; alternatively BASE can be a different tree that share the
578 underlining expression of C->BASE_EXPR. */
580 static void
581 record_potential_basis (slsr_cand_t c, tree base)
583 cand_chain_t node;
584 cand_chain **slot;
586 gcc_assert (base);
588 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
589 node->base_expr = base;
590 node->cand = c;
591 node->next = NULL;
592 slot = base_cand_map->find_slot (node, INSERT);
594 if (*slot)
596 cand_chain_t head = (cand_chain_t) (*slot);
597 node->next = head->next;
598 head->next = node;
600 else
601 *slot = node;
604 /* Allocate storage for a new candidate and initialize its fields.
605 Attempt to find a basis for the candidate.
607 For CAND_REF, an alternative base may also be recorded and used
608 to find a basis. This helps cases where the expression hidden
609 behind BASE (which is usually an SSA_NAME) has immediate offset,
610 e.g.
612 a2[i][j] = 1;
613 a2[i + 20][j] = 2; */
615 static slsr_cand_t
616 alloc_cand_and_find_basis (enum cand_kind kind, gimple *gs, tree base,
617 const widest_int &index, tree stride, tree ctype,
618 unsigned savings)
620 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
621 sizeof (slsr_cand));
622 c->cand_stmt = gs;
623 c->base_expr = base;
624 c->stride = stride;
625 c->index = index;
626 c->cand_type = ctype;
627 c->kind = kind;
628 c->cand_num = cand_vec.length () + 1;
629 c->next_interp = 0;
630 c->dependent = 0;
631 c->sibling = 0;
632 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
633 c->dead_savings = savings;
635 cand_vec.safe_push (c);
637 if (kind == CAND_PHI)
638 c->basis = 0;
639 else
640 c->basis = find_basis_for_candidate (c);
642 record_potential_basis (c, base);
643 if (flag_expensive_optimizations && kind == CAND_REF)
645 tree alt_base = get_alternative_base (base);
646 if (alt_base)
647 record_potential_basis (c, alt_base);
650 return c;
653 /* Determine the target cost of statement GS when compiling according
654 to SPEED. */
656 static int
657 stmt_cost (gimple *gs, bool speed)
659 tree lhs, rhs1, rhs2;
660 machine_mode lhs_mode;
662 gcc_assert (is_gimple_assign (gs));
663 lhs = gimple_assign_lhs (gs);
664 rhs1 = gimple_assign_rhs1 (gs);
665 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
667 switch (gimple_assign_rhs_code (gs))
669 case MULT_EXPR:
670 rhs2 = gimple_assign_rhs2 (gs);
672 if (tree_fits_shwi_p (rhs2))
673 return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
675 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
676 return mul_cost (speed, lhs_mode);
678 case PLUS_EXPR:
679 case POINTER_PLUS_EXPR:
680 case MINUS_EXPR:
681 return add_cost (speed, lhs_mode);
683 case NEGATE_EXPR:
684 return neg_cost (speed, lhs_mode);
686 CASE_CONVERT:
687 return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
689 /* Note that we don't assign costs to copies that in most cases
690 will go away. */
691 default:
695 gcc_unreachable ();
696 return 0;
699 /* Look up the defining statement for BASE_IN and return a pointer
700 to its candidate in the candidate table, if any; otherwise NULL.
701 Only CAND_ADD and CAND_MULT candidates are returned. */
703 static slsr_cand_t
704 base_cand_from_table (tree base_in)
706 slsr_cand_t *result;
708 gimple *def = SSA_NAME_DEF_STMT (base_in);
709 if (!def)
710 return (slsr_cand_t) NULL;
712 result = stmt_cand_map->get (def);
714 if (result && (*result)->kind != CAND_REF)
715 return *result;
717 return (slsr_cand_t) NULL;
720 /* Add an entry to the statement-to-candidate mapping. */
722 static void
723 add_cand_for_stmt (gimple *gs, slsr_cand_t c)
725 gcc_assert (!stmt_cand_map->put (gs, c));
728 /* Given PHI which contains a phi statement, determine whether it
729 satisfies all the requirements of a phi candidate. If so, create
730 a candidate. Note that a CAND_PHI never has a basis itself, but
731 is used to help find a basis for subsequent candidates. */
733 static void
734 slsr_process_phi (gphi *phi, bool speed)
736 unsigned i;
737 tree arg0_base = NULL_TREE, base_type;
738 slsr_cand_t c;
739 struct loop *cand_loop = gimple_bb (phi)->loop_father;
740 unsigned savings = 0;
742 /* A CAND_PHI requires each of its arguments to have the same
743 derived base name. (See the module header commentary for a
744 definition of derived base names.) Furthermore, all feeding
745 definitions must be in the same position in the loop hierarchy
746 as PHI. */
748 for (i = 0; i < gimple_phi_num_args (phi); i++)
750 slsr_cand_t arg_cand;
751 tree arg = gimple_phi_arg_def (phi, i);
752 tree derived_base_name = NULL_TREE;
753 gimple *arg_stmt = NULL;
754 basic_block arg_bb = NULL;
756 if (TREE_CODE (arg) != SSA_NAME)
757 return;
759 arg_cand = base_cand_from_table (arg);
761 if (arg_cand)
763 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
765 if (!arg_cand->next_interp)
766 return;
768 arg_cand = lookup_cand (arg_cand->next_interp);
771 if (!integer_onep (arg_cand->stride))
772 return;
774 derived_base_name = arg_cand->base_expr;
775 arg_stmt = arg_cand->cand_stmt;
776 arg_bb = gimple_bb (arg_stmt);
778 /* Gather potential dead code savings if the phi statement
779 can be removed later on. */
780 if (has_single_use (arg))
782 if (gimple_code (arg_stmt) == GIMPLE_PHI)
783 savings += arg_cand->dead_savings;
784 else
785 savings += stmt_cost (arg_stmt, speed);
788 else
790 derived_base_name = arg;
792 if (SSA_NAME_IS_DEFAULT_DEF (arg))
793 arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
794 else
795 gimple_bb (SSA_NAME_DEF_STMT (arg));
798 if (!arg_bb || arg_bb->loop_father != cand_loop)
799 return;
801 if (i == 0)
802 arg0_base = derived_base_name;
803 else if (!operand_equal_p (derived_base_name, arg0_base, 0))
804 return;
807 /* Create the candidate. "alloc_cand_and_find_basis" is named
808 misleadingly for this case, as no basis will be sought for a
809 CAND_PHI. */
810 base_type = TREE_TYPE (arg0_base);
812 c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base,
813 0, integer_one_node, base_type, savings);
815 /* Add the candidate to the statement-candidate mapping. */
816 add_cand_for_stmt (phi, c);
819 /* Given PBASE which is a pointer to tree, look up the defining
820 statement for it and check whether the candidate is in the
821 form of:
823 X = B + (1 * S), S is integer constant
824 X = B + (i * S), S is integer one
826 If so, set PBASE to the candidate's base_expr and return double
827 int (i * S).
828 Otherwise, just return double int zero. */
830 static widest_int
831 backtrace_base_for_ref (tree *pbase)
833 tree base_in = *pbase;
834 slsr_cand_t base_cand;
836 STRIP_NOPS (base_in);
838 /* Strip off widening conversion(s) to handle cases where
839 e.g. 'B' is widened from an 'int' in order to calculate
840 a 64-bit address. */
841 if (CONVERT_EXPR_P (base_in)
842 && legal_cast_p_1 (base_in, TREE_OPERAND (base_in, 0)))
843 base_in = get_unwidened (base_in, NULL_TREE);
845 if (TREE_CODE (base_in) != SSA_NAME)
846 return 0;
848 base_cand = base_cand_from_table (base_in);
850 while (base_cand && base_cand->kind != CAND_PHI)
852 if (base_cand->kind == CAND_ADD
853 && base_cand->index == 1
854 && TREE_CODE (base_cand->stride) == INTEGER_CST)
856 /* X = B + (1 * S), S is integer constant. */
857 *pbase = base_cand->base_expr;
858 return wi::to_widest (base_cand->stride);
860 else if (base_cand->kind == CAND_ADD
861 && TREE_CODE (base_cand->stride) == INTEGER_CST
862 && integer_onep (base_cand->stride))
864 /* X = B + (i * S), S is integer one. */
865 *pbase = base_cand->base_expr;
866 return base_cand->index;
869 if (base_cand->next_interp)
870 base_cand = lookup_cand (base_cand->next_interp);
871 else
872 base_cand = NULL;
875 return 0;
878 /* Look for the following pattern:
880 *PBASE: MEM_REF (T1, C1)
882 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
884 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
886 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
888 *PINDEX: C4 * BITS_PER_UNIT
890 If not present, leave the input values unchanged and return FALSE.
891 Otherwise, modify the input values as follows and return TRUE:
893 *PBASE: T1
894 *POFFSET: MULT_EXPR (T2, C3)
895 *PINDEX: C1 + (C2 * C3) + C4
897 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
898 will be further restructured to:
900 *PBASE: T1
901 *POFFSET: MULT_EXPR (T2', C3)
902 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
904 static bool
905 restructure_reference (tree *pbase, tree *poffset, widest_int *pindex,
906 tree *ptype)
908 tree base = *pbase, offset = *poffset;
909 widest_int index = *pindex;
910 tree mult_op0, t1, t2, type;
911 widest_int c1, c2, c3, c4, c5;
913 if (!base
914 || !offset
915 || TREE_CODE (base) != MEM_REF
916 || TREE_CODE (offset) != MULT_EXPR
917 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
918 || wi::umod_floor (index, BITS_PER_UNIT) != 0)
919 return false;
921 t1 = TREE_OPERAND (base, 0);
922 c1 = widest_int::from (mem_ref_offset (base), SIGNED);
923 type = TREE_TYPE (TREE_OPERAND (base, 1));
925 mult_op0 = TREE_OPERAND (offset, 0);
926 c3 = wi::to_widest (TREE_OPERAND (offset, 1));
928 if (TREE_CODE (mult_op0) == PLUS_EXPR)
930 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
932 t2 = TREE_OPERAND (mult_op0, 0);
933 c2 = wi::to_widest (TREE_OPERAND (mult_op0, 1));
935 else
936 return false;
938 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
940 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
942 t2 = TREE_OPERAND (mult_op0, 0);
943 c2 = -wi::to_widest (TREE_OPERAND (mult_op0, 1));
945 else
946 return false;
948 else
950 t2 = mult_op0;
951 c2 = 0;
954 c4 = wi::lrshift (index, LOG2_BITS_PER_UNIT);
955 c5 = backtrace_base_for_ref (&t2);
957 *pbase = t1;
958 *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
959 wide_int_to_tree (sizetype, c3));
960 *pindex = c1 + c2 * c3 + c4 + c5 * c3;
961 *ptype = type;
963 return true;
966 /* Given GS which contains a data reference, create a CAND_REF entry in
967 the candidate table and attempt to find a basis. */
969 static void
970 slsr_process_ref (gimple *gs)
972 tree ref_expr, base, offset, type;
973 HOST_WIDE_INT bitsize, bitpos;
974 machine_mode mode;
975 int unsignedp, reversep, volatilep;
976 slsr_cand_t c;
978 if (gimple_vdef (gs))
979 ref_expr = gimple_assign_lhs (gs);
980 else
981 ref_expr = gimple_assign_rhs1 (gs);
983 if (!handled_component_p (ref_expr)
984 || TREE_CODE (ref_expr) == BIT_FIELD_REF
985 || (TREE_CODE (ref_expr) == COMPONENT_REF
986 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
987 return;
989 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
990 &unsignedp, &reversep, &volatilep, false);
991 if (reversep)
992 return;
993 widest_int index = bitpos;
995 if (!restructure_reference (&base, &offset, &index, &type))
996 return;
998 c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
999 type, 0);
1001 /* Add the candidate to the statement-candidate mapping. */
1002 add_cand_for_stmt (gs, c);
1005 /* Create a candidate entry for a statement GS, where GS multiplies
1006 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1007 about the two SSA names into the new candidate. Return the new
1008 candidate. */
1010 static slsr_cand_t
1011 create_mul_ssa_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
1013 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1014 widest_int index;
1015 unsigned savings = 0;
1016 slsr_cand_t c;
1017 slsr_cand_t base_cand = base_cand_from_table (base_in);
1019 /* Look at all interpretations of the base candidate, if necessary,
1020 to find information to propagate into this candidate. */
1021 while (base_cand && !base && base_cand->kind != CAND_PHI)
1024 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
1026 /* Y = (B + i') * 1
1027 X = Y * Z
1028 ================
1029 X = (B + i') * Z */
1030 base = base_cand->base_expr;
1031 index = base_cand->index;
1032 stride = stride_in;
1033 ctype = base_cand->cand_type;
1034 if (has_single_use (base_in))
1035 savings = (base_cand->dead_savings
1036 + stmt_cost (base_cand->cand_stmt, speed));
1038 else if (base_cand->kind == CAND_ADD
1039 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1041 /* Y = B + (i' * S), S constant
1042 X = Y * Z
1043 ============================
1044 X = B + ((i' * S) * Z) */
1045 base = base_cand->base_expr;
1046 index = base_cand->index * wi::to_widest (base_cand->stride);
1047 stride = stride_in;
1048 ctype = base_cand->cand_type;
1049 if (has_single_use (base_in))
1050 savings = (base_cand->dead_savings
1051 + stmt_cost (base_cand->cand_stmt, speed));
1054 if (base_cand->next_interp)
1055 base_cand = lookup_cand (base_cand->next_interp);
1056 else
1057 base_cand = NULL;
1060 if (!base)
1062 /* No interpretations had anything useful to propagate, so
1063 produce X = (Y + 0) * Z. */
1064 base = base_in;
1065 index = 0;
1066 stride = stride_in;
1067 ctype = TREE_TYPE (base_in);
1070 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1071 ctype, savings);
1072 return c;
1075 /* Create a candidate entry for a statement GS, where GS multiplies
1076 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1077 information about BASE_IN into the new candidate. Return the new
1078 candidate. */
1080 static slsr_cand_t
1081 create_mul_imm_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
1083 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1084 widest_int index, temp;
1085 unsigned savings = 0;
1086 slsr_cand_t c;
1087 slsr_cand_t base_cand = base_cand_from_table (base_in);
1089 /* Look at all interpretations of the base candidate, if necessary,
1090 to find information to propagate into this candidate. */
1091 while (base_cand && !base && base_cand->kind != CAND_PHI)
1093 if (base_cand->kind == CAND_MULT
1094 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1096 /* Y = (B + i') * S, S constant
1097 X = Y * c
1098 ============================
1099 X = (B + i') * (S * c) */
1100 temp = wi::to_widest (base_cand->stride) * wi::to_widest (stride_in);
1101 if (wi::fits_to_tree_p (temp, TREE_TYPE (stride_in)))
1103 base = base_cand->base_expr;
1104 index = base_cand->index;
1105 stride = wide_int_to_tree (TREE_TYPE (stride_in), temp);
1106 ctype = base_cand->cand_type;
1107 if (has_single_use (base_in))
1108 savings = (base_cand->dead_savings
1109 + stmt_cost (base_cand->cand_stmt, speed));
1112 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
1114 /* Y = B + (i' * 1)
1115 X = Y * c
1116 ===========================
1117 X = (B + i') * c */
1118 base = base_cand->base_expr;
1119 index = base_cand->index;
1120 stride = stride_in;
1121 ctype = base_cand->cand_type;
1122 if (has_single_use (base_in))
1123 savings = (base_cand->dead_savings
1124 + stmt_cost (base_cand->cand_stmt, speed));
1126 else if (base_cand->kind == CAND_ADD
1127 && base_cand->index == 1
1128 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1130 /* Y = B + (1 * S), S constant
1131 X = Y * c
1132 ===========================
1133 X = (B + S) * c */
1134 base = base_cand->base_expr;
1135 index = wi::to_widest (base_cand->stride);
1136 stride = stride_in;
1137 ctype = base_cand->cand_type;
1138 if (has_single_use (base_in))
1139 savings = (base_cand->dead_savings
1140 + stmt_cost (base_cand->cand_stmt, speed));
1143 if (base_cand->next_interp)
1144 base_cand = lookup_cand (base_cand->next_interp);
1145 else
1146 base_cand = NULL;
1149 if (!base)
1151 /* No interpretations had anything useful to propagate, so
1152 produce X = (Y + 0) * c. */
1153 base = base_in;
1154 index = 0;
1155 stride = stride_in;
1156 ctype = TREE_TYPE (base_in);
1159 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1160 ctype, savings);
1161 return c;
1164 /* Given GS which is a multiply of scalar integers, make an appropriate
1165 entry in the candidate table. If this is a multiply of two SSA names,
1166 create two CAND_MULT interpretations and attempt to find a basis for
1167 each of them. Otherwise, create a single CAND_MULT and attempt to
1168 find a basis. */
1170 static void
1171 slsr_process_mul (gimple *gs, tree rhs1, tree rhs2, bool speed)
1173 slsr_cand_t c, c2;
1175 /* If this is a multiply of an SSA name with itself, it is highly
1176 unlikely that we will get a strength reduction opportunity, so
1177 don't record it as a candidate. This simplifies the logic for
1178 finding a basis, so if this is removed that must be considered. */
1179 if (rhs1 == rhs2)
1180 return;
1182 if (TREE_CODE (rhs2) == SSA_NAME)
1184 /* Record an interpretation of this statement in the candidate table
1185 assuming RHS1 is the base expression and RHS2 is the stride. */
1186 c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1188 /* Add the first interpretation to the statement-candidate mapping. */
1189 add_cand_for_stmt (gs, c);
1191 /* Record another interpretation of this statement assuming RHS1
1192 is the stride and RHS2 is the base expression. */
1193 c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1194 c->next_interp = c2->cand_num;
1196 else
1198 /* Record an interpretation for the multiply-immediate. */
1199 c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1201 /* Add the interpretation to the statement-candidate mapping. */
1202 add_cand_for_stmt (gs, c);
1206 /* Create a candidate entry for a statement GS, where GS adds two
1207 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1208 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1209 information about the two SSA names into the new candidate.
1210 Return the new candidate. */
1212 static slsr_cand_t
1213 create_add_ssa_cand (gimple *gs, tree base_in, tree addend_in,
1214 bool subtract_p, bool speed)
1216 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL;
1217 widest_int index;
1218 unsigned savings = 0;
1219 slsr_cand_t c;
1220 slsr_cand_t base_cand = base_cand_from_table (base_in);
1221 slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1223 /* The most useful transformation is a multiply-immediate feeding
1224 an add or subtract. Look for that first. */
1225 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
1227 if (addend_cand->kind == CAND_MULT
1228 && addend_cand->index == 0
1229 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1231 /* Z = (B + 0) * S, S constant
1232 X = Y +/- Z
1233 ===========================
1234 X = Y + ((+/-1 * S) * B) */
1235 base = base_in;
1236 index = wi::to_widest (addend_cand->stride);
1237 if (subtract_p)
1238 index = -index;
1239 stride = addend_cand->base_expr;
1240 ctype = TREE_TYPE (base_in);
1241 if (has_single_use (addend_in))
1242 savings = (addend_cand->dead_savings
1243 + stmt_cost (addend_cand->cand_stmt, speed));
1246 if (addend_cand->next_interp)
1247 addend_cand = lookup_cand (addend_cand->next_interp);
1248 else
1249 addend_cand = NULL;
1252 while (base_cand && !base && base_cand->kind != CAND_PHI)
1254 if (base_cand->kind == CAND_ADD
1255 && (base_cand->index == 0
1256 || operand_equal_p (base_cand->stride,
1257 integer_zero_node, 0)))
1259 /* Y = B + (i' * S), i' * S = 0
1260 X = Y +/- Z
1261 ============================
1262 X = B + (+/-1 * Z) */
1263 base = base_cand->base_expr;
1264 index = subtract_p ? -1 : 1;
1265 stride = addend_in;
1266 ctype = base_cand->cand_type;
1267 if (has_single_use (base_in))
1268 savings = (base_cand->dead_savings
1269 + stmt_cost (base_cand->cand_stmt, speed));
1271 else if (subtract_p)
1273 slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1275 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
1277 if (subtrahend_cand->kind == CAND_MULT
1278 && subtrahend_cand->index == 0
1279 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1281 /* Z = (B + 0) * S, S constant
1282 X = Y - Z
1283 ===========================
1284 Value: X = Y + ((-1 * S) * B) */
1285 base = base_in;
1286 index = wi::to_widest (subtrahend_cand->stride);
1287 index = -index;
1288 stride = subtrahend_cand->base_expr;
1289 ctype = TREE_TYPE (base_in);
1290 if (has_single_use (addend_in))
1291 savings = (subtrahend_cand->dead_savings
1292 + stmt_cost (subtrahend_cand->cand_stmt, speed));
1295 if (subtrahend_cand->next_interp)
1296 subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
1297 else
1298 subtrahend_cand = NULL;
1302 if (base_cand->next_interp)
1303 base_cand = lookup_cand (base_cand->next_interp);
1304 else
1305 base_cand = NULL;
1308 if (!base)
1310 /* No interpretations had anything useful to propagate, so
1311 produce X = Y + (1 * Z). */
1312 base = base_in;
1313 index = subtract_p ? -1 : 1;
1314 stride = addend_in;
1315 ctype = TREE_TYPE (base_in);
1318 c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
1319 ctype, savings);
1320 return c;
1323 /* Create a candidate entry for a statement GS, where GS adds SSA
1324 name BASE_IN to constant INDEX_IN. Propagate any known information
1325 about BASE_IN into the new candidate. Return the new candidate. */
1327 static slsr_cand_t
1328 create_add_imm_cand (gimple *gs, tree base_in, const widest_int &index_in,
1329 bool speed)
1331 enum cand_kind kind = CAND_ADD;
1332 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1333 widest_int index, multiple;
1334 unsigned savings = 0;
1335 slsr_cand_t c;
1336 slsr_cand_t base_cand = base_cand_from_table (base_in);
1338 while (base_cand && !base && base_cand->kind != CAND_PHI)
1340 signop sign = TYPE_SIGN (TREE_TYPE (base_cand->stride));
1342 if (TREE_CODE (base_cand->stride) == INTEGER_CST
1343 && wi::multiple_of_p (index_in, wi::to_widest (base_cand->stride),
1344 sign, &multiple))
1346 /* Y = (B + i') * S, S constant, c = kS for some integer k
1347 X = Y + c
1348 ============================
1349 X = (B + (i'+ k)) * S
1351 Y = B + (i' * S), S constant, c = kS for some integer k
1352 X = Y + c
1353 ============================
1354 X = (B + (i'+ k)) * S */
1355 kind = base_cand->kind;
1356 base = base_cand->base_expr;
1357 index = base_cand->index + multiple;
1358 stride = base_cand->stride;
1359 ctype = base_cand->cand_type;
1360 if (has_single_use (base_in))
1361 savings = (base_cand->dead_savings
1362 + stmt_cost (base_cand->cand_stmt, speed));
1365 if (base_cand->next_interp)
1366 base_cand = lookup_cand (base_cand->next_interp);
1367 else
1368 base_cand = NULL;
1371 if (!base)
1373 /* No interpretations had anything useful to propagate, so
1374 produce X = Y + (c * 1). */
1375 kind = CAND_ADD;
1376 base = base_in;
1377 index = index_in;
1378 stride = integer_one_node;
1379 ctype = TREE_TYPE (base_in);
1382 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
1383 ctype, savings);
1384 return c;
1387 /* Given GS which is an add or subtract of scalar integers or pointers,
1388 make at least one appropriate entry in the candidate table. */
1390 static void
1391 slsr_process_add (gimple *gs, tree rhs1, tree rhs2, bool speed)
1393 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1394 slsr_cand_t c = NULL, c2;
1396 if (TREE_CODE (rhs2) == SSA_NAME)
1398 /* First record an interpretation assuming RHS1 is the base expression
1399 and RHS2 is the stride. But it doesn't make sense for the
1400 stride to be a pointer, so don't record a candidate in that case. */
1401 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
1403 c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1405 /* Add the first interpretation to the statement-candidate
1406 mapping. */
1407 add_cand_for_stmt (gs, c);
1410 /* If the two RHS operands are identical, or this is a subtract,
1411 we're done. */
1412 if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1413 return;
1415 /* Otherwise, record another interpretation assuming RHS2 is the
1416 base expression and RHS1 is the stride, again provided that the
1417 stride is not a pointer. */
1418 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
1420 c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1421 if (c)
1422 c->next_interp = c2->cand_num;
1423 else
1424 add_cand_for_stmt (gs, c2);
1427 else
1429 /* Record an interpretation for the add-immediate. */
1430 widest_int index = wi::to_widest (rhs2);
1431 if (subtract_p)
1432 index = -index;
1434 c = create_add_imm_cand (gs, rhs1, index, speed);
1436 /* Add the interpretation to the statement-candidate mapping. */
1437 add_cand_for_stmt (gs, c);
1441 /* Given GS which is a negate of a scalar integer, make an appropriate
1442 entry in the candidate table. A negate is equivalent to a multiply
1443 by -1. */
1445 static void
1446 slsr_process_neg (gimple *gs, tree rhs1, bool speed)
1448 /* Record a CAND_MULT interpretation for the multiply by -1. */
1449 slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1451 /* Add the interpretation to the statement-candidate mapping. */
1452 add_cand_for_stmt (gs, c);
1455 /* Help function for legal_cast_p, operating on two trees. Checks
1456 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1457 for more details. */
1459 static bool
1460 legal_cast_p_1 (tree lhs, tree rhs)
1462 tree lhs_type, rhs_type;
1463 unsigned lhs_size, rhs_size;
1464 bool lhs_wraps, rhs_wraps;
1466 lhs_type = TREE_TYPE (lhs);
1467 rhs_type = TREE_TYPE (rhs);
1468 lhs_size = TYPE_PRECISION (lhs_type);
1469 rhs_size = TYPE_PRECISION (rhs_type);
1470 lhs_wraps = ANY_INTEGRAL_TYPE_P (lhs_type) && TYPE_OVERFLOW_WRAPS (lhs_type);
1471 rhs_wraps = ANY_INTEGRAL_TYPE_P (rhs_type) && TYPE_OVERFLOW_WRAPS (rhs_type);
1473 if (lhs_size < rhs_size
1474 || (rhs_wraps && !lhs_wraps)
1475 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1476 return false;
1478 return true;
1481 /* Return TRUE if GS is a statement that defines an SSA name from
1482 a conversion and is legal for us to combine with an add and multiply
1483 in the candidate table. For example, suppose we have:
1485 A = B + i;
1486 C = (type) A;
1487 D = C * S;
1489 Without the type-cast, we would create a CAND_MULT for D with base B,
1490 index i, and stride S. We want to record this candidate only if it
1491 is equivalent to apply the type cast following the multiply:
1493 A = B + i;
1494 E = A * S;
1495 D = (type) E;
1497 We will record the type with the candidate for D. This allows us
1498 to use a similar previous candidate as a basis. If we have earlier seen
1500 A' = B + i';
1501 C' = (type) A';
1502 D' = C' * S;
1504 we can replace D with
1506 D = D' + (i - i') * S;
1508 But if moving the type-cast would change semantics, we mustn't do this.
1510 This is legitimate for casts from a non-wrapping integral type to
1511 any integral type of the same or larger size. It is not legitimate
1512 to convert a wrapping type to a non-wrapping type, or to a wrapping
1513 type of a different size. I.e., with a wrapping type, we must
1514 assume that the addition B + i could wrap, in which case performing
1515 the multiply before or after one of the "illegal" type casts will
1516 have different semantics. */
1518 static bool
1519 legal_cast_p (gimple *gs, tree rhs)
1521 if (!is_gimple_assign (gs)
1522 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1523 return false;
1525 return legal_cast_p_1 (gimple_assign_lhs (gs), rhs);
1528 /* Given GS which is a cast to a scalar integer type, determine whether
1529 the cast is legal for strength reduction. If so, make at least one
1530 appropriate entry in the candidate table. */
1532 static void
1533 slsr_process_cast (gimple *gs, tree rhs1, bool speed)
1535 tree lhs, ctype;
1536 slsr_cand_t base_cand, c, c2;
1537 unsigned savings = 0;
1539 if (!legal_cast_p (gs, rhs1))
1540 return;
1542 lhs = gimple_assign_lhs (gs);
1543 base_cand = base_cand_from_table (rhs1);
1544 ctype = TREE_TYPE (lhs);
1546 if (base_cand && base_cand->kind != CAND_PHI)
1548 while (base_cand)
1550 /* Propagate all data from the base candidate except the type,
1551 which comes from the cast, and the base candidate's cast,
1552 which is no longer applicable. */
1553 if (has_single_use (rhs1))
1554 savings = (base_cand->dead_savings
1555 + stmt_cost (base_cand->cand_stmt, speed));
1557 c = alloc_cand_and_find_basis (base_cand->kind, gs,
1558 base_cand->base_expr,
1559 base_cand->index, base_cand->stride,
1560 ctype, savings);
1561 if (base_cand->next_interp)
1562 base_cand = lookup_cand (base_cand->next_interp);
1563 else
1564 base_cand = NULL;
1567 else
1569 /* If nothing is known about the RHS, create fresh CAND_ADD and
1570 CAND_MULT interpretations:
1572 X = Y + (0 * 1)
1573 X = (Y + 0) * 1
1575 The first of these is somewhat arbitrary, but the choice of
1576 1 for the stride simplifies the logic for propagating casts
1577 into their uses. */
1578 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1,
1579 0, integer_one_node, ctype, 0);
1580 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1,
1581 0, integer_one_node, ctype, 0);
1582 c->next_interp = c2->cand_num;
1585 /* Add the first (or only) interpretation to the statement-candidate
1586 mapping. */
1587 add_cand_for_stmt (gs, c);
1590 /* Given GS which is a copy of a scalar integer type, make at least one
1591 appropriate entry in the candidate table.
1593 This interface is included for completeness, but is unnecessary
1594 if this pass immediately follows a pass that performs copy
1595 propagation, such as DOM. */
1597 static void
1598 slsr_process_copy (gimple *gs, tree rhs1, bool speed)
1600 slsr_cand_t base_cand, c, c2;
1601 unsigned savings = 0;
1603 base_cand = base_cand_from_table (rhs1);
1605 if (base_cand && base_cand->kind != CAND_PHI)
1607 while (base_cand)
1609 /* Propagate all data from the base candidate. */
1610 if (has_single_use (rhs1))
1611 savings = (base_cand->dead_savings
1612 + stmt_cost (base_cand->cand_stmt, speed));
1614 c = alloc_cand_and_find_basis (base_cand->kind, gs,
1615 base_cand->base_expr,
1616 base_cand->index, base_cand->stride,
1617 base_cand->cand_type, savings);
1618 if (base_cand->next_interp)
1619 base_cand = lookup_cand (base_cand->next_interp);
1620 else
1621 base_cand = NULL;
1624 else
1626 /* If nothing is known about the RHS, create fresh CAND_ADD and
1627 CAND_MULT interpretations:
1629 X = Y + (0 * 1)
1630 X = (Y + 0) * 1
1632 The first of these is somewhat arbitrary, but the choice of
1633 1 for the stride simplifies the logic for propagating casts
1634 into their uses. */
1635 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1,
1636 0, integer_one_node, TREE_TYPE (rhs1), 0);
1637 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1,
1638 0, integer_one_node, TREE_TYPE (rhs1), 0);
1639 c->next_interp = c2->cand_num;
1642 /* Add the first (or only) interpretation to the statement-candidate
1643 mapping. */
1644 add_cand_for_stmt (gs, c);
1647 class find_candidates_dom_walker : public dom_walker
1649 public:
1650 find_candidates_dom_walker (cdi_direction direction)
1651 : dom_walker (direction) {}
1652 virtual void before_dom_children (basic_block);
1655 /* Find strength-reduction candidates in block BB. */
1657 void
1658 find_candidates_dom_walker::before_dom_children (basic_block bb)
1660 bool speed = optimize_bb_for_speed_p (bb);
1662 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1663 gsi_next (&gsi))
1664 slsr_process_phi (gsi.phi (), speed);
1666 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1667 gsi_next (&gsi))
1669 gimple *gs = gsi_stmt (gsi);
1671 if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1672 slsr_process_ref (gs);
1674 else if (is_gimple_assign (gs)
1675 && SCALAR_INT_MODE_P
1676 (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))))
1678 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1680 switch (gimple_assign_rhs_code (gs))
1682 case MULT_EXPR:
1683 case PLUS_EXPR:
1684 rhs1 = gimple_assign_rhs1 (gs);
1685 rhs2 = gimple_assign_rhs2 (gs);
1686 /* Should never happen, but currently some buggy situations
1687 in earlier phases put constants in rhs1. */
1688 if (TREE_CODE (rhs1) != SSA_NAME)
1689 continue;
1690 break;
1692 /* Possible future opportunity: rhs1 of a ptr+ can be
1693 an ADDR_EXPR. */
1694 case POINTER_PLUS_EXPR:
1695 case MINUS_EXPR:
1696 rhs2 = gimple_assign_rhs2 (gs);
1697 /* Fall-through. */
1699 CASE_CONVERT:
1700 case MODIFY_EXPR:
1701 case NEGATE_EXPR:
1702 rhs1 = gimple_assign_rhs1 (gs);
1703 if (TREE_CODE (rhs1) != SSA_NAME)
1704 continue;
1705 break;
1707 default:
1711 switch (gimple_assign_rhs_code (gs))
1713 case MULT_EXPR:
1714 slsr_process_mul (gs, rhs1, rhs2, speed);
1715 break;
1717 case PLUS_EXPR:
1718 case POINTER_PLUS_EXPR:
1719 case MINUS_EXPR:
1720 slsr_process_add (gs, rhs1, rhs2, speed);
1721 break;
1723 case NEGATE_EXPR:
1724 slsr_process_neg (gs, rhs1, speed);
1725 break;
1727 CASE_CONVERT:
1728 slsr_process_cast (gs, rhs1, speed);
1729 break;
1731 case MODIFY_EXPR:
1732 slsr_process_copy (gs, rhs1, speed);
1733 break;
1735 default:
1742 /* Dump a candidate for debug. */
1744 static void
1745 dump_candidate (slsr_cand_t c)
1747 fprintf (dump_file, "%3d [%d] ", c->cand_num,
1748 gimple_bb (c->cand_stmt)->index);
1749 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1750 switch (c->kind)
1752 case CAND_MULT:
1753 fputs (" MULT : (", dump_file);
1754 print_generic_expr (dump_file, c->base_expr, 0);
1755 fputs (" + ", dump_file);
1756 print_decs (c->index, dump_file);
1757 fputs (") * ", dump_file);
1758 print_generic_expr (dump_file, c->stride, 0);
1759 fputs (" : ", dump_file);
1760 break;
1761 case CAND_ADD:
1762 fputs (" ADD : ", dump_file);
1763 print_generic_expr (dump_file, c->base_expr, 0);
1764 fputs (" + (", dump_file);
1765 print_decs (c->index, dump_file);
1766 fputs (" * ", dump_file);
1767 print_generic_expr (dump_file, c->stride, 0);
1768 fputs (") : ", dump_file);
1769 break;
1770 case CAND_REF:
1771 fputs (" REF : ", dump_file);
1772 print_generic_expr (dump_file, c->base_expr, 0);
1773 fputs (" + (", dump_file);
1774 print_generic_expr (dump_file, c->stride, 0);
1775 fputs (") + ", dump_file);
1776 print_decs (c->index, dump_file);
1777 fputs (" : ", dump_file);
1778 break;
1779 case CAND_PHI:
1780 fputs (" PHI : ", dump_file);
1781 print_generic_expr (dump_file, c->base_expr, 0);
1782 fputs (" + (unknown * ", dump_file);
1783 print_generic_expr (dump_file, c->stride, 0);
1784 fputs (") : ", dump_file);
1785 break;
1786 default:
1787 gcc_unreachable ();
1789 print_generic_expr (dump_file, c->cand_type, 0);
1790 fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
1791 c->basis, c->dependent, c->sibling);
1792 fprintf (dump_file, " next-interp: %d dead-savings: %d\n",
1793 c->next_interp, c->dead_savings);
1794 if (c->def_phi)
1795 fprintf (dump_file, " phi: %d\n", c->def_phi);
1796 fputs ("\n", dump_file);
1799 /* Dump the candidate vector for debug. */
1801 static void
1802 dump_cand_vec (void)
1804 unsigned i;
1805 slsr_cand_t c;
1807 fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1809 FOR_EACH_VEC_ELT (cand_vec, i, c)
1810 dump_candidate (c);
1813 /* Callback used to dump the candidate chains hash table. */
1816 ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
1818 const_cand_chain_t chain = *slot;
1819 cand_chain_t p;
1821 print_generic_expr (dump_file, chain->base_expr, 0);
1822 fprintf (dump_file, " -> %d", chain->cand->cand_num);
1824 for (p = chain->next; p; p = p->next)
1825 fprintf (dump_file, " -> %d", p->cand->cand_num);
1827 fputs ("\n", dump_file);
1828 return 1;
1831 /* Dump the candidate chains. */
1833 static void
1834 dump_cand_chains (void)
1836 fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
1837 base_cand_map->traverse_noresize <void *, ssa_base_cand_dump_callback>
1838 (NULL);
1839 fputs ("\n", dump_file);
1842 /* Dump the increment vector for debug. */
1844 static void
1845 dump_incr_vec (void)
1847 if (dump_file && (dump_flags & TDF_DETAILS))
1849 unsigned i;
1851 fprintf (dump_file, "\nIncrement vector:\n\n");
1853 for (i = 0; i < incr_vec_len; i++)
1855 fprintf (dump_file, "%3d increment: ", i);
1856 print_decs (incr_vec[i].incr, dump_file);
1857 fprintf (dump_file, "\n count: %d", incr_vec[i].count);
1858 fprintf (dump_file, "\n cost: %d", incr_vec[i].cost);
1859 fputs ("\n initializer: ", dump_file);
1860 print_generic_expr (dump_file, incr_vec[i].initializer, 0);
1861 fputs ("\n\n", dump_file);
1866 /* Replace *EXPR in candidate C with an equivalent strength-reduced
1867 data reference. */
1869 static void
1870 replace_ref (tree *expr, slsr_cand_t c)
1872 tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1873 unsigned HOST_WIDE_INT misalign;
1874 unsigned align;
1876 /* Ensure the memory reference carries the minimum alignment
1877 requirement for the data type. See PR58041. */
1878 get_object_alignment_1 (*expr, &align, &misalign);
1879 if (misalign != 0)
1880 align = (misalign & -misalign);
1881 if (align < TYPE_ALIGN (acc_type))
1882 acc_type = build_aligned_type (acc_type, align);
1884 add_expr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (c->base_expr),
1885 c->base_expr, c->stride);
1886 mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
1887 wide_int_to_tree (c->cand_type, c->index));
1889 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1890 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1891 TREE_OPERAND (mem_ref, 0)
1892 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1893 /*simple_p=*/true, NULL,
1894 /*before=*/true, GSI_SAME_STMT);
1895 copy_ref_info (mem_ref, *expr);
1896 *expr = mem_ref;
1897 update_stmt (c->cand_stmt);
1900 /* Replace CAND_REF candidate C, each sibling of candidate C, and each
1901 dependent of candidate C with an equivalent strength-reduced data
1902 reference. */
1904 static void
1905 replace_refs (slsr_cand_t c)
1907 if (dump_file && (dump_flags & TDF_DETAILS))
1909 fputs ("Replacing reference: ", dump_file);
1910 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1913 if (gimple_vdef (c->cand_stmt))
1915 tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
1916 replace_ref (lhs, c);
1918 else
1920 tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
1921 replace_ref (rhs, c);
1924 if (dump_file && (dump_flags & TDF_DETAILS))
1926 fputs ("With: ", dump_file);
1927 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1928 fputs ("\n", dump_file);
1931 if (c->sibling)
1932 replace_refs (lookup_cand (c->sibling));
1934 if (c->dependent)
1935 replace_refs (lookup_cand (c->dependent));
1938 /* Return TRUE if candidate C is dependent upon a PHI. */
1940 static bool
1941 phi_dependent_cand_p (slsr_cand_t c)
1943 /* A candidate is not necessarily dependent upon a PHI just because
1944 it has a phi definition for its base name. It may have a basis
1945 that relies upon the same phi definition, in which case the PHI
1946 is irrelevant to this candidate. */
1947 return (c->def_phi
1948 && c->basis
1949 && lookup_cand (c->basis)->def_phi != c->def_phi);
1952 /* Calculate the increment required for candidate C relative to
1953 its basis. */
1955 static widest_int
1956 cand_increment (slsr_cand_t c)
1958 slsr_cand_t basis;
1960 /* If the candidate doesn't have a basis, just return its own
1961 index. This is useful in record_increments to help us find
1962 an existing initializer. Also, if the candidate's basis is
1963 hidden by a phi, then its own index will be the increment
1964 from the newly introduced phi basis. */
1965 if (!c->basis || phi_dependent_cand_p (c))
1966 return c->index;
1968 basis = lookup_cand (c->basis);
1969 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
1970 return c->index - basis->index;
1973 /* Calculate the increment required for candidate C relative to
1974 its basis. If we aren't going to generate pointer arithmetic
1975 for this candidate, return the absolute value of that increment
1976 instead. */
1978 static inline widest_int
1979 cand_abs_increment (slsr_cand_t c)
1981 widest_int increment = cand_increment (c);
1983 if (!address_arithmetic_p && wi::neg_p (increment))
1984 increment = -increment;
1986 return increment;
1989 /* Return TRUE iff candidate C has already been replaced under
1990 another interpretation. */
1992 static inline bool
1993 cand_already_replaced (slsr_cand_t c)
1995 return (gimple_bb (c->cand_stmt) == 0);
1998 /* Common logic used by replace_unconditional_candidate and
1999 replace_conditional_candidate. */
2001 static void
2002 replace_mult_candidate (slsr_cand_t c, tree basis_name, widest_int bump)
2004 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2005 enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
2007 /* It is highly unlikely, but possible, that the resulting
2008 bump doesn't fit in a HWI. Abandon the replacement
2009 in this case. This does not affect siblings or dependents
2010 of C. Restriction to signed HWI is conservative for unsigned
2011 types but allows for safe negation without twisted logic. */
2012 if (wi::fits_shwi_p (bump)
2013 && bump.to_shwi () != HOST_WIDE_INT_MIN
2014 /* It is not useful to replace casts, copies, or adds of
2015 an SSA name and a constant. */
2016 && cand_code != MODIFY_EXPR
2017 && !CONVERT_EXPR_CODE_P (cand_code)
2018 && cand_code != PLUS_EXPR
2019 && cand_code != POINTER_PLUS_EXPR
2020 && cand_code != MINUS_EXPR)
2022 enum tree_code code = PLUS_EXPR;
2023 tree bump_tree;
2024 gimple *stmt_to_print = NULL;
2026 /* If the basis name and the candidate's LHS have incompatible
2027 types, introduce a cast. */
2028 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
2029 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
2030 if (wi::neg_p (bump))
2032 code = MINUS_EXPR;
2033 bump = -bump;
2036 bump_tree = wide_int_to_tree (target_type, bump);
2038 if (dump_file && (dump_flags & TDF_DETAILS))
2040 fputs ("Replacing: ", dump_file);
2041 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
2044 if (bump == 0)
2046 tree lhs = gimple_assign_lhs (c->cand_stmt);
2047 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
2048 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2049 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
2050 gsi_replace (&gsi, copy_stmt, false);
2051 c->cand_stmt = copy_stmt;
2052 if (dump_file && (dump_flags & TDF_DETAILS))
2053 stmt_to_print = copy_stmt;
2055 else
2057 tree rhs1, rhs2;
2058 if (cand_code != NEGATE_EXPR) {
2059 rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2060 rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2062 if (cand_code != NEGATE_EXPR
2063 && ((operand_equal_p (rhs1, basis_name, 0)
2064 && operand_equal_p (rhs2, bump_tree, 0))
2065 || (operand_equal_p (rhs1, bump_tree, 0)
2066 && operand_equal_p (rhs2, basis_name, 0))))
2068 if (dump_file && (dump_flags & TDF_DETAILS))
2070 fputs ("(duplicate, not actually replacing)", dump_file);
2071 stmt_to_print = c->cand_stmt;
2074 else
2076 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2077 gimple_assign_set_rhs_with_ops (&gsi, code,
2078 basis_name, bump_tree);
2079 update_stmt (gsi_stmt (gsi));
2080 c->cand_stmt = gsi_stmt (gsi);
2081 if (dump_file && (dump_flags & TDF_DETAILS))
2082 stmt_to_print = gsi_stmt (gsi);
2086 if (dump_file && (dump_flags & TDF_DETAILS))
2088 fputs ("With: ", dump_file);
2089 print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
2090 fputs ("\n", dump_file);
2095 /* Replace candidate C with an add or subtract. Note that we only
2096 operate on CAND_MULTs with known strides, so we will never generate
2097 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2098 X = Y + ((i - i') * S), as described in the module commentary. The
2099 folded value ((i - i') * S) is referred to here as the "bump." */
2101 static void
2102 replace_unconditional_candidate (slsr_cand_t c)
2104 slsr_cand_t basis;
2106 if (cand_already_replaced (c))
2107 return;
2109 basis = lookup_cand (c->basis);
2110 widest_int bump = cand_increment (c) * wi::to_widest (c->stride);
2112 replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
2115 /* Return the index in the increment vector of the given INCREMENT,
2116 or -1 if not found. The latter can occur if more than
2117 MAX_INCR_VEC_LEN increments have been found. */
2119 static inline int
2120 incr_vec_index (const widest_int &increment)
2122 unsigned i;
2124 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2127 if (i < incr_vec_len)
2128 return i;
2129 else
2130 return -1;
2133 /* Create a new statement along edge E to add BASIS_NAME to the product
2134 of INCREMENT and the stride of candidate C. Create and return a new
2135 SSA name from *VAR to be used as the LHS of the new statement.
2136 KNOWN_STRIDE is true iff C's stride is a constant. */
2138 static tree
2139 create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
2140 widest_int increment, edge e, location_t loc,
2141 bool known_stride)
2143 basic_block insert_bb;
2144 gimple_stmt_iterator gsi;
2145 tree lhs, basis_type;
2146 gassign *new_stmt;
2148 /* If the add candidate along this incoming edge has the same
2149 index as C's hidden basis, the hidden basis represents this
2150 edge correctly. */
2151 if (increment == 0)
2152 return basis_name;
2154 basis_type = TREE_TYPE (basis_name);
2155 lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
2157 if (known_stride)
2159 tree bump_tree;
2160 enum tree_code code = PLUS_EXPR;
2161 widest_int bump = increment * wi::to_widest (c->stride);
2162 if (wi::neg_p (bump))
2164 code = MINUS_EXPR;
2165 bump = -bump;
2168 bump_tree = wide_int_to_tree (basis_type, bump);
2169 new_stmt = gimple_build_assign (lhs, code, basis_name, bump_tree);
2171 else
2173 int i;
2174 bool negate_incr = (!address_arithmetic_p && wi::neg_p (increment));
2175 i = incr_vec_index (negate_incr ? -increment : increment);
2176 gcc_assert (i >= 0);
2178 if (incr_vec[i].initializer)
2180 enum tree_code code = negate_incr ? MINUS_EXPR : PLUS_EXPR;
2181 new_stmt = gimple_build_assign (lhs, code, basis_name,
2182 incr_vec[i].initializer);
2184 else if (increment == 1)
2185 new_stmt = gimple_build_assign (lhs, PLUS_EXPR, basis_name, c->stride);
2186 else if (increment == -1)
2187 new_stmt = gimple_build_assign (lhs, MINUS_EXPR, basis_name,
2188 c->stride);
2189 else
2190 gcc_unreachable ();
2193 insert_bb = single_succ_p (e->src) ? e->src : split_edge (e);
2194 gsi = gsi_last_bb (insert_bb);
2196 if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
2197 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2198 else
2199 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2201 gimple_set_location (new_stmt, loc);
2203 if (dump_file && (dump_flags & TDF_DETAILS))
2205 fprintf (dump_file, "Inserting in block %d: ", insert_bb->index);
2206 print_gimple_stmt (dump_file, new_stmt, 0, 0);
2209 return lhs;
2212 /* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2213 is hidden by the phi node FROM_PHI, create a new phi node in the same
2214 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2215 with its phi arguments representing conditional adjustments to the
2216 hidden basis along conditional incoming paths. Those adjustments are
2217 made by creating add statements (and sometimes recursively creating
2218 phis) along those incoming paths. LOC is the location to attach to
2219 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2220 constant. */
2222 static tree
2223 create_phi_basis (slsr_cand_t c, gimple *from_phi, tree basis_name,
2224 location_t loc, bool known_stride)
2226 int i;
2227 tree name, phi_arg;
2228 gphi *phi;
2229 slsr_cand_t basis = lookup_cand (c->basis);
2230 int nargs = gimple_phi_num_args (from_phi);
2231 basic_block phi_bb = gimple_bb (from_phi);
2232 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (from_phi));
2233 auto_vec<tree> phi_args (nargs);
2235 /* Process each argument of the existing phi that represents
2236 conditionally-executed add candidates. */
2237 for (i = 0; i < nargs; i++)
2239 edge e = (*phi_bb->preds)[i];
2240 tree arg = gimple_phi_arg_def (from_phi, i);
2241 tree feeding_def;
2243 /* If the phi argument is the base name of the CAND_PHI, then
2244 this incoming arc should use the hidden basis. */
2245 if (operand_equal_p (arg, phi_cand->base_expr, 0))
2246 if (basis->index == 0)
2247 feeding_def = gimple_assign_lhs (basis->cand_stmt);
2248 else
2250 widest_int incr = -basis->index;
2251 feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2252 e, loc, known_stride);
2254 else
2256 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2258 /* If there is another phi along this incoming edge, we must
2259 process it in the same fashion to ensure that all basis
2260 adjustments are made along its incoming edges. */
2261 if (gimple_code (arg_def) == GIMPLE_PHI)
2262 feeding_def = create_phi_basis (c, arg_def, basis_name,
2263 loc, known_stride);
2264 else
2266 slsr_cand_t arg_cand = base_cand_from_table (arg);
2267 widest_int diff = arg_cand->index - basis->index;
2268 feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2269 e, loc, known_stride);
2273 /* Because of recursion, we need to save the arguments in a vector
2274 so we can create the PHI statement all at once. Otherwise the
2275 storage for the half-created PHI can be reclaimed. */
2276 phi_args.safe_push (feeding_def);
2279 /* Create the new phi basis. */
2280 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2281 phi = create_phi_node (name, phi_bb);
2282 SSA_NAME_DEF_STMT (name) = phi;
2284 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2286 edge e = (*phi_bb->preds)[i];
2287 add_phi_arg (phi, phi_arg, e, loc);
2290 update_stmt (phi);
2292 if (dump_file && (dump_flags & TDF_DETAILS))
2294 fputs ("Introducing new phi basis: ", dump_file);
2295 print_gimple_stmt (dump_file, phi, 0, 0);
2298 return name;
2301 /* Given a candidate C whose basis is hidden by at least one intervening
2302 phi, introduce a matching number of new phis to represent its basis
2303 adjusted by conditional increments along possible incoming paths. Then
2304 replace C as though it were an unconditional candidate, using the new
2305 basis. */
2307 static void
2308 replace_conditional_candidate (slsr_cand_t c)
2310 tree basis_name, name;
2311 slsr_cand_t basis;
2312 location_t loc;
2314 /* Look up the LHS SSA name from C's basis. This will be the
2315 RHS1 of the adds we will introduce to create new phi arguments. */
2316 basis = lookup_cand (c->basis);
2317 basis_name = gimple_assign_lhs (basis->cand_stmt);
2319 /* Create a new phi statement which will represent C's true basis
2320 after the transformation is complete. */
2321 loc = gimple_location (c->cand_stmt);
2322 name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2323 basis_name, loc, KNOWN_STRIDE);
2324 /* Replace C with an add of the new basis phi and a constant. */
2325 widest_int bump = c->index * wi::to_widest (c->stride);
2327 replace_mult_candidate (c, name, bump);
2330 /* Compute the expected costs of inserting basis adjustments for
2331 candidate C with phi-definition PHI. The cost of inserting
2332 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2333 which are themselves phi results, recursively calculate costs
2334 for those phis as well. */
2336 static int
2337 phi_add_costs (gimple *phi, slsr_cand_t c, int one_add_cost)
2339 unsigned i;
2340 int cost = 0;
2341 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2343 /* If we work our way back to a phi that isn't dominated by the hidden
2344 basis, this isn't a candidate for replacement. Indicate this by
2345 returning an unreasonably high cost. It's not easy to detect
2346 these situations when determining the basis, so we defer the
2347 decision until now. */
2348 basic_block phi_bb = gimple_bb (phi);
2349 slsr_cand_t basis = lookup_cand (c->basis);
2350 basic_block basis_bb = gimple_bb (basis->cand_stmt);
2352 if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2353 return COST_INFINITE;
2355 for (i = 0; i < gimple_phi_num_args (phi); i++)
2357 tree arg = gimple_phi_arg_def (phi, i);
2359 if (arg != phi_cand->base_expr)
2361 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2363 if (gimple_code (arg_def) == GIMPLE_PHI)
2364 cost += phi_add_costs (arg_def, c, one_add_cost);
2365 else
2367 slsr_cand_t arg_cand = base_cand_from_table (arg);
2369 if (arg_cand->index != c->index)
2370 cost += one_add_cost;
2375 return cost;
2378 /* For candidate C, each sibling of candidate C, and each dependent of
2379 candidate C, determine whether the candidate is dependent upon a
2380 phi that hides its basis. If not, replace the candidate unconditionally.
2381 Otherwise, determine whether the cost of introducing compensation code
2382 for the candidate is offset by the gains from strength reduction. If
2383 so, replace the candidate and introduce the compensation code. */
2385 static void
2386 replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2388 if (phi_dependent_cand_p (c))
2390 if (c->kind == CAND_MULT)
2392 /* A candidate dependent upon a phi will replace a multiply by
2393 a constant with an add, and will insert at most one add for
2394 each phi argument. Add these costs with the potential dead-code
2395 savings to determine profitability. */
2396 bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2397 int mult_savings = stmt_cost (c->cand_stmt, speed);
2398 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
2399 tree phi_result = gimple_phi_result (phi);
2400 int one_add_cost = add_cost (speed,
2401 TYPE_MODE (TREE_TYPE (phi_result)));
2402 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2403 int cost = add_costs - mult_savings - c->dead_savings;
2405 if (dump_file && (dump_flags & TDF_DETAILS))
2407 fprintf (dump_file, " Conditional candidate %d:\n", c->cand_num);
2408 fprintf (dump_file, " add_costs = %d\n", add_costs);
2409 fprintf (dump_file, " mult_savings = %d\n", mult_savings);
2410 fprintf (dump_file, " dead_savings = %d\n", c->dead_savings);
2411 fprintf (dump_file, " cost = %d\n", cost);
2412 if (cost <= COST_NEUTRAL)
2413 fputs (" Replacing...\n", dump_file);
2414 else
2415 fputs (" Not replaced.\n", dump_file);
2418 if (cost <= COST_NEUTRAL)
2419 replace_conditional_candidate (c);
2422 else
2423 replace_unconditional_candidate (c);
2425 if (c->sibling)
2426 replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2428 if (c->dependent)
2429 replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2432 /* Count the number of candidates in the tree rooted at C that have
2433 not already been replaced under other interpretations. */
2435 static int
2436 count_candidates (slsr_cand_t c)
2438 unsigned count = cand_already_replaced (c) ? 0 : 1;
2440 if (c->sibling)
2441 count += count_candidates (lookup_cand (c->sibling));
2443 if (c->dependent)
2444 count += count_candidates (lookup_cand (c->dependent));
2446 return count;
2449 /* Increase the count of INCREMENT by one in the increment vector.
2450 INCREMENT is associated with candidate C. If INCREMENT is to be
2451 conditionally executed as part of a conditional candidate replacement,
2452 IS_PHI_ADJUST is true, otherwise false. If an initializer
2453 T_0 = stride * I is provided by a candidate that dominates all
2454 candidates with the same increment, also record T_0 for subsequent use. */
2456 static void
2457 record_increment (slsr_cand_t c, widest_int increment, bool is_phi_adjust)
2459 bool found = false;
2460 unsigned i;
2462 /* Treat increments that differ only in sign as identical so as to
2463 share initializers, unless we are generating pointer arithmetic. */
2464 if (!address_arithmetic_p && wi::neg_p (increment))
2465 increment = -increment;
2467 for (i = 0; i < incr_vec_len; i++)
2469 if (incr_vec[i].incr == increment)
2471 incr_vec[i].count++;
2472 found = true;
2474 /* If we previously recorded an initializer that doesn't
2475 dominate this candidate, it's not going to be useful to
2476 us after all. */
2477 if (incr_vec[i].initializer
2478 && !dominated_by_p (CDI_DOMINATORS,
2479 gimple_bb (c->cand_stmt),
2480 incr_vec[i].init_bb))
2482 incr_vec[i].initializer = NULL_TREE;
2483 incr_vec[i].init_bb = NULL;
2486 break;
2490 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
2492 /* The first time we see an increment, create the entry for it.
2493 If this is the root candidate which doesn't have a basis, set
2494 the count to zero. We're only processing it so it can possibly
2495 provide an initializer for other candidates. */
2496 incr_vec[incr_vec_len].incr = increment;
2497 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
2498 incr_vec[incr_vec_len].cost = COST_INFINITE;
2500 /* Optimistically record the first occurrence of this increment
2501 as providing an initializer (if it does); we will revise this
2502 opinion later if it doesn't dominate all other occurrences.
2503 Exception: increments of -1, 0, 1 never need initializers;
2504 and phi adjustments don't ever provide initializers. */
2505 if (c->kind == CAND_ADD
2506 && !is_phi_adjust
2507 && c->index == increment
2508 && (wi::gts_p (increment, 1)
2509 || wi::lts_p (increment, -1))
2510 && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2511 || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
2513 tree t0 = NULL_TREE;
2514 tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2515 tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2516 if (operand_equal_p (rhs1, c->base_expr, 0))
2517 t0 = rhs2;
2518 else if (operand_equal_p (rhs2, c->base_expr, 0))
2519 t0 = rhs1;
2520 if (t0
2521 && SSA_NAME_DEF_STMT (t0)
2522 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
2524 incr_vec[incr_vec_len].initializer = t0;
2525 incr_vec[incr_vec_len++].init_bb
2526 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2528 else
2530 incr_vec[incr_vec_len].initializer = NULL_TREE;
2531 incr_vec[incr_vec_len++].init_bb = NULL;
2534 else
2536 incr_vec[incr_vec_len].initializer = NULL_TREE;
2537 incr_vec[incr_vec_len++].init_bb = NULL;
2542 /* Given phi statement PHI that hides a candidate from its BASIS, find
2543 the increments along each incoming arc (recursively handling additional
2544 phis that may be present) and record them. These increments are the
2545 difference in index between the index-adjusting statements and the
2546 index of the basis. */
2548 static void
2549 record_phi_increments (slsr_cand_t basis, gimple *phi)
2551 unsigned i;
2552 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2554 for (i = 0; i < gimple_phi_num_args (phi); i++)
2556 tree arg = gimple_phi_arg_def (phi, i);
2558 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2560 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2562 if (gimple_code (arg_def) == GIMPLE_PHI)
2563 record_phi_increments (basis, arg_def);
2564 else
2566 slsr_cand_t arg_cand = base_cand_from_table (arg);
2567 widest_int diff = arg_cand->index - basis->index;
2568 record_increment (arg_cand, diff, PHI_ADJUST);
2574 /* Determine how many times each unique increment occurs in the set
2575 of candidates rooted at C's parent, recording the data in the
2576 increment vector. For each unique increment I, if an initializer
2577 T_0 = stride * I is provided by a candidate that dominates all
2578 candidates with the same increment, also record T_0 for subsequent
2579 use. */
2581 static void
2582 record_increments (slsr_cand_t c)
2584 if (!cand_already_replaced (c))
2586 if (!phi_dependent_cand_p (c))
2587 record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2588 else
2590 /* A candidate with a basis hidden by a phi will have one
2591 increment for its relationship to the index represented by
2592 the phi, and potentially additional increments along each
2593 incoming edge. For the root of the dependency tree (which
2594 has no basis), process just the initial index in case it has
2595 an initializer that can be used by subsequent candidates. */
2596 record_increment (c, c->index, NOT_PHI_ADJUST);
2598 if (c->basis)
2599 record_phi_increments (lookup_cand (c->basis),
2600 lookup_cand (c->def_phi)->cand_stmt);
2604 if (c->sibling)
2605 record_increments (lookup_cand (c->sibling));
2607 if (c->dependent)
2608 record_increments (lookup_cand (c->dependent));
2611 /* Add up and return the costs of introducing add statements that
2612 require the increment INCR on behalf of candidate C and phi
2613 statement PHI. Accumulate into *SAVINGS the potential savings
2614 from removing existing statements that feed PHI and have no other
2615 uses. */
2617 static int
2618 phi_incr_cost (slsr_cand_t c, const widest_int &incr, gimple *phi,
2619 int *savings)
2621 unsigned i;
2622 int cost = 0;
2623 slsr_cand_t basis = lookup_cand (c->basis);
2624 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2626 for (i = 0; i < gimple_phi_num_args (phi); i++)
2628 tree arg = gimple_phi_arg_def (phi, i);
2630 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2632 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2634 if (gimple_code (arg_def) == GIMPLE_PHI)
2636 int feeding_savings = 0;
2637 cost += phi_incr_cost (c, incr, arg_def, &feeding_savings);
2638 if (has_single_use (gimple_phi_result (arg_def)))
2639 *savings += feeding_savings;
2641 else
2643 slsr_cand_t arg_cand = base_cand_from_table (arg);
2644 widest_int diff = arg_cand->index - basis->index;
2646 if (incr == diff)
2648 tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2649 tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
2650 cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2651 if (has_single_use (lhs))
2652 *savings += stmt_cost (arg_cand->cand_stmt, true);
2658 return cost;
2661 /* Return the first candidate in the tree rooted at C that has not
2662 already been replaced, favoring siblings over dependents. */
2664 static slsr_cand_t
2665 unreplaced_cand_in_tree (slsr_cand_t c)
2667 if (!cand_already_replaced (c))
2668 return c;
2670 if (c->sibling)
2672 slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2673 if (sib)
2674 return sib;
2677 if (c->dependent)
2679 slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2680 if (dep)
2681 return dep;
2684 return NULL;
2687 /* Return TRUE if the candidates in the tree rooted at C should be
2688 optimized for speed, else FALSE. We estimate this based on the block
2689 containing the most dominant candidate in the tree that has not yet
2690 been replaced. */
2692 static bool
2693 optimize_cands_for_speed_p (slsr_cand_t c)
2695 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2696 gcc_assert (c2);
2697 return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2700 /* Add COST_IN to the lowest cost of any dependent path starting at
2701 candidate C or any of its siblings, counting only candidates along
2702 such paths with increment INCR. Assume that replacing a candidate
2703 reduces cost by REPL_SAVINGS. Also account for savings from any
2704 statements that would go dead. If COUNT_PHIS is true, include
2705 costs of introducing feeding statements for conditional candidates. */
2707 static int
2708 lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
2709 const widest_int &incr, bool count_phis)
2711 int local_cost, sib_cost, savings = 0;
2712 widest_int cand_incr = cand_abs_increment (c);
2714 if (cand_already_replaced (c))
2715 local_cost = cost_in;
2716 else if (incr == cand_incr)
2717 local_cost = cost_in - repl_savings - c->dead_savings;
2718 else
2719 local_cost = cost_in - c->dead_savings;
2721 if (count_phis
2722 && phi_dependent_cand_p (c)
2723 && !cand_already_replaced (c))
2725 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
2726 local_cost += phi_incr_cost (c, incr, phi, &savings);
2728 if (has_single_use (gimple_phi_result (phi)))
2729 local_cost -= savings;
2732 if (c->dependent)
2733 local_cost = lowest_cost_path (local_cost, repl_savings,
2734 lookup_cand (c->dependent), incr,
2735 count_phis);
2737 if (c->sibling)
2739 sib_cost = lowest_cost_path (cost_in, repl_savings,
2740 lookup_cand (c->sibling), incr,
2741 count_phis);
2742 local_cost = MIN (local_cost, sib_cost);
2745 return local_cost;
2748 /* Compute the total savings that would accrue from all replacements
2749 in the candidate tree rooted at C, counting only candidates with
2750 increment INCR. Assume that replacing a candidate reduces cost
2751 by REPL_SAVINGS. Also account for savings from statements that
2752 would go dead. */
2754 static int
2755 total_savings (int repl_savings, slsr_cand_t c, const widest_int &incr,
2756 bool count_phis)
2758 int savings = 0;
2759 widest_int cand_incr = cand_abs_increment (c);
2761 if (incr == cand_incr && !cand_already_replaced (c))
2762 savings += repl_savings + c->dead_savings;
2764 if (count_phis
2765 && phi_dependent_cand_p (c)
2766 && !cand_already_replaced (c))
2768 int phi_savings = 0;
2769 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
2770 savings -= phi_incr_cost (c, incr, phi, &phi_savings);
2772 if (has_single_use (gimple_phi_result (phi)))
2773 savings += phi_savings;
2776 if (c->dependent)
2777 savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
2778 count_phis);
2780 if (c->sibling)
2781 savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
2782 count_phis);
2784 return savings;
2787 /* Use target-specific costs to determine and record which increments
2788 in the current candidate tree are profitable to replace, assuming
2789 MODE and SPEED. FIRST_DEP is the first dependent of the root of
2790 the candidate tree.
2792 One slight limitation here is that we don't account for the possible
2793 introduction of casts in some cases. See replace_one_candidate for
2794 the cases where these are introduced. This should probably be cleaned
2795 up sometime. */
2797 static void
2798 analyze_increments (slsr_cand_t first_dep, machine_mode mode, bool speed)
2800 unsigned i;
2802 for (i = 0; i < incr_vec_len; i++)
2804 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
2806 /* If somehow this increment is bigger than a HWI, we won't
2807 be optimizing candidates that use it. And if the increment
2808 has a count of zero, nothing will be done with it. */
2809 if (!wi::fits_shwi_p (incr_vec[i].incr) || !incr_vec[i].count)
2810 incr_vec[i].cost = COST_INFINITE;
2812 /* Increments of 0, 1, and -1 are always profitable to replace,
2813 because they always replace a multiply or add with an add or
2814 copy, and may cause one or more existing instructions to go
2815 dead. Exception: -1 can't be assumed to be profitable for
2816 pointer addition. */
2817 else if (incr == 0
2818 || incr == 1
2819 || (incr == -1
2820 && (gimple_assign_rhs_code (first_dep->cand_stmt)
2821 != POINTER_PLUS_EXPR)))
2822 incr_vec[i].cost = COST_NEUTRAL;
2824 /* FORNOW: If we need to add an initializer, give up if a cast from
2825 the candidate's type to its stride's type can lose precision.
2826 This could eventually be handled better by expressly retaining the
2827 result of a cast to a wider type in the stride. Example:
2829 short int _1;
2830 _2 = (int) _1;
2831 _3 = _2 * 10;
2832 _4 = x + _3; ADD: x + (10 * _1) : int
2833 _5 = _2 * 15;
2834 _6 = x + _3; ADD: x + (15 * _1) : int
2836 Right now replacing _6 would cause insertion of an initializer
2837 of the form "short int T = _1 * 5;" followed by a cast to
2838 int, which could overflow incorrectly. Had we recorded _2 or
2839 (int)_1 as the stride, this wouldn't happen. However, doing
2840 this breaks other opportunities, so this will require some
2841 care. */
2842 else if (!incr_vec[i].initializer
2843 && TREE_CODE (first_dep->stride) != INTEGER_CST
2844 && !legal_cast_p_1 (first_dep->stride,
2845 gimple_assign_lhs (first_dep->cand_stmt)))
2847 incr_vec[i].cost = COST_INFINITE;
2849 /* If we need to add an initializer, make sure we don't introduce
2850 a multiply by a pointer type, which can happen in certain cast
2851 scenarios. FIXME: When cleaning up these cast issues, we can
2852 afford to introduce the multiply provided we cast out to an
2853 unsigned int of appropriate size. */
2854 else if (!incr_vec[i].initializer
2855 && TREE_CODE (first_dep->stride) != INTEGER_CST
2856 && POINTER_TYPE_P (TREE_TYPE (first_dep->stride)))
2858 incr_vec[i].cost = COST_INFINITE;
2860 /* For any other increment, if this is a multiply candidate, we
2861 must introduce a temporary T and initialize it with
2862 T_0 = stride * increment. When optimizing for speed, walk the
2863 candidate tree to calculate the best cost reduction along any
2864 path; if it offsets the fixed cost of inserting the initializer,
2865 replacing the increment is profitable. When optimizing for
2866 size, instead calculate the total cost reduction from replacing
2867 all candidates with this increment. */
2868 else if (first_dep->kind == CAND_MULT)
2870 int cost = mult_by_coeff_cost (incr, mode, speed);
2871 int repl_savings = mul_cost (speed, mode) - add_cost (speed, mode);
2872 if (speed)
2873 cost = lowest_cost_path (cost, repl_savings, first_dep,
2874 incr_vec[i].incr, COUNT_PHIS);
2875 else
2876 cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
2877 COUNT_PHIS);
2879 incr_vec[i].cost = cost;
2882 /* If this is an add candidate, the initializer may already
2883 exist, so only calculate the cost of the initializer if it
2884 doesn't. We are replacing one add with another here, so the
2885 known replacement savings is zero. We will account for removal
2886 of dead instructions in lowest_cost_path or total_savings. */
2887 else
2889 int cost = 0;
2890 if (!incr_vec[i].initializer)
2891 cost = mult_by_coeff_cost (incr, mode, speed);
2893 if (speed)
2894 cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
2895 DONT_COUNT_PHIS);
2896 else
2897 cost -= total_savings (0, first_dep, incr_vec[i].incr,
2898 DONT_COUNT_PHIS);
2900 incr_vec[i].cost = cost;
2905 /* Return the nearest common dominator of BB1 and BB2. If the blocks
2906 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
2907 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
2908 return C2 in *WHERE; and if the NCD matches neither, return NULL in
2909 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
2911 static basic_block
2912 ncd_for_two_cands (basic_block bb1, basic_block bb2,
2913 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
2915 basic_block ncd;
2917 if (!bb1)
2919 *where = c2;
2920 return bb2;
2923 if (!bb2)
2925 *where = c1;
2926 return bb1;
2929 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
2931 /* If both candidates are in the same block, the earlier
2932 candidate wins. */
2933 if (bb1 == ncd && bb2 == ncd)
2935 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
2936 *where = c2;
2937 else
2938 *where = c1;
2941 /* Otherwise, if one of them produced a candidate in the
2942 dominator, that one wins. */
2943 else if (bb1 == ncd)
2944 *where = c1;
2946 else if (bb2 == ncd)
2947 *where = c2;
2949 /* If neither matches the dominator, neither wins. */
2950 else
2951 *where = NULL;
2953 return ncd;
2956 /* Consider all candidates that feed PHI. Find the nearest common
2957 dominator of those candidates requiring the given increment INCR.
2958 Further find and return the nearest common dominator of this result
2959 with block NCD. If the returned block contains one or more of the
2960 candidates, return the earliest candidate in the block in *WHERE. */
2962 static basic_block
2963 ncd_with_phi (slsr_cand_t c, const widest_int &incr, gphi *phi,
2964 basic_block ncd, slsr_cand_t *where)
2966 unsigned i;
2967 slsr_cand_t basis = lookup_cand (c->basis);
2968 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2970 for (i = 0; i < gimple_phi_num_args (phi); i++)
2972 tree arg = gimple_phi_arg_def (phi, i);
2974 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2976 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2978 if (gimple_code (arg_def) == GIMPLE_PHI)
2979 ncd = ncd_with_phi (c, incr, as_a <gphi *> (arg_def), ncd,
2980 where);
2981 else
2983 slsr_cand_t arg_cand = base_cand_from_table (arg);
2984 widest_int diff = arg_cand->index - basis->index;
2985 basic_block pred = gimple_phi_arg_edge (phi, i)->src;
2987 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
2988 ncd = ncd_for_two_cands (ncd, pred, *where, NULL, where);
2993 return ncd;
2996 /* Consider the candidate C together with any candidates that feed
2997 C's phi dependence (if any). Find and return the nearest common
2998 dominator of those candidates requiring the given increment INCR.
2999 If the returned block contains one or more of the candidates,
3000 return the earliest candidate in the block in *WHERE. */
3002 static basic_block
3003 ncd_of_cand_and_phis (slsr_cand_t c, const widest_int &incr, slsr_cand_t *where)
3005 basic_block ncd = NULL;
3007 if (cand_abs_increment (c) == incr)
3009 ncd = gimple_bb (c->cand_stmt);
3010 *where = c;
3013 if (phi_dependent_cand_p (c))
3014 ncd = ncd_with_phi (c, incr,
3015 as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt),
3016 ncd, where);
3018 return ncd;
3021 /* Consider all candidates in the tree rooted at C for which INCR
3022 represents the required increment of C relative to its basis.
3023 Find and return the basic block that most nearly dominates all
3024 such candidates. If the returned block contains one or more of
3025 the candidates, return the earliest candidate in the block in
3026 *WHERE. */
3028 static basic_block
3029 nearest_common_dominator_for_cands (slsr_cand_t c, const widest_int &incr,
3030 slsr_cand_t *where)
3032 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3033 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
3035 /* First find the NCD of all siblings and dependents. */
3036 if (c->sibling)
3037 sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
3038 incr, &sib_where);
3039 if (c->dependent)
3040 dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
3041 incr, &dep_where);
3042 if (!sib_ncd && !dep_ncd)
3044 new_where = NULL;
3045 ncd = NULL;
3047 else if (sib_ncd && !dep_ncd)
3049 new_where = sib_where;
3050 ncd = sib_ncd;
3052 else if (dep_ncd && !sib_ncd)
3054 new_where = dep_where;
3055 ncd = dep_ncd;
3057 else
3058 ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
3059 dep_where, &new_where);
3061 /* If the candidate's increment doesn't match the one we're interested
3062 in (and nor do any increments for feeding defs of a phi-dependence),
3063 then the result depends only on siblings and dependents. */
3064 this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
3066 if (!this_ncd || cand_already_replaced (c))
3068 *where = new_where;
3069 return ncd;
3072 /* Otherwise, compare this candidate with the result from all siblings
3073 and dependents. */
3074 ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
3076 return ncd;
3079 /* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3081 static inline bool
3082 profitable_increment_p (unsigned index)
3084 return (incr_vec[index].cost <= COST_NEUTRAL);
3087 /* For each profitable increment in the increment vector not equal to
3088 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3089 dominator of all statements in the candidate chain rooted at C
3090 that require that increment, and insert an initializer
3091 T_0 = stride * increment at that location. Record T_0 with the
3092 increment record. */
3094 static void
3095 insert_initializers (slsr_cand_t c)
3097 unsigned i;
3099 for (i = 0; i < incr_vec_len; i++)
3101 basic_block bb;
3102 slsr_cand_t where = NULL;
3103 gassign *init_stmt;
3104 tree stride_type, new_name, incr_tree;
3105 widest_int incr = incr_vec[i].incr;
3107 if (!profitable_increment_p (i)
3108 || incr == 1
3109 || (incr == -1
3110 && gimple_assign_rhs_code (c->cand_stmt) != POINTER_PLUS_EXPR)
3111 || incr == 0)
3112 continue;
3114 /* We may have already identified an existing initializer that
3115 will suffice. */
3116 if (incr_vec[i].initializer)
3118 if (dump_file && (dump_flags & TDF_DETAILS))
3120 fputs ("Using existing initializer: ", dump_file);
3121 print_gimple_stmt (dump_file,
3122 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
3123 0, 0);
3125 continue;
3128 /* Find the block that most closely dominates all candidates
3129 with this increment. If there is at least one candidate in
3130 that block, the earliest one will be returned in WHERE. */
3131 bb = nearest_common_dominator_for_cands (c, incr, &where);
3133 /* Create a new SSA name to hold the initializer's value. */
3134 stride_type = TREE_TYPE (c->stride);
3135 new_name = make_temp_ssa_name (stride_type, NULL, "slsr");
3136 incr_vec[i].initializer = new_name;
3138 /* Create the initializer and insert it in the latest possible
3139 dominating position. */
3140 incr_tree = wide_int_to_tree (stride_type, incr);
3141 init_stmt = gimple_build_assign (new_name, MULT_EXPR,
3142 c->stride, incr_tree);
3143 if (where)
3145 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
3146 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3147 gimple_set_location (init_stmt, gimple_location (where->cand_stmt));
3149 else
3151 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3152 gimple *basis_stmt = lookup_cand (c->basis)->cand_stmt;
3154 if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
3155 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3156 else
3157 gsi_insert_after (&gsi, init_stmt, GSI_SAME_STMT);
3159 gimple_set_location (init_stmt, gimple_location (basis_stmt));
3162 if (dump_file && (dump_flags & TDF_DETAILS))
3164 fputs ("Inserting initializer: ", dump_file);
3165 print_gimple_stmt (dump_file, init_stmt, 0, 0);
3170 /* Return TRUE iff all required increments for candidates feeding PHI
3171 are profitable to replace on behalf of candidate C. */
3173 static bool
3174 all_phi_incrs_profitable (slsr_cand_t c, gimple *phi)
3176 unsigned i;
3177 slsr_cand_t basis = lookup_cand (c->basis);
3178 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
3180 for (i = 0; i < gimple_phi_num_args (phi); i++)
3182 tree arg = gimple_phi_arg_def (phi, i);
3184 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
3186 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
3188 if (gimple_code (arg_def) == GIMPLE_PHI)
3190 if (!all_phi_incrs_profitable (c, arg_def))
3191 return false;
3193 else
3195 int j;
3196 slsr_cand_t arg_cand = base_cand_from_table (arg);
3197 widest_int increment = arg_cand->index - basis->index;
3199 if (!address_arithmetic_p && wi::neg_p (increment))
3200 increment = -increment;
3202 j = incr_vec_index (increment);
3204 if (dump_file && (dump_flags & TDF_DETAILS))
3206 fprintf (dump_file, " Conditional candidate %d, phi: ",
3207 c->cand_num);
3208 print_gimple_stmt (dump_file, phi, 0, 0);
3209 fputs (" increment: ", dump_file);
3210 print_decs (increment, dump_file);
3211 if (j < 0)
3212 fprintf (dump_file,
3213 "\n Not replaced; incr_vec overflow.\n");
3214 else {
3215 fprintf (dump_file, "\n cost: %d\n", incr_vec[j].cost);
3216 if (profitable_increment_p (j))
3217 fputs (" Replacing...\n", dump_file);
3218 else
3219 fputs (" Not replaced.\n", dump_file);
3223 if (j < 0 || !profitable_increment_p (j))
3224 return false;
3229 return true;
3232 /* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3233 type TO_TYPE, and insert it in front of the statement represented
3234 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3235 the new SSA name. */
3237 static tree
3238 introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
3240 tree cast_lhs;
3241 gassign *cast_stmt;
3242 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3244 cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
3245 cast_stmt = gimple_build_assign (cast_lhs, NOP_EXPR, from_expr);
3246 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3247 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3249 if (dump_file && (dump_flags & TDF_DETAILS))
3251 fputs (" Inserting: ", dump_file);
3252 print_gimple_stmt (dump_file, cast_stmt, 0, 0);
3255 return cast_lhs;
3258 /* Replace the RHS of the statement represented by candidate C with
3259 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3260 leave C unchanged or just interchange its operands. The original
3261 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3262 If the replacement was made and we are doing a details dump,
3263 return the revised statement, else NULL. */
3265 static gimple *
3266 replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3267 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3268 slsr_cand_t c)
3270 if (new_code != old_code
3271 || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3272 || !operand_equal_p (new_rhs2, old_rhs2, 0))
3273 && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3274 || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3276 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3277 gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3278 update_stmt (gsi_stmt (gsi));
3279 c->cand_stmt = gsi_stmt (gsi);
3281 if (dump_file && (dump_flags & TDF_DETAILS))
3282 return gsi_stmt (gsi);
3285 else if (dump_file && (dump_flags & TDF_DETAILS))
3286 fputs (" (duplicate, not actually replacing)\n", dump_file);
3288 return NULL;
3291 /* Strength-reduce the statement represented by candidate C by replacing
3292 it with an equivalent addition or subtraction. I is the index into
3293 the increment vector identifying C's increment. NEW_VAR is used to
3294 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3295 is the rhs1 to use in creating the add/subtract. */
3297 static void
3298 replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
3300 gimple *stmt_to_print = NULL;
3301 tree orig_rhs1, orig_rhs2;
3302 tree rhs2;
3303 enum tree_code orig_code, repl_code;
3304 widest_int cand_incr;
3306 orig_code = gimple_assign_rhs_code (c->cand_stmt);
3307 orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3308 orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3309 cand_incr = cand_increment (c);
3311 if (dump_file && (dump_flags & TDF_DETAILS))
3313 fputs ("Replacing: ", dump_file);
3314 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
3315 stmt_to_print = c->cand_stmt;
3318 if (address_arithmetic_p)
3319 repl_code = POINTER_PLUS_EXPR;
3320 else
3321 repl_code = PLUS_EXPR;
3323 /* If the increment has an initializer T_0, replace the candidate
3324 statement with an add of the basis name and the initializer. */
3325 if (incr_vec[i].initializer)
3327 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3328 tree orig_type = TREE_TYPE (orig_rhs2);
3330 if (types_compatible_p (orig_type, init_type))
3331 rhs2 = incr_vec[i].initializer;
3332 else
3333 rhs2 = introduce_cast_before_cand (c, orig_type,
3334 incr_vec[i].initializer);
3336 if (incr_vec[i].incr != cand_incr)
3338 gcc_assert (repl_code == PLUS_EXPR);
3339 repl_code = MINUS_EXPR;
3342 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3343 orig_code, orig_rhs1, orig_rhs2,
3347 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3348 with a subtract of the stride from the basis name, a copy
3349 from the basis name, or an add of the stride to the basis
3350 name, respectively. It may be necessary to introduce a
3351 cast (or reuse an existing cast). */
3352 else if (cand_incr == 1)
3354 tree stride_type = TREE_TYPE (c->stride);
3355 tree orig_type = TREE_TYPE (orig_rhs2);
3357 if (types_compatible_p (orig_type, stride_type))
3358 rhs2 = c->stride;
3359 else
3360 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3362 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3363 orig_code, orig_rhs1, orig_rhs2,
3367 else if (cand_incr == -1)
3369 tree stride_type = TREE_TYPE (c->stride);
3370 tree orig_type = TREE_TYPE (orig_rhs2);
3371 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3373 if (types_compatible_p (orig_type, stride_type))
3374 rhs2 = c->stride;
3375 else
3376 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3378 if (orig_code != MINUS_EXPR
3379 || !operand_equal_p (basis_name, orig_rhs1, 0)
3380 || !operand_equal_p (rhs2, orig_rhs2, 0))
3382 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3383 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3384 update_stmt (gsi_stmt (gsi));
3385 c->cand_stmt = gsi_stmt (gsi);
3387 if (dump_file && (dump_flags & TDF_DETAILS))
3388 stmt_to_print = gsi_stmt (gsi);
3390 else if (dump_file && (dump_flags & TDF_DETAILS))
3391 fputs (" (duplicate, not actually replacing)\n", dump_file);
3394 else if (cand_incr == 0)
3396 tree lhs = gimple_assign_lhs (c->cand_stmt);
3397 tree lhs_type = TREE_TYPE (lhs);
3398 tree basis_type = TREE_TYPE (basis_name);
3400 if (types_compatible_p (lhs_type, basis_type))
3402 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
3403 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3404 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3405 gsi_replace (&gsi, copy_stmt, false);
3406 c->cand_stmt = copy_stmt;
3408 if (dump_file && (dump_flags & TDF_DETAILS))
3409 stmt_to_print = copy_stmt;
3411 else
3413 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3414 gassign *cast_stmt = gimple_build_assign (lhs, NOP_EXPR, basis_name);
3415 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3416 gsi_replace (&gsi, cast_stmt, false);
3417 c->cand_stmt = cast_stmt;
3419 if (dump_file && (dump_flags & TDF_DETAILS))
3420 stmt_to_print = cast_stmt;
3423 else
3424 gcc_unreachable ();
3426 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3428 fputs ("With: ", dump_file);
3429 print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
3430 fputs ("\n", dump_file);
3434 /* For each candidate in the tree rooted at C, replace it with
3435 an increment if such has been shown to be profitable. */
3437 static void
3438 replace_profitable_candidates (slsr_cand_t c)
3440 if (!cand_already_replaced (c))
3442 widest_int increment = cand_abs_increment (c);
3443 enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
3444 int i;
3446 i = incr_vec_index (increment);
3448 /* Only process profitable increments. Nothing useful can be done
3449 to a cast or copy. */
3450 if (i >= 0
3451 && profitable_increment_p (i)
3452 && orig_code != MODIFY_EXPR
3453 && !CONVERT_EXPR_CODE_P (orig_code))
3455 if (phi_dependent_cand_p (c))
3457 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
3459 if (all_phi_incrs_profitable (c, phi))
3461 /* Look up the LHS SSA name from C's basis. This will be
3462 the RHS1 of the adds we will introduce to create new
3463 phi arguments. */
3464 slsr_cand_t basis = lookup_cand (c->basis);
3465 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3467 /* Create a new phi statement that will represent C's true
3468 basis after the transformation is complete. */
3469 location_t loc = gimple_location (c->cand_stmt);
3470 tree name = create_phi_basis (c, phi, basis_name,
3471 loc, UNKNOWN_STRIDE);
3473 /* Replace C with an add of the new basis phi and the
3474 increment. */
3475 replace_one_candidate (c, i, name);
3478 else
3480 slsr_cand_t basis = lookup_cand (c->basis);
3481 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3482 replace_one_candidate (c, i, basis_name);
3487 if (c->sibling)
3488 replace_profitable_candidates (lookup_cand (c->sibling));
3490 if (c->dependent)
3491 replace_profitable_candidates (lookup_cand (c->dependent));
3494 /* Analyze costs of related candidates in the candidate vector,
3495 and make beneficial replacements. */
3497 static void
3498 analyze_candidates_and_replace (void)
3500 unsigned i;
3501 slsr_cand_t c;
3503 /* Each candidate that has a null basis and a non-null
3504 dependent is the root of a tree of related statements.
3505 Analyze each tree to determine a subset of those
3506 statements that can be replaced with maximum benefit. */
3507 FOR_EACH_VEC_ELT (cand_vec, i, c)
3509 slsr_cand_t first_dep;
3511 if (c->basis != 0 || c->dependent == 0)
3512 continue;
3514 if (dump_file && (dump_flags & TDF_DETAILS))
3515 fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3516 c->cand_num);
3518 first_dep = lookup_cand (c->dependent);
3520 /* If this is a chain of CAND_REFs, unconditionally replace
3521 each of them with a strength-reduced data reference. */
3522 if (c->kind == CAND_REF)
3523 replace_refs (c);
3525 /* If the common stride of all related candidates is a known
3526 constant, each candidate without a phi-dependence can be
3527 profitably replaced. Each replaces a multiply by a single
3528 add, with the possibility that a feeding add also goes dead.
3529 A candidate with a phi-dependence is replaced only if the
3530 compensation code it requires is offset by the strength
3531 reduction savings. */
3532 else if (TREE_CODE (c->stride) == INTEGER_CST)
3533 replace_uncond_cands_and_profitable_phis (first_dep);
3535 /* When the stride is an SSA name, it may still be profitable
3536 to replace some or all of the dependent candidates, depending
3537 on whether the introduced increments can be reused, or are
3538 less expensive to calculate than the replaced statements. */
3539 else
3541 machine_mode mode;
3542 bool speed;
3544 /* Determine whether we'll be generating pointer arithmetic
3545 when replacing candidates. */
3546 address_arithmetic_p = (c->kind == CAND_ADD
3547 && POINTER_TYPE_P (c->cand_type));
3549 /* If all candidates have already been replaced under other
3550 interpretations, nothing remains to be done. */
3551 if (!count_candidates (c))
3552 continue;
3554 /* Construct an array of increments for this candidate chain. */
3555 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
3556 incr_vec_len = 0;
3557 record_increments (c);
3559 /* Determine which increments are profitable to replace. */
3560 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3561 speed = optimize_cands_for_speed_p (c);
3562 analyze_increments (first_dep, mode, speed);
3564 /* Insert initializers of the form T_0 = stride * increment
3565 for use in profitable replacements. */
3566 insert_initializers (first_dep);
3567 dump_incr_vec ();
3569 /* Perform the replacements. */
3570 replace_profitable_candidates (first_dep);
3571 free (incr_vec);
3576 namespace {
3578 const pass_data pass_data_strength_reduction =
3580 GIMPLE_PASS, /* type */
3581 "slsr", /* name */
3582 OPTGROUP_NONE, /* optinfo_flags */
3583 TV_GIMPLE_SLSR, /* tv_id */
3584 ( PROP_cfg | PROP_ssa ), /* properties_required */
3585 0, /* properties_provided */
3586 0, /* properties_destroyed */
3587 0, /* todo_flags_start */
3588 0, /* todo_flags_finish */
3591 class pass_strength_reduction : public gimple_opt_pass
3593 public:
3594 pass_strength_reduction (gcc::context *ctxt)
3595 : gimple_opt_pass (pass_data_strength_reduction, ctxt)
3598 /* opt_pass methods: */
3599 virtual bool gate (function *) { return flag_tree_slsr; }
3600 virtual unsigned int execute (function *);
3602 }; // class pass_strength_reduction
3604 unsigned
3605 pass_strength_reduction::execute (function *fun)
3607 /* Create the obstack where candidates will reside. */
3608 gcc_obstack_init (&cand_obstack);
3610 /* Allocate the candidate vector. */
3611 cand_vec.create (128);
3613 /* Allocate the mapping from statements to candidate indices. */
3614 stmt_cand_map = new hash_map<gimple *, slsr_cand_t>;
3616 /* Create the obstack where candidate chains will reside. */
3617 gcc_obstack_init (&chain_obstack);
3619 /* Allocate the mapping from base expressions to candidate chains. */
3620 base_cand_map = new hash_table<cand_chain_hasher> (500);
3622 /* Allocate the mapping from bases to alternative bases. */
3623 alt_base_map = new hash_map<tree, tree>;
3625 /* Initialize the loop optimizer. We need to detect flow across
3626 back edges, and this gives us dominator information as well. */
3627 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
3629 /* Walk the CFG in predominator order looking for strength reduction
3630 candidates. */
3631 find_candidates_dom_walker (CDI_DOMINATORS)
3632 .walk (fun->cfg->x_entry_block_ptr);
3634 if (dump_file && (dump_flags & TDF_DETAILS))
3636 dump_cand_vec ();
3637 dump_cand_chains ();
3640 delete alt_base_map;
3641 free_affine_expand_cache (&name_expansions);
3643 /* Analyze costs and make appropriate replacements. */
3644 analyze_candidates_and_replace ();
3646 loop_optimizer_finalize ();
3647 delete base_cand_map;
3648 base_cand_map = NULL;
3649 obstack_free (&chain_obstack, NULL);
3650 delete stmt_cand_map;
3651 cand_vec.release ();
3652 obstack_free (&cand_obstack, NULL);
3654 return 0;
3657 } // anon namespace
3659 gimple_opt_pass *
3660 make_pass_strength_reduction (gcc::context *ctxt)
3662 return new pass_strength_reduction (ctxt);